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Abstract 

Hydrogen fuel cells have held out the promise of clean, sustainable power generation for decades, but 

have failed to deliver on that potential.  Inefficiencies in research and development work can be 

overcome to increase the rate of new knowledge acquisition in this field.  A number of medical and 

engineering disciplines utilise a wide variety of statistical tools in their research to achieve this same 

end, but there has been little adoption of such statistical approaches within the fuel cell research 

community. 

This research undertakes a design of experiments (DoE) approach to the analysis of multiply-co-

varying (M-ANOVAR) factors by using historic data, and direct experimental work, on a wide variety 

of polymer electrolyte membrane fuel cells (PEMFCs) cathode gas diffusion media (GDM) and dual 

layered catalyst structures.  This research developed a ‘gradient of polarisation regions' approach; a 

method for making robust numerical comparisons between large numbers of samples based on 

polarisation curves, while still measuring the more usual peak power of the PEMFC. The assessment 

of polarisation gradients was completed in a statistically robust fashion that enabled the creation of 

regression models of GDMs for multiple input and multiple output data sets.  Having established the 

multivariate method; a set of possibly co-varying factors, a DoE approach was used to assess GDM 

selection, dual layered catalyst structures and degradation of membrane electrode assembly (MEA) 

performance over time. Degradation studies monopolise resources to be monopolised for protracted 

periods.  M-ANOVAR allows the addition of other factors in the study, and the total efficiency of the 

degradation experiment is increased. A 20% reduction in the number of samples to be tested was 

achieved in the case study presented in this thesis (compared to the usual one factor at a time (OFAT) 

approach).  This research highlights the flexibility and efficiency of DoE approaches to PEMFC 

degradation experimentation. 

This research is unique in that it creates catalyst ink formulations where the variation in catalyst 

loading in each sub-layer of the catalyst layer (CL) was achieved by having a different concentration 

of the catalyst material on the carbon supports.  The final M-ANOVAR analysis indicates a simple 

average of the individual responses was appropriate for the experiments undertaken.   

It was shown that low concentration dual layer catalysts on paper GDMs have improved performance 

compared to paper GDMs with uniform, single layer catalysts: Demonstrating reduced platinum 

concentrations to achieve equivalent open cell performance. The time to peak power during testing 

(how long after starting the test it takes to achieve the maximum performance in the cell) was strongly 

impacted by GDM selection.  Furthermore, there was a strong suggestion that previously published 

results crediting a change in performance due to a single layer, or multi-layered catalyst structures 

may, in fact, have been due to the selection of GDM used in the experiment instead. 
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H Enthalpy (J.kg-1) 

I Electrical current 

i0 Exchange current density (A.cm-2) 

iL Limiting current 

I √−1  

J Joules (kg.m2.s-2) 

JD Diffusion Flux 

K A constant 

K Kelvin 

kb Boltzmann’s constant (1.3806452 x10-23  m2.kg.s-2.K-1) 

kg kilograms 



x 
 

M Meters 

mol NA number of atoms or molecules of a species 

N A number 

N Newtons (kg.s-2) 

NA Avogadro’s Number (6.022141 x 1023) 

P Pressure (Pascals) 

Pa Pascals (pressure) 

Ps Saturation pressure 

P Partial pressure 

Q Charge 

Q ‘quartile’ 25% of the data in a set 

R Gas constant (8.314346 J.K-1.mol-1) 

R2 Coefficient of determination (µ/σ) 

R Radius 

r2 Pearson’s correlation coefficient 

S Entropy (J.K-1) 

S Standard deviation of the sample population 

s2 Variance of the sample population  

T Temperature 

Tc Temperature in Centigrade 

U Internal energy (J) 

V Volume (m3) 

𝑉𝑉�(𝑦𝑦�) Mean variance of the ‘y’ estimate 

V Velocity (m.s-1) 

VD Darcy Velocity of diffusion 

W Work (kg.m2.s-1) 

WELECTRICAL Electrical work completed 

W Watts (J.s-1) 

X A number 

Y A number 

Z A number 

 

Greek 

Symbol Description 

Α Charge transfer coefficient 
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αc Chemical activity at the cathode 

α12 Active surface area for catalyst agglomerates 

β A constant 

𝜒𝜒2  Chi- Squared 

δ A distance (usually through-plane thickness) 

Δ Change 

ε Perturbation Factor 

εi Residual error 

η Thermodynamic efficiency 

𝛻𝛻  Gradient 

λx Weighted presence of ‘x’ 

λH20 Saturation constant for ionomers (λH20 = 22 for fully saturated Nafion) 

µ Arithmetic mean  

µvisc Dynamic viscosity  

Ф Thiele Modulus 

Φ(S)
 Electronic phase potential 

Ω Ohm electrical resistance 

ρ Density  

θ Pore filling factor 

τ Tortuosity (m.m-1) 

σ Standard deviation of the entire population 

σ2 Variance of the entire population 

 

Subscripts  

Symbol Description 

a Anode 

act Catalyst activation region of the fuel cell performance  

Air Ambient air 

Agg Agglomerate 

c Cathode 

Cell For the whole fuel cell 

CI Confidence Interval  

CL Catalyst Layer 

eff ‘effective’: a calculated value not a single material property 

(g) Gas 
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H2 Hydrogen 

H2O Water 

i, j, y or x Species i, j, y or x 

(l) liquid 

m Mass (kg) 

Mass Mass loss (kinetic) region of the fuel cell performance 

Nernst Nernst potential 

soln. Solution 

O2 Oxygen 

OCV Open Circuit Voltage 

Ohm Ohmic region of the fuel cell performance 

�̅�𝑥  Arithmetic Mean of ‘x’ 

0 Equilibrium or starting state 

 

Superscript 

Symbol Description 

o degrees 

Ref A reference  or starting value 

’ Transformed data; e.g. a derivative or a transposed matrix 

𝑥𝑥�  Estimated value of ‘x’ 

�̅�𝑥  Mean value of ‘x’ 

 

Acronyms 

Symbol Description 

ANOVA Analysis of variance 

CCM Catalyst Coated Membrane 

CCS Catalyst Coated Substrate 

CV Coefficient of Variance 

DL Dual Layer 

DOF, df Degrees of freedom 

ECSA Electrochemically Active Surface Area 

Fberg Freudenberg 

FFA Fractional Factorial Analysis 

F-test, F-ratio F distribution relationship 
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GDE Gas Diffusion Electrode 

GDL Gas Diffusion Layer 

GDM Gas diffusion Media 

HOR Hydrogen Oxidation Reaction 

LSD Least Significant Difference 

MAC Mixed application Cathode 

ManCoVar Multiple analysis of covariance 

M-ANOVA Multiple analysis of variance 

MS Mean Square 

MSE Mean Squared Error 

OA Orthogonal array 

ORR Oxygen Reduction Reaction 

Pt-on-C Platinum catalyst deposited on carbon particulates 

Q-Q 'Quantile-Quantile plot.'  

sccm Standard cubic centimetres per minute 

SE Standard Error 

SHE Standard Hydrogen Electrode 

SS Sum of squares 

SSE Sum of squares of the residuals in a linear fit 

St.Dev Standard deviation 

t Student's t-distribution relationship 

VAR Variance 

VIF Variance inflation factor 

WL Whisker Length 

Wt% Mass present as a percentage of the total mass 

 

 

 

 



1-1 
 

1 Introduction 
There is a great demand to find alternate energy sources.  Energy based on fossil fuels is not 

sustainable in the long term [1]. The depletion of world resources and concerns about anthropogenic 

climate change are driving Carbon Dioxide (CO2) emission reduction policies [2,3]; but despite this, 

the global demand for energy is predicted to keep growing [4].  Continued growth in the world 

population is likely, and a predicted increase in industrialisation and living standards in the 

developing world.  The European Union (EU) and G81 leaders have agreed that CO2 emissions must 

be cut by 80% to stabilise the atmosphere at 450 parts per million of CO2 (keeping global warming 

below the safe level of 2 oC increase in mean temperature) by 2050[5].   

Across a wide spectrum of disciplines and technologies [6-12], many avenues of research are being 

explored. Some seek to minimise the impact of continued fossil fuel use, some seek to improve 

energy storage and transmission, and some seek new ways of generating energy. What is undeniable 

is that the current energy system, with its reliance on fossil fuels, cannot last forever.  Research is 

needed to find a cost-effective replacement for the existing energy supplies. 

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) offer the potential of efficient, sustainable 

power solutions for the future.  There has been an expectation in the fuel cell sector of a 

‘breakthrough’ in the near future.  Research and Development (R&D) has not progressed as hoped 

and this anticipated breakthrough has not materialised.  Early fuel cells had high platinum catalyst 

loadings, and this was one of the factors that increased their costs.  The increased cost per fuel cell at 

that time limited sample size for researchers in the past.   

Lower concentrations of platinum catalyst loading are now the norm, and membrane electrode 

assemblies (MEAs) can be manufactured relatively cheaply in comparison to the costs from previous 

decades.  Such cost reductions make multivariate approaches to PEMFC R&D, which is often at their 

most useful when using larger sample sizes, viable for fuel cell research. This research highlights 

multi-factor approaches to fuel cell research.  If successful, and the methods are adopted in the 

PEMFC community, research outputs can be accelerated in the future.  

One specific area of PEMFC research that has lagged behind other is that of fuel cell durability (as 

discussed in more detail in Chapter  2).  Durability and degradation studies require extensive testing 

time.  Accelerated Stress Testing (AST) has been used to overcome the long durations such 

experiments can require.  However, these ASTs often targeted at a single degradation mechanism, or 

they provoke a variety of degradation responses with limited understanding of which experimental 

variables are significant.  
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A testing regime that can consider multiple input and output factors (also known as variables) at the 

same time offers the hope of reducing the total time required to test a wide selection of variables. 

Accelerating the rate of knowledge acquisition even more than AST has so far achieved. There are 

many possible variables (or factors) that could be considered.  These may be process variables such as 

temperature, pressure of the gas feeds to the PEMFC or some other factor.  The structures and 

components used in the manufacture of PEMFCs are another set of possible variables to consider.  

This work will focus on some of these key fuel cell components ( 4 and  6 discuss the selected 

components in more detail). 

A key element in fuel cells and the MEAs at the heart of them is the gas diffusion media (GDM). The 

GDM is critical for the transport of reactants to the active catalyst sites, the transport of charge into 

and out of the cell, and water management in the MEA. Variation in performance for different GDMs 

has been reported in the literature [13,14]. Some of the variability is due to the characteristics of the 

samples tested.  However, due to the many GDM variables (porosity, thickness, types of fibre used, 

three-dimensional structure, additional coatings, etc.), explaining the variation in fuel cell 

performance that arises from the GDM performance can be challenging. Some studies have focused 

on testing GDM properties to achieve a better understanding of GDMs behaviour and the relationship 

between the different properties [15-18]. 

Usually, a GDM consists of a fibre substrate that is either constructed directly with carbon fibre or 

from precursor fibres that are then carbonised (heated at high temperature and pressure in an oxygen 

free environment).  Often the carbon fibres are coated with a polymeric film that is similar to Teflon 

® (‘teflonated’). Commonly the carbon fibre GDMs have a Micro-Porous Layer (MPL) painted on 

one side of the substrate to enhance water transport away from the catalyst layer (CL), and provide a 

smooth surface with lower electrical and thermal contact resistance for the catalyst layer. Different 

fibre structures are used for GDMs, namely; woven cloths, fibre papers, and non-woven ‘felts.' The 

fibre structure of the GDM plays an important role in its function and therefore affects the 

performance of the cell. Previous work has indicated that woven carbon GDMs have higher power 

densities [19-21]  and are more efficient at higher humidity.  In Comparison to woven cloth GDMs,  

non-woven carbon fibre clothes (known as ‘Papers’ and ‘Felts,' depending on their manufacturing 

method and resulting structure) are competitive on price, easier to work with, and mechanically stiffer.  

This research considers GDM degradation, cathode catalyst layer (CL) improvements and GDM 

structure simultaneously; seeking to discover if the three factors act independently, or if there is a link 

(known as covariance) between them.  To do so an understanding of the various MEA components, 

and their fabrication methods were developed alongside a detailed examination of the variation (for 

example due to ambient conditions or the test equipment used) that can cloud the interpretation of 

experimental results. Yuan et al[22], state that GDM are rarely studied, and that proposed degradation 

mechanisms are speculative with no “standard AST protocols on durability and degradation.”  
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Antoine et al [23], experimented on variable catalyst concentrations but did not consider the type of 

GDM the catalyst was applied to as a possible co-varying factor.   

By taking a statistical approach (e.g. Multiple Analysis of Variance (M-ANOVAR)), experiments in 

this research were performed on a reasonable sample size, and provide a robust analysis of GDM, 

Catalyst Layer (CL) and degradation in a single study.   

1.1. Fuel cell structures and principles 

Basics structures and topics of fuel cells are covered by several authors [24-26], and a brief summary 

is given here. 

In a fuel cell, the fuel, in this research Hydrogen Gas (H2), is combined with an oxidant to generate 

heat and electricity. The H2 molecules are catalysed to break down into an ionic form (H+), and the 

electrons (e-) formed in the process are collected and utilised for work by transporting them through 

an external circuit. PEMFCs, using hydrogen and oxygen, work on the following chemical principles. 

• Anode = oxidation = loss of electrons = hydrogen side = Hydrogen Oxidation Reaction  

• Cathode = reduction = gain of electrons = oxygen (air side) = Oxygen Reduction Reaction 

The two half-cell reactions can be written as 

 Anode: 2H2 →4H+ + 4e- ( 1-1) 

 see Figure 1  (in which a simplified fuel cell is presented showing gas flow into the fuel cell and the 

resultant electrical current ‘out’ of the fuel cell) and Figure 2 (in which a simplified schematic of the 

MEA is presented along with two half-cell reactions that take place on the anode and cathode)  for 

clarification. 

 

 Cathode: O2 + 4H+ + 4e- → 2H2O ( 1-2) 
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Figure 1: PEM fuel cell image 

(Courtesy of Horizon Education Fuel Cell Products) 

 

Figure 2: Membrane electrode assembly (MEA) 

(Courtesy of Horizon Education Fuel Cell Products) 

These two reactions are kept separate from each other by the electrolytic membrane: Usually a 

fluorinated hydrocarbon similar to Teflon, with a porous structure suitable for the transportation of 

hydrogen ions. Within the membrane itself, the transport of ions is facilitated not only by the 

existence of liquid water but also by the transfer from site to site along the chain of chemicals that 
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make up the membrane itself.  The surface of the membrane is supplied with gas by the auspices of 

the GDM.  It should be kept in mind that the full reactions can be more complicated, and it has been 

argued [24] that incomplete oxidation reactions can give rise to hydroxyl and hydroperoxyl radicle 

species (.OH and .OOH respectively). These radicle species are highly reactive and are likely to attack 

all chemical species they come into contact with (the membrane, CL/support, GDM and MPL). 

The degree of hydration of the membrane and its adjacent structures are critical; requiring carefully 

controlled water levels to ensure its efficiency.  The catalyst requires a certain degree of 

humidification to facilitate the transport of reactants, as does the GDM.  The Cathode side of the 

membrane generates water as a reaction product making it liable to flooding, and the anode side of the 

reaction can dry out excessively, requiring a pre-humidification stage for the gas.  Under certain 

circumstances, the anode side can also become flooded as excess water passes through the membrane 

and saturates the hydrogen side of the cell (back diffusion) with a significant negative impact on the 

performance of the cell.  Hydration management controls the excess water that forms a liquid within 

the GDM and the gas flow channels of PEMFCs: Avoiding fuel/oxygen starvation and the cessation 

of the reaction in flooded areas.  It is important to keep in mind that the primary purpose of fuel cells 

research is the generation of power, and for this reason, a brief section is included on the voltages 

produced in fuel cells.  Thermodynamically (i.e. regarding the conversion of heat and energy)  the 

energy requirements of a system, using standard nomenclatures such as enthalpy, free energy and 

others is best explained in Figure 3. 

-TS 

 

+PV  

  

Figure 3: Thermodynamic potentials 

(Adapted from Babir (2013)[25]) 

U (Internal Energy) 

U = Energy needed to create the 

system 

F (Helmholtz free energy) 

F=U-TS 

F = Energy needed to create a system minus the 

energy provided by the environment 

H (Enthalpy) 

H=U+pV 

H = The energy needed to create a 

system plus the work required to 

make room for it 

G (Gibbs free energy)  

 G = U + PV - TS   

G = the total energy to create a system and make 

room for it, minus the energy provided by the 

environment 



1-6 
 

 

T = Temperature 

S = Entropy 

P = Pressure 

V = volume 

 The differential equation of enthalpy is 

 For ΔP = 0 (constant pressure) this simplifies to 

In this case ΔH is the same as ΔQ (heat transferred in a reversible process): that is to say, enthalpy is 

the heat potential of a system under constant pressure conditions, due to the reforming of chemical 

bonds.  On this basis, it is possible to calculate the energy from a series of chemical reactions due to 

bond formation, based on the initial and final energy states.  There are tables of values for each part of 

the known reactions that can be used to determine this.  The potential of a system to perform electrical 

work is the voltage; the work done is the movement of charge (Q in coulombs) through a potential 

difference (E in volts) is 

 

If the charge is moved by electrons then 

 (n= number of moles of electrons, and F = Faradays constant) 

As 

It can be stated that  

Gibbs free energy (the extra energy needed to make a system and to make room for it) is the 

maximum amount of electrical work available from a system: 

For an H2  PEMFC 

 ΔH = TΔS + VΔP ( 1-3) 

 ΔH = TΔS ( 1-4) 

 WELECTRICAL = EQ ( 1-5) 

 Q = nF ( 1-6) 

 ΔG = -dWELECTRICAL ( 1-7) 

 ΔG = -nfE ( 1-8) 

 H2 + (1/2)O2 ↔ H2O ( 1-9) 
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It has a Gibbs free energy of -237 kJ/mol under standard conditions for liquid water: Therefore “the 

reversible voltage generated under standard-state conditions is thus” [24], and E0 is the reversible 

voltage 

Where 

E0 = (-237,000 J/mol)/((2 mol e-/ mol of reactants)(96,400 Colombes per mol)) 

E0 = +1.23V (the thermodynamically ideal voltage) 

The pressure changes in a fuel cell can be significant, as the electrical potential energy available 

changes with concentration; and concentration and pressure have similar effects when considering gas 

mixtures.  Chemical potential is used to model this.  A version of the Nernst equation  (discussed in 

more detail later) can be a useful method of calculating the energy output of fuel cells, but it must be 

recognised that it does not work with modified temperatures (away from standard) adapted to take 

into account those changes [24].  In Figure 4 the characteristic ‘polarisation curve’ showing how the 

true voltage output differs from the theoretical ideal of 1.23Volts. This image shows both the 

measured current density (shown in black)  at a given load, and also calculates the power density 

W.cm2 (shown in red).  

Total Voltage output = V  

 

Figure 4: Fuel cell voltages and power density 

(Adapted from O’hayre (2009) [24]) 

 
𝐸𝐸0 =

∆𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟0�

𝑛𝑛𝑛𝑛
 

( 1-10) 
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1.2. Aims and objectives: Statistics & multivariate analysis 

Very large numbers of factors can be considered now in a way that did not use to be possible [27].  

The technology exists to generate numeric methods that are suitable for use in very large data sets that 

do not follow a standard distribution and actively compare disparate methods for defining the sum of 

squares for a collection of data points.  Harrar and Bathke [27]  make the generalisation that there is 

no statistical data analysis method that is “… uniformly better than the other[s]…”.  

When selecting appropriate types of analysis, an objective review of the strengths and weaknesses of 

various techniques is of course required.  So too is a willingness to take a ‘first look’ at the data with a 

likely method: Even if by the time the work is completed a better analytical method would have been 

more suited to the data [28,29].  A well-designed set of experiments is unlikely to miss the key points 

under investigation [30].  The concepts of a Design of Experiment (DoE) to define operating 

parameters of primary interest has been used before [31], as has the Box-Behnken approach to 

experimental design and data analysis [32].  However, they are not always applied correctly with, 

some authors openly stating “the maximum voltage, maximum current and maximum voltage 

efficiency and maximum fuel efficiency…[should all have undergone]…transformations” [33] when 

they were applying a Box –Behnken method for example.  The advent of dedicated computer software 

to facilitate a wide variety of statistical approaches means that these types of errors should no longer 

occur in any field of research. 

This thesis introduces basic DoE concepts and demonstrates their applicability to standard fuel cell 

data.  This process will reveal information that has not been seen before, and validate the method on 

known samples.  Having done so, they are applied to developed statistical tools for a new set of 

experiments, namely fuel cell degradation, GDM structure and Dual Layered Catalyst structures. 

1.1.1. Aims 

The overall aims of this thesis are to: 

• Investigate if statistical methods, such DoE and multivariate-ANOVAR (M-ANOVAR) 

techniques, are applicable in fuel cell research. 

• Demonstrate the application of such statistical methods and the reduction in total amount of 

time taken to conduct ageing and degradation studies in PEMFC research. 

• Generate a thesis that will aid future fuel cell research scientists when applying statistical 

methods to their research. 

1.1.2. Objectives 

With these aims in mind, the following objectives have been set: 
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a) Investigate the extent to which DoE and M-ANOVAR have already been utilised in fuel cell 

ageing/degradation research. 

b) Define a preferred statistical approach to apply in the next steps of the research. 

c) Identify several areas in PEMFC ageing/degradation research where multiple inputs and 

multiple output variables can be investigated simultaneously, reducing the total number of 

experiments required through the use of M-ANOVAR and DoE. 

d) Undertake a large scale set of experiments to act as a ‘benchmarking’ exercise and apply the 

identified statistical techniques from ‘b’. 

o Consider appropriate software for the desired data analysis method. 

e) Utilise the ‘benchmarking’ exercise as an opportunity to validate selected statistical analysis 

methodology. 

f) Undertake a new study in which novel fuel cell assemblies are tested, and the results analysed 

using the newly validated method. 

o Present this new study as a ‘case study’ on the use of DoE and M-ANOVAR methods. 

o Demonstrating the reduction in resources required to conduct the experiments. 

 

Objectives  ‘a’ and ‘c’ are presented as part of the literature review in Chapter  2.  Objective ‘b’ is 

discussed in depth in Chapter  3.  The Benchmarking and validation exercise (objectives ‘d’ and ‘e’) 

are reported in  Chapter   4.  The final objective (objective f) is achieved in Chapter 6. 
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1.2.  Outline of thesis 

 

 

 

 

 

 

 

 

Chapter 1: Introduction. A basic guide to this thesis, fuel cell fundamentals and an introduction to the 

use of statistical methods in fuel cell research. 

Chapter 2: Literature review.  Begins with a review of the use of statistical methods as they have 

been applied in fuel cell research.  Having established a knowledge base, this is discussed in more 

depth in  Chapter 3.  The literature review then goes on to consider some key factors that impact 

Chapter 7: Discussion Summary 

Chapter 8: Conclusions and future work 
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PEMFC performance and degradation. Focused primarily on Gas Diffusion Media and Catalyst layers 

as these two topics are relevant to work that is reported later on in this thesis (see  Chapter 4 

and  Chapter 5). 

Chapter 3: Statistical Methods.  A more detailed look at the fundamentals of linear regression, and 

error estimates as they apply to fuel cells.  This chapter presents the methods that are applied in 

software packages that can undertake multiple analysis of variance (M-ANOVAR) assessments of 

experiential data.  It also details several other related methods of statistical analysis and guidance on 

‘best practice’ when applying statistical regression modelling approaches to real experimental data.  

Chapter 4: Gas diffusing layers, statistical methods and validation using historic data.  A more 

detailed understanding of GDMs was developed, using a simple two-dimensional numeric model 

created to highlight its importance.  The Multivariate methods discussed in the previous chapter were 

applied to the GDM experimental data, validated and the results discussed in detail.  Test conditions 

and equipment are detailed, as is the creation of membrane electrode assemblies (MEAs) and the 

catalyst ‘ink’ formulations they require. Previously published ‘historic’ data was combined with 

experimental results to create a database.  An in-depth discussion of the techniques used in the 

analysis of the data is presented. A covariance between several factors was found to be important; 

some of which were previously reported in the literature, and some of which were not. 

Chapter 5: A discussion on the importance of catalyst layer geometry and a one-dimensional model 

is presented to highlight some of the important factors in catalyst layer designs.  This chapter expands 

on the literature review undertaken in Chapter  2 and is intended to highlight the important role 

catalysts play in the successful operation of fuel cells.  This chapter introduces key concepts for 

catalyst layers, such as fuel cell degradation and the loss of catalyst surface area.  The Thiele modulus 

for diffusion in and around catalyst rich carbon substrates and the Butler-Volmer model (adapted from 

Spiegel 2008 [34] ) for catalyst activation are also introduced.  The adaptations attempted in the past, 

to try and understand layered catalyst structures, are briefly discussed.  This chapter also reports on a 

microscopy investigation of layered catalyst materials. 

Chapter 6: DoE study on GDM, Catalyst layers and Degradation rates.  The original design of 

experiment cannot be completed, and the interpretation of the results becomes more involved.  This 

event was used as a case study event to demonstrate the flexibility of designed experiment procedures 

when utilising modern statistical software.  No co-varying factors were revealed.  It was found that 

the interplay of GDM structure, and the workloads it can tolerate, does impact the utility of dual 

layered catalysts and this is discussed in detail. 

Chapter 7: A summation of the previous chapters and key findings is presented before the concluding 

chapter.  
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Chapter 8: Summary of conclusions and future work.  The conclusions found in the previous 

chapters are restated for clarity. Recommendations for future work are made. 

Appendices 

Appendix 1: - Safety and data sheets & Agglomeration Definition 

Appendix 2: The Spiegel model 

Appendix 3: Original data tables and analysis 

Appendix 4: Additional graphical versions of original data 

Appendix 5: Previously published work contributing to this thesis 
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2 Literature Review 

2.1. Introduction to Chapter 2 

The flowing literature review considers statistical methods as they have been applied in fuel cell 

research and related fields such as electrochemistry (see section  2.2).  Having established a 

knowledge base a more detailed discussion of statistical methods, relevant to the work presented in 

this thesis, is discussed in more depth in  Chapter 3.  The literature review then goes on to consider 

some key factors that impact PEMFC performance and degradation over time.  Focused primarily on 

gas diffusion media (section  2.4), and catalyst layers (section  2.5).  These two topics are relevant to 

work that is reported later on in this thesis (see  Chapter 4 and  Chapter 5).  A brief discussion of duty 

cycles and the impact these can have on the lifetime performance of fuel cells was also considered 

(section  2.3 ). 

2.2. Statistics & multivariate analysis 

An early investigation into the strengths and weaknesses of multivariate methods can be found in the 

work of Dempster 1971 [35].  Written at the start of the personal computing revolution, it provides 

basic injunctions to the data analyst “...to evaluate proposed techniques along dimensions of efficiency 

and resistance to error, both statistical and computational, and along the dimension of relevance to 

the substantive scientific enterprise involved” [35].  The same paper also provides tools such as 

hierarchical logic trees to formulate research questions.  The paper discusses the likelihood 

(probability) and estimates that the results of a given calculation are at a true maximum or minimum. 

Such estimates are achieved through the use of iterative calculations, by a computer, to approach the 

global maxima.  The limits of this approach are also highlighted (computer time and the need for 

normally distributed data for the numeric methods recommended to be valid).   

More recent papers [27], attempt to consider very large numbers of factors in a given data set or data 

sets where the number of samples measured is a very high proportion of the total population.  They 

generate numeric methods that are suitable for use in data sets that do not follow a standard 

distribution, and actively compare three disparate methods for defining the sum of squares for a 

collection of data points; considering if Dempster–ANOVAR is as robust as the other available data 

analysis methods such as the “…Lawley–Hotelling type, and Bartlett–Nanda–Pillai type” [27].  

Harrar and Bathke (2008) conclude that until the structures of any given correlations are well 

understood it is not possible to know which system is best suited to a given data analysis task. That is 

to say at the first attempt it does not matter which method an experimenter first uses to determine if 

correlations exist between the inputs and outputs of a set of experimental data; any of the three 

methods will work if applied correctly. 
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The proofs offered in the paper are based on only two or four variables but with very high numbers of 

levels for each variable.  Harrar and Bathke (2008) compare their non-parametric systems to the data 

produced by Chatfield et al.[36].  As the data produced was an ordered ranking of 1-5 in terms of 

resistance to attack in a crab apple population, non-parametric methods were preferred. 

The positive correlation between apple scab at different time points indicates that Dempster-ANOVA 

was the preferred collation technique (negative collections are better suited to the other two methods, 

and the Lawley – Hotelling test is most robust when dealing with very high numbers of levels). 

The Chatfield textbook  [29] gives an introduction to the topic for those new to it.  It has an open and 

engaging style and provides a key checklist for all statistical work that is worth remembering, which 

is paraphrased here.   

• Do not analyse any data until what is being measured,  and why, is well defined. 

• How was the data collected? 

• Look at the data structure – is it a continuous field, or can it be logically distributed into 

groups and sets? 

• Initial explorations first – use basic analysis (such as an arithmetic mean, box plots or a plot 

matrix) before spending time on more complicated analytical methods. 

• Use common sense – if the data indicates that a law of thermodynamics no longer applies, it is 

likely that the data, or its analysis, is flawed. 

• Report results in clear, self-explanatory fashion. 

It is easy to become lost in the minutiae of complex stacks of data analysis, but at its heart, these rules 

still apply.  Other useful texts exist [28] that can aid in understanding data analysis methods with a 

clear breakdown of analysis methods, and Manley [28] indicates the similarities and differences 

between the various types. Clear advice on selecting appropriate types of analysis and the need for the 

use of multiple analytical methods on a given data set is available [28]; with an objective review of 

the strengths and weaknesses of various techniques that provide a good grounding in the subject.  

After following the initial advice, there is an investigation of partial and full factorial analysis 

methods.  Multivariate data, by definition, has several factors that can vary independently, and may 

also have combined effects.  Full factorial methods are known and provide detailed results for 

analysis.  The primary motivation for this research and the basis of the EPSRC funding award was the 

acceleration of fuel cells research and development.  With this in mind, it seems logical to review 

partial factorial methods as a preference.  

While it can be argued that partial factorial analysis runs the risk of missing key data points; others 

[30] would argue a well-designed set of experiments following the methods such as those developed 

by Taguchi are unlikely to miss the key points under investigation.   
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The work by Ranjit Roy (1990) [30] is a highly practical treatise on the use of partial factorial 

analysis (Taguchi method) in an industrial setting.   

Particularly useful is the clear and concise explanation of noise factors, and how these are used to 

determine the number of replications in an experiential test run. The text gives highly detailed 

examples on ‘orthogonal tables’ to design an experimental regime.   

The occasional author [31] has reported a design of experiment (Taguchi) approaches to “… obtain 

the optimal combination…” of test parameters. The evolution of the hierarchical trees recommended 

by Dempster (1971) [35] can be clearly seen in the logic tree for the design of their work plan.  This 

paper by Yu (2008) [31] is notable as a work on fuel cells development that included confidence 

levels and degree of certainty in their results.  It also combined research on Gas Diffusion Media 

(GDM) degradation, to highlight the interplay between humidification and hydrophobicity (PTFE 

content from several sources in the Membrane electrode assembly). 

By comparison, the paper presented by Carton el at. (2010) [33] attempted to use a Box–Behnken 

DoE, and by their admission, many of the key output factors from the experiment should all have 

undergone “transformations” [33].  The authors argue that this step could not be conducted, as the 

transformed data did not follow a standard distribution and that the generated “responses were not of 

great importance” [33].  They discuss results comparing voltages across varying flow field designs 

with a 0.128V difference.  Such work may well be valid, but the failure to include confidence levels 

and the degree of error calls the results into question.  The lack of error assessment compounds the 

concerns that have been raised by the failure to ‘transform’ data earlier.  It seems clear that the authors 

lacked the confidence to tackle the nonstandard distribution of data generated.  

It should be pointed out that there are other papers where Box-Behnken has been used successfully 

[32] to produce response surfaces that have optimised experimental procedures in electrochemical 

analysis techniques.  One cannot help but feel that greater preparedness in the experimental design of 

the work done by Carton and Olabi (2010) [33] would have avoided the complications in data 

transformations that they experienced.  It is hoped that non-parametric methods such as those 

discussed earlier [27] could be adapted to facilitate the analysis of non-standard data sets.   

Other multivariate methods, such as principal component analysis (PCA), have been used [37].  PCA 

is an optimisation method where certain variables are identified as being more significant than others.  

PCA approaches may prioritise components that are causal, and given priority.  Or  PCA may indicate 

that a new variable can be generated that will encompass several values within a data set (e.g.  Width, 

height and length measurements being combined into a single volume measurement).  In this paper, 

the authors claim to have created a function to map the experimental results that for each of the “…29 

input parameters involve 465 coefficients for each cell” [37].  These coefficients are part of the 
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quadratic/linear regression analyses of the data and an attempt to generate a model based on their 

experimental results.  Such results should be treated with a degree of scepticism: The slavish mapping 

of 465 coefficients to exact match the data fails to recognise the random nature of experimental results. 

By extension, the validity of all 465 elements in the quadratic equation must be questioned: There are 

only so many fundamental mechanisms at work within a fuel cell.  As a predictive model for fuel cell 

behaviour, it seems to require a great deal of work for marginal gains in accuracy. 

A more rigorous assessment of fuel cell parameters can be found in the numeric modelling fields, and 

the review by Secanell et al.(2011) [38], of fuel cell optimisation methods, is excellent.  The Secanell 

paper [38] is focused on computer modelling of various fuel cell systems.  The optimisation based on 

algorithms within a simulated (model) environment can reduce, but does not eliminate, the need to 

perform experimental studies. In this paper, the authors support the notion that, for limited numbers of 

variables in a ‘parametric study’, it would be preferred over an optimisation algorithm approach. 

It should also be argued that higher numbers of variable and non-parametric also need experimental 

proofs to validate the numeric models/simulations produced.  Secanell et al. (2011), state "… a 

parameter estimation technique coupled with a multi-dimensional fuel cell model containing an 

accurate catalyst layer model still needs to be developed." [38].  Further practical research would 

provide the tools needed to quantify the required parameters to create more reliable cell and CL 

numeric models. 

Such a modelling programme requires fundamental experiential work, perhaps utilising some of the 

novel materials that are identified in the paper, to form the basis of the modelling data.  Experimental 

work becomes especially important when considering the possibility of interaction factors.  Novel 

materials, geometries and adjacent elements within the cell itself (for example if the catalyst and its 

support are doped on the Gas Diffusion Media – GDM – then factors impacting the integrity of the 

GDM will impact the integrity of the catalyst structures).   

2.3.  Degradation and fuel cells 

Over time, the output of the cell will reduce.  Degradation of the materials that make up the fuel cell is 

inevitable, and a working life of 5,000 hours for a system suitable for use in domestic automotive 

markets has yet to be perfected.  There are many mechanisms of degradation.  Ostwald ripening is the 

coalescing of smaller particles to form a single larger particle with an overall reduced free energy at 

the surface of the newly formed larger particle [39].  Ostwald ripening, often referred to as 

‘agglomeration’  (see appendix one) in fuel cell literature,  is one example of time dependant 

degradation.   
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Wu et al. (2008) [40], produced an excellent review paper on the degradation of fuel cells and 

highlighted the importance of hydrophobicity (how easily or not the material in question can be 

‘wetted’ by water) in the GDM along with several other factors.  There are many excellent review 

papers on the degradation and failure modes, and their causes, of fuel cells and Table 1 is adapted 

from two of them ([40] and [41]). 

 

Table 1: Major failure modes of component in PEM fuel cells 

Component Failure mode Causes 
Catalyst, 
catalyst layer 

Loss of activation Sintering (agglomeration), de-alloying 
Conductivity loss Carbon support corrosion 
Mass transport rate 
reduction 

Mechanical stress, pore closure 

Poisoning Contamination 
Decrease in water 
management 

Nafion/PTFE dissolution 

Loss of Pt Re-distribution of Pt (dissolution) 
Pt Migration  Transport of Pt into the membranes 

GDM Decrease in mass transport Degradation of backing material (carbon fibre 
‘cloth’) 
Mechanical stress (pore closure) 
Changes in hydrophobicity 
GDM fibre corrosion  

 (Adapted from (Wu et al. 2008 [40] and Whiteley et al. 2016 [41]) 

The wettability (hydrophobic or hydrophilic response) of carbon fibre gas diffusion layers is 

frequently tailored by the addition of varying amounts of water-repellent polymer.  Typically this is a 

PTFE-based polymer [25,42] identical to or very similar to the Nafion of the membrane, catalyst and 

microporous layers of the MEA.  PVDF (Polyvinyl Fluoride) and FEP (Fluorinated Ethylene 

Propylene) have also been used in the past by other researchers [42].  Table 1 shows that changes in 

hydrophobicity, one of several major failure modes that occur over time.  This change to the 

hydrophobicity of the GDM leads to a loss in mass transport performance. 

This loss in performance seems not to be the case in the paper by Pei et al. (2010) [43]. The Pei paper 

[43] reported accelerated stress testing regime was shown to result in MEA contact angles of “124 to 

130 degree [sic]”.  By the reasoning put forward by Chapuis et al. (2008) [44], this would indicate 

that hydrophobicity has not been impacted by the accelerated degradation testing undertaken [43]. 

The three arguments lead one of three possible conclusions: 

• The accelerated stress [43] test regime was not correct. 

• The  model and understanding [44] of the  impact of hydrophobicity changes over the lifetime 

of the cell was not correct. 
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• The statement that hydrophobicity effects are a significant degradation mechanism in 

PEMFCs [40] was not correct. 

This conflict in the literature is good grounds to consider the GDM in more depth and to develop a 

design of experiments that can assess the impact of GDMs (with or without hydrophobic coatings) on 

fuel cell longevity.  It is further hoped that such work will provide example experimental design 

methodologies, and other data analysis techniques, and introduce their use to other fuel cell 

researchers in accordance with the aims and objectives as stated in section  1.2.  

There has already been some outstanding work on fuel cell degradation, though there has been little 

work completed on the reduction of hydrophobicity, and the subsequent loss of fuel cell performance, 

that arises from oxidation of the GDL and PTFE degradation [45].  This topic of the degree of 

degradation of the hydrophobic coating compared to the degradation of the carbon in the GDM more 

generally needs to be quantified and understood more fully. Hiramitsu et al. (2011) [45] undertake 

detailed work in this area.  Using a wide variety of analytical methods to measure the various 

properties of the GDM and CL (catalyst layer) and make strong claims as to the importance of 

hydrophobicity and its impact on  GDM/CL longevity, though further work is still required.  Table 2 

shows the contact angle for a given GDM has been measured both in the ‘advancing’ and ‘receding’ 

position.  Hiramitsu et al.  [45] report the test results from a sample is inserted into a calibrated 

container of water, and the contact angle is measured (advancing).  The receding measurement is 

generated when the sample is pulled out again.  The 100-hour samples have larger contact angles 

(hydrophilic), and the authors state that the contact angles for the 6000 hours samples are 5-6 degrees 

smaller (2.9%) in the advancing contact angle and 11-12 degrees smaller (11.1%) in the receding 

contact angle; indicating their hydrophobicity increases as they age. 

Table 2: Contact angles of GDMs 

 (Adapted from Hiramitsu et al. (2011) [45]) 

Unfortunately, no confidence or error bounds are presented.  In part, this lack of statistical robustness 

is complicated by the practical difficulties of creating statistically significant numbers of test cells that 

can be run for 6,000 hours.  Thousand hour test cycles would be a drain on the resources of any 

laboratory and highlight the need for an accelerated degradation test that can provide reliable results 

for assessing the impact of GDL/CL hydrophobicity on fuel cell performance over time.  The work by 

Hiramitsu et al. (2011) acknowledge that “The relation between water management performance of 

GDL and CL degradation must be verified further” [45]. 

Contact angles (hydrophobicity) for GDMs 
Homogeneous GDM coating Advancing contact angle Receding contact angle 
100hrs 172O 108O 
6,000 hrs 167O 96O 
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It may be possible to improve the hydrophobic properties of GDMs by improving the adhesion and 

distribution of these PTFE based fibre coatings through the use of a plasma pre-treatment of the 

carbon fibres before addition of catalyst layers and binders [46].  If this is correct, this once again 

highlights the importance of PTFE structures in the GDM not only for water management but also for 

gaining an understanding of the degradation mechanisms involved. Breakdown of PTFE in the MEA 

has been shown to result in a doubling of the losses in performance compared to the losses accrued as 

a result of catalyst agglomeration (Ostwald ripening – see section  5.3 for clarification) after 1,000 

hours of operation [40] the mechanisms behind such PTFE degradation are not well understood.  In 

part, this is due to the inability to characterise discrete regions of the PTFE network in the fuel cell 

(though this issue has recently shown some progress [47] ). 

Improvements in understanding of fuel cell degradation mechanisms have had some headway made in 

recent years. It has been stated in the Schmittinger and Vahidi (2008) review [48] that there are a wide 

variety of possible causes of the degradation of fuel cells, and in the GDM in particular.  A 6,000-hour 

study by Hiramitsu et al. (2011) [45], on a limited number of gas diffusion layers, with both 

homogeneous and inhomogeneous hydrophobic coatings, has been completed.  It was concluded that 

degradation is primarily due to the development of oxidation species in the GDM.  Lines of oxygen-

rich surface areas, corresponding to the flow channel geometry, provide the evidence for this [45].  

Increased concentrations of C3F5O- ions were also detected after the test run.  The C3F5O- increase 

was attributed to the migration of Fluorine species from the electrolyte layer into the GDM itself [45]. 

However, their work is weakened slightly by the use of two different polymers with different 

hydrophobic qualities achieved by each process. 

Homogenous unbroken PTFE coatings on GDM fibres using a 1wt% (weight percent) of ‘Cytop CTL-

109AE’ polymeric solution [45] have been achieved.  Compared to a 12wt% solution of PTFE (31-

JR) [46], or a 10wt% mixture of PTFE solution.  The preferred optimum PTFE loadings are usually 

cited as being in the order of 15wt% [42] to 20wt% [14]. The exact amount of hydrophobic coating 

that should be added is still open to some debate, with a range of 15 to 30 weight percent often being 

cited  [25,42], though some authors have considered PTFE loadings as high as  60wt% [49].   

There is scope for significant work in designing multivariate experiments to optimise the homogeneity 

of PTFE layers, and also considering the degree of PTFE layering needed for comparable 

performance between homogeneous and inhomogeneous systems.  It should also be kept in mind that 

the uniform coating of fibres may indicate a reduction in the control of the hydrophobicity of a given 

GDM; the advantage of inhomogeneous coating layers is that it can effectively adjust the 

hydrophobicity by increasing or decreasing the area covered.  This 6,000hr study now provides a 

suitable benchmark to compare a variety of rapid ageing test cycles; and to ascertain if broadly similar 

results can be achieved by existing, or novel, accelerated test cycles.  
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Such test cycles can only be validated “…on available past observed data and statistical models.” 

[50].  An excellent paper on accelerated ageing protocols by Yuan et al. (2011) [22], points out that 

degradation mechanisms in the GDM are some of the least studied to date.  The proposed mechanisms 

for degradation have yet to be finalised.  Cheng et al. (2007) (reference 52 in Yuan et al. (2011) [22] ) 

that loss of mass transfer is the major degradation effect that occurs in the GDM as a result of changes 

to GDM surface contact angles and structure.  They also point out that accelerated test protocols, 

almost by definition, target individual structure degradation, and where possible even target individual 

mechanisms.  Sadly for the development of GDM materials, there are no “…standard AST protocols 

on durability and degradation issues for GDLs” [22].  They do however identify two mechanisms of 

interest: 

• Loss of material and changes to pore structure during Hydrogen starvation. 

• Changes in hydrophobicity overtime (though often linked back to freeze-thaw cycles). 

 

Yuan et al. (2011) [22] go on to propose four key methods for inducing both of these degradation 

mechanisms: 

 

• Increased flow rates of reactants. 

• Elevated temperatures. 

• Constant and very high potential loading of 1.2 Volts and higher during localised fuel 

starvation. 

• Dynamic voltage cycles. 

 

The dynamic voltage changes are the easiest of these to achieve in practice.  The above conditions 

were applied for 200 hours each to small stacks.  Two additional factors were also identified: 

 

• Excessive hot pressing during manufacture. 

• Excessive stack assembly pressure. 

 

Another element of interest, when considering dynamic loading, is the type of dynamic load applied. 

US Department of Energy (DOE) single cell/stack testing protocols for transportation applications in 

both the steady and cycled state are briefly discussed, as is the start-up and shut down cycle developed 

by the Los-Alamos National Laboratory.  Though they have little to say about them other than 

identifying the need to correlate the drive cycles with “…systems operating under actual drive 

cycles…”.  The testing of stacks, as opposed to individual cells, is an important consideration in this 

discussion [51].  How well can single-cell testing be scaled to reflect degradation in a stack?  Certain 

test parameters can be scaled easily such as: 
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• Tafel slope. 

• EOpenCircuit. 

• Direct current (DC) resistance. 

Other factors do not scale well: 

• Voltage increase as a result of humidity increases (i.e. up to five cells in a stack voltage 

increases as a result of humidity increases are scalable, but beyond five cells this is no longer 

true. 

• Mass transport loss. 

• Temperature distribution. 

• Overall performance (voltage and amps per cm-2 in each cell in the stack). 

• Humidification of cell membranes. 

• Electrochemical surface area (ECSA) of catalyst (catalyst nearest the hydrogen inlet remains 

most active). 

There can be a lack of real life testing [51], with differences between stack and single cell 

degradation.  Other works on ageing and load cycles [34] consider cell stack testing, paying attention 

to the type of cycling loads being applied and comparisons between them. 

 

Figure 5: Fuel cell stack duty cycles 

(DST Duty Cycle (Top Left),  NEDC -ECE squared pulse (Top Right), IEC/FCtestnet Duty Cycle 

(bottom Left)  and FCTT Duty Cycle  - wet (bottom right)) 
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Table 3: Duty cycle results 

 
 (From Bloom, Walker, et al. 2013) 

0F

1 

Bloom et al. (2013) [34] state that the causes of degradation require experimentation to identify, and 

the loss in performance is (in all likelihood) proportional to the duration of the stack being at full 

power.  The authors state that water production is somehow driving this degradation, but fail to 

identify the mechanisms at play.  Figure 5 has been adapted [34] to show four typical ‘duty cycles’.  

Four duty cycles are presented: 

• U.S. Department of Energy and US Fuel Cell Council Dynamic Stress Test (DST). 

• New European Driving Cycle (NEDC). 

• International Electrotechnical Commission and FC Testnet  cycle (IEC/FCtestnet). 

• US Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability 

(USDRIVE) Fuel Cell Technical Team (FCTT). 

The IEC and FCTT will, along with other works, form the basis of the duty cycle adopted in this work 

for degradation testing in Chapter  6.  Table 3 shows that the time at ‘full’ power (i.e. peak power) for 

the square wave duty cycles (IEC and FCTT) is the highest. 

Based on the work completed by Bloom et al. (2013) [34], the IEC regime is the one that can be 

expected to degrade the stack most rapidly.  There is little clue about how representative such a drive 

cycle is for the degradation mechanisms that a working system can expect to experience, as the paper 

completed research on stacks that were ‘end of life’ devices.  Without fully documented working 

histories, it becomes difficult to ascribe specific degradation mechanisms.   

The work of He et al. (2013) is firmly focused on catalyst systems, and states bonding between the 

platinum decorated carbon black can have its ability to bond with GDM fibres strengthened.  This 

increased adhesion being achieved by the  “… Nafion content and its humidity level in catalyst layer. 
                                                      
1 Figures and tables on this and preceding page reproduced with permission of Argonne National Laboratory. 
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[thus] …improving the durability of fuel cells.” [52]  Due consideration must be given to the inclusion 

or exclusion of hydrophobic coatings, as this will impact results significantly.  When hydrophobic 

coatings are included in a given study, it is acknowledged that coatings are supplied by the 

manufacturers.  The importance of pressing regimes [53] during MEA manufacture are another 

potential variable that must either be controlled or included in the design parameters of the 

experiment.  Once again many MEAs are tested and compared ‘as supplied’ by the manufacturer, and 

it is not always clear to what extent the processing histories of various MEAs are the same, especially 

when comparing results between different authors.  

2.4.  Gas diffusion media  

The gas diffusion media (GDM) performs multiple tasks with the fuel cell [16,25,54] and is detailed 

in the following bullet points: 

• Supply of reactants. 

• Removal of products. 

• Structural support to the membrane and catalyst layers. 

o Specific support to catalyst layers in CCS MEAs. 

• Control of humidification by inhibiting/accelerating water removal. 

o Tailored in combination with the hydrophobic coating. 

• Electrical conductivity. 

• Thermal conductivity. 

The structure of the gas diffusion layer, its material properties and the application of any coatings to 

its surface, all contribute to the ability of the GDM to perform these tasks.  At this point, it is 

constructive to discuss various terminologies for GDMs. 

• Gas Diffusion Layers (GDL) - this term has two distinct usages: 

o A porous material between the flow field plates and the membrane electrode layer. 

o More specifically a (usually) carbon powder and Nafion® mixture coated onto the 

surface of the carbon cloth/paper.  This carbon and Nafion®  mixture, in turn, acts as 

a support for the catalyst layer  (this term is often replaced with the term ‘MPL’ or 

Micro Porous Layer, and is also known as the Diffusion layer (DL). 

• Gas Diffusion Electrode (GDE) – a GDL that supports, or is in some way electrically 

connected to, a catalyst layer.  The GDE may, or may not, be in conjunction with a micro-

porous layer (MPL), and the MPL may be applied to catalysts that have been directly coated 

onto the membrane itself, to the surface of the MPL closest to the membrane, or to the GDL 

directly in MEAs that do not have an MPL. 
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• Gas Diffusion Media (GDM) – a ‘catch all term’ that does not distinguish between GDL and 

GDE. 

• MPL – the microporous layer is a mixture of (usually) carbon powder and Nafion® and is 

located adjacent to the catalyst layer, the vast majority of them between the carbon 

cloth/paper and the catalyst layer.  This structure is sometimes also known as the GDL (gas 

diffusion layer), or even simply the DL. 

 
Figure 6: GDM structures 

(Comparative carbon papers (a), non-woven (b) and woven (c) GDMs. Reproduced from El-Kharouf 

and Pollet (2012)  [16]) 

Traditionally GDMs have been classified into two large subgroups: Woven carbon fibre materials 

(with a three-dimensional interweaving of fibres in a variety of possible patterns),  carbon papers that 
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are deposited layers of carbon fibres that are pressed and sintered together to form a rigid, stratified 

fibrous matting using a process very similar to that used in paper making.  Increased thickness papers 

can be created directly, or by bonding two or more thinner carbon papers together. Such bonded 

layers can generate a GDM with a series of stratified layers [55]. See Figure 6 ‘c’ (woven) and ‘a’ 

(paper).  The internal differences are readily visible and are shown in Figure 7.  Typically woven 

fibres are known to have enhanced performance at high current densities [21] due to improved water 

removal, though this has been clouded somewhat by the use of GDM with differing levels of 

hydrophobicity on different GDMs in some research [56]. 

More recently several authors have begun to distinguish a third category of GDM, colloquially 

referred to as ‘felts’ [55,57].  This development in recent years in the third class of carbon materials, 

the non-woven ‘felts’, can be further sub categorised in two broadly distinct camps, which can be 

described as follows: 

• Continuous fibre non-woven felts - Displaying a characteristic ‘spaghetti-like’ macro 

structure (image ‘b’ in Figure 6). 

• Short fibre felts – Deposited fibres of carbon in a fashion similar to that of the paper 

manufacturing process.  These paper like fibres and layers then undergo an additional process 

where a degree of three-dimensional fibre structure is introduced through the use of needles 

(the traditional method for producing true ‘felts’).  The fibres can also be ‘needled’ through 

an air blasting technique.  Needling entangles and entwines the fibres that would otherwise 

form a traditional paper structure.  Superficially there is no major difference in the appearance 

of these needled, or air blasted materials and the paper structures. 

The through-plane penetration of fibres in the ‘felted’ papers may, arguably, have a significant impact 

on the bulk material properties of the GDM compared to its equivalent paper structure.  Assessments 

of the impact of these structural differences are being published more frequently in the recent past 

[15,16,55,58-62]. 

         
Figure 7: Through-plane section paper 

(Paper (Sigracet 25 BC - left) and woven (LT1200W- right)) 
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Many authors [15,16,55,58-62] have characterised the tortuosity, porosity and other characteristics of 

GDMs.  However, there has been a distinct lack of multiple factor interaction analysis; both within the 

gas diffusion media itself and also for its interaction with adjacent structures such as the catalyst layer 

(CL).  It could be argued for membrane coated catalyst layers (MCLs) that there is unlikely to be a 

significant effect from the gas diffusion media.  However, for catalyst layer manufacturing techniques 

where the catalyst materials are deposited directly onto the carbon fibre substrate of the GDM (CCS 

or Catalyst Coated Substrates), it seems likely that multiple factorial effects could be in operation.   

Parke et al. (2012) [42]  site a variety of authors that have compared carbon paper (TGP-090, Toray)  

and woven carbon cloth (Panex PWB-3, Zoltek)  as GDMs.  The woven carbon cloth was found to be 

superior at higher current densities, and also at variety humidity settings (except for the low humidity 

condition).  Part of the improved performance in carbon cloth material is credited to its bi-modal pore 

sized distribution [42].  Hydrophobicity is also highlighted as important and is considered optimised 

in the 15wt% to 30wt% region for PTFE.  It has been claimed by Pai et al. (2006) [46] that plasma 

treatment of the fibres can reduce the optimum PTFE loading to 10wt%.  Such low concentrations of 

PTFE on the fibres, in turn, improve the efficiency of the fuel cell system (fewer pores in the GDM 

blocked by PTFE) and a 50% improvement in total power output becomes possible. 

Typically such PTFE coatings are created by dipping the substrate into a solution of the desired 

polymer, which is then dried “above 350 oC to remove surfactants and uniformly 

distribute… …polymer.”[42]  This drying regime should be kept in mind if the reported improvements 

after surface activation of fibres are not realised.  Unfortunately, these optimised PTFE coated fibres 

are not commercially available across all GDM structures.  Roshendal et al. (2001) [63] provide a 

model to determine the behaviour of the GDM.  GDM models will be considered in more detail in 

subsequent sections (Chapter  4).  Most interesting is that the ‘multi-layer’ catalyst concentration 

structures being considered in this paper reveal that, although the idea of the multi-layer catalysts 

distribution has been well studied, there has been very little practical experimentation to validate 

them.  Furthermore: No comparative degradation study of distributed catalysts structures has been 

undertaken at this time. 

2.5. Catalyst layers 

The catalyst layer is arguably the single most critical component of the fuel cell.  The separation of O2 

and H2 molecules, and the recombination of those component atoms into water is facilitated and 

accelerated by the catalyst materials (usually platinum or an alloy of platinum and other metals).  

While these processes occur naturally, the rate of a reaction without a catalyst is painfully slow and of 

no practical use.  For this reason optimisation of the catalyst layer has been a major topic of research 
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in the fuel cell community.  Significant gains have been made in the reduction of the required catalyst 

to achieve a given level of performance, and this research continues to this day.   

The ‘additional factor’ research and development in this area focused primarily on the interactions 

between the carbon support particles the catalyst it was adhered to.  As stated for other topics in fuel 

cell research this has tended to be ‘one factor a time’ (OFAT) approach in the past.  The CL is not 

well suited to the identification of more complex interactions.  Fortunately, there is a large body of 

pre-existing knowledge of catalysts in other fields, and a large number of numerical simulations of 

catalysts both within the fuel cell community, and outside of it. 

The  ‘Dirac-delta distribution’ based catalyst optimisation is well known (“i.e. all the active catalyst 

should be located at a specific position within the pellet” [64]),  and is regularly used in chemical 

engineering practice.  Obviously, it is not possible to place all the catalyst at a single exact location, 

and it is arguably counterproductive to do so, but the Dirac-delta function is at the heart of an,  

idealised and preferred, probable catalyst location.  This catalyst distribution is typified by 

maximising the distribution of catalyst at the point where it will be most effective and then tailing 

away the catalyst concentration over a relatively small distance [64]. For example, in relation to the 

specific crystalline plane on the substrate the catalyst is deposited on [65], or the location in a 

fluidised bed where the major concentration of catalyst materials is deposited [64].  At its simplest, 

this can be thought of as placing catalyst particles as close to the incoming reactants as possible.  

Locating each catalyst site in a single cluster on the surface of the catalyst supporting particles, where 

the surface energy of the supporting particle assists with the bonding of the catalysts, and in some 

cases with the catalysis itself [65].  It should also be stressed that the pore structure of the catalyst 

support materials, and its subsequent impact on the flow of reactants, will also impact the ideal 

location of catalysts.  Note that catalyst loading and catalyst activity are not the same – this document 

will focus primarily on loading.  Catalyst optimisation must take into account many measures: 

effectiveness, selectivity of catalysed reactions, yield, lifetime, reaction kinetics, transport properties, 

operating conditions, poisoning mechanisms and cost are all important. 

In the literature, this full analysis is seldom completed due to its complexity.  There is some indication 

that a Dirac based distribution would be optimal for fuel cell applications, especially if one considers 

the fuel cell as a membrane reactor [64].  Inert membrane reactors have the catalyst outside of the 

membrane material itself and are arguably the most frequently used or recommended [64,66-68]: The 

catalytic membrane reactor (where the membrane itself is part of the reaction) is a category that GDEs 

could occupy.  Szegner et al. (1997) [64] have tackled this problem.  They also tackle the issues of 

functionalised polymer resins, but state that the activities and selectivites of resin based catalysts are 

operational and system specific (each system needs to be modelled individually).  It should be noted 

that one of the ageing/degradation phenomena encountered in fuel cells is the relocation of catalyst 
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material from the catalyst support into the membrane itself, and it may be that a combination of 

models (membrane reactor and functionalised resin) would be required to conceptualise the catalysts 

system as time passes.  

Despite this research in the wider chemical and chemical engineering fields “[t]here have been limited 

attempts to optimise the CL parameters mathematically, in spite of numerous modeling [sic] efforts” 

[68]  for fuel cells.  A layered structure of catalysts with different catalyst concentrations may make it 

possible to optimise catalyst loading in fuel cell applications.  The catalyst material can be described 

as an agglomerate particle in which the carbon support material is tightly bound to the platinum (Pt) 

nanoparticles.  This composite pallet is then considered a single unit of catalysed agglomerate [68]. 

It is perhaps useful to define ‘agglomerate’ as separate from ‘agglomeration’.  An agglomerate is a 

collected mass, ball or cluster [69] of separate things (or phases) and is a generic term.  

Agglomeration, in terms of catalyst particles, in particular, is the moving together of Pt atoms on the 

surface of the catalyst support materials, and by extension any other areas where catalysts appear in 

the fuel cell. It is more correctly referred to as Ostwald ripening (see section  5.3 for clarification).  It 

is typically regarded as one of the degradation mechanisms that results in the loss of the available 

electrochemically active catalyst surface area (ECSA) of the platinum catalysts [41,70-72].  Figure 8 

shows a stylised representation of the agglomerate (i.e. static in time) Pt nanoparticles clustered on 

and within the carbon substrate that supports them [68].  Figure 9 shows a schematic representation of 

several of these agglomerate (carbon black and Pt) particles and a simplified distribution on the 

surface adjacent to the GDM.  This assumption of the location of the catalyst is often made in numeric 

simulations and is discussed in more depth in Chapter  4 and Chapter 5. 

 
Figure 8: Catalyst agglomerate particle 

(From Jain (2009) [68]) 
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Figure 9: two-dimensional schematic of GDM / CL 

(From Jain (2009) [68]) 

To produce optimal catalyst distribution, it has been proposed to introduce non-homogeneity in the 

catalyst by utilising a “multi-zone optimisation…” [68] and each zone has a unique set of variables 

linked to adjacent zones with concentration and potential flux.  Table 4 shows numeric simulations of 

catalyst concentrations (in g.cm-2) achieved by [68], with Figure 10 showing the same result 

graphically (Pt concentration against distance through the thickness of the catalyst layer being shown). 

Table 4: Catalyst Distribution Optimisation 

 
 (g.cm-2 (From Jain 2009)) [68]) 
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Figure 10: Optimal catalyst distribution 

(For 2N Zones – histogram and fitted curve – at 0.876 Volts.cm-2 (From Jain (2009) [68]) 

Jains’ work largely focuses on the thickness of the catalyst layer.  Highlighting one of the reasons that 

layered catalyst structures have been investigated. The activity and utilisation of catalysts are highest 

adjacent to the membrane surface, and there is no need to have a uniform catalyst concentration in the 

through-plane thickness of the catalyst Layer (CL) itself.  Jains’ work agrees with the catalyst 

distribution considered preferably by some other authors [64].  Experimental verification of this type 

of numeric model has been few and far between in the literature, though there are some notable 

exceptions: Antione et al. (2000) [23] confirmed that optimum catalyst deposition was achieved with 

the Pt particles concentrated at the surface of the membrane. 
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One limitation in the Antione et al. (2000) [23] work was that they did not consider altering the active 

area per Platinum doped Carbon (Pt-on-C) particle: Catalyst concentration gradients were achieved by 

intermixing un-catalysed carbon black particles.  Other authors [73,74] have considered the 

distribution of catalyst and examined it experimentally, but these authors used the addition of 

Nafion® to reduce catalyst concentration when creating the catalyst ink.  This additional Nafion® 

was intended to reduce Pt concentrations.  At the same time performing its usual role of a suspension 

media for the dispersion and bonding of catalyst in the fuel cell.  It is clear that this approach has the 

advantage of being simple to reproduce in experiments, and strong arguments are made that optimised 

Nafion® is superior to other methods of dilution.  
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Figure 11: Schematic of GDEs with graded Nafion content in the CL 

(GDE-I = uniform 30wt% Nafion®, GDE-II = 20/30/40wt% Nafion®, GDE-III = 40/30/20wt% 

(Nafion®  (From Xie, Navessin et al 2005)) 

Xie, Navessin, et al. (2005) [73] utilised a 20wt% Pt on Vulcan support carbon and then altered the 

distribution through ever increasing Nafion® content in the ink formulations as shown in Figure 11.  

These ink formulation layers were then tested on very small (1.8cm-2) fuel cells.  Their key findings 

indicate that a 30wt% (‘GDE-I’) distribution of Nafion® in the ink formulation has a significantly 

higher peak power (in W.cm-2) in comparison to the other formulations.   

More sophisticated multivariate approaches are rarer still, but one example has been located; Song, 

Wang, et al. (2005) [75] stated that the optimum catalyst distribution could be difficult to model 

numerically when Nafion® and Pt are thought of as a joint system.  They instead undertook a 

statistical approach and considered it as a “…two-variable optimisation…”[75] problem to be solved 

experimentally.   Figure 12 shows the polarisation results (plotting current density against cell 

potential).  In these results, Nafion concentration and Pt loading were varied before the creation of an 

optimised two-factor model (Figure 13). 

 

Figure 12: Nafion (left) and Pt (right) variation 

(From Song,  Wang, et al. 2005) [75]) 
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Figure 13: Optimal two-factor model 

(From Song, Wang, et al. (2005) [75]) 

By taking this approach Song, Wang, et al. (2005) [75] showed that the platinum distribution 

optimisation problem had a convex solution (the dotted line in Figure 13) and the Nafion®  

optimisation problem had a linear solution.  When both Pt and Nafion® from this they concluded that 

“….only the optimisation of Nafion[sic] content distribution needs to be considered.”  [75].  As far as 

this goes, it is correct (and agrees with published work that considered single layer catalyst and 

Nafion® content [76]), based on the data presented.  However, the idea that catalyst distribution is not 

greatly significant calls into question the results universally applied in other systems. Catalyst 

distribution is of critical importance in optimising performance in any commercial system: Catalyst 

optimisation is complex, and it is not possible to present all possible factors in a single journal paper.  

It is suggested here that, if consideration is given to the longevity of the catalyst in the system, the 

degree to which layered structure CL may either inhibit or accelerate degradation rates may become 

apparent.  Yu et al. (2007) [77]  have considered catalyst degradation mechanisms in fuel cells, 

including ageing on catalyst distributions.  The impact of catalysts layers on longevity has been 

overlooked.  For this reason, a degradation study on dual layered catalyst was completed.  Based on 

findings from section  3; a multivariate examination (factoring in two different GDM substrates to coat 

the catalyst materials onto) will be undertaken, and as discussed in Chapter  6.  It is hoped that this will 

further the understanding of degradation of dual layered catalyst materials and at the same time 

provide a case study for the effective use of the multivariate design of experiment approach outlined 

in the following chapters.  Additional information on CLs and their importance to PEMFC 

performance can be found in Chapter 5. 
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2.6. Degradation of carbon-based gas diffusion media 

The work done by Hiramitsu et al. (2011) [45] indicates that the hydrophobic coating can also be used 

to diminish the degradation of the carbon fibres that make up the GDL.  The exposed carbon fibres are, 

over time, attacked by radical species present in the chemistry of the oxygen reduction reaction (ORR) 

and the hydrogen reduction reaction (HOR).  After 6,000 hours of constant load operation, a 

noticeable change in the wetting angle of the fibre matting was reported [45], and it is surmised that 

this is due to changes in the degree of coverage of the hydrophobic polymer on the GDL fibres.  It has 

been reported [57] that significant changes in wettability can occur after much shorter periods of time.  

The reason for these differences in the durability of hydrophobic coatings is not clear.  In either case, 

the argument indicates that GDMs made with carbon fibres without a hydrophobic coating will suffer 

a direct attack of the GDM itself more quickly.  Such attacks may or may not be the case with catalyst 

coated substrate (CCS) membrane electrode assemblies (MEAs) in particular, as the act of depositing 

the ink directly onto the carbon fibre substrate re-introduces PTFE coatings to the fibres. 

This approach, of excluding PTFE coatings on the carbon fibres, will be taken in experiments 

completed for this thesis whenever suitable. If accelerated ageing is detected, then the radical attack is 

happening throughout the depth of the GDM, and not only adjacent to the catalyst layers.  Whatever 

the case for accelerated carbon corrosion, or not, the mechanisms for it are well understood: C.A. 

Reiser et al. (2005) [57] commented on the chemical degradation of carbon-based GDM, and their key 

findings are adapted for reproduction here in Figure 14.  Typically this extreme range of voltages (in 

excess of + 1 Volt or -0.103Volts) in a given system occurs during the start-up / shut-down phase of 

the duty cycle.  During start-up and shut-down there is a depleted hydrogen zone that progresses along 

the length of the anode channel, and localised exchange currents of hydrogen ions are set up across 

the membrane.  In reversed reactions region the local current is acting at 1.44 volts.  The majority of 

this carbon corrosion is thought to come from the catalyst layer itself [16], but there is some evidence 

to suggest that the GDM is also involved [57], though at a much-reduced rate compared to the carbon-

based catalyst supports. 
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Figure 14: Hydrogen and carbon corrosion 

(Adapted from C.A. Reiser et al. (2005) [57]) 

 

There are other potentials where the oxidation of carbon occurred, and there will be regions along the 

channel where these potentials are achieved.  Indeed operating the fuel cell at 0.518 Volts (a common 

potential for constant load experiments) could also accelerate carbon corrosion. 

Table 5: Carbon reduction reactions and potentials 

C+2H2O → CO2 + 4H+  +4e- = 0.207 V ( 2-1) 
 

C+ H2O → CO2 + 2H+  +2e- =0.518 V ( 2-2) 
 

CO+ H2O → CO2 + 2H+  +2e- = -0.103 V 
 

( 2-3) 

 (E0  = Vs  standard hydrogen electrode,  table adapted from El-Kharouf (2012) [16] ) 

 

2.7. Key findings 

There are a wide variety of factors that influence the performance of PEMFCs over the short and long 

term.  Any future work should ideally consider some of the following factors: 

• Unless making comparisons on materials from a single supplier MEAs should, as far as 

possible, be manufactured ‘in house’ to limit variability due to manufacturing methods from 
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different suppliers.  This approach will be undertaken as far as reasonably possible with all 

test samples discussed in this work. 

• Hydrophobic coatings have a hugely significant impact on fuel cell performance and ageing. 

o Great care should be taken to normalise hydrophobic coatings in any study, and they 

may even have to be excluded as a variable as not only wt% PTFE, but also the 

uniformity of coverage and strength of adhesion for the fibres and PTFE should be 

quantified and comparable. This will be taken into consideration for the experimental 

work in in Chapter  6. 

• Structural considerations of the GDM carbon fibres are significant, comparisons between 

non-woven, woven and paper type GDMs may be equally significant as well as discussion 

around their porosity, pore distribution or through-plane thickness. Chapter  4 and Chapter  6 

will both include gross GDM structure (Woven, Paper or non-woven) as a categoric factor to 

be included in the data analysis. 

• Dual layer catalysts have received some attention, but not enough work has been done on 

their longevity as of the time of writing.  Chapter 5 discusses this in more detail, and the 

experimental study in Chapter 6 includes layered cathode catalyst structures as a variable in 

the designed experiments. 

• There is a probability that one or more of GDM structure, dual layer catalysts and the 

degradation of the fuel cell are co-varying in some way; especially for CCS manufacturing 

methods. Chapter  3 will explain in more depth the impact this will have on the design of 

experiments and the subsequent data analysis of the results.  Heaving established an 

understanding of these issues, the work in Chapter  6 will take this into consideration and 

provide the case study of applying suitable statistical methods to the work presented in this 

thesis to achieve at least one of the stated aims in section  1.1.1. 

• The extremely high resource demands for degradation studies are exacerbated by ‘one factor 

at a time’ (OFAT) experiments and so are a prime candidate for showcasing the benefits of 

multivariate design of experiments approaches to achieve one of the stated aims in 

section  1.1.1. 

• The lack of general usage of multivariate designed experiments reported in the fuel cell 

literature indicates a need to build up confidence and skill in these types of statistical data 

analysis tools within the fuel cell research community will achieve one of the stated aims in 

section  1.1.1. 
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2.8. Summary of Chapter 2 

The review of the literature indicates the investigation of multivariate methods in PEMFC degradation 

studies is well justified.  There are several key gaps and conflicts in the literature that require further 

experimental study (see sections  2.2,  2.3,  2.5 and  2.7).  Notably, the failure to apply statistical 

methods correctly ([33][37]), and the conflicts in the results presented by different authors on the 

impact on degradation of fuel cells and the PTFE coatings applied to the GDM ([40], [43], [44]).  On 

the basis of this, and the observations from several authors that there is a lack of data on the 

performance and degradation of a wide variety of GDMs in the fuel cell literature ([38],[45],[22]); it 

is suggested that the proposed work in this thesis is justified. 
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3 Statistical Methods 

3.1. Introduction to Chapter 3 

Chapter  3 introduces the statistical methods applied to interpret experimental results obtained during 

the completion of this thesis.  In Chapter  4 (notably section  4.4) and Chapter  6 (notably section  6.4), 

extensive use will be made of the Design Expert Professional V.9 ™ (Design Expert Pro) software.  

Design Expert Pro is a commercially available statistics and design of experiments software package. 

While it would be possible to complete the analysis using the software as a ‘black box’ (i.e. having no 

understanding of the mathematic at work inside the software), this is not a ‘best practice’ approach to 

take.  Therefore the multiple linear regression, multiple input and output factors and matrix algebra 

techniques that are utilised by the software are introduced here in Chapter  3.  Developing the 

understanding of the methods used in the software to analyse the generated experimental data enables 

a more detailed and thorough interpretation and validation of the multivariate linear regression models 

that are generated in subsequent chapters.  It is hoped that this chapter will shed some light on the 

‘black box’ and clarify the processes going on inside the commercial software. 

In chapter  3 a basic understanding of linear regression model development is reported, and its 

adaptation to be suitable for multiple, co-varying, input factors.  The use of blocking and error 

analysis to remove uncertainty from experimental data was also considered.  The information in this 

section is an amalgamation of knowledge from various sources [30,78-83].  The equations that have 

been individually referenced in chapter  3 have been amended to share a uniform nomenclature. 

Statistical modelling (like all numeric modelling) is typically described as a cycle to gain a better 

understanding of real world effects.  After identifying a topic of interest, estimates of the parameters 

that control that effect (the ‘levers’) allows for the creation of models based on those levers.  These 

are in turn validated as the degree of impact on the real world effect is measured and, hopefully, finds 

an improved system of knowledge to apply.  The process then repeats itself continuously to refine and 

improve understanding of the effect being controlled or modelled. 
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Figure 15: Model Development Process 

Applying this concept to regression analysis of experimental data generates a work plan quite quickly: 

1. Plot the experimental data. 

2. Formulate a model. 

3. Test the model. 

4. Adapt the model. 

5. Finalise the model. 

3.2. Linear regression models 
 

At its simplest, a ‘one factor at a time’ (OFAT) regression,  where one variable is measured relative to 

its impact on another, is a starting point that will enable the fitting of a linear relationship between the 

two factors [78].  Needless to say, not everything is this simple. If the data fit a straight line perfectly, 

then a typical straight line plot of results would fit the equation  

 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 ( 3-1) 

[83,83,84] 
 

where ‘yi’ is the response for sample ‘i’ and xi is the value of the factor for sample i, multiplied by the 

gradient (β1) and the straight line intercepts the y axis at a value equal to β0 

However, error and noise always occur, and must be accounted for in the lack of fit for the data to the 

model.  
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where εi is the observable error. 

Certain assumptions about the errors make more data analysis tools available: 

• The true mean error (E) of (εi) = 0 

• Variance of (εi) = σ2 (a constant) 

• The error of each measured point of x is independent of each other (all (εi) are independent). 

• All (εi) are normally distributed i.e.  

 

These assumptions can be represented as the ‘statement for the assumption of normality of errors’ in 

the model ( 3-3). 

The true values of the errors in a data set are (almost always) uncertain.  The use of a ‘hat’ [78,81] 

notation (e.g. 𝑦𝑦�𝑖𝑖 ) shows estimates are within the bounds of a system that contains these errors and 

estimate the best line fit allowing for errors.  In other words the error is that of the data measured, and 

not guaranteed to be exactly the same as the error measured if the entire population of events were 

measured.  The degree of discrepancy between the estimated error value and the true error can be 

calculated at a later point in the model development cycle.  In the first iteration, the assumption is 

made that the error of the data set measured is equivalent to the error of the entire population. 

 

The production of the best line fit is achieved by minimising the residuals (the vertical distances from 

the estimated line to the actual data points measured).  The sum of the squared residuals is used to 

optimise the fit line (the ‘sum of least squares fit’ of the residuals) since by construction the mean 

residual is always zero (i.e. positive and negative residual heights would cancel each other out: 

therefore the square of the residuals avoids this issue).  This value can be noted down as the value of 

sum squares of the residuals, also known as the sum of squares of the errors (SSE). 

 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 ( 3-2) 

[78,81,82,85] 

 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2) ( 3-3) 

[81] 

 𝑦𝑦�𝑖𝑖 = �̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖 ( 3-4) 

[78,81,82] 
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where n is the number of samples or sets of observations. 

In the first attempt to fit the minimum error, the values are not known.  Therefore the results are set to 

zero and differentiated to locate the minimum values. 

Solving SSE to find β at minimum 

Then re-arranging and setting to zero gives 

  and   

this can then be solved for the lowest values of β (or �̂�𝛽 in the case of an estimated system) 

 

Solving for �̂�𝛽0 and �̂�𝛽1 in this way fits the line equation to the data and allow for error in experimental 

measurement.  This is the foundation of the analysis, and the numerator in (3-10) is expressed as 

 
𝑆𝑆𝑆𝑆𝐸𝐸 =  ��𝑦𝑦𝑙𝑙 − ��̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖��

2
𝑛𝑛

𝑖𝑖=1

 
 

( 3-5) 

[81,83] 

 𝜕𝜕𝑆𝑆𝑆𝑆𝐸𝐸
𝜕𝜕�̂�𝛽0

= −2 ��𝑦𝑦𝑙𝑙 − ��̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖��
𝑛𝑛

𝑖𝑖=1

 
 

( 3-6) 

[80,81] 

 𝜕𝜕𝑆𝑆𝑆𝑆𝐸𝐸
𝜕𝜕�̂�𝛽1

= −2 �𝑥𝑥𝑖𝑖�𝑦𝑦𝑙𝑙 − ��̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖��
𝑛𝑛

𝑖𝑖=1

 
 

( 3-7) 

[80,81] 

 
�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= ��̂�𝛽0

𝑛𝑛

𝑖𝑖=1

+ ��̂�𝛽1𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
 

( 3-8) 

[81,83] 

 
�𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= ��̂�𝛽0𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��̂�𝛽1𝑥𝑥𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

 
 

( 3-9) 

[81,83] 

 
�̂�𝛽1 =  

𝑛𝑛∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑𝑥𝑥𝑖𝑖 ∑𝑦𝑦𝑖𝑖
𝑛𝑛 ∑𝑥𝑥𝑖𝑖2 −  (∑𝑥𝑥𝑖𝑖)2

 
 

( 3-10) 

[81,83] 

 
�̂�𝛽0 =

∑𝑦𝑦𝑖𝑖
𝑛𝑛

− �̂�𝛽1  
∑𝑥𝑥𝑖𝑖
𝑛𝑛

 
( 3-11) 

[79,81,83] 
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and 

To reduce the complexity of the notation, ‘SS’ is used to denote the ‘Sum of Squares’, with a 

subscript to define which values (all ‘x’, all ‘y’, or a combination of both) are being considered in that 

sum of squares pairing.  The denominator in (3-10) is expressed as 

where 

 

Hence �̂�𝛽1, the gradient of the least squares line of fit, is now determined with this shorter notation  

( 3-16)  (i.e. equation ( 3-10) is equivalent to ( 3-16)) 

also 

From which it can be shown (derivation not given for brevity): 

 𝑛𝑛�𝑥𝑥𝑙𝑙𝑦𝑦𝑙𝑙 −�𝑥𝑥𝑙𝑙�𝑦𝑦𝑙𝑙 = 𝑛𝑛 ��𝑥𝑥𝑙𝑙𝑦𝑦𝑙𝑙 − 𝑛𝑛�̅�𝑥𝑦𝑦�� = 𝑛𝑛 ��(𝑥𝑥𝑙𝑙 − �̅�𝑥)(𝑦𝑦𝑙𝑙 − 𝑦𝑦�)�  

( 3-12) 

[80,81] 

 𝑛𝑛 ��(𝑥𝑥𝑙𝑙 − �̅�𝑥)(𝑦𝑦𝑙𝑙 − 𝑦𝑦�)� = 𝑛𝑛 𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥  

( 3-13) 

[78] 

 𝑛𝑛 ��(𝑥𝑥𝑙𝑙 − �̅�𝑥)2� = 𝑛𝑛 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟  

( 3-14) 

[78,81] 

 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 =  �(𝑥𝑥𝑙𝑙 − �̅�𝑥)2  

( 3-15) 

[78,81] 
 

 
�̂�𝛽1 =  

𝑛𝑛∑𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑𝑥𝑥𝑖𝑖 ∑𝑦𝑦𝑖𝑖
𝑛𝑛 ∑𝑥𝑥𝑖𝑖2 −  (∑𝑥𝑥𝑖𝑖)2

=  
𝑛𝑛𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥
𝑛𝑛𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟

  
 

( 3-16) 

[79,81] 

 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 = �(𝑦𝑦𝑙𝑙 − 𝑦𝑦�)2  

( 3-17) 

[79,81] 

 𝑆𝑆𝑆𝑆𝐸𝐸 = 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 −  𝛽𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥 ( 3-18) 

[81,83] 
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Recalling the assumption that all errors are normally distributed, then it was possible to assess the 

model (the linear fit).  The term  �̂�𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥  represents the regression sum of squares (variation 

explained by) the regression model.  If this is larger, relative to the SSE, the model may be trusted.  

