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Driven translocation of a semi-
flexible polymer through a 
nanopore
Jalal Sarabadani1, Timo Ikonen2, Harri Mökkönen1, Tapio Ala-Nissila1,3, Spencer Carson4 & 
Meni Wanunu4

We study the driven translocation of a semi-flexible polymer through a nanopore by means of a 
modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) 
simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite 
persistence length 





p the trans side friction must be explicitly taken into account to properly describe 
the translocation process. In addition, the scaling of the end-to-end distance RN as a function of the 
chain length N must be known. To this end, we first derive a semi-analytic scaling form for RN, which 
reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. 
We then quantitatively characterize the nature of the trans side friction based on MD simulations. 
Augmented with these two factors, the theory shows that there are three main regimes for the scaling 
of the average translocation time τ ∝ Nα. In the rod � �N / 1p , Gaussian ∼

N / 10p
2 and excluded 

volume chain /κN p ≫ 106 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our 
results are in good agreement with available simulations and experimental data.

Since the seminal works by Bezrukov et al.1 in 1994, and two years later by Kasianowicz et al.2, polymer transloca-
tion through nanopores has become one of the most active research topics in soft condensed matter physics3–5. It 
plays an important role in many biological processes such as virus injection and protein transportation through 
membrane channels6. It also has many technological applications such as drug delivery7, gene therapy and rapid 
DNA sequencing2, 8–11, and has been motivation for many experimental and theoretical studies3–5, 12–47.

Most analytical and theoretical studies to date have focused on field-driven translocation of flexible polymers 
through nanopores. A break-through in this problem came from Sakaue, who employed the idea of tension prop-
agation (TP) to explain the physical mechanism of the driven translocation process21. According to TP theory 
when the external driving force, which is due to an external electric field across the pore, acts on the bead(s) at the 
pore in the direction of cis to trans side (see Fig. 1), a tension front propagates along the backbone of the chain in 
the cis side of the chain. Consequently, the cis side is divided into mobile and immobile parts, where the mobile 
part of the chain has been already influenced by the tension force and moves towards the pore, and the immobile 
part of the chain is in its equilibrium state, i.e. its average velocity is zero.

Following Sakaue’s work, in a series of papers Ikonen et al. developed a Brownian dynamics - TP theory 
(BDTP) to take into account the effect of pore friction, finite chain length, and thermal fluctuations due to the 
solvent during the course of translocation30, 31. Most recently, the BDTP theory was reformulated within the con-
stant monomer iso-flux approximation25 (IFTP)32, 33, leading to a fully quantitative and self-consistent theory of 
dynamics of driven translocation with only one free parameter, the effective pore friction. A key role in the theory 
is played by the total effective friction, which comprises the constant pore friction (interaction of the monomers 
with the nanopore) and drag from the cis part of the chain. For fully flexible chains, the contribution from the 
trans side of the friction can be included in the pore friction, and need not be explicitly considered.

However, in many cases of practical interest the translocating polymers are not fully flexible–e.g. for 
double-stranded DNA, the persistence length 

p is typically about 500 Å. To unravel the influence of stiffness to 
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translocation, in this paper we consider the pore-driven translocation dynamics of semi-flexible polymers with a 
finite persistence length within the IFTP theory. We argue that unlike for fully flexible chains, the trans side friction 
has a significant contribution to the dynamics and must be explicitly added to the expression for the total friction. 
To calculate the chain drag, we derive a semi-analytic form for the end-to-end scaling form RN for semi-flexible 
chains, which correctly incorporates the various scaling regimes and crossover between them for different ratios of 
the persistence and chain lengths �� N/p . Neither of these factors have been considered in the previous works39–42. 
When properly augmented with the correct end-to-end scaling form and time-dependent trans side friction, the 
IFTP theory shows that the average translocation time displays complex scaling and crossover behavior as a func-
tion of 



~ N/p . In the appropriate limits, the IFTP theory also recovers the exactly known results for the scaling 
exponent of the translocation time. It is important to note that in the IFTP theory there is only one unknown 
parameter, the effective pore friction ηp, which can be obtained either experimentally or from MD simulations30–33.

Results
Theory. 
•	 Strong stretching regime.

