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Abstract:  

This paper presents predictive analysis of load carrying capacity, tractive efficiency and response 
time of parallel annular discs intervened with a film of lubricant under combined shear and 
squeeze film motions. This configuration represents operational characteristics of viscous 
coupling systems. In particular, the case of viscous dampers for tractive torque generation and 
distribution in all-wheel-drive off-road vehicles is studied. Various forms of lubricant behaviour, 
from idealised Newtonian to that of non-Newtonian silicone-based fluids and  incompressible 
isothermal electrically conducting couple stress fluids, subjected to a magnetic field are studied 
(MHD). The solution for the MHD includes combined solution of modified Reynolds equation 
and Stoke’s micro-continuum for couple stress fluids in squeeze and shear with rotational fluid 
inertia, an approach not hitherto reported in literature.  

It is shown that in general MHD couple stress fluids enhance the load carrying capacity of the 
contact and inhibit the incidence of thin films which can result in direct contact of surfaces. 
Rotational inertia decreases the load carrying capacity, although in general the MHD fluids show 
better load carrying capacity and tractive efficiency than the other alternatives. However, they 
exhibit a lower response time under the assumed isothermal condition. Nevertheless, the MHD 
fluids are best suited to applications in viscous coupling systems because of their controllability.  

Keywords: Couple stress fluids, Hartman number, parallel annular discs, Stokes micro-
continuum theory, rotational inertial effects, viscous coupling systems, All-wheel-drive 
vehicles. 

1. Introduction  

Increasingly higher loads are carried by lubricated conjunctions in many machines and 
mechanisms such as in vehicular drive trains at high lubricant shear rates. These conditions often 
result in very thin films operating at limiting shear stress of the lubricant [1]. One repercussion 
can be direct interaction of surfaces. Furthermore, contact conjunctions are also expected to 
operate with ever decreasing frictional losses in order to improve energy efficiency, particularly 
in vehicles which need to meet stringent emission criteria such as compliance with the new 
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European drive cycle [2]. Additionally, the drive for improved fuel efficiency has brought about 
technologies such as cylinder deactivation (CDA) which improve upon fuel efficiency, but often 
at the expense of noise, vibration and harshness (NVH) refinement, which is another growing 
area of concern in the competitive automotive sector. A result of application of CDA is 
exacerbated engine order vibration which can transmit larger oscillatory motions to drive train 
components [3]. Therefore, palliative measures are required to reduce the untoward effects of 
impulsive actions with application of new technologies such as hybridization, cylinder 
deactivation and the increasing tendency in high output power to weight ratio compact engines. 

One approach is the use of viscous dampers, such as visco-lock systems with high load carrying 
capacity and with a lubricant of suitable thixotropic non-Newtonian shear characteristics such as 
silicone-based lubricants, which transmit torque through good traction. Sharaf et al [4]   include a 
rheological model for silicone-based lubricants in visco-lock devices used in off-road all-wheel- 
(AWD) vehicles, subjected to various tractive motions on different terrains.     

Another approach is the growing trend in the use of electrically conducting fluids in some 
machines and mechanisms. The aim is to avoid the undesired and unpredictable changes in the 
viscosity of lubricant with temperature and/or pressure. Thus, use of electro-rheological (ERF) 
lubricants, magneto- rheological fluids (MRF) and nano-fluids have been receiving increasing 
attention.  

A number of empirical and theoretical studies have investigated the performance characteristics 
of magneto-hydrodynamic (MHD) thin film bearings with different contact geometries in the 
presence of generated external magnetic fields. Some representative experimental and numerical 
studies include the MHD squeeze film characteristics by Maki and Kuzma[5], Usha and Vimala 
[6], Lin et al. [7], Lin [8] and Hsu et al [9]. Additionally, Agrawal [10], Anwar and Rodkiewich 
[11], and Gupta and Bhat [12] have studied the lubricant behaviour in MHD slider bearings.  

The rheological flow behaviour of a Newtonian lubricant, blended with various additives cannot 
be accurately described by the classical continuum theory. Therefore, many micro-continuum 
theories have been proposed [13-18], involving the use of the couple stress concept, which was 
originally developed to model non-Newtonian fluids such as synthetic fluids, polymer-thickened 
oils, liquid crystals, and even blood. In this method the sizes of blended particles are important. 
However, the couple stress concept in micro-contiuum theory is a simplified version of the 
higher order/higher-grade micropolar continuum theory [19,20], where rotational degrees of 
freedom of particles are also taken into account in addition to their translational degrees of 
freedom in shear. Therefore, the size effects at small scale are not properly represented in the 
couple stress approach. However, the computational effort is significantly reduced and analytical 
formulation becomes possible. As a result, this simplified approach has led to the study of 
various conjunctions such as squeeze film lubrication in thrust bearings by Ramanaish and 
Sarkar [21] and Das [22] for the lubrication of slider bearings with an MHD couple stress fluid 
as the lubricant and in the presence of an external magnetic field.   
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Recently, Daliri et al [23] studied the combined effects of MHD coupled stress lubricant, 
including the effect of convective inertia between wide parallel rectangular plates. In order to 
address practical applications of the theory, in this paper the geometry of wide parallel 
rectangular plates is altered to represent parallel annular discs under combined squeeze and 
rotation to represent visco-lock systems described by Sharaf et al [4]. Therefore, the current 
study is divided into two parts. First, the characteristics of squeeze film lubrication between 
rotating parallel annular discs is undertaken.  Then, the application of MHD coupled stress 
lubricant to annular discs in rotation for visco-lock vehicular differentials is considered.  