But is the model better than a simple mean of the data? 

To answer that question, two hypotheses were set: 

• H0 = the mean is good enough, no need to model a line of fit. 

• H1 = the linear equation (𝑦𝑦�𝑖𝑖 = �̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖 )  is a better fit than the mean. 

The discussion of analysis of variance (discussed in more detail in section  3.3 and section  3.6) will 

give more information on this topic.  These sums of squares notation are useful in shortening other 

terms and equations, and the Pearson correlation coefficient (‘r’ is the expression of linearity of a 

correlation) is expressed as 

The coefficient of determination or R-squared value is calculated as ( 3-20) 

 

This determines the percentage (expressed as a decimal) of the signal that was accounted for by the 

model.  Variance (s2) is the most important and useful measure of variability of a sample – while the 

range only measures two points, the variance measures all points in the system 

 

Sample variance (3-21) [78] is the sum of the deviations from the mean, divided by one less than the 

total number of points measured.  To retain the original units, the sample standard deviation (s) is 

most often reported [78]: 

 
𝑟𝑟 =

𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥
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[78,81,83] 
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[79,81,83] 
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A typical standard error can also be calculated from the variance, for example 

The variance (𝜎𝜎�2)  is estimated as 

 

3.3. t-test 

The t-Test examines two separate populations (x and y) to determine if they are different, especially 

for a small data set.  The ‘t’ value has often been used to assess the model under investigation for the 

single case: Until now the question ‘is the mean better than the model?’ used the F-test (Fisher-

Snedecor distribution) [78,81].  With two groups of data, comparison of both means becomes possible, 

increasing the number of factors that can be examined: the number factors increases to two mean 

values of multiple inputs.  In this case, the t-test can be used, where t = (parameter estimate – assumed 

parameter value)/standard error of the parameter estimate  

The F-test compares the ‘null hypothesis’ (the mean is ‘good enough’) to an F-distribution and if the 

two match then the null hypothesis is correct; and the t-test relates to the F-test as equation (3-26) [78]. 

 

Recall as well that the ‘p-value’ is the probability of generating a t-value as large as the one calculated 

from the data set.  It is also the probability of getting the F-statistic (the F-value) as large as the one 

calculated from the data set (both cross-referenced to look up tables for their degrees of freedom and 

 
𝑠𝑠 = �∑ (𝑌𝑌𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝑌𝑌�)2

𝑛𝑛 − 1
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[78,81] 
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[82,83] 

 𝜎𝜎�2 = 𝑠𝑠2 ≅  
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𝑛𝑛 − 2

  

( 3-24) 

[81,83,85] 

 
𝑡𝑡 =

𝑦𝑦� − 𝑘𝑘
𝑠𝑠
√𝑛𝑛
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[78,80,81,83] 

 𝑛𝑛 = 𝑡𝑡2  

( 3-26) 

[78,81] 
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magnitude of confidence interval).  In each case, the probability is the same for a given set of data 

values. 

The t-value can be related to the model under investigation to test two hypotheses about the intercept 

in the model and ‘slope’ parameter associated with the factor in the model.  These hypotheses are: 

H0: β0= 0 and H1: β1= 0 versus H1: β1≠ 0   

For a single factor case, the t-statistics to test these hypotheses would be  

or 

This value can then be compared to the t-distribution (with degrees of freedom = n-2 for a linear 

model, and n is the number of samples). To go beyond two variables, a similar logic is applied 

through the use of analysis of variance.  

This point of the discussion is an appropriate one to recall that the confidence interval (CI) is defined 

as: 

 

The traditional practice is to utilise a ‘look-up table’ of t* values and to apply the desired confidence 

level of the value of ‘t’ measured.  Hence the CI can be declared to be ‘± CI to 95% confidence’ if the 

95% column in the lookup table is the value of ‘t’ used [83].  However, modern personal computing 

has rendered this table based lookup procedure obsolete.  Instead, the p-value (the value used to 

accept or reject a given hypothesis) is calculated directly for each data set.  This direct calculation 

avoids the need to interpolate between pre-generated tables of values when the result does not fall 

exactly on a particular value. 
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It was assumed that the distribution of error in the data measurement is normal [83]. To verify this, an 

assessment of the normality of distribution with ‘Quantile-Quantile’ (Q-Q) plots was undertaken, 

utilising the capabilities of the software.  A histogram can check this visually but is not a rigorous 

approach for smaller data sets.  Instead, residuals are placed in rank (size) order. Then the calculated 

theoretical value of the residuals (or quantiles) if they followed a normal distribution (with the limits 

of the range imposed by the real, measured range of data) can be created.  When plotted as a scatter 

plot ‘theoretical quantile values’ versus the ‘measured quantile values’ creates the ‘Quantile-Quantile’ 

(Q-Q) plot.  The closer the two values plot as a straight line, the more closely the residuals follow a 

normal distribution.  No real-world set of experimental data is ever perfect, and some deviation from 

the norm is expected. 

There is a degree of interpretation to this plot.  Standard practice is to follow the ‘pencil test’ (e.g. 

Andersom and Whitcomb (2007) [82]),  wherein a hardcopy print of the Q-Q graph is created and, if 

all of data points in the Q-Q plot is sufficiently linear to cover with a pencil, the system is normally 

distributed.  When assessing the linearity of Q-Q plots, it is acknowledged that fewer points will be 

noisier and less linear.  The ANOVA method (discussed later in section  3.6 ) is quite robust when 

dealing with distributions that tend away from the norm, and so it can tolerate this degree of 

estimation in assessing its ability to cope with non-normally distributed data.  However, there should 

be no significant ‘S-curve’ visible in the Q-Q plot.  

If after conducting this test there are still concerns with the degree of normality in the system under 

investigation, it is often possible to transform the data in some way to make it more normally 

distributed.  These types of transformation are justified as 

 

It is critical to ‘undo’ this transformation when applying the value to the final empirical model for the 

predictions to be valid, though modern software for DoE does this automatically.  Negative data can 

be transformed to a positive value (through squaring or the addition of a constant to all data).  If 

required, the data can then be transformed by the application of log scale; the application of an 

exponential to the data.  This approach is only effective if the degree of deviation in the Q-Q plot is 

quite high. 

3.3.1.  Weighting and blocking 

It is possible to compensate for variation between sets by ‘blocking’ the results.  Each set of samples 

is tested on several occasions at several values.  Comparing between the sets of samples may not be 

 𝑌𝑌 ∝ 𝑌𝑌𝑎𝑎 ( 3-30) 

P.R. Nelson in [81]  
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directly possible due to operational test condition variance, or some other factor. To overcome any 

such lack of comparability, it is possible to undertake a weighting and blocking exercise.  With 

weighting and blocking, it becomes possible to examine multiple sample families, and average the 

result across each family, or set, of values.  Having done so, this creates a ‘mean of means’ for those 

families of results.  A more detailed examination of this method is given in section  4.7 and  6.7 where 

the method was used on experimental data. 

3.4. Factorial designs 

RA Fisher created full factorial designs [30].  His original book on the subject (Statistical Methods for 

Research Workers) is considered one of the greatest mathematical works of the 20th Century.  In the 

time since it was published in 1925, there have been a vast number of papers and books written on the 

subject, focusing on the applications, updates and improvements.  The partial factorial design seeks to 

minimise the number of experiments and maximise the amount of information required to generate an 

equivalent result (for example Genichi Taguchi's methods) [30].  Ranjit Roy (1990) [30] gives an 

excellent introduction to the topic, and it is the Ranjit Roy (1990) [30]  research that forms the central 

core text for the discussion of these methods in this thesis, as well as drawing on other commonly 

cited references [81,82,85].   

A standard, ‘one factor a time’ (OFAT) experimental set up is thorough and can be interpreted easily 

by the methods outlined previously.  However, it is inefficient.  By having several controllable 

variables (or factors) in an experimental design at a time, rapid improvements in the efficiency of a set 

of experiments can be made [30]. As the number of factors increases, the gains in efficiency increase 

still further. This efficiency improvement is gained by setting the factors of interest at discrete levels, 

combined with the use of ‘orthogonal array’ systems, to facilitate planning out the work in advance.  

Compared to OFAT testing regimes, the use of such repeatable experimental setup and data analysis 

techniques can reduce the total workload.  Such a systemised approach makes it possible for other 

researchers to reproduce, verify and build on the work completed.  The standardisation of test 

methods increases the rate of development in a given field, and the use of similar analysis by disparate 

researchers reduces the ‘learning curve’ when reviewing a new piece of work.  For a full factorial 

design, the number of possible designs is 'N': 

 

Where L is a number of levels for each factor, m is a number of factors. For example 15 different 

factors, and desiring to test 2 levels; this would be (215) = 32,768 tests.   

 𝑁𝑁 =  𝐿𝐿𝑟𝑟 ( 3-31) 

[30] 
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Fractional Factorial Analysis (FFA) can reduce the time and effort needed to implement such a regime, 

but requires detailed and dedicated mathematical treatment in the design and analysis of the results. 

The Taguchi-method [30]  has standardised the design method that is used in FFA so that "two 

engineers conducting tests thousands of miles apart, will always use similar designs and tend to 

obtain similar results." (Taguchi in Roy (1990) [30]).  However, FFAs still have several limitations: 

[30] 

o Large numbers of variables are still expensive and time-consuming tests 

o Two designs for the same experiment can generate different results 

o Designs do not normally allow for the determination of the contribution of each factor 

o Interpreting the results for a large number of factors can be difficult 

Following the recommendations laid out by Roy (1990) [30] (i.e. the use of standard orthogonal 

arrays for the design of experiments that are appropriate to the degrees of freedom for the data being 

analysed) can help to improve the repeatability between researchers.  These methods help to diminish 

the deviation from the ‘true’ ‘real world’ value of interest that prompted the experiment in the first 

place.  The use of orthogonal arrays standardise experimental designs and minimise, or at least make 

it possible to understand and factor out, the uncontrollable factors in a set of experiments.  These 

‘noise factors’ are the “factors influencing a process that cannot be economically controlled” [30].  

Typically these may include things like machine wear or the other environmental factors like the 

ambient humidity on the day of the test. 

3.5. Design of experiment process 

Like any method, the design of experiment (DoE) approach has its limitations.  The quality of the 

measurement is a limiting factor, and so the quality of the outputs from the completed DoE is 

dependent on how well the methods are applied.  The orthogonal arrays are most effective [30] when 

there is the minimum amount of interaction between factors [30].  As the number of interactions 

between factors (covariance of factors) increases, the size of the orthogonal array (i.e. the total 

number of experiments and repetitions of experiments to be carried out) also increases, to make it 

possible to quantify the co-varying factors.  Practical, resource driven, circumstances of the 

experimenter are often the single biggest limitation.  It is not uncommon to limit a design of 

experiments in some way so that it will only (for example) pick up interactions between two of the 

measured factors.  Trying to pick interactions between three factors at a time will exponentially 

increase the amount of work to be carried out.  Another limiting issue is the linearity of the response.  

As already stated, DoE is ideally intended for linear responses for two factors.  With nonlinear 

systems, the number of test levels to map out the non-linearity must increase (three levels to pick out a 

parabolic response if that is predicted or five levels for exponential responses).  It must be highlighted 
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that even if factors are non-linear and massively interactive, orthogonal arrays can still be a good 

starting place, but optimisation estimates will be inaccurate (how inaccurate depends on the degree of 

nonlinearity and interactions between factors).   

Consider a DoE for three factors, each of which has two levels.  The following orthogonal array 

(Table 6, adapted from Roy (1990) [30]) in this case; ‘-1’ refers to the lowest set value for a given 

factor, and ‘+1’ refers to the highest set value for a given factor. 

Table 6: Generic 'Orthogonal array' L4 

Experiment number Factor A Factor B Factor C 

1 -1 -1 -1 

2 -1 +1 +1 

3 +1 -1 +1 

4 +1 +1 -1 

 

To fully quantify this and determine the amount of experimental noise in the system, a degree of 

repetition is also desirable.  Degrees of freedom (DoF), is calculated by: ((Number of factors -1) + 

(the number of suspected interactions being studied).   

The number of experiments (L) for an orthogonal array is given by  

In this case, the number of experiments (or rows in the array) is a direct measure of the degrees of 

freedom; the array must have a number of rows equal to the DoF.  It is for this reason that 

standardised and published arrays are referred to in this matrix identification of ‘L’ numbers; so L4 has 

four rows, L9 has nine and so on.  Once the DoF of the experiment is known, select an orthogonal 

array (OA) with the same (or greater) degrees of freedom included in the array design.  To calculate 

the effect of a given factor from its results, the following procedure must be followed: The result 

based on the average of the factor at the high level, and the result based on the average response of the 

same factor at the low level, is subtracted.  This operation calculates the total impact of a single factor 

on a final result. Combinations of factors must also be taken into account to generate a true picture of 

 𝐷𝐷𝐷𝐷𝑛𝑛 = (𝑛𝑛𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹 − 1) + (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑛𝑛𝐹𝐹𝑙𝑙𝑟𝑟𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝑛𝑛𝐹𝐹) ( 3-32) 

[30] 

 𝐿𝐿 = (𝑛𝑛𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹 − 1) ∗ (𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑛𝑛𝐹𝐹𝑙𝑙𝑟𝑟𝑎𝑎𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝑛𝑛𝐹𝐹) ( 3-33) 

[30] 
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the experimental data to be investigated.  By definition, a ‘full factorial design’ should have enough 

rows to take into account each factor and each combination of factors.  Iteration of this approach for 

each final result (i.e. each of the ‘output’ variables) of interest, using the same experimental data 

(ensuring the results and factors of interest are recorded) is carried out to determine the input variables 

effect on the output results.  This iterative approach generates a numeric value for the impact 

individual factors have on the investigated output signal; extending the scope of the simple linear 

regression model [81]. 

The number of repetitions required in a set of experiments can be determined by an outer array 

method.  In this approach, the likely noise effects (e.g. humidity, ambient temperature, age of material 

being tested) can be identified and used to produce a supplementary array of experiments.  These 

conditions can then be used to determine the number of repetitions, and noise effects artificially 

induced as per the outer array design to produce a set of experimental conditions for different 

repetitions [30].  

3.6. ANOVA 

The linear regression outputs introduced in section  3.2, and extended in the final equation for a 

designed experimental orthogonal array approach (equation ( 3-35) in section  3.5), can be analysed 

numerically by taking an analysis of variance (ANOVA) approach to summarise the linear regression 

data as shown in Table 7.  In this approach, the total variation in the measured ‘Y’ values (SSyy as 

shown in equation ( 3-17)) is separated into its constituent parts.  Part of the Y value is accounted for 

by the regression model, and the remainder is the residual (the distance between the point on the 

regression model, and its nearest equivalent ‘real world’ experimental data point).  This topic has been 

discussed previously and in great depth in section  3.2 and the rest of chapter  3 up to this point.  As 

discussed previously in this chapter, a simple linear system model must test the goodness of fit of the 

numeric model, and ask the question ‘is the model better than a simple average?’ [80]. Once again the 

experimenter must set the two hypotheses that the ANOVA of the linear regression will help to 

answer by defining the ‘F’ Value (see equation ( 3-26) section  3.3): 

 

• H0 = the mean results is ‘good enough’, and there is no need to model a line of fit. 

• H1 = the linear equation model is a better fit than the mean. 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 =  

∑𝑌𝑌+𝑙𝑙𝑙𝑙
𝑛𝑛+𝑙𝑙𝑙𝑙

−
∑𝑌𝑌−𝑙𝑙𝑙𝑙
𝑛𝑛−𝑙𝑙𝑙𝑙

 
 

( 3-34) 

[82] 
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Recalling the assumption that residuals are normally distributed, this justifies [80,82] the use of a Chi-

square relationship (as shown in equation ( 3-35))  between the experimental results observed and the 

predicted and results (from either the mean or the linear regression).  The Chi- squared result is 

another test of the ‘H0 or H1’ probability: 

The terms for the regression sum of squares (�̂�𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥  ) and the sum of squares of the residuals 

(𝑆𝑆𝑆𝑆𝐸𝐸 = 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 − �̂�𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥 ) were defined in earlier in equations (3-18) and (3-5) respectively. If SSE is 

divided by the degrees of freedom, this will achieve a chi-square distribution [83], and the same 

applies to the regression sum of squares (SSreg).  Note the ratio of two Chi-Squared distributions 

follows an F-Probability distribution (Fisher-Snedecor distribution) [83].  Construction of the 

ANOVA table is now possible each factor of interest (βn). 

Table 7: Generic 'ANOVA' table 

ANOVA table 

Source Sum of squares (SS) Degrees of 

freedom 

Mean squares F 

Regression �̂�𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥 1 SS/DF = MSr MSr/MSE 

Error 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 −  �̂�𝛽1𝑆𝑆𝑆𝑆𝑟𝑟𝑥𝑥 n-2 SS/DF = MSE 

Total SSyy n-1 

 (Adapted from T.P. Ryan and P.R. Nelson Wadsworth (1990) [81]) 

 

Generating the F statistic and with reference to the F-distribution on a 1 and n-2 degrees of freedom 

table, makes it possible to determine if the model is a better fit than the mean.  If the calculated F-

statistic is greater than the corresponding F-value from the F-distribution; reject H0 (i.e. reject the idea 

that ‘the mean is better than the model’).  ANOVA is a critical component to assessing the outputs 

from the DoE and orthogonal array approach.  It can be adapted to cope with multiple inputs and 

outputs, handles categorical data well, identifies paired interaction effects and provides confidence 

levels for the outputs generated [83].  The ‘MS’ ratio in ANOVA is an assessment of the sum of 

squares of the residuals in a straight line fit divided by the degrees of freedom of the system.  The ‘F’ 

statistic creates a ratio of fractions from both the model and the errors from the actual experimental 

data, to test the robustness of the model.   

 
𝜒𝜒2 = �

(𝑂𝑂𝑂𝑂𝑠𝑠𝐸𝐸𝑟𝑟𝑂𝑂𝐸𝐸𝑂𝑂 − 𝑝𝑝𝑟𝑟𝐸𝐸𝑂𝑂𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑂𝑂)2

𝑃𝑃𝑟𝑟𝐸𝐸𝑂𝑂𝑝𝑝𝐸𝐸𝑡𝑡𝐸𝐸𝑂𝑂
 

 

( 3-35) 

[81,83] 
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This approach does require a normally distributed data set, and a linear relationship between the 

means being measured and their variance together. Though it must be recognised that ANOVA is 

considered robust when it comes to dealing with non-normal data [83].  While standard ANOVA is 

not ideal for assessing multiple interactions (two, three or more inputs interacting on two or more 

outputs), it can be adjusted to look into multiple and co-varying factors (ManCoVar). 

3.6.1. ANOVA, sum of squares and F-values 

The sum of squares (SS) must be computed for ANOVA analysis, and they are related to the effect of 

interest.  For a two level design, the SS equation is: 

 

Where N is number of runs or rows in the orthogonal array, and Effect = equation  ( 3-34).  The sum of 

squares for a given factor can then be added together.  Typically those factors that have the most 

responses are summed separately, and those factors that have a near zero response are pooled then 

added as a combined sum; this not just an accounting simplification.  Each factor that is included in 

this ‘sum of the sum of squares’ contributes to the degrees of freedom in the ANOVA calculation, and 

as such it would be permissible to add a degree of freedom for each factor included.  However, this 

would not always be a valid way to present the results.  To this end, the minor contributing factors 

(those with a very small effect) are pooled and then presented as a single value in the sum of sum of 

squares results.  Thus they only add a single degree of freedom to the overall calculation.  The setting 

of the level of this pooled value is somewhat arbitrary and should be reported when discussing the 

results.  It is also important to consider the pooled results as residuals with all degrees of freedom 

included when completing the analysis.  The next process in the ANOVA approach is to take the 

‘mean square’ (or MS) 

 

The MS value is calculated for each factor of interest, and also for the residual values with all degrees 

of freedom. The ratio of mean squares for the residuals and the individual factor of interest is known 

as the F statistic, and again can be used in conjunction with the F distribution to determine the 

probability of the null hypothesis (i.e. is this measuring something ‘real’?).  A particular strength of 

 𝑆𝑆𝑆𝑆𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 =
𝑁𝑁
4

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡2)  

( 3-36) 

[82] 

 𝑀𝑀𝑆𝑆 =  
𝑠𝑠𝑠𝑠

𝑂𝑂𝐸𝐸𝑔𝑔𝑛𝑛
  

( 3-37) 

[79,81,83] 
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this approach is the ability to compare all variables simultaneously (the ‘model’ approach) and also to 

examine each factor in isolation.  

3.6.2.  Bonferroni limits 

It is perfectly valid to assess multiple effects from several data sets.  However with a 5% chance of 

error (significance level), or a 95% confidence interval (see equation (3-29)), running the risk that one 

time in 20 will randomly attribute significance to a set of result where it does not belong.  To reduce 

the likelihood of this random error occurring, the ‘Bonferroni adjustment’ [79] is a rule of thumb 

whereby the acceptable significance level is decreased, halving it, every time the same data set is used 

to examine an effect of interest.  In fuel cell terms, investigating peak power (W.cm-2) with a data set, 

and at the same time investigate the impact of ageing and degradation (Voltage loss per hour) with 

that same data set; consider the possibility of increased error through random chance.  Where a 95% 

confidence level is acceptable in W.cm-2 case, to achieve an effective 95% confidence level for two 

interpretations: the researcher would have to set the actual confidence limit to 97.5% in the 

calculations and when comparing the F- statistic to its corresponding distribution [82]. 

The Bonferroni adjusted F-value is defined as  

 FBonferroni =  F*(𝑛𝑛)  ( 3-38) 

[79] 

where ‘n’ is a number of results being generated from a single dataset.  

3.6.3. ANOVA summation 

I. Calculate the average values for ‘high’ (‘+1’) setting results (as per Table 6) and ‘low’ (‘-1’) 

setting results. 

II. Sort absolute values  of effects into ascending order. 

III. Plot effects as half normal or Q-Q residuals to confirm normal distribution. 

IV. Calculate each effects sum of squares. 

V. Calculate SS. 

VI. Calculate SS residuals. 

VII. Construct ANOVA analysis. 

VIII. Calculate the F-values. 

IX. Lookup or calculate the F-values and determine the probability (p-values) for random 

response. 

X. Plot the main effects and interactions. 

XI. Interpret and discuss the results in light of scientific understanding of the system. 
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Using this method produces a series of linear models (for each variable) that contribute to the total 

measured effect of interest (maximum power in Watts.cm-2 for example). 

3.7. M-ANOVA and matrix algebra 

In the same way that the equation for a straight line is known for a single variable, this logic can be 

extended to determine multiple factorial contributions [79], including any combined effects detected; 

this is shown in ( 3-39) 

Equation ( 3-39) will produce a model of the system the data is gathered from, though interpreting the 

physical meaning of the coefficients can be difficult.  Another key assumption is that the variables are 

independent of each other.  Once again, the logic for the error associated with the measurement uses 

the same ‘hat’ notation to denote a predicted value, and this can be solved for the SSE in a similar 

(partial derivative) fashion.  Obviously, this requires solving multiple simultaneous equations, and a 

matrix approach is utilised (this is the way programs such as Matlab®, Design-Expert Pro® and ‘R’ 

tackle the problem).  As an example, a hypothetical demonstration of matrix solution for linear 

regression is presented: 

where i = 1, 2, … n 

 

… 

Next it is possible to define each factorial element as a vector 

 

 𝑦𝑦𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 ( 3-39) 

[78-83,85] 

 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑖𝑖 + 𝜀𝜀𝑖𝑖 ( 3-40) 

[81,83] 

 𝑦𝑦1 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1,1 + 𝛽𝛽2𝑥𝑥2,1 +⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,1 + 𝜀𝜀1 ( 3-41) 

[81] 
 

 𝑦𝑦2 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1,2 + 𝛽𝛽2𝑥𝑥2,2 +⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,2 + 𝜀𝜀2 ( 3-42) 

[81] 

 𝑦𝑦𝑛𝑛 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1,𝑛𝑛 + 𝛽𝛽2𝑥𝑥2,𝑛𝑛 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝑛𝑛 + 𝜀𝜀𝑛𝑛 ( 3-43) 

[81] 

 

𝑌𝑌 = �

𝑦𝑦1
𝑦𝑦2
…
𝑦𝑦𝑛𝑛

� ,𝛽𝛽 = �

𝛽𝛽1
𝛽𝛽2
…
𝛽𝛽𝑛𝑛

� , 𝜀𝜀 = �

𝜀𝜀1
𝜀𝜀2
…
𝜀𝜀𝑛𝑛

� 

 

 
( 3-44) 

[80,81,84] 
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and define the x data as a matrix 

 

Therefore 

 

Multiplying through with the transform of the ‘X’ matrix (𝑋𝑋′ 𝑋𝑋 ) will give a new matrix that is the sum 

of ‘x’ values with a squared term in the unit matrix location (across the diagonal); numerically 

equivalent to the SSxx developed earlier in equation ( 3-14).  It is then possible to create a vector from 

the x matrix and its Y vector (𝑋𝑋′ 𝑌𝑌 ) to generate a sum of x and y value numerically equivalent to 

SSXY ( 3-17).  This now defines the predicted values that can apply the standard formula in a matrix 

fashion. 

 

It is now possible to re-write as the matrix solution estimate of effect 

 

and the generated matrix of variables becomes the derived factors that fit the experimental data, the 

matrix equivalent of equations ( 3-10) and ( 3-11).   

The same relationships exist for the error estimates and all other factors as well (though with 

additional complications for the covariance matrix and its relationship to the variance).  Utilising this 

matrix approach generates correlation matrices that assess the degree of change in each xi and 

 

𝑋𝑋 =  �

1  𝑥𝑥1,1   𝑥𝑥2,1   …  𝑥𝑥𝑘𝑘,1
1  𝑥𝑥1,2   𝑥𝑥2,2   …  𝑥𝑥𝑘𝑘,2

…  …  …  …  …
1  𝑥𝑥1,𝑛𝑛   𝑥𝑥2,𝑛𝑛   …  𝑥𝑥𝑘𝑘,𝑛𝑛

� 

 

 
 
( 3-45) 

[79-81,84] 

 𝑌𝑌 = 𝑋𝑋 𝛽𝛽 + 𝜀𝜀 ( 3-46) 

[79-81,84] 

 

�̂�𝛽 =  

⎣
⎢
⎢
⎡�̂�𝛽0
�̂�𝛽1
…
�̂�𝛽𝑘𝑘⎦
⎥
⎥
⎤
 

 

 

( 3-47) 

[84] 

 �𝑋𝑋′𝑋𝑋��̂�𝛽 = 𝑋𝑋′𝑌𝑌 ( 3-48) 

[79-81] 

 �̂�𝛽 = �𝑋𝑋′𝑋𝑋�−1  𝑋𝑋′𝑌𝑌 ( 3-49) 

[79-81] 
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compare it to its neighbours, along with its impact in y (the output).  Looking at a real world system, 

there will be some degree of correlation between the various x values (in contradiction to the 

assumption in the previous derivation).  This correlation is overcome by setting a maximum threshold 

of correlation between the x values that is acceptable: Typically represented as a matrix plot (values 

between -0.69 and +0.69 for the correlation between factors is considered a good starting point).  

Strongly correlated input factors can have a highly adverse effect on the multiple analysis of 

covariance and the t or F test results they depend upon.   

To overcome this weakness arising from strong correlations, if there is a high degree of co-variance in 

the input arguments, the co-varying data is examined, and the researcher must decide if there is a 

genuine need to have both data points in the model.  A typical example in a fuel cell context is the 

relationships between temperature, pressure and relative humidity.  As temperature varies, the other 

two factors may also vary, and yet at the root of the problem it may only be the variation of the 

temperature that is the issue.  In this case, it may be beneficial to drop one or more of the variables. 

This selection process, to determine which variables to remove, can lead to discrepancies between 

ANOVA models developed by different researchers as they may elect to prioritise different aspects of 

the model: It is, therefore, essential to state what has been excluded from the analysis when following 

this approach. 

By using this method, a limit on the impact of experimenter selection is created by the process of 

refining the model within a set of guidelines.  This is the principle behind step-wise inclusion or 

exclusion of various factors.  The researcher deliberately eliminates a variable, then re-builds the 

whole model as a reduced complexity version (i.e. has fewer input variables).  The researcher then 

runs all the significance tests again as already discussed: The ‘new’ model developed is re-examined 

to determine how well the reduced complexity model matches to the experimental data [78].  Forward 

selection is the process of starting with a simple mean, and then comparing each factor at a time to the 

mean of the data. The researcher can choose to add two factors in a round robin style (e.g. temperature 

on its own, the temperate and pressure, then temperature and relative humidity; and then compare the 

model that includes all three factors).  After adding the factors of interest the researcher can determine 

the least number of factors for the best degree of accuracy with the data, adding in the most significant 

(i.e. the most highly correlated) variables first.  Backwards elimination is the reverse of this process, 

where all factors are included in the model; and the least significant variables are removed one at a 

time.  Elimination is carried on usually until only the significant (i.e. p =>0.05, or a 95% confidence 

interval – see equation ( 3 29)) factors are left in the model.  Stepwise is a combination of both 

methods.  Stepwise elimination is an extremely labour intensive process but is automated in 

professional statistical software packages.  Design Expert Pro (used in work presented in this thesis) 

lists all variables and allows the operator to select which variable to remove.  This list approach is the 

preferred option as it allows the reduced complexity model to be created by removing only a single 
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factor at a time, and so gains a greater understanding of the impact this has on the overall significance 

of each remaining variable(s).Another important issue when considering multiple co-varying sample 

data is the assumption that the residuals are also unrelated.  If there is covariance in the data, it is 

highly likely there will be co-variance in the residuals.  To overcome this, and maintain the 

assumptions of normally distrusted residuals, there is a need to create standardised residuals (ε’) as 

follows. 

where hii is the summed leverage, or strength of impact on the final result, for each data point.  To 

calculate the ‘leverage distance’ of all x values is 

 

The matrix form of the leverage (H) calculation for is  

 

The hii is best thought of as the distance of the individual data point from the mean and is termed ‘the 

leverage’ [81].  Data points with the highest leverage have the biggest impact on the fit of the model.  

Note that highly leveraged data points are not outliers.  Outliers go beyond even the highly leveraged 

data points, and they too have a huge impact on the model.  The variance (𝜎𝜎�2 = ‘Var’) of the predicted 

y values is defined as (F.B. Alt (1990) et al. in Wadsworth (1990) [81]): 

so  

 𝜀𝜀′ =  
𝜀𝜀𝑖𝑖

𝜎𝜎 (�1 − ℎ𝑖𝑖𝑖𝑖)
 ( 3-50) 

[85] 

 
ℎ𝑖𝑖𝑖𝑖 =  �

1
𝑛𝑛

+ 
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)
∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2� = �

1
𝑛𝑛

+  
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2

𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟
� 

 

( 3-51) 

[81,83,85] 

 𝐻𝐻 = (𝑋𝑋(𝑋𝑋′𝑋𝑋)−1) 𝑋𝑋′ 

Montgomery and Peck in 

( 3-52) 

[81] 

 
𝑂𝑂𝑣𝑣𝑟𝑟(𝑦𝑦�𝑖𝑖) =  �

1
𝑛𝑛

+  
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)
∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2�𝜎𝜎

2 
 

( 3-53) 

[81,83,85] 

 𝑂𝑂𝑣𝑣𝑟𝑟(𝑦𝑦�𝑖𝑖) = ℎ𝑖𝑖𝑖𝑖𝜎𝜎2 ( 3-54) 

[81,83] 
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By standardising the residuals in this way, a set of constant variance, normally distributed, errors 

suitable for the mathematical approach selected is generated.  Similarly, the adjusted R-squared 

estimate for multiple regressions is calculated as well: 

Recalling that ‘k’ is the number of factors, and the term in (3-32) can be thought of as the penalty for 

adapting a simple linear approach to have multiple factors, and so reducing the amount of variation in 

the response explained by the factors. 

With this improved method for assessing the coefficient of determination (the goodness of fit to the 

model); it is possible to assess the overall model, and iterate the model with a backwards elimination 

process, to sequentially remove the least probable causal input factors. 

3.7.1. Non-linear or polynomial applications 

It is a relatively simple matter to change the model theory to include non-linear factors: By adding 

input factors with a power (x3 for example).  Once again care must be taken if the input variables are 

related (i.e. break the assumption of lack of relationship between them).  Second order (quadratic) and 

third order (cubic), equations are fairly robust to this, and the approach remains valid without changes 

[85].  Additionally, it is possible to model a factor that is expected to relate to the response in a non-

linear manner such as for example where α is a number: 

Convert this to a linear equation by taking logs 

 

and 

 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑙𝑙𝑎𝑎2 = 1 −

(1 − 𝑅𝑅2)(𝑛𝑛 − 1)
𝑛𝑛 − 𝑘𝑘 − 1

= 𝑅𝑅2 −
𝑘𝑘(1 − 𝑅𝑅2)
𝑛𝑛 − 𝑘𝑘 − 1

 
 

( 3-55) 

[80,81,83] 

 𝑘𝑘(1 − 𝑅𝑅2)
𝑛𝑛 − 𝑘𝑘 − 1

 
( 3-56) 

[80,81,83] 
 

 (𝑦𝑦�) = 𝑣𝑣�𝐸𝐸𝑏𝑏�𝑟𝑟 ( 3-57) 

[84] 

 log(𝑦𝑦�𝑖𝑖) = log(𝑣𝑣�) +  �̂�𝛽𝑥𝑥𝑖𝑖 ( 3-58) 

[79,81,84] 

 log(𝑦𝑦�𝑖𝑖) =  β�0+�̂�𝛽1𝑥𝑥𝑖𝑖 ( 3-59) 

[79,81,84] 
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Now it is possible to estimate  

 

and 

 

However, the errors in taking this approach now also multiply, for example: 

 

 

 

where 

 

Note that equations ( 3-65) and ( 3-66) are the author's explanation.  Both equations are required to 

provide a complete understanding the derivation provided and are based on principles of conversion 

of logarithmic values as outlined in Croft and Davidson (1997) [84]. 

Obviously, any transformation that creates a ‘linearized’ form of real world data,  suitable for this 

type of statistical modelling approach, must be reversed before the predicted settings for optimised 

performance can be applied.  Lastly, the linear model regression approach can also be expanded to 

 𝑙𝑙𝐷𝐷𝑔𝑔𝑙𝑙(𝑣𝑣�) = �̂�𝛽 ( 3-60) 

[79,84] 

 𝑣𝑣� = 𝐸𝐸𝛽𝛽�  ( 3-61) 

[84] 

 𝑂𝑂� = �̂�𝛽1 ( 3-62) 

[84] 

 𝐸𝐸𝑥𝑥𝑝𝑝[𝑙𝑙𝐷𝐷𝑔𝑔𝑙𝑙(𝑦𝑦𝑖𝑖)] = 𝐸𝐸𝑥𝑥𝑝𝑝[𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖] ( 3-63) 

[81] 

 𝑦𝑦𝑖𝑖 = 𝐸𝐸𝑥𝑥𝑝𝑝[𝛽𝛽0] × 𝐸𝐸𝑥𝑥𝑝𝑝[𝛽𝛽1𝑥𝑥𝑖𝑖] × 𝐸𝐸𝑥𝑥𝑝𝑝[𝜀𝜀𝑖𝑖] ( 3-64) 

[81] 

 𝑦𝑦𝑖𝑖 = 𝑣𝑣𝐸𝐸𝑏𝑏𝑟𝑟𝑖𝑖 × 𝐸𝐸𝑖𝑖 ( 3-65) 

 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑥𝑥𝑝𝑝[𝜀𝜀𝑖𝑖] ( 3-66) 
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cope with data that does not have a normal distribution (generalised linear models), but this approach 

is not required to explain the results generated in this thesis.  

The data generated in all experiments in this thesis (discussed in later in Chapters  4, 5 and  6)  

correlated well to a linear approximation (i.e. the correlation coefficient of each included data set 

response – after completing backwards elimination of insignificant input factors) correlates well with 

the linear regression model (i.e. falls within R = +/- 0.69 as discussed previously in section  3.7 [79-

81]). 

3.8. Fractional factorials 

Having established the fundamentals of ANOVA, and of DoE in previous sections, it is now possible 

to reduce the complexity of the system of experiments being considered.  By limiting the number of 

multi-factor effects to be investigated, this limits the total number of experiments to complete.  By 

reducing the total number of factors, the total number of experiments is also reduced, and these are 

referred to as ‘fractional factorial designs’ or ‘partial factorial designs’ of experiments. 

Conducting these partial factorials saves a great deal of time, but raises the spectre of ‘aliasing’ the 

results.  What may appear to be a simple single or binary variable effect may be a more complex 

event of three or more factors in conjunction.  Three and four variable interactions are considered rare 

in the majority of systems [82], but this possibility must still be acknowledged and considered.  To 

understand and quantify the possible aliasing of factors in such reduced complexity DoE, predesigned 

fractional factorial experiment design tables exist, and these have been codified with Roman numerals 

as having a set ‘resolution’.   

This resolution numeral gives an indication of the likely weakness of a given design.  The numbers of 

factors that are mutually aliased are then a sum of the Roman numeral.  So a level II fractional 

factorial design masks two single factors.  A level III design masks a binary factor effect with a single 

factor effect, a level IV masks a single factor effect with a  triple factor effect, or two binary effects 

mask each other, and level V designs have the potential to mask multiple combinations of effects 

summing five (4+1, 3+2).  Keeping in mind the likelihood of triple and quadruple factorial 

interactions it is obviously preferable to use level five (V) designs if resources permit. 

3.9. Response surface methods 

Response surface methods (RSM) generate a multi-dimensional ‘map’ of the experiment under 

consideration.  RSM should only be used once the overall design area is at least partially understood, 

through the use of ANOVA and similar techniques.  Its primary strength is in detecting ‘curvatures’ in 

the experimental outputs.  As stated previously, basic ANOVA methods assume the output response 

of a given experiment is linear in the region of interest. At its simplest RSM can be thought of as 
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adding a third level to the experimental ANOVA method to include central data points (in the notation 

used previously; set high (+1), central (+/-0) and low (-1)) levels in the factorial designs.  These 

centre points are often replicated to get a better understanding of the natural variation in the 

experimental setup.  It is important to note that this approach is not the same as full factorial three 

level DoE.  The three levels, full factorial, would also include experiments at the zero level for each 

factor.  The difference is best expressed graphically (Figure 16). 

 

 
Figure 16: RSM and factorial visual comparison 

It must be kept in mind that the hypothetical, three-level full factorial with nine points, will provide a 

complete understanding of the system, and will be less prone to aliased effects.  The RSM, with its 

centre points, can be considered a compromise between the simpler two level, two-factor DoE, and 

more resource intensive three level, two factor DoE (with the added benefit of replicated centre points 
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to provide a robust error estimate and curvature detection facility).  The centre points can then be 

subjected to an F-test approach to determine if there is a curvature to the data.  Note that centre points 

should be conducted in a randomised order, as should all experimental runs if they are also to be used 

as a measure of the experimental ‘noise’ of the setup. 

 

where  

F = F-test for curvature in RSM 

𝜎𝜎�2 = the mean square residual in ANOVA analysis 

 
Figure 17: Central Composite Designs 

Comparing the F-statistic value to the F-distribution, the greater the significance (i.e. the greater p-

value is less than the usual level of 0.05) determines if curvature is present.  The stronger the F-test 

(i.e. the smaller the p-value), the greater the degree of curvature detected.  Another strength of the 

RSM method is that it is amenable to further experimentation.  Central composite designs of 

experiments can be created as the RSM already specified (replicated central points), and if the system 

does appear to be nonlinear in the central region, additional experimental points can easily be 

included.  In the two-factor system being considered, adding four more points (along each ‘face’ of 

 
𝑛𝑛 =

�𝑦𝑦�𝑓𝑓𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑎𝑎𝑙𝑙 − 𝑦𝑦�𝐹𝐹𝑙𝑙𝑛𝑛𝐹𝐹𝑟𝑟𝑙𝑙�
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𝜎𝜎�2  � 1
𝑁𝑁𝑓𝑓𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑖𝑖𝑎𝑎𝑙𝑙

+ 1
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( 3-67) 

[81,83,85] 
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the design square) and, if possible, adding those points outside of the original design region is 

desirable (though not essential).  

This design, and its results, can now fit quadratic equations.  However, it is not always practical to go 

‘outside of the box’ in this way for some experimental conditions.  To further optimise this approach, 

the Box-Behnken designs were created by Prof Box and Prof Behnken in the 1960's [86].  These 

techniques specifically address the issue of incomplete blocks where, for whatever reason, it is not 

possible to test all factors in all valuable blocks.   

A three-factor Box-Behnken design has 17 points (five repeats if the centre point, so 13 unique points) 

[86] and can fit a 10 factor quadratic; giving it an equivalent power to a three level three factor design 

that has 27 unique points.  The ideal theoretical CCS should have twice as many ‘external’ factors 

(i.e. those outside the original design space) as there are factors.  The α distance (the length of the arm 

for the external factors should be the square root of the number of factors) of a 2 factor CCD will 

often have an α value of 1.414 and five repetitions of the centre point.  Some researchers have 

recommended that the α value should be even higher than this as it creates a rotational symmetry to 

the design that has subsequent advantages.  Some authors state categorically [85], that this rotational 

symmetry requirement is only of interest in studies with more than five factors, particularly as 

extending the α length to such a degree will, in most practical applications, vastly reduce the region 

contained by the main design space of the experiment.  There are other considerations when selecting 

this α length and the degree of rotate-ability of the design.  The variance inflation factor (VIF) is one 

factor that benefits from this change.  VIF is the inflation in the error for estimating model 

coefficients, due to the correlation between terms; yet another penalty applied as a result of forcing a 

simple linear equation to analyse multiple, possibly co-varying, factors. 

where R2
  is the coefficient of determination and can be calculated in several ways  

 

where SSmodel (also known as the explained sum of squares or ESS) is 

 

 𝑉𝑉𝐶𝐶𝑛𝑛 =
1

1𝑅𝑅2
  

( 3-68) 

[85] 

 
𝑅𝑅2 =

𝑆𝑆𝑆𝑆𝑟𝑟𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙
𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
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∆𝑦𝑦2

(∆𝑦𝑦 + 𝜎𝜎�2) 
 

  ( 3-69) 

[79,81,83,85] 
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 and SScorr Total (also known as the total sum of squares) is: 

 

𝜎𝜎�2 = estimated standard deviation (from the square root of the residual mean square of the ANOVA 

analysis).  The VIF increases to the point where the ANOVA response for multiple variant (response 

surface polynomial) factors are no longer trustworthy.  When the VIF approaches ten (or greater) 

serious doubt is cast on the validity of this approach.  Once a set of data has been generated, it is 

possible to calculate the standard error (SE) for the mean of these various individual values in the 

model: If  

 where xi = is x at the point being predicted 

and the predicted standard error is then  

 

One point to consider in RSM analysis such as Box-Behnken, or central composite designs, is that 

some outcomes may be of no interest at the time or physically impossible.  So, certain regions or 

results in the model may well be impossible to calculate.  The operational boundaries (upper and 

lower limits of the designed experimental model's outputs) increase as the number of co-varying 

factors increases. 

Lower limit = Cj 

 
𝑆𝑆𝑆𝑆𝑟𝑟𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙 =  �(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2

𝑛𝑛

𝑖𝑖=1
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[81,83,85] 

 
𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2

𝑛𝑛

𝑖𝑖=1
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[82,85] 

 𝑦𝑦� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 ( 3-72) 

[82] 

 
𝑆𝑆𝐸𝐸𝑟𝑟𝑙𝑙𝑎𝑎𝑛𝑛(𝑖𝑖) =  𝜎𝜎��

1
𝑛𝑛

+
(𝑥𝑥0 − �̅�𝑥)2

∑(𝑥𝑥𝑖𝑖 − �̅�𝑥)2 
 

( 3-73) 

[85] 

 
𝑆𝑆𝐸𝐸𝑝𝑝𝑟𝑟𝑙𝑙𝑎𝑎 =  �𝜎𝜎�2 + (𝑆𝑆𝐸𝐸𝑟𝑟𝑙𝑙𝑎𝑎𝑛𝑛(𝑖𝑖))2  

 

( 3-74) 

[85] 
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Upper limit = Dj 

 

where  

j= 1,2, … n 

and β1j is the scalar constant in the generated linear equation for up to ‘q’ terms, with the upper and 

lower limits having various constraints for the designed experiments input arguments.  

Returning to the discussion of the α length from earlier, Anderson & Patrick (2005) [85]  recommend 

an α length of the fourth root of the number of factors in the design.  Such a fourth root α length will 

minimise the VIF for larger numbers of factors experimental designs. 

3.10. Summary of Chapter 3 

This chapter has considered the equations at the heart of the statistical methods utilised in the Design 

Expert Pro software.  This software, and the data analysis methods outlined, will be used in 

Chapters   4, 5 and  6: Multivariate linear regression models,  backwards elimination, and VIF will be 

used to a large extent.  The general DoE for the work in Chapter 6  will be an adaptation of the central 

composite response method (surface discussed in section  3.9) suitable for use with ‘categoric data’. 

The methods outlined in Chapter  3 are well understood and recommended best practice in many fields 

of science and engineering [79,81,83,85].  These methods have model validation built into the 

procedures they follow.  The quantification of residuals and the inherent inclusion of ε values at the 

most basic stages of the mathematical analysis; ensures that the linear regression models developed 

have been validated within their stated degree of accuracy, and within the limits and assumptions of 

the original DoE [79,81,83,85].  

 𝐶𝐶𝑎𝑎 ≤ 𝛽𝛽1𝑎𝑎𝑥𝑥1 + 𝛽𝛽2𝑎𝑎𝑥𝑥2 + ⋯+ 𝛽𝛽𝑞𝑞𝑎𝑎𝑥𝑥𝑞𝑞 ≤  𝐷𝐷𝑎𝑎 ( 3-75) 

[80,85] 
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4  Data Analysis of Gas Diffusion Media 

4.1. Introduction to Chapter 4 

Chapter  4 introduces a more detailed study of gas diffusion media (GDM) and provides several 

numeric simulations to highlight the important role these components play in the performance of fuel 

cells (see section  4.2).  The work on this thesis is focused on the utilisation of designed experiments 

and their ability to create statistical models of the impact GDMs have on overall cell performance. A 

visual aid to understanding the mass and heat flow in the GDM of the fuel cell during operation is 

presented to underline the importance of GDM.  Section  4.2 presents a standard numeric model to 

illustrate the distribution of reactants and products in the cathode GDM.  This generic model was used 

for illustrative purposes in the hope of underlining the importance of the GDM, and also to improve 

the understanding of the importance that changes to the GDM, and how they will impact the 

performance of the cathode GDM, and by extension the rest of the fuel cell.  In section  4.3 the 

experimental procedures are outlined in accordance with the statistical methods discussed in 

Chapter  3.  Such a procedural approach is the first step in a comprehensive study of GDM and their 

impact on the performance of fuel cells: To achieve this, section  4.4 focuses on the comprehensive 

GDM characterisation work carried out by several authors, most notably Dr Ahmad El-Kharouf  

[15,16] of the University of Birmingham.  The samples tested in this work were originally tested in 

collaboration with Dr El-Kharouf.  The experimental results generated by the author remained the 

property of the author, and it is this database, combined with the published historic records [15,16] 

that make up the entire data set analysed in this chapter.  This work will be used to assess the validity 

of the multivariate method outlined in Chapter  3. 

4.2. GDM conceptual models 

There are several aspects of the GDM to be understood to fully appreciate the importance of its role in 

the fuel cell.  Following the example of Collen Spiegel (2008) [87], a breakdown of some of the major 

features of the gas diffusion Media is presented.  Development of a full fuel cell model is beyond the 

scope of this thesis, and so the ‘half land half channel’ approach put forward by Spiegel (2008) [87], 

adapted to reflect the cell geometry and operating conditions used in this study is adopted.  The half-

land half-channel model simplifies the simulations procedure greatly and still provides a repeatable 

‘unitised’ cross section that can be extrapolated over the width of the cathode.  This repeatable unit 

provides a reasonable model of the distribution of reactants and products in the flow channels, and in 

the GDM itself. As stated previously, a full simulation of working fuel cells is beyond the scope of 

this thesis.  No effort has been made to model the edges of the flow field plate, changes in gas flow 

due to flow channel geometry, or the impact the wider ‘balance of plant’ has on the performance of 

the fuel cell (all factors that could be considered weaknesses of the half-land half-channel model).  
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Figure 18 shows a simplified schematic of the cathode side of a fuel cell in cross section.  The ‘GDM 

simulation region’ represents the ‘half-land’, ‘half-channel’ ‘unit’ that will be discussed in more detail 

in the simulation models, and it is defined with more detail Figure 19. 

 
Figure 18: Half 'land' half 'channel' unit for GDM modelling 

For modelling purposes, the schematic shown in Figure 18 must be expressed more rigorously as seen 

in Figure 19.  The GDM simulation region in Figure 18 corresponds directly with the region ‘d1 and 

d2’ as shown in Figure 19.  Figure 19 also shows the key starting assumptions of the initial conditions 

of the simulation: 

• Model assumption. 

• The inlet channel was at higher pressure than the outlet channel. 

• There was no direct mass flow through the GDM (inlet to outlet). 

• There was no pressure differential through the body of the GDM. 

• No liquid H2O was present in the GDM at the start of the simulation. 

• Catalyst is assumed to be a uniform thin layer on the surface of the membrane. 
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Figure 19: Regions of the GDM (adapted from [87]) 

The model generated defined the parameters, and produced graphic representation, of the half channel 

region (regions d1 and d2) as shown in Figure 21 through Figure 26.  Before initiating any of the 

subsequent models, a zone of parameters related to the channel dimension (the x plane in all 

subsequent models) and the thickness of the GDM on the Y axis (where y=zero is the edge of the 

supposed catalyst layer for a cathode coated membrane in an MEA), were created. 

In the case presented, the unit length is dimensionless but could be adapted to any regular cell 

geometry by treating the actual measured length of ‘d’ (the half width of the recessed channel) as a 

single unit value for all other dimensions.  A key assumption of this model requires the ‘Perturbation 

factor’ be set and is in accordance with the guidance: 

 

where ε is the volume fraction of carbon present in the GDM.  Physical properties of the GDM, such 

as the tortuosity and wettability, were effectively lumped together in the perturbation factor, and the 

assumptions made about the type mass and heat flow present to simplify the final equations developed 

to create the model. In the initial simulation ε=0.2 

 ε=h/dx <<1 ( 4-1) 
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4.2.1. GDM two-dimensional numeric model 

The numeric models presented in Chapter 4, have been adapted from work presented by Ms Spiegel 

[87] who has, in turn, presented work originally developed by Beusher et al. (2004) [88] which is 

available in the online repository of the Rensselaer Polytechnic Institute. 

Porous bodies, such as the GDM, can have fluids flow through them utilising a variety of transport 

mechanisms.  Knudsen (free molecular) flow occurs at low densities of the given species, and this 

ignores species-species interactions and focuses on the lone molecules of the fluid transported and the 

environment it is moving through.  Viscous flow of the fluid was represented as a continuous field, 

and collisions between molecules of the species dominates.  In ordinary diffusion, mixed species are 

transported by their interaction with each other and the external forces acting upon them (temperature, 

pressure and so on).  In surface flow, molecules of the species of interest are modelled as moving 

along the surface of the layer they are adsorbed onto.   

This last function was added onto the numeric model to increase its accuracy in well-defined systems.  

Typically GDMs are said to have pore size distribution that means Knudsen diffusion does not 

dominate (i.e. pore sizes significantly greater than 0.5µ𝑚𝑚) [25,87].  Darcy flow velocity (VDacry) in 

porous media assumes there is no mixing between species and laminar flow is assumed in accordance 

with 

Where 

𝐾𝐾𝑖𝑖 =  absolute permeability of species i 

𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝑖𝑖 = Dynamic viscosity of species i 

∇𝑃𝑃 = Change in preasure 

𝜌𝜌 = density of fluid i 

𝑔𝑔 = Acceleration due to gravity (9.8m.s-2) 

Colleen Spiegel (2008) [87]  showed in detail how this is adapted for use in porous media for the 

phases present in the GDM, and the two-phase form for gaseous water. 

 𝑉𝑉𝐷𝐷𝑎𝑎𝑟𝑟𝐹𝐹𝑥𝑥 =  
𝐾𝐾𝑖𝑖

𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝑖𝑖
 (∇𝑃𝑃 − 𝜌𝜌𝑔𝑔)  

( 4-2) 

 𝑁𝑁𝑤𝑤,𝑙𝑙 =  −  
𝐾𝐾𝑖𝑖

𝑉𝑉𝑤𝑤  𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝑖𝑖
∇𝑃𝑃𝑙𝑙 

 

( 4-3) 
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where  

NW,l  = the volume of pure water in the system in flux 

 K = absolute permeability of species ‘i’ 

Vw = the velocity of the water 

µvisc,i = the Dynamic viscosity of phase ‘i’.   

This approach can be further adapted to include transfer between gaseous and liquid phases, but that is 

far beyond the scope of this thesis.  The Steffen-Maxwell equation for diffusion of one gas phase in 

another is also utilised to model the gas phase transport, especially multi-component gas mixtures, in 

the GDM [87].  Once again the adaption of this equation for use in the GDM is detailed in the 

literature [87]. 

 Where  

∇𝑦𝑦𝑖𝑖=  the displacement of species i 

R = Gas Constant (8.313 J.K-1.mol-1) 

T = Temperature 

N’i’ = the superficial gas phase flux of species ‘i’ averaged out over the unit volume area being 

considered (Note that this area must be much greater than the mean pore size for this approach to be 

valid). 

𝑝𝑝 = density of fluid system 

𝐷𝐷𝑖𝑖𝑎𝑎
𝑙𝑙𝑓𝑓𝑓𝑓 = effective diffusion of species ‘i’ in species ‘j’ 

It is also possible to determine the temperature distribution in the GDM resulting from the exothermic 

reactions taking place at the surface of a catalysed membrane through the relationship shown in 

equation (4-5) [87,88].  An initial estimate of the temperature (Ti), based on the distribution of 

reactant gases and the exothermic nature of their interactions, has to be generated.  The calculated Ti 

value becomes the starting condition of simulations to follow. 

 

 

 
∇𝑦𝑦𝑖𝑖 = 𝑅𝑅𝑅𝑅�

𝑦𝑦𝑖𝑖𝑁𝑁𝑎𝑎 − 𝑦𝑦𝑎𝑎𝑁𝑁𝑖𝑖
𝑝𝑝𝐷𝐷𝑖𝑖𝑎𝑎

𝑙𝑙𝑓𝑓𝑓𝑓  
 

( 4-4) 
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The symbol ‘R’ denotes the real solutions to all numbers in the set ‘f4’; enabling the initial 

temperature at a given point within the GDM to be derived (ignoring liquids) and f4 is the 

transformation function for initial temperature calculation. 

 

and  

 

where z and y are coordinates, and i is complex. 

Once the starting condition (Ti) temperature distribution had been calculated, the proportion of 

gaseous and liquid water phases was established, and the degree of saturation of pores with liquid 

water approximated.  Utilising the adapted Darcy equation (equation (4–3)), to model the movement 

of gaseous water through the pores of the GDM (𝑉𝑉�𝐻𝐻2𝑇𝑇(𝑔𝑔)), and factoring in the degree of pore filling 

taking place as liquid water is produced and moves through the GDM, the velocity of the gaseous 

water in the system was calculated.  

where  

𝑉𝑉�𝐻𝐻2𝑇𝑇(𝑔𝑔) = Velcoity of gaseous water in the GDM 

𝐾𝐾(𝐻𝐻2𝑇𝑇,𝑔𝑔𝑎𝑎𝐹𝐹) = permeability of gaseous water in the GDM 

𝜃𝜃 = volume fractions of pours taken up with liquid water 

 Ti = Rf4 ( 4-5) 

 𝐸𝐸4 =
1
2

+
1
𝜋𝜋
𝑠𝑠𝑝𝑝𝑛𝑛−1(𝐸𝐸3)  

( 4-6) 

 
𝐸𝐸3 =  

𝐸𝐸2 − 1
𝐸𝐸2 + 1

 
 
( 4-7) 

 𝐸𝐸2 = exp (𝜋𝜋.𝐸𝐸1)  

( 4-8) 

 𝐸𝐸1 = 𝑧𝑧 + 𝑝𝑝𝑦𝑦  

( 4-9) 

 
𝑉𝑉�𝐻𝐻2𝑇𝑇(𝑔𝑔) =  −  

𝐾𝐾(𝐻𝐻2𝑇𝑇,𝑔𝑔𝑎𝑎𝐹𝐹)𝜃𝜃
 𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝐻𝐻2𝑇𝑇 𝑔𝑔𝑎𝑎𝐹𝐹

∇𝑃𝑃� 
 

( 4-10) 
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 𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝐻𝐻2𝑇𝑇 𝑔𝑔𝑎𝑎𝐹𝐹 = Dynamic viscosity of gaseous water in the GDM 

∇𝑃𝑃� = Pressure gradient 

The full derivation of equation ( 4-10) is inthe literature [87], and the Matlab® code used to reproduce 

this research (adapted to more accurately represent the FCCA and the experimental operating 

temperatures used in this research) is available both in [87] and in Appendix 2.  Ti, the increase in 

temperature in the system as a result of ongoing reactions as per equation ( 4-5), was established.  The 

assumption of an overall uniform temperature in fuel cells breaks down at the scale that is important 

for GDMs [87].  The deviation away from the mean cell temperature as a result of exothermic 

reactions is mapped in Figure 20.  In Figure 20, the temperature beneath the ‘Land’ part of the flow 

geometry (location d2 in Figure 19) and the flow channel (location d1 in Figure 19) as a starting 

assumption is detailed.  The z-axis of Figure 20 shows the deviation from the average temperature of 

the overall cell operating temperature. The availability of reactant gases and the removal of water 

(vapour and liquid) are shown with the variation in temperature (z axis (Ti).  That change above the 

mean temperature of the cell was simulated above the catalyst layer (assumed to be a single layer 

reaction at the base of the region modelled).  The heat flow from the reactions primarily accruing 

within the ‘channel region’ and the contribution that temperature then makes to the temperature of the 

GDM directly region beneath the flow field plate. 

 
Figure 20: GDM inner layer temperature distribution (half land/half channel) 

The variation in the underlying temperature distribution, as a result of exothermic reactions (water 

formation), was simulated for single ‘half channel, channel land’ as shown in the inset image of 

Figure 18.  In this instance, the region being modelled is isolated from the rest of the fuel cell prior to 
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running the rest of the simulation.  Note that the peak temperature, after running the simulation 

through several iterations without simulating additional gas flow, creates a high-temperature region in 

the channel (d1) at the upper surface of the GDM (Figure 20).  Figure 20 shows that peak temperature 

inside the GDM does not necessarily occur at the membrane surface. This initial temperature profile 

was run as a simulation until a steady state was achieved. The initial temperature profile shown in 

Figure 20 now becomes the key assumption of the subsequent simulations in this chapter.  This 

variation will impact the distribution of water as either a liquid or gas and will, in turn, impact the 

pore filling factor (𝜃𝜃) that changes the percentage availability of open pores in the GDM.  As oxygen, 

water vapour and liquid water enter and exit at the surface of the exposed region of the GDM 

(simulating the flow of reactant and products along the channel), the simulation continues until a 

steady state was achieved and the stable distribution of the three phases is presented in Figure 21 

through Figure 26.  All codes and equations to achieve this were based on the work by Spiegel (2008) 

[87], and the interested reader is directed there for more detailed explanation of the modelling process. 

Having established the boundary conditions (for regions d1 and d2 as shown in Figure 19), the 

assumptions of initial temperature distribution can be applied.  It is now possible to visualise a two-

dimensional cross section of the GDM for Temperature, O2 concentration, H2O vapour distribution 

and H2O liquid water saturation in the operating fuel cell, in the steady state.  

Once again all codes and equations were based on the work by Spiegel (2008) [87] and have been 

adapted to reflect the operating geometry and test conditions of the FCCA.  In all cases the GDM 

modelled was a generic one.  It is a flaw in this approach that the material properties, wettability and 

porosity of the GDM are presented largely through a perturbation factor (ε), and not a more detailed 

understanding of the individual GDMs significant factors such as pore geometry, tortuosity and actual 

pore size distribution to name just a few.  However, such a detailed model is beyond the scope of this 

thesis.  The reduced complexity model presented here is still useful and the developed distributions 

broadly informative.  In Figure 21, the temperature increase above the fuel cell mean temperature in 

the steady state operation in accordance with equation ( 4-5), is shown. 

Figure 21 shows the temperature distribution through the cathode GDM directly under the flow 

channel and the land.  The x and y axis are in mm.  It can be seen that directly under the metallic 

bipolar plate (x=0 to 1), the ‘land’ of the flow channel structure; there is a significant heat loss, as is to 

be expected.  The region adjacent to the catalyst layer, and underneath the flow channel has the 

highest temperature concentration as a result of the freely available reaction gases and the exothermic 

reaction processes modelled. 
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Figure 22 shows the concentration variation in oxygen through the cathode GDM directly under the 

flow channel and the land.  The x and y axis are in mm.  The oxygen concentration in the region (x= -

1 to 0) under the flow channel is higher than that under the land (x= 0 to 1). 

 
Figure 21: Temperature distribution of working cathode GDM 

 
Figure 22: Oxygen concentration distribution of working cathode GDM 
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Figure 23: Water vapour distribution of working cathode GDM 

 

 
Figure 24: Liquid water distribution of working cathode GDM 

Figure 23 shows the concentration variation in gaseous water vapour through the cathode GDM 

directly under the flow channel and the land.  The x and y axis are in mm.  Gaseous water vapour was 

almost the inverse of the distribution of the oxygen concentration. 
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Figure 24 shows the saturation variation in liquid water through the cathode GDM, directly under the 

flow channel and the land.  The x and y axis are in mm.  Liquid water has accumulated in the region 

directly under the land (x=0 to 1). 

These images provide an understanding of the mass flow of reactants and products in various phases 

through the GDM, and make the importance of the GDM to the overall performance of the fuel cell 

clear.  If the fuel cell saturation distribution of water in the steady state encroaches strongly into the 

‘d1’ region (x = -1 to x = 0), then there will be a reduction in the estimated pore volume fraction (θ) 

available for reactant and product species to enter-exit the GDM from the gas flow channel. 

4.2.2. GDM degradation and time dependence 

The exact mechanisms and failure modes for GDMs are detailed by many other authors already, and 

the literature has been discussed previously in section  2.3.  To summarise the impact GDM ageing can 

have on liquid water and oxygen concentration shown in Figure 25 and Figure 26, the assumed 

perturbation factor (ε) has been set to 0.1.  Setting ε = 0.1 gave an indication of how sensitive the 

model is to the assumed porosity and wettability of the system (recall that wettability is a function of 

PTFE coating mass presence, but increased PTFE reduces the total pore availability).  The reduced ‘ε’ 

value simulates a more efficient removal of liquid water (saturated H2O) and this, in turn, allows a 

more uniform distribution of O2 directly under the gas flow channel.  Therefore, it is clear that 

changes to the ability to transport water (gaseous or liquid) through the GDM over time will have a 

significant impact on the GDM performance.  GDM degradation mechanisms can be listed as follows 

[89,90]: 

Table 8: GDM degradation mechanisms 

Reversible 
Loss of porosity PTFE ionomer expansion 

 Thermo/mechanical crushing 

 H2O(l) build up 
Irreversible 

Diffusion Layer structure alters permeability Carbon Erosion 

 Fibre loss 
PTFE coating loss OH radical attack 

 

Regarding the models used in this thesis: As time passes the 𝜇𝜇𝑙𝑙𝑖𝑖𝐹𝐹𝐹𝐹,𝑖𝑖  (Dynamic viscosity) of liquid 

water will change within the GDM, as the factors that impact it (such as mean pore size and degree of 

hydrophobicity) will also alter.  The volume fraction of available pores (θ) will also change as the 

number of pores, their total size and smallest available pore that can be penetrated by various species 

will alter over time as the cell ages.  The exact degree of impact these factors have on the longevity of 
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fuel cells for specific types of GDM is determined experimentally and is discussed in more detail in 

Chapter  6 with sections  6.7 and  6.8 being of particular note. 

 
Figure 25: ε=0.1 liquid water distribution of working cathode GDM 

 
Figure 26: ε=0.1 oxygen concentration distribution of working cathode GDM 
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Figure 25 shows the concentration variation in oxygen through the cathode GDM directly under the 

flow channel and the land.  The x and y axis are in mm.  The oxygen concentration in the region (x= -

1 to 0) under the flow channel is higher than under the land.  In this case, ε is idealised (ε = 0.1) and 

demonstrates more uniform oxygen distribution under the channel region (d1 in Figure 19)  and at 

higher concentration than for the reduced performance (i.e. degraded) GDM simulation shown in 

Figure 22. 

Figure 26 shows the saturation variation in liquid water through the cathode GDM, directly under the 

flow channel and the land.  The x and y axis are in mm.  Liquid water has accumulated in the region 

directly under the land (x=0 to 1).  In this case, ε is idealised (ε = 0.1) and demonstrates reduced 

liquid water concentration under the land region (d2 in Figure 19), and at higher concentration than 

for the reduced performance (i.e. degraded) GDM simulation shown in Figure 24. 

It is evident that GDMs are a worthy topic of further investigation and that as the GDM material and 

structure changes, either by design or over time as a result of degradation; this strongly influences the 

overall performance of the fuel cell.  More detailed numeric modelling and simulation of GDMs is 

needed in the fuel cell field, and the interested reader is directed to works that focus entirely on 

numeric simulations of GDMs such as that carried out by Park et al. (2016) [91], and Jinuntuya (2014) 

[55].  The work in this thesis has retained its focus on multivariate assessment of experimental data. 

4.3. Assessment of multivariate methods 

The work in this section was undertaken in collaboration with the University of Birmingham Doctoral 

Training Centre for Hydrogen, Fuels Cells and Their Applications, who provided the materials to 

manufacture the MEAs tested. 

4.3.1. Test conditions 

Two sets of parameters were used throughout the testing in this document, as shown in Table 9.  

Previous experience with the fuel cell component analyser (FCCA - detailed in section  4.3.2) has 

shown that higher pressure, higher flow rate test settings, generated less variable results. This high-

pressure stability is thought to be a peculiarity of the FCCA itself, perhaps due to the lack of inlet gas 

humidification and the absence of any pre-heating of gas flows.  The experimental settings for this 

research were defined in collaboration with the University of Birmingham and the work being carried 

out by them into gas diffusion layers and MEA fabrication methodologies.  A lower pressure setting 

was also tested.  The low-pressure setting was intended to more accurately simulate the supposed 

operating conditions of an automotive application, though it must be acknowledged that the FCCA 

has not always shown repeatable results at these settings.  This research was carried out in conjunction 

with the FUTURE-vehicles project (EPSRC Grant EP/I038586/1). 
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Table 9: Two sets of fuel cell operating parameters 

Setting High pressure Low pressure 

H2 flow rate 80 sccm 60 sccm 

Air flow rate 200 sccm 150 sccm 

Back pressure 2 bar (a) 1.5 bar (a) 

Data logging rate 1 Hz 1 Hz 

Relative humidity 1F

2 100% 100% 

Cell temperature 75OC (+/- 3 OC) 60 OC (+/- 3 OC) 

 

4.3.2. Fuel Cell Component Analyser 

Components were tested on a fuel cell component analyser (FCCA) from Intelligent Energy Ltd.  Two 

of these devices were available and will be referred to as FCCA one or two (FCCA one shown in 

Figure 27).  Each FCCA consists of four test cells with 11.3 cm2 active area in a circular (disc), 

geometry (shown in Figure 28) with graphite monopole plates.   

Table 10: FCCA specifications 

FCCA specifications 2F

3 

 Min Nominal Max 

Anode gas mass flow 40 sccm.min-1 100 + sccm.min-1 2,000 sccm.min-1 

Cathode gas mass flow 40 sccm.min-1 100 + sccm.min-1 2,000 sccm.min-1 

Gas pressure 1bar (g) 3bar(g) 5 bar(g) 

Temperature control Ambient 40oC to 80oC 120oC 

Load cell terminals - 1 Volt 9.9 Volts 

Load input - 1 volt 48 Volts DC 

Load current - 25 Amps / 25 Watts 25Amps /100 Watts 

Data collection rate - 1Hz - 

Ambient temperature 5oC - 35oC 

 

Each cell consists of a single serpentine flow field, with a 1.6 mm land and a 1mm channel for gas 

flow. The channels are 1.1mm deep. The FCCAs both operate on a custom Excel™ interface supplied 

by Intelligent Energy Ltd and a National Instruments® based data acquisition and control system. 

                                                      
2 Manufacturers operators manual 
3 Manufacturers operators manual 
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Figure 27: FCCA 1 with EIS on cell #4 

 

 
Figure 28: FCCA 1 individual test cell flow field (cathode) 

 

4.3.3. Ink Formulation 

The aim of the work in this thesis was focussed on the practical experimentation on GDM.  To ensure 

that all tested MEAs are as uniform in manufacture as possible, and therefore reduce likely sources of 

experimental variability; it was realised that there was a requirement to manufacture all MEAs in-



4-81 
 

house.  The GDMs used by several different fuel cell and MEA suppliers are not universally identical.  

Any commercially manufactured MEAs would have been purchased from several suppliers to achieve 

the spread of MEAs required for the work completed in Chapter  4 and Chapter  6.  However, there 

were no guarantees that the PTFE based monomers, the cell manufactures heating and pressure 

regimes, or catalyst ink formulations used by the various manufacturers would be in any way similar.  

It was, therefore, essential that all MEAs be manufactured in-house, including the catalyst ink 

required to create electrode surfaces. 

All samples were manufactured using the same basic materials (Nafion® membranes, Nafion®-based 

ionomer).  Heating and pressing regimes were uniform across all samples, and the application of 

catalyst ink was achieved by hand painting.  All samples in detailed in Chapter  4 were manufactured 

by one of three researchers (Nick McCarthy, Amrit Chandan, Ahmad El-Kharouf), and all were 

manufactured in the fuel cell laboratories at the University of Birmingham.  Every effort has been 

made to ensure samples are of equal quality of manufacture.  Catalyst ink formulations are focused on 

in more detail in section  4.3.3 as they were assessed as being the manufacturing step with the highest 

risk of error. 

Catalyst ink formulations are many and varied, and the ink formulation used in this research was 

designed to create a catalyst suspension that would maintain its catalyst distribution during the 

application process.  There are various ink formulations in the literature [47,92-94], usually optimised 

for spray applications.  Lacking the ability to spray deposit catalyst ink in the department; these 

formulations were adapted until the following stable ink manufacturing procedure was perfected.  

Deionised (DI) water, 30 ‘weight percent’ (30wt%) of  platinum (Pt)  on carbon (C)3F

4, 10wt% aqueous 

Nafion® solution, and 1 molar 2-propanol solution (IPA) were ‘sonicated’ (agitated in sealed 

container placed in liquid bath subjected to ultrasonic frequency perturbations)  together for one hour.  

Note the DI water is added to the platinum catalyst first to reduce the possibility of combustion during 

mixing.  The amount aqueous Nafion® solution required in µL = mass of carbon desired (catalyst 

weight not included) in mg divided by the percentage Nafion® solution strength (expressed as a 

decimal). 

The volume of liquid calculated from equation ( 4-11) was multiplied by 5.31: This is the volume of 2-

propanol required to act as a solvent for the ink formulation as shown in equation ( 4-12). 

                                                      
4 Carbon black catalyst support was ‘Vulcan carbon black’ according the to the suppliers. 

 
𝑁𝑁𝑣𝑣𝐸𝐸𝑝𝑝𝐷𝐷𝑛𝑛𝐹𝐹𝐹𝐹𝑙𝑙𝑛𝑛.(𝜇𝜇𝑙𝑙) =

𝑚𝑚𝐶𝐶𝑎𝑎𝑟𝑟𝑏𝑏𝐹𝐹𝑛𝑛 (𝑚𝑚𝑔𝑔)
%𝐹𝐹𝐹𝐹𝑙𝑙𝑛𝑛.(𝑣𝑣𝑠𝑠 𝑂𝑂𝐸𝐸𝐸𝐸𝑝𝑝𝑚𝑚𝑣𝑣𝑙𝑙)

 
 

( 4-11) 

 𝑁𝑁𝑣𝑣𝐸𝐸𝑝𝑝𝐷𝐷𝑛𝑛𝐹𝐹𝐹𝐹𝑙𝑙𝑛𝑛.(𝜇𝜇𝑙𝑙) ∗ 5.31 = 2𝑝𝑝𝑟𝑟𝐷𝐷𝑝𝑝𝑣𝑣𝑛𝑛𝐷𝐷𝑙𝑙(𝜇𝜇𝑙𝑙) ( 4-12) 
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DI water with a volume equal to 10% of the measured out volume of 2-propanol (isopropanol), as 

calculated in equation ( 4-12), was added to the Pt-on-C, to reduce the possibility of combustion 

during mixing.  The whole mixture was sonicated at room temperature for one hour immediately 

before application.  Single layers of ink were painted on and allowed to dry for eight hours (or 

overnight).  The MEAs were then weighed, and the process repeated until the desired catalyst loading 

was achieved.  The ink preparation was sonicated for twenty minutes immediately before application 

if it has been left static for a significant period (more than three hours).  

Note that the amount of carbon relative to mass is a significant factor in the formulations, and the mix 

ratio for 10wt% Pt on C catalyst powders and 40wt% Pt on C powders were very different.  This 

carbon ratio interacts with the liquid proportions in the ink formulations and necessitated the need to 

create far larger batches of ink than was originally expected.  A great deal of care was exercised in 

applying the ink iteratively.  Additionally, the amount of ink to be applied was further increased to 

account for wastage and drying that occurs during normal fabrication.  Overall a 20% increase of ink 

to be created (based on the calculations in equations ( 4-11) and ( 4-12)) proved to be sufficient.  

Samples were weighed before painting on the ink and then weighed again several hours later to ensure 

that the amount of deposited ink (and therefore platinum) is in the correct range of wt% loadings to 

match the experimental design.   

A typical spreadsheet of ink formulation and for a layered catalyst MEA is presented in Table 11.   In 

this instance the data columns were set to achieve a platinum concentration on the surface of the 

electrode of 0.30mg.cm-2.  The column labelled ‘Base calculation’ gives the values required of each 

ingredient for a 40wt% Pt-on-C powdered ink at 40wt%.  The next three columns each show the 

measured amounts required (in accordance with equations ( 4-11) and ( 4-12) and with an additional 20% 

to account for wastage) to generate a 10 mg.cm-2 layer for each of three separate weighting of Pt-on-

C powdered ink (10wt%, 30wt% and 50wt%).  

If these three layers are painted on the sample, the total amount of platinum ink on the electrode 

would be 0.30mg.cm-2.  The spreadsheet presented was used to generate a more complex ‘variable 

concentration’ catalyst layer similar to those used in Chapter  6.  Simpler, single layers catalyst 

concentration layers can be created by setting the ‘Pt loading desired’ row to ‘0’ for any powdered ink 

loadings surplus to requirements. 



4-83 
 

 

Table 11: Catalyst ink formulations (10, 30 and 50wt% Pt-on-C) 
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4.3.4. MEA fabrication 

Nafion 212 sheets (manufacturer’s data sheet available as Appendix 1) were cut into 60mm by 60mm 

sections.  A 38mm diameter section of gas diffusion layer (GDL) material was cut out from a 

continuous sheet (surface area of 11.3cm2), ensuring all cut edges were at least 25mm away from the 

edge of the as-supplied sheet.  Catalyst ink was painted onto the GDL material to create a catalyst 

coated substrate (CCS) gas diffusion electrode (GDE) as described in  4.3.3.  This regime was 

implemented for both anode and cathode layers.  Typical platinum loading in fuel cells was 

0.38mg.cm-2 (+/- 0.02).  Catalyst ink was painted onto the GDM by hand, using an animal hair brush, 

to avoid cross-contamination from any polymeric bristles (some polymers are incompatible with 

isopropanol; see Material Safety Data Sheet available in Appendix 1). 