�In the IFTP theory, we use dimensionless units denoted by tilde as ≡
∼X X X/ u, with the units of length su ≡ σ, 

time tu ≡ ησ2/(kBT), force fu ≡ kBT/σ, velocity vu ≡ σ/tu = kBT/(ησ), friction Γu ≡ η, and monomer flux 
φu ≡ kBT/(ησ2), where σ is the segment length, T is the temperature of the system, kB is the Boltzmann con-
stant, and η is the solvent friction per monomer. The quantities without the tilde, such as the force, friction and 
length, are expressed in Lennard-Jones units.
�In the SS regime, where it is sufficient to use the deterministic limit of the IFTP theory30–33, the equation of 
motion for the translocation coordinate s  which is the number of beads in the trans side (see Fig. 1), is given 
by

Γ =



˜

˜t ds
dt

f( ) , (1)

where Γ t̃( ) is the effective friction and f  is the external driving force.
�In the iso-flux assumption the monomers flux, φ ≡ 

 ˜ds dt/ , on the mobile domain in the cis side and also 
through the pore is constant in space, but evolves in time25, 32. The tension front, which is the boundary 
between the mobile and immobile domains, is located at distance = −

 ˜x R t( ) from the pore. The external 
driving force acts on the monomer(s) inside the pore located at =x 0 (see Fig. 1(a)).
�It has been shown30–34 that for flexible polymers the friction can be written as η ηΓ = +

 

 ˜ ˜t t( ) ( )cis p, and the 
translocation dynamics is essentially controlled by the time-dependent friction η


t̃( )cis  on the cis side of the 

chain, whereas the trans side friction is negligible and can be absorbed into the constant pore friction η
p. In the 

case of semi-flexible chains this approximation is not justified. Within the IFTP theory, the friction due to the 
trans side of the chain η

TS can be taken into account as follows. In the strong stretching (SS) regime of strong 
driving, where the mobile part of the chain in the cis side is fully straightened (cf. Fig. 1(a) and (b)), we can 
integrate the force balance equation over the mobile domain32 and the monomer flux becomes

φ
η η

=
+ +

.
 







˜
˜t f

R t
( )

( ) (2)p TS

By combining Eqs (1) and (2), the effective friction is obtained as

η ηΓ = + + .
 

 ˜ ˜t R t( ) ( ) (3)p TS

Figure 1.  (a) A schematic of the translocation process in the tension propagation (TP) stage, i.e. <˜ ˜t ttp SS, , for 
the strong stretching (SS) regime. N0 is the contour length of polymer and the translocation coordinate s  equals 
the number of beads that have already been translocated into the trans side. The number of beads influenced by 
the tension force is + l̃ s , which during TP stage is less than N0. R  determines the location of the tension front. 
(b) The translocation process for SS regime during the post propagation stage where the tension front has 
reached the chain end, which yields + =l̃ s N0. The cis and the trans sides denote the regions where the 
translocation process starts and where the chain translocates, respectively, as indicated in the figure.
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�The time evolution of s  is determined by Eqs (1), (2) and (3), but knowledge of the position of the tension 
front on the cis side of the chain  ˜R t( ) is still required to find the full solution. We will derive the equation of 
motion for  ˜R t( ) separately for the TP and post propagation (PP) stages. In the TP stage the tension has not be 
reached the chain end as presented in Fig. 1(a), while in the PP stage the final monomer has been already 
influenced by the tension force (see Fig. 1(b)).

•	 End-to-end distance of a semi-flexible chain.
To find the equation of motion for  ˜R t( ), which is the root-mean-square of the end-to-end distance, an 
analytical form of  ˜R t( ) for semi-flexible chains is needed. To this end, we have carried out extensive MD 
simulations of bead-spring models of semi-flexible chains in 3D. The technical details can be found in the 
Supplementary. The MD simulations have been done for different values of contour length Nσ and bending 
rigidity κb. In 3D the persistence length 

p can be expressed as a function of κb as κ= k T/( )p b B . We find 
that the MD data (cf. Fig. 2) is well described by the following interpolation formula for the end-to-end 
distance of a semi-flexible chain:
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Here =
ν ν���R A NF p

p , with ν p = 1/(d + 2) (d = 3) which describes the scaling of the chain in the limit ��N / p ≫ 148 

and is correctly recovered by Eq. (4). In the opposite stiff or rod-like chain limit of ��N / p ≪ 1, Eq. (4) recovers 

the trivial result that =R NN . The quantity ν = 0.588 is the Flory exponent, and A = 0.8, a1 = 0.1 and b1 = 0.9 

are constants. In the intermediate regime  ��N4 / 400p  which here corresponds to  N10 102 4 for 

=�� 25p , a crossover occurs from a rod-like chain to a Gaussian (ideal) polymer, followed by an eventual 

crossover to a self-avoiding chain for ��N / p ≫ 10649 as can be seen in the inset of Fig. 2. It should be noted that 
the amplitude A is fixed by the equilibrium scaling of the chain, and thus only a1 and b1 are fitting parameters. 
We note that although Eq. (4) is reasonably accurate and valid with the same fixed values of A, a1 and b1 for a 

wide range of values of ��p, as shown in the Supplementary, it does not recover the result of the perturbation 
theory in the limit of small (but not negligible) excluded volume.