The results of squeeze film characteristics such as the load- carrying capacity and time history of 
film thickness are presented for various values of coupled stress parameter, radius ratio, lubricant 
rotational inertia and the Hartman's number. An important consideration is the generated tractive 
torque for various values of coupled stress parameter, outer and inner plate radii and the 
operating differential speed between the inner and outer plates as well as the Hartman's number. 

2. The analytical approach  

2.1- characteristics of squeeze film: 

The geometry of the problem between two parallel annular discs with inner radius b and outer 
radius a is shown in figure 1, in which the upper disc rotates at an angular velocity Ω and 
approaches the lower disc with a constant squeezing velocity V. It is necessary to calculate the 
pressure distribution, load carrying capacity and film thickness. The momentum equations for a 
MHD coupled stress fluid are used in the presence of a uniform magnetic field, including the 
rotational fluid inertia. Therefore, the governing equations are obtained as follows: 
 
 

 

   

 

  

 

 

 

 

   

Fig1. Squeeze film geometry between two parallel annular discs 
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The derivation of equations (1)-(3) with the underlying assumptions made is provided in 
Appendix 2. 

The continuity equation is:  

0)(1
=

∂
∂

+
∂

∂
z
w

r
ur

r
                                                                                                                                              (4)       

where u, v and w are velocity components in the r, θ and z directions respectively. η is the 
material constant for the couple stress fluid, σ is the electrical conductivity of the lubricant and 
Bo represents the applied magnetic field. 

The boundary conditions in the lubricant region and with no- couple stress conditions [13] at 
surfaces are: 
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The boundary conditions for the film pressure p are given as: 
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Making use of non-dimensional parameters: 
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the dimensionless form of equation (2) becomes:  
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The non-dimensional forms of boundary conditions (7, 8) are: 
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The non-dimensional form of boundary conditions (5,6) are: 
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The boundary conditions (13) and (14) are used for the solution of equation (12) and the 
boundary conditions (16) and (17) are used for the solution of equation (15). This yields the 
velocity distribution across the lubricant film in θ and r directions respectively. Three different 
cases are considered according to the parameter, n, which is a dimensionless parameter 
combining the effects of electrical conductivity, applied magnetic field and the lubricant’s couple 
stress behaviour. Therefore, the value of n directly affects the load carrying capacity of the 
contact. 
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It can be seen that for an assumed viscosity,  n becomes a direct function of the magnetic field 
intensity, fluid electrical conductivity and the material constantη . By increasing these quantities, 
an enhancement in the value of n would be expected. This would yield better load carrying 
capacity.  Analytical solution for three cases: case 1: n<1, case 2: n=1 and case3: n>1 are 
outlined in Appendix 3. Load carrying capacity is obtained by integration of pressure distribution 
p* (derived in Appendix 3). Therefore, the dimensionless load carrying capacity (Note: 
W=2π∫ prdr)a

b  for cases 1-3 becomes: 
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For a fixed load, the approach time to achieve a given gap needs to be calculated. The non-
dimensional approach time and the non-dimensional centrifugal force-to-applied load ratio are:                                                        
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The time history of film thickness is obtained by making use of equations (18) ,(20) and (21) for 
cases 1, 2 and 3, respectively as: 
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The above equations are highly non-linear ordinary differential equations. Therefore, the solution 
method should shift from analytical to a numerical one. In order to achieve accurate results, a 
fourth-order Runge-Kutta method is used as well as the following initial conditions:  

1* =h            at             0* =t   

2.2- Application of MHD coupled stress to viscous coupling systems 

An application of the current study is in the area of all-wheel drive (AWD) off-road vehicular 
differentials as highlighted by Sharaf et al [4], subject to manoeuvre on various soils [24]. In the 
traditional all-wheel drive systems, a viscous coupling is commonly installed on the propeller 
shaft in order to transmit the torque whilst allowing some difference in rotational speeds between 
the axles. These viscous coupling units are primarily used in off-road vehicles, but the 
methodology highlighted in this case study can easily be applied to other similar applications. 
  



8 
 

The viscous coupling unit consists of one set of inner plates which are splined onto a driving 
shaft and another set of outer plates, which are in turn splined onto the outer drum and then 
rigidly connected to the driven shaft. (figures 2 and3). The plates are separated by a thin film of 
silicone-based lubricant or electrically conducting coupled stress fluid in the presence of an 
external magnetic fluid. The main mechanism for torque transfer is based on the shearing of this 
thin fluid film. Therefore, the generated resistive torque of the viscous coupling is dependent on 
the relative speed of the rotating contacting elements, the plates’ dimensions and the rheology of 
the fluid used. 
 

 
Fig2. Simple schematic view of a viscous coupling 

 
 

Fig3. Viscous shear mode configuration 

In the present study, the effect of three types of lubricant used in this viscous coupling 
configuration are investigated. Other viscous couplers to mitigate powertrain torsional vibration 
or activation of engine cooling fan can also be considered. The lubricant types are: Type 1: A 
Newtonian lubricant, Type 2: A non – Newtonian silicone lubricant and Type3: An electrically 
conducting coupled stress lubricant in the presence of a magnetic field. 
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Type 1: Coupling through a Newtonian lubricant: 
 
The total viscous shear torque Tv is given as [4]: 
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Type 2: A non – Newtonian silicone-based lubricant: 
 
The total viscous shear torque Tv is given as [4]: 
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where m  is the slope of viscosity-shear strain curve for the silicone-based lubricant. 