4.3.5.  Anode GDEs 

Anode GDMs were fabricated on Toray diffusion media TGP-H-120 with a 0.30mg.cm-2 (+/- 0.02) 

platinum loading.  This material was selected as it was commercially available in quantities sufficient 

for all experimental samples.  The decision was made to maintain a uniform anode catalyst layer and 

structure, in large part due to the oxygen reduction reaction (OOR) being the rate limiting step for fuel 

cell systems [24,66,95].  With a relatively high anode catalyst loading and a well-established GDL; it 

was decided the anode side could be held as a ‘constant’ for this research. 

4.3.6.  Cathode GDEs 

Cathode GDEs were fabricated in a similar fashion. However, the selection of GDL materials was 

wider, and a variety of catalyst loadings were manufactured.  The overall process of fabrication was 

largely the same as that used for the anodes, though with differing platinum loadings. 

4.3.7.  GDM Historic Data Matrix 

A large number of samples have been manufactured both by the author, and also by Dr Ahmad el-

Kahrouf and Dr Amrit Chandan of the University of Birmingham to facilitate research for their PhD 

work and to aid in contribution to several publications [15,16].   

These samples are all identified with the ‘AeK’ prefix in their name.  Thanks to the shared access to 

these research samples, it is possible to conduct a ‘data-mining’ investigation into published, historic 

information, alongside the polarisation data conducted at Loughborough University, by the author.  

Note that later samples (identified as ‘dual layer’,’DL’, ‘fluorescent’, ‘FL’, ‘MAC’, ‘FUTURE’ or 

‘FU’) were manufactured in a broadly similar way, by the author.   
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The electrodes and the membrane were hot pressed using a hydraulic press at 125OC and 1,800kg 

(15.24cm diameter rams onto a 25.4cm by 25.4cm square platens).  The MEA components were 

protected by a PTFE sheet and wrapped in two layers of aluminium foil.  The samples were held flat 

and stable by a matched pair of 1.6mm thick steel sheets (10cm by 10 cm).  All specimens were held 

at temperature and pressure for two minutes.   

A wide variety of MEAs were conditioned and then tested under polarisation conditions.  This 

research was done in collaboration with Ahmed El-Kharouf and Amrit Chandan of UoB as part of the 

background research that, several months later, went to the publication of their data [15,16].  To 

undertake the work in a timely fashion, it was agreed to share the manufacturing responsibilities for a 

large number of MEAs (all work completed at the UoB), and the initial ‘conditioning’ work for all 

fuel cells, was carried out at Loughborough University.  The ability to undertake conditioning regimes 

in up to eight fuel cells simultaneously (across the identical test cells of the two FCCA test suites 

available) were an invaluable resource to complete the work. 

After conditioning, the samples were polarised, and the results of this research remain the property of 

Loughborough University and Mr N. McCarthy.  The samples were then returned to the UoB where 

further characterisation was carried out on a selected number.  This additional work at Birmingham 

was later presented in chapter four of “Polymer Electrolyte Fuel Cell Degradation” [16].  

Some 128 samples were made in total, with the 50 materials used to create cathode variation in the 

sample set.  A minimum of two of each sample was created, with additional copies made in 

Birmingham, for the work undertaken there.  A full list of all Birmingham GDM data, including 

additional data sets from several GDM suppliers, expanded the original data set to include a greater 

variety of non-woven or non-woven type material.  The collected raw data for all test samples can be 

viewed in spreadsheet form in Appendix (3). 

All data on thickness, area weight, bulk density, surface roughness porosity, tortuosity, pore diameter, 

permeability water contact angle, contact resistance and in-plane resistivity were all gathered from 

literature [15,16].  All polarisation curve data (temperature, amps, voltage, gas flow rates) were 

gathered using the built-in data acquisition of the FCCA (see section  4.3.2) by the author. 

The fabricated MEAs active surface area was 11.34 cm2. The monopolar plates used were graphite, 

with a circular, single serpentine flow field. The GDM anode material was held constant: A 

commercial JM electrode ELE00165 was used with a catalyst loading of 0.4 mg.cm-2.  A variety of 

other GDMs were tested on the cathode side. TKK Pt-on-C catalyst based ink was hand painted on the 

GDMs to achieve a loading of 0.4 ±0.05 mg.cm-2 (as discussed in section  4.3.3 and  4.3.4). Nafion® 

212 polymer electrolyte membranes (PEM) were used.   
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All MEAs were soaked in DI water (resistivity = 18 MΩ.cm) overnight to accelerate the membrane 

activation process. The MEAs were then randomly assigned to one of seven test chambers for in-situ 

testing, under the following operating, set point, conditions: 

• H2 flow rate: 80 sccm 

• Air flow rate: 200 sccm 

• Back pressure: 2 Bar 

• Cell temperature: 65OC (+/- 5 OC) 

• Data logging rate: 1 Hertz 

• Relative humidity: 100% (according to FCCA manufacturer specification) 

MEA ‘conditioning’ was achieved by holding the cells at variable current load to induce a potential of 

0.6 ± 0.03 V for three hours. Once completed the MEA was subjected to 25 ‘rapid’ polarisation 

curves. A three second time step was initiated, with 25 current settings increasing to the maximum 

current load achievable by the MEA.  

As discussed in sections  4.3.3,  4.3.4,  4.3.5 and  4.3.6: All samples were manufactured in the fuel cell 

laboratories of the University of Birmingham.  All three researchers responsible for their manufacture 

followed a rigorous manufacturing plan with the express intent of minimising experimental variation 

across all samples.  Any created test pieces that were not correctly aligned (anode to cathode), or that 

failed to meet the desired catalyst loading by +/-0.02mg.cm-2 or that were in any other way 

compromised, were excluded from the study.  If possible duplicate samples were manufactured to 

replace them.  Initial ‘conditioning’ of the samples was carried out by the author at Loughborough 

University using the FCCA.  Any test samples that failed to generate a repeatable polarisation curve 

after 3 hours of steady state operation and 25 conditioning cycles, were rejected from the study.  

Where possible such rejected samples were manufactured again.  Once again, high standards of 

manufacture were maintained.  The stated conditioning regime had to be completed before samples 

were put forward for further tests. 

Polarisation curve number 25 of the sequence was recorded. A further polarisation curve with a 10 

second step time was also carried out and recorded. Polarisation curves were plotted by averaging the 

V/I values across each time step. 
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Table 12: Categoric identifiers for GDM analysis 

MPL - 

Yes 2 

No 1 

Structure - 

Non-woven 1 

Paper 2 

Woven 3 

Supplier - 

Ballard 1 

E-Tek 2 

Freudenberg 3 

Sigracet 4 

Tenax Toho 5 

Toray 6 

 

After collating all the data, Table 12 shows the ‘full set’ of variables that could be populated.  Table 

12 represents the input variable where there was sufficient data, across all sets, to conduct the next 

stage of the analysis.  ‘Ce-Tech’ GDMs were not included in this next stage of the study.  While the 

MEAs were fabricated and tested; there was insufficient background information to characterise the 

material in the study.  Additional samples of GDM (supplied by Tenax-Toho) to offset this reduction 

in the total number of GDMs available for this stage of the study.  Additional non-woven materials 

were added in from Freudenberg for the same reason. 

4.4. Historic data assessment results 

Initial investigations included a matrix plot [83] of GDL cathode performance.  Since the birth of the 

personal computing revolution, the recommended method for first assessing what may be multiple co-

varying factors is with a matrix scatter plot, as first described by Hartigan (1975) [96].  For any 

number of variables greater than one, it is possible to pair them and plot them as scatter plot against 

each other.  The matrix scatter plot (matrix plot), allows a rapid visual inspection of multiple variables 

simultaneously.  Its chief strength, is in identifying possible linear relationships between paired 

variables, and also in identifying categoric data.  A matrix plot consists of each variable plotted 

against each other and then presented as a single overall figure.  It is effectively a mosaic of OFAT, 

two variable, experiments.  The matrix plot for the data in this chapter is presented in Figure 29.  

Matrix plots are a ‘first stage analysis’ and perform several important functions: 
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• Clearly defining categoric data (which appear as vertical or horizontal ‘bars’ of data). 

• Identifying any strong linear relationships between individual input/output factors. 

o Which in turn makes it possible identify potential ‘pairs of date that may combine to 

reduce the complexity of study (as discussed in section  2.2). 

• Identify any data relationships that are obviously not normally distributed and may require 

transformation before successful incorporation into the multivariate method (as discussed in 

section  3.3.1 and   3.7.1). 

As discussed in Chapter  3 (sections  3.3,  3.4,  3.6,  3.7 and  3.8 ), M-ANOVAR and ANOVA techniques 

are considered robust in dealing with non-normal data distributions, but awareness of the possible 

impact of this during data analysis is important and must be accounted for.  The strongly correlated 

variables between temperature and the four output variables are a concern for simple ANOVAR 

analysis.  M-ANOVAR techniques (sometimes known as ‘MAnCoVar’) are specifically designed to 

work with co-varying input-output variables is sets of data, and so this is unlikely to be significant 

using the data analysis presented.   

The matrix plot presented in Figure 29, provides a visual examination of the histograms in the 

diagonal data displays, and provides an indication that non-normal and categoric data may be present 

in this data set.  Examination of the comparative scatter charts in Figure 29, can be used to identify 

any strongly correlating sets of data.  This set of simple scatter plots for each variable temporarily 

ignores the differences between individual GDL materials and, in the first instance, visually inspect 

the data for obvious and significant trends.  During the experiment, the mean temperature (Tbar) and 

the maximum temperature (Tmax) would be expected to correlate strongly, but this was not hugely 

significant to the experiment as a whole, as the use of multivariate methods overcomes this covariance 

of input variables. In certain regions, there was a categoric effect that should be factored into all 

analysis of future results.  For example, there was a clear categoric element to the choice of test 

equipment in the performance of experiments (FCCA 1 or FCCA 2).  Cross referencing this to other 

factors, such as the peak power output (Wmax) and the gradient of the Ohmic region of the 

polarisation curve (gO); the data appears to be quite uniformly spread.  As there was a great deal of 

information to be processed; computerised analysis was utilised. To aid in this, clearly categoric 

factors such as the structure, the presence of the MPL, and the identity of the suppliers were identified 

numerically (as shown in Table 12).  It should be noted that a lack of samples in all categories has 

limited the degree to which E-Tek and Toray samples could be included in all fields. 
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• Possible Categoric data in Figure 29: 

o Relative humidity (RH). 

o PTFE wt% loading (PTFE). 

o Percentage porosity (%pores). 

o One of two possible FCCA units (FCCA). 

o Cell number on each of the 2 FCCA used in the experiment (Cell). 

o Microporous layer presence (MPL). 

o Dew point temperature (dewpntT). 

• Possibly non-normal data in Figure 29: 

o Mean pressure during polarisation curve testing (Tbar). 

o Ambient Temperature (Tamb). 

o Maximum temperature during polarisation curve (Tmax). 

o Water contact angle (H2O angle). 

o Measured gas pressure during the polarising curve (Pressure ) 

o Gradient of the mass transport loss section of the polarisation curve (gM) 

• Strongly correlating pairs of factors in Figure 29: 

o Tbar and Tmax. 

o All four output variables correlate with the others (gA, gO, gM, Wmax). 
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Figure 29: Matrix plot cathode GDL structure 
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4.4.1. Example results 

Full printouts of all data points are available on request, and the base Matlab® code used to generate 

the following information is included in Appendix 3.  Polarisation curves, with individually calculated 

gradients of the three regions of their curve, were calculated and plotted as shown in Figure 30 and 

Figure 31: The method used for this approach is explained in more detail in section  4.4.2. 

Polarisation curves presented in Figure 30 and Figure 31, and similar images, show the polarisation 

curve in the top panel, with cell voltage and current density in Amps per centimetre square.  Included 

in the top plot are the gradient of each region of the polarisation curve (activation, Ohmic and mass 

transfer loss). The lower panel shows the power output generated from the associated polarisation 

curve as per ( 4-13).  Included on the lower of the two plots shown, are the peak power output of the 

fuel cell during the polarisation curve (the peak of the plotted curve), and the mean and maximum 

temperatures of the sample during the 250 seconds it takes complete a polarising curve measurement.  

This information is required to make a reasonable comparison between individual, or groups, of MEA 

polarisation curves. 

 

 
Figure 30: AeK ID 47 non-woven, no MPL 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

Current Density [A/cm2]

C
el

l v
ol

ta
ge

 [V
]

FCCA2-Cell2-AeK-47-SLOWPOL20120814IE02.CSV

-0.73996activation loss

-0.98119mass loss

-0.36034
ohmic loss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

Current Density [A/cm2]

P
ow

er
 D

en
si

ty
 [W

/c
m2 ]

0.36568
W/cm2 at Peak Power

70.6994
T mean(oC)

72.8
T max(oC)

 𝑊𝑊𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠 = 𝑉𝑉𝐷𝐷𝑙𝑙𝑡𝑡𝑣𝑣𝑔𝑔𝐸𝐸 ∗ 𝐴𝐴𝑚𝑚𝑝𝑝𝑠𝑠 ( 4-13) 



4-92 
 

 

 
Figure 31: AeK ID 24, non-woven, with MPL 

4.4.2. Regional assessment of polarisation curve gradients 

The various areas of the polarisation curves have had an assessment of the gradient applied to them 

individually.  Little specific guidance was uncovered in the initial literature review (Chapter  2), on 

how to make a rigorous comparison of polarisation curves across various samples.  There is a long 

tradition of numeric analysis of polarisation curves in the fields of corrosion and metallurgy [97]. 

Enumerative comparison of polarisation curves and parameter estimates based on them are less 

common in fuel cells research, but can be found.  Direct comparison of polarisation curves on 

experimental samples and numeric comparisons between samples and simulated values, has been 

reported and validated by several other authors [98-100]. 

Santerelli et al. (2006) [98] make specific use of the gradient of the polarisation curve as a comparator 

between fuel cells, and this analytical approach adopted in the experimental work reported in this 

thesis.  Santerelli et al. (2006) [98]  primarily used this approach to make a comparison between test 

samples and several numeric simulations, at various temperatures.  Santerelli et al. (2006) [98] 

recommend the approach for high-temperature polarisations (above 50oC); an excellent match for the 

work completed in this thesis. 
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Bezmmalinovic et al. (2015) [99], utilised polarisation curve comparison as a method of determining 

fuel cell degradation, and concluded that numeric comparisons of polarisation curves were a valid 

experimental technique. Al-Bagdhadadi et al. (2005) [100] recommend a similar approach when using 

simplified empirical models for reduced complexity “...system models”[100].  In this thesis, the 

technique was extended to several MEAs of different material construction, to make a direct 

comparison between them suitable for statistical analysis as outlined in Chapter  3. 

To rapidly assess a large number of samples, it was felt that a more rigorous approach than visual 

observation would be needed, but there was not sufficient time available to conduct additional tests on 

the UoB samples, nor were there sufficient resources to manufacture duplicate test MEAs for 

additional tests in the future.  With this in mind, it was decided to consider the gradient of each region 

of the curve, similar to the work carried out by previous authors [98-100]. 

With a well-recognised set of loss regions (activation, Ohmic and mass) [101] in the curve, it was 

hoped to increase understanding of the impact of cathode GDMs on fuel cell performance by 

comparing changes in the gradient and the total power output of the MEAs being tested.  To that end, 

the gradient of each discrete region has been calculated separately. Figure 32 gives a graphical 

representation of the process followed by the software for each polarisation curve analysed.  In each 

case, the gradient in question has been calculated by working from each end, towards the middle.  The 

first measured point of the polarisation curve was assumed to be in the activation loss region of the 

curve. 

An iterative sum of least squares approach (as discussed in Chapter  3), was then taken to determine 

the point where the gradient of the line changes the most.  The length of this region keeps increasing 

until the fit of a straight line region drops below a certain threshold (the exact level of the goodness of 

fit can be set by the experimenter).  Arguably the activation curve of these samples was far too ‘flat’.  

It was clear that there are multiple effects in this region of the curve.  The gradient analysis still 

required the assessment of the nominal ‘activation region’ to clearly define the start and end of the 

Ohmic loss region, for the next part of the analysis.  Before calculating the Ohmic loss region, a 

similar stepwise, least squares curve assessment, was made for the mass transport region.  Once again, 

the end of the data was selected, and the programme worked back along the data until the straight line 

fit of the various data points fell below the target threshold. The assumption was made that this 

represented the mass transport loss region of the curve.  Having sequentially fit a straight line to each 

end of the curve, a region was defined as the mass loss section of the curve; another region was 

defined as the activation loss section.  The remainder of the curve is, therefore, the Ohmic loss region 

to which a linear fit can be applied, and the gradient calculated.  Additional data points were excluded 

from the Ohmic region gradient calculation, to ensure any transition between the regions was avoided. 
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Figure 32: Process chart for 'gradient of regions' assessment of polarisation curves 

Three separate best line fits were then labelled ‘gA’ for the activation region of the polarisation curve 

(green) ‘gO’ (pink) for the Ohmic region, and ‘gM’ (red) for the mass loss region, are shown in 

Figure 30 and Figure 31.  Numeric values for the gradient of each section can now be captured and 

compared.  
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When comparing gradients between samples, it must be kept in mind that the gradient of two samples 

could be identical, while the actual values of the line measured can differ. For this reason, the data 

should always be considered in light of its corresponding ‘peak power’ (Wmax), where the Watts.cm-2 

can provide a fixed and absolute comparison between separate MEAs. 

The data gathered from the polarisation curves (examples of which are presented in Figure 30 and 

Figure 31 ) were then analysed as collective groups: Figure 33 through Figure 36  show ‘box and 

whisker’ plots for the various data sets available.  In the box and whisker plots, the red line is the 

median data point.  The lowest line on the basal ‘whisker’ represents the lowest value that is not 

estimated to be an outlier.  Outliers are determined by the Matlab® ‘boxplot’ function as follows: 

Set the initial condition of the whisker length (WL) 

If 

then x is an outlier. 

If 

then x is an outlier. 

The ‘box’ section contains the middle 50% of all data points measured centred on the median value 

(i.e. all values in the 1st (q1) and 3rd (q3) quartile ranges) [83]. 

As discussed in Chapter  3, initial investigations of data should be undertaken before proceeding on to 

more detailed analysis.  In this case, the spread of the data in each set was visually represented in 

Figure 33 through Figure 36.  In examining each image, it should be borne in mind that the gradient 

values (gA, gO & gM) are showing the gradient of each region of the polarisation curve for that group 

of MEAs.  The ‘Wmax’ on each figure, is a representation of the peak power output in Watts per cm 

square.  As discussed in section  4.4.1, when discussing or comparing polarisation curves it is 

important to state the relative values of the system being analysed.  For the images in Figure 33 

through Figure 34  peak power is displayed to provide the context for the gradient values displayed.   

In Figure 33, comparative polarisation curve gradients and the peak power, are shown for MEAs with 

non-woven, paper and woven cathode GDMs.  The activation and Ohmic gradients are broadly 

 wL = 1.5 ( 4-14) 

 x>>q3+wL (q3-q1) ( 4-15) 

 x << q1-wL (q3-q1) ( 4-16) 
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equivalent across each type of cathode, and therefore a suitable for comparison between the three 

cathode types. 

In Figure 34, comparative polarisation curve gradients and the peak power, are shown for MEAs with 

various levels of hydrophobic coating (wt%PTFE) added to them.  In this case, the 20wt% PTFE 

loaded cathode GDM group, has notably depressed gradients compared to the other categories (0%, 5% 

and 12.5wt% PTFE); but also shows a reduced range of values for the peak power output. 

In Figure 35, comparative polarisation curve gradients and the peak power, are shown for MEAs with 

GDMs supplied by various manufacturers.  It is clear to see that the variability of the mass transport 

gradient for GDMs supplied by Ballard and Toray, were far higher than those for the other samples. 

In Figure 36, comparative peak power is shown for all key input variables.  In the supplier section, 

there is a clear drop in the peak power output for supplier number five (Toho-Tenax). 

Results on pore sizes are notably missing; especially when considering the relative importance of pore 

size distributions, pore shape, and the tortuosity of the pore network for the GDMs, and their impact 

on the effective diffusion rate through the material.  As this data was not universally available for all 

samples, it cannot be included in this stage of the analysis.  It should also be pointed out that the 

apparent reduction in the range of the response as the PTFE increases, was interesting.  The increasing 

PTFE loading shows a distinct reduction in the median maximum power output, but also shows a 

reduction in the range of the data.  This uniformity of response must be viewed with a little caution, 

though; the number of samples available at 20wt% loading of PTFE was only four individual samples, 

and all four were supplied by the same manufacturer (Sigracet).  In this regard, the apparent reduction 

in range may simply be due to the use of a single batch from a single supplier.  A similar issue needs 

to be considered for the results of supplier number five (Toho Tenax).  Once again, only four samples 

were included by this manufacturer, an issue exacerbated by the limited number of types of GDM 

they supplied. 
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Figure 33: GDL cathode structure outputs 
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Figure 34: GDL cathode PTFE loading outputs 
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Figure 35: GDL cathode supplier 

 

Fi
gu

re
 3

5:
 G

D
L

 c
at

ho
de

 su
pp

lie
r 

ou
tp

ut
s 



4-100 
 

 

Figure 36: Peak power (Wmax) for all data by ‘group’ 
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4.5. Historic data DoE for loss regions and their gradient in cathode GDMs 

A more sophisticated analysis of the data can be carried out by using the linear regressions techniques 

outlined earlier in Chapter  3.  The software package Design Expert Pro has been used extensively, and 

the raw data has been collected from polarisation curves plotted in Matlab®.  These two software 

packages greatly accelerate the time it would otherwise take to complete backwards step regression, 

and also automates the ‘look up table’ values for t and F test probability estimations, along with and 

several other labour intensive actions.  All results have been checked for normality via Q-Q plots and 

were suitable for this type of analysis. 

Conducting multiple covariance analysis, allows for the production of a model of the systems for the 

input variables available and searches for more complex interactions.  It should be recalled when 

viewing this data, that the linear regression functions and the constants associated with them, are not 

necessarily indicative of physical processes, rather they are statistically derived values that give an 

indication of the inter-relationships of the input variables analysed. 

The variance inflation factors (VIF) below indicates the degree of collinearity in the model factors.  

The square root of the VIF, is an indication of how much the standard error (deviation away from the 

‘true’ mean) may vary, between sample groups of the same population.  If the initial variance is very 

small, even multiplying it by the root of a very large VIF will still be a small number and so not 

significant but, as will become clear later in the work completed for this thesis, some of the VIF 

factors on the untreated data were very large. 

That said, a VIF value above ten, indicates care should be taken with the model but does not 

invalidate it.  There are methods available to manipulate the data to counteract the impact of multi-co-

linearity in the results, but there is no universal agreement on their utility or application. There is a 

school of thought that removing the unacceptably high VIF valued factors is a superior approach if 

any action is needed. [81] 
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Table 13: Historic data DoE equivalent 
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Utilising data gathered when assisting the researchers at the University of Birmingham (UoB) with 

their work, their published results [15,16] and the results they, in turn, have cited from other sources 

(e.g. manufacturers data), it was now possible to develop an historic data analysis approach to the 

information at hand.  This analysis of pre-existing data, can be thought of as applying a DoE approach 

to a collection of results, usually from several different authors, after the data has been accumulated.  

While not an ideal approach to DoE as, by definition, this fails to minimise the number of experiments 

to gain an answer to the questions: It does, however, make it possible to analyse the published data 

from other sources and compare it with the experimental inputs, to generate a set of results.  Recall 

that in this case, all polarisation curve results were measured Loughborough University using the 

FCCA as described previously in section  4.3.2. The ‘designed experiments’ retroactively created to 

suit the historic data, are presented here in Table 13. 

The result for each gradient (for each ‘loss region’ of the polarisation curve) and the peak power 

output, can now be presented.  There were 128 separate samples to analyse as requested by the UoB.  

Not all categories were well represented, and additional materials were added to the data set.  

Unfortunately, laboratory measured (or well referenced) data could only be provided for a portion of 

all samples; 76 samples were finally included in this assessment (see Appendix 3).  These initial 

results were the ‘backwards optimised’ (to generate reduced complexity) M-ANOVA results, as 

generated by the software.  Note that the value ‘standard error’, is both the deviation away from the 

‘true’ mean of the entire population, and it is at the same time the standard deviation of this data set. 

The upper and lower bounds indicate where the true mean of the population must lie, with a 95% 

confidence level.  The following results were adapted from the data outputs of the Design Expert Pro 

software.  As is good practice in any statistical analysis, the experimental model was developed 

iteratively.  The first iteration is presented in Annexe 3, and only brief summation of the software 

outputs is presented in this section. 

4.5.1.  Activation loss gradient multivariate analysis 

It should be noted at this point, that the Q-Q plot for this data deviates away from the preferred line, 

as can be seen Figure 37.  However, the removal of a single outlier data point - Sample ID #30, a 

Freudenberg non-woven with MPL - corrected this issue.  With this in mind, the outlier was included 

back in the model as its leverage on the overall result was not significant.  
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Figure 37: Q-Q plot activation gradient (Ω.cm2) 

 

4.5.2.   Discussion of gA 

Certain terms such as ‘M = test cell number’ are apparatus specific.  This information is included, as it 

helps to quantify the degree of variability caused by the test equipment, the ambient temperature 

(factor C) interacts quite strongly with several factors.  The most significant of which is the porosity 

(factor K), with a p-value of 0.0025.  However, it is not immediately obvious that the interaction 

between the two was a genuine effect.  The ambient temperature should have very little impact on the 

test MEA itself.  It was considered advisable to consider which factors were interacting with the 

ambient temperature.  The interaction between T-bar (factor A) and the average temperature of the 

Fuel cell during testing and the individual cell conducting the test (factor M) was also a strong one (p-

value of 0.005).  Once again, there was a temperature and hardware interaction.   

Applying knowledge of fuel cell systems; the temperature conditions, both ambient and due to the 

fuel cell heating, are having an impact on the cell.  Combining that knowledge with the interaction 

with the porosity of the cathode GDM; the most likely explanation is that the clamping forces being 

experienced were varying, as a result of differential thermal expansion across the material that makes 

up the fuel cell assembly [24,87,95].  This additional clamping force, results in a change in the degree 

of ‘closing off’ of pores in the GDM.  Activation losses and mass transport losses are both heavily 

impacted by pore structure as, by definition, they are reliant on the availability of reactant gas at the 

catalyst surfaces.  However there is a weakness to this argument, in that the clamping pressures 

experienced in the test apparatus were well within the working range of all GDM and the readings 

taken; have all been conducted in the ‘steady state’.   

All test chambers have had the best part of an eight-hour day to reach a stable state, as a result of the 

conditioning process, before the final polarising curve was taken.  The possibility must be considered 
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that this is a ‘balance of plant’ issue. The mass flow controllers and other ancillary components that 

make up the individual test channels on each FCCA, may be out of calibration and so have an 

exaggerated impact on the results, depending on the ambient conditions in the laboratory.  The two 

possibilities, mass transport loss and balance of plant effects, are not mutually exclusive.  It was 

interesting to note that PTFE content of the fibrous structure of the GDM was registered as ‘not 

significant’ (p= 0.1195).  This lack of significance was in direct conflict with the literature on the 

topic [19,49,102-111].  It is suggested that the activation region of the polarisation curve simply does 

not generate enough water for PTFE content to be of benefit to the system [19,49,102-111]. 

4.5.3.  Ohmic loss gradient multivariate analysis 

The Ohmic loss gradient was analysed for co-varying factors in a backwards step, linear regression 

model. There was a slight ‘S’ curvature to the data, indicating a slightly flatter distribution: however, 

the Q-Q plot still passes the ‘pencil test’, as described in Chapter  3, where all data points can be 

covered a single ‘pencil’ width. 

 

 
 Figure 38: Q-Q plot Ohmic gradient (Ω.cm2) 

 

4.5.4.  Discussion of gO 

The reduced order model for the Ohmic loss gradient was identified as the preferred output of the 

three gradient regions.  The rank of significance for the key, lowest p-value, factors changed as the 

model order was reduced with backwards eliminaiton.  A p-value >F probability of 0.00001 (see 

Table 21) for the  PTFE content of the GDM was detected; and identified as the most significant 

factor in the gO model, which is in keeping with the existing literature as discussed previously (see 

Chapter 2 and section  4.5.2).  The p-value>F probability relationship has been discussed in depth in 
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Chapter  3 (notably in sections  3.3,  3.6 and  3.6.1) and the value generated indicates it is highly 

unlikely that the null hypothesis (i.e. h0 = “PTFE connect is not significant”) is correct.  For the first 

time significance in the structure (woven, paper or non-woven) in the gradient of the Ohmic loss 

region is registered.  There were no multi-factor effects evidenced by the model, and the significance 

of test cell or test machine, is to be expected in a region dominated by contact losses and clamping 

pressures.  These results somewhat contradict the previous inference that ambient temperature plays 

an interactive role on the clamping forces experienced by the system.  However, it may be that the 

resistances across the various test cells (of the eight possible locations) overwhelm any such effect.  

The pore structure also factors into the Ohmic loss.  At first consideration, this may be a little counter-

intuitive.  However, consider the porosity value (entered as a percentage presence of pores) as an 

estimate of the solidity, or density, of the system.  With higher porosity increasing the gradient of the 

Ohmic loss region; as there is less material and therefore fewer conductive pathways.  For non-

wovens, there was a negative gradient modifier generated by the model, whereby the Ohmic loss 

gradients were further reduced to creat a single statisitcal modle that can include all three GDM types.   

 

Table 14: Numeric designation of GDM structures 

 

 

 

 

The requirement for separate numeric values to model the three types of GDM  the first key instance 

in this thesis where it can be categorically stated that there is a quantifiable  need for the ‘third 

category’ of ‘Non-Woven’ felt like materials.  The evidence is certain (at the 5% level of significance) 

that the Ohmic losses were reduced for non-woven like material compared to any other carbon fibre 

based fabric system.  Table 14 shows the numeric values assigned to the reduced complexity model 

developed (see section  4.8.2).  Recall that in the automated software calculations, the actual numeric 

value attributed to the non-wovens (as a first entry data point) will be -1.  So the actual impact on the 

gradient is 0.13: the Ohmic loss region will be less steep for non-woven materials (when taken in 

isolation from all other possible factors).  The software, assigned the exact value required to reduce 

the sum of squares of the residuals between the actual data points and the predicted data points created 

by the model.  Recall that many factors were included in the final model (see section  4.8.2), and an 

iterative adjustment of all factors in the model was undertaken by the software: The model value with 

the lowest error (the lowest sum of squares of the residuals) was presented as the final model.  This 

process was originally introduced in Chapter  3 (most notably in section  3.2). 

Factor Factor categorical 

numeric value 

Factor modifier 

Non-woven 1 -0.13 

Paper 2 0.12 

Woven 3 0 



4-107 
 

Interpretation of this was intuitively simple, the planar nature of paper means that through-thickness 

conductivity of the paper GDM is reduced. The three-dimensional nature of the woven structure 

facilitates the through-plane conductivity for the system, and the excellent performance of the non-

woven (felt like) materials, was somewhat more surprising.  A degree of improvement is perhaps 

expected, but the bettering the performance of the woven materials in this factor, was not.   

Non-woven like materials have a number of fibres that penetrate the fabric in the z-direction (i.e. 

through the plane of the fabric).  The exact number of these fibres is limited, and their primary 

purpose is to improve the structural integrity and stiffness of the non-woven like materials. In this 

case, it is suggested that the z-direction, though-thickness, fibres are acting as direct electrical 

conductors from side to side of the GDL; reducing the overall resistance of the MEA.  There has been 

some work completed on a variety of gas diffusion media and assessment of their through plain 

conductivity [112] to support this suggestion.  A systematic analysis of the different types of carbon 

fibre materials categorised as either paper, woven or non-woven (felt like) GDMs, has been missing 

from the literature until quite recently [16,24,55].  More information on this topic is coming to light as 

the modelling community develops more detailed modelling methods and validates them with high 

energy GDM characterisation techniques [101].  Interpretation of the initial linear regression model 

developed, is aided by plotting the results as a visual representation.  This has been done for Ohmic 

gradient loss initial value models and is presented in Appendix 3.  With more than three factors in the 

model it is not possible to visualise all vertices at once, but a Porosity, Mean temperature during 

polarising curve (T-bar), and gradient of the Ohmic loss region (gO) is useful.  Analysis of these 

initial models indicates the lowest possible gradient in this case.  This is the most desirable case as the 

Ohmic region is the area of preferred operation for the vast majority of fuel cell operations.  Such 

Low gradients can be achieved by selecting a paper GDM with a lower porosity, with the non-woven 

(felt) geometry GDMs performing second best, closely followed by the woven materials.   

There was a through-plane thickness and porosity interrelationship, which demonstrates a degree of 

more complex interaction, with the somewhat surprising finding that minimum porosity is preferable 

when coupled with very thin GDMs.  It is possible that this is, in fact, a reflection on the gasket 

configuration of the test cell.  A reduced complexity modelling step is required before firm 

conclusions can be drawn, however.  While a variety of different thicknesses of GDM were tested, the 

gasket dimension remains unchanged, and so, for certain thicknesses of the GDM, the compression of 

the system may be sub-optimal.  It is possible that this thickness factor could be removed by 

optimising the gasket geometry for each GDM.  Lin et al. (2010) [58] make a point of limiting their 

paper selection to a single narrow size range to avoid any such effect. If this interpretation were 

correct, the optimum Ohmic gradient response would be expected to occur at a single thickness 

setting at all porosities.  In this case, it was clear that the optimum performance at various porosities 

co-varies with thickness, reducing the likelihood that the lack of optimisation of the sealing gasket 
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height is the cause of this effect.  A literature search on this topic revealed no pre-existing discussions 

of this effect, indeed the closest like to the topic that could be found [113] was focused on a novel 

geometry GDM that is not suited to this result. Millichap et al. (2015) [114] state that the primary 

impact of incorrect gasket geometries will be observed as accelerated degradation effects, and makes 

no mention of the thickness-porosity-performance relationship detected. 

Based on the information available here, and assuming the gasket geometry was not a factor; the 

through-plane thickness and porosity interaction were present in all cases.  Once again on this first 

iteration model, the paper structure provides the optimum Ohmic Loss region gradient (gO) and the 

non-woven (felt) structures slightly beating the performance of the woven materials. It is worth 

stressing once again that this three-factor interaction would be difficult, if not impossible, to detect in 

the traditional OFAT (one factor at a time) methods of data assessment. 

4.5.5.  Mass loss gradient multivariate analysis 

The mass loss gradient was analysed for co-varying factors in a backwards step linear regression 

model.  

 

Figure 39: Q-Q plot mass loss gradient (Ω.cm2) 

Figure 39, shows the Q-Q plot for the mass loss gradient.  It was clear to see there is a deviation from 

a straight line in the plot, one that is too extreme to pass the ‘pencil’ test.  The top three data points in 

Figure 39 do not follow the same distribution as the rest of the data.  It is likely that this was caused 

by a lack of penetration into the mass loss region of the polarisation curve.  Recall that the same 

polarisation regime has been carried out on all test samples, regardless of individual performance.  In 

some cases (see Figure 30 and Figure 31), the polarisation curve has only just begun to ‘turn over’ 

into the mass loss region and the true mass loss gradient may not be being detected.  The three outliers 

in Figure 39 could be excluded from the mass loss gradient estimate (gM), but then an argument 

would have to be made to justify the continued inclusion of the same data points in the previous work.  
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In this instance, the data for the gM is presented in this thesis for the sake of completeness, with the 

understanding that the data set presented may not be well suited to this type of analysis.   

4.5.6. Discussion of gM 

The VIF factor was very high on several of the examined factors.  The root VIF figure indicates that 

the standard error on each figure is much larger than it should be, as a result of the co-linearity of the 

various factors.  As discussed earlier, if the original modifying value for a given variable is small, this 

is not an issue.  In this instance, there were a variety of aliased terms.  The model cannot accurately 

differentiate between the ambient dew point on the day of testing, the supplier, and the interactions 

between them. 

Backwards elimination of the data made no difference to the ranking of the various factors, and so 

once again this has been left out in this iteration of the model.  Applying knowledge of fuel cell 

systems, it becomes possible to navigate this model and assess its utility or otherwise.  The impact of 

pore closure through heat cycling has already been discussed, as has the possibility of balance of plant 

effects impacting the results (see sections  4.5.2. and  4.5.4). 

The ambient relative humidity had an impact on the final mass transport gradient.  As the reactant gas 

streams for both anode and cathode are fully dehumidified before entering the reaction chambers, it 

was concluded the machine effects observed were balance of plant issues.  M-ANOVAR analysis has 

the ability to quantify the effects of this and overcome any minor variations between individual 

samples (as discussed previously in section 3 and 3.7 specifically).  The issue of the lack of fit to the 

Q-Q ‘pencil test’ as discussed in  4.5.5 must cast some doubt on any results or conclusion based on 

this part of the model. 

4.5.7. Maximum power multivariate analysis 

The peak power was analysed for co-varying factors in a backwards step linear regression model.  

Initial findings and conclusions for Wmax are now considered. 

Figure 40, shows the Q-Q plot for the peak power model.  There was a minor degree of ‘s’ curvature 

indicating a broadening of the distribution curve. In this case, the data is broadly falling in line and 

passes the ‘pencil test.  The data is well suited to M-ANOVAR type analysis. 
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Figure 40: Q-Q plot peak power (w/cm2) 

4.5.8.  Wmax Discussion 

As stated for the previous models, the VIF factor is an issue to be considered, but the model is still 

valuable.  The balance of plant issues identified previously, remain a factor when comparing 

individual MEAs tested across various test chambers of both machines, as discussed in previous 

sections.  A slight impact from hydrophobicity input factor was detected and is considered in more 

depth in this section. 

In Figure 41, the initial M-ANOVAR model for non-woven (‘felt’) GDMs is presented as a response 

surface graphic (see Chapter  3 for more information on this topic).  In this representation, the model 

has been plotted across the range of all input data points in the experiments conducted, and the 

resulting power output has been plotted as a response surface.  It is not possible to visualise all factors 

simultaneously.  Therefore, the input values for mean temperatures during the polarisation curve and 

the volume percentage of porosity, are presented along with their impact on peak power (W.cm-2). 

The top image shows the lowest water contact angle (hydrophilic, achieved with lower PTFE content 

fibres of the GDM) and the bottom image shows the higher water contact angle (hydrophobic, 

achieved with a higher PTFE content in the fibres of the GDM). 
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Figure 41: Wmax, temperature, porosity interactions: Felt 

(Low (top) and high (bottom) θ felt GDMs) 
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Figure 42: Wmax, temperature, porosity interactions: Paper 

(low (top) and high (bottom) θ  paper GDMs) 

In Figure 42, the initial M-ANOVAR response surface for the model is shown for paper GDMs.  Once 

again hydrophilic results are the top surface plot, hydrophobic results are on the bottom.  

In Figure 43, the initial M-ANOVAR response surface for the model is shown for woven GDMs.  

Once again hydrophilic results are the top surface plot, hydrophobic results are on the bottom. 
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Figure 43: Wmax, temperature, porosity interactions: Woven 

(low (top) and high (bottom) θ  woven  GDMs) 

In Figure 41, Figure 42 and Figure 43, it is possible to visualise the outputs from the statistical model 

and begin to make an analysis of the behaviour of the materials studied.  Examining Figure 41, Figure 

42 and Figure 43, it was clear that there is a relationship between temperature and porosity that was 

having an impact on the final power output of the fuel cell.  The gains in maximum possible power 

output, in Watts.cm-2, were modest but statistically significant.  In this case, all three classes of 

materials perform in a broadly similar fashion, with a temperature of operation obviously dominating 

power output.  It can be seen that non-woven (felt) and paper materials were very close in maximum 

performance (0.439 w/cm2), with the paper GDM, having a fractionally higher power output.   

The woven materials once again fail to provide the maximum performance (~0.400 w/cm2).  All three 

systems show a hydrophobicity improvement, with low contact angle materials (θ = 61O), offering 

improved performance across all porosity and temperature setting in the design space; indicative of 
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improved water removal.  In the materials tested, the maximum PTFE addition was in the order of 

20wt% (before the application of catalyst layer inks).  It is this value of PTFE loading, with MPL, 

which equates to the 61O value of water contact angle (θ).  It is clear in all three images, but 

particularly in Figure 41 and  Figure 42, that peak power was achieved over a broader range of input 

settings (in this case porosity and temperature); indicating that the addition of increased 

hydrophobicity was of benefit across a wider range of porosities. 

This increased hydrophobicity corresponds to the range of values for PTFE hydrophobicity treatments 

most often discussed in the literature [20,45,110,115].  As all GDMs were commercial ‘off the shelf’ 

products, no excessively high PTFE loadings (i.e. beyond 30wt% loading) were tested.  This method 

would be ideally suited to identifying the optimum loading for various types of GDMs in the future. 

In light of the above, it could be considered that the ‘balance of plant’ errors are, in fact, an unrelated 

experimental noise value.  The probability of the test apparatus selection being significant was low, 

however, as the models all have a very high confidence and the data analysis methods selected were 

specifically designed to detect, and quantify, exactly this kind of test apparatus induced error effect 

[29,30,35,78-83].  This topic is also discussed further in section  4.7; which shows that the overall 

impact of machine variability (i.e. the difference between test samples analysed in FCCA 1 and FCCA 

2) was a relatively minor contribution to the measured effect.  It is likely that the PTFE effect is real, 

as peak power occurs in the transition region between Ohmic and mass transport loss [24,87].  The 

water management within the GDL will be at its most critical stage as product water will be produced 

at ever increasing rates, and in turn saturating the available pores [24,87,95].  It was interesting to note 

that the relative changes between structures were minimal (see Figure 41, Figure 42 and Figure 43) 

and that the woven structures perform least well of the three.  Typically in the literature, it would be 

thought that high water content operations were best suited to woven materials [21].  Thus high 

demand, peak power operation and the consequent increase in water saturation within the cell, would 

benefit from the reduced tortuosity of woven cloth.  Paper GDMs are considered best suited to lower 

humidity operations, due to the increased path length through the GDM [21], caused by stratification 

of the fibres in the paper manufacturing process for GDM creation.  These findings directly contradict 

that perception (within the bounds of the space modelled).  It is possible that the lack of pre-heating 

and humidity control on the FCCA test apparatus was a factor in the reduced performance measured 

for woven materials.  Test apparatus that do not pre-treat inlet gases in this way have been shown to 

have reduced performance, as a result of sub-optimal moisture control [116].  It is, therefore, possible 

that the degree of flooding in the MEA has not been severe enough or prolonged enough to 

demonstrate any ‘added benefit’ usually attributed to the use of a woven GDM [19-21].  In which case 

these results force us to conclude that woven GDMs are best used in pre-humidified or very high 

power density (and therefore excessively water generating)  PEM FC systems. In PEM FC that do not 
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operate under such high humidity conditions Paper or Felt GDMs are preferable, based on these 

results (see Figure 41, Figure 42 and Figure 43). 

4.6. Historic data analysis of multiple covariant factors initial findings 

It was clear to see that there was a small but measurable test apparatus impact on the final 

measurements, with both the choice of FCCA, and the individual cell on each FCCA, having a 

bearing on the gradient of the polarisation curve and the final peak power output.  Interestingly the 

backwards step regression analysis (as discussed in Chapter  3, section  3.6 and section  3.7) for the 

Ohmic gradient, strips out the test apparatus contribution as not significant.  The absolute value 

attributed to the impact of the cells and the FCCA unit was inflated somewhat by the numeric 

encoding used for each machine. i.e., cell ‘1’, ‘2’ or ‘3’ have numeric values of -1, 0 or +1 assigned to 

them, the FCCAs were either 0 for FCCA1 or 1 for FCCA2 in the data matrix constructed by the 

software.  Care should be taken before placing too much emphasis on this source of error.  The test 

apparatus factors re-appear in the backwards regression analysis of the mass transport loss gradient.  

When making comparisons between individual test cells and identical MEAs under different test 

conditions, it would be wise to factor in this machine variation, but the overall impact of these factors 

is relatively small compared to other input variables in the work completed for this thesis.  When 

considering structurally different MEAs where factors such as pore size, PTFE loading and thickness 

seem to dominate, these machine induced errors can be safely discounted. 

The automated backwards regression has, in several cases, failed to remove insignificant terms and 

further model refinement was required ‘by hand'.  The models produced are robust and valid (see 

Table 16 through Table 33) with the model values in all cases.  The p-value>F probability value in 

each case, is displayed as zero to six significant figures for the four modelled output variables 

(gradients for the activation, Ohmic and mass transport loss regions of polarisation as well as the 

maximum power output).  The design expert pro software is limited to an accuracy of 0.01 in the p-

value>F measurement [82,85], and so, at first glance, would seem fair to say in each case the model 

has CI of (100-0.01)  at least 99.99%.  Based on this evidence, the gradient of the polarising curve 

regions was a valid approach to take, and worth pursuing further to optimise the models.  Even 

considering the multiple outputs from a single data set (gA, gO, gM and Wmax) the likely probability 

of the model being valid is well in excess of 95%.  As discussed in section  3.6.2, when considering 

multiple inputs; the Bonferroni ‘rule of thumb’ should be applied to more closely estimate the true CI.  

In this case, it is essential to perform the same calculation for all of the models created from this 

dataset: with the decrease in CI doubling for each output factor being modelled i.e. gA, gO, gM and 

Wmax = four separate output factors from a single data set: 

 FBonferroni = 0.01*(24) = 0.16 ( 4-17) 
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Therefore CI ≈ 98.84%. 

It should be stressed that the Design Expert Pro software does not perform this calculation, and the 

value calculated by equation (4-17)  is a closer approximation of the true CI for this data set than that 

given in Table 16 through  Table 33.  The point remains however that the models created have very 

high confidence intervals and easily pass the 95% threshold, and arguably could pass a far higher 

threshold based on the result of equation (4-17).  For the work in this thesis, the phrase ‘CI greater 

than 95%’ is used to represent this. 

4.7. Further linear regression model refinement 

The automated model development in the software has taken the process as far it can.  It was clear in 

all three models that there was a small, but measurable, impact from both the test equipment.  The 

ambient conditions of the day and the H2O contact angle (hydrophobicity) also have some impact.  

There was a somewhat difficult to interpret interaction between the MPL and the FCCA test 

equipment selected (factors ‘L’ and ‘N’ in the software generated M-ANOVA results in the 

appendices).  The maximum power measurement was influenced by the selection of an individual test 

cell, which has a small but measurable bearing on the final result.  The machine variability will be 

removed from the next stage of analysis.  While this will slightly increase the overall error of the 

measurements, as it is anticipated that the model gained will still be valid as discussed in section  4.6.  

Furthermore, removing the input factors of ‘FCCA’ and ‘Cell Number’ opens up the possibility of 

increasing the overall accuracy of the models generated by replicating ‘identical’ data points, as 

discussed previously in sections  2.2,  3.2 and  3.9.  Such replication makes the analysis methods 

available more robust, and more accurate, as the degree of replication increases [81,83,85].  It can be 

argued that these ‘machine’ or ‘balance of plant’ effects as a result of the ambient conditions in the 

lab, and while they cannot be ignored, they can be acknowledged and dealt with in several ways.  A 

record of the modifying factors for each machine cell can be created, and a ‘weighting’ or ‘blocking’ 

function can be applied to varying degrees of resolution. Table 15 shows the possibility of blocking 

out the data based on the family of data, and the machine variables (L= FCCA and M = Test cell 

number).  This approach would be recommended for comparisons of very similar MEAs, where the 

differences between the results were less well defined.  

In the broader fuel cell literature, it is not always clear how many different test cells have been used to 

generate a given set of results.  Some published papers may have used one, or several, different test 

stations without reporting the specifics.  This makes a comparison between historic data for different 

test suites all the more problematic.  If a set of experiments were being conducted by several 

laboratories, before starting the main body of work, a ‘Round Robin’ benchmarking trial would be 
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undertaken to define the error. The blocking approach in this section could also be used to normalise 

across published test results from different experiments reported in the literature [81-83].  

The following blocking, or weighting, exercise is intended to provide an understanding of the 

difference the various test chambers impart (note that maximum power achieved was excluded from 

this analysis as the units were different, and the results were all of a different order of magnitude).  

The mean value generated in each column, or family set, was subtracted from the actual value and 

entered into the weighted set. 

Table 15: Blocked results gA, gM and gO 

 
family 1 family 2 family 3 

  

 
gA gM gO 

within test 

mean 

within test 

variance 

L 0.0097 0.0640 0.0990 0.0576 0.0020 

M1 -0.0686 0.0200 0.0540 0.0018 0.0040 

M2 -0.1158 -0.0960 -0.1900 -0.1339 0.0025 

M3 -0.0112 0.0230 0.2000 0.0706 0.0128 

      mean -0.0465 0.0028 0.0408 -0.0010 =mean of means 

      difference 

of means 
-0.0455 0.0037 0.0417 

  

 blocked 

(weighted) 

values 

weighted by difference of mean 
  

 
gA gM gO 

within test 

mean 

(weighted) 

within test 

variance 

(weighted) 

L 0.0552 0.0603 0.0573 0.0576 0.0000 

M1 -0.0232 0.0163 0.0123 0.0018 0.0005 

M2 -0.0703 -0.0997 -0.2317 -0.1339 0.0074 

M3 0.0343 0.0193 0.1583 0.0706 0.0058 

      mean -0.0010 -0.0010 -0.0010 -0.0010 = mean of means 

      difference 

of means 
0.0000 0.0000 0.0000 
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Note that this interpretation of the impact of the test equipment, and the ability to quantify the error 

from the test apparatus in this way, could not have been discovered using the simpler analysis 

provided by the box plots discussed earlier (see section  4.4).  This highlights once again the 

importance of analysis of variance approaches. 

These weighted values for a given data set, were quite significant when taken in isolation: For 

example, the gO family of values have a ‘difference of means’ value of 0.0414, over 42% of the 

FCCA variable ‘L’.  Recall that the two FCCA values were recorded in the software as ‘0’ and ‘1’, 

and so the real world impact on the result from FCCA 2 is, 1*0.0573, and the results for FCCA 1 were 

unmodified (multiplied by zero).  These ‘balance of plant effects’ were only one of several factors 

included in the result of the model. 

Having codified the machine based experimental error, both in this chapter and in section  4.5, it was 

reasonable to proceed without including them. Future discussions, especially of comparisons between 

very similar GDMs (i.e. similar porosity and thickness), must acknowledge this test apparatus induced 

error.  It is anticipated the replication of test data points will more than counter the reduction in 

accuracy caused by the exclusion of machine and ambient conditions.  To strip out the machine 

variation from the evolved models discussed previously, the (M-ANOVA analysis was repeated,  

excluding those factors that were test apparatus specific.  Ignoring the test apparatus error further 

reduced the complexity of the systems examined, and it was possible to remove the ambient 

conditions as well.  Having gained an understanding of the errors in the test, it becomes possible to 

produce the next set of linear regression models. 

An effort was made to conduct a cubic model (m.x3+m.x2+.m.x+m+c) that would be capable of 

identifying higher order interactions if they are present, but the processing time for each result was 

deemed to be excessive for any minor improvements in accuracy that may be gained.  Figure 44 

details the estimated processing time for this more complex regression model. 

 

 

 

 

 



4-119 
 

 
Figure 44: Cubic regression model processing time 

(Linear (top) and Logarithmic (bottom)) 

In light of the likely time taken to run the software for each output variable of interest, not to mention 

the possibility that the processing time was a logarithmic function, it was decided to discontinue the 

cubic results before their conclusion.  This does mean that higher order interactions (three and four-

factor effects) will not be possible to identify, but such events are considered rare, perhaps even non-

existent, in most physical systems [82].   

The quadratic (m.x2+.m.x+m+c) backwards step regression processed very quickly, and this type of 

model was therefore selected.  In fact, the extreme speed of the operation was aided, in large part,  as 

the backwards optimisation reduced the model to a modified  2FL (‘2 factor 2 levels’  modified for 

multiple factors with strong covariance and multiple levels) state, as the least significant factors 

eliminated first were the higher order interactions. 
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In the Backwards optimisation, the removal of terms proceeds sequentially, with the highest ‘F-test’ 

terms first until only values where F-test gives p< 0.05 were left (and any hierarchical subset values 

were also retained even if they do not pass this test threshold). Once again, the software did not 

complete this process successfully in all cases.  This was due the higher order interactions being 

flagged as either aliased, or approaching the significant F-test p<0.05 threshold, but without sufficient 

data for the software to categorically keep or dismiss these values.  It should be pointed out once more, 

the modified 2FL model generated, was only suited to identifying 2 level interactions with certainty.  

All higher-order (three or four factor interactions) were aliased in this design.  This analysis can still 

identify the likelihood of aliased terms and provide an indication of what the aliased terms may be.  In 

this case, for example, all third order terms involving category ‘K’ (supplier) will be aliased and will 

not be detectable.  The remaining backwards steps (i.e. those not completed by the software) were 

completed ‘by hand’ with the following data points being rejected by the author in the order recorded 

as an alphabetised list below.  Note that all models, for all outputs, were run again after the rejection 

of a single factor, and the process repeated for the next least significant factor still included in the 

model: 

a) B^2 removed for all models. 

b) AG interaction removed from the gO and gM models. 

c) DE removed from the gA model. 

Having completed the steps outlined above, the remaining factors pass the F-test threshold or were 

retained to preserve hierarchy in the regression.  Note that in the reduced complexity gM model, the 

‘CD’ interaction  (wt% of hydrophobic PTFE coating and the GDM through-plane thickness (µm) 

respectively) has been retained as the value of 0.0543, only slightly over the p < 0.05 threshold, and 

both of the hierarchical terms were highly significant in the model. 
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4.8. Reduced complexity regression model final result 

The data was analysed for co-varying factors in a backwards step linear regression model.  Note that 

the following results were taken directly from the Design Expert Pro software.  The following text 

applies to each table, and is adapted from the explanatory output generated by the software (see 

chapter  3):- 

Table 16: Reduced complexity gA regression  

• A 2FL M-ANOVAR response surface 2FL classic sum of squares (TypeII). 

• F-value = 10.17 (therefore the model is significant). 

• CI = is greater than 95%: See section  4.6, equation ( 4-17). 

• Model terms B, C, F, G, J, AB, AJ, BE, BG, CF are significant ((P-value probability > F)  is 

equal to or less 0.05). 

• Hierarchy of terms has been retained for factor A and E. 

 

Table 21: Reduced complexity gO regression 

• A 2FL M-ANOVAR response surface 2FL classic sum of squares (TypeII). 

• F-value = 14.13 (therefore the model significant). 

• CI = is greater than 95%: See section  4.6, equation ( 4-17). 

• Model terms B, C, D, G, H, J, DG are significant ((P-value probability > F)  is equal to or less 

0.05). 

Table 26: Reduced complexity gM regression 

• A 2FL M-ANOVAR response surface 2FL classic sum of squares (TypeII).  

• F-value = 14.13 (therefore the model is significant). 

• CI = is greater than 95%: See section  4.6, equation ( 4-17). 

• Model terms B, C, D, G, H, J, CG, DG are significant ((P-value probability > F ) is equal to or 

less 0.05). 

•  Term CD has been retained ((P-value probability > f) = 0.543). 

Table 32: Reduced complexity Wmax regression 

• A 2FL M-ANOVAR (i.e. ManCoVar) response surface 2FL classic sum of squares (TypeII). 

• F-value = 14.13 (therefore the model is significant). 

• CI = is greater than 95%: See section  4.6, and equation ( 4-17). 
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• Data underwent power transformation to improve fit: λ= -1.320. 

• Model terms A, B, D, E, F, G, AD, AF, CG are significant ((P-value probability > F) is equal 

to or less 0.05). 

• Term C has been retained to maintain hierarchy. 

• The term BC has been retained despite the high ((P-value probability > F) as both terms C and  

B have retained as reviews of appropriate fuel cell literature (see Chapter  2) indicate that 

PTFE coating and GDM through-plane thickness, and their interaction, are significant in 

estimating peak power [24,87,95].  

More detailed analysis of each model generated is shown in Table 16 through Table 38. 

4.8.1.  Reduced complexity gA regression model 

 

Table 16: Reduced complexity gA regression 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 1.01127 14 0.07223 10.17489 0.00000 significant 

A-T bar 0.02038 1 0.02038 2.87052 0.09567 

B-T max 0.03544 1 0.03544 4.99203 0.02940 

C-PTFE 0.09850 1 0.09850 13.87470 0.00045 

E-H2O angle 0.00021 1 0.00021 0.02982 0.86351 

F-mean pore 0.03086 1 0.03086 4.34731 0.04156 

G-porosity 0.04459 1 0.04459 6.28116 0.01508 

J-Structure 0.32339 2 0.16169 22.77643 0.00000 

AB 0.06674 1 0.06674 9.40157 0.00331 

AJ 0.12479 2 0.06240 8.78924 0.00047 

BE 0.08768 1 0.08768 12.35130 0.00087 

BG 0.24775 1 0.24775 34.89781 0.00000 

CF 0.10377 1 0.10377 14.61685 0.00033 

Residual 0.40465 57 0.00710 
  

Cor Total 1.41593 71 
   

 

Table 16 shows the M-ANOVAR outputs generated in accordance with the backwards elimination 

methods outlined in Chapter  3.  Backwards elimination reduces the number of terms in the model to 

those with the most significant, measurable impact on the final result.  The model as a whole was 

significant, and the terms highlighted in green are each significant in their own right.  The sum of 
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squares value indicates the difference between the means of the block presented and the overall mean 

of the data. The degrees of freedom (df) is associated with the number of model terms and is used in 

creating the t-distribution (see section  3.3); recall that at df= 30 t-distribution becomes a normal 

distribution [82].  F-value = model mean square/Residual mean square (see section  3.6.1).  P-value 

probability >F is the probability that the F-value could exist even if the null hypothesises is true 

(recall that the null hypothesis asks the question; ‘Is a simple mean a more accurate model of the 

systems than the model produced by M-ANOVA analysis?’).  The smaller the p-value is, the more 

likely the M-ANOVAR model is to be correct. 

Table 17: Reduced complexity gA summary 

Std. Dev. 0.08426 R-Squared 0.71421 

Mean -0.72829 Adj R-Squared 0.64402 

C.V. % 11.56910 Pred R-Squared 0.52056 

PRESS 0.67885 Adeq Precision 12.10772 

 

Table 17 is the error assessment for the model displayed in Table 16.  Std.Dev is the standard 

deviation of the model, estimated from the square root of the mean of the residual as per equation (3-

23).  Mean is the overall mean of all data in the model (i.e. the ‘null hypothesis’ result).  C.V. % is the 

coefficient of variation (the standard deviation from equation ( 3-24) expressed as a percentage of the 

mean). PRESS is the ‘predicted residual errors sum of squares’: the sum of squares of the difference 

(the residual) between each predicted value in the model compared to its equivalent measured 

experimental value. R-Squared (R2) is calculated as per equation ( 3-20).  The adjusted and predicted 

R2 values are the R2 values of the model factoring the final number of remaining terms after 

completing the backwards elimination process to create the reduced complexity model.  

 

Where  

dfresiduals is the degrees of freedom of the residuals given in the M-ANOVAR analysis 

dfmodel is the degrees of freedom in the model given by the M-ANOVAR analysis 

and  

 

𝐴𝐴𝑂𝑂𝐴𝐴𝐴𝐴𝑠𝑠𝑡𝑡𝐸𝐸𝑂𝑂 𝑅𝑅2 = 1 − �
� 𝑆𝑆𝑆𝑆𝐸𝐸
𝑂𝑂𝐸𝐸𝑟𝑟𝑙𝑙𝐹𝐹𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝐹𝐹

�

� 𝑆𝑆𝑆𝑆𝐸𝐸 + 𝑆𝑆𝑆𝑆𝑟𝑟𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙
𝑂𝑂𝐸𝐸𝑟𝑟𝑙𝑙𝐹𝐹𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝐹𝐹 + 𝑂𝑂𝐸𝐸𝑟𝑟𝐹𝐹𝑎𝑎𝑙𝑙𝑙𝑙

�
� 

 

 

( 4-18) 

[85] 
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SSmodel is the sum of squares of the residuals of the model  (note that all other terms have been defined 

previously in  3) 

If   

Adjusted R2 = Predicted R2 +/- 0.2 

the model is then considered robust (i.e. not unduly influenced by outliers or values with unusually 

high leverage) [82,85]. 

Adequate precision is a measure of the signal to noise ratio of the system, and is calculated as  

Where  

Where  

‘V(𝑦𝑦�)’ is the estimated variance based on the estimated values of y (see equation ( 3-4) ). 

𝑉𝑉�(𝑦𝑦�) is the mean variance of the y estimates. 

n is the number of test samples in the experiment. 

p is the number of model parameters (including intercept values and any weight/blocking values). 

A value of four or greater is desirable for adequate precision and is evidence for the validity of the 

model created [85]. 

  

 
𝑣𝑣𝑂𝑂𝐸𝐸𝑎𝑎.𝑃𝑃𝑟𝑟𝐸𝐸𝐸𝐸𝑝𝑝𝑠𝑠𝑝𝑝𝐷𝐷𝑛𝑛 =  

𝑚𝑚𝑣𝑣𝑥𝑥(𝑦𝑦�) −𝑚𝑚𝑝𝑝𝑛𝑛(𝑦𝑦�)

�𝑉𝑉�(𝑦𝑦�)
 

 

( 4-19) 

[85] 

 

 
𝑉𝑉�(𝑦𝑦�) =  

1
𝑛𝑛
�𝑉𝑉(𝑦𝑦�)
𝑛𝑛

𝑖𝑖=1

=  
𝑝𝑝. 𝑠𝑠2

𝑛𝑛
 

 

( 4-20) 

[85] 
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Table 18: Reduced complexity gA error assessment 

 Coefficient 

Estimate 

 

df 

Standard 

Error 

95% CI 

Low 

95% CI 

High 

 

VIF 
√VIF Term 

Intercept -0.84765 1 0.05745 -0.96270 -0.73261 
  

A-T bar 0.25370 1 0.11865 0.01609 0.49130 13.02502 3.60902 

B-T max -0.19466 1 0.10673 -0.40839 0.01907 11.83006 3.43949 

C-PTFE -0.08596 1 0.03053 -0.14710 -0.02481 3.23129 1.79758 

E-H2O angle -0.08939 1 0.03724 -0.16397 -0.01482 3.30500 1.81797 

F-mean pore 0.01736 1 0.03031 -0.04334 0.07806 3.08360 1.75602 

G-porosity -0.00351 1 0.02577 -0.05512 0.04809 2.07640 1.44097 

J[1] 0.10671 1 0.06679 -0.02704 0.24045 
 

0 

J[2] 0.14368 1 0.06372 0.01608 0.27128 
 

0 

AB -0.23862 1 0.07782 -0.39446 -0.08278 2.28455 1.51147 

AJ[1] 0.42807 1 0.12483 0.17810 0.67804 
 

0 

AJ[2] -0.29591 1 0.09735 -0.49084 -0.10098 
 

0 

BE 0.40496 1 0.11523 0.17422 0.63569 6.07212 2.46417 

BG 0.41116 1 0.06960 0.27179 0.55054 2.10257 1.45002 

CF -0.25819 1 0.06753 -0.39342 -0.12296 8.57950 2.92909 

 

Table 18 continues the error assessment, begun in Table 17.  The M-ANOVAR assessment is dealing 

with multiple co-varying factors, and this has additional impacts on the error assessment for the 

modified ANOVAR techniques used.  The ‘coefficient estimate’ is the value by which the input value 

is multiplied, as appropriate (excluding the intercept value).  Both ‘df’ and standard error have 

repeatedly been discussed in this context already (see comments on Table 16 and Table 17).  The two 

columns labelled 95% CI low, and 95% CI high, show the range that the true coefficient (i.e. the 

coefficient of a theoretically ‘perfect’ model) could be found in and still maintain a 95% CI.  If the 

range of these two values goes from negative to positive (i.e. crosses the ‘zero’ value), it is possible 

that the true impact of that input factor is zero.  As discussed in  3.9, response surface methods are 

suited to the analysis of co-varying factors, but there is a variance inflation factor (VIF) that should be 

considered when analysing the data. VIF is calculated as shown in equation ( 3 68).  Values greater 

than ten indicate significant covariance and the square root of VIF should be used as a multiplier of 

the standard error for that factor, in the population being studied (i.e. for the experimental data used to 

create that individual model).   

Design Expert Pro does not carry out this procedure or include it in the final coded factors for the 

model (Table 19 in this case).  Therefore VIF is highlighted in Table 18 to demonstrate an 
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understanding of the likely impact this may have on the final coded model, and to assist in explaining 

any errors between real world results and those predicted by the model. 

Table 19: Reduced complexity  gA coded factors 

gA = 

-0.8477 
 

0.2537 * A 

-0.1947 * B 

-0.0860 * C 

-0.0894 * E 

0.0174 * F 

-0.0035 * G 

0.1067 * J[1] 

0.1437 * J[2] 

-0.2386 * AB 

0.4281 * AJ[1] 

-0.2959 * AJ[2] 

0.4050 * BE 

0.4112 * BG 

-0.2582 * CF 

 

Table 19 shows the coded factors for the gA model.  These numeric values multiply input factors in 

order to create the model in question.  Table 20 further develops this and shows the gradient of the 

activation region model for each of the three types of GDM. 
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Final equation in terms of actual factors:- 

Table 20: Reduced complexity gA empirical model 

Structure Non-woven Structure Paper 

gA = gA = 

-8.1324 
 

-0.9514  

0.4576 * T bar 0.3511 * T bar 

0.0099 * T max 0.0099 * T max 

1.9739 * PTFE 1.9739 * PTFE 

-0.1094 * H2O angle -0.1094 * H2O angle 

0.0002 * mean pore 0.0002 * mean pore 

-0.2034 * porosity -0.2034 * porosity 

-0.0051 * T bar * T max -0.0051 * T bar * T max 

0.0015 * T max * H2O angle 0.0015 * T max * H2O angle 

0.0029 * T max * porosity 0.0029 * T max * porosity 

-0.0016 * PTFE * mean pore -0.0016 * PTFE * mean pore 

  Structure woven 

gA = 

-2.9613 
 

0.3752 * T bar 

0.0099 * T max 

1.9739 * PTFE 

-0.1094 * H2O angle 

0.0002 * mean pore 

-0.2034 * porosity 

-0.0051 * T bar * T max 

0.0015 * T max * H2O angle 

0.0029 * T max * porosity 

-0.0016 * PTFE * mean pore 
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4.8.2. Reduced complexity gO regression model 

Table 21: Reduced complexity gO regression 

 

Table 21 shows the M-ANOVAR outputs generated in accordance with the backwards elimination 

methods outlined in Chapter  3.  Backwards elimination reduces the number of terms in the model, to 

those that have the most significant, measurable, impact on the final result.  The model as a whole is 

significant, and the terms that are highlighted in green are each significant in their own right.  The 

sum of squares value indicates the difference between the means of the block and the overall mean. 

The degrees of freedom (df) is associated with the number of model terms and is used in creating the 

t-distribution (see section  3.3); recall that at df=30 t-distribution becomes a normal distribution [82].  

F-value is the model mean square, divided by the Residual mean square (see section  3.6.1).  P-value 

probability >F is the probability that the F-value could exist even if the null hypothesises true (recall 

that the null hypothesis asks the question; ‘Is simple mean is a more accurate model of the systems 

than the M-ANOVA analysis?’): the smaller this value is the more likely the M-ANOVAR model is 

to be correct. 

  

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 0.82243 8 0.10280 14.13478 0.00000 significant 

B-T max 0.10010 1 0.10010 13.76340 0.00044 

C-PTFE 0.17685 1 0.17685 24.31529 0.00001 

D-Thickness 0.05755 1 0.05755 7.91321 0.00654 

G-porosity 0.19724 1 0.19724 27.11848 0.00000 

H-MPL 0.04669 1 0.04669 6.41900 0.01379 

J-Structure 0.10839 2 0.05420 7.45161 0.00125 

DG 0.06096 1 0.06096 8.38165 0.00520 

Residual 0.45821 63 0.00727 
  

Cor Total 1.28063 71 
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Table 22: Reduced complexity gO summary 

 

 

 

 

 

Table 22 is the error assessment for the model displayed in Table 21: Std.Dev is the standard 

deviation of the model, estimated from the square root of the mean of the residual as per equation ( 3 

23).  Mean is the overall mean of all data in the model (i.e. the ‘null hypothesis’ result).  C.V. % is the 

coefficient of variation (the standard deviation from equation ( 3 24) expressed as a percentage of the 

mean). PRESS is the ‘predicted residual errors sum of squares’: the sum of squares of the difference 

(the residual) between each predicted value in the model compared to its equivalent measured 

experimental value. R-Squared (R2) is calculated as per equation ( 3 20).  The adjusted and predicted 

R2 values are within 0.2 of each other indicating a robust model.  Adequate precision is greater than 

four indicating the validity of the model is not compromised by outliers or excessive leverage [84].     

Table 23: Reduced complexity gO error assessment 

  

Table 23 continues the error assessment begun in Table 22.  The ‘coefficient estimate’ is the value by 

which the input value is multiplied as appropriate (excluding the intercept value). Both ‘df’ and 

standard error have repeatedly been discussed in this context already (see comments on Table 16 and 

Std. Dev. 0.08528   R-Squared 0.64220 

Mean -0.48014   Adj R-Squared 0.59677 

C.V. % 17.76186   Pred R-Squared 0.55126 

PRESS 0.57467   Adeq Precision 14.92902 

Term 
Coefficient 

Estimate 

 

df 

Standard 

Error 

95% CI 

Low 

95% CI 

High 

 

VIF 

 

√VIF 

Intercept -0.6469 1 0.0262 -0.6992 -0.5946 
  

B-T max 0.1291 1 0.0348 0.0596 0.1986 1.2273 1.10785 

C-PTFE -0.1378 1 0.0279 -0.1936 -0.0819 2.6413 1.625210 

D-Thickness -0.0106 1 0.0419 -0.0942 0.0731 2.8031 1.67424 

G-porosity -0.1391 1 0.0234 -0.1859 -0.0923 1.6726 1.2933 

H-MPL 0.0511 1 0.0202 0.0108 0.0914 2.5218 1.58803 

J[1] -0.0221 1 0.0310 -0.0840 0.0398 
 

0 

J[2] 0.0941 1 0.0254 0.0434 0.1449 
 

0 

DG 0.1476 1 0.0510 0.0457 0.2495 2.2535 1.50118 
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Table 17).  The two columns labelled 95% CI low, and 95% CI high, show the range that the true 

coefficient (i.e. the coefficient of a theoretically ‘perfect’ model) could be found in and still maintain 

a 95% CI.  If the range of these two values goes from negative to positive (i.e. crosses the ‘zero’ 

value),  it is possible that the true impact of that input factor is zero.  VIF is calculated as shown in 

equation ( 3 68).  No VIF values greater than ten were generated. Table 24 shows the coded factors for 

the model.  These numeric values multiply input factors to create the model in question.  Table 25 

further develops this and shows the gradient of the Ohmic loss region model for each of the three 

types of GDM, with and without an MPL. 

 Final Equation in Terms of Coded Factors:- 

Table 24: Reduced complexity gO coded factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

gO = 

-0.64693 
 

0.129094 * B 

-0.13779 * C 

-0.01058 * D 

-0.13911 * G 

0.051087 * H 

-0.02206 * J[1] 

0.094138 * J[2] 

0.147594 * DG 
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Final equation in terms of actual factors:- 

Table 25: Reduced complexity gO empirical models 

 

 

MPL No MPL Yes 

Structure Non-woven Structure Non-woven 

gO = gO = 

-0.883 
 

-0.78082  

0.018846 * T max 0.018846 * T max 

-1.37787 * PTFE -1.37787 * PTFE 

-0.00249 * Thickness -0.00249 * Thickness 

-0.019 * porosity -0.019 * porosity 

4.62E-05 * Thickness * porosity 4.62E-05 * Thickness * porosity 

  
  

MPL No MPL Yes 

Structure Paper Structure Paper 

gO = gO = 

-0.7668 
 

-0.66462  

0.018846 * T max 0.018846 * T max 

-1.37787 * PTFE -1.37787 * PTFE 

-0.00249 * Thickness -0.00249 * Thickness 

-0.019 * porosity -0.019 * porosity 

4.62E-05 * Thickness * porosity 4.62E-05 * Thickness * porosity 

  
  

MPL no MPL Yes 

Structure woven Structure Woven 

gO = gO = 

-0.93301 
 

-0.83084  

0.018846 * T max 0.018846 * T max 

-1.37787 * PTFE -1.37787 * PTFE 

-0.00249 * Thickness -0.00249 * Thickness 

-0.019 * porosity -0.019 * porosity 

4.62E-05 * Thickness * porosity 4.62E-05 * Thickness * porosity 
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4.8.3.  Reduced Complexity gM Regression model 

 

Table 26: Reduced complexity gM regression 

 

Source 

Sum of 

Squares 

 

df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 

Model 0.86164 10 0.08616 14.12268 0.00000 significant 

B-T max 0.07589 1 0.07589 12.43931 0.00080 

C-PTFE 0.17078 1 0.17078 27.99208 0.00000 

D-Thickness 0.06612 1 0.06612 10.83794 0.00166 

G-porosity 0.13682 1 0.13682 22.42524 0.00001 

H-MPL 0.08315 1 0.08315 13.62908 0.00048 

J-Structure 0.08205 2 0.04102 6.72386 0.00230 

CD 0.02350 1 0.02350 3.85136 0.05427 

CG 0.02493 1 0.02493 4.08582 0.04764 

DG 0.02966 1 0.02966 4.86132 0.03125 

Residual 0.37217 61 0.00610 
  

Cor Total 1.23380 71 
   

 

Table 26 shows the M-ANOVAR outputs generated in accordance with the backwards elimination 

methods outlined in  3.  Backwards elimination reduces the number of terms in the model to those that 

have the most significant, measurable, impact on the final result.  The model as a whole is significant, 

and the terms highlighted green are each significant in their own right. The sum of squares value 

indicates the difference between the means of the block and the overall mean.  Degrees of freedom (df) 

is associated with the number of model terms and is used in creating the t-distribution (see 

section  3.3); recall that at df= 30 t-distribution becomes a normal distribution [82]).  F-value  is equal 

to model mean square divided by the Residual mean square (see section  3.6.1).  P-value 

probability >F is the probability that the F-value could exist even if the null hypothesises true (recall 

that the null hypothesis asks the question; ‘Is a simple mean is a more accurate model of the systems 

than the M-ANOVA analysis?’): the smaller this value is the more likely the M-ANOVAR model is 

to be correct. 
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Table 27: Reduced complexity gM summary 

Std. Dev. 0.07811 
 

R-Squared 0.698358 

Mean -0.47587 
 

Adj R-Squared 0.648909 

C.V. % 16.41408 
 

Pred R-Squared 0.588646 

PRESS 0.50753 
 

Adeq Precision 14.22369 

 

Table 27 is the error assessment for the model displayed in Table 26.  Std.Dev is the standard 

deviation of the model, estimated from the square root of the mean of the residual, as per equation ( 3 

23).  Mean is the overall mean of all data in the model (i.e. the ‘null hypothesis’ result).  C.V. % is the 

coefficient of variation (the standard deviation from equation ( 3 24) expressed as a percentage of the 

mean ). PRESS is the ‘predicted residual errors sum of squares’: the sum of squares of the difference 

(the residual) between each predicted value in the model compared to its equivalent measured 

experimental value. R-Squared (R2) is calculated as per equation ( 3 20).  The adjusted and predicted 

R2 values are within 0.2 of each other indicating a robust model.  Adequate precision is greater than 

four indicating the validity of the model is not compromised by outliers or excessive leverage [84]. 

Table 28: Reduced complexity gM error assessment 

 

Term 
Coefficient Standard 

Error 

95% CI 

Low 

95% CI 

High 
VIF 

 

√VIF Estimate df 

Intercept -0.6836 1 0.0326 -0.7487 -0.6185 
  

B-T max 0.1161 1 0.0329 0.0503 0.1819 1.3086 1.14392 

C-PTFE -0.1581 1 0.0331 -0.2242 -0.0920 4.4080 2.09953 

D-Thickness -0.0833 1 0.0487 -0.1806 0.0140 4.5132 2.12444 

G-porosity -0.1602 1 0.0297 -0.2196 -0.1008 3.2052 1.79031 

H-MPL 0.0768 1 0.0208 0.0352 0.1184 3.1988 1.78851 

J[1] 0.0006 1 0.0295 -0.0583 0.0595 
 

0 

J[2] 0.1005 1 0.0274 0.0457 0.1553 
 

0 

CD -0.1431 1 0.0729 -0.2890 0.0027 2.9804 1.72639 

CG -0.1101 1 0.0545 -0.2190 -0.0012 4.7105 2.17038 

DG 0.1064 1 0.0483 0.0099 0.2029 2.4082 1.55183 

 

Table 28 continues the error assessment begun in Table 27.  The ‘coefficient estimate’ is the value by 

which the input value is multiplied as appropriate (excluding the intercept value).  
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The ‘df’ and standard error have been discussed in this context already (see comments on Table 16 

and Table 17).  The two columns labelled 95% CI low, and 95% CI high, show the range that the true 

coefficient (i.e. the coefficient of a theoretically ‘perfect’ model) could be found in and still maintain 

a 95% CI.  If the range of these two values goes from negative to positive (i.e. crosses the ‘zero’ 

value), it is possible that the true impact of that input factor was zero.  VIF is calculated as shown in 

equation ( 3 68).  No VIF values greater than ten were generated. 

