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Plasmonically Enhanced 
Reflectance of Heat Radiation 
from Low-Bandgap Semiconductor 
Microinclusions
Janika Tang1, Vaibhav Thakore   1 & Tapio Ala-Nissila1,2,3

Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an 
insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. 
Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-
bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared 
reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral 
properties of the microcomposites using Monte Carlo modeling and compare them with results from 
Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, 
scattering anisotropy are studied to identify the optimal microinclusion size and material parameters 
for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions 
we obtain reflectance efficiencies of 57–65% for the incident blackbody radiation from sources at 
temperatures in the range 400–1600 °C. Furthermore, we observe a broadbanding of the reflectance 
spectra from the plasmonic resonances due to charge carriers generated from defect states within 
the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-
temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in 
insulating dielectrics.

Efficient thermal insulation at a given temperature must reduce unwanted heat exchange with the surrounding 
environment that occurs primarily through the twin modes of conductive and radiative heat transfer. Designing 
an efficient thermal insulator thus involves a subtle tradeoff between minimizing conductive heat loss by opti-
mizing the porosity of an insulating material, e.g. with microstructured air-pockets, and simultaneously ensuring 
that there is no significant thermal loss through increased radiative heat transfer1–5. This approach works well 
for low temperature applications. However, under high temperature conditions radiative heat transfer becomes 
the dominant mode of thermal losses2. In such cases, decreasing the porosity of the material to prevent radiative 
losses becomes unfeasible as an alternative because it inevitably also leads to higher conductive losses. Therefore, 
a strategy for designing an efficient thermal insulator for high temperature applications must carefully balance the 
two phenomena. The ability to tailor the broadband infrared reflectance to minimize radiative losses has impor-
tant implications for providing efficient thermal insulation under high temperature conditions and in applications 
such as furnaces, fire protection, gas-turbine engines, redirecting heat in photovoltaic systems, in energy-efficient 
buildings, etc.6–9.

A vast amount of literature exists on new materials for coatings and paints doped with metal/metal-oxide 
pigments or dyes that is focused on obtaining increased absorbance or reflectance of solar radiation10–13. These 
coatings or paints are referred to as ‘cool’ or ‘hot’ depending on whether they enhance diffuse reflectance through 
scattering or enable spectrally selective absorption in the near-infrared wavelength (NIR) regime14–18. These 
materials, while excellent for facilitating effective harnessing of solar energy in photovoltaic devices or for thermal 
management in buildings and vehicles, are however not suitable for use as thermal insulators at high temperatures 
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because of their high thermal conductivities11, 19. Multilayer dielectric materials used in thermal barrier coatings 
offer an alternative but are prohibitively expensive to fabricate and maintain for structurally complex systems20, 21.  
In this regard, an attractive low-cost alternative is offered by thermal insulators such as aerogels that are char-
acterized by remarkably low thermal conductivities. However, aerogels are almost transparent to the NIR wave-
lengths (3–8 μm) rendering them unsuitable for use in high temperature environments2. Aerogel based thermal 
insulators therefore require the use of opacifiers for improving insulation at high temperatures wherein radiative 
transfer losses dominate2. Opacifiers are typically particles of refractory metal-oxides, carbides or nitrides that 
are randomly distributed at high mass fractions in aerogels to enable multiple scattering of thermal radiation and 
thereby improve diffuse reflectance2, 3, 22, 23.

Recently, localized surface plasmon resonances (LSPRs) in randomly distributed metallic nanoparticles on 
surfaces and in films have been exploited to demonstrate controlled reflectance14, 19, 24. LSPRs arise due to a con-
finement of the collective oscillations (plasmons) of free charge carriers on the surface of a micro or nanoparticle 
driven by the electromagnetic field of the incident radiation of wavelength greater than or comparable to the size 
of the particle25. These multipolar collective oscillations of charge carriers excited by the incident radiation absorb 
energy close to resonance and re-radiate it in all possible directions. This results in enhanced scattering and 
absorption resonances that can be controlled with the geometry, size, dielectric environment and the spatial dis-
tribution of the particles14, 19, 25–30. Although LSPRs in metallic particles can be tailored to modify reflectance, the 
tunability of their frequency response lies mostly in either the ultraviolet or visible spectrum of the electromag-
netic radiation. Furthermore, besides the regime of frequency response, the high thermal conductivity of metallic 
particles makes them unsuitable for use as opacifiers in insulators for high temperature applications. However, 
low-bandgap semiconductors, characterized by relatively low-thermal conductivities, exhibit LSPRs that can be 
excited by the incident heat radiation in the infrared regime30. Based on the Drude model for charge transport, 
the characteristic plasma frequency ωp of a material that determines its optical response close to resonance is 
directly proportional to the square root of its free carrier concentration N i.e. ω ε= ⁎Ne m/p o

2  (where, e and m* 
are the charge and the effective mass of the charge carriers and εo is the permittivity of the free space). In contrast 
to metals, the free charge carrier concentration in semiconductors can be controlled precisely through doping. 
Thus, the use of low bandgap semiconductor inclusions as opacifiers for tailoring the optical spectra of the com-
posites will allow for a continuous tunability of the LSPR frequencies. Low-bandgap semiconductor inclusions 
with an appropriate bandgap and carrier concentration therefore hold excellent promise as opacifiers in high 
temperature insulators. In this study, we focus our investigation on the effect of the plasmonic resonance induced 
enhanced scattering on the diffuse reflectance of thermal radiation from insulator dielectrics with low-bandgap 
semiconducting microinclusions.

Radiative heat transport in materials can be modeled using several different methods that include numerical 
methods for solving the radiative transfer equation31, ray-tracing based on geometrical optics32–34, flux based 
methods35–38 and Monte Carlo models39–42. Numerical methods for solving the radiative transfer equation that 
employ a finite number of angular intensities such as the discrete transfer method (DTM), discrete ordinates 
method (DOM) and the finite volume method (FVM) typically require some kind of an assumption of angular 
isotropy for scattering31. The radiation element method by the ray emission model (REM2) also employs a finite 
number of angular intensities but gets around this difficulty by considering scattering anisotropy through the use 
of a delta function approximation for the scattering phase function43. In general, these methods can be applied to 
complex geometries but they also tend to limit radiation transport to certain discrete directions thereby affect-
ing their accuracy. The flux-based methods employ coupled ordinary differential equations to model radiative 
transport in two-dimensional media along the normal direction35–38. The two-flux Kubelka-Munk (KM)35 and 
the extended KM radiative transfer models37, frequently employed due to their ease of implementation, are some 
of the oldest flux-based methods available for diffuse and collimated incident radiation respectively. However, 
the KM methods are applicable only to optically thick films with non-absorbing particles or to films with highly 
scattering and weakly absorbing particles with size-parameters larger than the Rayleigh limit37. Improvements 
upon the KM models account for backward and forward fluxes of diffuse and collimated radiation separately 
through the incorporation of additional flux channels37. The most widely used of these methods is the general-
ized four-flux model due to Vargas and Niklasson36, 37 based on the four-flux model proposed by Maheu et al.38. 
However, in the case of media characterized by large anisotropic scattering the generalized four-flux method 
requires an evaluation of the average path-length parameters using the extended Hartels theory44. On the other 
hand, Monte Carlo methods based on tracking packets of incident radiation (henceforth referred to as photons) 
in two or three dimensions are highly accurate and applicable to anisotropic media with multiple scattering with-
out requiring the evaluation of any average path-length parameters or the use of a finite number of angular inten-
sities45. Thus, here we use a Monte Carlo method in conjunction with Mie theory for modeling radiation transport 
in a microcomposite dielectric insulator with spherical semiconducting microinclusions at low volume fractions.