Type 3: A coupled stress electrically conducting fluid: 

Assuming an electrically conducting coupled stress fluid and isothermal conditions, the total 
viscous shear torque Tv, contributed by one side of the inner plate can be derived from basic 
principles by integrating the moment due to the shear stress over the active contact area from the 
inner plate radius b to the outer plate radius a as: 
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If  M=0 , a*→∞ (i.e. l*=0) and h=ho. Thus, the above equation reduces to equation (26) which is 
the one derived by Sharaf et al [4] for a Newtonian fluid approximation of the silicone-based 
lubricant. 
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and: 
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3- Results and discussion 

The case of an electrically conducting coupled stress lubricant, intervening in the conjunction of 
a pair of parallel annular discs, subjected to a magnetic field is considered here. Tables 1-3 in 
Appendix 4 list the lubricant rheological, magnetic field and visco- lock system parameters used 
in the current study. In tables 1 and 2, the parameter, a* represents the effect of coupled stresses, 
M provides the effect of externally applied magnetic field and the rotational inertial parameter, γ, 
defines the effect of lubricant inertia. It should be noted that only in the case 1:(2M/a*<1), l* and 
M  can diminish, which yields Newtonian and non-conducting fluids respectively. In cases 2 and 
3: M=0 or l*= 0 (a*→∞) would have no physical meaning and thus such cases cannot be 
interpreted. 

As already noted, the MHD couple stress flow equation (analogous to Reynolds equation) in the 
presence of a magnetic field is derived using couple stress equations of motion, continuity of 
flow condition and rotational inertia. The important governing parameters are: (a)- the rotational 
parameter (shear strain rate), γ , which takes into account the effect of the rotational speed on the 
behaviour of a squeezing lubricant film, (b)- the dimensionless radius ratio, λ , (c)- the Hartmann 
number, M, denoting the effect of an externally applied magnetic field, and (d)- l*, which 
signifies the effect of couple stress lubricant on the squeeze film performance. Based on these 
definitions, the flow characteristics of various squeezing film motion cases can be expected from 
a combination of these governing parameters. These combinations may be viewed as: 
 
1.M=0, l*= 0 (a*→∞), γ=0, λ=0 : representing non-conducting Newtonian lubricants in pure 
squeeze between a pair of circular discs, a case studied by Hamrock [25] and Moore[26]. 
Assumption of Newtonian lubricant behaviour is, in general, idealised. 
2. M=0, l*= 0 (a*→∞), γ≠0, λ≠0: representing non-conducting Newtonian lubricants, under 
combined squeeze and shear as studied by Allen and McKillop [27]. 
 3. M≠0, l*= 0 (a*→∞), γ=0, λ=0: representing conducting Newtonian lubricants in the presence 
of a magnetic field in pure squeeze, reported by Kuzma [28] and Shukla [29]. This case 
represents active suspension elements for vehicles under relatively larger displacement. 
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 4. M≠0, l*= 0 (a*→∞), γ≠0, λ=0: representing conducting Newtonian lubricants in the presence 
of a magnetic field, subjected to combined shear and squeeze, reported by Hsu et al [9].  
5. M=0, l*≠ 0 , γ≠0, λ=0: representing non-conducting couple stress lubricants in shear between 
a pair of rotating  circular disc, studied by Lin et al [30]. Many torsional viscous dampers or 
couplers (such as in vehicular engine cooling fans) are examples of these conditions. 
6. M≠0, l*≠ 0 , γ≠0, λ≠0 : representing conducting couple stress lubricants in the presence of a 
magnetic field, between rotating  annular discs in shear and squeeze condition), studied here. 
There is a growing interest in such cases as active torque distribution devices in multi-axle 
vehicles or for off-road applications where driven wheels may experience varying contact patch 
conditions simultaneously, whilst on unmade terrains.  
 

3.1- Case 1: 𝟐𝟐𝟐𝟐
𝐚𝐚∗

< 𝟏𝟏): 

Figures 4-10 show the squeeze film characteristics for case 1. The pressure distribution for 
different values of M, l*and γ are shown in figures 4-5. When the values of M  and l* increase 
(i.e. a stronger magnetic field, a decreasing value of a*), the maximum lubricant pressure is 
naturally increased. On the other hand, when the rate of shear γ is increased, the maximum 
lubricant pressure is reduced. This is because a higher shear rate would constitute a thinner film. 
Therefore, if the film thickness is kept constant (as in figure 5) reduced pressures are expected to 
sustain a constant film at a greater rate of shear. 

 

 

Fig.4. Variation of film pressure p* with coordinate r* in non- inertial case with h*=0.5, λ=0.2  

and different values of M, l* for case 1: (2M
a∗

< 1)   
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Fig.5. Variation of film pressure p* with coordinate r* at M=2, l*=0.1 , h*=0.5 , λ=0.2  

and different values of  γ for case 1: (2M
a∗

< 1) 

Figures 6-8 show the variation of dimensionless load carrying capacity W* with the coupled 
stress parameter l*, Hartman number M and the radius ratio parameter λ   at the dimensionless 
film thickness h*=0.5. Since the coupled stress and MHD effects yield a higher film pressure, 
then the integrated load carrying capacity increases accordingly. In fact, as shown in Figures 6-8, 
the load carrying capacity is a function of l* and M as would rationally be expected. This finding 
points to the least load carrying capacity for Newtonian, non - conducting fluids. By increasing 
the radius ratio parameter λ , the load carrying capacity is decreased. On the other hand, since the 
inertial parameter (shear rate) γ  yields a lower film pressure, then the integrated load carrying 
capacity also decreases accordingly. 
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Fig.6. Variation of load-carrying capacity W* with couple stress parameter l* at h*=0.5, 

M=2, λ=0.2and different values of  γ  for case 1: (2M
a∗

< 1)  