Table 29 shows the coded factors.  These numeric values multiply input factors to create the model in 

question.  Table 30 and  Table 31 further develops this and shows the gradient of the mass loss region 

model for each of the three types of GDM.  Final Equation in Terms of Coded Factors: 

 

Table 29: Reduced complexity gM coded factors 

 

gM = 

-0.6836 
 

0.1161 * B 

-0.1581 * C 

-0.0833 * D 

-0.1602 * G 

0.0768 * H 

0.0006 * J[1] 

0.1005 * J[2] 

-0.1431 * CD 

-0.1101 * CG 

0.1064 * DG 
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Final Equation in Terms of Actual Factors:- 

Table 30: Reduced complexity gM empirical models (part 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Structure Woven no MPL Structure Woven with MPL 

gM = gM = 

-1.3972 
 

-1.2436  

0.0169 * T max 0.0169 * T max 

3.6668 * PTFE 3.6668 * PTFE 

-0.0014 * Thickness -0.0014 * Thickness 

-0.0113 * Porosity -0.0113 * Porosity 

-0.0092 * PTFE * Thickness -0.0092 * PTFE * Thickness 

-0.0534 * PTFE * Porosity -0.0534 * PTFE * Porosity 

0.0000 * Thickness * Porosity 0.0000 * Thickness * Porosity 
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Table 31: Reduced complexity gM empirical models (part 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure Non-woven No MPL Structure Non-woven with MPL 

gM = gM = 

-1.2955 
 

-1.1420  

0.0169 * T max 0.0169 * T max 

3.6668 * PTFE 3.6668 * PTFE 

-0.0014 * Thickness -0.0014 * Thickness 

-0.0113 * Porosity -0.0113 * Porosity 

-0.0092 * PTFE * Thickness -0.0092 * PTFE * Thickness 

-0.0534 * PTFE * Porosity -0.0534 * PTFE * Porosity 

0.0000 * Thickness * Porosity 0.0000 * Thickness * Porosity 

  

  

Structure Paper no MPL Structure Paper with MPL 

gM = gM = 

-1.1957 
 

-1.0421  

0.0169 * T max 0.0169 * T max 

3.6668 * PTFE 3.6668 * PTFE 

-0.0014 * Thickness -0.0014 * Thickness 

-0.0113 * Porosity -0.0113 * Porosity 

-0.0092 * PTFE * Thickness -0.0092 * PTFE * Thickness 

-0.0534 * PTFE * Porosity -0.0534 * PTFE * Porosity 

0.0000 * Thickness * Porosity 0.0000 * Thickness * Porosity 
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4.8.4. Reduced complexity Wmax regression model 

 

Table 32: Reduced complexity Wmax regression 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F 

Value 

p-value 

Prob > F 
significant 

Model 50.1562 15 3.3437 16.9672 0.0000 

A-Tbar 1.9127 1 1.9127 9.7057 0.0029 

B-PTFE 3.1335 1 3.1335 15.9003 0.0002 

C-Thickness 0.0076 1 0.0076 0.0384 0.8454 

D-H2O Pontact angle 0.8931 1 0.8931 4.5317 0.0377 

E-Porosity 2.1414 1 2.1414 10.8660 0.0017 

F-MPL 3.9728 1 3.9728 20.1590 0.0000 

G-Structure 6.5612 2 3.2806 16.6469 0.0000 

AD 1.5432 1 1.5432 7.8305 0.0070 

AF 2.3428 1 2.3428 11.8880 0.0011 

AG 1.2268 2 0.6134 3.1127 0.0523 

BC 0.0843 1 0.0843 0.4275 0.5159 

CG 1.2925 2 0.6462 3.2792 0.0450 

Residual 11.0360 56 0.1971 
  

Cor Total 61.1922 71 
   

 

Table 32 shows the M-ANOVAR outputs generated with the backwards elimination methods outlined 

in Chapter  3.  This reduces the number of terms in the model to those with the most significant, 

measurable, impact on the final result.  The model as a whole is significant, and the terms highlighted 

in green are each significant in their own right. The sum of squares value indicates the difference 

between the means of the block and the overall mean. Degrees of freedom (df) is the associated with 

the number of model terms and is used in creating the t-distribution (see section  3.3); recall that at df= 

30 t-distribution becomes a normal distribution [82]).  F-Value is the model mean square divided by 

the Residual mean square (see section  3.6.1).  P-value probability>F is the probability that the F-value 

could exist even if the null hypothesises true (recall that the null hypothesis asks the question  “Is a 

simple mean is a more accurate model of the systems than the M-ANOVA analysis?”): the smaller 

this value is the more likely the M-ANOVAR model is to be correct. 
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Table 33: Reduced complexity Wmax summary 

 

 

 

 

Table 33 is the error assessment for the model displayed in Table 32.  Std.Dev is the standard 

deviation of the model, estimated from the square root of the mean of the residual as per equation ( 3 

23).  Mean is the overall mean of all data in the model (i.e. the ‘null hypothesis’ result).  C.V. % is the 

coefficient of variation (the standard deviation from equation ( 3 24) expressed as a percentage of the 

mean ). PRESS is the ‘predicted residual errors sum of squares’: the sum of squares of the difference 

(the residual) between each predicted value in the model compared to its equivalent measured 

experimental value. R-Squared (R2) is calculated as per equation ( 3 20).  The adjusted and predicted 

R2 values are within 0.2 of each other indicating a robust model [84].  Adequate precision is greater 

than four indicating the validity of the model is not compromised by outliers or excessive leverage 

[84]. 

Table 34 continues the error assessment begun in Table 33.  The ‘coefficient estimate’ is the value by 

which the input value is multiplied as appropriate (excluding the intercept value of course). Both ‘df’ 

and standard error have repeatedly been discussed in this context already (see comments on Table 16 

and Table 17).  The two columns labelled 95% CI low, and 95% CI high, show the range that the true 

coefficient (i.e. the coefficient of a theoretically ‘perfect’ model) could be found in and still maintain 

a 95% CI.  If the range of these two values goes from negative to positive (i.e. crosses the ‘zero’ 

value),  it is possible that the true impact of that input factor is zero.  VIF is calculated as shown in 

equation ( 3 68).  Multiple values above ten have been generated.  It must be acknowledged that 

conflict with the literature prompted the inclusion of several factors that would not have been included 

if judged only on the strict adherence to M-ANOVAR procedures as outlined in Chapter  3.   

Table 35 shows the coded factors.  These numeric values multiply input factors to create the model in 

question.  Table 36, Table 37 and Table 38 further develop this and show the peak power output 

(Wmax) model for each of the three types of GDM with and without MPLs.  Recall that a power 

transformation was performed on the data to overcome the increased errors and make the data suitable 

(i.e. sufficiently linear) for M-ANOVAR analysis.  The resultant model requires the undoing of this 

power transformation to predict the likely power output for a given GDM. 

 

 

Std. Dev. 0.4439 R-Squared 0.8197 

Mean 4.5650 Adj R-Squared 0.7713 

C.V. % 9.7246 Pred R-Squared 0.7240 

PRESS 16.8885 Adeq Precision 18.3564 
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Table 34: Reduced complexity Wmax error assessment 

Term 
Coefficient 

Estimate 
df 

Standard 

Error 

95% CI 

Low 

95% CI 

High 
VIF 

Sqrt 

VIF 

Intercept 62.2444 1.0 17.1984 27.7918 96.6970 
  

A-Tbar -1.8062 1.0 0.9015 -3.6122 -0.0002 27.0872 5.20453 

B-PTFE 55.5994 1.0 17.2658 21.0118 90.1870 3.7217 1.92918 

C-Thickness 25.6952 1.0 42.6377 -59.7183 111.1087 107283.0 327.541 

D-H2O contact 

angle 
1.0538 1.0 0.3010 0.4508 1.6567 7.7767 2.78867 

E-porosity 0.4025 1.0 0.1221 0.1579 0.6470 1.6788 1.29567 

F-MPL 0.7444 1.0 0.1315 0.4808 1.0079 3.9613 1.99030 

G[1] 3.7022 1.0 1.5144 0.6685 6.7359 
 

0 

G[2] -2.3769 1.0 0.7731 -3.9257 -0.8282 
 

0 

AD -2.1368 1.0 0.7636 -3.6665 -0.6071 11.5664 3.40093 

AF -1.2489 1.0 0.3622 -1.9746 -0.5233 7.7728 2.78797 

AG[1] -0.8959 1.0 1.6612 -4.2236 2.4319 
 

0 

AG[2] 1.4188 1.0 0.8485 -0.2809 3.1186 
 

0 

BC 27.9149 1.0 42.6924 -57.6082 113.4379 106119.9 325.760 

CG[1] -4.6991 1.0 1.8771 -8.4593 -0.9388 
 

0 

CG[2] 1.9920 1.0 1.1676 -0.3470 4.3310 
 

0 
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Final Equation in Terms of Coded Factors:- 

Table 35: Reduced complexity Wmax coded factors 

(Wmax)^-

1.32 
= 

62.2444 
 

-1.8062 * A 

55.5994 * B 

25.6952 * C 

1.0538 * D 

0.4025 * E 

0.7444 * F 

3.7022 * G[1] 

-2.3769 * G[2] 

-2.1368 * AD 

-1.2489 * AF 

-0.8959 * AG[1] 

1.4188 * AG[2] 

27.9149 * BC 

-4.6991 * CG[1] 

1.9920 * CG[2] 

 

As discussed in section  3.7.1 the output value of the model was a non-linear function, and the result 

was converted to the appropriate Watts.cm-2 value as per equation ( 3-60). 
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Table 36: Reduced complexity Wmax empirical models (part 1) 

structure Woven With MPL 
  

Wmax^-1.32 Wmax 
 

(Wmax)^-1.32 = 
  

10.3451 0.177 
W/ 

cm2 

-22.5055 
   

-22.5055 
  

0.5984 * Tbar 70 oC 41.8896 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

-0.0446 * Thickness 250 µm -11.1593 
  

0.5755 * H2O Contact angle 100 o 57.5529 
  

0.0195 * porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
  

       
structure Paper With MPL 

  
Wmax^-1.32 Wmax 

 

(Wmax)^-1.32 = 
  

4.5851 0.316 
W/ 

cm2 

-62.8852 
   

-62.8852 
  

0.9388 * Tbar 70 oC 65.7174 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

-0.0015 * Thickness 250 µm -0.3673 
  

0.5755 * H2O contact angle 100 o 57.5529 
  

0.0195 * porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O Contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
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Table 37: Reduced complexity Wmax empirical models (part 2) 

structure Non-woven with MPL 
  

Wmax^-1.32 Wmax 
 

(Wmax)^-1.32 = 
  

4.7566 0.303 
W/ 

cm2 

-43.8777 
   

-43.8777 
  

0.6533 * Tbar 70 oC 45.7280 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

0.0031 * Thickness 250 µm 0.7861 
  

0.5755 * H2O Contact angle 100 o 57.5529 
  

0.0195 * Porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
  

       
structure woven 

  
Wmax^-1.32 Wmax 

 

(Wmax)^-1.32 = 
  

10.7906 0.165 
W/ 

cm2 

3.6535 
   

3.6535 
  

0.2311 * Tbar 70 oC 16.1761 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

-0.0446 * Thickness 250 µm -11.1593 
  

0.5755 * H2O Contact angle 100 o 57.5529 
  

0.0195 * Porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
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Table 38: Reduced complexity Wmax model empirical models (part 3) 

  
  

Wmax^-1.32 Wmax 
 

structure paper 
  

5.0306 0.294 
W/ 

cm2 

(Wmax)^-1.32 = 
     

-36.7262 
   

-36.7262 
  

0.5715 * Tbar 70 oC 40.0039 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

-0.0015 * Thickness 250 µm -0.3673 
  

0.5755 * H2O Contact angle 100 o 57.5529 
  

0.0195 * Porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
  

       
structure non-woven 

  
Wmax^-1.32 Wmax 

 

(Wmax)^-1.32 = 
  

5.2021 0.287 
W/ 

cm2 

-17.7187 
   

-17.7187 
  

0.2859 * Tbar 70 oC 20.0145 
  

0.7874 * PTFE 0.10 wt% 0.0787 
  

0.0031 * Thickness 250 µm 0.7861 
  

0.5755 * H2O contact angle 100 o 57.5529 
  

0.0195 * Porosity 60 % 1.1722 
  

-0.0082 * Tbar * H2O contact angle 7000 
 

-57.1338 
  

0.0180 * PTFE * Thickness 25 
 

0.4502 
  

 

4.9. Reduced complexity regression for GDMs discussion 

The reduced complexity regression model, achieved through the use ‘backwards elimination’, has 

proven to be insignificant to the model ‘F-value’ (as discussed in Chapter  3 and section  4.7).  The 

design space models generated are in good agreement and conform to accepted tolerances with the 

possible exception of the reduced complexity gA and Wmax models.  Both gA and Wmax models 

have VIF values above 10 (highlighted red in Table 18 and Table 34); For the mean and maximum 

temperature experienced during the polarisation curve.  The square roots of these two factors 

multiplied by the Standard Error (the deviation away from the actual or true mean), will calculate the 

actual standard error: 
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Using the values from Table 18, the SE for the model from Tbar was possibly increased up to a 

maximum of  

And SE for T-max was possibly increased up to a maximum of: 

Other than these two variables, the remaining factors were much improved over the first generation 

model, and the reduced complexity values all have far lower VIF values, and all are now under 10.0. 

The SE for the model from Tbar was possibly increased up to a maximum of: 

 

Using the values from Table 34, the thickness of the GDM has an alarming high VIF  

 

It should be noted that low-high 95% CI values in Table 34 go from negative to positive, another 

indication that GDM thickness should not be included as a significant factor in determining total 

power output for MEAs, in the experimental set up of work completed for this thesis.  As discussed 

previously, the thickness value was left in the model and credited with being significant in 

determining total resistance across the MEA in other work [24,87,95], and should, therefore, have an 

impact on  the power generated  in accordance with Ohm’s law  as per equation ( 4-26): 

 

Moreover, as power (Watts) is the product of current and voltage (as shown in Figure 4) it seems 

reasonable to expect increased thickness and therefore an increase in resistance, to exert some 

measurable influence on the final power output.  However, this was not detected in the M-ANOVAR 

models created.   Using the values from Table 34, the interaction of wt% of PTFE in the GDM, and 

structure, as detailed in Table 14  has an alarming high VIF: 

 

 𝑆𝑆𝐸𝐸𝑎𝑎𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝑙𝑙 =  𝑆𝑆𝐸𝐸 ∗ √𝑉𝑉𝐶𝐶𝑛𝑛 ( 4-21) 

 SET-Bar = 0.119*3.61 = 0.428 ( 4-22) 

 SET-Max  = 0.107*3.440 = 0.367 ( 4-23) 

 SET-Bar = 0.9015*5.20453 = 4.69 ( 4-24) 

 SEGDM thickness =  42.6377*327.541 = 13,965 ( 4-25) 

 𝑉𝑉 = 𝐶𝐶.𝑅𝑅 ( 4-26) 

[24,87] 
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The strict adherence to M-ANOVAR standard methods (as outlined in section  2.2 and Chapter  3) 

would indicate the removal of terms for GDM thickness and PTFE and Structure interactions from the 

model.  However, as advised in section  2.2, understanding the physical realities of the systems should 

advise on the inclusion, or otherwise, of a set of factors.  As the overall model errors were extremely 

low (see Table 32), and the factors of GDM thickness and interactions between PTFE content and 

GDM are of specific interest: These values were retained in the model.  Should the validation prove 

unsuccessful, then the factors could be removed, and validation attempted for a model that does 

exclude such high VIF factors. 

4.10. Validation of reduced complexity models  

Classic, mechanistic or theoretical, models are often validated through one or more of several 

methods.  The simple correlation coefficient (R2, as calculated in equation (3-20)) has been completed 

for all models as part of the M-ANOVAR analysis [87].  Assessment of the distribution of residuals 

was a key test for model validation (in the case of M-ANOVAR ensuring all residuals were normally 

distributed [81,87]), and this was inherent in the M-ANOVAR approaches adopted in work completed 

for this thesis.  This was discussed in more detail in section  2.2, section  3.1 and specifically in 

equations (3-1) through (3-7) and equation (3-50).  As an aid to understanding, reduced complexity 

model ‘Q-Q plots’ were used to verify the broadly normal distribution of residuals (Figure 38, Figure 

39, and Figure 40).  Another key element in the mathematical validation for M-ANOVAR based 

models, is the confidence interval and the F-values (as discussed in section  2.2,  3.3,  3.6 and  4.6) 

calculated for the data.  Section 4 and the various tabulated results, have reported these values in great 

detail.  By taking the M-ANOVAR approach, the acts of verifying the underlying assumptions are 

correct and pass key thresholds, such as ensuring sufficiently high F-values; ensures model validation 

was built into the M-ANOVAR process.  Further model validation can be achieved with graphical 

assessments, and these are included herein. 

Base data comparisons are used as a model validation technique, wherein predicted values from the 

model are plotted against the actual value of the data the model was based on.  A linear result 

indicates a good correlation between the model and real world data [82,85].  There is some debate as 

to which axis the predicted values should be placed on, if additional data analysis, based on the 

relationship between predicted and actual results, is to be carried out [117].  However, the degree of 

linear correlation, regardless of which axis the predicted values is assigned to, remains the same; and 

the model validation technique remains valid, as a simple visual inspection of the data [117] with an 

assessment of the R2 correlation value.  Anderson et al. (2007) [82] also state that the exact correlation 

 SEwt% PTFE x Structure factor =  42.6924*325.760 = 13,907 ( 4-27) 
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is less critical in validating the model and that a broadly equal distribution either side of the 45O line 

(i.e. the line the data would sit on if there were a perfect 1:1 fit between the model and the real world 

data) is more important.  In Figure 45 through Figure 48, predicted values based on the models 

presented in section 4.7 (and its various sub-sections) were created that exactly mimic the values for 

the input data.  The results (i.e. gA, gO, gM and Wmax) were plotted as a scatter plot against the 

actual values recorded during the experiment.  This generates the ‘predicted versus actual’ scatter plot 

that allows a validation assessment of the model in question. 

 
Figure 45: Activation gradient predicted Vs actual validation 

Figure 45 demonstrates a strong linear relation between the predicted and actual values of activation 

loss gradient gA (R2 = 0.71421 as reported previously in Table 17). 

 
Figure 46: Ohmic gradient predicted Vs actual validation 

Figure 46 demonstrates a very strong linear relation between the predicted and actual values of Ohmic 

loss gradient gO (R2 = 0.64220 as reported previously in Table 22). 
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Figure 47: Mass transport gradient predicted Vs actual validation 

Figure 47 demonstrates a fair degree linear relation between the predicted and actual values of Mass 

loss gradient gM (R2 = 0.69836 as reported previously in Table 27). 

 

 
Figure 48: Peak power predicted Vs actual validation 

Figure 48  demonstrates a fair degree linear relation between the predicted and actual values of the 

mass loss gradient gM (R2 = 0.8197 as reported previously in Table 33). 

Lastly, validation of the model can be achieved by the use of forecasting [81,87], in which predictions 

are made for samples that have not been included in the developed model, and comparisons are then 

made.  Sufficient MEA fabrication materials were retained to manufacture three additional test pieces 

for model validation through forecasting.  These test pieces were randomly assigned places in 

scheduled experiments.  Note that samples 13 and 14 are identical in construction, and variation 

between them was purely due to experimental error.  Input variables for the forecast validation are 

shown in Table 39. 
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Table 39: Input variables for reduced complexity model forecast validation 

 

ID Tbar Tmax Wt%PTFE Thickness H2O θ 
Mean 
pore 
µm 

% 
porosity MPL Structure 

13 70.02 71.7 5 235 112 842 36.5 Yes paper 
14 69.2 73.7 5 235 112 842 36.5 Yes paper 
90 66.09 67 13 180 114 1528 44.9 No paper 

 

Table 40: Reduced complexity model forecast accuracy assessment 

 

ID = 13 Forecast Actual Forecast 
Accuracy 

gA -1.10388 -0.562377 1.96 
gO -0.26462 -0.327505 0.81 
gM -0.59404 -0.327505 1.81 

Wmax 
(W. cm-2) 0.37819 0.390078 0.97 

ID = 14 Forecast Actual Forecast 
Accuracy 

gA -1.10388 -0. 562152 1.96 
gO -0.22693 -0. 429273 0.53 
gM -0.56024 -0. 429273 1.31 

Wmax 
(W. cm-2) 0.37952 0.375815 1.01 

ID = 90 Forecast Actual Forecast 
Accuracy 

gA -0.84852 -0.723662 1.17 
gO -0.61115 -0.690131 0.89 
gM -0.87331 -0.690131 1.27 

Wmax 
(W. cm-2) 0.262485 0.254484 1.03 

 

In Table 40 it can be seen that the model performed with a high degree of accuracy in predicting the 

peak power output (W.cm-2), with accuracy values approaching 1 (+/- 0.03).  The gradients of the 

polarising curve were far less accurately modelled.  As has been discussed previously (see 

section  4.4.1,  4.4.2,  4.5.2,  4.5.6 and  4.6), the lack of accuracy for gA and gM were not surprising.  

The lack of accuracy in the gO (Ohmic loss region gradient) of +/- 0.26 (mean value) was not 

expected.  All previous indications were that gO was correlating reasonably well (see Figure 46) and a 

forecast accuracy approaching one, was anticipated. 
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Across the three forecast samples, gO accuracy achieved an average of 0.74.  The coefficient of 

variance (CV) is one method by which the degree of variability around the mean can be quickly and 

easily quantified and is defined in equation ( 4 28): 

 

The reported accuracy variability of the gO prediction was quite high (CV= 0.254).  Therefore, it was 

concluded that while the prediction centres were close to the population mean, the degree of 

variability was higher than initially predicted.  High reliability (low P-value>F probabilities) were 

generated for the gO model, as shown in Table 21, Table 22 and Table 23.  It is suggested that the 

most logical explanation of the high variability of the gO model (+/- 26%) is a low trueness.  The 

model for gO is centred close to the ‘true value’ of gO for a given set of variables, but has a greater 

range of possible values.  This increased range of values is referred to as the trueness [118] of a model.  

Trueness is best explained by analogy with target shooting (see Figure 49): Consider two models that 

simulate the location of a shot at a target (the black star in Figure 49).  The experiment is then carried 

out for two different marksmen, each taking four shots at the target.  

 
Figure 49: Trueness target analogy 

Figure 49 gives an example of this analogy, showing two possible models.  Both place the mean 

position of the actual shots fired (the white star in Figure 49) in the same approximate position.  The 

recorded data for the shots (the black stars in Figure 49) are clustered around the central predicted 

point. Both are reasonable models and predict reasonably well the mean location of a given shot (the 

white star in Figure 49), but they have different ‘trueness’ in terms of their ability to model the degree 

of variation between individual shots. 

 𝐶𝐶𝑉𝑉 =
𝑠𝑠
�̅�𝑥

  

( 4-28) 

[81,83,85] 
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The prediction for peak power in W.cm-2 had a high degree of trueness, as anticipated by the previous 

validation exercises outlined so far.  Mean accuracy was calculated at 1.003, with CV = 0.030.  

Returning to the target analogy; the ‘marksman’ being simulated in the Wmax model clusters its 

‘shots at the target’ much more closely than the ‘marksman’ for the gradient of the Ohmic loss region. 

4.10.1. Repeatability of results 

As discussed previously in section  4.6, and demonstrated graphically in Figure 36, repeatability is 

something of an issue for small numbers of samples.  It is clear that many of the categories under 

investigation had a high degree of variability.  So much so, that traditional OFAT attempts to 

understand the information presented offer limited useful information.  It has been shown in previous 

sections of this thesis (see section  2.2,  3 and  4) that the use of M-ANOVA methods offer the ability to 

account for multiple variables and their impact on the final result.  This is especially true for the 

Wmax model as recently demonstrated in section  4.10.  Great efforts have been undertaken to detail 

the methods used in the application of M-ANOVAR techniques, and to provide sufficient 

understanding that future readers of this thesis can apply these statistical methods to other areas of 

fuel cell research.  Therefore, so long as a suitable statistical software package is available (e.g. 

Matlab ®, R, Minitab®,  Maple®, Design Expert Pro® and others),  there is no reason why these 

experiments could not be replicated by other researchers.  Even without such bespoke software 

sufficient detail has been provided that future researchers should be able to conduct M-ANOVAR 

analysis on their experiments (though replicating these types of calculations by hand or in more 

widely available spreadsheet software would be extremely labour intensive). 

4.10.2. Validation conclusion 

The statistical M-ANOVAR model used for this work, was an accurate model of the impact GDMs 

have on the performance of PEMFCs.  Peak power performance can be predicted with greater than 

95%CI (see section  4.6) and with a very high degree of trueness (see section  4.10).  The gradient of 

the Ohmic region can also be predicted, though experimental variability was far greater for this 

prediction (+/- 26%).  Attempts to predict the impact GDMs may have on the gradient of the 

activation and mass transport regions of polarisation curves, is not recommended by the author.  

Thorough error assessment has been undertaken, and the overall models for each type of GDM (Paper, 

Non-woven and Woven with or without MPL) all pass the appropriate F-test.  It is therefore sugusted 

that multivariate analysis is a useful tool for modelling GDMs, and PEMFCs.  Having established the 

usefulness of the models, section  4.11 goes on to discuss the outputs generated by the models and to 

discuss their likely significance in terms of understanding the impact GDM properties can have on the 

overall performance of PEMFCs. 
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4.11. Key findings from developed models 

Recall from equation (3-26) and Table 7, they key measure for rejecting hypothesis zero (i.e. H0 =  “A 

simple mean is a better model than the more complex multivariate ANOVAR method”) is the F-Test. 

The F-distribution, is a family of distribution curves with a shape that varies with the degrees of 

freedom (the number of data points), of the information being analysed.  The F-Test addresses the 

probability that a more complex model could generate useful answers ‘by luck’, rather than because 

the model is correct.  Assuming the true answer is a set of random, normally distributed, numbers; it 

has repeatedly been shown [28,29,78,79,81,83] that the probability of a more complex model being 

correct by ‘accident’ reduces as the F-value increases.  The F-Test generates a ‘critical value’ 

associated with the desired likelihood (usually set at 95% for example) associated with the F-

distribution curve for a particular number of degrees of freedom.  If the F-value calculated for the 

model is greater than critical F-Value for that specific F-distribution curve, then the probability 

threshold has been passed, and it is unlikely that the model is incorrect: Therefore, the researcher can 

reject H0, and accept that the more complex model is probably correct (i.e. accept H1).  The more the 

model F-value exceeds the critical F-Value, the more likely is to be correct.  This relationship is 

shown schematically in Figure 50 for a generic F-distribution, in which the hypothesised 95% level is 

reached when F is calculated to be 2.5. 

 
Figure 50: F-test example 

 

The p-value relates to the critical F-value.  The p-value is the probability of falsely rejecting a given 

hypothesis (so smaller P-values are desirable) [82].  
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Table 41: Summary of reduced complexity models and F-Values 

Model 
Degrees of 

freedom 
F-Value P-value* 

Model detail can 

be found in: 

gA Model 14 10.17489 0.0000 Table 16 

gO Model 8 14.13478 0.0000 
 

Table 21 

gM model 10 14.12268 0.0000 Table 26 

Wmax Model 15 16.9672 0.0000 Table 32 

*Values from Design Expert Pro  

The values generated were produced using Design Expert Pro software.  Design Expert Pro does not 

calculate P-values lower than 0.0001 (i.e. a less than 0.01% chance of rejecting H0 in error). 

In each case, the model F-test values indicate a p-value with a less than 0.01% chance of the model 

not being a suitable way to navigate the design space of the experiments.  On the basis of this result, it 

was concluded that the comparison of cell performance by the ‘gradient of polarisation regions’ 

method, is a valid way to make numeric comparisons between polarisation curves (within the +/- 26% 

error bound).  As discussed in sections  3.6.2 and  4.6, and also in equation ( 4-17); the adaptation of 

traditional ANOVAR to multiple input and output variables increases the likelihood of error.  The 

probability calculation should be adjusted accordingly.  Fortunately, the F-Values generated sit firmly 

in excess of the 95% confidence limit, and the corresponding p-value>F reported by the software is in 

actuality no greater 0.0116 (i.e. a 1.16% chance that H0 was rejected in error) as discussed in  4.6.  

Therefore the models generated are likely to be useful.  It has been shown that the accuracy of the 

activation and mass transfer loss gradient models was not sufficient.  The Ohmic loss gradient can be 

modelled with a fair degree of accuracy, but the range of likely values was such that caution must be 

used when using the gO model.  The peak power model prediction is extremely accurate (+/- 3%) 

There are several key assumptions in this statement: 

• The MEAs tested must be of the same overall charge density (A.cm-2). 

• Comparisons of MEA gradients have only been validated on two very similar test setups. 

• It is possible that different fuel cells, gas flow geometries and other factors for different 

experimental set-ups could have a negative impact on the utility of this method. 

• Test conditions, reactant flow rates and all other experimental parameters must match  (as far 

as is possible) to ensure the validity of this approach. 

• The gradient measure should always be considered along with an absolute measured value, 

such as the peak power, to avoid errors caused by shifts in the absolute location of the 

gradient being considered. 
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It is possible that the method is, in fact, more robust than these assumptions state, but this requires 

additional work to validate.  Having validated the measured differences between regions for different 

MEAs, the MEAs tested were analysed. Perturbation plots (see Figure 51 and Figure 52 for examples) 

were made of the design space, in which the impact of all factors were plotted against an arbitrary 

scale (the ‘desirability’ of a given input factor): in this case, all inputs were equally important and 

have a desirability of ‘1’. 

 
Figure 51: Perturbation graph for reduced complexity model gA 

 
Figure 52: Perturbation graph for optimisation model gM 

The perturbation graph (Figure 51 and Figure 52) can be considered a ‘one factor at a time’ (OFAT) 

representation of the experimental data.  Its primary use is in assigning likely variables as an axis for 

subsequent surface plots.  The lines that deviate away from the horizontal are usually the best choice 

for applying as an axis in subsequent surface plots [82].  As can be clearly seen in Figure 51 and 
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Figure 52, the following factors all deviate away from the horizontal and so were well suited to 

displaying the data in subsequent surface plots (Figure 55 through Figure 60): 

• G (% porosity) will be selected for one axis. 

• E (H2O contact angle). 

• B (T-max ). 

• D (through-plane thickness).  

The identified input factors were all suitable contenders for the remaining two axes for any surface 

plots generated.  In terms of understanding the overall fuel cell performance, the mean temperature 

during operation (T-bar) is also of interest, and may be included as a preference to T-max if a useful 

conclusion can be drawn from the data.  It became apparent that the impact of ‘T-max’ compared to 

‘T-bar’ was a simple upward shift to the overall performance result.  In this instance, T-bar was 

selected as the more representative value of the test conditions realised during the experiments. 

While it is possible to analyse the data for all four output factors, gO (gradient of the Ohmic region), 

and Wmax (peak power output in Watts per cm2) were focused on as being of the most interest.  As 

shown in Table 40, peak power and, to a lesser extent, the gradient of the Ohmic loss region (gO) 

were the best suited to the type of M-ANOVAR analysis undertaken in this thesis. 

The gradient of the Ohmic region should ideally be as level as possible (close to zero) as the Ohmic 

region is typically considered the optimum operating condition of a fuel cell system [24].  It is 

possibel that the gradient of a given region can alter its absolute position along the x-y axis, without it 

being clearly visible in the analysis. 

To overcome this, the Watts.cm-2 value provides a fixed point in the data to consider, and is more 

readily understandable (and comparable) in a fuel cell research context [58].  There were several other 

points that could have been selected (voltage at set load current for example), but it is thought at this 

time that the two output variables (‘Wmax’ and ‘gO’) were sufficient for this analysis. 

4.11.1. Reduced complexity model responses 

This model was derived from the following design spaces for each structural GDM type and should be 

considered valid within these settings.  Note that projection beyond this region, increases the error and 

is not advised.  Figure 53 shows the ‘design cube’ for the gO model created.  The model is considered 

correct within the limits of the factors shown in the cube: 

• 110µm > Thickness of GDM > 420µm. 

• 31.8% > porosity of GDM > 73%. 

• 60.3OC > Mean temperature during polarisation test > 73 OC. 
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Figure 54 shows the ‘design cube’ for the Wmax model created.  The model is considered correct 

with the limits of the factors shown in the cube: 

• 110µm > Thickness of GDM > 420µm. 

• 31.8% > porosity of GDM > 73%. 

• 60.3OC > Mean temperature during polarisation test > 73 OC. 

Using the model outside of these limits increases the error in an undefined way and is not advised.  

The numeric values shown adjacent to each corner of the design cube (Figure 53, and Figure 54) are 

the model outputs, at the extreme values, for each of the displayed factors. 
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Figure 53: 'Design Cube' for gO models 

(non-woven (top), paper (middle) and woven (bottom) GDMs) 
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Figure 54: 'Design Cube' for Wmax models 

(non-woven (top), paper (middle) and woven (bottom) GDMs) 

It is important to bear in mind that there are more than three factors in each model, but it is difficult to 

visualise this. 
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4.12. Reduced complexity regression for GDMs conclusion 

The backwards step elimination of insignificant terms (detailed in sections  3.7,  3.8,  4.5,  4.6,  4.7 and 

4.8), reduced the number of terms in the model (i.e. reduced complexity) without a reduction in the 

usefulness of the models created as shown in section  4.10.  The models have been shown to be robust 

(i.e. not unduly influenced by extreme values) as Adjusted R2 = Predicted R2 +/- 0.2 [81,84]; this was 

shown in Table 22  and Table 33 for the gO and Wmax models respectively.  Having established the 

credential of the proposed model the response surface plots generated were used to explore the design 

space.  The response surface plots, shown (Figure 55 through Figure 60), map the developed models 

(gO model shown in Table 24 with categoric factor detail in Table 25, the Wmax model in Table 35 

with categoric factor detail in Table 36, Table 37 and Table 38 ) across all points, within the limits of 

the design cube as discussed in section  4.11.1 (Figure 53 and Figure 54).  The models graphically 

represent the result for mean temperature (Tbar) and porosity, and their impact on the model output 

results (either the gradient of the Ohmic region for gO plots or the peak power result for Wmax plots).  

The base plane on the response surface plots (Figure 55 through Figure 60) show a yellow field with 

contour lines to highlight lines of curvature in the response surface.  In all cases (Figure 55 through 

Figure 60) the contour lines are straight, and no measurable curvature was detected.  Findings 

discussed in the initial conclusions in section  4.6 (other than those attributed to machine variables) 

remain true.  It was found that: 

• In the gO plots (Figure 55, Figure 57 and Figure 59) the response for porosity dominates 

across all settings except for through-plane thickness.   

• In the Wmax plots (Figure 56, Figure 58 and Figure 60) the response for porosity dominates 

across all settings except for through-plane thickness. 
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Figure 55: gO Through-thickness ‘Felt’ interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

Examining Figure 55 in more detail, a comparison is made of the impact through-plane thickness of 

the GDM has on the performance of the Ohmic gradient for ‘felt’ GDMs.  Overall there is a 

significant change, with lower thickness (110µm ‘top’) GDMs favouring lower porosity levels. That 

is to say, an Ohmic loss gradient closer to zero is considered preferable; as this indicates mass transfer 

losses are less likely to limit the performance of the fuel cell ( see section  1.1 and  Figure 4 for further 

clarification).  Conversely, thicker through-plane GDMs (420µm ‘bottom’), perform equally well 

across a wide range of porosity values, though fail to achieve the preferred gradient.  It is interesting 

to note there is a ‘region of stability’ at approximately 53% porosity (highlighted with orange lines in 

Figure 55), where there is very little change to the gO result. 
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Figure 56: Wmax through-thickness ‘Felt’ interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

Examining Figure 56  in more detail, a comparison is made of the impact through-plane thickness has 

on the performance of the peak power (in W.cm-2) for ‘felt’ GDMs.  Overall, there is a significant 

change with lower thickness (110µm ‘top’) GDMs favouring lower porosity levels. That is to say, the 

maximum achievable peak power is 0.562 W.cm-2 (see section  1.1 and Figure 4 for further 

clarification).  It is apparent that the lower thickness model performs less well at very high porosities, 

with the minimal peak power reading 0.158 W.cm-2. Conversely, thicker through-plane GDMs 

(420µm ‘bottom’) show a more uniform performance across a wide range of porosity values 

(maximum = 0.522 W.cm-2, minimum = 0.246 W.cm-2).  It is interesting to note the ‘region of 

stability’ (highlighted with orange lines in Figure 55), is also evident, though for the Wmax model, 
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this region has shifted to a lesser value of porosity of approximately 42.5% (highlighted with black 

lines in Figure 56). 

 

 
Figure 57: gO Through-thickness Paper interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

Examining Figure 57 in detail, a comparison is made of the impact through-plane thickness of the 

GDM has on the performance of the Ohmic gradient for ‘paper’ GDMs.  Overall, there is a significant 

change with lower thickness (110µm ‘top’) GDMs favouring lower porosity levels. That is to say, an 

Ohmic loss gradient closer to zero is considered preferable; as this indicates mass transfer losses are 

less likely to limit the performance of the fuel cell (see section  1.1 and  Figure 4 for further 

clarification).  Conversely, thicker through-plane GDMs (420µm ‘bottom’) perform equally well 

across a wide range of porosity values, though fail to achieve the preferred gradient.  It is interesting 



4-162 
 

to note, there is a ‘region of stability’ at approximately 53% porosity (highlighted with orange lines in 

Figure 57), where there is very little change to the gO result. 

 

 
Figure 58: Wmax Through-thickness paper interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

In Figure 58, a comparison is made of through-plane thickness of the GDM on peak power (in W.cm-2) 

for ‘paper’ GDMs.  Overall there is a significant change with lower thickness (110µm ‘top’) GDMs 

favouring lower porosity levels. That is to say the maximum achievable peak power is 0.592 W.cm-2 

(see section  1.1 and Figure 4 for further clarification).  It is apparent that the lower thickness model 

performs less well at very high porosities, with the minimal peak power reading 0.190 W.cm-2. 

Conversely, thicker through-plane GDMs (420µm ‘bottom’), shows a more uniform performance 

across a wide range of porosity values (maximum = 0.554 W.cm-2 , minimum = 0.276 W.cm-2 ).  Note 
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a ‘region of stability’ (highlighted with orange lines in Figure 57), is also evident, though for the 

Wmax model, this region has shifted to a lesser value of porosity of approximately 42.5% porosity 

(highlighted with black lines in Figure 58).  In the Wmax model for paper GDM, there is also a slight 

increase in peak power (+0.02 W.cm-2) at approximately 42.5% porosity point for thicker 420µm 

GDMs  compared to the thinnest (110 µm) GDMs. 

 

 
Figure 59: gO through-thickness woven interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

Figure 59 details a comparison of through-plane thickness of GDM, on the performance of the Ohmic 

gradient for ‘paper’ GDMs.  Overall, there is a significant change with lower thickness (110µm ‘top’) 

GDMs favouring lower porosity levels. That is to say, an Ohmic loss gradient closer to zero is 

considered preferable; as this indicates mass transfer losses are less likely to limit the performance of 
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the fuel cell (see section  1.1 and  Figure 4 for further clarification).  Conversely, thicker through-plane 

GDMs (420µm ‘bottom’), perform equally well across a wide range of porosity values, though fail to 

achieve the preferred gradient.  Note there is a ‘region of stability’ at approximately 52.5% porosity 

(highlighted with orange lines in Figure 59), where there is very little change to the gO result. 

 

 
Figure 60: Wmax Through-thickness Woven interactions 

(Through-plane thickness 110 µm (top) and 420µm (bottom)) 

In Figure 60, a comparison is made of through-plane thickness of GDM on peak power 0.48 W.cm-2 

woven GDMs.  Overall, there is a significant change with lower thickness (110µm ‘top’) GDMs 

favouring lower porosity levels. That is to say, the maximum achievable peak power is 0.473 W.cm-2 

(see section  1.1 and Figure 4 for further clarification).  It is apparent that the lower thickness model 
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performs less well at very high porosities, with the minimal peak power reading 0.076 W.cm-2. 

Conversely, thicker through-plane GDMs (420µm ‘bottom’) show a more uniform performance 

across a wide range of porosity values (maximum = 0.436 W.cm-2, minimum = 0.165 W.cm-2).  Note 

the ‘region of stability’ (highlighted with orange lines in Figure 59) is also evident, though for the 

Wmax model this region has shifted to a lesser value of porosity; approximately 42% porosity 

(highlighted with black lines in Figure 60).   

The porosity and temperature surface response plots demonstrate a very strong through thickness 

effect.  The peak performance for the Ohmic region (i.e. gO approaches zero) is achieved in all three 

structures tested, by minimising the through-plane thickness.  The impact of porosity on the effect is 

harder to explain.  It can seen that the lower porosity values (less than around 50%) are preferable, 

perhaps due the increased density of the system.   

Even the inclusion of temperature does not significantly alter the effect, despite the well-established 

links to temperature and performance in every other metric measured.  The minimisation of the 

porosity and through-plane thickness factors, dominates all other considerations.  This remains true 

across all structure types, with woven structures performing moderately worse.  Discussions around 

the impact of pores tend to focus on mass transport through the system.  Larger pores require the least 

amount of pressure to allow water to penetrate [119].  The pore size and capillary pressure 

relationship is given as: 

 

where γ = the surface energy of water, and rpore is the radius of a given pore and θ is the pore filling 

factor [119] as detailed in section  4.2.1.  The resultant pressure value, is the amount pressure required 

to force water to enter a pore of this size.  This concept is the basis of the strong recommendation that 

a variety of pore sizes is preferential to optimise performance.  Smaller pores will remain open for gas 

flow, while larger pores will dominate liquid water transport.  Based on this theory, woven GDMs 

should dominate performance in most cases.  The bimodal pore distribution between threads and the 

weft-warf of the weave itself, maximises the bimodal pore distribution in an ideal fashion [119].  

Other authors have also commented on the importance of pore size and its distribution [120,121], and 

support this concept; with pore size distribution identified as being more important than either the 

mean pore size or total porosity in standard GDM materials.  It should be observed at this point, that 

the construction of the ‘diffusion layer’ proposed in some papers referenced in this section, varies 

considerably from that used in these experiments; though the central arguments are still valid. 

 ∆𝑃𝑃 =
2𝛾𝛾𝑤𝑤𝑎𝑎𝐹𝐹𝑙𝑙𝑟𝑟𝐸𝐸𝐷𝐷𝑠𝑠𝜃𝜃

𝑟𝑟𝑝𝑝𝐹𝐹𝑟𝑟𝑙𝑙
  

( 4-29) 
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Jordan et al. (2000) [122] comment on the impact of the thickness of diffusion layers, and claim 

thinner GDMs are important for air based fuel cells (as opposed to oxygen based).  However, their 

work is focused on a porous backing layer between carbon cloths and the catalyst layer, and their use 

of the term ‘thickness’ actually relates to the mass loading of this MPL.  It may still provide some 

insight into the results from work in this thesis.  Figure 55 through Figure 60 give a graphical 

representation of the relationship between performance, porosity and thickness of the carbon fibre 

based GDM for all three structures.  The minimal porosity effect for improved performance is true in 

all materials, for both the gradient of the Ohmic loss region and the absolute peak power.  Peak power 

settings were strongly temperature dependent but otherwise mirror the Ohmic gradient result. 

It is interesting to note, the results shown from the peak power models (see Table 35 through Table 38) 

plotted in Figure 56, Figure 58 and Figure 60 indicate that, in high-demand and maximum-power 

applications, paper structures would be predicted to outperform the woven material by a significant 

degree.  The non-woven ‘felt’ class of materials also outperforms the woven structure.  This 

counteracts the usual assumption that the broad pore distribution of woven materials, are better suited 

to operation regions of the cell where high volumes of liquid water occur.  It is possible the high 

demand state has not been held for long enough period, to trigger the volume of water generation 

required, to see the direct benefit of the woven pore-size distribution effect.  The peak power 

measurement is an approximately 30-second ‘window’ of time from the 250 second duration of the 

polarisation curves that generated this data.  Returning to the two-dimensional model from 

section   4.2.1, the perturbation factor was altered.  Perturbation was set to a high value (0.35) to 

simulate the increased difficulty of liquid mass transport through reduced pores size, and reduced the 

overall hight of the calculated region to reflect the reduced thickness of the GDM (once again making 

the assumptions about initial starting temperature as per equation ( 4-5) and the temperature profile 

seen in Figure 20).  The results for the increased perturbation value and reduced through-plane 

thickness, are plotted graphically in Figure 61 and Figure 62. 
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Figure 61: Reduced geometry GDM 

(Steady state temperature (top) and O2 concentration (bottom)) 
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Figure 62: Reduced geometry GDM mass flow 

(steady state concentrations for H2O(g) (top) and H2O(l) (bottom)) 
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In Figure 62, there is a marked reduction in the O2 concentration under the land area of the flow 

channel, and a marked reduction in liquid water retention under the land.  The bulk of the gaseous 

H2O concentration is distributed over a very narrow region (x = - 0.2 to x = + 0.2) at the channel-land 

boundary, when compared to the original model (x=- 0.3 to x = + 0.5).  The inference being; fewer 

pores are 100% filled with water in the half-land region, enabling the gaseous water vapour more 

space to travel through. 

This covariance of porosity with through-plane thickness in fibre based GDMs, has not been reported 

in literature before.  The desirability of minimal porosity for both peak power and Ohmic loss region 

values, is somewhat surprising.  As a general rule, pore-size distribution (the ratio of smaller to larger 

pores of given diameters) is highlighted as being more significant than the total porosity or mean pore 

size [58,120]; based on the previously discussed assumption of improved speed of water flow from 

preferential pore filling.  It would seem logical that thinner through-plane thickness GDMs would be 

more desirable.  The evidence here broadly supports that hypothesis as it relates to peak power but 

does not hold true for the gO measurement.  

In the gO case, the porosity of around 50% is independent of the thickness. Porosities above this level 

were positively impacted (gradient approaches closer to zero) by increased GDM thickness.  This is in 

accordance with the findings of Mason et al. (2012) [112], and part of the improved contact resistance 

between the monopolar plates and the GDM, is a strong contender for the source of this reduced 

complexity model performance. 

The decrease in performance, below the (approximately) 50% porosity figure, is harder to explain.  

Recall that all samples were clamped to the same torque.  An argument could be made that the lower 

porosity GDM were excessively crushed,  closing reactant pathways, as the thickness increase due to 

its reduced density: If this were indeed the case, the Wmax criteria under the same conditions should 

experience a proportional and equivivlent decrease as well.  This is clearly not the case: Figure 58  

and Figure 60  (paer and woven GDM peak power model respectivly, show a slight redcution in peak 

power as thickness increases, but not to the same degree as that seen for  the gO models.  Figure 56 

actualy deomanstrates a slight increase in peak performance as thickness increases.  Consdiering the 

error bounds f the model, it would have to be arguied that no measurbale change in any of the Wmax  

GDM models was established with certainty.  Therefore, this suports the argumant that reduction in 

mass flow is unlikely to be the cause of the drop in gO below 50% porosity for higher thickness 

GDMs.  

It could be argued that the anticipated drop would eventually appear if the cell were operated in the 

steady state at maximum power and the system may eventually converge with the expectations in the 

literature [112], though the simplified numeric model presented in this thesis does not support this 

argument. 



4-170 
 

If the results reported in this thesis are correct, it has not been previously reported that transient loads 

can, for an unknown but significant period, ignore the effect of pore closure due to excess clamping 

force.  Typically the Bimodal pore distribution of woven materials is cited as the reason why they 

outperform other GDM structures under high workloads.  In testing, this was not the case.  It is likely 

that the relatively short duration at maximum loads in the historic data test (approximately 30 

seconds), have revealed there is a period where the non-woven GDM structures can equal, and 

perhaps even  outperform, woven GDMs,  even at high loads.   

The conclusion from this, is that a properly designed system could optimise the contact resistance, 

with a suspected loss in long-duration peak power supply; if this were an acceptable operational 

compromise (for example constant duty cycles with relatively few high-demand periods, such as long-

distance transport).   

As a corollary to this, GDMs with a total porosity around 40% to 50% may be preferable in a wide 

variety of applications where thermal-mechanical loading can cycle the clamping force experienced 

by the GDM.  These approximate 45% porosity GDMs, were largely indifferent to the clamping 

pressure applied to them (based on the findings from completed tests in the experimental design 

space). 

4.13. Summary of Chapter 4 

Chapter  4 sought to determine if multivariate data analysis methods could be usefully applied to the 

study of PEMFCs (and GDMs in particular), to improve understanding of the likely interactions 

occurring within PEMFCs.  To that end, an introduction to a two-dimensional conceptual model of 

GDMs and their behaviours (originally presented by Spiegel (2008) [87]) was introduced in 

section  4.2.  This was done with the intention of highlighting some of the most important factors 

governing the performance of GDMs within PEMFCs (according to pre-existing literature and 

numeric models).  A multivariate design of experiments was then detailed in  4.3, along with a wide 

variety of experimental equipment, procedures and sample preparation methods required to undertake 

the designed experiments.  The key categoric variables in the experiment were detailed (Table 12), 

and initial scatter plot assessments for all variables were conducted via a matrix plot (Figure 29).  

Having established the data would, in all likelihood, be suitable for more detailed multivariate 

analysis, and having verified any likely categorical input factors: Polarisation curve data was captured 

from a wide variety of GDM samples.  A novel automated procedure, to analyse peak power and the 

gradient of the distinct regions of each polarisation curve, was further detailed. 

Initial results were analysed with traditional data interpretation methods, and plotted as box and 

whisker plots (e.g. see Figure 36).  The spread of the data was shown to be such that firm conclusion 

could not be drawn; and again multivariate methods were recommended.  Section  4.5 detailed the 
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multivariate design of experiments conducted in accordance with the parameters outlined in Table 13.  

All variables were assessed for normality of residuals and passed  Q-Q plot 'pencil tests': confirming 

the data was well suited to the multivariate methods selected (e.g. see Figure 40).  The results were 

plotted, and initial analysis of the data was completed, in accordance with recommended practice as 

detailed in section  2.2. 

Backwards step elimination was then undertaken to remove extraneous, or insignificant, input factors 

for the developed M-ANOVAR models as detailed in section  4.7.  A detailed examination of error 

arising from test apparatus was carried out (see Table 15).  It was found that while a certain degree of 

error was measurable, the differences between samples tested were such that it could be safely 

discounted in this work (i.e. FCCA based apparatus induced error was sufficiently small that it could 

be ignored).  Backwards regression was then concluded, removing equipment factors and the final 

models, and having had non-significant terms removed from them, were presented in section 4.7 as 

'reduced complexity' variants of the models first developed in section  4.5.  The models produced were 

assessed in detail.  The models underwent error assessment and determination of any additional 

impacts on the accuracy of the model as a result of co-varying factors (variance inflation factor 

analysis).  The final models were produced for gA (Table 20), gO (Table 25), gM (Table 30 and Table 

31) and Wmax (Table 36, Table 37 and Table 38).  Model validation that had been completed in 

previous sections was highlighted, and graphical and forecasting validation was also completed in 

section  4.10.  It was sugested that the peak power model (referred to as ‘Wmax’), was highly suitable 

for analysing the data.  The gradient of the Ohmic loss region of the polarisation curve (referred to as 

‘gO’) gO model was also a useful method for investigating GDM performance, though prone to a 

greater range of variability in the experimental results. As an example, from Table 25, the associated 

values for the Ohmic loss gradient model of paper GDMs were: 

 

 

 

The equivalent peak power model for paper GDMs is: 

 

 gO(paper)  =  -0.66462 +(0.018846*Tmax) + (-1.37789*wt%PTFE as a decimal ) +  

(-0.00249*GDMthicknessµm) + (-0.019*volume%pores) +  

(4.62x10-5 * GDMthicknessµm *volume%pores) 

 

 

( 4-30) 
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A brief summary of the f-distribution and resultant p-value probability of error was recapped in 

section  4.11, along with the key assumptions of the models to be analysed.  The decision as to which 

factors to map the response surface plots against, were made using perturbation plots (e.g. Figure 51).  

The limits of the model design were enumerated both as bullet points, and as 'design cube' results 

generated by Design Expert Pro (Figure 54). 

The conclusions for the chapter were then detailed in section  4.12.  It was noted that porosity and 

through-plane thickness interactions in GDMs have a significant impact on both the peak power 

performance, and the gradient of the Ohmic loss region.  The two-dimensional model reported in 

section  4.2 was once again utilised and adapted, to closely match the parameters of interest generated 

from the Wmax and gO models detailed in section  4.11 and  4.12.  This then formed the basis of the 

discussion around likely causes for the various effects, detected in the gO and Wmax reduced 

complexity M-ANOVAR models.  

It was found that while peak power performance occurs for lower porosity GDMs, regardless of type: 

GDMs have a key porosity value where their performance is more uniform over a variety of through-

plane thicknesses.  The Ohmic gradient shows a similar trend.  In summary, the results are as follows:  

• Wmax woven GDMs:  

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.473 W.cm-2).  

Stable performance across a wide range of thickness is achieved with approximately 

42% porosity GDMs. 

• Wmax paper GDMs: 

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.592 W.cm-2).  

Stable performance across a wide range of thickness is achieved with approximately 

42% porosity GDMs. 

• Wmax non-woven GDMs: 

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.562 W.cm-2).  

Stable performance across a wide range of thickness is achieved with approximately 

42% porosity GDMs. 

It should be noted that stable gO performance, across a wide range of GDM thicknesses were noted, at 

approximately 53% porosity. 

 (Wmax(paper))-1.32  =  -62.8852 +(0.9388*Tmean) + (0.7874*wt%PTFE as a decimal ) +  

(-0.0015*GDMthicknessµm) + (0.5755*H2O-contact anlgedegrees ) + (0.0195 * 

volume%pores)+(-0.0082*Tmean*H2O-contact anlgedegrees)+ 0.018*(wt%PTFE as 

a decimal*GDMthicknessµm) 

 

 

 

( 4-31) 
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5 Expanded Literature Review and Investigation of Catalyst layers 

5.1. Introduction to Chapter 5 

As has been discussed previously in sections  2.5,  2.7 and  2.8, there is a gap in the literature regarding 

layered catalyst structures and their longevity.  Subsequent chapters consider the interactions between 

layered catalysts, GDM structure and degradation rates of PEMFCs as a multivariate problem.  

Chapter  4 has demonstrated the usefulness of M-ANOVAR methods in the study of PEMFCs, 

specifically in relation to the selection of GDMs to either maximise peak power performance or to 

select a porosity of GDM that is stable over a wider range of operating conditions.  To understand the 

role layered catalysts play inside PEMFCs; Chapter 5 expands on the literature review (see 

section  2.5) and presents information on catalyst layers in more depth.  It begins with a brief 

description of simple catalyst layer and agglomerate based models.  This is done to aid understanding 

the importance of the catalyst layer (using a two-dimensional numeric models to highlight the impact 

of catalyst layers of PEMFC performance).  The information presented in Chapter 5 will inform the 

analysis, discussion and understanding of the results generated in later chapters of this thesis. 

5.2. Catalyst layers in PEMFCs 

Catalyst layers (CLs) are a region sandwiched between the membrane and the GDM.  The CL 

facilitates Oxygen Reduction Reaction (OOR) on the cathode side, and Hydrogen Oxidation 

Reactions (HOR) on the anode side of the fuel cell (see Figure 1 ).  Traditionally the CL has been 

created by nanometre scale catalyst material (e.g. Platinum) that was deposited onto small particles of 

a supporting substrate.  Carbon black has often been used as a substrate, as it is relatively low cost, 

can be milled down to very small particle sizes and chemically stable in the presence of the platinum 

catalyst at the majority PEMFC operating conditions [95].  Section  2.5 introduced a literature review 

of CLs relevant to the wider topic of multivariate factors in PEMFC research.  The previous results in 

Chapter  4 have shown that PEMFCs can be studied using the M-ANOVAR methods discussed 

previously (section  2.2,  3, section  4.10, section  4.12 and section  4.13).  It is important to ensure that 

the system being studied is understood well enough, so that the results generated by any proposed M-

ANOVAR assessment, can be analysed and interpreted successfully.  To achieve this, section  5.3 

introduces a basic numeric model to highlight the importance of catalyst layers in PEMFCs. 

5.2.1. Catalyst layer degradation 

There are many suggested sources of degradation in PEMFCs and the literature on degradation 

mechanisms is extensive; with a large number of authors contributing [16,70,95,99,123-142].  Those 

of specific interest to layered catalyst structure and multivariate investigation have been discussed 

previously in section  2.3.  The topic of fuel cell degradation is broad, with some degradation 
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mechanisms, and the test conditions to monitor them, specifically applying to certain components in 

the fuel cell assembly, and also the operating parameters at the time the degradation event takes place.  

As degradation is an area of research well served in the literature; this thesis has, instead, focussed on 

the experimental and statistical methods required to accelerate understanding of the complex 

interactions that can occur in fuel cell degradation studies.  Degradation in fuel cells is not always a 

straightforward linear effect: Both degradation mechanisms and rates vary over time as the fuel cell 

operates.  The Ostwald ripening (introduced in Chapter 2) rate is far higher when first using new 

PEMFCs [95].  The newly deposited Pt nano-particles have a very high surface area and so are driven 

to undergo ‘agglomeration’ or Ostwald ripening at an accelerated rate.  Once the ripening process has 

progressed for a period, the energetic drive to reduce overall surface area (i.e. the Gibbs free energy of 

the surface) has significantly reduced, and the rate of ripening will decrease [39].  There are also 

reversible performance losses, such as excessive water in the fuel cell components [90,95,115,143-

146].  These flooding events subside, if conditions are suitable to allow the drying of the components.  

There are also irreversible degradation effects such as the complete loss of platinum from the fuel cell 

for a variety of reasons (see Table 42).  Part of the complexity of degradation studies in fuel cells is 

that these, and several other, degradation mechanisms take place simultaneously.  The rates of 

degradation for each mechanism vary over time, and as a result of the duty cycle the fuel cell is 

required to operate under [57,70,95,99,147-149] (see  2.3 for more detail on this topic).  It is the 

hypothesis of this thesis that material selections, such as the type of GDM, and the manufacturing 

methods used in fabricating MEAs (i.e. the use of layered catalysts) may also be factors that 

influences the rate of degradation in fuel cell performance.  

There are several key degradation mechanisms that impact the catalyst layer specifically.  Once again, 

there are a great many numbers of authors that have examined this topic in the past [16,70,95,99,123-

142].  This thesis has drawn heavily on the information presented by Mench (2012) [95], Whiteley 

(2016) [90] and Sutharssan et al. (2016) [141], and the key degradation mechanisms for catalyst layers 

are summarised as follows: 
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Table 42: Example catalyst layer degradation mechanisms 

Reversible degradation Irreversible degradation 
Degradation Mechanism Impact Notes Degradation Mechanism Impact Notes 

Flooding H2O blocks 
pores 

Reduced 
ECSA [95], [90] Poisoning 

Chemicals 
strongly 

adhere to the 
surface of the 

Pt catalyst 

Reduced 
ECSA 

e.g. CO, 
HO-, 
HOO- 

[95], [90], 
[141] 

Crossover 
N2 passes 

through the 
membrane 

Reduced 
H2 in gas 

flow 
channel 

 
Reduced 
ECSA 
for H2 

[142] Increased 
catalyst size 

Ostwald 
ripening – Pt 

atoms 
relocate to 
reduce free 

surface 
energy by 
forming 
larger 

particles 

Reduced 
ECSA 

Rate 
reduces as 

the 
particles 

grow over 
time 

[95], [90] 

Poisoning 

Chemicals 
weakly 

adhere to 
the surface 
of the Pt 
catalyst 

Reduced 
ECSA 

e.g. CO, 
CO2 

[95], [90] 
Pt migration Relocation of 

Pt particles 
Reduced 
ECSA 

Into the 
body of 

the 
membrane 
[95], [90] 

    Pt loss 

Catalyst 
physically 

lost from the 
MEA 

Reduced 
ECSA 

Direct loss 
of Pt or 
loss as a 
result of 
loss of 
Carbon 
catalyst 
support 

materials 
[95], [90] 

 

For a more detailed discussion of the time and operational dependence of the large numbers of 

possible degradation mechanisms, the reader is directed to one of the three primary sources referenced 

[90,95,141]. 

5.3. Catalyst layer through-plane thickness models 

There have been a wide variety of modelling techniques applied to catalyst layers, and there are many 

review papers on the topic: Marquis and Coppens (2013) [94] give a good introduction.  Agglomerate 

model approaches become popular in the 1980's, with several notable papers in the field [94].   

It is perhaps useful to define agglomerate once again to avoid  any possible confusion, please see 

annex one.  It is important to note that the term ‘agglomerate model’ does not, inherently, imply a 

transient time-dependent model, on the changes in the catalyst layer.  In this thesis, it indicates that 

the type of catalyst being modelled consists of multiple phases clumped together (typically carbon 
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black and platinum) into a broadly homogenised mass, with an ionically conductive phase at the 

surface.   

It is beyond the scope of this thesis to provide a detailed numeric model of the catalyst layer (CL) and 

its impact on cell performance, but a basic understanding of the role the CL plays in generating fuel 

cell outputs is advantageous and so included here.  There are many authors [71,72,150-165] who have 

worked on the topic of CL modelling. Horn-Wen Wu (2016) [166], recently published an extensive 

review of modelling of transport and performance for fuel cells, and the interested reader is directed 

there.  The key assumption of the two-dimensional agglomerate models presented in Chapter  5, is that 

the carbon support the platinum catalyst are deposited onto, are treated as a single agglomerated pallet 

(hence the name) encased in a diffusive media.  Usually, this diffusive media is assumed to be 

Nafion®, but it can also be fluid (gaseous or liquid water).  Sun et al. (2005) [164] have produced an 

excellent two-dimensional model using this approach.  

5.3.1.  One dimensional agglomerate model catalyst activation 

The effectiveness factor can be thought of as the availability of the gas in question (the reactant), to do 

work at the catalyst sites.  It is an interrelationship function, based on the diffusivity properties of the 

gas in and around the catalyst agglomerates, along with the chemical activity and energy requirements 

for reactions to occur.  In this thesis, a simplified one-dimensional agglomerate model, as reported by 

Spiegel (2008) [87], is used to gain an appreciation of the factors involved. These equations were 

originally developed to simulate porous catalysts agglomerate mixtures, but have frequently been used 

in an unaltered fashion in the modelling of fuel cell catalyst structures (which have typically been 

fabricated as carbon support structures of unknown porosity, with catalyst layers decorated onto it). 

It has been noted [87], that while the activation losses in the polarisation curve are fundamentally 

diffusion dominated; they are a special case of diffusion in, and adjacent to, the environments of 

coated catalyst on support structures.  It has been common practice to ignore the movement of 

reactants through the thickness of the CL in the literature [87].  In Chapter  4 for example, the catalyst 

layer was imagined as little more than a boundary that generated a temperature profile; was one of the 

assumptions of the two-dimensional model (see section  4.2.1 and Figure 20).  The ‘effectiveness 

factor’ can be thought of as answering the question ‘how well does the reactant gas get into sufficient 

proximity with the catalyst sites in and around the agglomerate Pt-on-C particles?’ 

Figure 63 shows the effectiveness factor for anode (H2) and cathode (O2) catalysis of molecules to 

single ions, suitable for transport and reaction inside the MEA.  This corresponds to the ‘activation 

loss’ portion of the polarisation curve as, discussed previously (see sections  1.1 and  2.1).  The 

activation portion of the polarisation curve is modelled using equation (5-1) for the effectiveness 

factor, plotted against the modelled anticipated current density. 
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Figure 63: Effectiveness factor 

(for reactant gases and agglomerate catalysts (adapted from Spiegel (2008) [87])) 

Figure 63 is a simulated plot of the effectiveness factor Eff, for catalysts [87], where Eff is  

As a Tafel type reaction (first order) [24], resolve this as follows; where φ is the Thiele modulus (for 

oxygen in this example) from the generalised Thiele Modulus, 

where 𝐷𝐷𝑇𝑇2,𝑎𝑎𝑔𝑔𝑔𝑔
𝑙𝑙𝑓𝑓𝑓𝑓 , is the effective diffusion constant for the species (in this case Oxygen) at the surface 

of an agglomerate particle of support and catalysts material, ϛ is the effective length of the 

agglomerate particle (volume, divided by surface area, is approximately equal to the radius of the 

agglomerate particle, divided by three) and k’ is the kinetic portion of the Thiele modulus [87] 

where α1,2 is the active surface of the catalyst and its support structures, 𝐸𝐸𝑇𝑇2
𝑟𝑟𝑙𝑙𝑓𝑓  is the reference 

concentration value for Oxygen in equilibrium inside, or at the surface of, the catalyst agglomerate 
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( 5-1) 
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(based on the partial pressure of the oxygen present and the ‘Henry’s Number’ for that species in that 

specific catalyst agglomerate (a material property) [87]). The exchange current density for the ORR is 

shown as i0.  It is this use of the Thiele modulus, and the use of equation ( 5-3), that defines the model 

as an agglomerate model (i.e. it assumes agglomerate, multiphase, particles compacted together) [86].   

The activation loss region of a typical polarisation curve is created using this assumption of catalyst 

effectiveness for agglomerates.  In this case, the ‘activation’ represents the ability of the reactive gases, 

in particular hydrogen, which has far greater impact in terms of effectiveness actors, as seen in Figure 

63. 

 
Figure 64: Activation losses in cell potential 

(Adapted from Spiegel (2008) [86]) 

In Figure 64, the activation loss portion of the polarisation curve, as defined by the Butler-Volmer 

equation [87] (this can also be calculated by the Tafel approach if considering purely one-dimensional 

problem, as the reaction of the oxygen reduction reaction (ORR) is slow enough that Tafel kinetics are 

sufficient to simulate it [87]).  The generalised Butler-Volmer equation for activation loss, from 

Spiegel (2008) [87], is:  

For the (one-dimensional) anode this is  
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Where pH2 is the partial pressure of hydrogen, aa is the anodic charge transfer coefficient, F is 

Faraday’s number, R is the gas constant, T is the temperature, and the Ф values are the Thiele 

modulus accounting for solid (Φ1) and liquid (Φ2) transport properties. 

Moreover, for the (one-dimensional) cathode this is: 

 

Which can be re-arranged to solve the voltage loss due to activation of the catalyst agglomerate as: 

 

 

and the activation loss (plotted in Figure 64) is found by the summation of the two functions: 

 

It is now possible to create the rest of the polarisation model, using the Butler-Volmer approach to 

activation loss, along with the Ohmic loss and Fickian (or Darcy) diffusion losses more commonly 

used [87]. 

 

Where the Nernst Equation [87] is: 
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 𝑉𝑉𝑎𝑎𝐹𝐹𝐹𝐹′𝑙𝑙𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑉𝑉𝑎𝑎𝐹𝐹𝐹𝐹,𝑎𝑎𝑛𝑛𝐹𝐹𝑎𝑎𝑙𝑙 +  𝑉𝑉𝑎𝑎𝐹𝐹𝐹𝐹,𝐹𝐹𝑎𝑎𝐹𝐹ℎ𝐹𝐹𝑎𝑎𝑙𝑙 ( 5-9) 

 𝑉𝑉𝑝𝑝𝐹𝐹𝑙𝑙𝑎𝑎𝑟𝑟𝑖𝑖𝐹𝐹𝑎𝑎𝐹𝐹𝑖𝑖𝐹𝐹𝑛𝑛 = 𝐸𝐸𝑁𝑁𝑙𝑙𝑟𝑟𝑛𝑛𝐹𝐹𝐹𝐹 + 𝑉𝑉𝑎𝑎𝐹𝐹𝐹𝐹′𝑙𝑙𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑉𝑉𝑇𝑇ℎ𝑟𝑟 + 𝑉𝑉𝑟𝑟𝑎𝑎𝐹𝐹𝐹𝐹 ( 5-10) 
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and Ohms law (V=I/R) provides a simplified model of the resistive losses.  Note that this is a highly 

simplified approach to take to modelling the Ohmic losses, but is suitable for this discussion. 

In this case, α1 is a system specific constant.  Figure 65 utilises α1 = 0.085 from page 259 of Spiegel 

(2008) [87].  To apply this method in the model, it is important to set a lower limit of ‘zero’ for the 

mass loss equation or the computer code cannot calculate the correct values.   

 
Figure 65: Generic simulated polarisation curve 

(Adapted from Spiegel (2008) [87]) 

Figure 65 shows the idealised polarisation curve, based on equation (5-10) with the (5-11) Nernst 

potential, and the losses from activation of agglomerate catalyst particles (Thiele modified Butler-

Volmer equation ( 5-9)). Ohmic resistance is calculated from Ohms law [24], and mass transfer losses 

are dominated by Fickian diffusion effects (equation (5-12)) [87].  The importance of the catalyst sites, 

in defining the performance of the fuel cell, is evident in the first part of the polarisation curve.  The 

activation losses in the region of A.cm-2 0 to 0.1; are all due to the Thiele-modified accessibility of 

catalyst sites at the surface of agglomerate particles in the catalyst layer.  This dominates the shape of 

the polarisation curve at in the lower A.cm-2 region of the graph (Figure 65).  Hopefully, the model, 

and the mechanisms it is based on, go some way towards explaining the importance of catalyst 
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structures.  The CL determines the overall performance of fuel cells, and it is therefore justified for 

catalyst materials to have been included as a topic of study in this thesis. 

 
Figure 66: Superficial flux density of hydrogen 

(Adapted from Spiegel (2008) [87]) 

Figure 66 shows the rate of gas flow required across the surface of the catalyst sites, to achieve a 

certain degree of output (current) in the cells.  It is for this reason that a limit on the output of the fuel 

cells based on the gas flow rate is often encountered.  This approach can be extended to apply it to a 

multi-layered fuel cell catalyst cathode [167,168].  Adapting the Spiegel (2008) [87] model (detailed 

previously) to match the proposed experimental system in more detail; the following results were 

achieved by matching the voltage, load and temperature profile. 
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Figure 67: Spiegel model 

(Adapted for FCCA: ECSA = 10,000) 

In Figure 67 the Spiegel (2008) [86] model, presented in this chapter, was adapted to closely match 

the experimental setup of the FCCA, and the test samples used in Chapter  4.  To achieve broad 

agreement with the results from experiments, the ECSA value was altered to 10,000, along with the 

appropriate set of average values for the remainder of the experiments being modelled (see Table 9 in 

section  4.3.1).  Typically, ECSA would be reported in m2.g-1, so it is assumed the Spiegel (2008) [86] 

model utilises units of m2.kg-1 (though this is not specified in the text).  Such a value is in broad 

agreement with the literature [169]. 
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In comparison to the idealised results generated by the model in Figure 64, Figure 65 and Figure 66: It 

was found there were significant reductions in hydrogen effectiveness, and the hydrogen flux at 

catalyst sites (an order of magnitude less than the standard model presented in Figure 66).  It is 

interesting that the model for the polarisation curve (Cell Current Vs. Voltage plot in Figure 67), has 

failed to demonstrate a mass transport loss region of the polarisation curve.  This does not reflect the 

experimental results generated, in which several samples demonstrated the characteristic mass loss 

transition in the polarisation result.  Ideally, the model would have more closely matched the 

experimental results generated at the time of the experiments.  Despite this lack of ability to 

adequately model the mass transport loss region,  an attempt was made to alter the agglomerate model, 

by adapting it to two ‘sub-layer’ catalyst regions as layers one and two.  The layered variant model 

was created in the hopes of more closely matching the experimental results (which were considerably 

reduced in terms of the overall performance seen here).  It was hoped that the activation region of the 

polarisation model would be sufficiently detailed to still be of use in assessing dual layered catalyst 

structures. 

Spiegel (2008) [87] stated that the effective conductivity of the membrane (𝜎𝜎𝑟𝑟
𝑙𝑙𝑓𝑓𝑓𝑓 ) is (electrolyte 

ionomer content (𝜀𝜀𝑟𝑟
𝛿𝛿𝑚𝑚 =  𝜀𝜀𝑟𝑟1.5 ) multiplied by the conductivity of the membrane 𝜎𝜎𝑟𝑟): 

 

also, it has been shown by Springer et al. 1991 [66] that 

 

Where εm is the conductivity of the membrane, δm is the thickness of the membrane, λH20 is the 

saturation constant of the ionomer (λH2O =22 for fully saturated Nafion).  As there is a geometric 

constituent in the above equation (i.e. the thickness of the membrane layer δm), and, as discussed 

previously in section   2.5,  several authors [68,73,75] have argued that a displacement of the catalyst 

layer away from the surface of the membrane will impact the performance of the fuel cell.  That is to 

say, the normal assumption of the catalyst layer as an infinitely thin plane is no longer valid.  See 

Figure 10, in Chapter  2 for further clarification. In order account for this, a numerator for the ‘reaction 

surface roughness’ (the structure of the electrode) and the platinum loading is also included, and this 

 𝜎𝜎𝑟𝑟
𝑙𝑙𝑓𝑓𝑓𝑓 =  𝜀𝜀𝑟𝑟1.5.𝜎𝜎𝑟𝑟  

( 5-13) 

[87] 

 𝜎𝜎𝑟𝑟
𝑙𝑙𝑓𝑓𝑓𝑓 =  𝜀𝜀𝑟𝑟

𝛿𝛿𝑚𝑚  (0.5139𝜆𝜆𝐻𝐻20 − 0.326)𝐸𝐸𝑥𝑥𝑝𝑝 �1268
1
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−  

1
𝑅𝑅�

  

( 5-14) 

[66] [87] 
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impacts the potential of the catalyst layers of phases.  This three-dimensional catalyst layer structure 

is now referred to as the ‘electronic phase’, and it has a separate electronic phase potential for each 

separate catalyst layer being considered (from Mukherjee et al. in White (2007)  [170]). 

Φ(S)
 = electronic phase potential 

In each layer (i.e. layer 1 or 2) the electrolyte phase potential can be solved as follows 

For i = 1 or 2 

The solution for the  𝜎𝜎𝑟𝑟
𝑙𝑙𝑓𝑓𝑓𝑓 value can then be fed back into the Thiele modules equation (5-2). Which 

in turn is used to determine the cathode catalyst layer Ф values (the Thiele modulus accounting for 

solid (Φ1) and liquid (Φ2) transport properties as demonstrated earlier in (5-1) , (5-2) and (5-3) [87]) 

and the two layer catalyst solution is 

The thickness of each sub-layer in the catalyst layer, is determined as a ratio of the overall layer 

thickness. This is solved for the different thicknesses by dividing the sub-layer thickness by the 

effective electrolyte monomer content (this is an arbitrary figure assigned to match the model to the 

desired curve).  The effective potential for each layer is the estimated resistance of ‘θ’ layer (based on 

ionomer content and the thickness of the layer) multiplied by the estimated current in the region.  This 

current value is assumed to be uniform across all layers and is a simple ratio of the total current, 

divided by the percentage presence of each layer. 

It was not possible to measure the CL resistance directly on the samples available and so, based on CL 

resistance work carried out on freeze-thaw responses [171], which utilised very similar MEA 

fabrication and operating conditions: The resistance of the individual CLs was estimated as  RCL = 

20mOhms.cm2.  Combining this information with the findings on catalyst layer thickness, determined 

using a novel fluorescence microscopy technique (reported by the author previously [47]), the 

 ∇. ��𝜎𝜎𝑟𝑟
𝑙𝑙𝑓𝑓𝑓𝑓�𝑖𝑖.∇.𝛷𝛷𝑖𝑖

(𝑟𝑟)� + 𝐴𝐴𝑖𝑖 = 0  

( 5-15) 

[87] 
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following information was generated (as shown in Table 43 – the original paper for this work is 

available in Appendix 5). 

 

Table 43: Catalyst layer location and thickness 

 
Layer Median point (pixels) 

Mean 

(pixel) 

σ 

(pixels) 

SE 

(pixels) 

Mean 

(µm) 

SE 

(µm) 

CL (MAC1) 406 401 388 398.3 9.3 5.4 733 9.9 

MPL (MAC2) 178 158 200 178.7 21.0 12.1 329 22.4 

 
Layer Median point (pixels) 

Mean 

(pixel) 

σ 

(pixels) 

SE 

(pixels) 

Mean 

(µm) 

SE 

(µm) 

CL (MAC1) 250 175 260 228.3 46.5 26.8 420 49.6 

MPL(MAC2) 350 260 340 316.7 49.3 28.5 583 52.7 

 

Efforts were made to include this adaptation into the existing agglomerate model, but the model is not 

sensitive enough to alter its outputs based on even the broadest of changes to values such as the size 

of the agglomerate Pt-Carbon catalyst phase, or the permeation of gas through, and around, these 

agglomerate phase catalysts structures.  It is recognised by many authors [160-162,164,172] that the 

current agglomerate models, especially simple one-dimensional models, are largely unable to simulate 

accurately the impact from variations in catalyst layer concentrations and thickness, despite the 

obvious changes in performance in real world MEAs. There are notable exceptions however: Some 

authors have made efforts to create one-dimensional models, that attempt to understand the 

fundamental mechanisms at work in the catalyst layer [167].  However, the creation of new numeric 

CL models for MEAs falls outside of the aims and objectives of this thesis: this thesis will continue to 

use the Spiegel models that have already been discussed. 