•	 Time evolution of the tension front.

�Using  ˜R t( ) in Eq. (4) together with the mass conservation = + 

˜N l s , where = l̃ R , the equation of motion 
for the tension front in the TP stage for the SS regime (see Fig. 1(a)) can be derived as

Figure 2.  Normalized end-to-end distance ν
R N/N

2 2  as a function of the contour length of the polymer N for 
fixed value of bending rigidity (in the MD simulations) κb = 30, which corresponds to = 25p , when kBT = 1.2. 
The black curve shows the analytical formula of Eq. (4) while red dots present the MD simulations results. Inset 
shows crossover from Gaussian to self-avoiding behavior for an extended range of N.
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�In the PP stage (see Fig. 1(b)) the correct closure relation is + =l̃ s N0. Then one can derive the equation of 
motion for the tension front in PP stage as

φ= − .�� �˜ ˜R t t( ) ( ) (7)

To find the solution, in the TP stage, Eqs (1), (2), (3) and (5) must be solved self-consistently while in the PP stage, 
Eqs (1), (2), (3), (7) must be solved.

Trans side friction.  In the Supplementary we present the waiting time distribution w s( ), which is the time 
that each bead spends at the pore. The data clearly show that in order to have a quantitative theory, we must 
include η


t( )TS  in Eq. (3).

It is expected that the trans side friction is a complicated function of the driving force, chain length and the 
bending rigidity, and the present IFTP theory does not allow us to derive it analytically. To this end, we have 
extracted it numerically from the MD simulations as shown in Fig. 3. Details and additional data for smaller 
driving forces and for different persistence lengths are in the Supplementary. We can identify three distinct 
regimes in η 


s( )TS . For small s N/ 0, we find that the friction grows proportional to the x component of the 

end-to-end distance Rx. After this initial stage it saturates to a constant value (here ≈ 10.63), which from the MD 
simulations indicates buckling of the trans part of the chain. This buckling of the chain reduces the friction and 
we find an approximately exponential decay of the friction towards an asymptotic constant η ≈ .


N( ) 5 5TS 0 .

Translocation time exponent.  The scaling of the average translocation time as a function of the chain 
length τ ∝ αN0  is a fundamental characteristic of translocation dynamics. For flexible chains it scales as 
τ = + ν+a N a Np c0 0

1, where ap and ac are constants. The first term is due to the pore friction which causes a signif-
icant finite-size correction to the asymptotic scaling where α = ν + 130–34. The asymptotics is, of course, recovered 
for the semi-flexible chains in the large N0 limit when � �� N/ 1p 0 . On the other hand, in the limit of a rod-like 
polymer τ ∝ N0

2. Following ref. 32, we can derive an analytic expression for τ. Using Eq. (2) the total translocation 
time can be written as

∫τ η τ=






+






+
  



f
R dN N1 ,

(8)

N
N

0 p 0 TS
0

Figure 3.  The trans side friction η 


s( )TS  as a function of s  for fixed values of the chain length N0 = 64, bending 
rigidity κb = 30, and external driving force f = 20. The turquoise circles are MD data. The blue solid, dashed and 
dashed-dotted lines represent the three different regimes (see the text and the Supplementary for details).
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where ∫ ∫τ η η η=
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N0 0  is the trans side contribution to the translocation time. 

The second term in τ
TS is due to non-monotonic behavior of η

TS in the TP and PP stages. In the rod limit we 
obtain the simple analytical result that

τ η= 


+ 


 

f
N N1 ,

(9)p 0 0
2

which gives the asymptotic exponent α = 2. The corresponding effective exponents will be between unity and two.
To quantify the influence of the trans side and pore friction on the effective translocation exponent we define 

two rescaled translocation exponents α† and α‡ as τ τ τ= − α† †
~ NTS 0  and τ τ τ= − − α‡ ‡

~a N NTS p 0 0 , respec-
tively. In the short ( ��N / 4p0 ) and intermediate (  ��N4 / 400p0 ) chain limits, contributions from both the 
trans side and pore friction are important as can be seen in Eq. (8).