 

 

Fig.7. Variation of load-carrying capacity W* with Hartman number M at h*=0.5, 

l*=0.1, λ=0.2 and different values of  γ for case 1: (2M
a∗

< 1)  
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Fig.8. Variation of the load-carrying capacity W* with radius ratio parameter  λ for different values of  γ for case 1: 
(2M
a∗

< 1) 

Aside from load carrying capacity as a key performance measure meeting, operational 
functionality, and in order to guard against incidence of direct contact of solid surfaces, the 
response time to applied loads, particularly those leading to squeeze of the lubricant film is also 
an important measure of performance. The response time of the lubricant in a visco-lock system 
is crucial in distribution of torque in off-road vehicles on soft terrains under uneven contact patch 
conditions. Such circumstances may occur with a driving wheel induced-rutting in soft soil, with 
another wheel slipping at a higher speed [24]. 

Figures 9 and 10 show the variation of dimensionless film thickness h* with dimensionless 
response time t* for different values of the coupled stress parameter l* 

, Hartman number M and 
rotational inertial parameter L. It is shown that for a coupled stress fluid (l*=0.1) the response 
time is longer than for a Newtonian lubricant (l*=0). Also, increasing the Hartman number M, 
leads to an increased response time. Figure 10 shows that the centrifugal force effect (L = 10) 
arising from the upper rotating disc decreases the response time to the squeezing motion as 
compared with the non-rotating case (L = 0). This is as the result of reduced build-up of pressure 
due to increased shear (also previously noted as an effect of increasing γ ). Finally, smaller 
radius ratios result in longer response times, because of lower generated pressures over a larger 
effective contact area.       
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Fig.9.Variation of film thickness h* with response time t* different values of M for case1: (2M
a∗

< 1) 

 

Fig.10.Variation of film thickness h* with response time t* for different values of L and λ for case1: (2M
a∗

< 1) 

For visco-lock devices tractive capacity (generated torque) is a key performance parameter. 
Figures 11 and 12 show the variation of the total viscous shear torque T with angular velocity Ω 
for different values of the Hartman number M and l* with a constant dimensionless film 
thickness h*=0.5. The geometrical parameters of discs are: a=10cm and b=8cm, and the viscosity 
of the lubricant is: 2.27×10-4 Pa.s with an initial assumed film thickness of: ho= 0.25 mm. It can 
be observed from figures 11 and 12 that increasing the angular velocity Ω and the Hartman 
number M yield a greater driving torque, because the former increases the shear stress, thus 
friction, whilst the latter increases the load carrying capacity. The net effect in both cases is 
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increased traction, thus the driving torque.   Increasing the coupled stress parameter l* also 
decreases the total viscous shear torque T (figure 12).  

The variation of viscous shear torque T with Ω is shown in figure 13 for three different types of 
lubricant. These are: Type 1: A Newtonian approximation for a  silicone-based fluid, Type2: a 
non- Newtonian approximation of a silicone-based fluid and Type3: an MHD coupled stress 
lubricant. Figure 13 shows that the MHD coupled stress lubricant generates a lower tractive 
action (viscous shear torque) than the silicone-based fluids. This is because the viscosity of 
silicone lubricant is higher than MHD coupled stress lubricant. However, there are two 
advantages in the use of the MHD coupled stress lubricant over the silicone-based fluids. Firstly, 
with slipping driven wheels or low torque requirements, lower viscosities promote higher 
efficiency (reduced frictional losses). Secondly, there is greater extent of control on generated 
torque by simply altering the Hartman number, M.  There is, however, the disadvantage of 
response time, as shown above and the additional instrumentation which would add to the 
vehicle weight. 

Fig.11.Variation of driving torque with differential rotational speed  Ω at  h* = 0.5 and  l*=0 for different values of  
M for a=0.1m , b=0.08m,µ=0.000227 Pa.s and ho =0.00025m. case 1: (2M

a∗
< 1)  
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Fig.12. Variation of driving torque with differential rotational speed Ω at h* = 0.5 and M=10 for different values of  
l* for a=0.1m , b=0.08m,µ=0.000227 Pa.s and ho =0.00025m. case 1: (2M

a∗
< 1) 

 

Fig.13. Variation of driving torque with differential rotational speed Ω for three types of lubricant: for a=0.1m, 
b=0.8m. 

3.2- Case 2: (𝟐𝟐𝟐𝟐
𝒂𝒂∗

= 𝟏𝟏): 

When case 2 is investigated, it is necessary to select values for M and a* which satisfy the 
equality: (2𝑀𝑀

𝑎𝑎∗
= 1). Figure 14 shows the generated dimensionless pressure distribution p* for 

different values of γ with h*= 0.5 and λ =10. It is noted that an increasing shear rate γ results in 
decreasing p* (a point previously noted). Figure 15 shows the variation of dimensionless load 
carrying capacity with rotational inertial parameter (shear rate) γ, for different values of λ. It is 
observed that by increasing γ and λ, load carrying capacity W* is decreased, as previously 
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mentioned for case 1. Figure 16 shows the variation of film thickness h* with the response time t* 
for different values of L and λ . It is clear that with an increasing centrifugal force (inertial 
effect, increasing L) and the radius ratio parameter λ, the response time is reduced. In effect, 
there is a more effective tractive coupling with inertial effect over a larger effective contact 
domain. Figures 17 shows the variation of driving torque T with Ω for different values of M and 
a* at h*=0.5. It shows an increasing Hartman number M, inverse couple stress parameter a* and 
Ω, all enhance the tractive action as would be expected.  