The only ‘lever’ in the Spiegel (2008) [86] model which makes a significant difference to the 

behaviour and that can be considered to model the catalyst dispersal, is ECSA (Electrochemically 

Active Surface Area).  ECSA is a catch-all term denoting the total catalyst surface available. Cycling 

the ECSA from 5,000 to 500 (in steps of 1125) generates the following changes to the model; as 

shown in Figure 68 through to Figure 72.  As discussed previously in this chapter, the model outputs 

are plotted (in Figure 68 through to Figure 72) for effectiveness factor (top left), the activation loss 

region of the polarisation curve as calculated from the Thiele modulus modified Butler-Volmer 

equation (top right), the overall polarisation curve impact; activation and mass transport loss regions 

(Bottom Left) and the superficial flux density of hydrogen at the catalyst surface (bottom right).  

These four plots, together, allow the observer to examine the one-dimensional model, to assess what 
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impact changes in the ECSA have on the theoretically modelled catalyst effectiveness value.  This, in 

turn, should impact activation loss, and the total polarisation curve (activation and mass loss in this 

case) modelled.  The superficial flux density, gives an ability to quantify the changes to the reaction 

rate for hydrogen in the model, as the ECSA changes.  It can be seen from the plotted results of the 

model (Figure 68 through to Figure 72) that there were significant changes in the anode catalysts 

effectiveness value; as the ECSA is decreased, anode effectiveness reduces (i.e. catalysts is 

underutilised).  It can also be seen that the hydrogen flux density improves significantly at between 

ECSA = 500 (Figure 72) and ECSA = 1625 (Figure 71).  Thus from the model, as reported by Spiegel 

(2008) [87] and, assuming degradation is largely due to reductions in ECSA (as discussed in Table 

42 ), it was anticipated a step change in degradation rate for dual layered catalysts would become 

apparent.  Recall that the ECSA reduces over time for a wide variety of degradation mechanisms (see 

Table 42) and so the sequence of model results shown, can be thought of as providing indicative 

results of the time-dependent degradation of the system (i.e. in Figure 68 ECSA = 5000 is time step 

zero, labelled as tx).  This simple one-dimensional model lacks the detail to quantify exact time steps 

or to identify individual degradation mechanisms. 

  

 
Figure 68: Spiegel model 2 layer cathode catalysts (5000) 

(ECSA = 5000 (tx)) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cell Current Vs. Effectivenss Factor

Cell Current (A/cm2)

E
ffe

ct
iv

en
ss

 F
ac

to
r

 

 
Eff-O2
Eff-H2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12
Cell Current (activation loss) Vs. Voltage

Cell Current (A/cm2)

V
ol

ta
ge

 (v
ol

ts
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
Cell Current Vs. Voltage

Cell Current (A/cm2)

V
ol

ta
ge

 (v
ol

ts
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

600

800

1000

1200

1400

1600

1800
Superficial flux density of H2

Cell Current (A/cm2)

Fl
ux

 D
en

si
ty

 H
2 

(m
ol

/c
m2  . 

s)



5-187 
 

 

 

 
 

Figure 69: Spiegel model 2 layer cathode catalysts (3875) 

(ECSA = 3875 (tx+1)) 

  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cell Current Vs. Effectivenss Factor

Cell Current (A/cm2)

E
ffe

ct
iv

en
ss

 F
ac

to
r

 

 
Eff-O2
Eff-H2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13
Cell Current (activation loss) Vs. Voltage

Cell Current (A/cm2)

V
ol

ta
ge

 (v
ol

ts
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
Cell Current Vs. Voltage

Cell Current (A/cm2)

V
ol

ta
ge

 (v
ol

ts
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500
Superficial flux density of H2

Cell Current (A/cm2)

Fl
ux

 D
en

si
ty

 H
2 

(m
ol

/c
m2  . 

s)



5-188 
 

 

 

 

Figure 70: Spiegel model 2 layer cathode catalysts (2750) 

(ECSA = 2750 (tx+2)) 
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Figure 71: Spiegel model 2 layer cathode catalysts (1625) 

(ECSA = 1625 (tx+3)) 
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Figure 72: Spiegel model 2 layer cathode catalysts (500) 

(ECSA = 500 (tx+4)) 

 

Based on the results of this model, it was assumed that any changes in performance, whether an 

increase for dual layer catalysts at the start of life or changes for dual layer catalysts over the working 

life, are largely due to the ECSA.  As seen in Figure 68 to Figure 71, the decreased ECSA makes a 

degree of difference to the utilisation of hydrogen, with the lowest values of ECSA increasing the 

activation losses of the system to a significant degree (especially when compared to the activations 

loses for Figure 67, where ECSA = 10,000, the effectiveness of the catalyst is low, reflecting an 

excess of catalyst on electrode).  It is also clear in all plots (Figure 68 to Figure 71) that the ECSA is 

not significantly impacting the cathode side of the model. In this instance, it was concluded, that the 

rate limits of cathode reaction is either not impacted by catalyst ECSA (which contradicts the 

literature [24,26,66,95,173]), or that the Spiegel model [87] does not adequately model cathode ECSA 

effects when modified for dual layered cathode structures using the Thiele modulus.  The third 

possibility is that the fundamental assumption that layering of the catalyst can have a significant 
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impact on the performance or longevity of fuel cell systems may be in error, which calls into question 

the work highlighted in the literature review (see section  2.5 and the work [68,73,75] presented there).  

This discrepancy between model, literature and the findings of the literature review is taken as a 

justification for the need to conduct additional experimental work on dual layered catalyst structures. 

It is difficult, if not impossible, to solve this model for a real system without accurate measurements 

of the ionomer layer thickness, and its resistance for each discrete catalyst sub-layer.  For GDMs that 

have a preloading of PTFE as a hydrophobic coating on the carbon fibres, it is almost impossible to 

differentiate between PTFE on the GDM fibres and PTFE-Nafion that is part of the catalyst layer(s).  

This issue of measuring catalyst sub-layer thickness has been addressed in other published work by 

the author [47] and summarised in Table 43. Platinum distribution can be tracked through the use of 

Scanning Electron Microscopy (SEM), but recall that it was established earlier that the Nafion 

distribution dominates (see section  2.5), and the maximum depth of platinum is not necessarily useful 

in assigning values to the two separate layers. 

For this reason, direct optimisation of the model based on experimental results is extremely difficult 

and must be done somewhat arbitrarily.  While it is true the mass gain for a given layer of added 

ionomer can be measured, the through-plane thickness of that layer can only be known accurately if it 

is deposited on a flat, non-porous substrate (such as the Nafion membrane at the heart of the fuel cell).  

For MEAs that were created by depositing the MPL or the CL directly to the GDM, the true through-

plane thickness cannot be known.  The utility of the model is further compromised by the fact that not 

all approaches generate variation in catalysts concentration by altering the loading of PTFE present in 

the CL.  

Based on the literature reviewed to date [168,174,175], improved performance of fuels cells is 

theoretically and demonstrably possible through the use layered catalyst structures.  This 

improvement is typically accredited to an increased region in which the oxygen reduction reaction 

(ORR) occurs in the cathode; by effectively increasing the catalyst effectiveness of the cathode[167].  

The additional through-plane thickness of the catalyst layers, combined with an optimised catalyst 

distribution (increased concentration near the membrane surface) has also been cited as a reason for 

improvements [68,73,75].  This was discussed in detail in the literature review (see section  2.5).  

Despite acknowledgements that increasing the ratio of ionomer (the ‘electrolyte phase’ in the catalyst 

layer) “…retards the electron conduction through the catalytic layer…”[174], it is precisely by 

increasing the ionomer content of catalyst ink solutions that has been the standard approach for 

investigating layered catalyst performance.  Another factor that can work against the supposed 

improvement, is the blocking of porous structures in the GDM when depositing the ionomer rich 

catalyst inks onto them.  However, this can be counterbalanced by the optimisation of proton 

conduction through the additional ionomer coating on the surface of the agglomerate Pt-carbon black 
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catalyst phase, which facilitates ionic conduction adjacent to the catalyst sites.  It has been shown 

[174], that with the optimum loading of ionomer, the detrimental impact from pore blocking and 

reduced electron flow is more than compensated for by other improvements.   

The same arguments (increased proton conduction but reduced porosity and electron flow) extend to 

the optimisation of through-plane thickness of the various layers.  This approach has not been 

researched in great depth, as there are practical limitations in developing accurate measurements of 

layer thickness that have only recently been overcome [47].  Lastly, Yoon et al. (2003)[174] stated 

that the operating voltage (expressed as lumped parameter in their paper) is of crucial importance, and 

that higher voltages were more benefited by dual layer catalyst than lower ones. To date the approach 

to reducing the amount of catalyst in the secondary layers (those furthest away from the membrane) 

has been to either: 

• Keep the basic formulation for all layers the same, and then increase the effective dilution of 

the catalyst-bearing particles by increasing the Nafion content in the ink formulation [74],[73].  

• To include conductive carbon black particles but without any platinum loading [23]. 

The research undertaken for this thesis takes a ‘middle path’ of changing the platinum loading on 

individual carbon black particles. This middle path was selected as the mimicking of pre-existing 

work would be of limited interest to the wider fuel cell community, and no literature search identified 

the catalyst layer concentration variation, achieved through the use of variable mass loading of 

platinum on carbon black, had ever been undertaken.  This constitutes a gap in the knowledge base for 

layered catalyst structures in fuel cell research.  Additionally, the dispersion of active catalyst sites 

throughout the thickness of the catalyst layers, while maintaining a uniform percentage presence of 

carbon particles and their conductive pathways; may give rise to novel findings or benefits that have 

not been identified previously.  The inclusion of uniform catalyst layers as a base line will be essential 

to ensure experimental results can be compared with the results of other authors. 

Recall that the aims and objective of this thesis (see section  1.1.1), includes identifying areas where 

multivariate analysis methods can contribute to the fuel cell field, by analysing multiple input factors 

simultaneously, with multiple output factors to interpret.  The utility and effective performance of 

layered catalyst structures, achieved through mass variation of platinum loading on catalyst particles 

is one such factor.  The degradation rate of uniform and layered catalyst MEAs is another factor of 

interest.  Considering the impact that GDM structure may have on both performance and degradation 

rates for MEAs, is the third factor of interest to the wider fuel cell community, and is ideally suited to 

multivariate analysis.  Individually, each of these could be tested as a separate one factor a time 

(OFAT) set of experiments.  This would have several key weaknesses as discussed previously (see 

section  2.2): The total number of experiments required to test a set of two or more variables, under an 
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OFAT regime, is greater than the total number of experiments required for the equivalent multivariate 

set of experiments (i.e. multivariate experiments are more efficient).  Secondly, OFAT experiments 

cannot detect, or quantify, any likely interactions between factors.  It has been accepted that catalyst 

layer thickness is a factor in the effectiveness of the performance of the catalyst layer [66,87,170].  

Furthermore, it was recently shown that catalyst coated substrate (CCS) MEA fabrication methods, 

induce a notable through-plane thickness variation to the CL [47] (see Table 43), that is dependent on 

the type of substrate the CCS process is applied to.  Therefore, the possible interactions between 

factors are worthy of investigation.  The topic aligns well with the aims and objectives of the thesis, 

and it was decided to proceed with this research on layered catalyst structures using increased 

platinum presence as the means of varying catalyst concentration levels. 

5.3.2. Characterisation of layered catalyst structures 

As discussed in section  5.3.1, all carbon supports were loaded with catalyst sites, but the 

concentration (expressed as a weight percentage) per carbon black (referred to from here on as 

‘wt%Pt-on-C’) particle is not the same. Figure 73 gives a schematic representation of the three styles 

of catalyst concentration variation that have been proposed in section  5.3.1.  These can be summarised 

as reducing the concentration of catalyst adjacent to the GDM by one of three possible methods: 

1) Increased ionomer (typically Nafion) content to effectively ‘dilute’ the concentration of 

carbon black/Pt agglomerate particles. 

2) Additional carbon-black particles to effectively ‘dilute’ the concentration of carbon black/Pt 

agglomerate particles. 

3) Two (or more) separate mass loadings (wt%Pt-on-C) of Pt particles on carbon black 

agglomerate particles –i.e. two separate ink formulations. 

 
Figure 73: Pt Concentration variants 

(Nafion® increase (left), carbon black increase (middle), Pt loading gradient (right)) 
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In work completed for this thesis, approach three is adopted (as discussed in section  5.3.1).  Chapter  4 

detailed MEA fabrication and ink formulations (see section  4.3.3) previously.  The same procedure 

has been followed for the creation of layered ink structures, with the wt%Pt-on-C of the catalyst 

agglomerate particles being varied for each layer.  The fabrication method and image analysis has 

been reported previously [47] (see Appendix 5) and is reproduced here for the connivance of the 

reader. 

5.3.3. Scanning electron microscopy and layered catalysts 

Basic scanning electron microscope (SEM) images were captured with a Cambridge Instruments 

(England) Stereoscan 360 Tungsten Filament SEM. More detailed SEM and energy dispersive X-ray 

spectroscopy (EDS) images were captured using a Leo (Carl Zeiss) 1530VP FEG-SEM (Germany) 

fitted with an Oxford Instruments X-Max 80 mm EDS detector (England). 

To gain an appreciation for the distribution of the catalyst material in the layered catalyst, sections of 

GDM samples were prepared and coated with layers of catalyst.  The first layer applied to the GDM 

used 10wt%Pt-on-C ink, and the second layer used a 30wt%Pt-on-C ink formulation (ink 

formulations have been detailed previously in section  4.3.3).  A comparative single layer 40wt%Pt-

on-C formulation was also examined.  The samples shown were painted directly by hand onto Toray 

TGP-H-120 carbon paper.   

Figure 74, shows a cross section of 0.4mg.cm2 coated carbon paper, with a uniform 50wt% Pt-on-C 

ink formulation.  The ink was applied to the uppermost surface of the GDM substrate, and it is readily 

apparent that the material has penetrated a significant depth into the body of the GDM.  Backscatter 

imaging (the bottom image in Figure 74) reveals that platinum particles have penetrated through the 

full thickness of the test piece. 

Figure 75, shows the test piece with dual layered catalyst materials (a 10 and 30wt% Pt-on-C ink 

formulation).  The lower concentration catalyst ink was applied first.  When judged ‘by eye’, certain 

regions of the test sample show a degree of stratification.  The low concentration layer adjacent at the 

bottom of the image has 0.1mg of Pt.cm-2 achieved with 10wt% Pt-on-C, and the high concentration 

region closest to the membrane has 0.3mg of Pt.cm-2 on 30wt%Pt-on-C.  In Figure 75, the platinum 

coated onto the GDM (CCS method of fabrication) ended up with a distributed layer of ever 

diminishing catalyst concentration, but with very little control of the effect.  Attempts to measure this 

were inconclusive: Regions of the GDM show a layered distribution in the CL, but when values were 

averaged over several images, the error in the measurement made this far from conclusive. 

To more accurately measure the distribution of the carbon, and attempt to track the various other 

components in the catalyst inks, a higher resolution FEG-SEM (field emission gun- scanning electron 
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microscope) with EDS was employed.  Figure 76 shows the dual layered ink formulations deposited 

onto the GDM, with backscatter map of the platinum distribution at high magnification.   

 

 
Figure 74: SEM distribution of 50wt% Pt-on-C   

(0.4mg.cm-2 uniform application SEM (top) and Pt-Map (bottom)) 
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Figure 75: SEM dual layer Pt-on-C catalyst ink  

(10wt% and 50wt %) 
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Figure 75, details initial attempts to investigate the efficacy of dual layer coatings, and it can be seen 

that changes in the platinum distribution can be made by the simple expedient of reducing the 

concentration of Pt-on-C.  Adapting the technique to allow more time for the layers to dry, the ability 

to limit the penetration of the platinum into the body of the GDM was improved still further, though a 

degree of deeper tracking long porous structures was clearly evident.  In this case, 10wt% and 30wt% 

set of ink formulations was used to create the test sample. 

 
Figure 76: FEG-SEM dual layer Pt-on-C surface 

Figure 76 is the FEG-SEM image of the dual layered ink distribution once again.  EDS mapping of Pt, 

Fluorine (F) and Carbon (C) was generated.  As the Toray TGP-H-120 paper was an uncoated test 

piece, the mapping of fluorine atoms by EDS is a useful method for determining if the Pt catalyst and 

the dispersant ionomer, which was used in the ink formulation, are located in the same regions.  This 

would not be the case for most GDMs, which have extensive fluorine atoms present in the 

hydrophobic fibre coatings, as discussed previously in Chapter  2 and Chapter  4.  Comparison of the Pt 

and F maps in Figure 77 show that, at this stage of the MEA fabrication process (i.e. before hot 

pressing), the two elemental maps show broadly similar distributions.  Distribution analysis, using a 

Matlab® image processing toolbox, was used to define the areas of platinum that can be regarded as a 

single particle of catalyst.  The location of those single Pt particles was then measured in pixels, and 

plotted as a histogram of the centroid-point of each identified cluster of platinum atoms (see Figure 

78).  It is clearly shown that there is a bi-modal distribution of platinum catalyst sites.  It is therefore 

suggested, that the dual layered catalyst ink technique has been successful in creating stratified 

concentrations of platinum catalyst sites: a 10wt%Pt-on-C region deeper in the body of the GDM and 

a 30wt% closer to the surface of the GDM where the ink was originally applied.  This work has been 

reported previously [47]. 
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Figure 77: EDS mapping for figure 77 
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Figure 78: SEM dual layer Pt-on-C platinum distribution 

5.4. Gas diffusion media, catalyst layers and degradation 

The contribution of overall fuel cell degradation from the catalyst has been established (see 

section  5.2.1).  The importance of the catalyst layer and the likely impacts of dual layered catalyst 

structures have been discussed in depth (see section  2.5 and section  5.3.1), and it has been confirmed 

experimentally that a suitable dual layered catalyst MEA fabrication method is possible.   

From experience developed during the work completed for this thesis, and bearing in mind 

discussions from the literature review (see Chapter  2), it is possible to develop a set of research 

questions for the intended multivariate set of experiments.  The attempt to answer these questions 

would contribute to the achievement of the stated aims and objectives of this thesis (see section  1.1.1 

and section  1.1.2 ).  Seven proposed research questions are enumerated below:  

I. Will variable wt% loading of Pt-on-C provide an equivalent performance to previous works 

that used a ‘dilution’ method to reduce the presence of catalyst sites in the low consecration 

layers?  

II. Will reduced Pt loading overall of dual layer catalysts provide performance improvements?  

III. When applied as a CCS (catalyst coated substrate) will there be a difference between paper 

and ‘felt’ cathode GDMs? 

IV. Will there be a noticeable difference in degradation rate for dual layer catalyst structures? 

V. What impact does constant, square wave (rapid potential transit) or triangular (slower 

potential transit) load have? 
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VI. Will degradation be directly proportional to time spent at maximum load in the duty cycle? 

VII. What, if any, factors co-vary in this data set? 

With a broad set of topics to investigate, the resources spent on long-term degradations studies were 

justifiable.  Consider that a traditional OFAT method to this investigation would need to repeat the 

experiments once for each of the first six questions just raised, and question seven would be difficult, 

if not impossible, to answer.  The elapsed time to attempt this work would be many times greater, as 

would the number of test samples required.  The M-ANOVAR design of experiments and their results 

were completed and are discussed in the subsequent chapter (Chapter  6). 

5.5. Summary of Chapter 5 

Layered catalyst structures were identified in the literature review (see section  2.5), as a possible topic 

of interest to the fuel cell community, that may also benefit from the multivariate investigation.  

Having established in Chapter  4 that M-ANOVAR methods can be used to generate useful statistical 

models for complex fuel cell systems; layered catalyst structures were considered in more detail in 

Chapter  5.   

The initial literature review was expanded upon, with particular attention being paid to the 

contribution catalyst layers make to the overall degradation of fuel cells in section  5.2 and section  5.3.  

Having established an improved understanding of layered catalyst and catalyst degradation, a one-

dimensional catalyst layer model, created by Spiegel (2008) [87], was reproduced and adapted (as far 

as was practical and reasonable) to match the experimental apparatus and test conditions available to 

the author (see section  5.3.1).  This included the use of a Thiele modulus based variant of the Butler-

Volmer equation (see section  5.3.1) to model layered catalyst structures more closely; and in the 

process develop a greater understanding of the systems and mechanisms involved in the degradation 

of fuel cells, specifically as they apply to layered catalyst fuel cells.  As discussed previously (see 

section  2.2 and Chapter  3), any attempt to understand a system through detailed statistical methods 

(such as the ones proposed in this thesis) must be grounded in an understanding of the fundamentals 

of the object or process being studied.  The re-working of the Spiegel model [87], or any other 

equivalent model of catalyst layers and their changes to ECSA, is one way of ensuring the researcher 

has sufficient knowledge to make informed choices, when conducting the subsequent statistical 

analysis.  In accordance with the aims and objectives of this project (see section  1.1.1 and 

section  1.1.2) this knowledge building exercise has been reported in detail, as an example to the 

reader of the need to have sufficient understanding of the system being studied.  Section  5.3.2 then 

reported on experimental work undertaken to verify that sufficient capability existed to create layered 

catalyst, suitable for further experimentation, though attempts to model layered catalyst structures 
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using the Thiele modified agglomerate Spiegel (2008) [87] model were of limited success: This was 

in line with the literature on dual layered catalyst systems (see Chapter  2). 

Based on the information generated in Chapter  2, Chapter  3, Chapter  4, and previous sections of 

Chapter  5: Section  5.4 reported a set of un-answered research questions, that were well suited to an 

M-ANOVAR experimental case study.  This is a key achievement of this thesis, in accordance with 

the aims and objectives reported earlier (see section  1.1.1 and section  1.1.2).  These research 

questions informed the design of experiments for the next stage of the work: The case study of M-

ANOVAR methods in a fuel cell context.  This work is detailed in Chapter  6. 

 

 

 

  



6-202 
 

6 Dual Layer Catalyst Materials, Gas Diffusion Media and Degradation 

6.1 Introduction to Chapter 6 

As discussed in section  5.4, a series of research questions have been identified, which appear well 

suited to multivariate investigation.  Having established the suitability of the M-ANOVAR approach 

in Chapter  4 for complex fuel cell research topics, a similar approach was undertaken for the case 

study presented in Chapter  6.   

The original plan for this research was to undertake an investigation into a wide range of variables: 

• Dual Layer Catalyst concentration. 

• Duty cycles. 

• Types of GDM. 

• Reactant gas Flow rate. 

• Temperature. 

However, the inability to conduct long duration studies with gas flows and temperature settings at 

anything other than those reported in the stoichiometric ratio in Table 45, prevents this from being 

practical.  Therefore the Design of experiments was based on the following input factors: 

• Dual layer catalyst concentration on the cathode. 

o Uniform catalyst layer (0.35mg.cm2 of 30wt%Pt-on-C). 

o High concentration dual layer (0.4 mg.cm2 of 40wt%Pt-on-C +10wt%Pt-on-C). 

o Low concentration dual layer (0.3 mg.cm2 of 40wt%Pt-on-C +10wt%Pt-on-C). 

• Duty cycles. 

o Constant. 

o Square wave. 

• Types of GDM. 

o Paper. 

o Non-woven (felt). 

The anticipated output factors are: 

• Peak power. 

• Degradation rate. 

• Gradient of the Ohmic loss region. 



6-203 
 

6.2 Design of Experiments 

In compliance with the information set out earlier (see section  2.2 and Chapter  3), the following 

design of experiment was developed as shown Table 44.  This details the dual layer MEA identifier 

number (FUDL-MEA#), the standard order the design was originally created in (std), the random 

order number the samples were tested to avoid any ambient condition or operator induced  

experimental errors (run), the catalyst loading to be used for the cathode, (mgPt.cm-2) the duty-cycle 

or constant load (load cycle) each MEA will be operated under for the degradation trial, and the type 

of GDM to be used as the GDL for creating the MEA (cathode GDL). 

Table 44: Dual layer degradation DoE 

FUDL- 

MEA# std run mgPt/cm^2 

load 

cycle cathode GDL 

3 10 14 0.3 Low D -1 Fberg 

2 15 1 0.3 Low D Constant Fberg 

4 12 6 0.3 Low D 1 Fberg 

17 14 17 0.35 Uniform -1 Fberg 

18 18 7 0.35 Uniform Constant Fberg 

19 17 18 0.35 Uniform 1 Fberg 

7 11 13 0.4  High D -1 Fberg 

6 16 10 0.4  High D Constant Fberg 

8 13 16 0.4  High D 1 Fberg 

11 1 9 0.3 Low D -1 Toray 

10 6 5 0.3 Low D Constant Toray 

12 3 2 0.3 Low D 1 Toray 

25 5 15 0.35 Uniform -1 Toray 

24 9 12 0.35 Uniform Constant Toray 

23 8 4 0.35 Uniform 1 Toray 

15 2 8 0.4  High D -1 Toray 

14 7 11 0.4  High D Constant Toray 

16 4 3 0.4  High D 1 Toray 

In this case, as shown in Table 44, the load cycle refers to either a constant one amp load or one of 

two other possible setting. ‘-1’ is a slower, ramped’ transit power (triangle wave), and ‘+1’ refers to 

the rapid transient, ‘square wave’ setting.  The initial concept was to apply the two transient duty 

cycles in such a way the wavelength would remain the same for both, but the time at 

maximum/minimum loads would vary.   
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Additionally, it was considered desirable to keep the number of transients for both duty cycles the 

same, so that all cells will ‘pass through’ a given potential region the same number of times.  As 

discussed previously (from section  2.6, Table 5), certain degradation mechanisms occur at key 

potentials.  Moreover, cycled duty loads at multiple potentials, will pass through those key 

degradation potentials for a varying amount of time.  This ‘dwell time’ at a given potential will, in 

turn, have a significant impact on the degradation rate of the fuel cell (see Figure 14).  To achieve 

parity between square and triangular wave duty cycles; a reduction of the total wavelength of the 

square wave duty cycle to only ten seconds, instead of the much longer durations reported by some 

authors [34], was required. 

This reduced wavelength was implemented to provide a more direct comparison between the two duty 

cycles (square and triangle), and provide a definite answer to the question of the relationship between 

the time at peak load and MEA degradation.  Other authors have adopted similar duration rapid cycles 

[125,176]  with an even shorter square wave cycle time of three seconds.  These rapid transit duty 

cycles accelerate carbon corrosion [70], at the types of potentials normally experienced in a working 

fuel cell electrode, though most studies focus on the corrosion of catalyst supports rather than the 

GDM itself.  The FCCA is not capable of performing the triangular wave load variation from four to 

zero amps load in less than ten seconds and so the ten-second wave is adopted as a useful compromise 

for both the square and triangular duty cycles.  This wavelength results in the triangle wave being 

more of a ‘stepped’ triangular function, but there is no way to overcome this issue with the test 

equipment available.  The design space of input variables can be easily visualised (Figure 79), with 

each node on the cube representing an experiment. 

 
Figure 79: Dual layer DoE ‘Design Cube’ 
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Ideally, one or more central points should be replicated inside the design space, but the categoric 

nature of ‘Felt OR Paper’ for the GDM structure prevents this.  Fortunately, there were a good 

number of central points in the load cycle and Pt loading axis of the design space that will help to pick 

up curvature in the system.  The principles of categoric factors, and repetition of data points, have 

been discussed in depth previously in section  2.2, and Chapter  3. 

Replication of data points would help to define the error, and additional samples were manufactured 

to facilitate interim testing.  All MEAs were constructed in accordance with the manufacturing 

procedures outlined previously (see section  4.3.3 and section  5.3.2) with multiple layers of inks: Each 

layer consisting of 40wt% Pt-on-C and 10wt% Pt-on-C being deposited to create either a high or low 

concentration ‘dual catalyst layer’.  All inks were applied ‘one layer at a time’ and left to dry 

overnight in a fume cupboard.  Uniform catalyst layers for the anode, and the cathode, were fabricated 

using a 30wt% Pt-on-C.  Anode and cathodes were fabricated in accordance with the information 

shown in previous chapters (see Chapter  2, Chapter  3, and Chapter  4).  A full list of anode and 

cathode MEA Identifier numbers and cathode constructions are available in Appendix 3(Original 

Data). 

Contestant load at one-Amp samples were placed in one of six test cells in either FCCA1 or FCCA2 

in a randomised fashion.  As the long term testing was taking place, the square and triangular duty 

cycle Visual Basic for Applications© (VBA) programme was written and tested on a separate 

computer.  When efforts were made to use the working code on the FCCA devices, it was found that it 

could not be installed as a result of inbuilt security features.  As both FCCAs were ‘legacy machines’; 

despite assistance from the manufacturers (Intelligent Energy Ltd.) and the Loughborough University 

IT department, no solution to this problem could be found short of a complete reinstall of the software.  

Due to the age of the test apparatus, it was decided not to risk this approach. 

As a result, it became possible to only test the cycled loads in one test cell at a time, and with a human 

operator re-setting the duty cycle after every 13 repetitions of the wavelength.  This means that, for 

the square and triangular duty cycles, the samples could only be tested in normal working hours (eight 

hours a day), and the total time taken to conduct these tests would be far greater than expected.  This 

made it impossible to complete the work as designed in the time available.  To overcome this, a 

simplified design was developed (exact samples tested correspond to the ‘MEA number’ from the 

tables in Appendix 3) as shown in Figure 80. 
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Figure 80: Reduced complexity ‘Design Cube’ 

While this is a far from a desirable set of events, it is an opportunity to demonstrate the flexibility of 

the designed experiment approach.  As long as the investigator is not attempting to examine a very 

small number of possibly co-varying factors (i.e. an unmodified two factors at two levels design).  

When real world experimental conditions prevent the original design being undertaken, the existing 

design can often be modified. 

This modification is far easier and simpler to achieve when using dedicated DoE software such as the 

Design Expert Pro utilised in this research.  The reduced complexity design is not as robust as the 

previous design, and is less able to detect curvature in the design space response.  The original short 

duration square wave with a repeating cycle of five seconds at zero amps followed by a five second 

four Amps (or maximum available from the cell), was kept.  It had been hoped that the software 

‘lockout’ would be solved and it would be possible to return to the original design space that would 

include a triangular wave load cycle.  Unfortunately, this did not prove to be the case in the long run. 

6.3 Experimental method 

Following the process already outlined (see Chapter  3, Chapter  4 and previous sections of Chapter  6 ) 

a series of MEAs were fabricated.  Anode fabrication was exactly identical to that already outlined, 

and all anodes were made from Toray TGP-H-120 paper  

Toray TGP-H-120 paper: 

• No MPL. 

• No Hydrophobic coating. 

• 1717 µm mean pore size. 

• 370 µm through-plane thickness. 

• 61.8% porosity. 
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Cathode GDMs were either  TGP-H-120 (as the anode), or a Freudenberg ‘felt’ like non-woven.   

Freudenberg  H23 non-woven4F

5:  

• No MPL. 

• No Hydrophobic coating. 

• 1148 µm mean pore size. 

• 210 µm through-plane thickness.   

• 61% total porosity. 

It had been intended to include a woven cathode structure in addition (a Tenax-Toho TCC-3250 was 

considered as the best match in terms of basic properties), but resource constraints prevented this from 

being undertaken.  The two GDMs selected were broadly similar in many respects, and were the most 

closely matched available for the two different structures.  Therefore any major deviation between 

peak power out of the two families of GDM (paper and non-woven) should be due to their ‘structure’ 

rather than any other factors.  Data sheets for both GDMs are available in Appendix 1. 

Additional factors, such as reactant gas flow rate and temperature variation, were considered.  

Unfortunately, initial investigations in these factors soon revealed that long duration (100's of hours), 

continuous operation, of the test cells at 0.6 Volts using the FCCA apparatus were extremely sensitive 

to temperature and gas flow: The cells would regularly drop below 0.2 Volts for brief periods of time.  

This in turn would trigger the automated shutdown sequence of the test apparatus.  Automated safety 

features are a critical part of long duration experimental testing, and cannot be circumvented. 

The drop in voltage experienced during the testing at one-Amp constant load samples was, it is 

suggested, due to a lack of reactants being available at the catalyst sites.  It was found that increased 

gas flow rates eliminate the issue.  In light of the fact that increased reactant flow rates eliminated the 

problem, it is further suggested that this is a ‘flooding’ event.  Flooding occurs when product H2O is 

not removed from the CL and GDM sufficiently quickly.  The suggested flooding issue will have been 

exacerbated by the selection of GDMs with no hydrophobic coating or MPL to aid in the water 

management of the cells.  With this in mind, gas flow rates were set for all test conditions:  

• H2 gas. 

o Flow rate 60 sccm (0.06 litres per minute). 

o Pressure = 1.5 bar(a). 

• Air.  

o Flow rate. 

o Pressure = 1.5 bar(a) 150 sccm (0.15 litres per minute). 

                                                      
5 This product has been renamed ‘H23’ from ‘H2315’ during the time since this work was started 



6-208 
 

At a setting of 1 Amp load, voltage was 0.6 Volts (V), and the cell stoichiometry was calculated as 

[26]: 

O2 usage  

 

 

Using air instead of pure O2 this becomes: 

 

Therefore, 

 

this equates to 1.09x10-2 m3.hour-1 which equates to 18.2sccm.  For hydrogen the calculation is: 

 

 

 𝑊𝑊𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠 = 𝑊𝑊 = 1 ∗ 0.6 = 06𝑊𝑊𝑣𝑣𝑡𝑡𝑡𝑡𝑠𝑠 ( 6-1) 

 𝑂𝑂2,𝑟𝑟𝐹𝐹𝑙𝑙/𝐹𝐹 =
𝑊𝑊

4 ∗ 𝑉𝑉𝑛𝑛
  

( 6-2) 

 
𝑂𝑂2,𝑘𝑘𝑔𝑔/𝐹𝐹 =

(32 × 10−3) 𝑊𝑊
4 ∗ 𝑉𝑉𝑛𝑛

 
 

( 6-3) 

 
(𝑣𝑣𝑝𝑝𝑟𝑟)𝑂𝑂2,𝑘𝑘𝑔𝑔/𝐹𝐹 =

(28.97 × 10−3) 𝑊𝑊
0.21 ∗ 4 ∗ 𝑉𝑉𝑛𝑛

 
 

( 6-4) 

 
(𝑣𝑣𝑝𝑝𝑟𝑟)𝑂𝑂2,𝑘𝑘𝑔𝑔/𝐹𝐹 =

(28.97 × 10−3) 0.6
0.21 ∗ 4 ∗ 0.6 ∗ 96487

= 3.57 × 10−6 
 

( 6-5) 

 𝐻𝐻2,𝑟𝑟𝐹𝐹𝑙𝑙/𝐹𝐹 =
𝑝𝑝

2𝑛𝑛
  

( 6-6) 

 𝐻𝐻2,𝑟𝑟𝐹𝐹𝑙𝑙/𝐹𝐹 =
𝑊𝑊

42𝑛𝑛
  

( 6-7) 
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This equates to 3.19x10-5 m3.hour-1 which equates to 0.5sccm.  Standard cell efficiency is calculated 

as: 

 

The water production rate will theoretically be: 

this equates to 33.6 grams of water per hour produced. 

 

Table 45: Degradation study stoichiometry 

Reactant 
Utilised 

volume sccm 

Supplied 

volume 

Sccm 

Stoichiometric Ratio 

(λ) at 0.08A.cm-2 

H2 0.5 60 112.8 

O2 (21% Air) 18.2 150 8.3 

 

The stoichiometric ratio for hydrogen is extraordinarily high (as shown in Table 45) but, as stated 

previously, this experimental set up was found to be the only stable configuration over time, for these 

materials.  The relatively small cross section of the GDMs (11.3cm2 area ) means the overall 

efficiency of the cell will be reduced.  The efficiency reduction is due to edge effects, where a 

significant volume of the cell is adjacent to the outer edge of the disc, this will require additional gas 

flow to overcome GDM intrusion into the gas channel [177],  and this may well factor into the very 

high stoichiometric requirements as well. 

 
𝐻𝐻2,𝑘𝑘𝑔𝑔/𝐹𝐹 =

(2.02 × 10−3)𝑊𝑊
2𝑉𝑉𝑛𝑛

 
 

( 6-8) 

 
𝐻𝐻2,𝑘𝑘𝑔𝑔/𝐹𝐹 =

(2.02 × 10−3)0.6
2 ∗ 0.6 ∗ 96487

= 1.05 × 10−8 
 

( 6-9) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝𝐸𝐸𝑛𝑛𝐸𝐸𝑦𝑦 =
𝑉𝑉

1.48
=  

0.6
1.48

= 0.405  

( 6-10) 

 
𝐻𝐻2𝑂𝑂𝑘𝑘𝑔𝑔/𝐹𝐹 =

(9.34 × 10−8)𝑊𝑊
𝑉𝑉

=
(9.34 × 10−8)0.6

0.6
= 9.34 × 10−8   

 

( 6-11) 
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6.4 DoE duel layered catalyst, GDM and degradation results 

A full set of all data points is reproduced in this chapter.  Each MEA used in these experiments has 

been individually detailed.  Typically, each MEA will have undergone a number of polarisation scans 

at regular intervals during the degradation test runs.  Each polarisation scans change very little 

between intervals.  Therefore, key results from each polarisation scan were reported numerically and 

plotted graphically to highlight any changes that occur during the degradation trial: 

• Initial open cell potential before the polarisation scan (Eocv(i)). 

• Initial potential at one-Amp (0.08Amps.cm-2) load potential before the polarisation scan 

(E1a(i)). 

• Final open cell potential after completing the polarisation scan (Eocv(f)). 

• Final  potential at one-Amp (0.08Amps.cm-2) load after completing the polarisation scan 

(E1a(f)). 

6.4.1 MEA ID 02  

 
Figure 81: MEA 02 first polarisation curve 
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Figure 82: MEA 02 last polarisation curve 
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Figure 83: MEA 02 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 81 is the first polarisation scan carried out at the start of the degradation trial on MEA 02. 

MEA 02 is a Freudenberg cathode GDM with low concentration (0.3mg.cm-2) dual layered catalysts.  

Figure 82 is the last polarisation scan on MEA 02 after 132 hours of constant operation (24 hours a 

day) a one-Amp (0.08Amps.cm-2) load.  Polarisation scans were taken approximately every 12 hours 

(exact timing varied depending on the other MEA test samples being tested).   

Figure 83 shows the results of the potential measurements on MEA 02 immediately before and after 

each 12-hour polarisation scan with constant operation.  A spline fitting process has been carried out 

to clearly define a region of linear degradation.  This spline fitting operation is explained in more 

detail in section  6.5.1. 
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Figure 84: MEA 02 linear degradation region 

Figure 84 shows the localised maximum value for each of the potential values identified, with the aid 

of the spline fitting process in Figure 83, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.2 MEA ID 04  

 
Figure 85: MEA 04 first polarisation curve 

 
Figure 86: MEA 04 last polarisation curve 
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Figure 87: MEA 04 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 85 is the first polarisation scan carried out at the start of the degradation trial on MEA 04. 

MEA 04 is a Freudenberg cathode GDM with low concentration (0.3mg.cm-2) dual layered catalysts.  

Figure 86 is the last polarisation scan on MEA 04 after 21 hours of square wave operation (4 Amps to 

0.2 Amps cycled every five seconds).  Polarisation scans were taken approximately every 1.5 hours 

(exact timing varied depending on the other MEA test samples being tested).   

Figure 87 shows the results of the potential measurements on MEA 04 immediately before and after 

each 1.5-hour polarisation scan.  A spline fitting process has been carried out to clearly define a 

region of linear degradation.  This process  is explained in more detail in section  6.5.1. 
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Figure 88: MEA 04 linear degradation region 

Figure 88 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 87, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.3 MEA ID 06 

 
Figure 89: MEA 06 first polarisation curve 

 
Figure 90: MEA 06 last polarisation curve 
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Figure 91: MEA 06 Spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 89 shows the first polarisation scan carried out at the start of the degradation trial on MEA 06. 

MEA 06 is a Freudenberg cathode GDM with high concentration (0.4mg.cm-2) dual layered catalysts.  

Figure 90 is the last polarisation scan on MEA 06 after 402 hours of constant operation (24 hours a 

day) a one-Amp (0.08Amps.cm-2) load.  Polarisation scans were taken approximately every 11.5 

hours (exact timing varied depending on the other MEA test samples being tested). 

Figure 91 shows the results of the potential measurements on MEA 06 immediately before and after 

each 11.5-hour polarisation scan.  A spline fitting process has been carried out in order to clearly 

define a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 92: MEA 06 linear degradation region 

 

Figure 92 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 91, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.4 MEA ID 08 
 

 
Figure 93: MEA 08 first polarisation curve 

 

 
Figure 94: MEA 08 last polarisation curve 
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Figure 95: MEA 08 spline fitting for Eocv (i & f), and E1A (i & f) 

 

Figure 93 is the first polarisation scan carried out at the start of the degradation trial on MEA 08. 

MEA 08 is a Freudenberg cathode GDM with high concentration (0.4mg.cm-2) dual layered catalysts.  

Figure 94 is the last polarisation scan on MEA 08 after 22.5 hours of square wave operation (4 Amps 

to 0.2 amps cycled every five seconds).  Polarisation scans were taken approximately every 1.5 hours 

(exact timing varied depending on the other MEA test sample being tested).   

Figure 95 shows the results of the potential measurements on MEA 08 immediately before and after 

each 1.5-hour polarisation scan.  A spline fitting process has been carried out in order to clearly define 

a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 96: MEA 08 linear degradation region 

Figure 96 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 95, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.5 MEA ID 10 
 

 
Figure 97: MEA 10 first polarisation curve 

 
Figure 98: MEA 10 last polarisation curve 
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Figure 99: MEA 10 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 97 shows the first polarisation scan carried out at the start of the degradation trial on MEA 10. 

MEA 10 is a Toray cathode GDM with low concentration (0.3mg.cm-2) dual layered catalysts.  Figure 

98 is the last polarisation scan on MEA 10 after 120 hours of constant operation (24 hours a day) at 

one-Amp (0.08Amps.cm-2) load.  Polarisation scans were taken approximately every 20 hours (exact 

timing varied depending on the other MEA test sample being tested).   

Figure 99 shows the results of the potential measurements on MEA 10 immediately before and after 

each 20-hour polarisation scan.  A spline fitting process has been carried out in order to clearly define 

a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 100: MEA 10 Linear degradation region 

Figure 100 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 99, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.6 MEA ID 12 
 

 
Figure 101: MEA 12 first polarisation curve 

 

 
Figure 102: MEA 12 last polarisation curve 
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Figure 103: MEA 12 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 101 is the first polarisation scan carried out at the start of the degradation trial on MEA 12. 

MEA 12 is a Toray cathode GDM with low concentration (0.3mg.cm-2) dual layered catalysts.  Figure 

103is the last polarisation scan on MEA 12 after 32 hours of square wave operation (4 Amps to 0.2 

Amps cycled every five seconds).  Polarisation scans were taken approximately every two hours 

(exact timing varied depending on the other MEA test sample being tested).   

Figure 103 shows the results of the potential measurements on MEA 12 immediately before and after 

each two-hour polarisation scan.  A spline fitting process has been carried out in order to clearly 

define a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 104: MEA 12 linear degradation region 

Figure 104 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 103, and plots a linear fit to the remaining values until the end of 

the degradation test run. 

 

 



6-229 
 

6.4.7 MEA ID 14 
 

 
Figure 105: MEA 14 first polarisation curve 

 
Figure 106: MEA 14 last polarisation curve 
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Figure 107: MEA 14 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 105 shows the first polarisation scan carried out at the start of the degradation trial on MEA 14. 

MEA 14 is a Toray cathode GDM with high concentration (0.4mg.cm-2) dual layered catalysts.  

Figure 106 is the last polarisation scan on MEA 10 after 444.6 hours of constant operation (24 hours a 

day) at one-Amp (0.08Amps.cm-2) load.  Polarisation scans were taken approximately every 11.7 

hours (exact timing varied depending on the other MEA samples being tested).   

Figure 107 shows the results of the potential measurements on MEA 14 immediately before and after 

each 20-hour polarisation scan.  A spline fitting process has been carried out in order to clearly define 

a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 108: MEA 14 linear degradation region 

Figure 108 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 107, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.8 MEA ID 16 

 
Figure 109: MEA 16 first polarisation curve 

 
Figure 110: MEA 16 last polarisation curve 
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Figure 111: MEA 16 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 109 is the first polarisation scan carried out at the start of the degradation trial on MEA 16. 

MEA 16 is a Toray cathode GDM with high concentration (0.4mg.cm-2) dual layered catalysts.  

Figure 110 is the last polarisation scan on MEA 12 after 34 hours of square wave operation (4 Amps 

to 0.2 Amps cycled every five seconds).  Polarisation scans were taken approximately every two 

hours (exact timing varied depending on the other MEA test sample being tested).   

Figure 111 shows the results of the potential measurements on MEA 16 immediately before and after 

each two-hour polarisation scan.  A spline fitting process has been carried out in order to clearly 

define a region of linear degradation.  This process  is explained in more detail in section  6.5.1. 
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Figure 112: MEA 16 linear degradation region 

Figure 112 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 111, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.9 MEA ID 18 

 
Figure 113: MEA 18 first polarisation curve 

 
Figure 114: MEA 18 last polarisation curve 
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Figure 115: MEA 18 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 113 shows the first polarisation scan carried out at the start of the degradation trial on MEA 18. 

MEA 18 is a Freudenberg cathode GDM with medium concentration (0.35mg.cm-2) uniform 

concentration catalyst layer.  Figure 114 is the last polarisation scan on MEA 18 after 196 hours of 

contestant operation (24 hours a day) at a one-Amp (0.08Amps.cm-2) load.  Polarisation scans were 

taken approximately every 14 hours (exact timing varied depending on the other MEA samples being 

tested).   

Figure 115 shows the results of the potential measurements on MEA 14 immediately before and after 

each 20-hour polarisation scan.  A spline fitting process has been carried out in order to clearly define 

a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 116: MEA 18 linear degradation region 

Figure 116 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 115, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.10 MEA ID 19 

 
Figure 117: MEA 19 first polarisation curve 

 
Figure 118: MEA 19 last polarisation curve 
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Figure 119: MEA 19 spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 117 is the first polarisation scan carried out at the start of the degradation trial on MEA 19. 

MEA 19 is a Freudenberg cathode GDM with a medium concentration (0.35mg.cm-2) uniform 

concentration catalyst layer.  Figure 118 is the last polarisation scan on MEA 19 after 34 hours of 

square wave operation (4 Amps to 0.2 Amps cycled every five seconds).  Polarisation scans were 

taken approximately every two hours (exact timing varied depending on the other MEA test samples 

being tested).   

Figure 119 shows the results of the potential measurements on MEA 19 immediately before and after 

each two-hour polarisation scan.  A spline fitting process has been carried out in order to clearly 

define a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 120: MEA 19 linear degradation region 

Figure 120 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 119, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.11 MEA ID 23 

 
Figure 121: MEA 23 first polarisation curve 

 
Figure 122: MEA 23 last polarisation curve 
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Figure 123: MEA 23 Spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 121 is the first polarisation scan carried out at the start of the degradation trial on MEA 23. 

MEA 23 is a Toray cathode GDM with a medium concentration (0.35mg.cm-2) uniform catalyst layer.  

Figure 122 is the last polarisation scan on MEA 23 after 34 hours of square wave (4 Amps to 0.2 

Amps cycled every five seconds).  Polarisation scans were taken approximately every two hours 

(exact timing varied depending on the other MEA test samples being tested).   

Figure 123 shows the results of the potential measurements on MEA 23 immediately before and after 

each two-hour polarisation scan.  A spline fitting process has been carried out in order to clearly 

define a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 124: MEA 23 linear degradation region 

Figure 124 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 123, and plots a linear fit to the remaining values until the end of 

the degradation test run. 
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6.4.12 MEA ID 24 

 
Figure 125: MEA 24 first polarisation curve 

 
Figure 126: MEA 24 last polarisation curve 
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Figure 127: MEA 24 Spline fitting for Eocv (i & f), and E1A (i & f) 

Figure 125 shows the first polarisation scan carried out at the start of the degradation trial on MEA 24. 

MEA 24 is a Toray cathode GDM with a medium concentration (0.35mg.cm-2) Uniform catalyst 

layer.  Figure 126 is the last polarisation scans on MEA 24 after 421 hours of constant operation (24 

hours a day) at a one-Amp (0.08Amps.cm-2) load.  Polarisation scans were taken approximately every 

12.4 hours (exact timing varied depending on the other MEA samples being tested). 

Figure 127 shows the results of the potential measurements on MEA 24 immediately before and after 

each 20-hour polarisation scan.  A spline fitting process has been carried out in order to clearly define 

a region of linear degradation.  This process is explained in more detail in section  6.5.1. 
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Figure 128: MEA 24 Linear degradation region 

Figure 128 shows the localised maximum value for each of the potential values, identified with the aid 

of the spline fitting process in Figure 127, and plots a linear fit to the remaining values until the end of 

the degradation test run. 

6.5 Analysis and discussion GDM, dual layer catalysts and degradation results 

A baseline understanding of the impact of GDMs on fuel cell performance has been developed in this 

thesis (see Chapter  4).  This in turn made it possible to increase the complexity of the information that 

can be analysed for fuel cell MEAs.  The gradient data analysis method used in this study, has been 

utilised and validated previously, as outlined in section  4.4.2.  In many degradation studies, the open 

cell potential and the potential at a pre-specified load, were also used to measure the degradation 

output of fuel cell systems [99,124,148].  To that end the Eocv (open cell potential) and Ei (the 

potential at load current ‘i’) values were recorded immediately before and after polarisation curves 

were conducted, at various points in time in the degradation study. 
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If typical degradation rate responses [148] were to be achieved, then the predicted degradation rate 

was calculated as follows.  From previous work [148] it was anticipated that the potential degradation 

rate would follow a trend equivivlnt to a 225µV per ‘drive cycle’ (in Lin et al. (2014) [148] the drive 

cycle was: 1,200 minutes per driving cycle for up to 200 cycles equates to 4,000 hours of testing).  

The material tested and the test conditions, in the work by Lin et al. (2014) [148],  different slightly 

(0.2bar(g) operating pressure  [148]) from work completed for this thesis, however it was anticipated 

that it would remain possible to comapre, to some degree, the degradation response generated for 

samples studied in this thesis.  

 If similar linear degradation rates to that of Lin et al. (2014) [148] hold true for this experiment, it 

was anticipated that a measurable degradation rate could be detected in less than forty hours, 

particularly in the square wave duty cycle.  This estimate was based on the conversion of the cyclic 

degradation rate, reported by Lin et al. (2014) [148], to an hourly rate: 

1200/60 = 20 hours 

 225x10-6 V /20 = 1.125 x10-5 Volts per hour loss.    ( 6-12) 

 

Recall the previous arguments [43,45,149] which state that changes in hydrophobicity occur, and the 

loss of hydrophobic layers open up underlying carbon structures to accelerated degradation.  The lack 

of hydrophobic coating in the selected GDMs, for work completed in this thesis, implies the 

degradation rate may be even faster than anticipated; if this argument is correct.  One factor that may 

cloud this issue a little is that the CCS method of MEA fabrication may be considered similar to 

applying a hydrophobic coating to the layer adjacent to the catalyst layer. 

In the dual layer MEAs in particular, the low concentration catalyst loading layer is in fact very 

similar in composition to an MPL.  One could even go so far as to describe the low concentration 

layer as a ‘functionalised’ MPL, rather than describe it as a true catalyst layer. Having completed the 

(simplified) design of experiments, basic data interpretations were considered in order to gain an 

understanding of the overall results.  Figure 129 shows that a single linear fit to the data displays the 

frankly unbelievable result of an ever improving MEA, and this response was the same across all 

samples.  Examining this data, with more a more sophisticated approach than a simple linear 

regression of the peak power across all polarisation curves, was obviously called for: The degradation 

of the MEA is  not a linear decline, which was evident after completion of the conditioning cycle. 
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Figure 129: DoE results 

Plotting the various values over time, allows an assessment of the degree of degradation of the system.  

The coefficient of determination (r2) in Figure 129, is not very high, and visual observation of the data 

indicates there may be two separate trends.  Similar trends are visible for constant load potential 

measurements before and after polarisation curves (see Figure 138) and the load at one-Amp 

(0.08A/cm2). 

A closer examination raises the possibility that there is an increase in performance up to the midway 

point, and then a decrease in performance from then onwards.  This rising and then falling gradient is 

not as clearly defined in all samples, and there is often a rise in the cell performance and then a 

plateau, but not in every case. 
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Another factor visible in the data; is the tendency for reversible degradation to accrue over the course 

of a day’s testing in the square wave samples.  Constant load samples were left to run 24 hours a day.  

Square wave samples were troublesome to automate and so had to be monitored at all times.  As a 

result of this, it was required that the samples be switched off at the end of each day.  A standard 

‘nitrogen purge’ sequence at the start and end of each day was carried out, and the square wave 

samples had polarisation curves conducted on them four times each day.  This increased the number 

of polarisation curves carried out in anticipation of accelerated ageing for square wave duty cycles 

(circa 20 hours as discussed above).  The first polarisation curve of each day took place after the 

Nitrogen purge cycle and again, once the system was able to maintain the set temperature. 

There is a marked drop across all square wave (e.g. Figure 132 to Figure 130) ‘morning’ performance.  

The drop in performance for the very first morning test run on a given square wave sample (Figure 

132) was pronounced.  The peak load easily hit the 4 Amp mark, and cell Volts drops from 0.38 Volts 

down to 0.15 limit over a period of 1,000 seconds (approximately 15 minutes).  In Figure 133 it can 

be seen that, after the polarisation curve has been conducted, there was a slight recovery; but not one 

equivalent to the return to the four amps maximum output seen at the start of the day.  The system is 

set to demand four amps from the working cell, but there was an inbuilt limit on the system that 

prevents the cell dropping all the way to zero Volts.  This hard-wired voltage limit occurs after the 

cell operates, for more than a second or two, with the cell potential somewhere in the region of 0.15 to 

0.2 Volts.  There was lower voltage trip limit function in the user interface of the test apparatus, but 

this was deactivated for the work undertaken in this thesis.  The ~0.15 voltage limit is embedded into 

the setup code elsewhere in the system, and is not reported in the operating manual.  As this hard-

ware based operating limit was only discovered after testing was started, it was decided to carry on 

and not attempt to change the hard-encoded machine settings.  The same voltage limit condition 

would apply to all samples tested, and so the results remain comparable. 

Note the intermittent gaps in the square wave results that are clearly evident; these were due to human 

error and were a consequence of the lack of automation for this set of test runs.  All key data points 

have been reported in section  6.4.  These raw data plots have not been reported in the main body text; 

as printing them in legible formats would result in hundreds of pages of largely identical graphs, 

similar to those in Figure 126 and Figure 132.  A full set of all graphical data is available in Appendix 

4, which is available as hard copy in the appendices. 
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Figure 130: Uniform 0.35mg/cm2 square wave duty cycles 

(Toray AM Day 1) 

Figure 130 through Figure 133 show representative square wave duty cycles for a selection of MEAs.  

Particular attention should be made to the difference in performance on the first day for a given 

sample (Figure 130 and Figure 132) and the change in behaviour seen in subsequent days (Figure 131, 

Figure 133), which has been previously identified in Chapter  6 as evidence for reversible degradation. 
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Figure 131: MEA12 low concentration dual layer square wave duty cycle 

(Toray, 0.3mg/cm2 - post N2 purge day 2) 
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Figure 132: High concentration dual layer square wave duty cycle 

(Feudenburg 0.4mg/cm^2 cathode - post morning N2 purge day 1) 
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Figure 133: High concentration dual layer square wave duty cycle PM 

(Feudenburg 0.4mg/cm2 day 3) 

Subsequent tests show a similar drop in performance each day, though it is not as marked as on the 

first day for each MEA.  Figure 133, the third day of testing after the completion of five nitrogen 

purging cycles, shows a gradual reduction in output up to the 3,500-second mark.  There is then a 

gradual recovery in total Amps that can be drawn in the 2.5 Amp region. 
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To reliably detect the performance loss of the cell under study, it was decided to analyse the 

polarising performance from the same time in the duty cycle each day for the square wave results.  

With this in mind, it was further decided to focus the analyses in polarisation curves for the same 

period of each day.  This approach is also adopted for constant load samples to ensure the prime data 

sampling times (am or pm) are comparable across all data sets; even though constant load samples 

show no evidence of this daily reduction in performance.  Figure 134 shows the typical polarisation 

curve duty cycle applied, and the resultant potential is then measured for each sample. 

 

 
Figure 134: Typical polarisation load 
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constant step size resulted in failure not take the test cell into the mass transport loss region during 

measurement. As discussed previously (see Chapter  4), the mass transfer region is not a primary topic 

of interest due to the inability to model it accurately from the polarisation curve. Therefore, the 

duplication of identical work cycles was prioritised over gaining information on mass transport losses 

for all samples.  
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Peak load during polarisation was set at 3 Amps.  The files prepared for analyses were altered slightly, 

in as much that the overall file length was trimmed at the start and finish of each polarisation test 

cycle.  This was done to simplify the automated data collection form the mat lab code (available in 

Appendix 3) by ensuring there were exactly ten measurements (i.e. ten seconds of data) before and 

after the start of the polarisation cycle itself.  This ten-second period, at one-Amp, becomes the E1aX 

measurement and the adjacent ten-second region with no load, current becomes out EocX reading. 

 

 
Figure 135: FUDL MEA 04 polarisation curve No. 26 

As can be seen in Figure 135, for some polarisations curves this can give a slightly misleading under 
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performance in the first half results which, when analysed as a linear plot, resulted in the unlikely 

outcome of an ever improving MEA as shown in Figure 129. 

One-Amp (0.6Volts) measurements (rendered from here on as ‘E1ai’ for readings before the 

polarisation curve and ‘E1af’ for those taken after), were taken before and after all polarisation curves, 

and the data compared, as were the open cell potential readings.  Sample readings were taken four 

times a day for the square wave samples, and twice a day (at the start and end of each day) for the 

constant load experiments. 

Figure 136 is a ‘notched’ box and whisker plot for MEA04 PM all polarisaiton cureve reuslts, 

showing the distribution of the potential readings for the open cell potential before and after 

polarisation curve (Eocvi and Eocvi respectivly) and the potnetial at amp load imedialty before and the 

polarisaiotn curve (E1Ai and E1Af respectivly).  The ‘notch’ in the box plot indicates one standard 

deviaiotn around the mean point of the data.  The red cross marks represent posible outlier data points. 

 
Figure 136: Boxplots for ‘PM’ FUDL#4 

For at a typical sample, such as the one in Figure 136 (MEA#4 in the FUDL set), the mean potential 

for a given load is the same, to within in one standard deviation as visualised by the ‘notch’ either side 

of the mean before and after polarisation curves were carried out. Note that the ‘twisted’ notch feature 

of these box plots shows there is a great deal of deviation within each set.  However, there were some 

difference in the pre and post open cell (open cell potential was recorded as Eoci and  Eocf) and one-
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for a handful of samples there was a measured difference in the pre and post polarising potential 

readings on a single cell.  Because of these atypical before/after polarisation results only a single set 

(i.e. all Eoci results) should be considered together, and direct comparison between categories is not 

advised. 

 

 
Figure 137: FUDL MEA04 'AM' box-plots 

In Figure 137 the ‘notch’ in the box plot exceeds the upper bound, this is simply an indication of the 

number of samples being small, and so the 95% confidence bound for the mean point is beyond the 
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and after the polarisation curve have the same median point (95% confidence level).  It is also clear 

that it would be invalid to pool the readings across all samples (one-Amp load and open cell have a 

statistically significant mismatch in the median points).  Once again, more sophisticated data analysis 

methods are advised. 
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testing)  were fitted with a quadratic function, to assess if the improved performance detected in the 

linear fit is reasonable or not.  As can be seen in all samples the quadratic has a far superior goodness 
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Figure 138: FUDL MEA 04 (AM) quadratic fit 
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If the tailing off of fuel cell performance, seen in Figure 138 for those data points beyond the peak of 

the fitted quadratic curve, is a true effect: Then a noise filter should also accentuate it.  Too that end, a 

‘spline filter’ was added to the data.  The automated smoothing spline function provided by 

MATLAB is an average between the un-weighted cubic spline techniques and a direct linear fit 

between adjacent points.  85% of the spline fitted value was generated from the cubic spline approach, 

which interpolates a smooth curve between two points [178]: An integer value between data 

measurements was selected, giving a value of h=1 between measurements. (Hence time is given in 

units of variable length such 1.5 hours per unit as shown in Figure 139).  For example; p = decimal 

percentage contribution of cubic function to Reduced Complexity spline fit. 

 

If a truly 100% cubic spline were used, there would be two possible solutions for every estimated arc 

between data points. Therefore, the software has designated this region (where 85% of the fitted curve 

comes from the cubic spline, and the rest comes from the least squares fit between three adjacent data 

points)  ‘the region of interest’.  This region of interest approach avoids the quandary of deciding 

which of two possible cubic splines were selected as a fit for a given set of data.  The generated spline 

values tracks between discrete regions with the larger data set and, and apply a best fit line between 

pairs of data points.   

This spline fitting procedure generates a fit line that aids in the visual identification of features in a 

data set, and reduces the possibility of error that could arise from a simple peak value finding exercise.  

The spline fitted data, as seen in Figure 139, clearly identifies turning points between localised data 

points, and gives a clearer visual interpretation of the point where degradation effects are fully 

developed.  In Figure 139, it can be seen that there was significant improvement in performance in all 

categories around sample number three to five  (after 4.5 to 7.5 hours of testing), which is, arguably, 

in keeping with improved humidification of the system.  It is likely that this is the major contributing 

factor in the improvement in the response detected.  As the humidity of the system increases, the 

membrane (and any other water absorbing materials such as the PTFE based binder agents within the 

MEA), will take up water and swell.  This increase in size will increase the clamping pressure slightly, 

and will, therefore, increase the contact pressure with the GDM.  This in turn reduces the contact 

resistance between the current collector plate and the rest of the MEA [24,87,95].   

Additionally, the uptake of water in the in the membrane materials will reduce its ionic resistance as 

well [24].  Recall however that this gradual improvement in performance is occurring at the same time 

 𝑝𝑝 =
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as the reversible degradation detected in the square wave performance charts (Figure 133) and that is 

seen each day.  There is little surprise that a straight linear fit for degradation has been masked with 

these multiple effects taking place. 

Figure 139 shows the ‘smoothing spline fit’ applied to the same data as that shown in Figure 138.  

This approach makes it easier to identify distinct regions of behaviour.  So in Figure 139, it can be 

clearly seen that data points one to three show one mode of behaviour, data points four onwards seem 

to show another.  Closer inspection, and the application of an understanding of likely degradation 

behaviour; indicates that there is a small improvement in performance up to data point 13 or 14, after 

which there is an inflexion and a small, but measurable, decrease in performance can now be 

measured.  A linear fit to the data points beyond this point of inflexion can be used to generate a 

degradation rate for the MEA. 
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Figure 139: FUDL MEA 04 (AM) smoothing spline fit 
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Figure 140: FUDL MEA 04 (AM) linear degradation 

 

 

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

sample time (aprox 1.5 hrs per sample)

P
ot

en
tia

l (
V

ol
ts

)

Square wave degradation plot Eocv-intial

linear degradation fit  Eoc(i)
y = -0.0019167 *x + 0.85183
Eoc-i r2 = 0.22491

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

sample time (aprox 1.5 hrs per sample)

P
ot

en
tia

l (
V

ol
ts

)

Square wave degradation plot Eocv-final

linear degradation fit  Eoc(f)
y = -0.03545 *x + 1.3541
Eoc- r2 = 0.86884

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

sample time (aprox 1.5 hrs per sample)

P
ot

en
tia

l (
V

ol
ts

)

Square wave degradation plot E at 1 amp-intial

linear degradation fit  E1a(i)
y = -0.022429 *x + 0.99381
E1a-i r2 = 0.81369

MEA 04 (Freudenberg cathode, low-D, Square Wave) AM

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

sample time (aprox 1.5 hrs per sample)

P
ot

en
tia

l (
V

ol
ts

)

Square wave degradation plot E at 1 amp -final

linear degradation fit  E1a(f)
y = -0.015714 *x + 0.91157
E1a-f r2 = 0.57207



6-263 
 

 
Figure 141: FUDL MEA 06 linear degradation 
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Figure 142: FUDL MEA 06 quadratic fit 
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Figure 143: MEA 06 spline fit 
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Figure 142 shows the quadratic fit for the sake of comparison; though there is little to commend this 

approach for either square wave or constant load sample data.  Figure 143 shows the spline fit for the 

constant load response.  The stepwise improvement in open cell potential is, arguably, still visible 

between the first and second open cell potential readings before the polarisation of the cell.  However, 

the one-Amp load plots (both before and after the polarisation curve), show a clear difference in the 

same region (the first two or three steps) with a drop in performance.  This drop in cell potential is 

equivalent to the drop in performance seen in the AM to PM samples resulting from reversible 

degradation discussed earlier. 

A full set of results, using the spline and degradation gradient approach just outlined, for the GDM, 

CL and degradation rate have already been reported in section  6.4. 

6.6 Degradation rate calculations and validation 

In Figure 140, a linear degradation fit from the data set maxima to the final reading was applied.  

Once again, adhering rigorously to the AM or PM data subsets, improvements in the goodness of fit 

(r2) value for all measurements were gained.  An improvement in fit is clearly visible in most 

categories, and more importantly, there is a measurable negative gradient for the first time.  

Multiplying this by the somewhat unusual time step (to facilitate a good fit to spline curves on the 

same plot) generates a degradation of: 

-0.0019167 / 1.5= -1.28x10-3 Volts per hour 

or 1.28 mV per hour, which is over 110 times faster a derogation rate than anticipated, from 

comparison with other authors [148] variable duty cycles (from Table 46: 1.28x10-3 divided by 1.125 

x10-5 is approximately 113).  Consider the constant load (Figure 141);  

-0.0015/11.5=  -1.36x10-4 Volts per hour. 

This gives a degradation rate over 12 times faster than expected compared, to the work of NEDC 

based degradation reported by Lin et al. (2014) [148] (from Table 46: 13.6 x10-3 divided by 1.125 

x10-5 is approximately 12).  It would be possible to track back along the data and measure the fall in 

gradient from an earlier point, and make the data match the expected degradation rate, but that is 

hardly good practice.  The experiments carried out in this thesis, and those reported as a comparison 

from the literature ([70] and [148]), are broadly similar.  Lin et al. (2014) [148] cite their MEA 

structure in another work [179], but this does not fully define the GDL and its hydrophobicity.  As has 

been stated previously, the test sample fabrication method used by Zhang et al. (2015)  [70] closely 

matches that used in the experiments that were completed for this thesis.  However, the geometry of 

the samples used in that work [70] were not an ideal match.  Between the two previous sets of 

experiments ([70] and [148]), the work completed for this thesis is comparable to both, though not an 
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exact match for either.  Equally the MEA design, GDM selection and catalyst concentration, is 

broadly similar for MEA 04.  The assumption has been made that these were suitable comparisons for 

the experimental results reported (see section  6.4).  As reported in section  4.3.3, the Zhang et al.  

(2015) paper [70] was the starting point for creating the ink formulation used in creating the MEAs 

tested in this thesis.  Zhang et al. (2015) [70] attribute reversible degradation to the formation, and 

subsequent carbon corrosion based removal, of CO layers previously evolved the catalyst surface. Lin 

et al. (2014) [148]  state that longer term degradation impacts were caused by rapid changes in the 

duty cycle and changes in the overall geometry of the CL.  Specific significance was attributed [148]  

to the reduction in mean pore size and uniformity of the porous structure of the CL, key components 

of fuel cell degradation, alongside a significant reduction of ECSA after 200 driving cycles.  Zhang et 

al. (2015) [70] highlight permanent degradation resulting from the “…agglomeration…” [70] 

(Ostwald ripening) of Pt deposits and the loss of carbon structures and their associated platinum 

catalyst sites (i.e. reduction of ECSA).  The duty cycles in the work completed for this thesis were 

comparable to those reported by other authors ([70] and [148]).   

Square or rectangular waves have been demonstrated to accelerate the loss of electrochemically active 

surface area [125,176]  due to Ostwald ripening particle growth of the platinum catalyst; especially at 

potentials between 0.6 and 1.2 Volts, and with increased carbon carrion occurring in the range of 0.4 

to 1.4 [sic] Volts [125,176].  In the FCCA system, voltages were not artificially induced to such high 

levels, but this extreme range of potentials may be reached during start or shut down cycles, though 

this will, of course, have no bearing on the constant load degradation study.  Zhang et al. (2015) [70] 

report degradation rates in the order of 1.45x10-3 Volts per hour with a rapid polarisation cycling 

effect. 

Table 46: Degradation rate comparison to literature 

Test 
Volts per hour 

loss 
ref 

Range (+/- to 

mean) 

Standard 

Error (SE) 

Square wave 0.15 to 0.8 Volts 1.28x10-3 This research +/- 0.16x10-3 0.533 x10-3 

Constant load 0.6Volts 13.6x10-3 This research +/- 1.13x10-3 1.98 x10-3 

     

Rapid potential cycle 0 to 1.2 

Volts 
1.45x10-3 [70] Not reported Not reported 

Constant load 1.5 Volts 10.9 x10-3 [70] Not reported Not reported 

Simplified drive cycle 1.125 x10-5 [148] Not reported Not reported 
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It is evident that the results achieved in this set of experiments compare well with some results 

reported in the literature, but not all. In light of the reasonable agreement with the previous work [70], 

it is suggested that the reduced degradation rate in some findings is due the addition of hydrophobic 

coatings and MPLs, and the difference in duty cycle (NEDC instead of a square wave with very short 

wavelengths). 

The electrode construction methods required for spinning disc electrochemical analysis [70] are 

fundamentally different to that required for the much larger MEAs, though the basic construction of 

carbon + platinum doped on carbon is not too dissimilar to the MEAs manufactured for this research.  

It is suggested that the broadly equivalent electrode construction, combined with the rapid cycle 

accelerated degradation, undertaken for both this thesis and in work completed by Zhang et al. (2015) 

[70], dominated any scaling issues between the very small (approximately 1cm diameter) rotating disc 

electrodes [70], and the  larger MEAS (approximately 4cm diameter) used in work completed for this 

thesis: that demonstrated a similar degradation rates. 

Making the assumption that the comparison between the slower degradation rate of the simplified 

drive cycles reported [148] and that the data is valid; it is possible to quantify the degree of 

‘acceleration degradation’ the experiment has induced: That is to say, the ten-second wave legth 

square wave duty cycle used in work to complete this thesis, accelerates degradation by a factor of 

~110 times compared to a standard duty (NEDC based) cycle. However, it would be preferable to 

validate this against MEAs of identical construction as those used in the simulated drive cycle, and 

against real world degradation measurements.  From the discussion of results so far (see section  6.4 

and section  6.5), it is reasonable to compare degradation rates after the ‘peak’ in performance and use 

the linear gradient after that point; to generate a degradation rate that is comparable to previous 

studies.  This approach has been replicated across all samples in the designed experiment matrix, and 

the results are tabulated in Appendix 3 (all PM polarisaiton plots and fit data are  in Appendix 4). 

6.7 Numeric quantification of polarisation curves and degradation 

The analysis of the designed experiment data, indicates there is no improvement to be gained from the 

multivariate example.  The results were not statistically significant for co-varying inputs, based on the 

design space investigated.  This lack of co-variance obviously counteracts somewhat the results from 

Chapter  4.  There is a distinct possibility that the reduced order model, detailed previously (Figure 80), 

lacks sufficient power to investigate the design space for these more complex interactions.  The 

existing design could, of course, be adapted to improve its resolution, by either completing the 

original design (though there would be a need to factor in a blocking effect for the elapsed time 

between experiments) or by including replicates of the existing, or if possible additional design points, 

if time permits. The findings are accepted as they stand, and it is concluded that there is no 

improvement in the DoE multifactorial model when compared to a simple mean of the results of 
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interest.  It must be acknowledged, as discussed in section  2.2 and Chapter  3, that it is possible that a 

larger study, with increased numbers of samples, may detect higher order interactions (i.e. higher 

order effects with three or more input variables co-verying together).  Such higher order interactions 

can be masked in the relatively small scale study undertaken in this chapter.  Any such higher-order 

covariance, of three or more factors, that exist are likely to be quite subtle [82,85]. The work 

completed in this chapter has been analysed for two-factor covariance and was not been detected (i.e. 

the mean provides as good, or better, an estimate of the predicted result as any two level multivariate 

model).  An increased study size may also be able to detect smaller two-factor interactions that may 

be too small for this set of experiments to detect.  Though it is always possible to expend greater 

amounts of resource pursuing a definite answer to a given topic: Part of the utility of M-ANOVAR 

methods, is that they provide a degree of confidence in the negative result.  Any two-factor effects 

that have not been detected in this set of experiments must be smaller than the error margin of the 

mean (discussed in more detail in section  6.7.2). 

6.7.1 MEA performance improvements and reversible degradation 

There were several improvements in performance that have had to be removed from the previous data 

analysis, to define a degradation rate that has a reasonable agreement with previous studies.  This 

section discusses these increases in MEA performance in the early stage of the degradation testing in 

a little more detail, even though they do not form a major part of this investigation.  The conditioning 

of fuel cells immediately after construction is a well-known requirement [180], and a standard 

conditioning cycle has been applied to all MEAs as discussed in section  4.3.7.  

Previous work has identified performance improvements for up to fifteen hours in some MEAs [180], 

but nothing like the hundreds of hours required by some the samples tested in this research.  Other 

factors such as reduced humidity and temperature can prolong the activation and conditioning process; 

but again the conditioning time would normally be expected to be in the order of tens of hours, not 

days. Examining the typical smoothing spline fits (Figure 139 and Figure 143) the improvement in 

performance is in fact broadly completed in a reduced period more in keeping with the times reported 

previously.  However, adopting the approach that the flattening of the ‘smoothing spline fit’ at or 

around the 15 hours mark is the true peak performance [180]; the subsequent degradation results 

would not correspond as well as they have done with other degradation rates in the literature (see 

Table 46). 

Likely sources of the improvement in MEA performance in early stages of testing: 

• Humidification of membrane. 

• Humidification of other PTFE structures. 
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• Reduced Ohmic resistance due to greater contact force between monopolar plates and the 

GDM as the membrane swells. 

• Increased reactant and product flow due to changes in the CL structure [180]. 

As discussed previously (see sections  6.4,  6.5 and  6.5.1), the data analysed has been taken from the 

‘afternoon’ polarising curves taken each day, to normalise the readings with regards to the reversible 

degradation effects that had been observed. Recall, the observed reversible degradation impacts the 

square wave duty cycle sample and significantly alters the results when comparing morning to 

afternoon samples (see section  6.5 and  6.5.1, with particular reference to Figure 136  and Figure 137).  

Once again, reversible degradation is a well-known phenomenon [70] and can be attributed to several 

effects.  Platinum catalyst reaction sites can become blocked or poisoned by a variety of gases, often 

CO or CO2.  This build-up of passivating layers can be mitigated somewhat by encouraging its 

chemical evolution at certain potentials (as discussed earlier in Table 5): While prolonged periods of 

time at these potential will also oxidise the carbon-based supports and fibres present in the MEA, the 

materials coating the catalyst layer will also be removed, regenerating the available platinum surface 

area.  Similarly, the nitrogen purge at the start and end of each days testing (square wave cycle) will 

strip surface adsorbed molecules from the platinum, as will brief periods of running pure hydrogen 

without generating current (Mench (2012) [95] and Whiteley (2016) [90]).   

Another source of the performance recovery is the removal of excess water from pore structures.  

Running a two-minute nitrogen purge, without generating water as a reaction product, dries out the 

MEA to a certain degree, without excessively drying the membrane itself.  This removal of water 

increases the total porosity available for reactants and products when the cell is next placed under a 

working load.  This effect is, arguably, the best explanation for the short improvement and then 

collapse back that is clearly seen in of the morning square wave data logs (e.g. Figure 132 and Figure 

131 ) and corresponds to effects reported by others [57,181]. 

Having utilised the spline fitting function to identify the point where degradation rates behave as 

expected, the decrease in performance that has been identified after reaching the maximum 

performance point is considered.  The EOCV-I  reading, identified as the maximum value, and 

confirmed through the spline fitting visual inspection as discussed in section  6.4,  were the ‘peak’ or 

maximum reading after all improvement gains have been accrued in the test piece, and degradation 

rates were measured after this point in time. 

Table 47 shows all results and measurements of the samples in the GDM, layered catalyst and 

degradation DoE study for Freudenberg non-woven (felt) GDM. 

Table 48 shows all results and measurements of the samples in the GDM, layered catalyst and 

degradation DoE study for Toray (paper) GDM. 
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Table 47: Freudenberg non-woven ('Felt') results 
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Table 48: Toray paper results 
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Figure 144 compares the responses of each type of catalyst layer (uniform distribution at 0.35mg.cm-2, 

dual layered 0.3 mg.cm-2 and dual layered 0.4 mg.cm-2 on both paper (Toray) and non-woven 

(Freudenberg) GDMs) under a constant load.  It is clear that the results for high concentration dual 

layer catalysts and uniform were very close together for the felt like material (F-Berg) for the constant 

result.  At first glance, the uniform CL seems to indicate a separate result when applied to Toray 

papers, but closer analysis of the error bounds (see equation (6-16)) indicates an overlap with the 

Toray high dual layer readings as well.  There is a marked difference in the performance of the low 

concentration dual layer, and it is clear to see that selection of the supporting substrate makes a 

significant difference.  The high dual layer catalyst, can generate a broadly equivalent performance 

(EOCV-I = 0.855 Volts) regardless of which substrate it is deposited onto, though with a marginal 

decrease in performance for the non-woven GDM.  The uniform concentration platinum layer on 

Toray (Pt=0.38mg.cm-2 (+/- 0.01)), is significantly poorer in performance (EOCV-I = 0.65 Volts) 

compared to its uniform counterpart on the non-woven Freudenberg GDM.  