Recently, Slovick et al. have experimentally demonstrated the tailoring of the diffuse infrared reflectance of 
up to 90% for LPC paints with microscale inclusions of single-crystal hexagonal Boron Nitride platelets (h-BN) 
albeit at an unusually high h-BN volume fraction of f = 0.511. Gonome et al. have also demonstrated up to 90% 
near-infrared broadband reflectances for cool coatings with submicron copper-oxide (CuO) particles at low vol-
ume fractions ranging from f = 0.02 to 0.0546. However, these high reflectances were obtained for coatings on 
highly reflecting white substrates while coatings on black substrates yielded significantly lower reflectances of 
about 35–40%46. Also, currently there exist no studies that systematically investigate the effect of Mie parameters 
for microparticles on maximizing the reflectance of incident thermal radiation from composites or coatings. 
Thus, the key objective of our study is to understand the role of the particle size-dependent Mie scattering Qsca and 
absorption Qabs efficiencies and the scattering anisotropy g in designing insulating composites with low-bandgap 
semiconductor microinclusions at low volume fractions f to maximize the reflectance of the incident thermal 
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radiation. To this end, we compute infrared spectra for insulating dielectric composites with semiconductor 
microparticle inclusions of indium arsenide (InAs), lead sulphide (PbS), indium phosphide (InP), silicon (Si), 
germanium (Ge) and tellurium (Te), with direct and indirect bandgaps ranging from 0.3 to 1.4 eV. We then iden-
tify the optimal particle size of inclusions required to obtain maximal reflectance by quantifying the total reflec-
tance from the insulating microcomposites in terms of a reflectance efficiency parameter η for incident thermal 
radiation originating from black-body sources at various temperatures Ts. Additionally, we examine the effect 
of scattering from the microparticles on diffuse reflectance by comparing results from the Monte Carlo mod-
eling with those from Fresnel equations based on the effective medium theory (EMT). The Fresnel equations 
take into account interference effects arising from the partial reflectance of the incident thermal radiation at the 
composite-ambient interfaces but do not account for scattering from the inclusions.

Results
We first examine the results from the Mie theory calculations for the scattering (Qsca) and absorption (Qabs) 
efficiencies, and, the asymmetry factor g for Ge, Si, PbS, InP, InAs and Te microparticles of various diameters d. 
This is followed by results obtained from Monte Carlo modeling and Fresnel equations for the reflectance and 
absorbance spectra. Both the Monte Carlo model and the Fresnel equations employ the computed Mie param-
eters Qsca and Qabs (see Methods, Equations 3) as inputs for the computation of the optical spectra while the 
Monte Carlo model requires the additional use of the asymmetry factor g as well. For this study, we obtain the 
experimentally determined bulk values for the complex refractive indices of these materials from Palik47(See 
Supplementary Information (SI), SI Figure 2). For birefringent Te, the bulk refractive indices are averaged over 
the ordinary and the extraordinary directions. Arguably, our choice of the low-bandgap semiconductor materi-
als for microinclusions is a priori somewhat arbitrary. However, it is designed to understand the scattering and 
reflectance properties of composites with microinclusions of materials characterized by a range of direct (PbS, 
InAs, InP, Te) and indirect bandgaps (Si, Ge), and, elemental and compound semiconductors that are already in 
widespread use or are easy to synthesize in bulk using the chemical route at low cost48, 49. Figure 1a,b describe the 
Monte Carlo model and the procedure employed in the computation of the optical spectra for the microcom-
posites, respectively. For further details, however, the reader is referred to the section on Theory and Methods 
following Conclusions.

Mie scattering from semiconductor microinclusions.  A good microcomposite thermal insulator that 
minimizes radiative heat transfer should ideally maximize backscattering of the incident thermal radiation to 
achieve high infrared reflectance, a condition that is characterized by a high Qsca, and, a low g and Qabs. For a given 
semiconductor material, these parameters strongly depend on the particle size d and the wavelength λ of the 
incident thermal radiation. Thus, we compute the Mie parameters Qsca, Qabs and g as a function of particle diam-
eter, from d = 0.02 to 3 μm, for wavelengths ranging from λ = 0.5 to 10 μm. Furthermore, the spherical microin-
clusions are assumed to be embedded in an isotropic, non-scattering, non-absorbing and non-magnetic host 
medium of refractive index nm = 1.5. The maxima and minima for Qsca and g are listed in Tables 1 and 2, respec-
tively, along with their corresponding wavelengths and particle sizes. Table 1 also shows the characteristic band-
gap wavelengths λbg for the different semiconductor materials used as microinclusions. Figure 2a–d further shows 
Qsca

max and gmin as a function of the microinclusion size d and wavelength λ.
Absorption of the incident thermal radiation at wavelengths close to the absorption band-edge (λ ≈ λbg, 

Table 1, λbg indicated by vertical green arrow-marks on the x-axis in figures.) gives rise to a significant increase in 
the number of charge carriers in the conduction (electrons) or the valence band (holes) leading to the excitation 
of plasmonic resonances in the semiconducting microinclusions. These resonances result in the formation of 
oscillating multipoles that radiate to generate large values of Qsca characterized by broad maxima as shown in 
Figs 3a–d and SI 4a–b. Figure 3a–d also shows that the maxima in Qsca occur when the wavelength of the incident 
radiation is comparable to the size d of the microparticles. For particle sizes d ≤ 0.1 μm, Qsca remains well below 
2.6 for all microinclusion materials and does not attain large values for λ ≤ λbg as seen in Fig. 3. This behavior is 
particularly apparent for composites with PbS (Fig. 3d), InAs and Te (SI Figure 4a–b) microinclusions that have 
small bandgaps. Figure 2a,c shows that (i) Qsca attains a maxima at smaller particle sizes for microinclusions of 
semiconductors with larger bandgaps or smaller λbg (vertical green arrow-marks), (ii) Qsca

max is observed to occur 
at λ λbg and, (iii) after the maxima is attained, Qsca remains more or less constant with any further increase in 
particle size. Figure 2b,d further shows that (i) the minima in g undergo a sharp switch to negative values upon an 
increase in particle size beyond a certain limit, (ii) for all materials studied here the negative values for gmin start 
to occur close to λ ≈ λbg, and, (iii) the lowest values for gmin are attained immediately after λ ≈ λbg with the excep-
tion of Si and InAs. In the plots for the forward (Qfs) and backward (Qbs) scattering efficiencies corresponding to 
the particle size d gmin

 it is observed that Qfs dominates over Qbs (Figs 2e and SI 5). A further deconvolution of the 
contributions of the different order terms (dipole n = 1, quadrupole n = 2 and octupole n = 3) in Figs 2e and SI 5 
indicates that the strongest contributions to Qbs arise from the octupole term close to λ ≈ λbg followed by the 
quadrupole and dipole modes at longer wavelengths. Also, particles with sizes comparable to the wavelength of 
the incident thermal radiation exhibit strong forward scattering (g > 0) for λ < λbg (Figs 3e–h and SI 4c–d). 
However, in the limit of Rayleigh scattering the small nanoscale particles exhibit isotropic scattering characterized 
by g values close to zero.

Furthermore, it is observed that the local maxima in Qsca and plot features in g redshift and broaden as the par-
ticle size is increased for all semiconducting microinclusion materials considered here (Figs 3, 4a–d, SI 4 and 6).  
This occurs for increased particle sizes because of a weakening of the restoring force that drives the plasmonic 
resonances. The restoring force weakens due to an increased distance between the oscillating charges on the 
opposite sides of a particle leading to a consequent weakening of the interaction between them and hence lower 
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associated energies or a redshift. The effect can be seen more readily when the spectral behavior of Qsca and g is 
plotted for Ge and PbS in Fig. 4(a–d) for different particle sizes corresponding to Qsca

max and gmin shown in Fig. 2 
and Tables 1 and 2. For example Fig. 4a shows that the peaks in Qsca for Ge at λ = 1.78 and 2.47 μm redshift to 
λ = 1.93 and 2.72 μm when the particle size increases from d = 0.58 to 0.64 μm (Δ, ○). Similar shifts are observed 
in g for Ge (Fig. 4c), and, Qsca and g for PbS in Fig. 4b and d respectively.

Figure 1.  Computational methods employed to obtain the optical spectra for the insulator composites with 
semiconductor microinclusions. (a) Schematic illustrating the Monte Carlo model of propagating photons 
inside composites with scattering microinclusions for modeling the transport of the incident thermal 
radiation. An infinitesimally thin beam of incident photons is scattered within the microcomposite until 
either the photons are absorbed or they exit the system. The randomly distributed small open circles represent 
microinclusions that serve as scattering and absorption centers for the photons. The decrease in the thickness 
of the color trajectories in the schematic represents the decrements in the photon weights as they execute 
random motion in the microcomposite layer. The direction of photon exit from the composite, characterized 
by the angle α in the Monte Carlo model, varies with each random trajectory and for a large number of photons 
cumulatively gives rise to diffuse reflectance or transmittance. (b) Work-flow for the computation of the 
simulation parameters based on Mie theory and MG-EMT for use with the Monte Carlo method.