 

Fig.14. Variation of film pressure p* with coordinate r* at h*=0.5, λ=0.2  

and different values of γ for case 2: (2M
a∗

= 1)  

 

Fig.15. Variation of the load-carrying capacity W* with rotational parameter γ at h*=0.5 and different values of  λ for 
case 2:(2M

a∗
= 1)  
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Fig.16.Variation of film thickness h* with the response time t* for different values of L  , λ for case2: (2M
a∗

= 1) 

 

Fig.17.Variation of driving torque with Ω at h*=0.5 and different values of M and a* for case 2: (2M
a∗

= 1) 

 

3.3- Case 3: 𝟐𝟐𝟐𝟐
𝒂𝒂∗

> 1): 

Figures 18- 21 show the squeeze film characteristics for case 3. For this case, the selected values 
for M and a* should satisfy the above inequality. Dimensionless pressure distribution p* is shown 
in Figure 18 for different values of rotational inertial parameter γ with h* = 0.5 , λ=0.2. With an 
increasing γ, the generated pressures and, thus, the load carrying capacity are decreased. 
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Figure.19 shows the variation of load capacity W* with the couple stress parameter l* for 
different values of γ under electrically conducting case; M=6. The choice of M=6 is because it 
satisfies the inequality  2𝑀𝑀

𝑎𝑎∗
> 1  (case 3). As shown in figure 19, increasing the couple stress 

parameter l* enhances the load carrying capacity, however, at the same time an increasing γ 
reduces the same. Figure 20 presents variation of load carrying capacity with the Hartman 
number for different values of λ. As it can be seen, using an electrically conducting fluid, in the 
presence of a magnetic field, the load carrying capacity is enhanced.  

Figure 21 shows the variation of film thickness h* with the lubricant response time t* for different 
values of h*. Figure 21 shows that the centrifugal force effect (L = 10) arising from the upper 
rotating disc decreases the response time when compared with the lubricant under pure squeeze 
condition (L = 0). This is in line with the previous findings with decreasing load carrying 
capacity with an increasing shear rate.  

Figures 22 shows the variation of driving torque T with Ω for different values of M and a* at 
h*=0.5. It shows an increasing Hartman number M, inverse couple stress parameter a* and Ω, all 
enhance the tractive action as would be expected.  

 

 

 

Fig.18. Variation of film pressure p* with coordinate r*  with different values of  γ at h*=0.5 and 

λ=0.2 for case 3: (2M
a∗

> 1)  
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Fig.19. Variation of load-carrying capacity W* with couple stress parameter l* with h*=0.4, 

λ=0.2and different values of   γ for case 3: (2M
a∗

> 1)   

 

Fig.20. Variation of  load carrying capacity W* with the Hartman number with  h*=0.4 , γ=10 

for different values of   λ for case 3: (2M
a∗

> 1)    
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Fig.21.Variation of film thickness h* with response time t* for different values of L and λ  for case3: (2𝑀𝑀
𝑎𝑎∗

> 1)  

 

Fig.22.variation of driving torque with Ω at h*=0.5 for different values of M and a* for case 3: (2M
a∗

> 1)
  

Figures 23 shows the variation of dimensionless load with λ for different value of n ( n=0.4, n=1 
, n=1,2 ) which represent the three different cases studied. This shows that increasing n enhances 
the load carrying capacity of the contact as would be expected.  
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Fig.23.Variation of the load-carrying capacity W* with radius ratio parameter  λ for different values of n at γ=20 and 
h*=0.5 

4- Closure 

Viscous coupling devices are increasingly used as torque distribution systems in vehicular drive 
train systems, particularly for AWD vehicles. In off-road applications wheel induced rutting on 
uneven and/or soft terrain it is essential to bias the driving torque to improve traction. Load 
carrying capacity, tractive efficiency and response times are essential design parameters. The 
paper undertakes a fundamental in-depth analysis of viscous coupling devices using various 
lubricant characteristics in squeeze and shear. They include the routinely analysed ideal 
Newtonian lubricants, non-Newtonian silicone-based fluids and couple stress fluids in the 
presence of a magnetic field. It is shown that better control of all key performance measures may 
be attained with couple stress fluids, although under the assumed isothermal condition the 
silicone-based fluids exhibit a faster response time. A more representative thermo-hydrodynamic 
analysis may alter this finding and represents the future direction of the current research.   

Acknowledgment 

The authors would like to acknowledge the financial supports from Sahand University of 
technology under grant of Research Fund for the Doctoral Program of Higher Education. 

References 

 [1] Mohammadpour, M., Theodossiades, S., Rahnejat, H. and Saunders, T. “Non-Newtonian 
mixed elastohydrodynamics of differential hypoid gears at high loads”, Meccanica, 49, 2014, pp. 
1115-1138, DOI 10.1007/s11012-013-9857-x  

[2]- Barlow, T.J., Latham, S., McCrae, I.S. and Boulter, P.G., “A reference book of driving 
cycles for use in the measurement of road vehicle emissions”, TRL Limited, version 3, 2009.  

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

λ

W
*

 

 

n=0.4,   γ=20 , h*=0.5, case1
n=1 ,     γ=20 , h*=0.5, case2
n=1.2 ,  γ=20 , h*=0.5, case3

http://link.springer.com/article/10.1007/s11012-013-9857-x
http://link.springer.com/article/10.1007/s11012-013-9857-x


24 
 

[3]- Mohammadpour, M., Rahmani, R. and Rahnejat, H. “Effect of cylinder deactivation on the 
tribo-dynamics and acoustic emission of overlay big end bearings”, Proc. IMechE, J. Multi-body 
Dynamics, 228(2), 2014, pp. 138-151  

[4]- Sharaf,  A.M, Mavros,  G., Rahnejat, H., King, P.D. and Mohan, S. K. “Optimisation of 
AWD off-road vehicle performance using visco-lock devices”, Int. J. Heavy Vehicle Systems, 
15, 2008, pp. 188- 207. 