The reverse is true in the square wave duty cycle (Figure 145).  There is no measurable difference in 

performance for the felt like Freudenberg materials in any category (EOCV-I = 0.855 Volts ) this time, 

but the square wave performance of the paper (Toray) structured material is very poor in comparison 

(EOCV-I = 0.752 Volts).  It seems clear that there is a structure and low dual layer interaction that is 

exacerbated by the duty cycle.  Indeed the design expert Pro software had set a warning alert on the 

graph to point this out.  Sadly the lack of data points means that the ‘A-B-C’ interaction indicated here 

cannot be quantified or reported with any reliability (there is a 50% probability that the effect is in 

fact due to experimental noise).  In light of this, it is concluded there is no evidence for multivariate 

effect based on the data available, and with a 50% probability that the effect is a result of 

experimental noise; it is difficult to justify the resource allocation to research this further. 

 
Figure 144: Constant load dual layer interactions 
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Figure 145: Square duty cycle dual layer interactions 

The accrued data can be further analysed further to create the following table, to reduce the 

extraneous data, and gain a more detailed understanding of the data, as shown in Table 49. 

Table 49: Dual layer interactions simplified data field 

 
Table 49 groups samples by the duty cycles the were exposed to, with constant one-Amp load test 

results on the left, and square wave duty cycles on the right.  In each of these two groups is further 

broken down into sub categories of performance: The initial open circuit potential prior to conducting 

polarisation curves (Eocv-i), the voltage loss per hour measured (V/hr loss) and the time in hours to 

reach the maximum potential (hours to Emax).  It should be noted that the Eocv-i reading corresponds 

to the Emax reading. Once segregated into these distinct families for both types of GDM, it is then 

constant square
Eocv-i F-Berg error Torray error Eocv-i F-berg error Torray error

0.3 low-D 0.7628 0.0514 0.8505 0.127 0.3 low-D 0.8300 0.0957 0.8455 0.011
0.4 high -D 0.7690 0.0514 0.8960 0.127 0.4 high -D 0.8698 0.0957 0.8657 0.011

0.38 unifomr 0.8548 0.0514 0.6573 0.127 0.38 unifomr 0.8740 0.0957 0.8500 0.011
mean 0.7955 0.8013 mean 0.8579 0.8537
stdev 0.0514 0.127 stdev 0.0243 0.011

V/hr loss F-Berg error Torray error V/hr loss F-berg error Torray error
0.3 low-D -0.00043 0.00052 -0.00159 0.00065 0.3 low-D -0.00034 0.03892 -0.00347 0.0064

0.4 high -D -0.00012 0.00052 -0.00066 0.00065 0.4 high -D 0.00016 0.03892 -0.01296 0.0064
0.38 unifomr -0.00114 0.00052 -0.00033 0.00065 0.38 unifomr -0.00014 0.03892 -0.00074 0.0064

mean -0.0006 -0.0009 mean -0.0001 -0.0057
stdev 0.0005 0.0007 stdev 0.0002 0.0064

hours to Emax F-Berg error Torray error hours to Emax F-berg error Torray error
0.3 low-D 32.73 173 120.00 155 0.3 low-D 13.82143 5.87 22.70 6.35

0.4 high -D 373.33 173 420.00 155 0.4 high -D 5.72 5.87 11.22 6.35
0.38 unifomr 149.60 173 338.33 155 0.38 unifomr 17.87647 5.87 12.27 6.35

mean 185 293 mean 12.4726 15.4
stdev 173 155 stdev 6.1895 6.35
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possible to conduct basic assessments of the data such as the mean, the standard deviation (6-15) and 

the standard error (6-16). 

When measuring the open cell potential (Eocv-i) there was no significant difference for either duty 

cycle.  The voltage loss per hour results were far more telling, with Fberg (Freudenberg) samples 

performing well, except for the uniform catalyst distribution in a constant a 0.6 Volts.  In all other 

circumstances, the felt like structure of the non-woven material consistently outperforms the paper 

GDM. 

The time taken to achieve peak performance in a constant load gives the impression of being impacted 

by type and total presence of platinum, but in this analysis, the standard deviation is very large.  This 

makes a case for removing the low concentration dual layer (referred to as low-d in Table 49, Table 

50 and Table 51) sample from the data set, and treating it as a standalone result.  Table 50 and Table 

51 show the time to maximum Eocv-i reading and the resultant mean and standard deviation (St.Dev), 

with the low concentration data excluded.   

Table 50: Constant load time to Eocv-I(Max) 

Hours to Emax F-Berg error 
 

Toray Error 

0.3 low-D 33 173 
 

120 155 

0.4 high -D 373 
  

420. 
 

0.38 uniform 150 
  

338 
 

mean 261 
  

379 
 

st.dev 158 
  

58 
 

 

Table 51: Square cycle time to Eocv-I(Max) 

Hours to Emax F-berg error 
 

Toray error 

0.3 low-D 13.82 5.87 
 

22.70 6.35 

0.4 high -D 5.72 
  

11.22 
 

0.38 uniform 17.88 
  

12.27 
 

mean 11.80 
  

11.7 
 

st.dev 8.60 
  

0.74 
 

 

However, in manipulating the data in this fashion, it would no longer be possible to assign an accurate 

error values, as there would be only two measurements for that combination of factors in each duty 

cycle. Equations ( 6-15) and ( 6-16) both require the number of samples (n) in the set to be an integer 

value greater than three as they both includes the term ‘n-1’[80].  With that caveat aside, a claim 
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could be made for a measurable, significant, difference between the high and low concentration dual 

layer samples; though the more robust results presented in Table 49, and their standard deviation, call 

that into some doubt. 

In Table 49, the high dual layer has a mean value of 373 hours (Fberg), with minus one standard 

deviation (St.Dev = 158 hours) giving a result of 215 hours as a minimum range, compared with the 

33 hours of the low concentration dual layer (Fberg).  It is highly likely that the low dual layer is 

reaching this peak performance much more quickly.  To unpick this puzzle, a table of weighted 

(blocked) values was created to normalise experimental variability from the data set.  This weighting 

and blocking technique has been discussed briefly in section  3.3.1, with a detailed example of the 

procedure demonstrated in section  4.7, specifically in Table 15.  The original weighted tables 

(available in Appendix 3) were colour coded green to map the most desirable value in each weighted 

set. Note that in the ‘time to reach maximum open cell potential’ data set, it is not clear if shorter, or 

longer durations are preferred, and so a secondary colour (yellow) was used for the lowest value.  The 

same procedure was repeated for the full set of data in Table 49, and the results of that weighting 

procedure are presented graphically in section  3.3.1. 

6.7.2  Structure and catalyst interactions weighted values 

When applying the weighting procedure to assess values (The full set of weighted results is available 

in Appendix 3), it is important to recall that the variance is  

moreover, this relates to the error (set at one standard deviation) as 

Therefore any of the weighted values with a sufficiently small variance can now be considered valid 

data on which to make an assessment.  This was achieved by arranging the data in such a way to 

ensure the number of specimens in each group is greater than two by utilising the three loadings 

catalyst materials. 

This provides the requisite minimum sample size in each set to make the calculation of the standard 

error for the weighted results accordance with equation ( 6-16). 

 
𝑉𝑉𝑣𝑣𝑟𝑟𝑝𝑝𝑣𝑣𝑛𝑛𝐸𝐸𝐸𝐸 =  

∑(𝑥𝑥 − �̅�𝑥)2

(𝑛𝑛 − 1)  
 

( 6-14) 

 
𝑆𝑆𝑡𝑡𝑣𝑣𝑛𝑛𝑂𝑂𝑣𝑣𝑟𝑟𝑂𝑂 𝐷𝐷𝐸𝐸𝑂𝑂𝑝𝑝𝑣𝑣𝑝𝑝𝑡𝑡𝐷𝐷𝑛𝑛 =  �

∑(𝑥𝑥 − �̅�𝑥)2

(𝑛𝑛 − 1)  
 

( 6-15) 
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The full spreadsheet of calculations is available in Appendix 3 (weighting tables).  Those results 

where the weighted error indicates the results are significant are presented section  6.8. 

6.8 Summary of Chapter 6 

The preceding chapter has presented a case study of the application of the multivariate methods to an 

experimental case study on MEAs for PEMFCs.  A wide range of input variables were identified as 

topics of interest in section  6.1, and a design of experiments procedure was undertaken for those 

inputs.  The DoE originally included the three duty cells (constant, square and triangular).  However, 

it became apparent that software security issues on the test apparatus prevented the use of the 

triangular wave duty cycle, and so this part of the work had to be abandoned.  For this case study, the 

need to exclude triangular wave test cycles has been reported in this thesis, to demonstrate the 

flexibility of M-ANOVAR and DoE methods, so long as the researcher does not start from a 'bare 

minimum' complexity DoE.  Anecdotally, the author can report experiencing a reluctance to adopt 

DoE experimental approaches in the wider fuel cell community (in the UK and EU), as they have 

been perceived as excessively time-consuming and inflexible. The designed experiments were robust 

enough to be adapted when practical experimental considerations required it: Combined with modern 

analytical software such as Design Expert Pro, it becomes a simple and straightforward procedure to 

reconfigure DoE plans, as was demonstrated in section  6.2. 

The experiential method and sample parameters were detailed in section  6.3, with the completed 

experimental results presented in section  6.4 and its subsections.  Analysis and discussion of the 

results were undertaken in Section  6.5.  It was found that for the square wave duty cycle samples, it 

was difficult to fit trend lines to all data points.  It became apparent that a simple linear degradation 

pattern was not occurring for the fit measurements, and that this was accompanied by variability 

between samples measured at the start and end of each day of experiments.  In an effort to explain this 

difference between morning and afternoon experimental results, the author suggested that the 

variability and nonlinear degradation pattern was a result of a combination of factors: 

• Nitrogen purge at the end of each days testing. 

• Reversible degradation effects, such catalyst poisoning and excessive water build up, being 

impacted by the potential cycling and nitrogen purge procedures at the start and end of each 

day. 

• Improvements in MEA performance due to a variety of factors including increased hydration 

of the membrane. 

 
𝑆𝑆𝑡𝑡𝑣𝑣𝑛𝑛𝑂𝑂𝑣𝑣𝑟𝑟𝑂𝑂 𝐸𝐸𝑟𝑟𝑟𝑟𝐷𝐷𝑟𝑟 =  �

1
(𝑛𝑛 − 2) ��

(𝑦𝑦 − 𝑦𝑦�)2 −  
[∑(𝑥𝑥 − �̅�𝑥)(𝑦𝑦 − 𝑦𝑦�)]2

∑(𝑥𝑥 − �̅�𝑥)2 � 
 

( 6-16) 
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To achieve results that were comparable to pre-existing literature, and retain compatibility between 

samples sets, it was necessary to take a reading from the afternoon (PM) experimental results only.  

The one-Amp, constant load, samples were far less impacted by the morning and afternoon 

discrepancy.  It was suggested that this was because of a high stoichiometry of the reactant gases 

(which reduces flooding effects by virtue of the higher through put of gas flow); and due to the  

constant one-Amp load test samples not requiring regular nitrogen purge and shut down procedures at 

the end of each day.  However, experimental results for constant load samples were limited to the 

afternoon (PM) test data, to and retain compatibility between the two samples sets (constant-load and 

square-wave).  Having isolated the afternoon polarisation curves from the rest of the data, the results 

were then analysed again, with a linear degradation fit, completed once the samples had stabilised and 

achieved a region of maximum performance.  This was determined both numerically (single highest 

Eocv-i reading) and also with comparison to other measurable outputs such as the potential under a 

one Amp load.  Lastly, a spline fitting procedure (detailed in section  6.5), was also carried out to aid 

visual inspection of the data, and ensure a region of maximum values had been achieved, and the 

degradation fit was not overly influenced by a single rogue measurement from the experimental 

process. 

Having determined a degradation rate, comparable degradation results from the literature (which have 

utilised similar catalyst ink formulations, broadly equivalent GDMs and test parameters), were used to 

compare and validate the results generated in work completed for this thesis (see Table 46).  It was 

determined that the square wave results were very similar to previously published rapid square wave 

cycles (see table 47) as were constant load one-Amp constant load.  However, that longer term NEDC 

(see Chapter  2 for more informaiotn on the NEDC) based degradation rates were far less severe than 

the rapid duty cycle undertaken in both this work and the work of Zhang et al. (2015) [70].  It was 

shown that NEDC degradation rates were two orders of magnitude less (see section  6.6 ) than the 

rapid (10-seconds or less) square wave duty cycle, for both the work presented in Chapter  6, and the 

results reported by Zhang et al. (2015) [70].  It was further established that the test results in the DoE 

fail to pass the hypothesis test for multivariate analysis (F-values were greater than 0.05 in all cases).  

Therefore, it is appropriate to compare the samples by their mean values, as there is no strong 

evidence for co-varying factors.  A basic analysis revealed a high degree of variability between the 

various sets of samples (non-woven, paper, constant, square wave, catalyst loading) that made direct 

comparison problematic.  Therefore, a previously discussed blocking and weighting exercise (an 

example of which is shown in section  4.7, Table 15) was undertaken.  The significant results of that 

analysis are presented here graphically (the full set of weighted results are available in Appendix 3). 

Figure 146 shows the weighted results, with error bars as calculated from equation (6-16), for the 

maximum EOCV-i for all GDM, catalyst and degradation DoE samples, under a constant load.  In the 

non-woven ‘felts’ (F-berg) samples, it can be seen that the degree of experimental error is such that no 
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conclusion can be drawn.  In the paper (Toray) samples there is a clear reduction in the performance 

of the test sample.  In the literature review (section  2.5)  it was pointed out that Song,  Wang, et al. 

(2005) [75] considered layered catalysts to be insignificant in comparison to concentration variation 

achieved through altering the Nafion®  loading.  Such an assertion seems to be in contradiction to the 

findings of other authors (e.g. Antione et al. (2000) [23]).  It is suggested that the contradiction in 

results may, in fact, be influenced by the selection of GDM, with some materials (i.e. paper GDMs) 

not being well suited to layered catalyst methods. 

 
Figure 146: DoE Eocv-I 

 
Figure 147: DoE loss rate at 0.6V 

Figure 147 shows the weighted results, with error bars as calculated from equation (6-16), for the 

voltage loss rate after reaching peak EOCV-i ,  under constant duty cycles, for all GDM, catalyst and 

degradation DoE samples.  The error bar on the low concentration layered catalyst samples for the 
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non-woven materials is extremely large, and that data cannot be usefully analysed in these results.  

However, the remaining data clearly shows that reduced degradation rates (i.e. approaching zero) can 

be achieved more readily with a layered catalyst for both substrates.  Referring to the apparent conflict 

in the literature mentioned previously; this too may be a factor.  There is an improvement for non-

woven materials (F-berg) with dual-layered high concentration catalyst layers showing a much slower 

degradation rate.  Conversely, low concentration dual layers catalyst performs very poorly on a paper 

substrate, yet the higher concentration (in both the duel layer and the uniform distribution) have 

measurably lower degradation rates.  

Figure 148 shows the weighted results, with error bars as calculated from equation (6-16), for the time 

taken to achieve peak EOCV-i under a constant duty cycle.  It can be seen, that low concentration 

catalyst layers achieve their peak performance in the shortest period for both types of GDM. If 

previously published research test samples, and the models based upon those results, have undergone 

different conditioning cycles, or differing lengths of the long-term duty cycle (recall that degradation 

rates were only measured after the maximum performance of EOCV-I has been achieved): Then this too 

could indicate the conflict in the literature.  Relatively new test samples, with shorter duration 

conditioning cycles, will perform differently to older samples.  Great care must be taken in the future 

to consider this effect, when analysing catalyst coated substrate (CCS) GDMs. 

 
Figure 148: DoE max Eocv-i 

Figure 149 shows the weighted results, with error bars as calculated from equation (6-16), for the 

voltage loss rate after reaching peak EOCV-i , under ten-second square-wave duty cycles, for all GDM, 

catalyst and degradation DoE samples. It can be seen that the non-woven is insensitive to the type of 

catalyst applied for this set of results.  The paper (Toray) sample, however, shows a marked difference 

between the various catalyst loadings: With the high concentration dual layer catalyst loading 
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showing a significant increase in voltage loss rate.  It can be seen that high catalyst concentration 

layered catalyst structures on paper substrates are poorly suited to rapidly cycled operations.  It is 

interesting to note the low concentration layered catalyst degraded at a much slower rate than the high 

concentration samples; so much so that the there is no measurable difference in degradation rate 

between low concentration dual layered catalyst at 0.3 mg.cm-2, and the uniform concentration CL at 

0.38 mg.cm-2.  Furthermore, the range of values on the low concentration dual layered Toray (paper) 

samples is significantly reduced.  Based on these results it must be concluded that low concentration, 

dual layers CLs can offer on paper GDMs offers an opportunity to reduce catalyst loading.  There was 

significant or measurable difference in square wave EOCV-I response for any samples. 

 

 
Figure 149: Loss rate Square cycle 

 
Figure 150: Time to max Eocv-i square cycle 
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Figure 150 shows the weighted results, with error bars as calculated from equation (6-16),  for the 

time in hours to reach peak EOCV-i,  under a ten-second square-wave duty cycles, for all GDM, catalyst 

and degradation DoE samples. In this case, it is clear that high concentration dual layer samples take 

the least amount of time to achieve their peak performance on non-woven (F-berg) materials.   

In Figure 146 to Figure 150 there are significant differences in the performance as follows: 

• Toray (Paper) 

o Constant load: 

 Reduced Eocv-i for uniform catalyst. 

 Decreased time to max Eocv-i for low concentration dual layer catalyst. 

 Increased Voltage loss rate for low concentration dual layer catalyst. 

o Square cycle: 

 Increased Voltage loss rate for high concentration dual layer catalyst. 

 Reduced range of response for low concentration dual layer catalyst. 

 Increased time to maximum Eocv-i performance for low concentration dual 

layer catalyst. 

The paper system does not perform well in the constant load, and this is exacerbated by low dual layer 

catalysts (see Figure 147).  Square duty cycles show increased voltage loss for high concentration 

dual layers.  Low concentration dual layered samples exposed to rapid square wave duty cycles 

perform very well: To the extent that reduced catalyst loading could be achieved, compared to the 

uniform single layer catalyst. 

 

• Freudenberg (non-woven ‘felt’): 

o Constant load: 

 Decreased voltage loss rate for high concentration dual layer catalyst. 

 Decreased time to max Eocv-i for low concentration dual layer catalyst. 

o Square Cycle Duty Load: 

 Decreased time to maximum Eocv-i performance for high concentration dual 

layer catalyst. 

Non-woven materials show improved performance for the high concentration dual layer in constant 

load, with a decreased time to achieve peak Eocv-i. 

The time to peak power in the square wave cycles were far lower, and there is no discernible pattern 

of behaviour; though it should be noted that high concentration dual layered catalysts on non-woven 

substrates demonstrated decreased time to peak power and comparable degradation loss rates to any 
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other configuration.  The lack of similarity to the constant state time to peak power is somewhat 

concerning.  Once again taking the, somewhat questionable, approach of stripping out the low 

concentration dual layer result for the Toray paper sample, there is a marked difference between it and 

the two high contrition samples.  The low dual layer reached its peak performance much more slowly 

than the other two, the exact reverse of the non-woven material.  

The absolute Eocv-i value reached is the same for all samples (see Appendix 3 Weighting Tables), and 

reduction in the voltage measurement from that point onwards is faster in the Torrey papers (with the 

notable exception of non-woven GDMs with a uniform catalyst distribution).  This raises the prospect 

that whatever is causing the ‘time to peak potential’, also impacts the rate of degradation thereafter. 

Moreover, whatever is causing that effect is reversed in the two types of GDM.   

This indicates there is a strong change in performance dependent on the structure of the GDM, but 

this is also highly dependent on the duty cycle the system is exposed to.  Bearing in mind the known 

‘pore filling effect’ [174]  reported previously, it is surmised there is a difference in this pore filling 

effect for different GDMs used, and this is part of the reason different results for the two structures are 

detected.  Recall that the two GDMs were selected to be as similar as possible in terms of overall 

porosity and through-plane thickness.  The key difference between them is the ‘planar’ or stratified 

construction inherent in the paper system (see Figure 6), and the inclusion of ‘through-plane’ fibres in 

the non-wovens.  It is suggested that the planar construction of the paper GDM is likely to have 

increased tortuosity.  The nature of non-woven manufacture and its ‘air needling’ will create a direct 

pathway through the plane of the GDM sheet. This must play some role in the reduced loss of 

performance under constant load operation for layered catalyst on non-woven (see Figure 147).  It is 

suggested that the creations of these ‘needled’ pathways in the non-woven manufacturing process 

reduce through-plane tortuosity, and this in turn plays to the strength of the duel layer catalyst 

approach (i.e. it increases the volume of space where catalysed reaction can take place).  This effect is 

likely to be most marked in catalyst coated substrate (CCS) manufactured MEAs.  The results 

reported by the author previously [47] and shown in Table 43, indicates that any MEA undergoing a 

heated pressing regime is likely to have a dispersed catalyst layers, and their associated PTFE based 

carrier components, away from the membrane.  The degree of dispersal will depend on manufacturing 

regime and the type of GDM selected. 

Returning to the original list of research questions the DoE was intended to answer: 

I. Will variable wt% loading of Pt-on-C provide an equivalent performance to previous works 

that used a ‘dilution’ method to reduce the presence of catalyst sites in the low consecration 

layers?  
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a. Results are comparable to the uniform distribution in many if not all categories 

investigated, but the overall gain or loss in performance is highly influenced by the 

structure of the GDM it is deposited on. 

II. Will reduced Pt loading overall of dual layer catalysts provide performance improvements?  

a. Paper-based substrates do benefit from a dual layered ink deposition in terms of the 

open cell potential, but non-woven ‘felts’ do not. 

III. When applied as a CCS (catalyst coated substrate) will there be a difference between paper 

and ‘felt’ cathode GDMs? 

a. Yes, though there is equally important consideration as to the type of catalyst layer 

that is applied. 

IV. Will there be a noticeable difference in degradation rate for dual layer catalyst or structures? 

a. Constant: 

i. Low concentration dual layers on paper degrade faster. 

ii. High concentration  dual layers on non-woven degrade slower. 

b. Square wave: 

i. High concentration dual layers on paper degrade much faster. 

ii. Low concentration dual layers on paper GDMs perform as well as uniform 

catalyst layers, but with a decreased platinum loading. 

V. What impact does constant, square wave (fast transit)  or triangular (slower transit) load have? 

a. Work not completed due to software issues on test equipment. 

VI. Will degradation be directly proportional to time spent at maximum load in the duty cycle? 

a. Work not completed due to software issues on test equipment. 

VII. What, if any, factors co-vary in this data set? 

a. None detected. 

7 Summary Discussion  

After a brief outline of this thesis and the basics of fuel cells had been given in the introductory 

section (Chapter  1), several key aims and objectives were detailed for this thesis: 

• Aims: 

a) Investigate if statistical methods, such DoE and multivariate-ANOVAR (M-

ANOVAR) techniques, are applicable in fuel cell research. 

b) Demonstrate the application of such statistical methods and the reduction in total 

amount of time taken to conduct ageing and degradation studies in PEMFC research. 

c) Generate a thesis that will aid future fuel cell research scientists when applying 

statistical methods to their research. 
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• Objectives: 

g) Investigate the extent to which DoE and M-ANOVAR have already been utilised in 

fuel cell ageing/degradation research. 

h) Define a preferred statistical approach to apply in the next steps of the research. 

i) Identify several areas in PEMFC ageing/degradation research where multiple input 

and multiple output variables can be investigated simultaneously: reducing the total 

number of experiments required through the use of M-ANOVAR and DoE. 

j) Undertake a large scale set of experiments to act as a ‘benchmarking’ exercise and 

apply the identified statistical techniques from ‘b’. 

o Consider appropriate software for the desired data analysis method. 

k) Utilise the ‘benchmarking’ exercise as an opportunity to validate selected statistical 

analysis methodology. 

l) Undertake a new study in which novel fuel cell assemblies are tested, and the results 

analysed using the newly validated method developed in objective ‘j’.  

o Present this new study as a ‘case study’ on the use of DoE and M-ANOVAR 

methods. 

o Demonstrate the reduction in resources required to conduct the experiments. 

In Chapter  2 (Literature review) key findings were reported, and quickly answered several of the 

points listed in the aims and objectives.  Notably, that even basic statistical methods, such as 

confidence intervals or the reporting of standard error, were frequently absent from PEMFC literature.  

Additionally only a very small number of papers were found that had studied degradation rates in a 

controlled, DoE and M-ANOVAR, fashion.  Furthermore, there were direct contradictions between 

some of these sources (see Chapter  2 ) that warranted further investigation, particularly in the field of 

layered catalyst structures. 

If the DoE and M-ANOVAR approach were to be attempted for PEMFC studies, it was apparent that 

there were multiple possible input factors that must be considered when studying fuel cells.  In 

general, the vast majority of published papers treat their research as a one factor at time (OFAT) 

problem.  While this is rigorous, and has the advantage of simplifying the subsequent analysis, by 

definition the OFAT approach cannot be used to determine co-varying factors and their relationships.  

Furthermore, it is not possible to determine the standard error without at least three identical samples 

in the set.  It was further identified that in-house manufacture of test cells should be utilised as far as 

possible. Direct comparison between researchers is often compromised by differences in the materials 

and construction methods used for the MEAs being tested.  Even when standard MEAs from 

commercial suppliers are reported on, it was not uncommon to learn that manufacturer’s products had 

changed over the time since the original research was completed.  Comparisons between different 
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suppliers, or even different products from the same supplier, could not assure equivalent material 

properties for MEAs (e.g. type and mass percentage presence of hydrophobic coating in the GDM). 

Even though degradation of PEMFCs is frequently reported in terms of multiple input factors (duty 

cycle, number of start-ups and shutdowns,  temperature, pressure etc. to name but a few), and multiple 

outputs (peak power, Eocv, hours to failure, degradation rate, loss of ECSA to name but a few), it was  

discovered that degradation studies are frequently limited to OFAT type investigation.  One of the few 

rare exceptions, being the work by Song, Wang et al. (2005) [75], a lone example of co-varying 

analysis being used in fuel cell research.  Even in the Song, Wang et al. (2005) [75] case, only two 

factors were considered (Pt loading and Nafion concentration), and the utility of multivariate analysis 

was not fully implemented.  With the required length of time for degradation studies often taking 

hundreds, or even thousands of hours; it was suggested that degradation studies would benefit the 

most from the M-ANOVAR approach.  Three key topics were provisionally identified as possibly co-

varying and suitable for M-ANOVAR analysis: 

• Type of GDM structure (Non-woven, paper and woven). 

• Layered catalyst structures. 

• Duty cycle. 

Moreover, it was suggested that several possible outputs could be considered: 

• Peak power. 

• Degradation rate. 

• Changes to the polarisation profile of the MEA. 

As far as possible all other experimental variables were kept constant, and monitored.  It was further 

noted that type of MEA manufacturing method used (deposition of catalyst inks onto the membrane or 

the GDM) might increase the probability of any covariance between the type of GDM and the catalyst 

ink. 

The review of the literature indicates the investigation of multivariate methods in PEMFC degradation 

studies is well justified.  There are several key gaps and conflicts in the literature that require further 

experimental study (see sections  2.2,  2.3,  2.5, and  2.7).  Notably the failure to apply statistical 

methods correctly [33,37], and the conflicts in the results presented by different authors on the impact 

on degradation of fuel cells and the PTFE coatings applied to the GDM [40,43,44].  On the basis of 

this, and the observations from several authors that there is a lack of data on the performance and 

degradation of a wide variety of GDMs in the fuel cell literature [22,38,45]; it is suggested that the 

proposed work in this thesis is justified.  At this stage of the thesis key objectives, ‘a’ and ‘c’ have 

been completed. 
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Chapter  3 (Statistical methods) went on to consider M-ANOVAR and DoE in greater depth.  Starting 

with the basic principles of linear regression, and developing this into a generic matrix algebra 

approach for multiple input and multiple output statistical analysis of experimental data.  This work 

was undertaken to explain the fundamental processes at work inside statistical software packages that 

are capable of such types of analysis.  Whether it is Matlab® SSPS®, MiniTab®, Design Expert 

Professional® or some other bespoke software; all draw upon the same basic statistical methods.  

These methods have been used in a wide variety of engineering disciplines for many years, and a 

selection of references have been combined into a common nomenclature to present the information 

in a unified format. Other topics, such as ensuring a normal distribution of errors with Q-Q plots, and 

the need to transform non-normally distributed data sets into a normal format suitable for analysis, 

were briefly introduced.  While it is certainly possible to use software packages such as Design Expert 

Pro® and their ilk without fully understanding of the mathematic at work inside the software, this is 

not a ‘best practice’ approach to take [29,81,82].  A more detailed explanation of the mathematics the 

software was based upon was presented.  The background statistical theory presented in Chapter  3 

was an amalgamation of knowledge from various sources [30,78-83]. ANOVAR and M-ANOVAR 

were introduced in detail, which in turn leads on to a discussion of response surface methods of 

modelling statistical data and generating designs of experiments. 

Having introduced basic linear regression, Chapter  3 then went on to introduce DoE concepts such as 

factorial designs of experiments and ANOVAR analysis of single output experimental data.  Having 

introduced this topic, it was then expanded upon to cover multiple input and multiple output data sets 

and the need to adapt ANOVAR methods (e.g. the Bonferroni Limit as discussed in section  3.6.2) to 

handle these more complex, multivariate,  experimental results as a M-ANOVAR approach.  A 

generic matrix algebra approach was provided, to help explain the calculations carried out by 

dedicated statistical software that is capable of handling these more complex sets of data.  This 

included introduction of key concepts such as leverage (the ability of extreme data to skew the final 

result), and once again the ability to adapt data to cope with non-linear results was discussed briefly. 

The need to simplify the created model, so that only the most useful and relevant factors are included 

(e.g. backwards elimination of non, or minimally, contributing factors as discussed in section  3.7) was 

introduced.  This, in turn, was followed by a discussion of several different types DoE approach, 

where the total number of experiments to be conducted can be further reduced, without significant 

loss of accuracy on the final result (see section  3.8 and  3.9).  Once again, the need to adapt basic 

linear regression theory to cope with such data sets was highlighted, this time concerning the need to 

understand variance inflation factors (VIF) for multiple co-varying inputs, and how they may inflate 

the error in the model to an unactable extent.  It was suggested that a response surface method of 

analysis, adapted for categoric factors, would be well suited to studying PEMFCs: This achieved 

objective ‘b’. 
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Chapter  3 considered the fundamental principles of the statistical methods utilised in the Design 

Expert Pro® software specifically.  This software and the data analysis methods outlined previously 

were used in Chapters  4, 5,  6 and  8: Multivariate linear regression models, backwards elimination, 

and VIF were also used to a large extent.  The general DoE for the work in Chapter 6, was an 

adaptation of the central composite response surface method (discussed in section  3.9) suitable for use 

with ‘categoric data’. 

The methods outlined in Chapter  3 are well understood, and recommended best practice in many 

fields of science and engineering [79,81,83,85].  Such multivariate methods have model validation 

built into their procedures.  The quantification of residuals, and the inherent inclusion of εi values 

(residual error) at the most basic stages of the mathematical analysis, means that the linear regression 

models developed have been validated within their stated degree of accuracy, and within the limits 

and assumption of the original DoE [79,81,83,85]. 

In Chapter  4, a more detailed discussion of GDMs was undertaken, and this included the use of pre-

existing models from Spiegel (2008) [87] and Beusher (2004) [88], adapted to reflect the geometry of 

the test apparatus used in experiments conducted for this thesis.  A key part of this chapter, and reason 

for making use of the (Beusher inspired) Spiegel model (2008) [87] was to outline the importance of 

GDMs, to demonstrate the various roles they play inside the PEMFC, and some of the factors that 

impact those roles.  A  half-land-half-channel modelling approach was detailed. A GDM conceptual 

model of the half-land-half channel type was introduced (see Figure 18). The half-channel-half-land 

model can be the basis for creating a repeating segment, which can be expanded to model large areas 

of the fuel cell (though that is outside of the scope of the work in this thesis).  However, for the work 

completed in this thesis, the basic unit model is used to illustrate reactant and product flow through 

the GDM.  The inclusion of the Spiegel model [87] allowed the introduction several key concepts.  

Concepts such as the Darcy based diffusion speed of fluids through the GDM (equation 4-2 and 

equation 4-3) in section 4.2.1, the Steffen-Maxwell equation of gas phase transport (equation 4-4) and 

the concept of ‘effective diffusion’ (Deff).  The term ‘perturbation factor’ (θ) was also introduced to 

encapsulate several more components in understanding the flow of reactants and products through the 

GDM, such as wettability and tortuosity [87].  For this thesis, it was decided that this would be 

sufficient to explain the important role the GDM performs in the PEMFC, and why GDMs were 

selected as a topic of interest.  Having introduced the model to be used, the first step of defining the 

steady state temperature in the GDM, was to map the deviation from the overall cell temperature (see 

Figure 20 in section  4.2.1).  The steady state temperature variation and the height above the 

membrane layer it was located (i.e. peak temperature inside the GDM does not necessarily occur at 

the membrane surface), was a key input that informed the rest of the model and the final result.  It was 

then possible to generate two-dimensional models of the temperature, oxygen concentration and water 

distribution (liquid and vapour) in the Spiegel PEMFC half-land half-channel model (within the limits 
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of the perturbation assumptions discussed previously) under steady state operation.  The model was 

adapted as far as possible to match the geometry of the flow channels in the FCCA, and in this way, it 

was hoped that some understanding of the reactant and product flow rates in the cathode GDM could 

be understood more clearly.  The creation of the model was also utilised to explain and understand 

some of the more fundamental mechanisms at work in an operating fuel cell.  Having reproduced and 

adapted a published example of GDM modelling, and used that to gain an understanding of the 

processes taking place inside the GDM, the work in this thesis returned to its main area of interest, 

namely the use of statistical methods to produce statistical models. 

Having developed an understanding of the fundamental factors which influence the movement of 

reactants, products and temperature distribution the GDM, a statistical data analysis of a large number 

of polarisation curves was completed.  The polarisation curves being analysed were originally 

performed for a separate research project and as such constitute ‘historic data’ – i.e. their original 

purpose was not the completion of this research, but rather contributed to the work of others [15,16].  

The original authors [15,16] had not utilised multivariate methods in their analysis, and it was 

suggested that more sophisticated statistical methods could be used to reveal new information from 

this large set of data. The basic experimental procedures were outlined, including ink formulation and 

other MEA manufacturing regime details in the creation of the original test pieces.  Included in the 

DoE were input factors for the MPL, GDM structure and supplier (see Table 12).  A detailed 

discussion of the polarisation curve comparison was given in section  4.4.2.  The resulting data was 

then analysed using standard (OFAT) statistical methods such as matrix plots and box-and-whisker 

plots.  The various categories and their impact on peak power were presented in Figure 36.  It was 

clear from the combined box plots data that the range of the data points made the drawing of 

conclusions problematic.  

The same data set was then analysed again using DoE and M-ANOVAR principles (i.e. using the 

methods outlined in Chapter  3).  All data was assessed for the normality of the residuals (Q-Q plots), 

and initial response surface plots of the data were generated.  A detailed discussion of the initial 

findings was presented, and then the refinement of the statistical model was carried out in accordance 

with the methods discussed in Chapter  3.  The final results were presented in section 4.7 and 4.8, with 

a detailed breakdown of the coded factors.  As the Design Expert Pro software does not directly apply 

the VIF or the Bonferroni limit, these calculations were completed by the author of this thesis and also 

reported in section  4.9.  The results of the final model were validated using predicted, simulated 

results from the model plotted against experimental results: The linearity of the resultant plot 

indicating how well the model predicts reality [117].  Additional validation was completed through 

direct forecasting on additional test samples.  Forecasting [81,87] is a validation method whereby 

additional samples are manufactured, and predictions are made based on the already created model on 

their performance.  The accuracy with which the model predicts these additional values is used as a 
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measure of the validity of the model.  This work was completed and the results reported in Table 40.  

As reported in Table 40, peak power output (W.cm-2), was modelled with accuracy values 

approaching 1 (+/- 0.03), or a 3% margin of error.  The gradients of the Ohmic loss region (gO) was 

modelled with an accuracy of +/- 0.26 (mean value), or a 26% margin of error.  This indicates that the 

model for gO lacks the high degree of trueness seen in the peak power model.  Table 32 (peak power 

or Wmax model M-ANOVAR assessment) has a reported ‘p-value Prob > F’, subsequently modified 

for VIF and the Bonferroni estimate of error, which generates a confidence interval (CI) of greater 

than 95%.   

 

Table 21 (Gradient of the Ohmic loss region or gO model M-ANOVAR assessment) has reported p-

value Prob > F, subsequently modified for modified for VIF and the Bonferroni estimate of error, 

which generates a confidence interval (CI) of greater than 95% (see section  3.6.2 and  4.6).  This stage 

of the work completed objectives ‘b’, ‘d’ and ‘e’. 

 

The developed models were then analysed in detail, and several key observations were made (see 

section  4.9,  4.11,  4.12 and  4.13).  The original objective had not been to elucidate new knowledge 

from the data presented (much of the data was already in the public domain and had been analysed by 

previous researchers using OFAT methods).  Rather the objective was to validate the effectiveness of 

M-ANOVAR techniques by applying them to a historic data set and completing an assessment of the 

created model and its errors.  In addition to achieving that aim (see section  4.10), it was found that the 

porosity had an impact on the performance of the peak power for the fuel cell.  As a generalisation, 

this is to be expected in all GDM and fuel cell interactions.  However, it was also found that in all 

cases, for all types of GDM (woven, non-woven ‘felts’ and paper), that there was a porosity 

dependent ‘zone of stability’.  A zone where operational parameters could be changed quite 

significantly and the power output of the fuel cell would be largely unaffected.  It was also shown (see 

section  4.12), that each of the three types of GDM (woven, non-woven ‘felts’ and paper) should be 

modelled separately.  The type of GDM selected would impact the final result of the experiment in a 

way that depended on their classification as a non-woven, paper or woven GDM (in addition to the 

normally reported input factors of porosity and through-plane thickness). 

In all three cases, this region of stable peak power performance was found to be at approximately 42% 

porosity.  In terms of the gradient of the Ohmic loss region of the modelled GDMs, it was found that 

the stability of the Ohmic loss regions was centred at approximately 52% porosity. As a general rule 

researchers have focused, rightly, on achieving peak performance for various designs of fuel cell.  

However, the ability to design GDMs with a region of stable operation under various conditions is 

also significant: At the very least GDM manufacturers would be able to offer improved guarantees of 

performance for GDMs with porosity levels of this value. To the knowledge of the author, this is the 



7-291 
 

first time this region of stable power output, relative to GDM through-plane thickness, for 42% 

porosity GDMs has been reported. 

It was also found that distinctly different numeric values were required for non-woven, woven or 

paper GDM, verifying the need to classify GDMs in more than two categories (i.e. paper or woven) as 

has been the case in the past. 

It should also be stated that the developed statistical model has also shown that the total power output 

for all three types of GDM did not follow the anticipated trend from the literature (see section  2.4).  

Typically woven GDMs are credited with being able to provide the best performance in high power 

and high humidity operation [21,56].  Paper GDMs are more often selected as a compromise solution 

that avoids the premium cost of woven carbon fibre and still provides adequate results if extreme 

humidification of the MEA is avoided.  Wang et al. (2007) [21], have used numeric models to 

simulate paper and woven GDMs, and stated that paper GDMs would outperform woven GDM in low 

humidity operations, and woven GDMs are therefore superior in high demand, high humidity 

operational environments.  The results from this thesis differ somewhat from this, as it was shown that 

high demand operations,  based on 250-second polarisation curves,  do not follow the same trend 

when hydrophobicity is identical for all samples (i.e. hydrophobic coating = 0wt%): 

• 110µm thick woven GDM peak power = 0.473 W.cm-2 (at 73.9oC). 

• 110µm thick paper peak power = 0.592 W.cm-2 (at 73.9 oC). 

• 110µm thick non-woven peak power = 0.562 W.cm-2 (at 73.9 oC). 

The peak power levels reported are lower than those often reported in the literature; it should be 

recalled from section  4.5.8, that it has been reported self-humidifying systems have reduced total 

outputs[116].  Based on these results (see section  4.12) it should be concluded that, for self-

humidifying PEMFC systems, and in the relatively short duration operational window of a 250-

second polarisation curve, that paper and non-woven felt materials outperform woven GDMs in high-

performance duty cycles.  To the knowledge of the author, this has not been reported previously.  This 

result is significant in that it allows fuel cell suppliers to consider the end application and GDM 

selection in more detail. Where prolonged operating at higher humidity is not a significant part of the 

duty cycle, short-term transient duty cycles that require higher power densities may well be better 

served by paper or non-woven GDM materials.  Combining this short term peak performance 

improvement, for non-humidified cells, along with the porosity and power relationship (i.e. no 

significant drop in peak power performance as thickness increases for 42% porosity GDMs as 

reported in section  4.12); the work carried using M-ANOVAR made it possible to define a lower cost, 

increased robustness GDM solution for fuel cell designers, manufacturers and suppliers.   
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Chapter  4 concludes with a return to the two-dimensional Spiegel (2008) [87] model and seeks to 

infer the most likely mechanisms at play in the reduced thickness system (see Figure 61 and Figure 

62).  It was suggested, on the basis of the Spiegel (2008) [87] model results, that there is a reduction 

in the relative number of pores that have been filled with liquid in the reduced thickness GDM, and 

this explains the overall performance improvement as far as mass transport in the GDM is concerned. 

This was based on the work undertaken by several authors [56,58,61,91,120,182-187] and also from 

the revised Spiegel model (see Figure 61 and Figure 62 in section  4.12).  It is therefore suggested the 

changes in performance, which are correlated with porosity, are also linked to the closing of pores in 

some fashion. One likely consideration is that as the thickness of the GDM has increased; all other 

factors in the experimental set up have remained the same.  It is suggested that changes in the 

thickness of the GDM system would result in the closing off of pore structures as cell geometry (i.e. 

gasket thickness), has not been altered to compensate.  It is possible that the 42% porosity, and stable 

power outputs at various GDM through-plane thicknesses, indicates a region where the pore structure 

is either self-supporting (i.e. pores do not close down as rapidly when increased compression of the 

cell arises as a result of thermal and humidification events[24,87,95] ), or that 42% porosity is a 

region where the balance between interconnected pore pathways is at its maximum (and so water 

transport pathways remain open even as compression effects close down open pore structures).  

However, continued investigation of this topic is outside the scope of this thesis (which focuses on the 

application of multivariate statistics in the hopes of accelerating PEMFC degradation studies), and 

would require the ability to manufacture bespoke porosity GDMs to verify (a very expensive and 

time-consuming set of experiments that it would be unfeasible to include in this thesis).  The creation 

of novel and interesting results at this stage of the investigation, over and above the creation of the 

multivariate analysis and its validation for GDM types, is a highly desirable additional benefit of the 

work, but not a key objective. 

It was concluded that the peak power model (referred to as ‘Wmax’) was highly suitable for analysing 

the data (see section  4.13).  The gradient of the Ohmic loss region of the polarisation curve (referred 

to as ‘gO’) model was also a useful method for investigating GDM performance, though prone to a 

greater range of variability in the experimental results (see section  4.10.2). From Table 25, and the 

associated values for categoric values, the Ohmic loss gradient model for paper GDMs is shown in 

equation ( 4 30).  The equivalent peak power model for paper GDMs is shown in equation ( 4 31).  A 

brief summary of the f-distribution and resultant p-value probability of error was recapped in 

section  4.11, along with the key assumptions of the models to be analysed.  The decision for which 

factors to map the response surface plots against were made using perturbation plots (e.g. Figure 51), 

and the limits of the model design were enumerated; both as bullet points and as 'design cube' results 

generated Design Expert Pro  (Figure 54).  The conclusions for the chapter were then detailed in 

section  4.12, where it was noted that porosity and thickness interactions in GDMs have a significant 
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impact on both the peak power performance and the gradient of the Ohmic loss region.  The two-

dimensional model reported in section  4.2 was once again utilised and adapted to more closely match 

the parameters of interest generated from the Wmax and gO models detailed in section  4.11 and  4.12.  

This then formed the basis of the discussion around likely causes for the various effects detected in 

the gO and Wmax reduced complexity M-ANOVAR models. 

It was found that while peak power performance occurs for lower porosity GDMs regardless of type: 

GDMs have a key porosity value where their performance is more uniform over a variety of through-

plane thicknesses.  The Ohmic gradient shows a similar trend.  In summary, the results were as 

follows:  

• Wmax woven GDMs:  

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.473 W.cm^-2).  

stable performance across a wide range of thickness is achieved with approximately 

42% porosity GDMs. 

• Wmax paper GDMs: 

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.592 W.cm^-2).  

stable performance across a wide range of thickness is achieved with approximately 

42 % porosity GDMs. 

• Wmax non-woven GDMs: 

o Peak power achieved with 110µm thick GDMs at 31.8% porosity (0.562 W.cm^-2).  

stable performance across a wide range of thickness is achieved with approximately 

42% porosity GDMs. 

It should be noted that stable gO performance across a wide range GDM thicknesses were noted at 

approximately 50% porosity. 

By this stage in the thesis, having completed all objectives, except ‘f’ and the requirement to 

demonstrate the reduction in testing time for objective ‘c’; it was decided to conduct a multivariate 

investigation into GDM structure, degradation cycles and layered catalyst structures. The completed 

multivariate investigation was reported in Chapter  6.  The decision as to which possibly co-varying 

factors should be investigated was based on the findings of the historic data analysis completed in 

Chapter 4, and the finding of the literature review in Chapter  2.  To showcase the power and 

effectiveness of multivariate methods, it was decided that possibly co-varying input factors be 

incorporated into the design of the experiments reported in Chapter  6.  Furthermore, the number of 

outputs was also increased.  The original work in Chapter  4 had only focused on a signal output – the 

polarisation curve.  The multivariate method is not constrained to investigating a single output. 

Therefore, the single output of a polarisation curve was extended to include various aspects of the 
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polarisation curve (peak power, and the gradient of the three different regions of the polarisation 

curve).  The measurement of a single output (i.e. the polarisation curve) was forced on the work 

carried out in Chapter  4, as it was the analysis of a database of historic results and previously 

published material.  The original aim of the test data gathered was not to investigate GDM directly, 

but rather to assist colleagues from the University of Birmingham (UoB) by aiding them in 

accelerating the conditioning phase of the many samples under investigation in their work.  The 

author of this thesis decided to save the polarisation data in case something of interest should become 

apparent during the testing, and satisfy colleagues at the UoB that the conditioning cycles had been 

carried out correctly if any anomalies in the data were detected.  It was only after the fact when it was 

realised that an extensive database of results had been accumulated, that the collected data could be 

suitable for multivariate analysis.  It was the availability of this historic dataset, and the results of the 

multivariate analysis, that inspired the idea to investigate GDMs in greater detail.  The relationship 

between porosity and GDM structure, using multivariate methods, had not been investigated before in 

the literature, and so was prioritised as a topic of interest.  To showcase the strength and flexibility of 

multivariate methods in PEMFC degradation research, it was identified that more input variables and 

more output variables would be desirable.  It was decided to consider multiple degradation duty 

cycles (constant, square wave and triangular wave) based on reviews of degradation literature (see 

Chapter  2).  It was also decided to expand the input variables to include not just GDM structural type, 

but also catalyst layers.  Specifically to undertake a multivariate investigation of layered catalyst 

structures and uniform catalyst structures. The reasons to investigate catalyst structures were threefold:  

1. It was known that catalyst layers are of critical importance to PEMFC research, and are 

frequently modelled and investigated by the PEMFC community.  

2. It was known that layered catalyst structures had been a topic of interest, but there was a lack 

of experimental data on which to base accurate simulations. 

3. It was hoped that multivariate methods would highlight previously unidentified covariate 

relationships.  It was further suggested by the author that CCS manufacturing methods, where 

the ink is deposited directly onto the GDM were, perhaps, more likely to co-vary with the 

dual layered catalyst inks. 

Before commencing this work on GDMs, degradation and dual layered catalyst; a more detailed 

investigation into catalyst layers was carried out.  In much the same way that GDMs were detailed in 

accordance with good practice in Chapter  4. Chapter 5 went on to develop the understanding of 

catalyst layers in general, and dual layered catalyst in particular. In Chapter 5 the original literature 

review is expanded upon for catalyst materials.  A particular focus is made on the time-dependent 

degradation of catalyst materials (see section  5.2.1 and Table 42), and the distinction is drawn 

between Ostwald ripening and the word ‘agglomerate’ to avoid possible confusion.  A distinction is 

also made between reversible and irreversible degradation.  In a similar process to that carried in 
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Chapter  4, the Spiegel (2008) [87] model of catalyst behaviours is presented in some detail (see 

section  5.3). The work by Spiegel [87] and Beusher [88] is reproduced, adapted to reflect the 

geometry of the test apparatus used in experiments conducted for this thesis (FCCA channel 

geometry).  The Beusher-Spiegel model was used to outline the importance of catalyst layers, and to 

demonstrate the various roles they play inside the PEMFC and some of the factors that impact on 

these roles.  Once again, as achieved in the previous chapter on GDMs, the intention is to frame the 

understanding of catalyst materials by utalising the model discussed. Key concepts such as the 

activation of catalyst layers and the diffusion of reactants around, and adjacent to, the catalyst 

particles as modelled by the Thiele modulus were introduced.  The impact of these factors on the 

Butler-Volmer model of catalyst activation was presented graphically. The Spiegel model is well 

suited to modelling catalyses layers as single electrochemically active surface area (ECSA), and that 

too was presented graphically.  It was shown how reductions in the ECSA could mimic degradation in 

the performance of the fuel cell (see Figure 68 through Figure 72) over time. 

An attempt was made to model the possible impacts of layered catalyst structures.  This required the 

completion of a set of practical experiments to define the likely thickness of discrete catalyst layers.  

As this work had not been carried out previously, the author developed a suitable fluorescent 

microscopy technique to measure such layers.  This work was first reported by the author in the 

International Journal of Hydrogen Energy [47].  It was shown that the Spiegel model [87] was not 

well suited to modelling dual layers structures, and attempts to adapt it were inconclusive at best. For 

the avoidance of doubt – it was never the intention of this thesis to be yet another numeric simulation 

of theoretical models of catalyst layers in PEMFCs.  That area of research is very well developed, and 

the interested reader is directed to the large number of other works that have already considered this 

topic in great depth over the decades [72,74,150,151,153-162,164,165,188-193].  The intention of this 

thesis is to highlight the need to accelerate practical investigation of fuel cell degradation through the 

use of more efficient experimental design and statistical data interpretations: A field of study sadly 

lacking in the PEMFC field (as discussed in the literature review in Chapter  2).  To that end, the 

simulated Spiegel model [87] results were not validated in this thesis.  The Spiegel model is published 

by an academic press and based upon published work by Beusher [88].  The validation work 

completed by Spiegel [87] and Beusher [88] in their original publications is accepted for the generic 

PEMFC model.  It is the contention of this thesis that the agglomerate model is currently not well 

suited to the modelling of dual layered catalysts and that more experimental data is required. It was 

for this reason that the attempts to adapt the Spiegel model to simulate a two layered catalyst structure 

in section  5.3 and  5.4 were not successful. It is also suggested that the modelling of GDMs undertaken 

by Spiegel [87] and Beusher [88] (and by extension others in the PEMFC community), fails to take 

into account the impact that GDM structure can have on the performance of MEAs.  This would be 

largely due to a lack of experimental evidence, especially if a catalyst coated substrate method has 
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been used in the fabrication of the MEA. To that end a statistical, regression-based model of 

experimental data was attempted in both Chapter  4 (modelling porosity, structure and temperature 

dependence of peak power and the gradient of polarisation regions, specificly  the Ohmic loss region) 

and in Chapter  6 (GDM structure, layered catalyst structure and degradation duty cycle impacts, 

specifically constant load and square wave,  on peak power and degradation rate).  The work 

completed in Chapter 5 contributes to the work undertaken in Chapter  6 by providing a foundation of 

understanding that makes the formulation of research questions for Chapter  6, and the subsequent 

interpretation of results, possible. 

As discussed previously (see section  2.2 and Chapter  3) any attempt to understand a system through 

detailed statistical methods, such as the ones proposed in this thesis, must be grounded on an 

understanding of the fundamentals of the object or process being studied. Having utilised a simple 

ECSA model to define the important parameters in layered catalyst structures, combined with an 

investigation into the real world likelihood of creating layered catalyst structures: It was possible to 

fully understand the requirements for a DoE on GDMs, degradation and layered catalyst structures.  

This, in turn, made it possible to formulate a set of research questions for the proposed DoE presented 

in Chapter  6. 

Chapter  6 presents the DoE process and subsequent analysis in its entirety, including changes made to 

the experimental plan as a result of practical, experiential considerations.  This meets one the core 

objectives and aims (see section  1.2) of the thesis; to provide a framework and knowledge base to 

encourage other fuel cell researchers to increase the use of M-ANOVAR and similar statistical 

methods.  The starting point for any DoE exercise is to frame the research questions of interest.  For 

work undertaken in this thesis, seven key research questions were considered, and the resultant DoE 

was designed in an attempt to answer them: 

I. Will variable wt% loading of Pt-on-C provide an equivalent performance to previous works 

that used a ‘dilution’ method to reduce the presence of catalyst sites in the low consecration 

layers?  

II. Will reduced Pt loading overall of dual layer catalysts provide performance improvements?  

III. When applied as a CCS (catalyst coated substrate) will there be a difference between paper 

and ‘felt’ cathode GDMs  

IV. Will there be a noticeable difference in degradation rate for dual layer catalyst or structures? 

V. What impact does constant, square wave (fast transit)  or triangular (slower transit)  load 

cycling have 

VI. Will degradation be directly proportional to time spent at maximum load in the duty cycle? 

VII. What, if any, factors co-vary in this data set? 
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Following the same principle that statistical analyses is best carried out with a thorough understanding 

of the topic being studied; Chapter  4 developed the knowledge required to understand GDMs.  

Chapter 5 developed the knowledge required to understand dual layered catalysts.  In chapter  6 these 

topics were combined, along with a degradation study (considered in detail in sections  2.3,  2.6, 

and  5.2.1), to create a case study of practical M-ANOVAR analysis in a field of interest for PEMFCs, 

namely: Dual Layer Catalyst Materials, Gas Diffusion Media and Degradation.  

The anticipated input factors were: 

• Dual layer catalyst concentration on the cathode: 

o Uniform catalyst layer (0.35mg.cm2 of 30wt%Pt-on-C). 

o High concentration dual layer (0.4 mg.cm2 of 40wt%Pt-on-C +10wt%Pt-on-C ). 

o Low concentration dual layer (0.3 mg.cm2 of 40wt%Pt-on-C +10wt%Pt-on-C ). 

• Duty cycles: 

o Constant. 

o Square wave. 

• Types of GDM: 

o Paper. 

o Non-woven (felt). 

The anticipated output factors were:  

• Peak power. 

• Degradation rate. 

• Gradient of the Ohmic loss region. 

A design of experiments process was carried out using Design Expert Pro, in accordance with the 

information provided in Chapters  2 and  3.  The intended design of experiments was detailed in Table 

44.  This design had to be adapted away from the classic ‘body centred cube’ (see Figure 16 and 

Figure 17 in Chapter  3) construction typically discussed, as there were categoric factors to incorporate.  

To get a degree of replication around the nominal ‘centre points’; the uniform catalyst layers were 

assigned the midpoint locations on the design cube.  Effectively providing three replications of the 

centre point for each of two faces of the cube (see Figure 79).  Practical experimental software 

difficulties were encountered at this point in the procedure.  Typically such issues would not be 

reported.  However, with the stated aim of promoting the wider use of M-ANOVAR (and similar 

statistical tools) in the PEMFC research community: The flexibility of DoE approaches was 

demonstrated by adapting the original design cube to a new set of parameters with a reduced number 

of test samples.  Even in this reduced complexity design of experiments; it was still possible to retain 

two uniform catalyst layers as replication points on each face of the design cube (see Figure 80). 
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The final experimental parameters were detailed, and the results of the experiments were presented.  

Linear degradation rates did not occur immediately in the experimental results, and a spline fitting 

technique was used to verify the measured point from which to define the start of the degradation 

measurements (see section  6.5.1 and equation ( 6-13)).  This use of a numeric spline fit ensured that 

the determination of the peak point would be consistent across all test results, and repeatable by other 

researchers in the future if required.  The spline fits assisted in determining the point where 

degradation in performance could be detected.  Before this point in each sample, improvements in 

performance were detected.  As discussed previously (see section  6.5), it was suggested that increased 

hydration of the membrane had improved ionic conduction through the cell [24,87,95], and also the 

increased volume of the membrane (as a result of swelling of the Nafion® due to water uptake) 

[24,87,95].  This may have increased the contact pressure with the current collection plates of the fuel 

cell [24,87,95].  Both of these effects are likely to improve the overall performance of the test MEAs 

[24,87,95].  Additionally, it is possible that changes in the microstructure of the catalyst layers, and 

the hydrophobic PTFE solutions that were part of the catalyst ink formulation, may have evolved a 

more open structure during the test.  It was suggested that these improvements in performance at the 

start of the experiment, were occurring at the same time as degradation loses (i.e. ECSA loss) may be 

occurring: however, the rate of improvement was greater than the rate of degradation in the early 

stages of testing.   

It was also found that for the square wave duty cycle test pieces; there was a measurable and 

significant difference between polarisation curves taken in the morning (AM samples), and those 

taken at the end of the day (PM samples) (see section  6.5,  6.7 and  6.8).  This was thought to be related 

to the need to stop and purge test pieces at the start and end of each day of square wave duty cycles.  

To make consistent, comparable, measurements only afternoon (PM) samples were analysed in depth.  

To make comparisons between constant load (continuous one-Amp load) and the ten-second 

wavelength square-wave duty cycles results; the constant load samples were also analysed in depth 

only for the afternoon results.  This systematic approach to ensuring all test results were collected at 

the same time of day makes the grouping of the two sets of data (square wave and constant) for later 

types of analysis defensible.  After the appropriate data transforms had been completed (see section 

(6.5,  6.7 and 6.6 for more details), it was found that square wave duty cycle test pieces were 

degrading at 1.28mV per hour (after reaching peak performance).  It was also found that constant load 

test pieces were degrading at 0.136mV per hour (after reaching peak performance).   

Direct comparisons with existing literature were difficult to find, but the most similar construction of 

GDM (i.e. one without any additional hydrophobic layer and broadly similar ink formulations) did 

have a comparable degradation rate (see Table 46 for more detail).  It is worth noting that a broadly 

comparable MEA construction (similar ink formulations and GDM selections) performing the NEDC 

duty cycle degraded at a far slower rate, with nearly two orders of magnitude difference when 
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comparing hourly voltage losses for Eocv.  The work in this thesis helps to build towards the growing 

body of evidence that rapid, square wave duty cycles can effectively act as an accelerated stress test 

for PEMFCs.  However exact replication of MEAs and test conditions are still required to confirm this. 

Chapter  6 then moved on to discuss the comparison between the tested MEAs in more depth.  It was 

quickly discovered that ‘hypotheses 0’ was not disproved (i.e. the M-ANOVAR results indicated that 

there was insufficient evidence to justify a multivariate approach, and that comparisons between of 

the means of the test sample sets were a valid approach to take). There is a possibility that the reduced 

order model detailed previously (Figure 80) lacked sufficient power to investigate the design space for 

these more complex, multivariate, interactions.  The existing design could, of course, be adapted to 

improve its resolution, by either completing the original design (though there would be a need to 

factor in a blocking effect for the elapsed time between experiments) or by including replicates of the 

existing, or of possible additional, design points. For this thesis, the findings are accepted as they 

stand, and it is concluded that there is no improvement in the DoE multifactorial model when 

compared to a simple mean of the results of interest.  It must be acknowledged, as discussed 

previously in section  2.2 and Chapter  3, that it is possible that a larger study, may detect higher order 

interactions (i.e. higher order effects with three or more input variables covering together) that can be 

masked in the study undertaken in this chapter. Any such higher-order co-variance of three or more 

factors that exist are likely to be quite subtle however, and have minimal influence on the final result 

[82,85] generated in the work completed for this thesis.  The full sets of results were reported in Table 

47, Table 48 and Table 49. 

The fact that the DoE design has created sets of three samples means that groups of data can be 

created for which the standard deviation or standard error can be calculated in accordance with 

equation (6-15) and (6-16).  Recall that both equations require the number of samples in a set (n) to be 

included as a value greater than 2 (as (n-1) or (n-2) features in each equation respectively.   

Error analysis has been completed and discussed previously for both Chapter 4 and Chapter 6.  In 

Chapter 4 each statistical regression model created was presented with a fully detailed M-ANOVAR 

error analysis table (see Table 18, Table 23, Table 28 and Table 34).  IN each case, the M-ANOVAR 

error analysis considered the standard error (as per equations (6-15) and (6-16)), the upper and lower 

bounds of the test results that would conform to a 95% Confidence interval and applied the VIF in 

those cases where the Design Expert Pro software had failed to do so.  Estimates of confidence 

interval were further reduced through the application of the Bonferroni principle (see section  3.6.2).   

The results in Chapter  6 were shown not to benefit from Multivariate data analysis, and so more 

simplistic analysis was undertaken.  To avoid biases between families or sets of data, a weighting and 

blocking procedure was carried out (see sections  3.3.1,  4.7 and  6.7.2 for more detail on this approach).  

This normalisation of the data across sets, makes the direct comparison between sets suitable, and so 
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equations (6-15) and (6-16) can be used to create a standard error assessment.  In the graphical 

representation of the work completed in Chapter  6, error bars that were one standard error in length 

were in place.  By definition, this means that true mean of the resultant values, depicted in the 

graphical results, were located within the range of the error bars with a 95% confidence interval 

[78,81,82,85]. As with all experimental work, this does not guarantee that the true value lies within 

the error bars shown in Figure 146 through Figure 150, but it is standard practice to accept that the 

error estimation procedure is correct 95% of the time [194]. 

If the same work had been created as a set of OFAT experiments; then to perform a similar error 

analysis, each set of data would require three separate samples for each variable – i.e. 15 samples in 

total (as shown in Table 52).  It should also be reiterated that such a set of OFAT experiments could 

not be used to determine co-varying factors. The fact that co-varying factors were not discovered in 

the degradation model does not invalidate the effort to detect them.  The elimination of possible 

covariance helps to establish that the standard error approach is a valid one to take in this case [82]. 

Furthermore combining results between the separate OFAT experiments, completed over a period, 

would be problematic; as it would require a blocking procedure (an example of which is available in 

chapter  4, section  4.7 and Table 15).  Unless additional steps were taken to facilitate blocking across 

categories in the original design, and to ensure all samples were tested under identical conditions, 

such a blocking exercise would be difficult to justify.  Recall that in work carried out in this thesis, 

that determination of the start of the degradation rate varied across samples, and that for square wave 

duty cycles it was required to utilise afternoon (PM) test results only to avoid the reversible 

degradation effects skewing the results compared to constant one-Amp duty test pieces.  It seems 

unlikely that another researcher, considering similar research questions (i.e. the impacts of dual layer 

catalyst,  GDM structure and duty cycle degradation rates) using the OFAT approach, would have 

been able to make direct comparison across all five separate experiments.  Whereas this was achieved 

with ease using the DoE approach, even after it was discovered that M-ANOVAR was not required 

for this set of samples.  This has clearly demonstrated that objective ‘i’ has been achieved. 
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Table 52: OFAT approximation of DoE 

OFAT equivalent set of experiments 

Key factor of interest Number of test pieces to 

calculate standard error 

Degradation in felt GDMs 3 

Degradation in paper GDMs 3 

Impact of square wave degradation 3 

Degradation in dual layer catalysts 

(high concentration) 

3 

Degradation in dual layer catalysts 

(low concentration) 

3 

Total number of experiments 15 

 

The final DoE used in this thesis, using the reduced complexity design cube in Figure 80 achieved the 

same degree of error estimation and accuracy using only 12 test pieces: A 20% reduction in the 

materials costs, labour to create samples and total elapsed test time.  Furthermore, by utilising 

statistical methods such as those outlined in Chapter  3, the improved efficiency in testing can be used 

across all types of tests.  If the use of M-ANOVAR, and equivalent analysis techniques, can be 

promoted in the fuel cell research community, then more rapid advances in the technology can be 

accrued across a wide range of fuel cell research topics.  Due to their prolonged test times of hundreds 

or even thousands of hours: Degradation studies, in particular, would benefit from the adoption of this 

approach. 

For the results generated in the dual layer catalysts, GDM structure and degradation DoE carried out 

and reported in Chapter  6 of this thesis; a full weighting a blocking approach was carried out 

(available in Appendix three).  The full sets of tabulated results were presented in Table 48 and Table 

49. Those samples that showed a measurable difference greater than the standard error were reported 

graphically in section  6.7.2. It was shown that non-woven and paper substrates were broadly similar; 

except in a few key regards where they exhibited opposed behaviours: 

Toray paper samples were shown to be far better suited to dual layer catalyst approach when under a 

constant load (Figure 146).  Equally, it was shown that Toray papers with low concentration dual 

layer catalysts degraded at a higher rate (Figure 147).  It was also shown (i.e. standard error bars do 

not overlap between categories; therefore the true mean between sets is unlikely to be the same with a 
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96% CI [29,78,81-83,195]) that high concentration dual layer Toray paper GDMs performed 

extremely poorly under the rapid square wave duty cycle (Figure 149). 

The comparisons across all samples (with a measurable difference based on the standard error) can be 

summarised as follows: 

• Toray (Paper) 

o Constant load: 

 Marginally reduced Eocv-i for uniform catalyst. 

 Decreased time to max Eocv-i for low concentration dual layer catalyst. 

 Increased Voltage loss rate for low concentration dual layer catalyst. 

o Square cycle: 

 Increased Voltage loss rate for high concentration dual layer catalyst. 

 Reduced range of response for low concentration dual layer catalyst. 

 Increased time to maximum Eocv-i performance for low concentration dual 

layer catalyst. 

The paper system does not perform well in the constant load, and this is exacerbated by low dual layer 

catalysts (see Figure 147).  Square duty cycles show increased voltage loss for high concentration 

dual layers.  Low concentration dual layered samples exposed to rapid square wave duty cycles 

perform very well: To the extent that reduced catalyst loading could be achieved, compared to the 

uniform single layer catalyst. 

• Freudenberg (non-woven ‘felt’): 

o Constant load: 

 Decreased voltage loss rate for high concentration dual layer catalyst. 

 Decreased time to max Eocv-i for low concentration dual layer catalyst. 

o Square Cycle Duty Load: 

 Decreased time to maximum Eocv-i performance for high concentration dual 

layer catalyst. 

Non-woven materials show marginal improved performance for the high concentration dual layer in 

constant load, with a decreased time to achieve peak Eocv-I, without any measurable increase in 

degradation rate 

It should be noted that, for rapid cycle square wave loading, high concentration, dual layered catalysts 

on non-woven substrates, demonstrated decreased time to peak power and comparable degradation 

loss rates to any other configuration.  This may be considered an advantage in some circumstances.  

Considering Figure 147, it was concluded that in the case of self-humidifying PEMFCs, with MEAs 
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created using the CCS method: There is a measurable effect indicating low concentration, dual 

layered catalyst on paper substrates, can achieve equivalent open circuit potentials to uniform catalyst 

layers with significantly reduced platinum content (0.3mg.cm-2 Pt for low concentration dual layers on 

paper, and 0.38mg.cm-2 Pt for uniform, single layer CLs).  Such low concentration, dual layer 

specimens have been shown to degrade more slowly (see Figure 149) under rapid square wave duty 

cycles.  However, such low concentration, dual layer specimens also take longer to develop the 

maximum possible open cell potential (see Figure 150). 

Returning to the original list of research questions: 

I. Will variable wt% loading of Pt-on-C provide an equivalent performance to previous works 

that used a ‘dilution’ method to reduce the presence of catalyst sites in the low consecration 

layers?  

a. Results are comparable to the uniform distribution in many if not all categories 

investigated, but the overall gain or loss in performance is highly influenced by the 

structure of the GDM it is deposited onto. 

II. Will reduced Pt loading overall of dual layer catalysts provide performance improvements?  

a. Paper-based substrates do benefit from a dual layered ink deposition in terms of the 

open cell potential, but non-woven ‘felts’ do not 

III. When applied as a CCS (catalyst coated substrate) will there be a difference between paper 

and ‘felt’ cathode GDMs  

a. Yes, though there is equally important consideration as to the type of catalyst layer 

that is applied, and the type of GDM it is applied to 

IV. Will there be a noticeable difference in degradation rate for dual layer catalyst or structures? 

a. Constant 

i. Low concentration dual layers on paper degrade at an accelerated rate 

ii. High concentration  dual layers on non-woven degrade at a slower rate 

b. Square wave 

i. High concentration dual layers on paper degrade at an accelerated rate 

V. What impact does constant, square wave (fast transit) or triangular (slower transit) load have? 

a. Work not completed due to software issues on test equipment 

VI. Will degradation be directly proportional to time spent at maximum load in the duty cycle? 

a. Work not completed due to software issues on test equipment 

VII. What, if any, factors co-vary in this data set? 

a. None detected 
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7.1.1 Novel contributions to the field 

The following new information and novel contributions to the field of study have been made as a 

result of work on this thesis: 

• DoE and M-ANOVAR techniques can be used successfully in PEMFC research, including the 

use of previously published data, to make new findings (see Chapter  4). 

• Non-woven GDMs are not always reported as differing from paper GDMs in fuel cell 

research: M-ANOVAR based statistical models have shown non-woven GDMs are a different 

class of GDMs and, under certain circumstances, will alter the performance of the system 

being studied compared to paper or woven GDMs (see Chapter  4 and Chapter  6). 

• GDMs of all types, within the limits of the experiments carried out in this work,  have a ‘zone 

of stability’ at 42% porosity, that provides a constant performance regardless of the through-

plane thickness of the GDM sheet (within the limits of the  experimental region of the work 

completed in this thesis). 

o This in turn indicates that 42% porosity GDMs could be manufactured to a reduced 

through-plane thickness dimensional tolerance, and ensure a similar peak power 

performance for their customers.  Such GDMs are also likely to be more tolerant of 

sub-optimal clamping forces arising during stack assembly or fuel cell operation. 

• GDMs of all types, within the limits of the experiments carried out in this work,  with a 

porosity of 52% tend to have a shallower  gradient in the Ohmic loss region of the 

polarisation curve (within the limits of the  experimental region of the work completed in this 

thesis). 

o For fuel cell applications where peak performance is less important than reliable 

performance over a broader range of potentials and load cycles; a 52% porosity GDM 

is likely to provide a wider window of suitable operational performance 

characteristics. 

• Statistical linear regression models for the following types of MEA have been created for the 

first time (within the limits of the  experimental region of the work completed in this thesis).  

These models are not tied to a specific supplier and can be used to estimate likely 

performances for a broad range of GDMs of similar fabrication types.  

o Peak power model  (+/-3%, 95%CI) : 

 Carbon Fibre Woven GDM with MPL. 

 Carbon Fibre Woven GDM without MPL. 

 Carbon Fibre Non-Woven ‘Felt’ GDM with MPL. 

 Carbon Fibre Non-Woven ‘Felt’ GDM without MPL. 

 Carbon Fibre Paper GDM with MPL. 

 Carbon Fibre Paper GDM without MPL. 
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o Gradient of the Ohmic loss region of the polarisation curve model  (+/-26%, 95%CI):  

 Carbon Fibre Woven GDM with MPL. 

 Carbon Fibre Woven GDM without MPL. 

 Carbon Fibre Non-Woven ‘Felt’ GDM with MPL. 

 Carbon Fibre Non-Woven ‘Felt’ GDM without MPL. 

 Carbon Fibre Paper GDM with MPL. 

 Carbon Fibre Paper GDM without MPL. 

• Fluorescence microscopy can be used to measure the thickness of separate PTFE layers in the 

MEA (as reported by the author previously [47] ). 

• Stratification in layered catalyst structures has been achieved through the use of two separate 

catalyst concentration loadings on carbon black – 40wt% Pt-on-C and 10wt%Pt-on-C - the 

work in this thesis is the first time this has been reported. 

• There is no evidence to support the theory that layered catalyst structures, GDM type and 

degradation rates for PEMFCs co-vary. 

• The effectiveness of DoE approaches in PEMFC remains valid, even when covariance is not 

detected; as well-designed M-ANOVAR experiments offer a large reduction in overall test 

time (20% within the limits of the  experimental region of the work completed in this thesis) 

and still retain the ability to conduct standard error calculations. 

• There is a measurable difference in the response of different types of GDM to dual layer 

catalysts.  This may go some way to explaining conflicts in the literature that were reported in 

Chapter   2. 

• Paper GDM materials, operating under rapidly cycles loads, may be better suited to dual layer 

catalyst carbon coated substrate manufacturing methods (within the limits of the  

experimental region of the work completed in this thesis): 

o Peak performance (as measured by open cell potential) is achieved more slowly. 

o Degradation rates are equivalent to uniform distribution single layer MEAs. 

o Platinum loading can be reduced by approximately 20% (0.3mg.cm-2 Pt for low 

concentration dual layers on paper, and 0.38mg.cm-2 Pt for uniform, single layer CLs). 
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8 Conclusions and Proposed Future Work 
 

The aim of this thesis was to validate the use of multivariate statistical methods for fuel cell 

applications, to provide a guide for their use by other fuel cell researchers in the future, and to use 

these techniques to discover new information in the fuel cell field.  All of these aims have been met. 

Conflicts in the literature indicate that further research on aging of MEAs and an understanding of 

their performance with and without additional PTFE coatings and layers is required.  There was some 

evidence that GDMs (with ostensibly similar levels of PTFE coating) may, in fact, have a significant 

difference in the performance of depending on the manufacturing method and/or the GDM substrate 

used: making comparison between different suppliers of pre-treated GDMs problematic.  While the 

suppliers themselves were not a significant factor as such, differences in GDM construction and  

PTFE loadings must be factored in for accurate comparisons to be made. 

Another possibly co-varying factor is the basic structure of the GDM, based on its manufacturing 

method.  For CCS type MEAs, the choice of Paper, Woven or Non-woven GDMs have a bearing on 

the final performance of the fuel cell, and this has yet to be fully examined, and the number of 

degradation studies involving these factors have been woefully inadequate.  Work in this thesis has 

shown that GDM structure (non-woven, paper or woven) is a significant factor in predicting peak 

performance even under relatively short duration test procedures, and all three systems should be 

modelled separately. 

Another development in the optimisation of catalyst layers is by the use of a graded, through-plane, 

concentration, with the highest concentration at the surface closest to the membrane of the MEA.  

There is only a small pool of literature on this topic, and it has been largely focused on the variation of 

catalyst concentration by increasing PTFE content in the CL.  It was identified that there is a need for 

an assessment of the layered CLs in terms of the basic structure using a more uniform carbon support 

to maintain electrical contact within the CL, its performance over time and its interactions with GDM 

structure, especially for CCS manufacturing methods. 

As a result of these factors, the impact of these three input variables (GDM structure, layered catalysts 

and degradation) was in need of a great deal more research.  Additionally, a far greater understanding 

of the impact of PTFE based coatings, to optimise water management, and its interaction with 

structure is still needed.  Multiple analysis of variance techniques have been demonstrated as being 

well suited to analysing fuel cell experimental results.  This research is the first to apply these 

methods in a rigorous fashion to cathode GDMs, duel layer catalyst and their duty cycle/degradation 

performance.  Results indicate not only time savings but verify the approach is valid in a fuel cell 

context  in general, with a very high degree of confidence in the final results.   
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8.1 Conclusions 
 

The following conclusions are drawn 

Historic ‘data-mining’ assessment on cathode GDMs. 

• A novel ‘gradient of regions’ approach to comparing polarisation curves was developed and 

verified (+/-26%, CI = 95% or greater) as being a valid way of making direct comparisons 

between MEAs tested on the same equipment.   

• Focusing on the gradient of the Ohmic region (gO) and the peak power outputs (Wmax) 

several significant findings were captured from previously existing data that had not been 

previously reported by the original authors.   

o There is a significant difference in the Ohmic behaviour of ‘felt’ like structures: The 

most likely explanation of this is the existence of ‘through-plane’ fibres that improve 

the conductivity of the sample. This is not necessarily a groundbreaking discovery, 

but the fact that the non-woven material outperform Woven structure materials in 

short term, high intensity, self-humidifying  polarisation tests has not been reported 

before. 

o There is very strong evidence (greater than 95% CI) that the thickness and porosity of 

the GDM materials are interacting to alter the Ohmic performance of the sample.  

Lower thickness, lower porosity samples have the least Ohmic loss, as may be 

expected from a simple ‘density and total resistance’ interpretation: The more solid 

samples with the least through-plane material can be expected to offer the least 

electrical resistance in the system.  What is not intuitively obvious was the impact of 

52% porosity (which should arguably increase total performance through increased 

surface area and fluid pathways) and its interactions with through-plane thickness.  

The covariance of the two is not a simple linear effect and optimisation of GDMs 

requires careful consideration of the interplay of the two factors.  52% porosity 

GDMs have a stable Ohmic loss rate across a range of thicknesses. This effect has not 

been previously reported. 

o There is very strong evidence (+/- 3%, CI = 95% or greater) that the thickness and 

porosity of the GDM materials are interacting to alter the peak power performance of 

the sample.  42% porosity GDMs have a stable peak power output across a range of 

GDM thicknesses.  This information could have a significant impact on GDM design 

and selection for applications where periods of high demand are very brief.  This 

effect has not been previously reported. 
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DoE (CL layers, structure and degradation) 

• The study presented is unique, and this combination of factors has not been examined before. 