In Fig. 4 we show the detailed dependence of the effective translocation time exponents as a function of the 
chain length N0 for constant values of the persistence length = 25p , pore friction ηp = 4 and driving force f = 20. 
The blue circles show the effective value of the total α as a function of N0. The non-monotonic behavior of the 
trans side friction leads into a non-monotonic dependence of α on N0. Interestingly enough, there is an extended 
intermediate range of chain lengths where the exponent is very close to the Gaussian value α = 3/2 and slowly 
approaches its asymptotic value of 1 + ν = 1.588 from below. We note that in order to see this crossover it is nec-
essary to have a full scaling form for the end-to-end distance of the form of Eq. (4).

To quantify how the trans side friction affects the effective translocation exponent, in Fig. 4 we plot α† (pink 
triangles). It approaches α for N0 > 104, where the trans side friction becomes negligible. Finally, the rescaled 
translocation exponent α‡ (brown diamonds), which is the effective translocation time exponent in the absence 
of both trans side and pore friction, is also plotted as a function of N0. This exponent recovers the rod-like limit for 
very short chains. It merges with the other two effective exponents to the almost Gaussian value at intermediate 
lengths and eventually approaches ν + 1, as expected.

Each data point in Fig. 4 for the effective exponents α, α† and α‡, is numerically obtained by linear regression 
model from three consecutive [ln(τ), ln(N0)] data points.

Finally, we compare the results of IFTP theory with relevant experiments. In Fig. 5, we present the transloca-
tion time obtained from experiments (black circles) and from the augmented IFTP theory (orange squares) as a 
function of the chain length N0(bp/6), for fixed values of external driving force f = 10 and pore friction ηp = 15. 
The value of external driving force f = 10 corresponds to potential difference V = 200 mV across the pore in the 
experiments14 (for more information see the Supplementary). This assumes a negligible field outside the pore 
which is predominantly due to access-resistance, in accordance with finite-element simulations14. To match the 
length scales, we coarse grain such that one bead in our model contains 6 bps. With this choice the translocation 
exponent from the IFTP theory (orange dashed line) is in good agreement with the exponent from the experi-
mental data (black solid line).

Discussion
We have shown here that in addition to the case of fully flexible polymers, the IFTP theory provides the proper 
theoretical framework for driven translocation of semi-flexible polymers. The two key quantities required are an 
explicit determination of the trans side friction and a proper analytical formula for the end-to-end distance of 

Figure 4.  The effective translocation time exponents as a function of the chain length N0 for = 25p  and pore 
friction ηp = 4, and external driving force f = 20. The blue circles show the translocation exponent α as a 
function of N0, while pink triangles and brown diamonds show the rescaled translocation exponents α† and α‡, 
respectively. The horizontal black dashed-dotted-dotted, red dashed-dotted and turquoise dashed lines show the 
asymptotic rod-like, excluded volume chain and Gaussian scaling limits, respectively. See text for details.
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semi-flexible polymers. The augmented IFTP theory can quantitatively describe all the relevant scaling regimes 
for the scaling exponent of the average translocation time, and crossover between them. It also reproduces the 
exactly known limits and is in good agreement with available experimental data.

Methods
Molecular dynamics model.  In our MD simulations the polymer is modeled by a bead-spring chain50. The 
excluded volume interaction between the beads is given by the repulsive Lennard-Jones (LJ) potential 

ε ε=






−






+σ σ( ) ( )U 4
r rLJ

12 6
 for r ≤ 21/6σ, and zero for r > 21/6σ, where ε is the depth of the potential well, σ is the 

diameter of each bead, and r is the distance between the beads. We use the finitely extensible nonlinear elastic 
(FENE) spring interaction to interconnect neighboring beads, given by = − −U kR r Rln(1 / )FENE

1
2 0

2 2
0
2 , where k 

is the spring constant and R0 is the maximum allowed distance between consecutive beads. We introduce the 
stiffness of the chain by adding an angle dependent cosine potential Ubend(θi) = κb(1 − cosθi) between successive 
bonds, which connect (i − 1)th and ith, and the ith and (i + 1)th beads, where the bending rigidity κb is the interac-
tion strength.

The physical wall is constructed by using the repulsive LJ interaction ε=






−






σ σ( ) ( )U 4
x xLJ

9 3
, where x is the 

coordinate in the direction perpendicular to the wall. The region of space with x < 0 is called the cis side and with 
x > 0 is the trans side. To construct the pore, 16 beads with diameter of σ are placed on a circle with diameter of 
d = 3σ. The center of the pore is at x = 0 and the pore is parallel to the wall. The thickness of the pore is σ and the 
interaction between monomers and the pore particles is repulsive LJ with the same parameters as of the excluded 
volume interactions between the polymer beads. The external driving force, f, which is in the positive x direction, 
only acts to the beads that are inside the pore.