[5] Maki, E.R. and Kuzma, D.C. “Magneto hydrodynamic lubrication flow between parallel 
plates”. J. Fluid Mech., 26 1966, pp. 534–43. 

[6] Usha, R. and Vimala, P. “Magneto hydrodynamic squeeze film characteristics between 
parallel circular plates containing a single central air bubble in the inertial flow regime”. J. 
Applied Mechanics, 66, 1999, pp. 1021–1023. 

[7] Lin, J.R., Lu,  R.F. and Liao, W.H. “Analysis of magneto-hydrodynamic squeeze film 
characteristics between curved annular plates”, Ind. Lubrication and Tribology, 56, 2004, pp. 
300–305. 

[8] Lin, R.F.  “Magneto-hydrodynamic squeeze film characteristics between annular discs”. Ind. 
Lubrication and Tribology, 53, 2001, pp.66-71. 

[9] Hsu, C.H., Lai, C., Hung, C.R. and Lin, J.R. “Magneto-hydrodynamic squeeze film 
characteristics between circular disks including rotational inertial effects”, Proc. IMechE, Part J: 
J. Engineering Tribology, 222, 2007, pp.157–164 

[10] Agrawal, V.K. “Inertia effects in hydro magnetic inclined slider bearing”, Jap. J. Appl. 
Physics, 9, 1970, pp.820-824. 

 [11] Anwar, M..I. and  Rodkiewicz, C.M.  “Non-uniform magnetic field effects in MHD slider 
bearings”, Trans. ASME, J. Lubn. Tech. 94, 1972, pp.101-105. 

[12] Gupta, J.L. and  Bhat, M.V.  “An inclined porous slider bearing with a transverse magnetic 
field”, Wear, 55, 1979, pp. 359–67.  

[13].Eringen, A . C  , ”Simple micro- fluids”, Int. J. Eng. Sci., 2, 1964, pp .205-217 

[14]. Eringen, A . C , “microcontinuum field theories -1:Fluent media”, Springer,New York,2001 

[15]. Eringen, A . C, “Theory of micropolar fluid”, J. Math. Mech.16, 1966, P. 1 

[16] Ariman, T. and Sylvester, N.D. “Micro-continuum fluid mechanics, a review”, Int. J. Eng. 
Sci., 11, 1973, pp. 905-930. 

[17] Ariman T. and Sylvester, N.D.  “Applications of  micro continuum fluid mechanics”,. Int. J. 
Eng. Sci., 12, 1974, pp. 273-293. 



25 
 

[18] Stokes, V.K. “Couple stresses in fluids”,  Phys. of  Fluids, 9, 1966, pp.1709-1715. 

[19]- Eringen, A.C., “Theory of micropolar elasticity”, Springer, New York, 1999 

[20]- Chen, J., Lee, J.D. and Liang, C., “Constitutive Equations of Micropolar Electromagnetic 
Fluids”, J. Non-Newtonian Fluids, 166, 2011, pp. 867-874 

[21] Ramanaish, G. and Sarkar, P. “Squeeze films and thrust bearings lubricated by fluids with 
couple stress”, Wear, 48, 1978, pp. 309-16. 

[22] Das, N.C. “ A study of optimal load-bearing capacity for slider bearing lubricated with 
couple stress fluids in magnetic field”,  Trib. Int., 31, 1998, pp.393-400. 

[23] Daliri M, Jalali-Vahid,  D  and  Rahnejat, H. “Squeeze film lubrication of coupled stress 
electrically conducting inertial fluids in wide parallel rectangular conjunctions subjected to a 
magnetic field”, Proc. IMechE, Part J: J. Eng. Tribology, 228(3), 2014, pp. 288-302, doi: 
10.1177/1350650113504565 

[24]- Sharaf,  A.M., Rahnejat, H. and King, P.D. “Analysis of handling characteristics of all-
wheel-drive off-road vehicles”, Int. J. Heavy Vehicle Systems, 15, 2008, pp. 89-106 
 
[25] Hamrock, B.J. “Fundamentals of fluid film lubrication”, McGraw-Hill, New York, 1994 

[26] Moore, D. F. “A review of squeeze films”, Wear, 8, 1965, pp. 245–263. 

[27] Allen, C. W. and McKillop, A. A. “An investigation of the squeeze film between rotating 
annuli”, Trans. ASME, J. Lubn. Tech., 92, 1970, pp. 435–441. 

[28] Kuzma, D. C. “Magneto hydrodynamic squeeze films”, Trans ASME, J. Basic Eng., 86, 
1964, pp. 441–444. 

[29] Shukla, J. B. “Hydromagnetic theory for squeeze films”, Trans ASME, J. Basic Eng., 90, 
1965, pp. 142–144. 