• Using normalised samples, with comparable through-plane thickness and porosity, co-

variance between structures and other factors was not detected. 

• Weighted analysis of the means did, however, determine notable differences between GDMs 

and their interactions with variable concentration catalyst layers and duty cycles. 

o Toray (Paper): 

 Constant Duty Load: 

• Reduced Eocv-i for uniform catalyst. 

• Decreased time to max Eocv-i for low dual layer catalyst. 

• Increased Voltage loss rate for low dual layer catalyst. 

 Square Cycle Duty Load: 

• Increased Voltage loss rate for high dual layer catalyst. 

• Increased time to maximum Eocv-i performance for low dual layer 

catalyst. 

• Low concentration dual layer catalyst performs as well as high 

concentration uniform catalyst layers. 

o Freudenberg (non-woven ‘felt’): 

 Constant Duty Load. 

• Decreased voltage loss rate for high dual layer catalyst. 

• Decreased time to max Eocv-i for low dual layer catalyst. 

 Square Cycle Duty Load: 

• Decreased time to maximum Eocv-i performance for high dual layer 

catalyst. 

• The GDM structure a catalyst layer is deposited onto impacts MEA ageing profile with low 

concentration dual layer paper GDMs degrading normally in highly cycled loads – this 

finding has not reported in the literature before now. 

• Non-woven ‘felt’ based substrates show a reduced degradation rate under constant loads for 

high concentration dual layer catalyst in a way that Paper GDMs do not – this finding has not 

been reported in the literature before now. 

8.2 Future work 
Based on the results achieved to date these topics for future work are readily apparent. 

• Complete a DoE study on the impact of MPL and catalyst structures in more detail.  Due the poor 

water management of the MEAs created there was no scope for varying temperature and flow 

rates in the DoE for structure, a more comprehensive study of hydrophobicity, MPL formulations 
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and deposition techniques could build an understanding of the optimal MPL / CL fabrication 

process of CCS MEAs.  Completing this research should make it possible to update the 

agglomerate model of catalyst layer usage with real world figure rather than assumed values of 

MPL thickness based on the mass of the deposited material.  A proposed DoE for these topics 

reveals that 432 separate MEAs and experiments would need to be completed to address all these 

topics fully. 

• Comparison of plasma treated hydrophobic coatings and their ageing effects compared to 

equivalent, commercially available hydrophobic treatments.  This topic was identified as an 

alternate multivariate case study, but could not be perused with the equipment available in 

department at the time 

• Further investigation of the impact of GDM porosity on PEMFC performance.  If the ability to 

manufacture non-wovens, papers and weaves of carbon fibre, with control of the final porosity 

value were possible; then an extensive study into the optimum porosity of the GDM for a given 

duty cycle could be conducted. 

• Undertake a programme of tuition and create a DoE and statistical analysis support tool 

specifically targeted at fuel cell researchers.  This research, and other like it, can be used to show 

that multivariate DoE methodologies can and should be utilised in fuel cell research more often. 

• Conduct a study into when, or if, woven GDMs outperform other cathode GDMs at high loads. 

• Conduct analysis on humidified reactant streams and GDM type and porosity to determine if the 

same  or similar ects hold true. 

 



 

9 References 

[1] Pachauri R.K. and Meyer L.A., "Climate Change 2014: Synthesis Report. Contribution of 
Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change," IPCC, IPCC, Geneva, Switzerland, 2014.  

[2] Barkery T., "The economics of avoiding dangerous climate change. An editorial essay on The 
Stern Review," Climate Change 89(3):173-194, 2008.  

[3] Calderon F., Oppenheim J., and Stern N., "New Climate Economy Report,", 2014.  

[4] IEA, "Key World Energy Statistics 2011,", 2011.  

[5] McKinsey & Company, "A portfolio of power-trains for Europe: a fact-based analysis: The role of 
Battery Electric Vehicles, Plug-in Hybrids and Fuel Cell Electric Vehicles,", 2011.  

[6] Yang S., Lin X., Lewis W., Suyetin M., et al., "A partially interpenetrated metalic organic 
framework for selective hysteretic sorption of carbon dioxide," Nat Mater advance online 
publication, 2012.  

[7] Tsouris C., Aaron D.S., and Williams K.A., "Is Carbon Capture and Storage Really Needed?1," 
Environ.Sci.Technol. 44(11):4042-4045, 2010.  

[8] Kanellos M., "Amprius Raises $25 Million: Is the Battery Component Market for Real?," 
http://www.greentechmedia.com/articles/read/amprius-raises-25-million-does-a-battery-component-
market-exist/, 22/06/2012 2012.  

[9] Halfacree G., "Graphene gets commercialised in new battery tech," http://www.bit-
tech.net/news/hardware/2012/03/23/graphene-battery-tech/1, 22/06/2012 2012.  

[10] Fehrenbacher K., " 13 Startups Working on Solar-Concentrating PV," 
http://gigaom.com/cleantech/13-startups-working-on-solar-concentrating-pv-1/, 22/06/2012 2012.  

[11] Reisfeld R., "New developments in luminescence for solar energy utilization," Optical Materials 
32(9):850-856, 2010.  

[12] Herman I., Yeo J., Hong S., Lee D., et al., "Nanoforest of hydrothermally grown hierarchical 
ZnO nanowires for a high efficiency dye-sensitized solar cell," Nano Lett. 11(2):666, 2011.  

[13] Millington B., Du S., and Pollet B.G., "The effect of materials on proton exchange membrane 
fuel cell electrode performance," J.Power Sources 196(21):9013-9017, 2011.  

[14] Prasanna M., Ha H.Y., Cho E.A., Hong S.-., et al., "Influence of cathode gas diffusion media on 
the performance of the PEMFCs," J.Power Sources 131(1–2):147-154, 2004.  

[15] El-kharouf A., Mason T.J., Brett D.J.L., and Pollet B.G., "Ex-situ characterisation of gas 
diffusion layers for proton exchange membrane fuel cells," J.Power Sources 218(0):393-404, 2012.  

[16] El-kharouf A. and Pollet B.G., "Chapter 4 - Gas Diffusion Media and their Degradation," In: 
Veziroglu M.M.M.C.K.N., editor. Polymer Electrolyte Fuel Cell Degradation, Academic Press, 
Boston, 2012, 215-247.  

http://www.greentechmedia.com/articles/read/amprius-raises-25-million-does-a-battery-component-market-exist/
http://www.greentechmedia.com/articles/read/amprius-raises-25-million-does-a-battery-component-market-exist/
http://www.bit-tech.net/news/hardware/2012/03/23/graphene-battery-tech/1
http://www.bit-tech.net/news/hardware/2012/03/23/graphene-battery-tech/1
http://gigaom.com/cleantech/13-startups-working-on-solar-concentrating-pv-1/


 

[17] Williams M.V., Begg E., Bonville L., Kunz H.R., et al., "Characterization of Gas Diffusion 
Layers for PEMFC," Journal of The Electrochemical Society 151(8):A1173-A1180, 2004.  

[18] Escribano S., Blachot J., Ethève J., Morin A., et al., "Characterization of PEMFCs gas diffusion 
layers properties," J.Power Sources 156(1):8-13, 2006.  

[19] Litster S. and McLean G., "PEM fuel cell electrodes," J.Power Sources 130(1–2):61-76, 2004.  

[20] Lim C. and Wang C.Y., "Effects of hydrophobic polymer content in GDL on power performance 
of a PEM fuel cell," Electrochim.Acta 49(24):4149-4156, 2004.  

[21] Wang Y., Wang C., and Chen K.S., "Elucidating differences between carbon paper and carbon 
cloth in polymer electrolyte fuel cells," Electrochim.Acta 52(12):3965-3975, 2007.  

[22] Yuan X., Li H., Zhang S., Martin J., et al., "A review of polymer electrolyte membrane fuel cell 
durability test protocols," J.Power Sources 196(22):9107-9116, 2011.  

[23] Antoine O., Bultel Y., Ozil P., and Durand R., "Catalyst gradient for cathode active layer of 
proton exchange membrane fuel cell," Electrochim.Acta 45(27):4493-4500, 2000.  

[24] O'hayre R., Cha S., Colella W., and Prinz F.B., "Fuel Cell Fundamentals," John Wiley and Son, 
New York, 2009.  

[25] Barbir F., "PEM Fuel Cells: Theory and Practice," Academic press, Waltham MA, 2013.  

[26] Larminie J.and Dicks A., "Fuel Cell Systems Explained," John Wiley & Sons Ltd, Chichester, 
2006.  

[27] Harrar S.W. and Bathke A.C., "Nonparametric methods for unbalanced multivariate data and 
many factor levels," Journal of Multivariate Analysis 99(8):1635-1664, 2008.  

[28] Manly B.F.J.1., "Multivariate statistical methods :a primer," Chapman & Hall/CRC, Boca Raton, 
Fla., ISBN 1584884142, 2005.  

[29] Chatfield C., "Problem solving : a statistician's guide," Chapman & Hall, London, 1988.  

[30] Roy R.K., "A primer on the Taguchi method," Van Nostrand Reinhold, New York, ISBN 
0442237294, 1990.  

[31] Yu W.L., "Parametric analysis of the proton exchange membrane fuel cell performance using 
design of experiments," Int J Hydrogen Energy 33(9):2311-2322, 2008.  

[32] Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., et al., "Box-Behnken design: An 
alternative for the optimization of analytical methods," Anal.Chim.Acta 597(2):179-186, 2007.  

[33] Carton J.G. and Olabi A.G., "Design of experiment study of the parameters that affect 
performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy 
35(7):2796-2806, 2010.  

[34] Bloom I., Walker L.K., Basco J.K., Malkow T., et al., "A comparison of Fuel Cell Testing 
protocols – A case study: Protocols used by the U.S. Department of Energy, European Union, 
International Electrotechnical Commission/Fuel Cell Testing and Standardization Network, and Fuel 



 

Cell Technical Team," J.Power Sources 243(0):451-457, 2013, 
doi:http://dx.doi.org/10.1016/j.jpowsour.2013.06.026.  

[35] Dempster A.P., "An overview of multivariate data analysis," Journal of Multivariate Analysis 
1(3):316-346, 1971.  

[36] Chatfield J.A., Draper E.A., Cochran K.D., and Herms D.A., "Evaluation of crabapples for apple 
scab at the Secrest arboretum in Wooster, Ohio," Ohio Agricultural Research and Development 
Center Special Circular. Ornamental Plants: Annual Reports and Research Reviews(177), 2000.  

[37] Placca L., Kouta R., Candusso D., Blachot J., et al., "Analysis of PEM fuel cell experimental data 
using principal component analysis and multi linear regression," Int J Hydrogen Energy 35(10):4582-
4591, 2010.  

[38] Secanell M., Wishart J., and Dobson P., "Computational design and optimization of fuel cells and 
fuel cell systems: A review," J.Power Sources 196(8):3690-3704, 2011.  

[39] Callister W.D.and Rethwisch D.G., "Materials science and engineering : an introduction," John 
Wiley and Son, New York, 2007.  

[40] Wu J., Yuan X.Z., Martin J.J., Wang H., et al., "A review of PEM fuel cell durability: 
Degradation mechanisms and mitigation strategies," J.Power Sources 184(1):104-119, 2008.  

[41] Whiteley M., Dunnett S., and Jackson L., "Failure Mode and Effect Analysis, and Fault Tree 
Analysis of Polymer Electrolyte Membrane Fuel Cells," Int J Hydrogen Energy.  

[42] Park S., Lee J., and Popov B.N., "A review of gas diffusion layer in PEM fuel cells: Materials 
and designs," Int J Hydrogen Energy 37(7):5850-5865, 2012.  

[43] Pei P., Yuan X., Chao P., and Wang X., "Analysis on the PEM fuel cells after accelerated life 
experiment," Int J Hydrogen Energy 35(7):3147-3151, 2010.  

[44] Chapuis O., Prat M., Quintard M., Chane-Kane E., et al., "  
Two-phase flow and evaporation in model fibrous media Application to the gas diffusion layer of 
PEM fuel cells." J Power Sources 178(258):68, 2008.  

[45] Hiramitsu Y., Sato H., Kobayashi K., and Hori M., "Controlling gas diffusion layer oxidation by 
homogeneous hydrophobic coating for polymer electrolyte fuel cells," J.Power Sources 
196(13):5453-5469, 2011.  

[46] Pai Y., Ke J., Huang H., Lee C., et al., "CF4 plasma treatment for preparing gas diffusion layers 
in membrane electrode assemblies," J.Power Sources 161(1):275-281, 2006.  

[47] McCarthy N., Chen R., Offer G., and Thring R., "PTFE mapping in gas diffusion media for 
PEMFCs using fluorescence microscopy," Int J Hydrogen Energy, 2016.  

[48] Schmittinger W. and Vahidi A., "A review of the main parameters influencing long-term 
performance and durability of PEM fuel cells," J.Power Sources 180(1):1-14, 2008.  

[49] Sadeghifar H., Djilali N., and Bahrami M., "Effect of Polytetrafluoroethylene (PTFE) and micro 
porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: Modeling and 
experiments," J.Power Sources 248(0):632-641, 2014.  

http://dx.doi.org/10.1016/j.jpowsour.2013.06.026


 

[50] Si X., Wang W., Hu C., and Zhou D., "Remaining useful life estimation – A review on the 
statistical data driven approaches," Eur.J.Oper.Res. 213(1):1-14, 2011.  

[51] Miller M. and Bazylak A., "A review of polymer electrolyte membrane fuel cell stack testing," 
J.Power Sources 196(2):601-613, 2011.  

[52] He Q., Joy D.C., and Keffer D.J., "Nanoparticle Adhesion in PEM Fuel Cell Electrodes," 
J.Power Sources(0), 2013.  

[53] Glassman M., Omosebi A., and Besser R.S., "Repetitive Hot-Press Approach for Performance 
Enhancement of Hydrogen Fuel Cells," J.Power Sources(0), 2013.  

[54] Mathias M.F., Roth J., Flemming J., and Lenhert W., "Diffusion media materials and 
characterisation,"Handbook of Fuel Cells, John Wiley & Sons Ltd, 2010.  

[55] Jinuntuya F., "Numercial Investigation Of The Structural Effects On Water Trasportation In 
PEMFC Gas Diffusion Layers Using X-Ray Tomography Based Lattice Boltzman Method,", 
Loughbrough University, 2014.  

[56] Williams M.V., Kunz H.R., and Fenton J.M., "Operation of Nafion®-based PEM fuel cells with 
no external humidification: influence of operating conditions and gas diffusion layers," J.Power 
Sources 135(1–2):122-134, 2004.  

[57] Park J., Oh H., Ha T., Lee Y.I., et al., "A review of the gas diffusion layer in proton exchange 
membrane fuel cells: Durability and degradation," Appl.Energy 155(0):866-880, 2015.  

[58] Lin J.F., Wertz J., Ahmad R., Thommes M., et al., "Effect of carbon paper substrate of the gas 
diffusion layer on the performance of proton exchange membrane fuel cell," Electrochim.Acta 
55(8):2746-2751, 2010.  

[59] C  ̧ec¸en A., Wargo E.A., Hanna A.C., Turner D.M., et al., "3-D Microstructure Analysis of Fuel 
Cell Materials: Spatial Distributions of Tortuosity, Void Size and Diffusivity  
 ," Journal of the Electrochemical Society 159(3):B299-B307, 2012.  

[60] "The influence of micro structure of the GDL and MPL on the mass transport in PEFC," ECS 
Transactions, 2011.  

[61] Kotaka T., Tabuchi Y., and Mukherjee P.P., "Microstructural analysis of mass transport 
phenomena in gas diffusion media for high current density operation in PEM fuel cells," J.Power 
Sources 280(0):231-239, 2015.  

[62] El-Hannach M. and Kjeang E., "Stochastic Microstructural Modeling of PEFC Gas Diffusion 
Media," J. Electrochem. Soc. 161(9):F951-F960, 2014, doi:10.1149/2.1141409jes.  

[63] Roshandel R. and Ahmadi F., "Effects of catalyst loading gradient in catalyst layers on 
performance of polymer electrolyte membrane fuel cells," Renewable Energy 50(0):921-931, 2013.  

[64] Morbidelli M., Gravriilidis A., and Varma A., "Catalyst Design: Optimal Distribution of Catalyst 
in Pellets, Reactors and Membranes," Cambridge University Press, Cambridge, 2001.  

[65] Zhou K. and Li Y., "Catalysis Based on Nanocrystals with Well-Defined Facets," Angewandte 
Chemie International Edition 51(3):602-613, 2012.  



 

[66] Springer T.E., Zawodzinski T.A., and Gottesfeld S., "Polymer Electrolyte Fuel Cell Model," 
Journal of the Electrochemical Society 138(8):2334-2342, 1991.  

[67] Kim J., Lee S., Srinivasan S., and Chamberlin C.E., "Modeling of Proton Exchange Membrane 
Fuel Cell Performance with an Empirical Equation," Journal of The Electrochemical Society 
142(8):2670-2674, 1995.  

[68] Jain P., "Multi-scale Modeling and Optimization of Polymer Electrolyte Fuel Cells,", 
CARNEGIE MELLON UNIVERSITY, 2009.  

[69] ""Agglomerate" Merriam-Webster," http://www.merriam-webster.com/dictionary/agglomerate, 
08/2/ 2016.  

[70] Zhang Y., Chen S., Wang Y., Ding W., et al., "Study of the degradation mechanisms of carbon-
supported platinum fuel cells catalyst via different accelerated stress test," J.Power Sources 
273(0):62-69, 2015.  

[71] Cetinbas F.C., Advani S.G., and Prasad A.K., "Three dimensional proton exchange membrane 
fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles," 
J.Power Sources 250(0):110-119, 2014.  

[72] Cetinbas F.C., Advani S.G., and Prasad A.K., "An Improved Agglomerate Model for the PEM 
Catalyst Layer with Accurate Effective Surface Area Calculation Based on the Sphere-Packing 
Approach," Journal of The Electrochemical Society 161(6):F803-F813, 2014.  

[73] Xie Z., Navessin T., Shi K., Chow R., et al., "Functionally Graded Cathode Catalyst Layers for 
Polymer Electrolyte Fuel Cells: II. Experimental Study of the Effect of Nafion Distribution," Journal 
of The Electrochemical Society 152(6):A1171-A1179, 2005.  

[74] Wang Q., Eikerling M., Song D., Liu Z., et al., "Functionally Graded Cathode Catalyst Layers for 
Polymer Electrolyte Fuel Cells: I. Theoretical Modeling," Journal of The Electrochemical Society 
151(7):A950-A957, 2004.  

[75] Song D., Wang Q., Liu Z., Eikerling M., et al., "A method for optimizing distributions of Nafion 
and Pt in cathode catalyst layers of PEM fuel cells," Electrochim.Acta 50(16–17):3347-3358, 2005.  

[76] Passalacqua E., Lufrano F., Squadrito G., Patti A., et al., "Nafion content in the catalyst layer of 
polymer electrolyte fuel cells: effects on structure and performance," Electrochim.Acta 46(6):799-805, 
2001.  

[77] Yu X. and Ye S., "Recent advances in activity and durability enhancement of Pt/C catalytic 
cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, 
and activity enhancement of Pt/C catalyst," J.Power Sources 172(1):133-144, 2007.  

[78] Ryan T.P., "Modern engineering statistics," Wiley-Interscience, Chichester, 2007.  

[79] Harris R.J., "A primer of multivariate statistics," Lawrence Erlbaum Associates, Mahwah, N.J., 
2001.  

[80] Flury B., "A First Course in Multivariate Statistics," Springer-Verlag, New Yrok, 1997.  

[81] Wadsworth, H,M, "Handbook of Statistical Methods for Engineers and Scientists," McGraw-Hill, 
New York, 1990.  

http://www.merriam-webster.com/dictionary/agglomerate


 

[82] Anderson M.J.and Whitcomb P.J., "DOE Simplified: Practical Tools for Effective 
Experimentation," Productivity Press, New York, 2007.  

[83] Moore D.S., McCabe G.P., and Craig B.A., " Introductin to the Practice of Statistics " Freeman, 
W. H. & Company, USA, 2012.  

[84] Croft A.and Davison R., "Foundation Maths," Pearson Education Ltd., Harlow, 1997.  

[85] Anderson M.J.and Whitcomb P.J., "RSM Simplified: Optimizing Processes Using Response 
Surface Methods for Design of Experiments," CRC press, Boca Raton, 2005.  

[86] Box G. and Behnken D., "Some new three level designs for the study of quantitative variables," 
Technometrics 2:455-475, 1960.  

[87] Spiegel C., "PEM Fuel Cell Modeling and Simulation using MATLAB," Elsevier, Burlington, 
2008.  

[88] Beusher U., Bayram S., Broadbridge P., Driscoll T., et al., "Multi-Phase Flow in a Thin Porous 
Material," Twentieth Annual Workshop on Mathematical Problems in Industry, 2004.  

[89] Placca L. and Kouta R., "Fault tree analysis for pem fuel cell degradation process modelling," 
International Journal of Hydrogen Energy 36(19):12393, 2011.  

[90] Whiteley M., "Advanced reliability analysis of polymer electrolyte membrane fuel cells in 
automotive applications,", Loughborough University, 2016.  

[91] Park J., Oh H., Lee Y.I., Min K., et al., "Effect of the pore size variation in the substrate of the 
gas diffusion layer on water management and fuel cell performance," Appl.Energy 171:200-212, 2016.  

[92] Takahashi I. and Kocha S.S., "Examination of the activity and durability of PEMFC catalysts in 
liquid electrolytes," J.Power Sources 195(19):6312-6322, 2010.  

[93] Frey T. and Linardi M., "Effects of membrane electrode assembly preparation on the polymer 
electrolyte membrane fuel cell performance," Electrochim.Acta 50(1):99-105, 2004.  

[94] Marquis J. and Coppens M.-., "Achieving ultra-high platinum utilization via optimization of 
PEM fuel cell cathode catalyst layer microstructure," Chemical Engineering Science 102(0):151-162, 
2013.  

[95] Mench M., Kumbur E.C., and T. Nejat Veziroglu T.N., "Polymer Electrolyte Fuel Cell 
Degradation," Elsevier, Oxford, 2012.  

[96] Hartigan J.A., "Printer graphics for clustering," Journal of Statistical Computation and 
Simulation 4(3):187-213, 1975.  

[97] Mueller W.a., "Theory of the Polarisaiton curve technique for studying corrosion and 
electrochemical protection," Canadian Journal of Chemistry 38:576-587, 1960.  

[98] Santarelli M.G., Torchio M.F., and Cochis P., "Parameters estimation of a PEM fuel cell 
polarization curve and analysis of their behavior with temperature," J.Power Sources 159(2):824-835, 
2006.  



 

[99] Bezmalinovic D., Simic B., and Barbir F., "Characterization of PEM fuel cell degradation by 
polarization change curves," J.Power Sources 294(0):82-87, 2015.  

[100] Al-Baghdadi M.A.R.S., "Modelling of proton exchange membrane fuel cell performance based 
on semi-empirical equations," Renewable Energy 30(10):1587-1599, 2005.  

[101] Wang H., Yuan X.Z., and Li H., "PEM Fuel Cell Diagnostic Tools," CRC press, BocaRaton, 
2012.  

[102] Wang Q., Dong H., Yu H., and Yu H., "Enhanced performance of gas diffusion electrode for 
electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst 
layer," J.Power Sources 279(0):1-5, 2015.  

[103] Ito H., Abe K., Ishida M., Nakano A., et al., "Effect of through-plane distribution of 
polytetrafluoroethylene in carbon paper on in-plane gas permeability," J.Power Sources 248(0):822-
830, 2014.  

[104] Koresawa R. and Utaka Y., "Improvement of oxygen diffusion characteristic in gas diffusion 
layer with planar-distributed wettability for polymer electrolyte fuel cell," J.Power Sources 
271(0):16-24, 2014.  

[105] Latorrata S., Balzarotti R., Gallo Stampino P., Cristiani C., et al., "Design of properties and 
performances of innovative gas diffusion media for polymer electrolyte membrane fuel cells," 
Progress in Organic Coatings(0), 2014.  

[106] Rohendi D., Majlan E.H., Mohamad A.B., Daud W.R.W., et al., "Effect of PTFE Content and 
Sintering Temperature on the Properties of a Fuel Cell Electrode Backing Layer," Journal of Fuel 
Cell Science and Technology 11(4):041003-041003, 2014.  

[107] Inoue G., Ishibe N., Matsukuma Y., and Minemoto M., "Understanding Mechanism of PTFE 
Distribution in Fibrous Porous Media," ECS Transactions 50(2):461-468, 2013.  

[108] Liu M., Wang C., Xie F., and Mao Z., "A polymer electrolyte fuel cell life test using 
accelerating degradation technique," Int J Hydrogen Energy 38(25):11011-11016, 2013.  

[109] Endoo S., "Identification of the key variables in membrane electrode preparation for PEM fuel 
cells by a factorial design," Renewable Energy 35(4):807-813, 2010.  

[110] Lin G. and Nguyen T.V., "Effect of Thickness and Hydrophobic Polymer Content of the Gas 
Diffusion Layer on Electrode Flooding Level in a PEMFC," Journal of The Electrochemical Society 
152(10):A1942-A1948, 2005.  

[111] Sadeghifar H., Djilali N., and Bahrami M., "Effect of PTFE and micro porous layer on thermal 
conductivity of fuel cell gas diffusion layers: modeling and experiments," J.Power Sources(0).  

[112] Mason T.J., Millichamp J., Neville T.P., El-kharouf A., et al., "Effect of clamping pressure on 
ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells," J.Power 
Sources 219(0):52-59, 2012.  

[113] Perng S., Wu H., and Shih G., "Effect of prominent gas diffusion layer (GDL) on non-
isothermal transport characteristics and cell performance of a proton exchange membrane fuel cell 
(PEMFC)," Energy 88:126-138, 2015.  



 

[114] Millichamp J., Mason T.J., Neville T.P., Rajalakshmi N., et al., "Mechanisms and effects of 
mechanical compression and dimensional change in polymer electrolyte fuel cells – A review," 
J.Power Sources 284:305-320, 2015.  

[115] Hiramitsu Y., Kobayashi K., and Hori M., "Gas diffusion layer design focusing on the structure 
of the contact face with catalyst layer against water flooding in polymer electrolyte fuel cell," J.Power 
Sources 195(22):7559-7567, 2010.  

[116] Gerteisen D., Zamel N., Sadeler C., Geiger F., et al., "Effect of operating conditions on current 
density distribution and high frequency resistance in a segmented PEM fuel cell," Int J Hydrogen 
Energy 37(9):7736-7744, 2012.  

[117] Piñeiro G., Perelman S., Guerschman J.P., and Paruelo J.M., "How to evaluate models: 
Observed vs. predicted or predicted vs. observed?" Ecol.Model. 216(3–4):316-322, 2008.  

[118] Menditto A., Patriarca M., and Magnusson B., "Understanding the meaning of accuracy, 
trueness and precision," - Accreditation and Quality Assurance 12(1):45-75, 2007.  

[119] Benziger J., Blackwell D., Brennan T., and Itescu J., "Water flow in the gas diffusion layer of 
PEM fuel cells," Journal of Membrane Science(261):98-106, 2005.  

[120] Kong C.S., Kim D., Lee H., Shul Y., et al., "Influence of pore-size distribution of diffusion 
layer on mass-transport problems of proton exchange membrane fuel cells," J.Power Sources 108(1–
2):185-191, 2002.  

[121] Lee H., Park J., Kim D., and Lee T., "A study on the characteristics of the diffusion layer 
thickness and porosity of the PEMFC," J.Power Sources 131(1–2):200-206, 2004.  

[122] Jordan L.R., Shukla A.K., Behrsing T., Avery N.R., et al., "Diffusion layer parameters 
influencing optimal fuel cell performance," J.Power Sources 86(1–2):250-254, 2000.  

[123] Bae S.J., Kim S., Lee J., Song I., et al., "Degradation pattern prediction of a polymer electrolyte 
membrane fuel cell stack with series reliability structure via durability data of single cells," 
Appl.Energy 131(0):48-55, 2014.  

[124] Marcu A., Toth G., Pietrasz P., and Waldecker J., "Cathode catalysts degradation mechanism 
from liquid electrolyte to membrane electrode assembly," Comptes Rendus Chimie(0), 2014.  

[125] Speder J., Zana A., Spanos I., Kirkensgaard J.J.K., et al., "Comparative degradation study of 
carbon supported proton exchange membrane fuel cell electrocatalysts – The influence of the 
platinum to carbon ratio on the degradation rate," J.Power Sources 261(0):14-22, 2014.  

[126] Wang F., Yang D., Li B., Zhang H., et al., "Investigation of the recoverable degradation of PEM 
fuel cell operated under drive cycle and different humidities," Int J Hydrogen Energy(0), 2014.  

[127] Xiao S. and Zhang H., "The investigation of resin degradation in catalyst layer of proton 
exchange membrane fuel cell," J.Power Sources 246(0):858-861, 2014.  

[128] Yu J., Jiang Z., Hou M., Liang D., et al., "Analysis of the behavior and degradation in proton 
exchange membrane fuel cells with a dead-ended anode," J.Power Sources 246(0):90-94, 2014.  

[129] Cheng T.H., Wessel S., and Knights S., "  Interactive Effects of Membrane Additives on 
PEMFC Catalyst Layer Degradation  ," Journal of the Electrochemical Society 160(1):F27-F33, 2013.  



 

[130] Dillet J., Spernjak D., Lamibrac A., Maranzana G., et al., "Impact of flow rates and electrode 
specifications on degradations during repeated startups and shutdowns in polymer-electrolyte 
membrane fuel cells," J.Power Sources(0), 2013.  

[131] Fairweather J.D., Spernjak D., Weber A.Z., Harvey D., et al., "Effects of Cathode Corrosion on 
Through-Plane Water Transport in Proton Exchange Membrane Fuel Cells," Journal of The 
Electrochemical Society 160(9):F980-F993, 2013.  

[132] Kreitmeier S., Lerch P., Wokaun A., and B¨uchi F.N., "Local Degradation at Membrane Defects 
in Polymer Electrolyte Fuel Cells," Journal of the Electrochemical Society 160(4):F456-F463, 2013.  

[133] Ous T. and Arcoumanis C., "Degradation aspects of water formation and transport in Proton 
Exchange Membrane Fuel Cell: A review," J.Power Sources 240(0):558-582, 2013.  

[134] Yu S., Li X., Li J., Liu S., et al., "Study on hydrophobicity degradation of gas diffusion layer in 
proton exchange membrane fuel cells," Energy Conversion and Management 76(0):301-306, 2013.  

[135] Kim J., Yi J.S., and Song T., "Investigation of degradation mechanisms of a high-temperature 
polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy," J.Power 
Sources 220(0):54-64, 2012.  

[136] Schiraldi D.A. and Savant D., "10.38 - Polymer Electrolyte Membrane Degradation," In: 
Editors-in-Chief: Krzysztof Matyjaszewski and Martin Möller, editors. Polymer Science: A 
Comprehensive Reference, Elsevier, Amsterdam, 2012, 767-775.  

[137] Spernjak D., Fairweather J., Mukundan R., Rockward T., et al., "Influence of the microporous 
layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell," J.Power 
Sources 214(0):386-398, 2012.  

[138] Bozzini B., Amati M., Boniardi M., Abyaneh M.K., et al., "Study of a proton exchange 
membrane fuel cells catalyst subjected to anodic operating conditions, by synchrotron-based scanning 
photoelectron microscopy (SPEM) and high lateral-resolution X-ray photoelectron spectroscopy," 
J.Power Sources 196(5):2513-2518, 2011.  

[139] Ishigami Y., Takada K., Yano H., Inukai J., et al., "Corrosion of carbon supports at cathode 
during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a 
PEFC—Start-up/shut-down simulation," J.Power Sources 196(6):3003-3008, 2011.  

[140] Jung M. and Williams K.A., "Effect of dynamic operation on chemical degradation of a 
polymer electrolyte membrane fuel cell," J.Power Sources 196(5):2717-2724, 2011.  

[141] Sutharssan T., Montalvao D., Chen Y.K., Wang W., et al., "A review on prognostics and health 
monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews.  

[142] Baik K.D. and Kim M.S., "Characterization of nitrogen gas crossover through the membrane in 
proton-exchange membrane fuel cells," Int J Hydrogen Energy 36(1):732-739, 2011.  

[143] Casalegno A., Bresciani F., Groppi G., and Marchesi R., "Flooding of the diffusion layer in a 
polymer electrolyte fuel cell: Experimental and modelling analysis," J.Power Sources 196(24):10632-
10639, 2011.  

[144] Hirata H., Shimotori S., and Aoki T., "Numerical study on the cathode flooding of direct 
humidified proton exchange membrane fuel cell," J.Power Sources 220(0):383-390, 2012.  



 

[145] Oh K., Kim W., Sung K.A., Choo M., et al., "A hydrophobic blend binder for anti-water 
flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells," Int J Hydrogen 
Energy 36(21):13695-13702, 2011.  

[146] Casalegno A., Colombo L., Galbiati S., and Marchesi R., "Quantitative characterization of 
water transport and flooding in the diffusion layers of polymer electrolyte fuel cells," J.Power Sources 
195(13):4143-4148, 2010.  

[147] Kannan A., Kabza A., and Scholta J., "Long term testing of start–stop cycles on high 
temperature PEM fuel cell stack," J.Power Sources 277(0):312-316, 2015.  

[148] Lin R., Xiong F., Tang W.C., Técher L., et al., "Investigation of dynamic driving cycle effect on 
the degradation of proton exchange membrane fuel cell by segmented cell technology," J.Power 
Sources(0), 2014.  

[149] Pei P. and Chen H., "Main factors affecting the lifetime of Proton Exchange Membrane fuel 
cells in vehicle applications: A review," Appl.Energy 125(0):60-75, 2014.  

[150] Xing L., Song X., Scott K., Pickert V., et al., "Multi-variable optimisation of PEMFC cathodes 
based on surrogate modelling," Int J Hydrogen Energy 38(33):14295-14313, 2013.  

[151] Xing L., Mamlouk M., and Scott K., "A two dimensional agglomerate model for a proton 
exchange membrane fuel cell," Energy 61:196-210, 2013.  

[152] Xing L., Liu X., Alaje T., Kumar R., et al., "A two-phase flow and non-isothermal agglomerate 
model for a proton exchange membrane (PEM) fuel cell," Energy 73:618-634, 2014.  

[153] Moein-Jahromi M. and Kermani M.J., "Performance prediction of PEM fuel cell cathode 
catalyst layer using agglomerate model," Int J Hydrogen Energy 37(23):17954-17966, 2012.  

[154] Hu G., Li G., Zheng Y., Zhang Z., et al., "Optimization and parametric analysis of PEMFC 
based on an agglomerate model for catalyst layer," Journal of the Energy Institute 87(2):163-174, 
2014.  

[155] Xing L., Mamlouk M., Kumar R., and Scott K., "Numerical investigation of the optimal 
Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling," Int J 
Hydrogen Energy 39(17):9087-9104, 2014.  

[156] Zhang X., Ostadi H., Jiang K., and Chen R., "Reliability of the spherical agglomerate models 
for catalyst layer in polymer electrolyte membrane fuel cells," Electrochim.Acta 133:475-483, 2014.  

[157] Zhang X., Gao Y., Ostadi H., Jiang K., et al., "A proposed agglomerate model for oxygen 
reduction in the catalyst layer of proton exchange membrane fuel cells," Electrochim.Acta 150:320-
328, 2014.  

[158] Molaeimanesh G.R. and Akbari M.H., "Agglomerate modeling of cathode catalyst layer of a 
PEM fuel cell by the lattice Boltzmann method," Int J Hydrogen Energy 40(15):5169-5185, 2015.  

[159] Yin K., Cheng B., and Chiang K., "Non-uniform agglomerate cathode catalyst layer model on 
the performance of PEMFC with consideration of water effect," Renewable Energy 95:191-201, 2016.  



 

[160] Madhusudana Rao R. and Rengaswamy R., "Dynamic characteristics of spherical agglomerate 
for study of cathode catalyst layers in proton exchange membrane fuel cells (PEMFC)," J.Power 
Sources 158(1):110-123, 2006.  

[161] Yin K.-., "Parametric Study of Proton-Exchange-Membrane Fuel Cell Cathode Using an 
Agglomerate Model," Journal of The Electrochemical Society 152(3):A583-A593, 2005.  

[162] Siegel N.P., Ellis M.W., Nelson D.J., and von Spakovsky M.R., "Single domain PEMFC model 
based on agglomerate catalyst geometry," J.Power Sources 115(1):81-89, 2003.  

[163] Jaouen F., Lindbergh G., and Sundholm G., "Investigation of Mass-Transport Limitations in the 
Solid Polymer Fuel Cell Cathode: I. Mathematical Model," Journal of The Electrochemical Society 
149(4):A437-A447, 2002.  

[164] Sun W., Peppley B.A., and Karan K., "An improved two-dimensional agglomerate cathode 
model to study the influence of catalyst layer structural parameters," Electrochim.Acta 50(16–
17):3359-3374, 2005.  

[165] Cetinbas F.C., Advani S.G., and Prasadz A.K., "A Modified Agglomerate Model with Discrete 
Catalyst Particles for the PEM Fuel Cell Catalyst Layer 
 
 ," Journal of the Electrochemical Society 160(8):F750-F756, 2013.  

[166] Wu H., "A review of recent development: Transport and performance modeling of PEM fuel 
cells," Appl.Energy 165:81-106, 2016.  

[167] Wang Y. and Feng X., "Analysis of the Reaction Rates in the Cathode Electrode of Polymer 
Electrolyte Fuel Cells: II. Dual-Layer Electrodes," Journal of The Electrochemical Society 
156(3):B403-B409, 2009.  

[168] Feng X. and Wang Y., "Multi-layer configuration for the cathode electrode of polymer 
electrolyte fuel cell," Electrochim.Acta 55(15):4579-4586, 2010.  

[169] Migliardini F., and Corbo P., "CV and EIS Study of Hydrogen Fuel Cell Durability in 
Automotive Applications," Int. J. Electrochem. Sci. 8:11033-101047, 2013.  

[170] White R.E., "Modern Aspects of Electrochemistry 40," Springer-Verlag, New York, 2007.  

[171] Hou J., Song W., Yu H., Fu Y., et al., "Ionic resistance of the catalyst layer after the PEM fuel 
cell suffered freeze," J.Power Sources 176(1):118-121, 2008.  

[172] Chan S.H. and Tun W.A., "Catalyst Layer Models for Proton Exchange Membrane Fuel Cells," 
Chemistry Engineering Technolgy 24(1):51, 2001.  

[173] Secanell M., "Optimization of a proton exchange membrane fuel cell membrane electrode 
assembly," Structural And Multidisciplinary Optimization 40(1-6):563-583, 2010.  

[174] Yoon Y.-., Yang T.-., Park G.-., Lee W.-., et al., "A multi-layer structured cathode for the 
PEMFC," J.Power Sources 118(1–2):189-192, 2003.  

[175] Su H., Liang H., Bladergroen B.J., Linkov V., et al., "Effect of Platinum Distribution in Dual 
Catalyst Layer Structured Gas Diffusion Electrode on the Performance of High Temperature 
PEMFC," Journal of The Electrochemical Society 161(4):F506-F512, 2014.  



 

[176] Zana A., Speder J., Roefzaad M., Altmann L., et al., "Probing Degradation by IL-TEM: The 
Influence of Stress Test Conditions on the Degradation Mechanism  
 
," Journal of the Electrochemical Society 160(6):F608-F615, 2013.  

[177] Kandlikar S.G., Lu Z., Lin T.Y., Cooke D., et al., "Uneven gas diffusion layer intrusion in gas 
channel arrays of proton exchange membrane fuel cell and its effects on flow distribution," J.Power 
Sources 194(1):328-337, 2009.  

[178] Rorres C. and Anton H., "Applications of Linear Algebra," John Wiley & Sons Inc, New York, 
1984.  

[179] Tang W., Lin R., Weng Y., Zhang J., et al., "The effects of operating temperature on current 
density distribution and impedance spectroscopy by segmented fuel cell," Int J Hydrogen Energy 
38(25):10985-10991, 2013.  

[180] Yuan X., Sun J.C., Wang H., and Li H., "Accelerated conditioning for a proton exchange 
membrane fuel cell," J.Power Sources 205:340-344, 2012.  

[181] Dai W., Wang H., Yuan X., Martin J.J., et al., "A review on water balance in the membrane 
electrode assembly of proton exchange membrane fuel cells," Int J Hydrogen Energy 34(23):9461-
9478, 2009.  

[182] Hu Z., Lin J., Zhang Y., and Hu G., "Study on modification of carbon fiber and performance of 
carbon paper as gas diffusion layer," Gongneng Cailiao/Journal of Functional Materials 47(9):09112-
09116, 2016.  

[183] Prass S., Hasanpour S., Sow P.K., Phillion A.B., et al., "Microscale X-ray tomographic 
investigation of the interfacial morphology between the catalyst and micro porous layers in proton 
exchange membrane fuel cells," J.Power Sources 319:82-89, 2016.  

[184] Tötzke C., Gaiselmann G., Osenberg M., Bohner J., et al., "Three-dimensional study of 
compressed gas diffusion layers using synchrotron X-ray imaging," J.Power Sources 253(0):123-131, 
2014.  

[185] Gostick J.T., "Random Pore Network Modeling of Fibrous PEMFC Gas Diffusion Media Using 
Voronoi and Delaunay Tessellations  ," Journal of the Electrochemical Society 160(8):F731-F743, 
2013.  

[186] Morgan J.M. and Datta R., "Understanding the gas diffusion layer in PEM fuel cells. I. How its 
structural characteristics affect diffusion and performance," J.Power Sources(0), 2013.  

[187] Sun C., More K.L., Veith G.M., and Zawodzinski T.A., "Composition Dependence of the Pore 
Structure and Water Transport of Composite Catalyst Layers for Polymer Electrolyte Fuel Cells," 
Journal of The Electrochemical Society 160(9):F1000-F1005, 2013.  

[188] Shah A.A., Kim G., and Promislow K., "Mathematical modelling of the catalyst layer of a 
polymer electrolyte fuel cell," IMA Journal of Applied Mathematics 72(3):302-330, June 2007.  

[189] Lile J.R.D. and Zhou S., "Theoretical modeling of the PEMFC catalyst layer: A review of 
atomistic methods," Electrochim.Acta 177:4-20, 2015.  



 

[190] Weber A.Z., Borup R.L., Darling R.M., Das P.K., et al., "A Critical Review of Modeling 
Transport Phenomena in Polymer-Electrolyte Fuel Cells," Journal of The Electrochemical Society 
161(12):F1254-F1299, 2014.  

[191] Hutzenlaub T., Becker J., Zengerle R., and Thiele S., "Modelling the water distribution within a 
hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a proton exchange membrane 
fuel cell," Journal of Power Sources 227:260, 2013, doi:10.1016/j.jpowsour.2012.11.065.  

[192] Siroma Z. and Yasuda K., "Numerical simulation of the reaction and mass-transfer profiles in 
the two-layer catalyst of a PEMFC," Electrochemistry 79(5):326-328, 2011.  

[193] Eikerling M., "Water Management in Cathode Catalyst Layers of PEM Fuel Cells: A Structure-
Based Model," Journal of The Electrochemical Society 153(3):E58-E70, 2006.  

[194] Neyman J., "Outline of a Theory of Statistical Estimation Based on the Classical Theory of 
Probability," Philosophical Transactions of the Royal Society of London.Series A, Mathematical and 
Physical Sciences 236(767):333-380, 1937.  

[195] Mendenhall W., Wackerly D., D., and Scheaffer R., L., " Mathematical statistics with 
applications," Boston, kent.  

 

 

  



 

10 Appendices 
 

Appendix 1: - Safety and data sheets & Agglomeration Definition 

• OED definition of agglomeration 

• Nafion date sheets 

• Isopropanol MSDS 

• GDM data sheets 

 

Appendix 2: The Spiegel model 

• Two dimensional GDM model from Spiegel 

Appendix 3: Original data  

• Matlab code for AeK pol curves and grad fitting 

• All AeK data and NMcC results tables 

• Included and excluded data for DoE  

• M-ANOVA initial results 

• Weighting tables  

 

Appendix 4: Additional graphical versions of original data 

• All FUDL ‘PM’ graphs and images  

Appendix 5: Previously published work contributing to this thesis 

• Journal paper 

• Conference paper 

 



 

 

 

Appendix 1: - Safety and Data sheets & Agglomeration Definition 

  



 

The word agglomerate can be used as a verb, a noun and an adjective. 

“Agglomerate” : OED Online, "Agglomerate, v, a and n"  

( https://en.oxforddictionaries.com/definition/agglomerate, 18/12/2016 2016.)   

• Verb – collect, or form into a mass 

• Noun – a mass or collection of things 

• Adjective – collected or formed into a mass 

It is important to note that the term ‘agglomerate model’ does not, inherently, imply a 

transient time-dependent model, on the changes in the catalyst layer.  In this thesis, 

it indicates that the type of catalyst being modelled consists of multiple phases 

clumped together (typically carbon black and platinum) into a broadly homogenised 

mass, with an ionically conductive phase at the surface.  The term ‘agglomerate 

model’ can be easily be confused when referring to ‘agglomeration’.  To clarify: A set 

of particles that is in the process of coming together to form a larger particle, is 

undergoing ‘agglomeration’ in the present tense.  It is not uncommon, in fuel cell 

circles, to refer to a particle that is a combination of multiple phases as ‘an 

agglomeration’.  For this reason is it recommended that Ostwald ripening [142] (see 

section  5.2) be used when referring to the active coalescing of particles of platinum, 

and the term ‘agglomeration’ be avoided. 
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Material Safety Data Sheet
Isopropyl alcohol MSDS

Section 1: Chemical Product and Company Identification

Product Name: Isopropyl alcohol

Catalog Codes: SLI1153, SLI1579, SLI1906, SLI1246,
SLI1432

CAS#: 67-63-0

RTECS: NT8050000

TSCA: TSCA 8(b) inventory: Isopropyl alcohol

CI#: Not available.

Synonym:   2-Propanol

Chemical Name: isopropanol

Chemical Formula: C3-H8-O

Contact Information:

Sciencelab.com, Inc.
14025 Smith Rd.
Houston, Texas 77396

US Sales: 1-800-901-7247
International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:
1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name CAS # % by Weight

Isopropyl alcohol 67-63-0 100

Toxicological Data on Ingredients: Isopropyl alcohol: ORAL (LD50): Acute: 5045 mg/kg [Rat]. 3600 mg/kg [Mouse]. 6410
mg/kg [Rabbit]. DERMAL (LD50): Acute: 12800 mg/kg [Rabbit].

Section 3: Hazards Identification

Potential Acute Health Effects:
Hazardous in case of eye contact (irritant), of ingestion, of inhalation. Slightly hazardous in case of skin contact (irritant,
sensitizer, permeator).

Potential Chronic Health Effects:
Slightly hazardous in case of skin contact (sensitizer). CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.)
by ACGIH, 3 (Not classifiable for human.) by IARC. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not
available. DEVELOPMENTAL TOXICITY: Classified Reproductive system/toxin/female, Development toxin [POSSIBLE].
The substance may be toxic to kidneys, liver, skin, central nervous system (CNS). Repeated or prolonged exposure to the
substance can produce target organs damage.

Section 4: First Aid Measures

http://www.sciencelab.com/
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Eye Contact:
Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15
minutes. Cold water may be used. Get medical attention.

Skin Contact:
Wash with soap and water. Cover the irritated skin with an emollient. Get medical attention if irritation develops. Cold water
may be used.

Serious Skin Contact: Not available.

Inhalation:
If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical
attention if symptoms appear.

Serious Inhalation:
Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If
breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek medical
attention.

Ingestion:
Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious
person. Loosen tight clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Flammable.

Auto-Ignition Temperature: 399°C (750.2°F)

Flash Points: CLOSED CUP: 11.667°C (53°F) - 12.778 deg. C (55 deg. F) (TAG)

Flammable Limits: LOWER: 2% UPPER: 12.7%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances:
Highly flammable in presence of open flames and sparks, of heat. Flammable in presence of oxidizing materials. Non-
flammable in presence of shocks.

Explosion Hazards in Presence of Various Substances:
Risks of explosion of the product in presence of mechanical impact: Not available. Explosive in presence of open flames and
sparks, of heat.

Fire Fighting Media and Instructions:
Flammable liquid, soluble or dispersed in water. SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use alcohol foam,
water spray or fog.

Special Remarks on Fire Hazards:
Vapor may travel considerable distance to source of ignition and flash back. CAUTION: MAY BURN WITH NEAR INVISIBLE
FLAME. Hydrogen peroxide sharply reduces the autoignition temperature of Isopropyl alcohol. After a delay, Isopropyl
alcohol ignites on contact with dioxgenyl tetrafluorborate, chromium trioxide, and potassium tert-butoxide. When heated to
decomposition it emits acrid smoke and fumes.

Special Remarks on Explosion Hazards:
Secondary alcohols are readily autooxidized in contact with oxygen or air, forming ketones and hydrogen peroxide. It can
become potentially explosive. It reacts with oxygen to form dangerously unstable peroxides which can concentrate and
explode during distillation or evaporation. The presence of 2-butanone increases the reaction rate for peroxide formation.
Explosive in the form of vapor when exposed to heat or flame. May form explosive mixtures with air. Isopropyl alcohol +
phosgene forms isopropyl chloroformate and hydrogen chloride. In the presence of iron salts, thermal decompositon can
occur, whicn in some cases can become explosive. A homogeneous mixture of concentrated peroxides + isopropyl alcohol are
capable of detonation by shock or heat. Barium perchlorate + isopropyl alcohol gives the highly explosive alkyl perchlorates.
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It forms explosive mixtures with trinitormethane and hydrogen peroxide. It produces a violent explosive reaction when heated
with aluminum isopropoxide + crotonaldehyde. Mixtures of isopropyl alcohol + nitroform are explosive.

Section 6: Accidental Release Measures

Small Spill:
Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container.

Large Spill:
Flammable liquid. Keep away from heat. Keep away from sources of ignition. Stop leak if without risk. Absorb with DRY earth,
sand or other non-combustible material. Do not touch spilled material. Prevent entry into sewers, basements or confined
areas; dike if needed. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS
and with local authorities.

Section 7: Handling and Storage

Precautions:
Keep away from heat. Keep away from sources of ignition. Ground all equipment containing material. Do not ingest. Do not
breathe gas/fumes/ vapor/spray. Avoid contact with eyes. Wear suitable protective clothing. In case of insufficient ventilation,
wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Keep
away from incompatibles such as oxidizing agents, acids.

Storage:
Store in a segregated and approved area. Keep container in a cool, well-ventilated area. Keep container tightly closed and
sealed until ready for use. Avoid all possible sources of ignition (spark or flame).

Section 8: Exposure Controls/Personal Protection

Engineering Controls:
Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective
threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection:
Splash goggles. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:
Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid
inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this
product.

Exposure Limits:
TWA: 983 STEL: 1230 (mg/m3) [Australia] TWA: 200 STEL: 400 (ppm) from ACGIH (TLV) [United States] [1999] TWA: 980
STEL: 1225 (mg/m3) from NIOSH TWA: 400 STEL: 500 (ppm) from NIOSH TWA: 400 STEL: 500 (ppm) [United Kingdom
(UK)] TWA: 999 STEL: 1259 (mg/m3) [United Kingdom (UK)] TWA: 400 STEL: 500 (ppm) from OSHA (PEL) [United States]
TWA: 980 STEL: 1225 (mg/m3) from OSHA (PEL) [United States]Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid.

Odor:
Pleasant. Odor resembling that of a mixture of ethanol and acetone.

Taste: Bitter. (Slight.)

Molecular Weight: 60.1 g/mole
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Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 82.5°C (180.5°F)

Melting Point: -88.5°C (-127.3°F)

Critical Temperature: 235°C (455°F)

Specific Gravity: 0.78505 (Water = 1)

Vapor Pressure: 4.4 kPa (@ 20°C)

Vapor Density: 2.07 (Air = 1)

Volatility: Not available.

Odor Threshold:
22 ppm (Sittig, 1991) 700 ppm for unadapted panelists (Verschuren, 1983).

Water/Oil Dist. Coeff.: The product is equally soluble in oil and water; log(oil/water) = 0.1

Ionicity (in Water): Not available.

Dispersion Properties: See solubility in water, methanol, diethyl ether, n-octanol, acetone.

Solubility:
Easily soluble in cold water, hot water, methanol, diethyl ether, n-octanol, acetone. Insoluble in salt solution. Soluble in
benzene. Miscible with most organic solvents including alcohol, ethyl alcohol, chloroform.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Heat, Ignition sources, incompatible materials

Incompatibility with various substances: Reactive with oxidizing agents, acids, alkalis.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:
Reacts violently with hydrogen + palladium combination, nitroform, oleum, COCl2, aluminum triisopropoxide, oxidants
Incompatible with acetaldehyde, chlorine, ethylene oxide, isocyanates, acids, alkaline earth, alkali metals, caustics, amines,
crotonaldehyde, phosgene, ammonia. Isopropyl alcohol reacts with metallic aluminum at high temperatures. Isopropyl alcohol
attacks some plastics, rubber, and coatings. Vigorous reaction with sodium dichromate + sulfuric acid.

Special Remarks on Corrosivity: May attack some forms of plastic, rubber and coating

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Dermal contact. Eye contact. Inhalation.

Toxicity to Animals:
WARNING: THE LC50 VALUES HEREUNDER ARE ESTIMATED ON THE BASIS OF A 4-HOUR EXPOSURE. Acute oral
toxicity (LD50): 3600 mg/kg [Mouse]. Acute dermal toxicity (LD50): 12800 mg/kg [Rabbit]. Acute toxicity of the vapor (LC50):
16000 8 hours [Rat].

Chronic Effects on Humans:
CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH, 3 (Not classifiable for human.) by IARC.
DEVELOPMENTAL TOXICITY: Classified Reproductive system/toxin/female, Development toxin [POSSIBLE]. May cause
damage to the following organs: kidneys, liver, skin, central nervous system (CNS).
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Other Toxic Effects on Humans:
Hazardous in case of ingestion, of inhalation. Slightly hazardous in case of skin contact (irritant, sensitizer, permeator).

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans:
M a y c a u s e a d v e r s e r e p r o d u c t i v e / t e r a t o g e n i c e f f e c t s ( f e r t i l i t y , f e t o x i c i t y , d e v e l o p m e
n t a l abnormalities(developmental toxin)) based on animal studies. Detected in maternal milk in human.

Special Remarks on other Toxic Effects on Humans:
Acute Potential Health Effects: Skin: May cause mild skin irritation, and sensitization. Eyes: Can cause eye irritation.
Inhalation: Breathing in small amounts of this material during normal handling is not likely to cause harmful effects. However,
breathing large amounts may be harmful and may affect the respiratory system and mucous membranes (irritation), behavior
and brain (Central nervous system depression - headache, dizziness, drowsiness, stupor, incoordination, unconciousness,
coma and possible death), peripheral nerve and senstation, blood, urinary system, and liver. Ingestion: Swallowing small
amouts during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful. Swallowing
large amounts may cause gastrointestinal tract irritation with nausea, vomiting and diarrhea, abdominal pain. It also may
affect the urinary system, cardiovascular system, sense organs, behavior or central nervous system (somnolence, generally
depressed activity, irritability, headache, dizziness, drowsiness), liver, and respiratory system (breathing difficulty). Chronic
Potential Health Effects: May cause defatting of the skin and dermatitis and allergic reaction. May cause adverse reproductive
effects based on animal data (studies).

Section 12: Ecological Information

Ecotoxicity: Ecotoxicity in water (LC50): 100000 mg/l 96 hours [Fathead Minnow]. 64000 mg/l 96 hours [Fathead Minnow].

BOD5 and COD: Not available.

Products of Biodegradation:
Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:
Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: CLASS 3: Flammable liquid.

Identification: : Isopropyl Alcohol UNNA: 1219 PG: II

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:
Connecticut hazardous material survey.: Isopropyl alcohol Illinois toxic substances disclosure to employee act: Isopropyl
alcohol Rhode Island RTK hazardous substances: Isopropyl alcohol Pennsylvania RTK: Isopropyl alcohol Florida: Isopropyl
alcohol Minnesota: Isopropyl alcohol Massachusetts RTK: Isopropyl alcohol New Jersey: Isopropyl alcohol New Jersey spill
list: Isopropyl alcohol Director's list of Hazardous Substances: Isopropyl alcohol Tennesee: Isopropyl alcohol TSCA 8(b)
inventory: Isopropyl alcohol TSCA 4(a) final testing order: Isopropyl alcohol TSCA 8(a) IUR: Isopropyl alcohol TSCA 8(d) H
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and S data reporting: Isopropyl alcohol: Effective date: 12/15/86 Sunset Date: 12/15/96 TSCA 12(b) one time export: Isopropyl
alcohol SARA 313 toxic chemical notification and release reporting: Isopropyl alcohol

Other Regulations:
OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the
European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada):
CLASS B-2: Flammable liquid with a flash point lower than 37.8°C (100°F). CLASS D-2B: Material causing other toxic effects
(TOXIC).

DSCL (EEC):
R11- Highly flammable. R36- Irritating to eyes. S7- Keep container tightly closed. S16- Keep away from sources of ignition
- No smoking. S24/25- Avoid contact with skin and eyes. S26- In case of contact with eyes, rinse immediately with plenty of
water and seek medical advice.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 3

Reactivity: 0

Personal Protection: h

National Fire Protection Association (U.S.A.):

Health: 1

Flammability: 3

Reactivity: 0

Specific hazard:

Protective Equipment:
Gloves. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator
when ventilation is inadequate. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/09/2005 05:53 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we
make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume
no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for
their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for
lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com
has been advised of the possibility of such damages.
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This SDS adheres to the standards and regulatory requirements of China and may not meet the regulatory requirements 
in other countries. 

Section 1 - Chemical and Enterprise Identification 

Chinese name : Nafion
®
 PFSA Membranes 

Product name in English : Nafion
®
 PFSA Membranes 

Specifications : 115, 115FP, 117, 117FP, N115, N115FP, N117, N117FP, 1110, N1110 
 

 
Manufacturer or supplier's details 

Company : Du Pont China Holding Co., Ltd 
Street address : China, Shanghai, 399 KeYuan Road, Bldg 11, Zhangjiang Hi-Tech Park, Pudong 

New District 201203 
 

Telephone : 86 21 3862 2888  
Telefax : 86 21 3862 2889  

 
Emergency telephone 
number 

: 86 532 8388 9090 

 
Recommended use of the chemical and restriction on use 

Recommended use : sheets and shaped articles 
 

 
 

Section 2 - Hazard Identification 

GHS Hazard Category 

Not a dangerous substance according to GHS. 
 

Other hazards which do not result in classification or are not covered by the GHS 
 

The thermal decomposition vapours of fluorinated polymers may cause polymer fume fever with flu-like symptoms 
in humans, especially when smoking contaminated tobacco. 
 
Main Symptom and Emergency Summary After Contact 
 

No information available. 
 
 

Section 3 - Ingredients/Composition Information 

Chemical nature : Substance 
 
Components  

Chemical Name CAS-No. Concentration  

Perfluorosulfonic acid/TFE copolymer 31175-20-9 100 % 
 
 

Section 4 - First-aid Measures 

Never give anything by mouth to an unconscious person. No hazards which require special first aid measures. When 
symptoms persist or in all cases of doubt seek medical advice.  
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Inhalation : Move to fresh air in case of accidental inhalation of fumes from overheating or 
combustion. Consult a physician.  

 
Skin contact : No hazards which require special first aid measures. Wash off with soap and 

water. Cool skin rapidly with cold water after contact with molten material. Do 
not peel polymer from the skin. Consult a physician.  

 
Eye contact : Hold eyelids apart and flush eyes with plenty of water for at least 15 minutes. 

Get medical attention.  
 
Ingestion : Not a probable route of exposure. However, in case of accidental ingestion, call 

a physician.  
 
Most important 
symptoms/effects, acute 
and delayed 

: No information available. 

 
Protection of first-aiders : No information available. 

 
Notes to physician : No information available. 

 
 

Section 5 - Fire-fighting Measures 

Suitable extinguishing 
media 

: Carbon dioxide (CO2), Dry powder, Foam, Water 
 
 

 
Specific hazards : Hazardous thermal decomposition products: Carbon oxides acid fluorides 

Fluorinated compounds Hydrogen fluoride Sulphur oxides  
Hydrogen fluoride, Carbon monoxide 
 

 
Specific fire fighting 
methods and special 
protective equipment for fire 
fighters 

: In the event of fire, wear self-contained breathing apparatus. Wear suitable 
protective equipment. Wear neoprene gloves during cleaning up work after a 
fire. Protect from hydrogen fluoride fumes which react with water to form 
hydrofluoric acid. The solid polymer can only be burned with difficulty. Use 
extinguishing measures that are appropriate to local circumstances and the 
surrounding environment.  

 
 
Section 6 - Leak Emergency Treatment 

Protective measures, 
devices and emergency 
treatment procedure for 
workers 

: Ventilate the area. Refer to protective measures listed in sections 7 and 8. 
Material can create slippery conditions.  

 
Environmental protection 
measures 

: No special environmental precautions required.  

 
Collection of leaking 
materials, removal method 
and materials used for 
disposal 

: Use mechanical handling equipment.  
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Prevention of secondary 
hazards 

: No information available. 

 
 

Section 7 - Operation Handling and Storage 

Operation Handling 
Technical 
measures/Precautions 

: When opening containers, avoid breathing vapours that may be emanating. 
Avoid breathing dust. Avoid contamination of cigarettes or tobacco with dust 
from this material. Provide appropriate exhaust ventilation at dryers, machinery 
and at places where dust or volatiles can be generated. For personal protection 
see section 8. In case of insufficient ventilation, wear suitable respiratory 
equipment.  

 
Precautions for safe 
handling 

: Take necessary action to avoid static electricity discharge (which might cause 
ignition of organic vapours).  

 
Hygiene measures : Regular cleaning of equipment, work area and clothing. Do not contaminate 

tobacco products. Wash hands before breaks and at the end of workday. 
General precaution for all plastics and elastomers: Do not breathe fumes 
evolved from hot polymer.  

 
 

Storage 
Suitable storage 
conditions 

: Keep in a dry, cool and well-ventilated place. Store in original container. Keep 
away from direct sunlight. Protect from contamination.  
 
Storage temperature: 10 - 30 °C 
Stable under recommended storage conditions.  
 
 

 
 

Section 8 - Exposure Control and Personal Protection 

Engineering controls : Ensure adequate ventilation, especially in confined areas. Good general 
ventilation should be provided to keep dust concentrations below the 
exposure limits. Local exhaust ventilation should be employed to minimize 
airborne contamination.  

 
Occupational Exposure Limits 

No information available. 
 

 
Biological occupational 
exposure limits 

: No information available. 
 

Personal protective equipment 

Respiratory protection : When workers are facing concentrations above the exposure limit they must 
use appropriate certified respirators. Air purifying respirators may not provide 
adequate protection. In the case of hazardous fumes caused by overheating, 
wear self-contained breathing apparatus.  
 

Hand protection : When handling hot material, use heat resistant gloves., Protective gloves 
(Type : Kevlar

®
 - heat resistant, use possible until worn out) 
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Eye protection : Solid form, :, Safety glasses with side-shields 
Molten form, Wear coverall chemical splash goggles and face shield when 
the possibility exists for eye and face contact due to splashing or spraying of 
material. 
 

Skin protection : If there is a potential for contact with hot/molten material wear heat resistant 
clothing and footwear. 
 

 
 

Section 9 - Physical and Chemical Properties 

Appearance (Physical state, form, colour, etc.) 
 

Physical state : solid  
 

Form : film 
 

Colour : no data available 
 

Odour : none  
 

pH (specifed concentration) : no data available 
 
Melting point/freezing point 

 
no data available 
 

Boiling point, initial boiling point and boiling range 
 

no data available 
 

Flash point : does not flash 
 

Decomposition temperature : no data available 
 

Autoignition temperature : no data available 
 

Explosion limits 

Upper explosion limit : no data available 
 

Lower explosion limit : no data available 
 

Vapour pressure : no data available 
 

Vapour density : no data available 
 
Density 
 

no data available 
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Solubility(ies) 
 

Water solubility :  insoluble 
 

Solubility in other solvents : no data available 
 

Partition coefficient: n-
octanol/water 

: no data available 
 

 
 
 

Section 10 - Stability and Reactivity 

Stability : Stable at normal temperatures and storage conditions.  
 
Possible hazardous 
reactions under specific 
conditions 

: During drying, cleaning and moulding, small amounts of hazardous gases 
and/or particulate matter may be released. These may irritate eyes, nose and 
throat. Large molten masses may give off hazardous gases.  

 
Conditions to avoid : To avoid thermal decomposition, do not overheat. Abnormally long processing 

time or high temperatures can produce irritating and toxic fumes. Stable under 
normal conditions.  
 

Materials to avoid : Powdered metals, Finely divided aluminium, potent oxidizers like fluorine (F2) 
 
Hazardous decomposition 
products 

: Decomposes with heat., Carbonyl fluoride, Hydrogen fluoride, Fluorinated 
hydrocarbons, acid fluorides, Sulphur oxides 
 
 

 
 

Section 11 - Toxicological Information 

Acute toxicity : Perfluorosulfonic acid/TFE copolymer: 
 
Oral:  ALD/rat : > 20,000 mg/kg 
 
 

Skin corrosion/irritation 
 

: Perfluorosulfonic acid/TFE copolymer: 
 
non-irritant   
 
 

Eye irritation/corrosion : Perfluorosulfonic acid/TFE copolymer: 
 
non-irritant   
 
 

Respiratory or skin 
sensitization 

: no data available 
 
 

Germ cell mutagenicity : no data available 
 

Carcinogenicity : no data available 
 

Toxicity for reproduction : no data available 
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Specific Target Organs 
Toxicity (Single/Repeated) 

: no data available 

 
Aspiration hazard : no data available 

 
Other : Perfluorosulfonic acid/TFE copolymer: 

 
The substance is a polymer and is not expected to produce toxic effects.   
 

 
Section 12 - Ecological Information 

Ecotoxicity effects 
Toxicity to fish :  Perfluorosulfonic acid/TFE copolymer: 

 
The substance is a polymer and is not expected to produce toxic effects. 
 
 

Persistence and 
degradation 

: no data available 
 

Bioaccumulation : no data available 
 

Mobility in soil : no data available 
 
Other adverse effects : Nafion

®
 PFSA Membranes: 

 
Toxicity is expected to be low based on insolubility in water.  
 

 
 

Section 13 - Waste Disposal 

Waste disposal methods : Like most thermoplastic plastics the product can be recycled.  Where possible 
recycling is preferred to disposal or incineration.  If recycling is not practicable, 
dispose of in compliance with local regulations.  Can be landfilled, when in 
compliance with local regulations.  Incinerate only if incinerator is capable of 
scrubbing out hydrogen fluoride and other acidic combustion products.   
Used package: Empty containers should be taken to an approved waste 
handling site for recycling or disposal.  

 
 

Section 14 - Transport Information 

Not classified as dangerous in the meaning of transport regulations. 
 
 

Section 15 - Regulatory Information 

not regulated 
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Section 16 - Other Information 

References : not applicable 
 
Other information : For further information contact the local DuPont office or DuPont's nominated 

distributors. The DuPont Oval Logo is a registered trademark of E.I. du Pont 
de Nemours and Company.  
Do not use DuPont materials in medical applications involving implantation in 
the human body or contact with internal body fluids or tissues unless the 
material has been provided from DuPont under a written contract that is 
consistent with DuPont policy regarding medical applications and expressly 
acknowledges the contemplated use. For further information, please contact 
your DuPont representative. You may also request a copy of the DuPont 
POLICY Regarding Medical Applications H-50103-3 and DuPont CAUTION 
Regarding Medical Applications H-50102-3. 
 
 

 
 
Significant change from previous version is denoted with a double bar. 
 
The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief 
at the date of its publication. The information given is designed only as a guide for safe handling, use, 
processing, storage, transportation, disposal and release and is not to be considered a warranty or quality 
specification. The above information relates only to the specific material(s) designated herein and may not be 
valid for such material(s) used in combination with any other materials or in any process or if the material is 
altered or processed, unless specified in the text. 



 

 

 

 

 
Appendix 2:- The Spiegel Model 

  



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Example 8-2: GDL Model 
  
% C. Spiegel, PEM Fuel Cell Modeling and Simulation using MATLAB, Elsevier, 
Burlington, (2008).  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% Assumptions 
  
%water vapour at  Thermodynamic equilibrium and fully saturated 
% no liquid water in the gas channel 
% pure oxygen 
% gas movement includes Fickean and  convective movement (Darcey) 
% thermal conductivity is considered a linear effect from wet and dry 
phases 
% solid graphite cathode boundary 
  
  
%%%%%%%%%%%%%%%%% 
  
% Units 
  
% T = kelvin 
%P = atmospheres 
  
  
clc 
clear all 
format long e 
  
  
% define paramters 
  
eps = 0.2; % perturbation parameter (h/l or y/(4*d) in this case) set to 
0.2 simulates GDM pores 
  
% define the number fo grid points in x & y directions 
  
nx = 25; %101; % Number of grid points in direction 'x' - set to 25 
  
ny = 17; %65;  % Number of grid points in direction 'y' - set to 17 
  
% SOR parameters 
  
omega = 1.4; % SOR parameter - Successive over relaxation iterative 
solution method - set to 1.4 
  
%%% 
%capilary efects?? 
%%% 
t = (2.0*cos(pi/(nx*ny)))^2; %??? 
  
% Calulate optimum value of SOR parameter 
  



omega1 = 16.0+sqrt((256.0-(64.0*t)))/(2.0*t); 
  
omega2 = 16.0-sqrt((256.0-(64.0*t)))/(2.0*t); 
  
oopt= min(omega1,omega2); 
  
if ((oopt<=1.0)||(oopt>=2.0)) 
    oopt=1.0; 
end 
omega = oopt; 
  
% define domain dimensions  
  
Lx = 2.0; % length of 'x' in the computation region 
  
Ly = 1.0; % length of 'y' in the computation region 
  
% Calcualte the mesh size 
  
hx = Lx/(nx-1); % x direction grid spacing 
  
hy = Ly/(ny-1); % y direction grid spacing 
  
  
% generate the mesh grid 
  
x(1) = -1.0; 
y(1) = 0.0; 
  
for i = 2:nx 
    x(i) = x(i-1)+hx; 
end 
  
for j = 2:ny 
    y(j)=y(j-1)+hy; 
end 
  
%%%%%%%%%%%%%%%%% 
  
% Solve the temperature eqn. 
  
% Initialize temperature field as zero 
  
T=zeros(nx,ny); 
  
% Max-norm Error {L-inf Error} initialised 
  
%define 'Tolerance' - the degree of convergence of the iterative 
%'Successive Over-Relaxation' matrix solution method 
  
Tollerance = 1e-5; 
Linf=1.0; 
iteration=0; 
while(Linf > Tollerance) %e-5 in the text 
    iteration=iteration+1; 
    %store the old values of T in 'told' 
    Told=T; 



    %Apply boundary conditions 
     
    for i = 1:nx 
        %BC for the bottom boundary 
        T(i,1)=T(i,2)+hy; 
        %BC for the top boundary 
     
        if (x(i)<=0) 
            T(i,ny)=1; 
        else 
            T(i,ny)=0; 
         
        end 
    end 
    for j=1:ny 
    %BC for the left boundary 
    T(1,j)=T(2,j); 
    %BC for the right boundry (NB - Says 'left' in the text... 
    T(nx,j)=T(nx-1,j); 
    end 
     
    % Now compute interior domain using 2nd order finite difference 
    for i=2:nx-1 
        for j=2:ny-1 
             
            % insert T= 60 deg (+ kelvin) for the first value fo 'T' then 
            % re-writ eto avoid overwriting again 
        Tterm1=((eps/hx)^2)*(T(i-1,j)+T(i+1,j)); 
        Tterm2=((1.0/hy)^2)*(T(i,j-1)+T(i,j+1)); 
         
        Tnum= Tterm1 + Tterm2; 
        den=2.0*(((eps/hx)^2)+((1.0/hy)^2)); 
         
        Tgs=Tnum/den; 
        T(i,j)=(omega*Tgs)+((1.0-omega)*Told(i,j)); 
        end     
    end 
  
% claculate error 
  
Terr=abs(T-Told); 
Linf=norm(Terr,2); 
  
  
% Print the convergence history every 100 iterations 
  
Tccheck = round(iteration/100)-(iteration/100); 
if ((iteration==1)||(Tccheck==0)) 
    fprintf('%d \t%e \n',iteration,Linf); % ??? 
end 
  
end %  in the text book here... 
  
% plot the solutions 
  
figure 
[X,Y]=meshgrid(x,y); 



clevel=[-1 -0.005 0 0.053 0.152 0.252 0.352 0.451 0.551 0.65 0.75 0.949 
1.049 1.148 1.248 1.348 1.447 1.547 1.646 1.746 1.848 1.945 2.0 3.0]; 
contourf(X',Y',T,clevel) 
colorbar 
axis([-1.2 1.2 -0.8 1.8]) 
xlabel ('x across half channel / half land ','FontSize', 18) 
ylabel ('y (through the GDL)' ,'FontSize', 18) 
zlabel('T(x,y)') 
title('Temperature through the Cathode GDL', 'FontSize', 18) 
hold on 
yi = [0.0:0.01:1]; 
xi=[zeros(length(yi))]; 
    plot (xi, yi, 'black') 
    %print -djpeg figures\chap4\temperature 
     
     
    
%%%%%%%%% 
%Save data to file 
version = 0; 
version = version +1; 
filename = ['GDL_model_8_2_Temp_' num2str(version)]; 
save (filename) 
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Solve the [O2 conc] eqn 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%omega=1.0 %SOR parameter  - should whole line be commented out?? 
  
% Initialise [O2 conc] as zero 
  
u=zeros(nx,ny); 
  
% NB copy and paste form above - check through! 
  