Material λbg (μm) Qsca
max dQsca

max (μm) λQsca
max (μm)

InP 0.92 6.3 0.38 0.95

Si 1.11 6.5 0.36 0.97

Ge 1.85 7.5 0.40 1.8

PbS 3.35 7.5 0.74 3.4

InAs 3.44 6.4 1.44 3.8

Te 3.75 10.6 0.68 4.0

Table 1.  Values for the characteristic bandgap wavelengths λbg (indicated by vertical green arrow-marks in 
figures), maxima in scattering efficiency Qsca

max with corresponding wavelengths λQsca
max and the microcinclusion 

size dQsca
max for the different semiconductor materials considered in this study.
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Figures 5 and SI 7 present the Mie coefficients an and bn for the particles of different semiconductors with sizes 
d corresponding to Qsca

max and gmin. Compared to the dipole modes, it is observed that the Mie coefficients for the 
quadrupole and octupole modes decay much faster with increasing wavelength of the incident thermal radiation. 
As a result, one need only consider the first three modes of the Mie coefficients an (○, ◊) and bn (•, ♦) i.e. dipole, 
quadrupole and octupole. Consistent with the features in plots for Qsca and g (Figs 3, 4, SI 4 and 6), the plasmonic 
resonances (○, •) are seen to broaden and red-shift with an increase in the semiconductor particle size d (Figs 5 
and SI 7). Sharp dips (◊, ♦) in the values of the Mie coefficients indicate minima in the extinction efficiency 
(Qext = Qsca + Qabs) and consequently an increase in transmittance. Results also indicate that the magnetic Mie 
modes are weaker and decay much faster than the electric modes for all the particle sizes and semiconductor 
materials considered here (Figs 5 and SI 7). However, consistent with theoretical predictions, a strengthening of 
the magnetic modes bn is observed with an increase in the particle size52. This strengthening of the magnetic 
modes is much greater for the Si, PbS, InAs and Te microparticles (Figs 6a,b,e–h and SI 7c–d) compared to that 
for Ge or InP inclusions (Figs 5c,d and SI 7a–b). Also, the sharp quadrupole and octupole resonances occurring 
against a background of broad dipole modes for the larger particles give rise to Fano resonances as evidenced by 
an abrupt switch in the scattering anisotropy g from forward (g > 0) to backward scattering (g < 0) with an 
increase in particle size (Fig. 2b)50, 51.

Further, sharp resonances in Qsca for the semiconducting microinclusions can largely be attributed to the 
points in the spectra where the Mie coefficients an (○) and bn (•) for the electric and magnetic fields, respectively, 
tend to unity (or maxima), a condition required for the occurrence of scattering resonances50. Again, consider-
ing Ge and PbS as illustrative examples, it can be seen that there occur Fano resonances in Qsca at λ = 1.93 and 
2.72 μm for Ge particles of size d = 0.64 μm (○) (Fig. 4a), and, at λ = 4.10 and 5.75 μm for PbS particles of size 
d = 1.34 μm (○) (Fig. 4b). These strong resonances in Qsca (Fig. 4a,b) can be attributed to the sharp maxima 
occuring at the same or close wavelengths in the Mie coefficients b1 and b2 corresponding to the magnetic field 
against a background of the broad contribution to scattering from the electric dipole mode a1 (Fig. 5c–f). For 
Si microinclusions of size d = 1.68 μm multiple sharp maxima are seen for the dipole, quadrupole and octupole 
modes for both electric and magnetic Mie coefficients resulting in a large number of Fano resonances in Qsca 
(Figs 5a,b and SI 6b respectively). Similar correspondence between the maxima in an, bn and the peaks in Qsca 
occurs for InP (SI Figures 6a and 7a–b), InAs (Figs 5g,h and SI 6c) and Te (SI Figures 6d and 7c–d) microinclu-
sions as well. However, more generally, specific features in Qsca and g arise from interference effects among the 
Mie coefficients of different orders.

At the absorption band edge marked by λbg (Table 1), a steep increase in Qabs is observed with decreasing λ for 
particles of all materials (Figs 4e–f, SI 8 and 9). The resonances in Mie coefficients an and bn extend beyond λbg for 
all materials but Qabs essentially goes to zero outside the main absorption band, as is to be expected, only for the 
Ge (Figs 4e and SI 8c), InP and Si microinclusions (SI Figures 8a–b and 9a–b). However, broad peaks in Qabs that 
exist far away from the main absorption band at longer wavelengths and are about 10–20 times weaker are seen 
for PbS (Fig. 4f), InAs and Te microinclusions (SI Figure 9c–d). These distinctive long-wavelength absorption 
bands broaden and move farther away from the main absorption band with an increase in the microinclusion size 
d. This is seen in Qabs for PbS particles presented in Fig. 4f where these bands with peaks at λ = 4.10 and 5.90 μm 
become distinctive for particles of diameter d = 1.34 μm (○). Correspondingly, peaks are also observed in Qsca 
along with associated features in g and the Mie coefficients an and bn at close wavelengths, as described earlier 
(Figs 4b,d and 5e,f, respectively). This, therefore, points to the generation of a sufficiently large number of free 
charge carriers at λ > λbg to enable the generation of plasmonic resonances. Also, it appears that the origin of the 
weak absorption peaks in Qabs for PbS (Fig. 4f), InAs (SI Figure 9c) and Te (SI Figure 9d) microcomposites is 
likely due to a cluster of defect states within the bandgap with intermediate energies corresponding to the incident 
thermal radiation. These weak absorption bands at longer wavelengths (λ > λbg) serve to extend maxima in Qsca 
much beyond the absorption band-edge (Figs 4b and SI 6c,d). However, in the absence of any significant absorp-
tion away from the main absorption band (SI Figure 9b), the origin of the several peaks observed in the spectra 
of Qsca for Si microinclusions of size d = 1.68 μm (○) is an exception (SI Figure 6b). This may, however, be a result 
of the complex nature of the band-structure for Si and its indirect bandgap, a discussion of which is beyond the 
scope of the current article.

Detailed analysis of Mie scattering in the limit of large and small inclusions.  The complicated 
nature of the formulae for the electric (an) and magnetic (bn) Mie coefficients (see Methods, Equations 12 and 13)  
and their complex dependence on the relative refractive index nr(λ), unique to each material, present a challenge 
to understanding the results for Mie scattering presented in Figs 2, 3, 4, 5 and SI 4–7. However, a great deal of 

Material gmin dg min (μm) λg min (μm) Rg min gmax λg max (μm) Rg max

InP −4.94 · 10−2 0.60 0.96 0.76 0.547 2.16 0.71

Si −5.48 · 10−2 1.68 2.87 0.63 0.711 1.21 0.49

Ge −1.19 · 10−1 0.64 1.56 0.71 0.524 2.98 0.72

PbS −1.23 · 10−1 1.34 3.26 0.52 0.523 6.30 0.54

InAs −5.35 · 10−2 2.80 4.90 0.50 0.451 6.89 0.57

Te −2.99 · 10−1 1.24 3.92 0.65 0.513 7.85 0.51

Table 2.  Maxima and minima in the scattering anisotropy g for composites with microinclusions of size d gmin
 

along with corresponding reflectances R gmax
 and R gmin

 at wavelengths λ gmax
 and λ gmin

 respectively.
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insight into the qualitative behavior for scattering from both large and small particles can be obtained by con-
sidering the limiting case of scattering from a small particle. A power series expansion of the spherical Bessel 
functions in Equations 12 and 13 with respect to the particle size parameter x (=πdnm/λ) for the dipolar Mie 
modes gives53

Figure 2.  Optimal Mie scattering parameters for obtaining enhanced reflectance of incident heat radiation. 
(a,c) Maxima in scattering efficiency Qsca, and, (b,d) minima in anisotropy factor g as a function of the 
microinclusion size d and the wavelength λ for the different materials considered here. (e) Forward (Qfs) and 
back (Qbs) scattering efficiencies along with a deconvolution of Qbs into contributions from the dipole and 
higher order modes (n = 1, 2, and 3) as a function of the wavelength λ for PbS microinclusions of diameter 