[30] Lin J.R and Hung C.R. “Combined effects of non-Newtonian rheology and rotational inertia 
on the squeeze film characteristics of parallel circular discs”, Trans ASME, J. Engineering 
Tribology, 222, 2008, pp. 629-636 

 

 
 
 
 
 
 



26 
 

 
 
 
Appendix1: Nomenclature 

      

applied magnetic field Bo Outer radius and the inner radius 
of the discs, respectively  

a , b 

film thickness at t=0                                  ho characteristic length of the 

additives, (𝜂𝜂
𝜇𝜇

)
1
2 

l 

coordinate, r* = 𝑟𝑟
𝑎𝑎
 

(dimensionless) 

r* 

Hartman number , Bo ho�
σ
µ

 M 

 

squeezing velocity, − dh
dt                                   

 

V 

 

dimensionless load-carrying 

capacity, 𝑊𝑊ℎ𝑜𝑜3

𝜇𝜇𝑎𝑎4𝑉𝑉
 

W* 

squeeze film pressure, 𝑝𝑝ℎ𝑜𝑜
3

𝜇𝜇𝑎𝑎2𝑉𝑉
  

p, p* 
response time , 𝑊𝑊ℎ𝑜𝑜2

𝜇𝜇𝑎𝑎4
𝑡𝑡 t , t* 

lubricant viscosity    μ electrical conductivity                                                                                 σ 

material constant responsible for 
couple stress fluids 

η 
Rotational  inertia, 𝜌𝜌ℎ𝑜𝑜

3𝛺𝛺2

𝜇𝜇𝜇𝜇
 γ 

lubricant  density              

 

ratio of inner radius to the outer 
radius, b/a   

ρ 

 

       λ                           

 

dimensionless velocity in the r 
direction,  𝜇𝜇𝜇𝜇

 ℎ𝑜𝑜2(−𝑔𝑔𝑝𝑝)
                 

u* 

couple stress parameter, 𝑙𝑙
ℎ𝑜𝑜

      l* 

inverse  couple stress parameter,ℎ𝑜𝑜
𝑙𝑙

                          a* 

Film thickness, ℎ
ℎ𝑜𝑜

 

 (dimensionless)   

h, h* 

pressure gradient                               gp 

non-dimensional centrifugal force-
applied  load  ratio,

 

𝜌𝜌𝑎𝑎4𝛺𝛺2

𝑊𝑊
 

 
 m      Slope of viscosity-shear 

L 
velocity component in  the r , θ 

and z directions, respectively            
u ,v, w 
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strain curve for silicone lubricant 

 

 

⋅
Bγγ ,   Shear strain rate and 

critical shear strain rate for silicone 

µs      viscosity of silicone 

Ω  angular velocity of upper disc 

v*  dimensionless velocity in θ 
direction. v/r Ω 

 r , θ , z  cylindrical coordinates 

z* dimensionless coordinate.  z/ho 

TV   total viscous shear torque 

 n  dimensionless criteria 
parameter  

 

 

Appendix 2:     

The governing equations for predicting the behaviour of an incompressible couple stress, 
electrically conducting fluid in the presence of a magnetic field were initially introduced by 
Stokes [18] as:   

→→
→

→→→
→

×+
∂

∂
−∇+−∇=∇+

∂
∂ BJ

z
VVpVV

t
V

4

4
2).( ηµρ                                                                    (32) 

In equation (5) the left hand term introduces the inertia forces and the right hand p∇  is the 

pressure gradient, 
→

∇ V2µ is viscous force, and 4

4

z
V

∂

∂
→

η  introduces the couple stress effect based 

on [18].  
→→

× BJ  is Lorentz force, where 
→
J  and 

→
B are the current density  and magnetic field 

vectors, respectively. 

According to Shukla [29] for hydromagnetic lubrication one can use equations (33)-(40) as 
follows: 
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0. =∇
→

V                                                                                                                                        (33) 

0. =∇
→
B                                                                                                                                        (34) 

→→
=×∇ JB                                                                                                                                    (35) 

0. =∇
→
E                                                                                                                                        (36) 

0=×∇
→

E                                                                                                                                     (37) 

)]([
→→→→

×+= BVEJ σ                                                                                                                      (38) 

where In the above equations, 
→
E  is electric field vector and σ  is electrical conductivity of the 

lubricant. 

 Now the following assumptions are made:   

1. the intensity of  applied magnetic field in the z direction is constant. 

2. the induced magnetic fields in the directions of r and θ ( Br , Bθ ) are neglected. 

3. the induced electric fields 
→
E  in all directions are ignored.  

 Applying the above conditions/assumptions, the components in equation (32) become: 

zBJ
z

u
z

u
r
p

r
v

θηµr +
∂

∂
−

∂

∂
+

∂
∂

−=− 4

4

2

22
                                                                             (39) 

zr BJ
z

v
z

v
−

∂

∂
−

∂

∂
= 4

4

2

2
0 ηµ                                                                                                         (40) 

0=
∂
∂

z
p

                                                                                                                                         (41) 

 By Neglecting the electrical field (assumption3), equation (38) can be written as: 

)(
→→→

×= BVJ σ                                                                                                                               (42) 
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By resolving  
→
J  in the three directions; r,θ and z and carrying out the vector cross-product  

)(
→→

× BV  equation (m) becomes: 

])()()[( zrzrrzzzrr ewBuBeuBwBewBvBeJeJeJ −+−+−=++ θθθθθ σσσ                       (43) 

Then: 

                                                                                                                  (44) 

)( zr uBwBJ −= σθ                                                                                                                   (45) 

)( rz wBuBJ −= θσ                                                                                                                   (46)  

Now letting: 0== θBBr  (assumption 2 ) and also oz BB = (assumption 1 ), equations  (43)-(46) 
can be written as:  

or vBJ σ=                                                                                                                                   (47) 

ouBJ σθ −=                                                                                                                                (48) 

0=zJ                                                                                                                                          (49) 

Substituting equations (47)-(49) into equations (39)-(41) yields the governing equation (1)-(3). 