Using Langevin dynamics the equation of motion for the ith bead is written as = −∇ + +̈mr U U(i LJ FENE  
η ξ+ − +U U v) i ibend ext . Here, m in the mass of each monomer, η is the friction coefficient of the solvent, vi is the 

monomer velocity, and ξi is an uncorrelated random force with 〈ξi(t)ξj(t′)〉 = 2ηkBTδi,jδ(t − t′). By using LJ units, 
the mass of each bead is chosen as m = 1, the length is expressed in the unit of σ, and the unit of time is σ εm( / ) . 
Temperature T is measured in units of ε/kB, and the unit of energy is ε = kBT. In LJ units the parameters of the 
interactions potential, length, mass, spring constant, maximum allowed distance between consecutive beads, 
bending rigidity, and friction coefficient have been chosen as ε = 1, σ = 1, m = 1, k = 30, R0 = 1.5σ κb = 30, and 
η = 0.7, respectively, and the external driving force as f = 5, 10 and 20. Here, kBT = 1.2.

In our simulations, we have used the coarse grained bead-spring model. According to the relation 
κ= k T/( )p b B  in 3D, with the value of κb = 30, the persistence length is = 25p . As the persistence length of 

DNA is 150 bps, in our model each bead corresponds approximately to 6 bps. The mass of a bead is about 
3744 amu while its size is chosen as σ = 2 nm, and the interaction strength is 3.39 × 10−21 J at room temperature 
(T = 295 K). Therefore, the time scale in LJ unit is 85.6 ps. By assuming the effective charge of 0.094 e for each unit 
charge51, 52, twelve unit charges per bead and with a force scale of 2.0 pN, an external driving force of f = 10 corre-
sponds to a voltage of 200 mV across the pore.

Figure 5.  Translocation time τ as a function of the chain length N0. Black circles are experimental data in 
Fig. 6(c) of ref. 14 while orange squares are data from the IFTP theory, where we have used the coarse grained 
model. Each bead contains 6 bps. The value of the external driving force in the IFTP theory is f = 10 and the 
pore friction is ηp = 15. The translocation time for the IFTP theory has been multiplied by a factor of 25000 
to agree with the experimental time scale. The black solid and orange dashed lines are linear fitting curves 
to experimental and IFTP theory, respectively. Similar results can be obtained for the values of the external 
driving forces f = 5 and 20. Details on mapping the experimental data to theory are explained in Sec. I of the 
Supplementary.
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In the beginning of the translocation process, first we fix the first bead (head of polymer chain) at the pore 
and equilibrate the system in the cis side, after which we start the actual translocation by turning on the external 
driving force and releasing the first bead at t = 0. The translocation time τ is defined as the time when the last bead 
of the chain enters to the trans side. It is important to note that reflective boundary conditions must not be used 
for the chain, but in the case the chain escapes from the pore to the cis side, the translocation must be re-started 
from a new equilibrium configuration at t = 0.

Experiment.  Translocation data was collected as reported in Carson et al.14 Briefly, a solid-state nanopore 
chip (5 × 5 mm) that contains a freestanding, 20 μm × 20 μm low-stress 25-nm-thick silicon nitride window was 
exposed to a finely focused electron beam in a transmission electron microscope (JEOL 2010F) to make a pore 
in the diameter range 2.5–4 nm. Then, the chip was treated with a hot piranha solution to clean the pore surface, 
followed by cooling and copiously rinsing with water. Assembly of the chip in a two-chamber cell, each equipped 
with an electrode, allows current to be measured when voltage to the electrodes is applied. The electrodes were 
connected to a Chimera Instruments VC100 (New York, NY), which acquires current samples at 4.19 MHz. The 
signal was digitally low-pass filtered at 200 kHz prior to analysis in order to reduce the capacitance noise. After 
evaluating the pore conductance using an electrolyte buffer (400 mM KCl, buffered to pH 7.9 using 10 mM Tris 
and 1 mM EDTA), DNA samples with different lengths were added to one of the chambers to concentrations in 
the nanomolar range, and DNA transport data was collected at 200 mV applied voltage. DNA samples used here 
were purchased from Thermo Scientific (Waltham, MA). After acquisition of the data, analysis was performed 
using MATLAB-based OpenNanopore software53. Mean transport times were obtained by statistical analysis of 
>1000 molecular transport events for each DNA length.
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