= .d 1 34gmin
 μm corresponding to the minima gmin in scattering anisotropy factor. The colored vertical arrows 

represent the bandgap wavelengths λbg and in (e) the green vertical arrow represents the λbg for PbS. A sharp 
switch from forward (+g) to backward scattering (−g) with an increase in the particle diameter d close to the 
bandgap wavelength (λbg) in all materials points to the presence of Fano resonances50, 51. An inverse hierarchy of 
scattering resonances is also observed wherein the octupole (n = 3) mode is the strongest followed by 
quadrupole and dipole modes in contrast to Rayleigh scattering for the smaller particles.
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Figure 3.  Effect of the change in the wavelength of the incident radiation and the microinclusion diameter 
on the Mie scattering parameters. (a–d) Scattering efficiency Qsca, and, (e–h) anisotropy factor g as a function 
of the wavelength λ of the incident thermal radiation and the diameter d of spherical InP, Si, Ge and PbS 
microinclusions, respectively. The bandgap wavelengths λbg (indicated by vertical green arrow-marks) for the 
semiconductor materials mark a transition from low to high Qsca and strongly forward (+g) to mixed scattering 
regimes for the microinclusions with an increase in λ.
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with the quadrupole modes given by a2 ∝ x5 + O(x7) and b2 = O(x7). Thus, it can be clearly seen that for 
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the magnetic dipole mode b a1 1, and, it can thus be neglected along with the higher order magnetic and electric 
modes. Conversely, for |nrx| ≥ 1 the magnetic modes start to become stronger. This becomes apparent in Figs 5 and 
SI 7 where a strengthening of the magnetic Mie modes is observed with an increase in the microinclusion size d.

For a vanishingly small nonmagnetic particle (x → 0) with a finite relative refractive index nr, the resonance 
condition in Equation 16 for the electric Mie modes is satisfied when53

Figure 4.  Effect of an increase in the microinclusion size on the Mie parameters. (a,b) Scattering efficiencies 
Qsca, (c,d) scattering anisotropy g, and, (e,f) absorption efficiencies Qabs for various sizes of Ge (left) and PbS 
(right) microinclusions. The vertical green arrows indicate the bandgap wavelength λbg for the semiconductor 
materials. A general broadening of the spectral features in Qsca, Qabs and g is observed with an increase in the 
microinclusion size d.
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Here, λn represents the resonant wavelength for a mode of order n. Also, there exists no solution to the cor-
responding condition (Equation 17) for the magnetic Mie modes. However, since bn → 0 for vanishingly small 
particles as shown above one need only consider the resonance condition for the dipole mode a1 i.e. n = 1. In 

Figure 5.  Effect of the semiconductor microinclusion size on the electric and magnetic Mie coefficients. Mie 
coefficients an and bn as a function of wavelength λ for spherical microinclusions of (a,b) Si, (c,d) Ge, (e,f) PbS and 
(g,h) InAs for particle diameters d corresponding to Qsca

max and gmin respectively as shown in Fig. 2. The vertical 
green arrows indicate the bandgap wavelengths λbg. Open and closed symbols denote features in an and bn 
respectively. An increase in the microinclusion size d is accompanied by a strengthening of the magnetic modes bn.
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terms of the dielectric permittivities of the semiconductor particle (εs) and the non-absorbing host medium (εh) 
the resonance condition is obtained as

ε ε ε′ = − ′′ = .2 , 0s h s

It is important to note here that the resonance frequencies obtained from the above condition are complex and 
hence virtual. The real frequency of the incident electromagnetic wave close to where this condition is satisfied 
for a given material is referred to as the Frölich frequency and the corresponding dipole mode as the Frölich 
mode. Although the above condition is strictly valid only for a vanishingly small particle, the frequency shift for 
the Frölich mode as a function of an increasing size parameter x can be understood through an expansion of the 
spherical Bessel and Hankel functions in Equation 16 into a power series in x. This gives53

ε ε= − + x(2 12 /5)s
2

h

Now, for all semiconductor materials considered here, largely an increase in the real part of the dielectric per-
mittivity ε ′s  is observed with a decrease in the wavelength λ except for the very short wavelengths deep into the 
absorption band (SI Figure 3). Thus, an increase in the size parameter x or the particle size shifts the Frölich fre-
quency to lower values or longer wavelengths. This redshift of the scattering resonance peaks with an increase in 
the particle size is clearly seen in Figs 3, 4, 5 and SI 5–7 for all low bandgap semiconductor materials used here in 
our study.

The deconvolution of the back scattering efficiency (Qbs) into the contributions from the octupole, quadrupole 
and the dipole modes in Figs 2e and SI 5 shows anomalous scattering with an inverse hierarchy of scattering res-
onances in contrast to Rayleigh scattering wherein the dipole mode is the strongest. This is a direct consequence 
of the (2n + 1) factor that occurs in the equations for the forward and back scattering efficiencies (Equations 19 
and 20) when the size parameter λx( ) 1n . Here, the size parameter for the resonant modes varies between 
xn ∈ [0.83, 2.55] wherein the lower limit corresponds to the dipole mode (λn = 7.05 μm) in Te microinclusions 

Figure 6.  Spectral behavior of insulating composites with low-bandgap semiconductor microinclusions. The 
spectral reflectance and absorbance of microcomposites with (a,c) Ge and (b,d) PbS spherical inclusions of 
diameter d and volume fraction f = 0.01, respectively. The solid lines and the thin dotted lines of the same color 
represent spectral results obtained from the Monte Carlo modeling and Fresnel equations, respectively. In (b,d), 
the additional dashed and thick dotted curves in yellow color correspond to results computed using Monte 
Carlo modeling with a microinclusion volume fraction of f = 0.1 and a microcomposite of thickness 2 mm, 
respectivley. The green arrows indicate the bandgap wavelengths λbg. In (b,d), a broadbanding of the reflectance 
spectra can be attributed to the plasmonic resonances arising from the collective oscillations of the free charge 
carriers generated due to weak absorption bands away from the absorption band edge for λ > λbg.

http://3
http://5
http://7
http://5


www.nature.com/scientificreports/

1 1Scientific Reports | 7: 5696  | DOI:10.1038/s41598-017-05630-4

while the upper limit corresponds to the octupole mode (λn = 1.11 μm) in InP microinclusions. Further, this 
anomalous scattering is known to occur when the radiative damping dominates over the dissipative losses in a 
material i.e.54

ε λ″
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+
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x
n n

( )
[(2 1)!!]s n

n
n2 1
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SI Table 1 presents a comparison of the results for the radiative damping term on the right for the strongest of 
the dipole, quadrupole and the octupole modes (Figs 2e and SI 5) with the dissipative term on the left ε″s  (=2ηsκs, 
SI Figure 3b) in the above inequality. It is seen that for the InP and Si microinclusions this condition is readily 
satisfied for all the three modes while for Ge microinclusions only dipole and quadrupole modes satisfy this con-
dition strongly. However, the microinclusions of PbS, InAs and Te satisfy these conditions only weakly for the 
various modes. In all these materials, the radiative damping associated with the dipole modes is observed to be 
the strongest followed by the quadrupole and the octupole modes.

Spectral reflectance of microcomposites.  This section presents results on the spectral characteristics of 
composites with low-bandgap semiconductor microinclusions computed using Monte Carlo modeling and 
Fresnel equations. For Monte Carlo modeling, we employ the spherical microinclusions of optimal size d deter-
mined using Mie theory for obtaining maximum Qsca and minimum g for the various semiconductor materials 
(Table 1). Furthermore, for all our computations here, we consider a microcomposite with a thickness t = 200 μm 
and a semiconductor microinclusion volume fraction of f = 0.01 unless specified otherwise. Considering a cylin-
drical symmetry for the propagation of the infinitesimally thin beam of incident thermal radiation in the Monte 
Carlo model, a grid resolution of dz = 2 μm and dr = 1 μm is used for the radial r̂  and axial ẑ  directions respec-
tively (see Fig. 1). The total number of grid elements in the r̂-direction is set to Nr = 100 while the number of grid 
elements Nz in the ẑ-direction is determined by the thickness of the microcomposite layer. Adequate care is also 
taken to ensure that the diffuse reflectance and transmittance go to zero as a function of the radius r while their 
angular dependence on the photon-exiting direction α̂ is ignored. To compute the infrared spectra for the inci-
dent thermal radiation, 107 photons are launched for each wavelength λ considered.