 

Appendix 3: 

To obtain the contact load carrying capacity, it is necessary to determine the lubricant film 
pressure distribution, p*. This, in turn, requires the evaluation of velocity distribution in the 
contact conjunction. Therefore: 

For velocity component in the θ-direction: 

Case 1 : 1
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a
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(50) 

)( θσ wBvBJ zr −=
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Case 2 : 1
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(51) 

Case 3 : 1
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M
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(52) 

 

 

For velocity component in the r-direction: 

Case 1 : 1
*

2
〈=

a
Mn  

2 2
2 2 2

1 1 sinh ( ( * *)) sinh * sinh ( ( * *)) sinh ** 1 (53)
sinh * sinh *

z h z z h zu
M h h

ααββ   βα
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     − − − − − = − + −     −       

 

 Case 2 : 1
*

2
==

a
Mn

 

2

2

* * 2 * * * * * *cosh ( ) 1 cosh ( ) 1 cosh ( )
2 * * * *42 2 21 sinh ( )* * * * 4 2sinh ( ) sin ( )

2 21*
* *cosh ( ) 1

* * 2 * * * * 2 * * * *2cosh ( ) sinh ( ) cosh ( )* *4 42 2 2sinh ( )
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  Case 3 : 1
*

2
〉=

a
Mn  
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1 1 1 12 2
1 12 2 2

1 1 1 1

sinh ( ( * *)) sinh * sinh ( ( * *)) sinh *1 1* 1 (55)
sinh * sinh *

z h z z h z
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M h h
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Now, let  𝑢𝑢 = −ℎ𝑜𝑜2( 𝑔𝑔𝑝𝑝)
µ

𝑢𝑢∗ and substitute into the continuity of flow equation (4) and integrate 

with respect to z over the film thickness. Then, substituting for u*  from the above equations and 
Making use of non-dimensional parameters as follow: 

a
rr =*  , 

Va
ph

p o
2

3

*
µ

= ,
V
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µ
ρ

γ
23Ω

=                                                                                             (56) 

 The non- dimensional Reynolds equations is derived for different three cases as follow 
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where:  
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and: 
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case 2: 
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the non – dimensional form of boundary  conditions (9) , (10) are : 

   0* =p at λ=*r                                                                                                                                                 (66) 

  0* =p  at 1* =r                                                                                                                                                  (67) 

where  
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a
b

=λ
                                                                                                                                          (68) 

 is the ratio of the inner radius to the outer radius 

Integrating pressure gradient (𝜕𝜕𝜕𝜕∗
𝜕𝜕𝜕𝜕∗

) with respect to r* and applying boundary conditions (66), 
(67), the MHD couple stress squeeze film pressure in film region is obtained for three cases 
respectively as follow  

Expressed in a non-dimensional form, it yields: 

Case1 





 〈1

*
2
a
M  

( )







 −
+−

+
= *ln

ln
)1(1*

)**,,(*4
**,,(*1*

2
2 rr

haMF
haMGp

l
lγ

                                                                           
(69) 

1* ≤≤ rλ  

Case 2: 





 = 1

*
2
a
M  

( )







 −
+−

+
= *ln

ln
)1(1*

)**,,(*4
**,,(*1*

2
2 rr

haMH
haMKp

l
lγ

                                                                            
(70) 

1* ≤≤ rλ  

Case3: 





 〉1

*
2
a
M  

( )







 −
+−

+
= *ln

ln
)1(1*

*)*,,(*4
**,,(*1*

2
2 rr

haMR
haMQp

l
lγ

                                                                            
(71) 

1* ≤≤ rλ  

 

 

 

 



37 
 

Appendix 4: 

Table 1: Lubricant rheology  

Unit Value symbol parameter name 

(metre)  m 4× 10-5 ho initial film thickness 

(metre)  m 0.2 a  outer radius of disc  

(metre)  m 0.04 b inner radius of disc 

(radians per second ) rads/s 1985.18 Ω rotational speed 

(Pascal-second) Pa.s    2.27× 10-4 µ lubricant viscosity 

 (Newton-second) N.s 0.3632×10-14     η couple stress material 
constants 

Kg/m3              900 r lubricant density 

m/s             0.1 V squeezing velocity 

                   (metre)  m 

 
4×10-6 l characteristic length 

of the additives 

                         - 0.2 λ Ratio of inner radius 
to the outer radius 

- 
0.1 l* 

couple stress 
parameter 

 

- 
10 a* inverse  couple stress 

parameter 

 

- 10 γ 

rotational  inertia 
parameter 
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Table 2: Parameters of the magnetic field 

Unit Value Symbol Parameter name 

(metre) m 4×10-5 ho Initial film thickness 

(Pascal-second) Pa.s 2.27× 10-4 µ Lubricant viscosity 

( Siemens per meter ) S/m 2.216×105
 σ Electrical 

conductivity 

(Weber per square metre) wb/m2 4
 

Bo Magnetic field 

- 5 M Hartman number 

 

Table 3: Visco-lock system Parameters  

Unit Value Symbol Parameter name 

                  (metre) m 2.5×10-4              ho Initial film thickness 

      (revolution per minute) rpm 0-100 Ω 
Differential speed 
range between inner 
and outer plates 

                     (s-1) 2500 γ.
B 

critical shear strain 
rate of silicone 
lubricant 

             (Pascal-second) Pa.s 0.96 µs 
Silicone lubricant 
viscosity 

                      - -0.05 m 
Slope of viscosity-
shear strain curve for 
silicone lubricant 

 (kilograms per cubic 
metre)kg/m3 960 ρ  

Silicone lubricant 
density 

                    (metre) m 0.1 a Outer plate radius 

                   (metre) m 0.8 b inner plate radius 
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