Figures 6 and 7 show the reflection and the absorption spectra for infrared radiation ranging from λ = 0.5 to 
10 μm for composite layers with Ge and PbS, and, Si and Te microinclusions, respectively. A comparison of the 
results from Monte Carlo modeling and Fresnel equations for radiation transport clearly shows that the pres-
ence of the low-bandgap semiconducting microinclusions significantly increases both the reflectance and the 
absorbance of the microcomposite layers (Figs 6 and SI 10). This is because, unlike Fresnel equations, the Monte 
Carlo model takes into account the plasmonic resonance induced enhanced scattering from the microparticles. 
This results in a decreased mean free path (∝[μabs + μsca]−1) and diffusive transport of the incident radiation in 
the microcomposite layer thereby giving rise to greater absorbance and reflectance. For a host medium refractive 
index of nm = 1.5, among the semiconductor materials considered, the highest reflectance R = 0.91 is obtained 
for Te microcomposites at λ = 4.0 μm for microinclusions of size d = 0.68 μm (♦) (Fig. 7b). A similar value of 
R = 0.90 is also obtained for the Si microcomposites at λ = 1.27 μm for inclusions of diameter d = 0.36 μm (♦) 
(Fig. 7a). Furthermore, for microcomposites with Ge inclusions of diameter d = 0.64 μm (○) (Fig. 6a), two high 
peaks (R ≈ 0.88) in the reflectance ocurring at λ = 1.95 and 2.64 μm can be directly attributed to the peaks in Qsca 
at λ = 1.94 and 2.72 μm (Fig. 4a). On the other hand, the reflectance calculated using Fresnel equations for all 
microcomposites remains well below R = 0.2 (Figs 6a–b and SI 10a–b). This difference between the results from 
Monte Carlo modeling and Fresnel equations emphasizes the hugely disproportionate impact a small volume 
fraction of microparticle inclusions makes on the infrared spectra of the micromposite layer. Additionally, they 
also underline the importance of considering scattering from particles that are comparable in size to the wave-
length λ of the incident radiation.

The peaks in reflectance are seen to redshift and broaden by various amounts for the different microcompos-
ites with an increase in the size d of the particle inclusions (see Figs 6a,b, 7a,b and SI 10a–b). The effect is observed 
to be especially pronounced for composites with PbS, Si, Te and InAs microinclusions (Figs 6b, 7a,b, SI 10b, 
respectively). This broadbanding of the reflectance spectra is a direct consequence of the red-shifting and broad-
ening of the sharp Fano resonances for larger microinclusions in the spectra for Qsca (Figs 4b and SI 6b–d). In PbS, 
Te and InAs microcomposites (Figs 6b, 7b and SI 10b, respectively), the broadbanding of the reflectance for the 
larger microinclusions appears to be driven, in part, by the enhanced scattering from plasmonic resonances gen-
erated due to the presence of weak absorption peaks far outside the main absorption band (Figs 6d, 7d and SI 10d, 
respectively). It is notable in this regard that Felts et al.55 have experimentally observed LSPRs in silicon-doped 
InAs microparticles of size 1.0 μm with characteristic absorbance at wavelengths λ = 5.75 and 7.70 μm. The wave-
lengths at which these LSPR-associated absorbance maxima occur are similar to the wavelengths we observe for 
the absorbance maxima in composites with InAs microinclusions at λ = 5.55 and 7.15 μm (○), and, λ = 5.35 μm 
(◊) for particles of size d = 2.80 and 1.44 μm, respectively (nm = 1.5, SI Figure 10d). Additionally, it is also 
observed that microcomposites with larger inclusions exhibit lower maxima in reflectance (Figs 6a,b, 7a,b and 
SI 10a–b), although the maxima in Qsca(λ, d) remain approximately constant with any further increase in d after 
they reach a peak value (Fig. 2a). This happens because, for a given volume fraction f, the scattering coefficient μsca 
in Equation (3) is directly proportional to Qsca but scales inversely with d.

In all the microcomposites studied here, plasmonic resonance driven peaks in reflectance spectra (Figs 6a,b, 
7a,b, SI 10a–b) appear right before the absorption band edge due to low characteristic values of Qabs for wave-
lengths λ λbg (Figs 4e,f, SI 8 and 9). This is regardless of whether there exists a maxima in Qsca(λ, d) or not in 
that wavelength range for a given microinclusion size. This is illustrated by microcomposites with PbS particles of 
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diameter d = 1.34 μm (○) that present a peak in reflectance with R = 0.68 at λ = 3.47 μm in Fig. 6b despite the 
moderate Qsca = 3.63 and a value of g = 7.63 · 10−2 pointing to isotropic scattering (Fig. 4b,d). On the other hand, 
comparable scattering parameters Qsca = 3.90 and g = 3.60 · 10−2 at λ = 3.22 μm (Fig. 4b,d) suggest higher reflec-
tance although the actual observed reflectance R = 0.24 is quite low compared to R = 0.68 (Fig. 6b). Still, a signif-
icant change in reflectance occurs due to the absorption efficiency decreasing from Qabs = 0.48 at λ = 3.22 μm to a 
low value of Qabs = 8.70 · 10−2 at λ = 3.47 μm (Fig. 4f).

Figure 6a,b shows that the reflectance values R = 0.71, 0.52 associated with Ge and PbS microinclusions of size 
d = 0.64, 1.34 μm and corresponding to the minima in scattering anisotropy gmin = (−1.19, 1.23) · 10−1 at λ = 1.56, 
3.26 μm, respectively (Fig. 2b, Table 2), are not the highest values of reflectance obtained for both Ge and PbS. In 

Figure 7.  Effect of an increase in the refractive index of the host medium on the optical spectra of 
the microcomposites due to plasmonic resonances. (a,b) Spectral reflectance and (c,d) absorbance for 
microcomposites with a volume fraction f = 0.01 of (a,c) Si and (b,d) Te particles of different sizes d embedded 
in a dielectric medium of refractive index nm = 1.5 and 1.3. (e) An expanded view of the reflectance peaks 
for composites with Si microinclusions shown in (b). A clear redshift in the reflectance peaks is observed 
with an increase in the refractive index of the host medium pointing to the generation of LSPRs in the larger 
semiconductor microinclusions.
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the case of Ge and PbS microinclusions, this is in part explained by the fact that the wavelengths λ gmin
 (Table 2) 

corresponding to gmin (Fig. 4c,d) are located within the main absorption band (Table 1) wherein Qsca is low 
(Fig. 4a,b) and Qabs is high (Fig. 4e,f). Furthermore, both Ge and PbS microinclusions of sizes d = 0.58, 1.12 μm 
(Δ) are found to be forward-scattering for the reflectance maxima at λ = 2.40, 4.35 μm (Fig. 6a,b) with scattering 
anisotropy g = 0.25, 0.14 (Fig. 4c,d), respectively, thereby implying that a low value of the scattering anisotropy g 
is not essential to obtain high reflectance. Composites with InAs microinclusions of size = .d 2 80gmin

 μm show a 
reflectance = .R 0 57gmax

 that is higher than the reflectance = .R 0 50gmin
 (Table 2). On the other hand, as per 

expectations, composites with InP, Si and Te microinclusions of size d gmin
 exhibit a higher reflectance R gmin

 than 
R gmax

 (Table 2). Thus, there appears to be scant correlation between a low negative value for the scattering anisot-
ropy g and a high value of reflectance R due to the conflicting evidence presented by the results for the microin-
clusion materials considered here. This is likely because once a photon is launched into a highly scattering 
microcomposite layer, early on during its motion, the direction of propagation of the photon gets quickly rand-
omized. As a consequence, a low negative value of the scattering anisotropy g is rendered rather ineffective com-
pared to the stronger influence of the scattering (Qsca) and absorption (Qabs) efficiencies.

Figure 6b,d shows the reflectance and absorbance spectra for the microcomposites with PbS microinclusions 
of diameter d = 1.34 μm (○) for two different volume fractions f = 0.01 (t = 200 μm and 2 mm) and 0.1. It is 
observed that the increase in volume fraction from f = 0.01 to 0.1 shifts the peak in reflectance at λ = 5.20 μm 
to λ = 4.85 μm and results in a new reflectance peak at λ = 7.25 μm. The peak at λ = 7.25 μm also appears in the 
reflectance for the microcomposite with a PbS particle volume fraction f = 0.01 and thickness t = 2 mm. More 
generally, this implies that a larger number of particles is required to produce enough scattering to reflect the 
longer wavelength infrared radiation because a microcomposite of thickness t = 200 μm and volume fraction 
f = 0.01 has only 1/10th the number of particles compared to the other two microcomposites with increased thick-
ness (t = 2 mm) and volume fraction (f = 0.1), respectively.

An increase in the volume fraction f of the low-bandgap semiconducting microinclusions increases scattering 
and hence has the general effect of increasing the reflectance R of the microcomposite. However, beyond a point 
any further increase in f to increase R is counteracted by an increase in the absorbance that would be detrimen-
tal to the performance of an insulating microcomposite. This is evident from Fig. 6b wherein the reflectance at 
λ = 4.05 μm for a PbS microcomposite decreases from a value of R = 0.68 for f = 0.01 (t = 200 μm) to R = 0.64 for 
f = 0.1 (t = 200 μm).

Nature of plasmonic resonances.  Plasmonic resonances observed in the semiconductor microinclusions 
can have both surface and volume modes with contributions from the magnetic or electric Mie coefficients (an or 
bn) or both. A key feature of the surface modes or LSPRs is the broadening and red-shifting of the scattering reso-
nances with an increase in the particle size d56. This is seen clearly manifested to varying degrees in the Mie scat-
tering efficiencies Qsca for the various semiconductor microinclusion materials considered here (Figs 3a–d, 4a,b, 
SI 4a-b and 6). Additionally, LSPRs are also known to exhibit a red-shift with an increase in the refractive index of 
the host medium56–58. Thus, to ascertain further the nature of the plasmonic resonances observed in the spectra 
for the different microcomposites, we compare and contrast the optical spectra obtained using host refractive 
index nm = 1.5 (○, ◊) with the results from nm = 1.3 (•, ♦). Figure 7a,b shows that for composites with the larger 
Si and Te microinclusions there occurs a red-shift in the reflectance peaks with an increase in the refractive index 
of the host medium while for the smaller particles such a change is not clearly discernible. Reflectance peaks at 
λ = 4.27, 3.54, 3.27, 2.81 and 2.67 μm in the spectra for composites with Si microinclusions of size d = 1.68 μm 
red-shift to λ = 4.30, 3.67, 3.32, 2.89 and 2.71 μm respectively with a change in the host medium refractive index 
from nm = 1.3 (•) to 1.5 (○) (Fig. 7e). For composites with Te microinclusions of size d = 1.24 μm reflectance 
peaks shift from λ = 5.30, 4.95 and 3.96 (•) to λ = 5.56, 5.00 and 4.00 μm (○) respectively for this change in the 
refractive index of the host medium. The notable exceptions to this red-shift occur for the broad peaks at longer 
wavelengths λ ≈ 5.8 and 7.0 μm for composites with Si (d = 1.68 μm) and Te (d = 1.24 μm) microparticles, respec-
tively. The likely cause for this could either be that these peaks are associated with plasmonic resonances that are 
volume modes or the red-shift is masked due to the broadness of the peaks. A similar trend in the red-shifting 
of the peaks in the reflectance spectra associated with larger microinclusion size and a change in the refractive 
index of the host medium is generally observed in composites with InP, InAs, Ge, and PbS microinclusions as 
well (SI Figures 10a–b and 11a–b, respectively). In the case of microcomposites with PbS, InAs and Te inclusions, 
the weak plasmonic absorption peaks that are associated with reflectance maxima outside the main absorption 
band exhibit similar redshift with an increase in the host refractive index (SI Figures 10d and 11d, and, Fig. 7d 
respectively). Thus, there appears to be a transformation in the nature of the plasmonic resonances from volume 
modes for the smaller microinclusions to LSPRs for composites with the larger semiconductor microinclusions. 
Also, it is apparent from the results presented earlier for Mie scattering that this shift is associated with and driven 
by a strengthening of the magnetic modes bn characteristic of the larger particles (Fig. 5). For the large spherical 
microinclusions considered here, these resonances can thus be connected to oscillatory eddy currents generated 
by electromagnetic waves traveling large distances along the surface of the particles59, 60.

Reflectance efficiency of the microcomposites.  To assess the effectiveness of the different micro-
composite materials in preventing thermal losses through radiative transfer, the reflectance efficiency η(λ, d), 
defined in equation (22) (see Theory and Methods), is computed as a function of the size d of the semiconducting 
microinclusions. The calculations for η cover the entire wavelength range of interest (λ = 0.5 to 10 μm) for the 
incident radiation from blackbody sources at temperatures Ts = 1600, 1200, 800 and 400 °C. Here, we note that the 
peak spectral radiance for a blackbody at temperatures Ts = 1600, 1200, 800 and 400 °C is obtained at λmax = 1.55, 
1.97, 2.70 and 4.31 μm respectively. Figure 8 shows high values of (0.65 > η > 0.55) implying reflectances of over 
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60% obtained from microcomposites with an optimal size d of the semiconducting microinclusions. For the 
blackbody radiation from sources at temperatures Ts = 1600 and 1200 °C, the highest values of efficiency η = 0.65 
and 0.63 are obtained for Si microcomposites with optimal microinclusion diameters d = 0.74 and 1.0 μm respec-
tively (Fig. 8a,b). On the other hand, microcomposites with Ge inclusions of optimal diameters d = 1.10 and 
1.70 μm attain the highest efficiency values of η = 0.60 and 0.57 for radiation sources characterized by tempera-
tures Ts = 800 and 400 °C respectively (Fig. 8c,d). These results thus show that as the wavelength λmax for the peak 
spectral radiance increases with decreasing source temperatures, the size of the microinclusions required for 
obtaining peak reflectance efficiency also increases. This shift in the optimal particle diameters d for obtaining 
maximal reflectance efficiency η is consistent with the broadening and shifting of the peaks for Qsca (Figs 3a–d, 
4a–b, SI 4a–b and 6) and reflectance R (Figs 6a,b, 7a,b and SI 10a–b) towards longer wavelengths with increasing 
microinclusion size d.

Among all the semiconducting materials considered here, it is also observed that Si, Ge and InP microinclu-
sions with larger bandgaps are the only effective inclusion materials for incident blackbody radiation from sources 
at temperatures in the range 400 ≤ Ts ≤ 1600 °C (Fig. 8). It is observed that these materials are characterized by a 
strong radiative damping for all three Mie modes (n = 1, 2 and 3) and low dissipation (ε ″s (λn)) in contrast to PbS, 
InAs and Te microinclusions (SI Table 1 and SI Figure 3b). Furthermore, Fig. 8 shows that the three semiconduc-
tors (PbS, InAs and Te) with the smaller bandgaps begin to significantly contribute to the reflectance efficiency η 
only when their corresponding bandgap wavelength λbg becomes smaller than the wavelength (λmax = 4.31 μm) 
for the peak spectral radiance corresponding to the lowest source temperature Ts = 400 °C (Fig. 8d). Composites 
with Te microinclusions exhibit the most promising set of Mie parameters, a high Qsca and the most negative gmin 
(Tables 1 and 2), and the highest peak in reflectance R = 0.91 observed amongst all the semiconducting microin-
clusions (Fig. 7b). However, despite this, a high reflectance efficiency η is not observed in Te microcomposites for 
any of the blackbody source temperatures Ts considered here because of the large bandgap wavelength 
λbg = 3.75 μm for Te (Table 1). In contrast, InP, Si and Ge have bandgaps occurring at wavelengths λbg = 0.92, 1.11 
and 1.85 μm (see Table 1) that are all smaller than the wavelengths λmax for the peak spectral radiance of the black-
body source temperatures considered here. Thus, it can be inferred that semiconducting microinclusions with 
their bandgap wavelengths λbg close to or slightly greater than the wavelength λmax of the peak spectral radiance 
from a blackbody source are the most effective in maximizing reflectance. This happens because close to the 

Figure 8.  Effect of microinclusion size and low-bandgap semiconductor material on the reflectance efficiency 
of insulating microcomposites. Reflectance efficiencies η of microcomposites with InP, Si, Ge, PbS, InAs and Te 
microinclusions for incident blackbody radiation from sources at temperatures in the range 400 ≤ Ts ≤ 1600 °C. 
The semiconductor microinclusions that have their bandgap wavelengths λbg close to or slightly greater than 
the wavelength λmax of the peak spectral radiance from a blackbody source are the most effective in maximizing 
reflectance of the incident heat radiation.
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wavelength λbg there exist enough free charge carriers in the conduction or valence band to allow for the excita-
tion of LSPRs that improve reflectance of the incident thermal radiation through enhanced scattering.

Conclusions
To summarize, we have investigated the use of plasmonic resonance driven enhanced scattering from 
low-bandgap semiconductor microinclusions for tailoring the spectral properties of insulating composites to 
prevent radiative thermal losses in high temperature applications. To simulate radiative transfer in composites 
with semiconductor microinclusions of different materials, we have employed Monte Carlo modeling in conjunc-
tion with Mie theory. We have also compared and contrasted our results from the Monte Carlo modeling with 
reflectance and absorbance spectra obtained from Fresnel’s equations, based on MG-EMT, that do not account for 
scattering from the microinclusions. Comparative results show that there is a significant enhancement in reflec-
tance and absorbance of the incident thermal radiation due to a decrease in the average pathlength of the photons 
in the microcomposite layer from enhanced scattering.

The key focus of our effort in this study has been to understand the role of the size-dependent Mie scattering 
(Qsca) and absorption (Qabs) efficiencies and the scattering anisotropy g of microinclusions in maximizing the 
thermal reflectance efficiency η. Our results show that Mie coefficients of order n ≤ 3 alone contribute signifi-
cantly to the Mie parameters for the spherical microinclusions. The Mie coefficients an and bn corresponding to 
the electric and magnetic fields, respectively, show that the spectral features in Qabs, Qsca and g arise from the 
interference effects among different multipole contributions. The sharp peaks in the higher order magnetic modes 
for the larger microinclusions against a background of the broad dipole modes give rise to Fano resonances that 
generate sharp peaks in the scattering efficiency Qsca. For all semiconducting microinclusions, the first of the 
plasmonic resonance driven peaks in reflectance appear just outside the absorption band edge for wavelengths 
λ λbg. The spectral features in Qsca and Qabs redshift and broaden with an increase in the size d of the semicon-

ducting microinclusions caused by an increase in the strength of the magnetic modes bn. This redshift and broad-
ening of spectral features is also seen in the reflectance and absorbance spectra for the different semiconducting 
materials used as inclusions in the insulating dielectric. For some semiconductor microinclusions (PbS, Te and 
InAs) a further broadbanding of the reflectance spectra is observed to be associated with absorbance peaks that 
are about 10–20 times weaker as compared to the main absorption band. These absorbance peaks likely arise due 
to defect states within the bandgap that contribute enough charge carriers to the conduction or the valence band 
for plasmonic resonance driven enhanced scattering resulting in increased reflectance. A redshift in the reflec-
tance peaks for the larger microinclusions with an increase in the refractive index of the host medium points to 
the transformation in the nature of the plasmonic resonances from volume modes for the smaller particles to 
LSPRs for the larger microinclusions. A low negative value of the scattering anisotropy g lying outside the main 
absorption band does appear to enhance reflectance as hypothesized, but the resulting effect is not as pronounced 
as that from changes in Qsca and Qabs. A high value of reflectance R ≥ 88% observed in the spectra, for the different 
semiconducting microinclusions considered here, is in general associated with high scattering and low absorption 
efficiencies obtained from Mie theory.

An increase in the volume fraction f of the microinclusions or an increase in the thickness t of the microcom-
posite lead to broadening of the reflectance at longer wavelengths that is often accompanied by an appearance of 
additional peaks. Results for the reflectance efficiency η show that semiconducting microinclusions (Si, Ge and 
InP) with their bandgap wavelengths (λbg) close to and greater than the wavelength (λmax) of the peak spectral 
radiance for incident blackbody radiation from a source at a given temperature Ts serves to maximize η. The high-
est reflectance efficiencies 0.57 ≤ η ≤ 0.65, corresponding to more than 57% back-reflectance, are obtained for Si 
and Ge microinclusions at really low volume fractions (f = 0.01) for incident blackbody radiation from sources 
at temperatures in the range 400 ≤ Ts ≤ 1600 °C. The high reflectance efficiency of composites with Si and Ge 
microinclusions is also seen to be correlated to the strong radiation damping and low dissipation at wavelengths 
λn corresponding to the dipole, quadrupole and for radiation sources characterized octupole resonances in the 
scattering efficiency Qsca. It is also observed that with an increase in the wavelength (λmax) for the peak spectral 
radiance a commensurate increase in the size of the semiconducting microinclusions is also required for obtain-
ing optimal reflectance efficiency η. Thus, to fully maximize reflectance for preventing thermal losses through 
radiative transfer, polydispersity in the size of the microinclusions is desirable.

In conclusion, we have demonstrated that enhanced scattering due to plasmonic resonances in low-bandgap 
semiconductor microinclusions at really small volume fractions in an insulating dielectric can be exploited for 
preventing radiative thermal losses by maximizing reflectance of the incident infrared radiation in high tempera-
ture applications. Our results also suggest that the use of semiconductor microinclusions in insulating dielectrics 
offers a possiblity for the further enhancement and broadbanding of the reflectance spectra through the use of 
dopants for engineering defect states within the semiconductor bandgap that contribute to LSPRs at thermal 
infrared wavelengths.

Theory and Methods
Monte Carlo Model.  For modeling thermal radiative transfer in an insulating dielectric with randomly dis-
persed low-bandgap semiconducting microparticles we employ a Monte Carlo method primarily developed and 
designed by Wang et al. for modeling radiation transport in turbid media39. To isolate the role of plasmonic 
resonance driven scattering in enhancing diffuse reflectance, we make the simplifying assumption that the sem-
iconductor microparticles are embedded in an isotropic, non-scattering and non-absorbing host material with 
an effective dielectric constant εh = 2.25. Additionally, the dielectric microcomposite layer is characterized by a 
thickness t, effective refractive index nL, absorption coefficient μabs, scattering coefficient μsca and a scattering ani-
sotropy factor g. The composite layer is also assumed to be free-standing in a medium with a dielectric constant 
of ε0 = 1.
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Briefly, the Monte Carlo method models radiative thermal transport by tracking packets of energy or photons 
launched perpendicularly into the composite layer (See Fig. 1 for a schematic). Each photon is characterized by a 
weight factor that is initialized to unity before its launch. Once a photon enters the microcomposite layer, the step 
size s for its propagation is given by

ξ
µ µ

= −
+

.s ln( )

(1)abs sca

Here, ξ is a random variable uniformly distributed over the interval (0, 1). If during propagation the photon 
hits a boundary between two dissimilar media then the probability R of it being reflected back is defined to be an 
average of the reflectances for the two orthogonal polarizations

φ φ
φ φ

φ φ
φ φ

=

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+
−
+
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2
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to account for the unpolarized nature of the incident and propagating thermal radiation. Here, φ0 and φ1 are the 
angles of incidence and transmittance, respectively. If the photon does not hit a boundary, its weight is decre-
mented by the fraction of the energy absorbed in the microcomposite. A new direction is then sampled according 
to the Henyey-Greenstein function61 using the scattering anisotropy g. The values for g vary between −1 and +1 
with the upper and lower limits corresponding to totally asymmetric backward and forward scattering, respec-
tively. The photon is moved through different interaction sites in the microcomposite until it either escapes the 
system or its weight diminishes below 10−4 times its initial weight at the time of launching. If the photon exits the 
system, diffuse transmittance or reflectance, depending on the exiting direction, is incremented by the residual 
weight. This allows for a simultaneous computation of reflectance, transmittance and absorbance throughout a 
multilayer system although for our purpose we consider here only a single layer of microcomposite.

We note here that the original Monte Carlo model developed by Wang et al.39 is modified in our study to 
correct for the specular reflectance from the first layer that is assumed to be non-absorbing in their model. See 
Supplementary Information (SI) for details on the modification and the validation of the modifed Monte Carlo 
model through a comparison with results for the optical spectra of composites obtained using the four-flux 
method for titanium dioxide and vanadium dioxide nanoparticle inclusions (SI Figure 1)14, 37.

The effective input parameters for the microcomposite layer required for use in the Monte Carlo model are 
calculated using the Maxwell-Garnett effective medium theory (MG-EMT)62 and the Mie scattering theory53. 
This is accomplished by following the steps outlined in the flowchart shown in Fig. 1b. Scattering and absorption 
coefficients per unit length μsca and μabs for the spherical semiconductor microparticles are calculated as

µ =
fQ

d
3
2

, (3)sca/abs
sca/abs

where f is the volume fraction of the particle inclusions, d their diameter, and, Qsca and Qabs are their scattering 
and absorption efficiencies respectively.

Mie scattering.  The Mie efficiencies Qsca and Qabs, in turn, are calculated by solving the wave equation for 
the electric and magnetic fields of a plane electromagnetic wave incident on a spherical scatterer. The spherical 
scatterer itself and the surrounding medium are assumed to be linear, isotropic and homogeneous wherein the 
wave equations for the E and H fields are given by

∇ + = ∇ + =E E H Hk 0, k 0 (4)2 2 2 2

Here, k2 = ω2εmμm with ω as the frequency of the incident electromagnetic wave, and, εm and μm as the per-
mittivity and the permeability of the medium respectively. The time harmonic electric and magnetic fields (E,H) 
associated with the incident electromagnetic wave are divergence free in the absence of free charges or currents 
and related to each other through

ωµ ωε∇ × = ∇ × = − .i iE H H E, (5)m m

The wave equation for the case of scattering from a sphere can be solved using variable separation in spherical 
coordinates and an expansion of the incident plane wave in vector spherical harmonics. Here, we only present a 
very brief outline of the cumbersome procedure employed for obtaining a solution while referring the reader to 
the text by Bohren and Huffman53 for more details. The solutions to the wave equations (4) in terms of the vector 
spherical harmonics M and N are obtained through the use of the odd (ψomn) and even (ψemn) scalar generating 
functions given by

ψ φ θ ψ φ θ= = .m P z kr m P z krcos( ) (cos ) ( ), sin( ) (cos ) ( ) (6)emn n
m

n omn n
m

n

Here, zn(kr) is either a spherical Bessel or a Hankel function, and, m and n are the separation constants for the 
variables θ and r of the spherical coordinate system. The vector spherical harmonics M and N are related to the 
generating functions through

ψ ψ= ∇ × = ∇ ×M r M r( ), ( ) (7)emn emn omn omn

http://1
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omn

The internal (Eint, Hint) and the scattered fields (Esc, Hsc) are obtained using the fields (Einc, Hinc) of the incident 
electromagnetic radiation upon an application of the boundary conditions

+ − × = + − × =ˆ ˆE E E e H H H e( ) ( ) 0 (9)r rinc sc int inc sc int

at the interface between the sphere and the surrounding medium. The expansion of the scattered fields (Esc, Hsc) 
using the boundary conditions (Equations 9) in terms of the orthogonal vector spherical harmonics gives rise to 
non-zero coefficients for m = 1 alone and can be written out as

∑= −
=

∞
E ia bE N M( )
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n n e n n o nsc

1
1 1

∑ωµ
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∞k E ib aH N M( )
(11)n

n n o n n e nsc
m 1

1 1

Here, En = inEo(2n + 1)/[n(n + 1)] and Eo is the amplitude of the electric field of the incident electromag-
netic wave. The vector spherical harmonics (N, M) derive their radial dependence from the Hankel functions 
hn(kr) = jn(kr) + iyn(kr) of order n wherein jn and yn are the spherical Bessel functions of the first and second kind 
respectively. The Mie scattering coefficients an and bn are then obtained by substituting the expressions for the 
incident (Einc, Hinc), internal (Eint, Hint) and scattered fields (Esc, Hsc) in equations 9 and resolving them into linear 
equations corresponding to the different components along the unit vectors of the spherical coordinate system. 
This gives

µ µ
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=
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Here, nr = ns/nm is the relative refractive index, ns( = ηs + iκs) is the complex refractive index of the semi-
conductor microinclusion, μs is the permeability of the spherical particle respectively, and, the primes indicate 
differentiation of the argument in the square parentheses with respect to the size parameter x of the particle. 
For our simulations, however, we assume both the host medium and the semiconductor microinclusions to be 
non-magnetic i.e. μm = μs = 1. The scattering (Qsca) and absorption (Qabs) efficiencies can thus be computed from 
the Mie coefficients an and bn (Equations 12–13) for the electric and magnetic fields respectively using

∑= + +Q
x
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(14)n
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2 2

∑= + + − + .Q
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2 2

The order n represents the various modes of the plasmonic resonance such as dipole (n = 1), quadrupole 
(n = 2), octupole (n = 3), and so on.

The conditions for the scattering resonances to occur require that either the denominators of Equations 12 and 
13 vanish or achieve a minima. This gives the following two conditions corresponding to the Mie coefficients an 
and bn respectively for resonant scattering to occur for the nonmagnetic particle and host medium
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=
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Further, the scattering anisotropy factor g in terms of the Mie coefficients is given by
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An alternative measure of the scattering anisotropy are the forward (Qfs) and back (Qbs) scattering efficiencies 
given by63
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Effective refractive index.  The real part of the effective refractive index for the microcomposites is calcu-
lated from the MG-EMT formula by using the dielectric permittivities of the bulk materials comprising the host 
and the semiconducting microinclusions. MG-EMT approximates inhomogeneous materials as homogeneous 
media with effective macroscopic dielectric permittivities. The effective permittivity εMG for a host material with 
spherical inclusions according to the MG formula is62

ε ε ε
ε ε

ε ε ε ε
= +

−
+ − −

f
f

3
2 ( )

,
(21)MG h h

s h

s h s h

where f is the volume fraction of the particulate inclusions and εs is the complex permittivity of the semiconduc-
tor microinclusions. In our simulations, the semiconducting spherical microinclusions are the sole contributors 
to the scattering and absorption of the incident thermal radiation in the composite layer as the host medium is 
non-absorbing and non-scattering. Therefore, Qsca and Qabs obtained from the Mie theory using an algorithm by 
Wiscombe64, describe the scattering and absorption in the entire medium.

The Maxwell-Garnett formula is based on the dipolar response of non-interacting particles to an applied elec-
tromagnetic field and its use therefore must be limited to small volume fractions (f ≤ 0.1) of particle inclusions. It 
is also well-established that classical EMTs ignore size-dependent properties of particle inclusions leaving them 
exclusively applicable to weakly scattering systems with particles of radii much smaller than the wavelength λ of 
the incident radiation (r < 0.1λ)14. Thus, here we use the absorption coefficients calculated using the absorption 
efficiencies Qabs (Equation 3) from the Mie theory to account for the size-dependent properties of the microinclu-
sions in the composites in both the Monte Carlo model and the Fresnel equations. Furthermore, to understand 
and isolate the effect of enhanced scattering from the semicondutor microinclusions, we compare our results 
obtained from the Monte Carlo modeling with those computed using the Fresnel equations65 that account for 
interference effects alone.

Reflectance efficiency.  We also define a thermal reflectance efficiency factor η to quantify and evaluate the 
suitability of a given low-bandgap semiconductor material for use as microparticle inclusions in composites for 
thermal insulation. The efficiency factor η describes the fraction of the incident radiation being reflected over the 
entire spectrum and is defined as

∫

∫
η

λ λ λ

λ λ
= .λ

λ

λ

λ

R I T d

I T d

( ) ( , )

( , ) (22)

s

s

0

1

0

1

where R(λ) is the reflectance obtained from a microcomposite for a given wavelength λ. The irradiance I(Ts, λ), 
calculated using Planck’s law, corresponds to the spectral density of the electromagnetic radiation emitted by a 
black body source at temperature Ts.
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