% Max-norm Error {L-inf Error} initialised 
  
Linf=1.0; 
iteration=0; 
while(Linf > Tollerance) %e-5 in the text 
    iteration=iteration+1; 
    %store the old values of U in 'Uold' 
    uold=u; 
    %Apply boundary conditions 
     
    for i = 1:nx 
        %BC for the bottom boundary 
        u(i,1)=u(i,2)-(1.81*(eps^2)*hy); 
        %BC for the top boundary 
     
        if (x(i)<=0) 
            u(i,ny)=1; 
        else 
            u(i,ny)=u(i,ny-1); 



        end 
    end 
     
    for j=1:ny 
    %BC for the left boundary 
    u(1,j)=u(2,j); 
    %BC for the right boundry (NB - Says 'left' in the text...) 
    u(nx,j)=u(nx-1,j); 
    end 
     
    % Now compute interior domain using 2nd order finite difference 
    for i=2:nx-1 
        for j=2:ny-1 
        uterm1=((eps/hx)^2)*(u(i-1,j)+u(i+1,j)); 
        uterm2=((1.0/hy)^2)*(u(i,j-1)+u(i,j+1)); 
         
        unum=uterm1 + uterm2; 
        den=2.0*(((eps/hx)^2)+((1.0/hy)^2)); 
         
        ugs=unum/den; 
        u(i,j)=(omega*ugs)+((1.0-omega)*uold(i,j)); 
        end     
    end 
  
% calculate error 
  
uerr=abs(u-uold); 
Linf=norm(uerr,2); 
  
% plot the converegence history every 100 iterations 
uccheck=round(iteration/100)-(iteration/100); 
if ( iteration ==1) 
    fighandle = figure; 
    hold on 
end 
  
if (uccheck==0) 
    fprintf('%d\t %e \n', iteration, Linf,'r.'); % ??? 
    hold on  
end 
end 
close (fighandle); 
  
% plot soluitons 
  
figure 
[X,Y] = meshgrid(x,y); 
clevel = [-1 -0.5 -0.087 -0.031 0 0.025 0.08 0.136 0.192 0.247 0.303 0.359 
0.415 0.47 0.526 0.582 0.693 0.749 0.805 0.86 0.916 0.916 0.972 1 3.0]; 
  
contourf(X', Y', u, clevel) 
colorbar 
axis([-1.2 1.2 -0.8 1.8]) 
xlabel ('x across half channel / half land ','FontSize', 12) 
ylabel ('y (through the GDL)' ,'FontSize', 12) 
zlabel('u(x,y)') 
title('O2 conc. through the Cathode GDL','FontSize', 18) 
hold on 
yi=[0:0.01:1]; 



xi=zeros(length(yi)); 
plot (xi, yi, 'black') 
 %print -djpeg figures\chap4\conctration 
     
    %%%%%%%%% 
%Save data to file 
version = 0; 
version = version +1; 
filename = ['GDL_model_8_2_O2Conc_' num2str(version)]; 
save (filename) 
  
%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Solve the [H2Og Conc'] eqn 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Initlise H2Og vapour conc' field as zeros 
  
v=zeros(nx,ny); 
  
% max-norm error {L-inf error} initialised 
  
Linf=1.0; 
iteration=0; 
  
while (Linf>Tollerance) %e-5 in the text 
    iteration = iteration +1; 
    % Store the old vluaes of v in vold 
    vold=v; 
     
    %apply the boundary ocnditions 
    for i=1:nx 
        %BC for the bottom boundry 
        v(i,1)=v(i,2)+(0.755*(eps^2)*hy); 
         
        %BC for top boundry 
        if (x(i)<=0) 
            v(i,ny)=1; 
        else 
            v(i,ny)=v(i,ny-1); 
        end 
    end 
     
    for j=1:ny 
        %BC for left boundary 
        v(1,j)=v(2,j); 
         
        %BC ofr right boundary 
         
        v(nx,j) = v(nx-1,j); 
    end 
     
    % now compute interior domains using 2nd order finite difference 
     
    for i = 2:nx-1 



        for j=2:ny-1 
            vterm1 = ((eps/hx)^2)*(v(i-1,j)+v(i+1, j)); 
            vterm2 = ((1.0/hy)^2)*(v(i,j-1)+v(i, j+1)); 
             
            vnum = vterm1 + vterm2; 
             
            den=2.0*(((eps/hx)^2)+((1.0/hy)^2)); 
             
            vgs = vnum/den; 
             
            v(i,j) = (omega*vgs)+((1.0-omega)*vold(i,j)); 
        end 
    end 
     
     
    % Calculate the error 
    verr=abs(v-vold);  
    Linf=norm(verr,2); 
     
    %plot the converegence history every 100 iterations 
     
    vccheck = round(iteration/100)-(iteration/100); 
    if (iteration ==1) 
        fighandle = figure; 
        hold on 
    end 
    if (vccheck==0) 
        fprintf('%d \t %e \n', iteration, Linf); 
        plot(iteration,Linf,'b-',iteration,Linf, 'r.') 
        hold on 
    end 
end 
close (fighandle); 
  
%plot solutions 
figure 
[X,Y]=meshgrid(x,y); 
clevel=[0 1 1.012 1.035 1.058 1.082 1.105 1.128 1.152 1.175 1.198 1.222 
1.245 1.268 1.291 1.315 1.338 1.361 1.385 1.408 1.431 3]; 
contourf(X',Y',v,clevel) 
colorbar 
axis([-1.2 1.2 -0.8 1.8]) 
xlabel ('x across half channel / half land ','FontSize', 12) 
ylabel ('y (through the GDL)' ,'FontSize', 12) 
zlabel('v(x,y)') 
title('H2O vapour conc. through the Cathode GDL','FontSize', 18) 
hold on 
yi=[0:0.1:1]; 
xi=zeros(length(yi)); 
plot (xi,yi,'black') 
  
%print djpeg figures chap4 etc etc 
  
% save data to file  
version = 0; 
version = version +1; 
filename = ['GDL_model_8_2_H2OConc_' num2str(version)]; 
save (filename) 
  



%%%%%%%%%%%%%%%%%%% 
  
% Calculate the water vapour saturation 
% and the 'S' variable form eqn 4.4  (NB wrong, its eqn 8-165 and eqns  
  
%%%%%% 
%thermodynamic 'lookup tabel' (aka 'steam table') calculations 
%based on 80 deg c (353Kelvin) 
%%%%%% 
  
for i=1:nx 
    for j=1:ny 
        term1 = 710.0/((2.0*T(i,j))+353.0); 
        term2 = (7.87e-2)*T(i,j); 
        term3 = (5.28e-4)*(T(i,j)^2); 
        term4 = (2.65e-6)*(T(i,j)^3); 
         
        vsat(i,j) = term1*(exp((-0.869+term2 - term3 +term4))); 
        S(i,j) = (v(i,j)-vsat(i,j))/vsat(i,j); 
    end 
end 
  
% plot the solutions 
  
figure 
[X,Y]=meshgrid(x,y); 
clevel = [-1 0 0.045 0.07 0.105 0.134 0.167 0.2 0.233 0.266 0.299 0.332 
0.365 0.397 0.43 0.463 0.496 0.529 0.562 0.595 0.628 0.661 0.694 0.711 1.0]; 
  
contourf(X',Y',S,clevel) 
colorbar 
axis([-1.2 1.2 -0.8 1.8]) 
xlabel ('x across half channel / half land ','FontSize', 12) 
ylabel ('y (through the GDL)' ,'FontSize', 12) 
zlabel ('S(v,T)') 
title('H2O saturation through the Cathode GDL','FontSize', 18) 
hold on 
yi=[0:0.1:1]; 
xi=zeros(length(yi)); 
plot(xi,yi,'black') 
  
 %print -djpeg figures\chap4\saturation4 
  
  
% save data to file  
version = 0; 
version = version +1; 
filename = ['GDL_model_8_2_H2OConc_' num2str(version)]; 
save (filename) 
  
%%%%%%%%%%%%%%%%%%% 
  
  
         
  
  
  
 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% EG 9_1 - Modelling catalyst layers 
  
%model only valid up to 1.2 Amps load 
  
  
Deff_O2_H_Nafion = 4e-15; % effective oxygen diffusivity in nafion times 
henrys law constant 
c_ref_H2 = 1.2e3; %mol per m^3) 
c_ref_O2 = c_ref_H2/2;  %mol per m^3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% handling inhomegnous reactions 
  
% 
  
% Paramaters 
  
A=11.34                       % Area of the FCCA test cell 
F = 96487;                    % Faradays constant 
R = 8.31434;                  % Ideal gas constant 
R2 = 83.1434;                 % ideal gas constant 
T = 333.15;                   % Temp (K) 
Tc = T-273.15;                % Temp (C) 
 Psi_O2_agg = 1.5e-11     % O2 permeation in agglomerates (= -
4*(pi)*n*F*R*Deff_O2*Cs_O2) from wang etal in Yang * P t chumani  
                                %  in the chapter  "transport and 
                                %  electrochemical phenomena" in Fuel cell 
                                %  technology: reaching towards 
                                %  commercialisation by N.Sammes (ed) 
  
Psi_H2_agg =2e-11;       % H2 permeation in agglomerates 
R_agg_an = 110e-5;            % agglomerate radius in anode 
R_agg_cat = 110e-5;           % agglomerate radius in cathode 
P_gas=1.5;                      % total gas pressure (atm) 
P_H2 = 1.5;                     % hydrogen pressure (atm) 
P_air = 1.5;                    % air pressure (atm) 
S=0.6e-12;                    % Saturation (pressure) 
x_O2_g =0.21;                 % mole fraction of O2 in the air-gas phase 
x_H2_g = 1;                   % mole fraction of H2 in the H2 phase 
alpha_a = 1;                  % anode transfer coef 
alpha_c = 0.9;                % cathode transfer coef 
R_ohm = 0.02;                 % constant ohmic resistance (ohm-cm^2) 
il = 1.4;                     % limiting current density (re-calaualet for 
FCCA?) 
k = 1.1;                      % mass transport constant 
Alpha_1 = 0.085;              % amplification constant (aka the fudge 
factor...) 
Gf_liq = -228170;             % Gibbs function in liquid form (J/mol) 
for a120 =500:1125:5000                % electrode specific interfacial 
area (1/cm)  - cyclovoltemtry for my MEAs? 
volt = 0.14:0.00675:0.9567;    % voltage steps - edited to match experiment 
i = 0:0.0021:0.252;              % current steps -A/cm2, 1.2 is maximum 
                   % A.cm^2 
Rcl=20e-3; 
E0=0.875; 
Ec1=Rcl.*i.^0.419; 
Ec2=Rcl.*i.^0.581; 



  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Calculate partial pressures 
  
% Calculate saturation pressure of water (steady state 
% evaporation/condensation pressure at the given temperature) 
  
x = -2.17994 + 0.02953.*Tc - 9.1837.*(10^-5).*(Tc.^2) + 1.4454.*(10^-
7).*(Tc.^3); 
  
P_H2O = (10.^x); % sloved by taking the log value of x) 
  
% partial Presure of H2 
  
pp_H2 = 0.5.*((P_H2)./(exp(1.653.*i./(T.^1.334)))-P_H2O); 
  
% partial presure of O2 
  
pp_O2 = (P_air./exp(4.192.*i/(T.^1.334)))-P_H2O; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Reaction 1: H2O(liquid) generation 
  
% exchange current density - from Butler volmer 
  
i_orr = 1.0e-7.*exp((73269./R).*((1./303)-(1./T)));  % NB is thsi right ? 
give i_oprr at e-6, and shoudl be e-3?close all 
  
  
% kinetic portion of thiele modulus 
  
k_O2 = a120.*i_orr./(4*F).*exp(((-alpha_c.*F)./(R.*T)).*(Ec1-Ec2-volt)); 
  
% Thiele modulus 
  
phi_O2 = R_agg_cat.*sqrt(k_O2./Psi_O2_agg); 
  
% effectiveness factor (as a result of mass transfer and reaction) 
  
E_O2 = 3./phi_O2.^2.*(phi_O2./tanh(phi_O2)-1); % = original code 
  
% E_O2 = (1./(3.*phi_O2.^2)).*(3.*phi_O2.*(coth(3.*phi_O2))-1); %= original 
working out in text 
  
% reaction rate of liquid water at cathode catalyst layers 
  
rate_rx_H2Ol = k_O2.*x_O2_g.* P_gas .*(1-S).*E_O2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Reaction 2:   Hydrogen oxidation 
  
% Exchange current density (A/cm^2) 
  



i_hor = 1e-3.*exp((9500./R).*((1./303)-(1./T))); 
  
% kinetic portion o f thiele modulus 
  
  
k_h = a120.*i_hor./(2.*F).*exp((alpha_a*F)./(R.*T).*volt); 
  
% Thiele modulus 
  
phi_H2 = R_agg_an.*sqrt(k_h./Psi_H2_agg); 
  
% effectiveness factor due to mass transfer & reaction 
  
E_H2 = 3./phi_H2.^2.*(phi_H2./tanh(phi_H2)-1); 
  
i_h = exp(-(alpha_c.*F)./(R.*T).*volt)./exp((alpha_a.*F)./(R.*T).*volt); 
  
% reaction rate of hydrogen  at anode catalyst layer 
  
rate_rx_H2 = k_h.*(x_H2_g.*P_gas-i_h).*(1-S).*E_H2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Calculate activation losses (Butler volmer method) 
  
%activation loss (anode) 
  
V_act_anode = ((R.*T)./((alpha_a + alpha_c).*F)).*log(i./(i_hor.*a120.*(1-
S).*(x_H2_g.*P_gas))); 
  
% activation loss (cathode) 
  
V_act_cathode = log(i./(-a120.*(1-S).*i_orr.*(x_O2_g.*P_gas)))*((R.*T)./(-
alpha_c.*F)); 
  
%total activation losses 
  
V_act = V_act_anode + V_act_cathode; 
  
% ohmic Losses 
V_ohmic = -(i.*R_ohm); 
  
% mass transport losses 
  
term = (1-(i./il)); 
if term >0 
    V_mass = Alpha_1.*(i.^k).*log(1-(i./il)); 
else 
    V_mass = 0; 
end 
  
% Nernst voltage loss (equilibrium voltage - shouldn’t really be used to 
model systems with flowing current...)  
  
E_nernst = -Gf_liq./(2.*F)-
((R.*T).*log(P_H2O./(pp_H2.*(pp_O2.^0.5))))./(2.*F); 



  
% actual output voltage 
  
V_out = E_nernst + V_ohmic  + V_act + V_mass; 
  
if term <0 
    V_mass = 0; 
end 
if V_out < 0 
V_out = 0; 
end 
  
%plot Current Vs effectiveness factor 
  
figure1 = figure ('color',[1 1 1]); 
  
hdlp = plot(i , E_O2, i, E_H2); 
  
title ('Cell Current Vs. Effectivenss Factor', 'FontSize', 18) 
xlabel ('Cell Current (A/cm^2)','FontSize',12) 
ylabel('Effectivenss Factor','FontSize',12) 
  
set (hdlp,'lineWidth',1.5); 
legend('Eff-O2','Eff-H2') 
  
% axis ([0 1.4 0 0.7]) 
grid on; 
  
%plot Current Vs Voltage (cell) 
  
figure2 = figure ('color',[1 1 1]); 
hdlp = plot(i,V_act); 
  
title ('Cell Current (activation loss) Vs. Voltage', 'FontSize', 18) 
xlabel ('Cell Current (A/cm^2)','FontSize',12) 
ylabel('Voltage (volts)','FontSize',12) 
  
set (hdlp,'lineWidth',1.5); 
  
grid on; 
  
% plot polarisation curve 
  
figure3 = figure ('color',[1 1 1]); 
hdlp = plot(i,V_out); 
  
title ('Cell Current Vs. Voltage', 'FontSize', 18) 
xlabel ('Cell Current (A/cm^2)','FontSize',12) 
ylabel('Voltage (volts)','FontSize',12) 
  
set (hdlp,'lineWidth',1.5); 
  
grid on; 
  
  
  
% plot flux density of hydrogen 



  
figure4 = figure ('color',[1 1 1]); 
hdlp = plot(i,rate_rx_H2); 
  
title ('Superficial flux density of H2', 'FontSize', 18) 
xlabel ('Cell Current (A/cm^2)','FontSize',12) 
ylabel('Flux Density H2 (mol/cm^2 . s)','FontSize',12) 
  
set (hdlp,'lineWidth',1.5); 
  
grid on; 
  
  
end 
  
  
  
  
 
 



 

 

 

 

 
Appendix 3: - Original Data 

  



Matlab Code for polarisation curve creation, and gradient of curve fitting 

open_csv_files_1.m  

%Creates 'structure' Array 
CSVFiles = dir('*.CSV');  
numfiles = length(CSVFiles); 
mydata = cell(1, numfiles); 
  
for k = 1:numfiles  
  mydata{k} = xlsread(CSVFiles(k).name);  
end 
  
display 'finished' 
 

 

Current_density_array4.m 

 %%%%%%%%%%%%%%%% 
curve fitting for polarisaitn data generated by IE FCCA and then 'filtered' 
through the 'Current_density_array4' matlab prgraame 
  
 
    % run 'open_csv_files_1' 
  
    %then run this file 
%%%%%%%%%%%%%%%% 
 
 
 
    %A = active Area of GDL in cm^2 
    %Pol = Current/voltage data 
    %T=fuel cell test data file names 
    %X = all AMPs measured data foem files  
    %Y = all VOLTS measured data from files  
    %c = count of files 
    %fit =  GRA-Hong commands 
    %k = iterative step 
    %l = length of x 
    %m= a number 
    %mydata = all data files from analysis 
    %n = numberfo files (differs for C how???) 
    %normresid = curve fitting function 
    %numfiles= number of files (cf ‘c’) 
    %p=  a number 
    %resids = curve  fitting function  
    %x = last plot x data (A/cm^2) 
    %y = last plot y data (V) 
    %t=average temp during test 
  
 for c=1:length(mydata);%each column in mydata 
       A=11.64; 
    Y(1:length(mydata{1,c}(:,2)),c)=mydata{1,c}(:,2); 
    X(1:length(mydata{1,c}(:,3)),c)=mydata{1,c}(:,3)/A; 
    Pol=[mydata{1,c}(:,3)/A,mydata{1,c}(:,2)]; 
    %%%%%%%%%%%%%%this next!!!----->>> 
temp(1:length(mydata{1,c}(:2)=mydata{1,c}(:4); 
    %% 



  
    %****NEXT STEP TO CREATE POLARISATION PLOT**** 
    l=0; % l measures the start point of the last step change  
    m=1; % m measures the number of times the current density steps 
        for n=1:length(Pol)-1 % Steps through every value 
  
            if Pol(n,1)<Pol(n+1,1)-0.02 %Threshold to determine 'step' 
chnage in Amps 
               mean_pol(m,1)=mean(Pol((l+1):n,1)); %Mean current between 
last steps 
               mean_pol(m,2)=mean(Pol((l+1):n,2)); %Mean voltage between 
steps 
               l=n; % Records point of step change in array for next 
iteration 
               m=m+1; % Records number of steps 
            end 
        end 
  
        if m==1 
            fprintf('Failed to read %6.2f \n',c); 
            figure 
        else 
           % addding trend line, using the mean_pol data  
           p = polyfit(mean_pol(:,1),mean_pol(:,2),3); 
            x=linspace(min(mean_pol(:,1)),max(mean_pol(:,1)),100); 
            y = polyval(p,x); 
  
            %% 
  
  
            %Plotting the mean pol data, trend line and tri-part gradients 
together 
             
              
     
            figure 
            subplot(2,1,1) 
            plot(mean_pol(:,1),mean_pol(:,2),'o',x,y) 
            axis([0 0.9 0 1.2]) 
            xlabel('Current Density [A/cm^2]') 
            ylabel('Cell voltage [V]') 
             
  
            %get plot title from file Name 
            T=getfield(CSVFiles(c,1),'name'); 
            title(T) 
            %***NOTE - TITLE seqience to be checked! failed reading 
disrputs sequience 
  
  
        end 
  
            hold on 
  
             
     
try 
     



  
    %stage 1 - find the gradient of the acitavion part of the polarisation 
curve 
  
    % Find x values for plotting the fit based on xlim 
    axesLimits1 = xlim; 
  
  
    xplot3 = linspace (x(1), x(20)); 
    %xplot1 = linspace(axesLimits1(1), axesLimits1(2)); 
  
  
     % Find coefficients for polynomial (order = 1) - Activation Losses 
    fitResults3 = polyfit(x(1:20), y(1:20),1); 
    % Evaluate polynomial 
    yplot3 = polyval(fitResults3, xplot3); 
  
  
    % Plot the fit 
    fitLine3 = plot(xplot3,yplot3, 'g x','LineWidth',2); 
    gA = fitResults3(1); %Gradientof fitted line for catalytic activation  
losses 
  
  
  
    % Plot the fit 
    fitLine3 = plot(xplot3,yplot3, 'k --','LineWidth',2); 
    gA = fitResults3(1); %Gradientof fitted line for catalytic activation  
losses 
    text (0.1, 1, num2str(gA)) % displays gradient of ohmic loss on the 
chart 
  
    text (0.1, 0.925, 'activation loss') 
  
  
    l1=0; %l measures start point of last step change 
    m1=1; % m measures number of times 'length-s' changes 
       
    for n1=1:length(x)-1 %for every value of 'x' 
               %%% need to iterate to find  'max(RSQyM)' 
  
            % Find x values for plotting the fit based on xlim 
            axesLimits1 = xlim; 
            xplot1 = linspace (x(length(x)-n1), x(length(x))); %NB let n=25 
to test code 
  
  
            % Find coefficients for polynomial (order = 1) - Mass Losses 
            fitResults1 = polyfit(x(length(x)-n1:length(x)), y(length(y)-
n1:length(y)),1); 
            % Evaluate polynomial 
            yplot1 = polyval(fitResults1, xplot1); 
  
            %Find Coef of determination (R^2) as R^2= 1-SSresid/SStot  
            yM = y(length(y)-n1:length(y)); 
            yresid = yM - xplot1(length(xplot1)-n1:length(xplot1)); 
            SSresid = sum(yresid.^2); 



            SStot = (length(yM)-1*var(yM)); 
            RSQyM(n1) = 1-SSresid/SStot; 
       end 
  
    % having found maximum r^2, we now plot the fit line again, but this 
time record the data on the plot     
       [Y,n1] = max(RSQyM); 
  
       % Find x values for plotting the fit based on xlim 
    axesLimits1 = xlim; 
    xplot1 = linspace (x(length(x)-n1), x(length(x))); %NB let n=25 to test 
code 
  
  
    % Find coefficients for polynomial (order = 1) - Mass Losses 
    fitResults1 = polyfit(x(length(x)-n1:length(x)), y(length(y)-
n1:length(y)),1); 
    % Evaluate polynomial 
    yplot1 = polyval(fitResults1, xplot1); 
  
    %Find Coef of determination (R^2) as R^2= 1-SSresid/SStot  
    yM = y(length(y)-n1:length(y)); 
    yresid = yM - xplot1(length(xplot1)-n1:length(xplot1)); 
    SSresid = sum(yresid.^2); 
    SStot = (length(yM)-1*var(yM)); 
    RSQyM(n1) = 1-SSresid/SStot; 
  
    % Plot the fit 
    fitLine1 = plot(xplot1,yplot1, 'r --','LineWidth',2); 
    gM = fitResults1(1); %Gradientof fitted line for mass transport losses 
    text (0.65, 0.375, num2str(gM)) % displays gradient of mass loss on the 
chart  
    text (0.65, 0.3, 'mass loss') 
  
     
  
    %% 
  
    axesLimits1 = xlim; 
    xplot2 = linspace (x(25), x(length(x)-(n1+1))); 
    %xplot1 = linspace(axesLimits1(1), axesLimits1(2)); 
  
     % Find coefficients for polynomial (order = 1) - Activation Losses 
    fitResults2 =  polyfit(x(25:(length(x)-n1+1)), y(25:(length(y)-
n1+1)),1); 
    % Evaluate polynomial 
    yplot2 = polyval(fitResults2, xplot2); 
  
  
    % Plot the fit 
    fitLine2 = plot(xplot2,yplot2, 'm --','LineWidth',2); 
    gO = fitResults2(1); %Gradient of fitted line for Ohmic losses 
    text (0.4, 0.875, num2str(gO)) % displays gradient of ohmic loss on the 
chart 
    text (0.4, 0.8, 'ohmic loss') 
  
catch 
     



    %Create I/A Polarisation array from loaded workspace structure 
    clear mean_pol 
    c=c+1; 
  
  
end 
pow=x.*y; 
            Wmax=max(pow); 
            subplot(2,1,2) 
            plot(x, pow) 
            axis([0 0.9 0 0.6]) 
            xlabel('Current Density [A/cm^2]') 
            ylabel('Power Density [W/cm^2]')             
             
  
            text (0.4, 0.2, num2str(Wmax)) % displays peak power on the 
chart 
  
            text (0.4, 0.15, 'W/cm^2 at Peak Power') 
  
            Tbar=mean(mydata{1,c}(:,4)); 
            Tmax=max(mydata{1,c}(:,4)); 
     
  
            text (0.3, 0.5, num2str(Tbar)) % displays mean temp on the 
chart 
            text (0.3, 0.45, 'T mean(^oC)') 
             
            text (0.5, 0.5, num2str(Tmax)) % displays max temp on the chart 
            text (0.5, 0.45, 'T max(^oC)') 
       
%% need to rename files (eg to reflect 9 vs 09)             
      Grad(c).Sample_ID = T; 
      Grad(c).gA = gA; 
      Grad(c).gO = gO; 
      Grad(c).gM = gM; 
      Grad(c).Tbar = Tbar; 
      Grad(c).Tmax = Tmax; 
      Grad(c).Current = x; 
      Grad(c).Volts = y; 
      Grad(c).Watts = pow; 
      Grad(c).FCCA = str2num(T(5)); 
      Grad(c).Cell_Number = str2num(T(11)); 
      Grad(c).Aek_ID = str2num(T(17:18)); 
      %% this section adds in the month and day, assuming year is 201'X' 
      Grad(c).month = str2num(T((findstr(T,'201')+4):(findstr(T,'201')+5))); 
      Grad(c).day = str2num(T((findstr(T,'201')+6):(findstr(T,'201')+7))); 
       
       
       
       
%Create I/A Polarisation array from loaded workspace structure 
    clear mean_pol 
    c=c+1; 
  
 end 
  
  



AeK & NMcC results (included and excluded) 
 

 

random 
order std order T bar Tmax T amb RH% amb

T 
dewpoint PTFEwt% Thickness

H2O 
angle

Mean 
pore sz

% 
porosity FCCA Cell# MPL? Structure Supplier gA gO gM Wmax

26 1 65.93592233 67.2 20 78 16 185 96 769 64.9 2 4 yes felt E-Tek -0.4967 -0.32539 -0.32539 0.41184
25 2 67.26168224 70.2 20 78 16 0.125 260 116 2998 60.2 2 3 yes paper Ballard -0.70605 -0.57405 -0.57405 0.291079

120 3 71.99446494 74.1 6 86 4 370 120 1717 61.8 1 1 no paper Toray -0.95484 -0.81947 -0.81947 0.232571
87 4 70.88235294 72.9 20 68 13 370 120 1717 61.8 1 1 no paper Toray -0.74987 -0.60598 -0.60598 0.271828
35 5 71.78850174 73.6 18 68 11 0.125 210 116 859 44.8 2 2 yes paper Ballard -1.07546 -0.55971 -0.55971 0.292917

123 6 69.04084507 70.2 8 79 5 280 138 3324 67.2 2 3 no paper Toray -0.73623 -0.45697 -0.45697 0.258089
16 7 69.42 69.5 12 88 11 275 90 1055 31.8 1 2 yes woven E-Tek -0.60181 -0.41027 -0.41027 0.356796

126 8 67.29836601 68.1 8 79 5 190 129 2631 63.1 1 4 no paper Toray -0.85836 -0.75685 -0.75685 0.271305
41 9 69.33354037 71.2 18 68 11 0 250 61 1148 46.2 1 1 yes felt Freudenberg -0.60076 -0.3242 -0.3242 0.407627

112 10 70.26109091 72.4 10 78 6 0 320 79 1631 71 1 3 no woven Tennex toho -0.95318 -0.59866 -0.59866 0.226989
71 11 68.06521739 69.1 18 63 10 0.2 315 134 1593 40.8 2 2 yes paper Sigracet -0.89463 -0.59714 -0.59714 0.298892
59 12 68.71263158 70 15 81 12 0.05 235 104 2450 40 2 3 yes paper Sigracet -0.65247 -0.38796 -0.38796 0.355034
5 13 66.86724138 68.3 12 88 11 185 96 769 64.9 2 1 yes felt E-Tek -0.62379 -0.42522 -0.42522 0.352303
4 14 62.36903226 64.1 14 86 11 275 90 1055 31.8 1 2 yes woven E-Tek -0.6757 -0.5019 -0.5019 0.331536

118 15 71.55501859 73.1 6 86 4 280 138 3324 67.2 2 2 no paper Toray -1.05484 -0.76863 -0.76863 0.236122
21 16 69.57110266 71.8 20 78 16 0 250 121 658 49.2 2 1 yes felt Freudenberg -0.69993 -0.37941 -0.37941 0.337575
44 17 70.98960573 72.9 18 68 11 0 250 121 658 49.2 1 2 yes felt Freudenberg -0.62048 -0.43682 -0.43682 0.360479

111 18 70.58055556 71.9 10 78 6 0 320 79 1631 71 1 3 no woven Tennex toho -0.9654 -0.72827 -0.72827 0.226125
37 19 70.4537037 72 18 68 11 0 230 122 682 47 2 3 yes felt Freudenberg -0.69788 -0.3504 -0.3504 0.371907
40 20 70.99423077 72.8 18 78 14 121 658 49.2 1 1 no felt Freudenberg -0.63926 -0.35496 -0.35496 0.34664
78 21 67.81058394 70.2 18 63 10 0.05 420 122 2919 34.6 1 2 yes paper Sigracet -0.54941 -0.43046 -0.43046 0.377988
69 22 68.47625418 69.5 18 72 12 0.2 315 123 1593 40.8 2 1 yes paper Sigracet -0.79866 -0.60063 -0.60063 0.290312

101 23 73.95754717 75.2 10 78 6 0 266 126 2291 66.9 2 1 no woven Tennex toho -0.73474 -0.64423 -0.64423 0.24465
125 24 66.59223301 67 8 79 5 190 129 2631 63.1 1 4 no paper Toray -0.77224 -0.55642 -0.55642 0.296435
57 25 66.54594595 67.4 15 81 12 0.125 260 116 2998 60.2 2 2 yes paper Ballard -0.91424 -0.57862 -0.57862 0.290152

117 26 71.03404255 72.1 6 86 4 280 138 3324 67.2 2 2 no paper Toray -0.95568 -0.60779 -0.60779 0.257372
103 27 69.21326531 70.3 10 78 6 0.05 190 1705 66.2 2 2 no paper Sigracet -0.88271 -0.68253 -0.68253 0.273462
13 28 70.01982759 71.7 12 88 11 0.05 235 112 842 36.5 1 1 yes Sigracet -0.56238 -0.3275 -0.3275 0.390078
8 29 69.275 70.8 12 88 11 0.05 235 104 2450 40 2 2 yes paper Sigracet -0.7428 -0.35287 -0.35287 0.3764
79 30 70.4503876 71.5 18 70 12 0.125 260 116 2998 60.2 1 4 yes paper Ballard -0.72727 -0.60125 -0.60125 0.308091
85 31 70.70029499 72.8 18 70 12 121 658 49.2 2 3 no felt -0.77761 -0.55131 -0.55131 0.320475
96 32 70.77003155 72.9 18 69 12 0.125 170 111 993 48.7 2 1 no Ballard -0.81283 -0.5245 -0.5245 0.305078
47 33 69.46846847 70.7 18 77 13 0 250 61 1148 46.2 2 1 yes felt Freudenberg -0.46157 -0.33684 -0.33684 0.438713
46 34 70.44765101 72.2 18 68 11 0.125 180 114 1528 44.9 1 4 no paper Ballard -1.08014 -0.552 -0.552 0.295196
38 35 71.69398496 74.2 18 68 11 0 230 122 682 47 2 3 yes felt Freudenberg -0.61239 -0.3306 -0.3306 0.378642

114 36 66.03444444 66.4 6 91 4 0.05 300 123 2469 70.5 1 4 no paper Sigracet -0.72914 -0.7271 -0.7271 0.240351
122 37 71.47086331 72.8 6 86 4 370 120 1717 61.8 1 2 no paper Toray -1.00524 -0.92121 -0.92121 0.227683
1 38 68.57354086 71.1 14 86 11 0 250 121 658 49.2 2 1 yes felt Freudenberg -0.69745 -0.47636 -0.47636 0.311354
83 39 70.69935275 72.8 20 68 13 121 658 49.2 2 2 no felt -0.75649 -0.38322 -0.38322 0.357691
28 40 68.98690476 71.5 20 78 16 0 230 122 682 47 1 1 yes felt Freudenberg -0.75647 -0.54786 -0.54786 0.315333

119 41 72.09961538 73.8 6 86 4 370 120 1717 61.8 1 1 no paper Toray -0.92658 -0.62114 -0.62114 0.250117
86 42 70.68 72.2 20 68 13 370 120 1717 61.8 1 1 no paper Toray -0.66717 -0.50242 -0.50242 0.292309
36 43 71.88648649 72.8 18 68 11 0.125 210 116 859 44.8 2 2 yes paper Ballard -0.82607 -0.53232 -0.53232 0.312744
56 44 64.49265734 67 16 71 11 0.05 235 112 842 36.5 2 1 yes paper Sigracet -0.62722 -0.39207 -0.39207 0.368751
94 45 70.77003155 72.9 18 69 12 0.125 170 111 993 48.7 2 1 no Ballard -0.90476 -0.5245 -0.5245 0.305078

108 46 69.86569343 72.6 10 78 6 0.05 190 98 2208 73 1 1 no paper Sigracet -0.58807 -0.59653 -0.59653 0.288869
23 47 68.27670251 70.6 20 78 16 0.05 315 126 2197 47.5 2 2 yes paper Sigracet -0.77625 -0.49554 -0.49554 0.328364
10 48 70.32038835 71.8 12 88 11 0.05 315 126 2197 47.5 2 3 yes paper Sigracet -0.57458 -0.3657 -0.3657 0.379998

124 49 66.20334572 67.1 8 79 5 280 138 3324 67.2 2 3 no paper Toray -0.93454 -0.45036 -0.45036 0.249951
65 50 68.55090253 70.9 15 81 12 0.05 420 122 2919 34.6 1 4 yes paper Sigracet -0.61822 -0.41138 -0.41138 0.348455
58 51 66.65234657 68.2 15 81 12 0.125 260 116 2998 60.2 2 2 yes paper Ballard -0.83795 -0.58385 -0.58385 0.290489
63 52 66.91650485 68 15 81 12 0 235 1 2 yes Sigracet -0.83534 -0.6838 -0.6838 0.284018

116 53 67.0637037 68.9 6 86 4 190 129 2631 63.1 2 1 no paper Toray -1.07529 -1.00169 -1.00169 0.203241
50 54 69.52722222 71.4 18 77 13 0 250 117 158 61 2 2 yes felt Freudenberg -0.77452 -0.46508 -0.46508 0.299482
24 55 66.65 69.8 20 78 16 0.125 260 116 2998 60.2 2 3 yes paper Ballard -0.83792 -0.69927 -0.69927 0.272239

105 56 70.71188119 71.9 10 78 6 110 133 2625 64.6 2 3 no paper Toray -0.88042 -0.65616 -0.65616 0.270484
55 57 64.02043796 65.4 16 71 11 0.05 235 112 842 36.5 2 1 yes paper Sigracet -0.58413 -0.35998 -0.35998 0.375896
31 58 69.51858407 70.4 20 78 16 0.125 170 111 993 48.7 1 4 no paper Ballard -0.7876 -0.55547 -0.55547 0.301367
64 59 67.16176471 68.8 15 81 12 0 235 1 2 yes Sigracet -0.74172 -0.55956 -0.55956 0.289036
27 60 69.10188088 70.8 20 78 16 0 230 122 682 47 1 1 yes felt Freudenberg -0.60755 -0.45944 -0.45944 0.34663
15 61 70.27272727 71.5 12 88 11 275 90 1055 31.8 1 2 yes woven E-Tek -0.60181 -0.41027 -0.41027 0.356796
80 62 70.56814815 72.5 18 70 12 0.125 260 116 2998 60.2 1 4 yes paper Ballard -0.84753 -0.66126 -0.66126 0.292236
67 63 70.41002865 72.6 18 72 12 0.05 420 122 2919 34.6 1 4 yes paper Sigracet -0.78464 -0.41822 -0.41822 0.318525
30 64 70.71693122 72.9 20 78 16 0 250 117 158 61 1 2 yes felt Freudenberg -0.4 -1.70798 -0.40018 0.309215
89 65 69.74067797 71.8 20 68 13 190 129 2631 63.1 1 2 no paper Toray -4.46875 -0.11149 -3.78125 0.262493
92 66 69.60098039 70.8 18 69 12 0.125 107 2074 62.4 1 4 no paper Ballard -0.63534 -0.44332 -0.44332 0.352449
51 67 69.30197628 70.7 18 77 13 0 250 61 1148 46.2 1 1 yes felt Freudenberg -0.59725 -0.49349 -0.49349 0.355679
90 68 66.0887931 67 18 69 12 0.125 180 114 1528 44.9 1 2 no paper -0.72366 -0.69013 -0.69013 0.254484
61 69 70.51442308 71.8 16 71 11 0.05 325 118 2469 70.5 1 1 yes paper Sigracet -0.62026 -0.45014 -0.45014 0.310196
49 70 68.94031008 69.9 18 77 13 0 250 117 158 61 2 2 yes felt Freudenberg -0.85655 -0.4913 -0.4913 0.297628
52 71 69.7 72.3 18 77 13 0 250 61 1148 46.2 1 1 yes felt Freudenberg -0.83104 -0.40297 -0.40297 0.316283
33 72 72.07575758 73.4 18 68 11 0.05 235 112 842 36.5 2 1 yes Sigracet -0.57964 -0.36922 -0.36922 0.393123
98 73 65.73728814 67.4 18 69 12 280 138 3324 67.2 2 2 no paper Toray -1.07403 -0.8423 -0.8423 0.231224

100 74 70.18981132 72.3 18 69 12 0 356 68 3401 64.9 2 3 no woven Ballard -0.8081 -0.56092 -0.56092 0.277946
48 75 66.9095941 68.2 18 77 13 0 250 61 1148 46.2 2 1 yes felt Freudenberg -0.55301 -0.3594 -0.3594 0.403485
62 76 70.65248227 72.8 16 71 11 0.05 325 118 2469 70.5 1 1 yes paper Sigracet -0.61106 -0.47629 -0.47629 0.303239
34 77 72 74.4 18 68 11 0.05 235 112 842 36.5 2 1 yes Sigracet -0.55602 -0.3739 -0.3739 0.383323

104 78 69.41967213 71.3 10 78 6 0.05 190 1705 66.2 2 2 no paper Sigracet -0.89896 -0.69695 -0.69695 0.264169
19 79 71.42031662 75.2 20 61 12 1 4 yes -0.5984 -0.47313 -0.47313 0.361817
17 80 64.3932387 74.1 20 61 12 275 90 1055 31.8 1 2 yes woven E-Tek -0.74742 -0.33419 -0.33419 0.32824
11 81 69.11358491 70.7 20 61 12 0.125 210 116 859 44.8 2 4 yes paper Ballard -0.78529 -0.44551 -0.44551 0.300323
29 82 70.08931298 71.5 20 78 16 0 250 117 158 61 1 2 yes felt Freudenberg -0.64914 -0.41736 -0.41736 0.372647
39 83 71.24619718 73.9 18 78 14 121 658 49.2 1 1 no felt Freudenberg -0.71393 -0.39285 -0.39285 0.328033
14 84 69.19577465 73.7 20 61 12 0.05 235 112 842 36.5 1 1 yes Sigracet -0.56215 -0.42927 -0.42927 0.375815
81 85 67.5578125 69.6 20 68 13 2 1 no -2.57143 -0.5 -1.28571 0.342986
6 86 70.36215485 74.3 20 61 12 185 96 769 64.9 2 1 yes felt E-Tek -0.4828 -0.55766 -0.55766 0.321892
66 87 68.66779661 69.8 15 81 12 0.05 420 122 2919 34.6 1 4 yes paper Sigracet -0.63168 -0.41526 -0.41526 0.351207
18 88 70.55762712 71.7 12 88 11 1 4 yes -0.62365 -0.41939 -0.41939 0.378449
76 89 70.53804348 73.2 18 63 10 0.05 325 118 2469 70.5 1 1 yes paper Sigracet -0.51205 -0.40504 -0.40504 0.381586

113 90 68.13653846 68.9 6 91 4 0.05 300 123 2469 70.5 1 4 no paper Sigracet -0.78162 -0.67698 -0.67698 0.254765
12 91 70.57400531 74 20 61 12 0.125 210 116 859 44.8 2 4 yes paper Ballard -0.91963 -0.24503 -0.24503 0.30315
9 92 71.4860523 76.6 20 61 12 0.05 315 126 2197 47.5 2 3 yes paper Sigracet -0.81367 -0.29534 -0.29534 0.348302

121 93 71.29 72.3 6 86 4 370 120 1717 61.8 1 2 no paper Toray -0.81821 -0.75374 -0.75374 0.240992
43 94 70.91333333 72.1 18 68 11 0 250 121 658 49.2 1 2 yes felt Freudenberg -0.60774 -0.43592 -0.43592 0.366334

106 95 70.55899281 72.5 10 78 6 110 133 2625 64.6 2 3 no paper Toray -0.7959 -0.77073 -0.77073 0.263454
68 96 70.13259259 71.4 18 72 12 0.05 420 122 2919 34.6 1 4 yes paper Sigracet -0.71206 -0.41375 -0.41375 0.32905

107 97 69.82692308 71.9 10 78 6 0.05 190 98 2208 73 1 1 no paper Sigracet -0.68873 -0.73495 -0.73495 0.271926
102 98 73.93666667 75.5 10 78 6 0 266 126 2291 66.9 2 1 no woven Tennex toho -0.7836 -0.67668 -0.67668 0.232315
91 99 66.4540146 68.3 18 69 12 0.125 180 114 1528 44.9 1 2 no paper Ballard -0.75797 -0.74179 -0.74179 0.246999
75 100 69.90660377 71.8 18 63 10 0.05 325 118 2469 70.5 1 1 yes paper Sigracet -0.53242 -0.37853 -0.37853 0.382384
74 101 69.27532051 71.9 18 63 10 0.125 210 116 859 44.8 2 3 yes paper Ballard -0.78894 -0.18913 -0.18913 0.375527
53 102 70.68653846 71.9 18 77 13 0 250 117 158 61 1 4 yes felt Freudenberg -0.65644 -0.43645 -0.43645 0.355322
73 103 68.73876404 70.4 18 63 10 0.125 210 116 859 44.8 2 3 yes paper Ballard -0.65194 -0.29007 -0.29007 0.383809
54 104 70.28014706 72.4 18 77 13 0 250 117 158 61 1 4 yes felt Freudenberg -0.59612 -0.48007 -0.48007 0.356794
95 105 70.52121212 71.9 18 69 12 0.125 170 111 993 48.7 2 1 no Ballard -0.74805 -0.54364 -0.54364 0.307896
20 106 70.04 71.4 20 78 16 0 250 121 658 49.2 2 1 yes felt Freudenberg -0.72713 -0.43255 -0.43255 0.337341
88 107 69.17980769 70.5 20 68 13 190 129 2631 63.1 1 2 no paper Toray -2.10019 -0.465 -0.465 0.22773
45 108 70.03961039 71 18 68 11 0.125 180 114 1528 44.9 1 4 no paper Ballard -0.89522 -0.36304 -0.36304 0.332117
70 109 69.08284672 70.4 18 72 12 0.2 315 123 1593 40.8 2 1 yes paper Sigracet -0.74853 -0.57945 -0.57945 0.292415
84 110 70.57478992 71.7 18 70 12 121 658 49.2 2 3 no felt -0.6499 -0.51141 -0.51141 0.341
97 111 65.14795918 66.2 18 69 12 280 138 3324 67.2 2 2 no paper Toray -1.02541 -0.72818 -0.72818 0.241824
7 112 70.2131744 74 20 61 12 0.05 235 104 2450 40 2 2 yes paper Sigracet -1.10012 -0.09676 -0.09676 0.330883
93 113 69.85481481 72.2 18 69 12 0.125 107 2074 62.4 1 4 no paper Ballard -0.63198 -0.42876 -0.42876 0.349589
60 114 68.72618182 71.3 15 81 12 0.05 235 104 2450 40 2 3 yes paper Sigracet -0.66642 -0.38119 -0.38119 0.355711

109 115 62.55391304 63.5 10 78 6 0.05 400 1 2 no paper Sigracet -0.69197 -0.75673 -0.75673 0.208183
99 116 69.77 71.1 18 69 12 0 68 3401 64.9 2 3 no woven -0.72749 -0.56699 -0.56699 0.292696
22 117 65.87536946 69.2 20 78 16 0.05 315 126 2197 47.5 2 2 yes paper Sigracet -0.80132 -0.50274 -0.50274 0.332261
82 118 70.27075472 71.5 20 68 13 121 658 49.2 2 2 no felt -0.74142 -0.40035 -0.40035 0.367182
72 119 68.62454212 70 18 63 10 0.2 315 134 1593 40.8 2 2 yes paper Sigracet -0.85931 -0.61827 -0.61827 0.295414
3 120 69.4772766 72.6 14 86 11 275 90 1055 31.8 1 1 yes woven E-Tek -0.60245 -0.47957 -0.47957 0.34452

110 121 63.95183486 65.8 10 78 6 0.05 400 1 2 no paper Sigracet -0.69003 -0.71184 -0.71184 0.209428
2 122 60.3601043 62.9 14 86 11 0.05 315 126 2197 47.5 2 2 yes paper Sigracet -0.86574 -0.54118 -0.54118 0.286431
42 123 70.20298913 72.7 18 68 11 0 250 61 1148 46.2 1 1 yes felt Freudenberg -0.55014 -0.36625 -0.36625 0.383576
32 124 69.21402214 71.7 20 78 16 0.125 170 111 993 48.7 1 4 no paper Ballard -0.75249 -0.52559 -0.52559 0.300912
77 125 68.29363636 69.4 18 63 10 0.05 420 122 2919 34.6 1 2 yes paper Sigracet -0.58151 -0.43146 -0.43146 0.374685

115 126 66.27525773 67.3 6 86 4 190 129 2631 63.1 2 1 no paper Toray -0.98352 -0.88928 -0.88928 0.212169



Initial M-ANoVAR (ManCoVar) results 

 Activation loss gradient multivariate analysis 

The activation loss gradient is analysed for co varying factors in a backward step linear regression 

model.  Note that the following results are taken directly from the Design Expert Pro ® software, as is 

the text in italics 

ANOVA (Man-co-var)  for Response Surface Reduced 2FI Model, Analysis of variance table 
[Classical sum of squares - Type II] 

  Sum of   Mean F p-value 
 Source Squares df Square Value Prob > F 
 Model 1.03942 20 0.05197 7.03990 < 0.0001 significant 

    A-Tbar 0.02746 1 0.02746 3.71985 0.0593   
    B-Tmax 0.03084 1 0.03084 4.17731 0.0461 * 
    C-Ambient 
Tbar 0.00346 1 0.00346 0.46804 0.4970   
    F-PTFE 0.01851 1 0.01851 2.50713 0.1195   
    K-Porosity 0.02410 1 0.02410 3.26397 0.0767   
    L-FCCA 0.07176 1 0.07176 9.71983 0.0030 *** 
    M-Cell 0.11299 3 0.03766 5.10171 0.0037 ** 
    N-MPL 0.05119 1 0.05119 6.93397 0.0112 ** 
    P-Supplier 0.20157 3 0.06719 9.10143 < 0.0001 *** 
    AM 0.10680 3 0.03560 4.82210 0.0050 ** 
    BC 0.02169 1 0.02169 2.93817 0.0926   
    BK 0.07488 1 0.07488 10.14323 0.0025 ** 
    CL 0.03700 1 0.03700 5.01213 0.0296 ** 
    CN 0.02332 1 0.02332 3.15917 0.0815   
Residual 0.37650 51 0.00738 

   Cor Total 1.41593 71 
    Table gA Regression 

The Model F-value of 7.04 implies the model is significant.  There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise.  Values of "Prob > F" less than 0.0500 indicate 
model terms are significant and   marked with one or more asterisks  (*) depending on their 
significance  Values greater than 0.1000 indicate the model terms are not significant.   

 

 

Std. Dev. 0.0859208 R-Squared 0.734095 
Mean -0.7282915 Adj R-Squared 0.629819 
C.V. % 11.797579 Pred R-Squared 0.492552 
PRESS 0.7185088 Adeq Precision 10.94973 

Table gA summary 



The "Pred R-Squared" of 0.4926 is in reasonable agreement with the "Adj R-Squared" of 0.6298. 
"Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your ratio 
of 10.950 indicates an adequate signal.  This model can be used to navigate the design space. 
  Coefficient   Standard 95% CI 95% CI     
Term Estimate df Error Low High VIF sqrtVIF 
Intercept -6.16770 1 3.38592 -12.96523 0.62982     
A-Tbar -0.03233 1 0.14283 -0.31908 0.25441 18.14981 4.26026 
B-Tmax 0.00177 1 0.13856 -0.27639 0.27993 19.17069 4.37843 
C-Ambient 
Tbar 0.00812 1 0.04566 -0.08355 0.09978 4.65255 2.15698 
F-PTFE -5.36992 1 3.39140 -12.17845 1.43861 3.83315 1.95784 
K-Porosity -0.04544 1 0.04120 -0.12815 0.03727 5.10274 2.25893 
L-FCCA 0.00973 1 0.02702 -0.04453 0.06398 7.11710 2.66779 
M[1] -0.06865 1 0.03591 -0.14073 0.00344     
M[2] -0.11575 1 0.02874 -0.17345 -0.05806     
M[3] -0.01116 1 0.05311 -0.11779 0.09547     
N -0.01677 1 0.03139 -0.07979 0.04624 6.02090 2.45375 
P[1] 0.10839 1 0.02799 0.05221 0.16457     
P[2] -0.33225 1 0.06670 -0.46616 -0.19834     
P[3] 0.09584 1 0.04171 0.01211 0.17958     
AM[1] 0.16362 1 0.07918 0.00466 0.32259     
AM[2] 0.15614 1 0.06997 0.01566 0.29662     
AM[3] 0.25159 1 0.13615 -0.02175 0.52493     
BC -0.20319 1 0.11854 -0.44118 0.03479 7.17560 2.67873 
BK 0.36380 1 0.11423 0.13448 0.59313 5.44620 2.33371 
CL -0.09107 1 0.04068 -0.17274 -0.00940 8.39792 2.89792 
CN -0.08231 1 0.04631 -0.17527 0.01066 4.96469 2.22816 

Table gA regression error assessment 

Final Equation in Terms of Coded Factors:  



gA  = 
-6.16770 

 -0.03233  * A 
0.00177  * B 
0.00812  * C 
-5.36992  * F 
-0.04544  * K 
0.00973  * L 
-0.06865  * M[1] 
-0.11575  * M[2] 
-0.01116  * M[3] 
-0.01677  * N 
0.10839  * P[1] 
-0.33225  * P[2] 
0.09584  * P[3] 

0.16362 
 * 
AM[1] 

0.15614 
 * 
AM[2] 

0.25159 
 * 
AM[3] 

-0.20319  * BC 
0.36380  * BK 
-0.09107  * CL 
-0.08231  * CN 

 

Table gA coded factors 

 

 

  



Ohmic loss gradient multivariate analysis 

The Ohmic loss gradient is analysed for co varying factors in a backward step linear regression model.  

Note that the following results are taken directly from the Design Expert Pro ® software, as is the text 

in italics 

Note that the following results are taken directly from the Design Expert Pro ® software, as is the text 

in italics 

ANOVA (Man-co-var)  for Response Surface Reduced 2FI Model Analysis of variance table 
[Classical sum of squares - Type II] Stepwise Regression with Alpha to Enter = 0.100, Alpha to Exit 
= 0.100 
  Sum of   Mean F p-value 

 
Source Squares df Square Value 

Prob > 
F 

 
Model 1.18 9 0.13 5.25 

< 
0.0001 significant 

    D-Ambient RHbar 0.28 1 0.28 11.33 0.0013 *** 
    F-PTFE 0.32 1 0.32 12.97 0.0006 *** 
    K-Porosity 0.13 1 0.13 5.34 0.0242 ** 
    L-FCCA 0.17 1 0.17 6.99 0.0103 ** 
    M-Cell 0.22 3 0.074 2.98 0.0382 ** 
    O-structure 0.2 2 0.098 3.93 0.0248 ** 
Residual 1.55 62 0.025 

   Cor Total 2.72 71 
    Table gO regression 

The Model F-value of 5.25 implies the model is significant.  There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate 
model terms are significant.  In this case D, F, K, L, M, O are significant model terms.  Values greater 
than 0.1000 indicate the model terms are not significant.   

Std. Dev. 0.16 R-Squared 0.4324 
Mean -0.49 Adj R-Squared 0.3501 
C.V. % 31.95 Pred R-Squared 0.2527 
PRESS 2.03 Adeq Precision 9.317 

Table gO summary 

The "Pred R-Squared" of 0.2527 is in reasonable agreement with the "Adj R-Squared" of 0.3501. 
Adeq Precision measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your ratio of 
9.317 indicates an adequate signal.  This model can be used to navigate the design space. 

 

  Coefficient   Standard 95% CI 95% CI     
Term Estimate df Error Low High VIF sqrtVIF 
Intercept -19.6 1 5.29 -30.18 -9.02     
D-Ambient RHbar -0.14 1 0.042 -0.22 -0.057 1.26 1.12250 
F-PTFE -19.12 1 5.31 -29.74 -8.51 2.78 1.66733 
K-Porosity -0.093 1 0.04 -0.17 -0.013 1.44 1.20000 



L-FCCA 0.064 1 0.024 0.016 0.11 1.68 1.29615 
M[1] 0.02 1 0.032 -0.044 0.084     
M[2] -0.096 1 0.032 -0.16 -0.031     
M[3] 0.023 1 0.042 -0.06 0.11     

O[1] -0.13 1 0.058 -0.24 
-9.80E-
03     

O[2] 0.12 1 0.045 0.036 0.21     
Table 1 gO error assessment 

Final Equation in Terms of Coded Factors: 

gO  = 
-19.6 

 -0.14  * D 
-19.12  * F 
-0.093  * K 
0.064  * L 
0.02  * M[1] 
-0.096  * M[2] 
0.023  * M[3] 
-0.13  * O[1] 
0.12  * O[2] 

Table gO coded factors 

 

  



Mass loss gradient multivariate analysis 

The mass loss gradient is analysed for co varying factors in a backward step linear regression model.  

Note that the following results are taken directly from the Design Expert Pro ® software, as is the text 

in italics 

Note that the following results are taken directly from the Design Expert Pro ® software, as is the text 

in italics 

Analysis of variance table [Classical sum of squares – Type II] II] 

  Sum of   Mean F p-value 
 Source Squares df Square Value Prob > F 
 Model 1.13 31 0.037 14.38 < 0.0001 significant 

    A-Tbar 1.50E-03 1 1.50E-03 0.59 0.4463   
    C-Ambient Tbar 5.27E-03 1 5.27E-03 2.08 0.1575   
    D-Ambient RHbar 0.029 1 0.029 11.49 0.0016 *** 
    E-dew point T 1.42E-03 1 1.42E-03 0.56 0.4592   
    F-PTFE 7.23E-03 1 7.23E-03 2.85 0.0993 * 
    G-Thickness 0.028 1 0.028 11.03 0.0019 *** 
    H-H2O contact 
angle 0.017 1 0.017 6.51 0.0146 ** 
    L-FCCA 0.018 1 0.018 7.01 0.0115 ** 
    M-Cell 0.024 3 7.87E-03 3.1 0.0373 ** 
    N-MPL 8.56E-04 1 8.56E-04 0.34 0.5648   
    P-Supplier 0.03 3 9.95E-03 3.92 0.0152 ** 
    AL 2.49E-03 1 2.49E-03 0.98 0.3276   
    CD 0.039 1 0.039 15.55 0.0003 **** 
    CH 8.97E-03 1 8.97E-03 3.53 0.0675   
    DE 1.92E-03 1 1.92E-03 0.76 0.39   
    DL 5.53E-03 1 5.53E-03 2.18 0.1478   
    EG 1.72E-03 1 1.72E-03 0.68 0.4156   
    EN 3.67E-03 1 3.67E-03 1.44 0.2365   
    EP 0.03 2 0.015 5.9 0.0057 *** 
    FN 1.94E-03 1 1.94E-03 0.76 0.3877   
    LN 2.58E-04 1 2.58E-04 0.1 0.7517   
    MN 9.27E-03 3 3.09E-03 1.22 0.3162   
    E^2 3.48E-03 1 3.48E-03 1.37 0.2486   
    H^2 0.063 1 0.063 24.88 < 0.0001 *** 
Residual 0.1 40 2.54E-03       
Cor Total 1.23 71   

   Table gM regression 

The Model F-value of 14.38 implies the model is significant.  There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate 
model terms are significant.  In this case D, G, H, L, M, P, CD, EP, H++2+- are significant model 
terms.  Values greater than 0.1000 indicate the model terms are not significant.  
 
 



Std. Dev. 0.05 R-Squared 0.9177 
Mean -0.48 Adj R-Squared 0.8538 
C.V. % 10.59 Pred R-Squared N/A 
PRESS N/A Adeq Precision 18.76 

Table: gM Summary 

Case(s) with leverage of 1.0000:  Pred R-Squared and PRESS statistic not defined Adeq Precision 
measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your ratio of 18.760 indicates 
an adequate signal.  This model can be used to navigate the design space. 

 

 

 

Table gM Regression error assessment 

  Coefficient   Standard 95% CI 95% CI     
Term Estimate df Error Low High VIF sqrt(VIF) 
Intercept 
 42.62 1 55.62 -69.8 155.03     
A-Tbar 0.033 1 0.07 -0.11 0.17 12.54 3.541186 
C-Ambient Tbar -0.21 1 0.17 -0.55 0.14 188.6 13.73317 
D-Ambient RHbar -0.099 1 0.11 -0.33 0.13 93.51 9.670057 
E-dew point T -0.085 1 0.37 -0.83 0.66 864.35 29.39983 
F-PTFE 43.37 1 55.95 -69.72 156.46 3032.95 55.07223 
G-Thickness 0.1 1 0.11 -0.12 0.32 55.89 7.475961 
H-H2O contact 
angle -0.027 1 0.1 -0.24 0.18 72.32 8.504117 
L-FCCA 0.099 1 0.14 -0.19 0.38 560.58 23.67657 
M[1] 0.054 1 0.082 -0.11 0.22     
M[2] -0.19 1 0.17 -0.52 0.15     
M[3] 0.2 1 0.27 -0.34 0.74     
N 48.11 1 55.22 -63.48 159.71 5.42E+07 7358.668 
P[1] -2.83E-03 1 0.052 -0.11 0.1     
P[2] -0.11 1 0.23 -0.57 0.35     
P[3] 0.015 1 0.097 -0.18 0.21     
AL -0.07 1 0.071 -0.21 0.073 25.86 5.085273 
CD -0.38 1 0.096 -0.57 -0.18 30.15 5.490902 
CH -0.27 1 0.14 -0.57 0.021 85.93 9.269844 
DE 0.22 1 0.25 -0.29 0.72 72.1 8.491172 
DL -0.05 1 0.034 -0.12 0.019 8.87 2.978255 
EG 0.23 1 0.28 -0.34 0.81 68.18 8.257118 
EN 0.11 1 0.093 -0.076 0.3 42.83 6.544463 
EP[1] 0.25 1 0.14 -0.042 0.53     
EP[2] -0.5 1 0.17 -0.85 -0.16     
EP[3]  ALIASED   Intercept, E, P[1], P[2], P[3], EP[1], EP[2]  
FN 48.55 1 55.6 -63.81 160.92 5.43E+07 7366.817 
LN 0.041 1 0.13 -0.22 0.3 431.91 20.78244 
M[1]N 0.069 1 0.084 -0.1 0.24     
M[2]N -0.16 1 0.16 -0.49 0.18     
M[3]N 0.16 1 0.27 -0.38 0.71     
E^2 0.27 1 0.23 -0.2 0.74 203.85 14.2776 
H^2 -0.32 1 0.064 -0.45 -0.19 7.63 2.762245 



Final Equation in Terms of Coded Factors: 

 

Table: gM coded factors 

  

gM  = 
42.62 

 0.033  * A 
-0.21  * C 
-0.099  * D 
-0.085  * E 
43.37  * F 
0.1  * G 
-0.027  * H 
0.099  * L 
0.054  * M[1] 
-0.19  * M[2] 
0.2  * M[3] 
48.11  * N 
-2.83E-03  * P[1] 
-0.11  * P[2] 
0.015  * P[3] 
-0.07  * AL 
-0.38  * CD 
-0.27  * CH 
0.22  * DE 
-0.05  * DL 
0.23  * EG 
0.11  * EN 
0.25  * EP[1] 
-0.5  * EP[2] 
48.55  * FN 
0.041  * LN 
0.069  * M[1]N 
-0.16  * M[2]N 
0.16  * M[3]N 
0.27  * E^2 
-0.32  * H^2 



Maximum Power  multivariate analysis 

The peak power is analysed for co varying factors in a backward step linear regression model.  Note 

that the following results are taken directly from the Design Expert Pro ® software, as is the text in 

italics 

Note that the following results are taken directly from the Design Expert Pro ® software, as is the text 

in italics 

ANOVA for Response Surface Reduced Quadratic Model Analysis of variance table [Classical sum of 
squares - Type II] 

  Sum of   Mean F p-value  
Source Squares df Square Value Prob > F  
Model 0.1465 30 0.0049 26.6756 < 0.0001 significant 
    B-Tmax 0.0001 1 0.0001 0.8130 0.3725   
    C-Ambient Tbar 0.0002 1 0.0002 1.0427 0.3132   
    D-Ambient RHbar 0.0009 1 0.0009 4.9657 0.0314 * 
    E-dew point T 0.0005 1 0.0005 2.8026 0.1017   
    F-PTFE 0.0129 1 0.0129 70.3322 < 0.0001 **** 
    G-Thickness 0.0011 1 0.0011 6.2108 0.0168 * 
    H-H2O contact angle 0.0041 1 0.0041 22.2774 < 0.0001 **** 
    K-Porosity 0.0016 1 0.0016 8.8374 0.0049 ** 
    L-FCCA 0.0009 1 0.0009 4.8972 0.0325 * 
    M-Cell 0.0044 3 0.0015 7.9285 0.0003 ** 
    N-MPL 0.0031 1 0.0031 17.1404 0.0002 *** 
    BK 0.0001 1 0.0001 0.3798 0.5411   
    CD 0.0028 1 0.0028 15.0878 0.0004 *** 
    DE 0.0039 1 0.0039 21.4309 < 0.0001 **** 
    DM 0.0075 3 0.0025 13.5996 < 0.0001 **** 
    FN 0.0003 1 0.0003 1.7433 0.1940   
    HL 0.0042 1 0.0042 23.1889 < 0.0001 **** 
    HM 0.0028 3 0.0009 5.0343 0.0046 ** 
    KN 0.0010 1 0.0010 5.4022 0.0251 * 
    LM 0.0021 3 0.0007 3.7561 0.0180 * 
    B^2 0.0026 1 0.0026 14.2595 0.0005 *** 
    G^2 0.0001 1 0.0001 0.2916 0.5921  
Residual 0.0075 41 0.0002    
Cor Total 0.1540 71     
Table Wmax regression 

 

 

 

 

 



The Model F-value of 26.68 implies the model is significant.  There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise.  Values of "Prob > F" less than 0.0500 indicate 
model terms are significant.   In this case D, F, G, H, K, L, M, N, CD, DE, DM, HL, HM, KN, LM, 
B++2+- are significant  model terms.  Values greater than 0.1000 indicate the model terms are not 
significant.   If there are many insignificant model terms (not counting those required to support 
hierarchy),  model reduction may improve your model.  

 

 

 

Std. Dev. 0.0135   R-Squared 0.9513 
Mean 0.3246   Adj R-Squared 0.9156 
C.V. % 4.1692   Pred R-Squared 0.8492 
PRESS 0.0232   Adeq Precision 22.3670 

 

Table Wmax summary 

 

 

 

The "Pred R-Squared" of 0.8492 is in reasonable agreement with the "Adj R-Squared" of 0.9156. 
"Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your  ratio 
of 22.367 indicates an adequate signal.  This model can be used to navigate the design space. 

 

     
 
 

 

 

 

 

 

 

 

 

 



 

 

 

  Coefficient   Standard 95% CI 95% CI   
Term Estimate df Error Low High VIF 
Intercept -1.24 1 1.77 -4.81 2.33   
B-Tmax 0.01 1 0.01 -0.01 0.03 3.7056 
C-Ambient 
Tbar 

-0.06 1 0.04 -0.13 0.02 130.0481 

D-Ambient 
RHbar 

-0.04 1 0.02 -0.08 0.01 50.0860 

E-dew point 
T 

0.03 1 0.03 -0.03 0.10 96.1201 

F-PTFE -1.57 1 1.78 -5.16 2.02 42.5405 
G-Thickness -0.01 1 0.02 -0.05 0.04 30.8052 
H-H2O 
contact 
angle 

-0.03 1 0.02 -0.07 0.01 36.5337 

K-Porosity 0.00 1 0.01 -0.02 0.03 17.8550 
L-FCCA 0.00 1 0.00 -0.01 0.01 8.5242 
M[1] 0.00 1 0.01 -0.02 0.02   
M[2] -0.03 1 0.01 -0.06 0.00   
M[3] -0.02 1 0.01 -0.05 0.01   
N 2.41 1 1.84 -1.32 6.13 838060.7944 
BK -0.01 1 0.02 -0.05 0.03 7.1192 
CD -0.09 1 0.02 -0.14 -0.04 25.8186 
DE 0.16 1 0.03 0.09 0.23 19.0797 
DM[1] -0.05 1 0.01 -0.07 -0.03   
DM[2] 0.03 1 0.01 0.02 0.05   
DM[3] 0.00 1 0.01 -0.02 0.02   
FN 2.45 1 1.86 -1.30 6.20 839131.3980 
HL -0.02 1 0.01 -0.04 -0.01 3.4230 
HM[1] 0.00 1 0.02 -0.04 0.04   
HM[2] 0.07 1 0.03 0.00 0.14   
HM[3] 0.06 1 0.03 0.00 0.11   
KN 0.03 1 0.01 0.00 0.06 19.3481 
LM[1] 0.01 1 0.01 0.00 0.03   
LM[2] 0.00 1 0.01 -0.01 0.01   
LM[3] 0.01 1 0.01 0.00 0.03   
B^2 -0.04 1 0.01 -0.07 -0.02 2.0948 
G^2 -0.02 1 0.04 -0.09 0.05 34.9987 

Table Wmax regression error assessment 

  



Final Equation in Terms of Coded Factors: 

Wmax  = 
-1.241236116 

 0.006247576  * B 
-0.058080436  * C 
-0.037282953  * D 
0.034538626  * E 
-1.570635136  * F 
-0.008918429  * G 
-0.025993673  * H 
0.001409558  * K 
0.004266927  * L 
-0.000592754  * M[1] 
-0.031218396  * M[2] 
-0.021007801  * M[3] 
2.408608361  * N 
-0.012675922  * BK 
-0.092777661  * CD 
0.159594237  * DE 
-0.053828199  * DM[1] 
0.034724819  * DM[2] 
0.001080968  * DM[3] 
2.450904592  * FN 
-0.024938601  * HL 
-0.001988837  * HM[1] 
0.067757276  * HM[2] 
0.055304047  * HM[3] 
0.031951185  * KN 
0.014508775  * LM[1] 
-0.003672266  * LM[2] 
0.011887253  * LM[3] 
-0.043565502  * B^2 
-0.018922243  * G^2 

 

Table Wmax coded factors 

 

  



constant Family 1 Family 2 fberg Family 1 Family 2
Eocv-i F-berg Torray within test mean within test variance Eocv-i Constant Square within test mean within test variance
0.3 low-D 0.7628 0.8505 0.8067 0.0038 0.3 low-D 0.7628 0.8300 0.7964 0.0023
0.4 high -D 0.7690 0.8960 0.8325 0.0081 0.4 high -D 0.7690 0.8698 0.8194 0.0051
0.38 uniform 0.8548 0.6573 0.7561 0.0195 0.38 uniform 0.8548 0.8740 0.8644 0.0002
mean 0.7955 0.8013 0.7984 =mean of means mean 0.7955 0.8579 0.8267 =mean of means
difference of means -0.002866667 0.002866667 difference of means -0.0312 0.0312
weighted values Family 1 Family 2 weighted values Family 1 Family 2
Eocv-i F-berg Torray within test mean within test variance Eocv-i Constant Square within test mean within test variance
0.3 low-D 0.7657 0.8476 0.8067 0.0034 0.3 low-D 0.7940 0.7988 0.7964 0.0000
0.4 high -D 0.7719 0.8931 0.8325 0.0074 0.4 high -D 0.8002 0.8386 0.8194 0.0007
0.38 uniform 0.8577 0.6544 0.7561 0.0207 0.38 uniform 0.8860 0.8428 0.8644 0.0009
mean 0.7984 0.7984 0.7984 =mean of means mean 0.8267 0.8267 0.8267 =mean of means
difference of means 0 0 difference of means 0 0

constant Family 1 Family 2 fberg Family 1 Family 2
V/hr loss F-Berg Torray within test mean within test variance V/hr loss constant square within test mean within test variance
0.3 low-D -0.0004 -0.0016 -0.0010 0.0000 0.3 low-D -0.0004 -0.0003 -0.0004 0.0000
0.4 high -D -0.0001 -0.0007 -0.0004 0.0000 0.4 high -D -0.0001 -0.0002 -0.0001 0.0000
0.38 uniform -0.0011 -0.0003 -0.0007 0.0000 0.38 uniform -0.0011 -0.0001 -0.0006 0.0000
mean -0.000563251 -0.00086178 -0.000712516 =mean of means mean -0.00056 -0.00021 -0.000387145 =mean of means
difference of means 0.000149265 -0.000149265 difference of means -0.000176107 0.00018
weighted values Family 1 Family 2 weighted values Family 1 Family 2
V/hr loss F-berg Torray within test mean within test variance V/hr loss constant square within test mean within test variance
0.3 low-D -0.0006 -0.0014 -0.0010 0.0000 0.3 low-D -0.0003 -0.0005 -0.0004 0.0000
0.4 high -D -0.0003 -0.0005 -0.0004 0.0000 0.4 high -D 0.0001 -0.0003 -0.0001 0.0000
0.38 uniform -0.0013 -0.0002 -0.0007 0.0000 0.38 uniform -0.0010 -0.0003 -0.0006 0.0000
mean -0.00071 -0.00071 -0.00071 =mean of means mean -0.00039 -0.00039 -0.000387145 =mean of means
difference of means 0 0 difference of means 0 0

constant fberg Family 1 Family 2
hours to Emax F-Berg Torray within test mean within test variance Hours to max constant square within test mean within test variance
0.3 low-D 32.7 120.0 76.4 3808 0.3 low-D 32.7 13.8 23.2744 179
0.4 high -D 373.3 420.0 396.7 1089 0.4 high -D 373.3 5.7 189.5267 67570
0.38 uniform 149.6 338.3 244.0 17810 0.38 uniform 149.6 17.9 83.7382 8676
mean 185.2 292.8 239.0 =mean of means mean 185.2 12.5 98.84641754 =mean of means
difference of means -53.8 53.8 difference of means 86.4 -86.4
weighted values Family 1 Family 2 weighted values Family 1 Family 2
hours to Emax F-berg Torray within test mean within test variance Hours to max constant square within test mean within test variance
0.3 low-D 86.5 66.2 76.4 206 0.3 low-D -53.6 100.2 23.2744 11834
0.4 high -D 427.1 366.2 396.7 1854 0.4 high -D 287.0 92.1 189.5267 18986
0.38 uniform 203.4 284.6 244.0 3295 0.38 uniform 63.2 104.3 83.7382 841
mean 239.0 239.0 239.0 =mean of means mean 98.8 98.8 98.84641754 =mean of means
difference of means 0.0 0.0 difference of means 0 0

Square Family 1 Family 2 torray Family 1 Family 2
Eocv-i F-berg Torray within test mean within test variance Eocv-i Constant Square within test mean within test variance
0.3 low-D 0.8300 0.8455 0.8377 0.0001 0.3 low-D 0.8505 0.8455 0.8480 0.0000
0.4 high -D 0.8698 0.8657 0.8678 0.0000 0.4 high -D 0.8960 0.8657 0.8809 0.0005
0.38 uniform 0.8740 0.8500 0.8620 0.0003 0.38 uniform 0.6573 0.8500 0.7537 0.0186
mean 0.8579 0.8537 0.8558 =mean of means mean 0.8013 0.8537 0.827496667 =mean of means
difference of means 0.0021 -0.002103333 difference of means -0.02623 0.02623
weighted values Family 1 Family 2 weighted values Family 1 Family 2
Eocv-i F-berg Torray within test mean within test variance Eocv-i Constant Square within test mean within test variance
0.3 low-D 0.8279 0.8476 0.8377 0.0002 0.3 low-D 0.8767 0.8193 0.8480 0.0017
0.4 high -D 0.8677 0.8678 0.8678 0.0000 0.4 high -D 0.9222 0.8395 0.8809 0.0034
0.38 uniform 0.8719 0.8521 0.8620 0.0002 0.38 uniform 0.6835 0.8238 0.7537 0.0098
mean 0.8558 0.8558 0.8558 =mean of means mean 0.8275 0.8275 0.8275 =mean of means
difference of means 0 0 difference of means 0 0

Square Family 1 Family 2 torray Family 1 Family 2
V/hr loss F-Berg Torray within test mean within test variance V/hr loss constant square within test mean within test variance
0.3 low-D -0.0003 -0.0035 -0.0019 0.0000 0.3 low-D -0.0016 -0.0035 -0.0025 0.00000
0.4 high -D -0.0002 -0.0130 -0.0066 0.0001 0.4 high -D -0.0007 -0.0130 -0.0068 0.00008
0.38 uniform -0.0001 -0.0007 -0.0004 0.0000 0.38 uniform -0.0003 -0.0007 -0.0005 0.00000
mean -0.0002 -0.0057 -0.0030 =mean of means mean -0.0009 -0.0057 -0.0033 =mean of means
difference of means 0.0028 -0.0028 difference of means 0.0024 -0.0024

weighted values Family 1 Family 2 weighted values Family 1 Family 2
V/hr loss F-berg Torray within test mean within test variance V/hr loss constant square within test mean within test variance
0.3 low-D -0.0031 -0.0007 -0.0019 0.0000 0.3 low-D -0.0040 -0.0010 -0.0025 0.00000
0.4 high -D -0.0029 -0.0102 -0.0066 0.0000 0.4 high -D -0.0031 -0.0105 -0.0068 0.00003
0.38 uniform -0.0029 0.0020 -0.0004 0.0000 0.38 uniform -0.0028 0.0017 -0.0005 0.00001
mean -0.0030 -0.0030 -0.0030 =mean of means mean -0.0033 -0.0033 -0.0033 =mean of means
difference of means 0 0 difference of means 0 0

Square torray Family 1 Family 2
hours to Emax F-Berg Torray within test mean within test variance Hours to max constant square within test mean within test variance
0.3 low-D 13.82 22.70 18.26 39.41 0.3 low-D 120.00 22.70 71.35 4734
0.4 high -D 5.72 11.22 8.47 15.14 0.4 high -D 420.00 11.22 215.61 83549
0.38 uniform 17.88 12.27 15.07 15.71 0.38 uniform 338.33 12.27 175.30 53158
mean 12.47 15.40 13.94 =mean of means mean 292.78 15.40 154.09 =mean of means
difference of means -1.46 1.46 difference of means 138.69 -138.69
weighted values Family 1 Family 2 weighted values Family 1 Family 2
hours to Emax F-berg Torray within test mean within test variance Hours to max constant square within test mean within test variance
0.3 low-D 15.28 21.24 18.26 17.72 0.3 low-D -18.69 161.39 71.35 16214.36
0.4 high -D 7.18 9.76 8.47 3.32 0.4 high -D 281.31 149.91 215.61 8632.55
0.38 uniform 19.34 10.81 15.07 36.39 0.38 uniform 199.64 150.96 175.30 1185.02
mean 13.94 13.94 13.94 =mean of means mean 154.09 154.09 154.09 =mean of means
difference of means 0.00 0.00 difference of means 0 0

Table:  weighted response (key outputs) 

 



 

 

 

Appendix 4: - Additional graphical and tabulated data 

  



This appendix presents the polarization load cycles and the curve fit and gradient measurement of the 
data gathered during polarisation curves.   

Those with interest in the topic may use the digital data (in the. Fig files provided in the digital 
version fo the appendices) and the associated programme files, to manipulate and investigate the data 
in detail. 

Each plot has an alphanumeric title to identify it:  

e.g.  FCCA1-Cell2-FUDL-MEA02-pol02-20150210|EO2.csv 

This title identifies the following information:  

Test apparatus (1 or 2)- test cell in that apparatus (1 to 4) – experiment code (FUDL) – Sample ID (e.g. 
MEA 02)- polarisation number – YearMonthDay|file save back up disc location and file type (.csv) 
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Journal paper: 

McCarthy et al. (2016): PTFE mapping in gas diffusion media for PEMFCs using 
fluorescence microscopy: International Journal of Hydrogen Energy: 41, 39, 17631–17643 

 

Conference paper: 

McCarthy et al. (2012): The impact of cathode gas diffusion structure on fuel cell 
performance:  ABAF XIII, Burno, Czech Republic 



The Impact of Cathode Gas Diffusion Layer Structure on Fuel Cell Performance 

 

Nicholas McCarthy*, Ahmad El-kharouf**, Rui Chen*, Waldemar Bujalski** 

 

* Dept. Aeronautical and Automotive Engineering, Loughborough University, LE11 
3TU, U.K.  ** PEM Fuel Cell Research Group, Centre for Hydrogen and Fuel Cell 

Research, School of Chemical Engineering, The University of Birmingham, Edgbaston, 
Birmingham B15 2TT, UK 

 

Abstract 

 

Four gas Diffusion Layer (GDL) materials have been investigated. Each Membrane 
Electrode Assembly (MEA) was manufactured with identical catalyst and binder 
loadings. MEAs were tested in-situ using a ‘Fuel Cell Component Analyser’ and 
polarisation curves produced and compared. GDL properties obtained in a previous 
work were considered for the analysis of the results. Results show differences in the 
polarisation response for different GDL structures; indicating changes in resistance loss, 
mass transport loss, and the flooding effects on fuel cells due to GDL structure. 

 

Introduction 

 

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) offer the potential of efficient, 
sustainable power solutions for the future. A key element in these devices is the Gas 
Diffusion Layer (GDL). It is critical for the transport of reactants to the catalyst active 
sites, the transport of charge into and out of the cell, and water management in the MEA. 
The variation in performance for different GDLs has been reported in the literature (1, 2). 
The difference is explained by the variation in the characteristics of the samples tested, 
however, due to the many variables in the GDL materials properties, explaining the 
variation in GDL performance can prove to be challenging. Some studies have focused 
on testing GDL properties in order to achieve a better understanding of GDLs behaviour 
and the relationship between the different properties (3) (4) (5). 

Usually, a GDL consists of a carbon fibre substrate that is carbonised and teflonated. 
Commonly GDLs have a Micro-Porous Layer (MPL) painted on one side of the 
substrate to enhance water transport away from the catalyst layer, and provide a smooth 
surface with lower contact resistance for the catalyst layer. Different fibre structures are 
used for GDLs, namely; woven cloths, non-woven straight fibres paper, and non-woven 
felt paper. The fibre structure of the substrate in the GDL plays an important role in its 



function and therefore affects the performance of the cell. Previous work has indicated 
that woven carbon GDLs have higher power densities (6), (7) and are more efficient at 
higher humidity (8).  In comparison non-woven carbon fibres, ‘Papers’ and ‘Felts’, are 
competitive on price, easier to work with, and mechanically stiffer.   

This paper discusses preliminary results to date of in-situ testing for MEAs of different 
GDLs with the variation of structure and bulk density.   

Method 

 

Two, Intelligent Energy Ltd (I.E. Ltd), Fuel Cell Component Analysers (FCCA) were 
used to establish baseline measurements on a wide variety of commercially available 
GDLs.  Both consist of four test chambers, each with independent anode and cathode 
gas flow and pressure control.  Cell humidification is achieved through a humidification 
membrane supplied by the exhaust gases form the cell reaction,  achieving 100% 
relative humidity once a steady state is established(9). 

The fabricated MEAs active surface area is 11.34 cm2.The mono-polar plates used are 
graphite, with a circular, single serpentine, flow field.  

The Gas Diffusion Electrode (GDE) anode material was held constant.  Commercial JM 
electrode ELE00165 is used with a catalyst loading of 0.4 mg.cm-2. A variety of other 
GDLs were tested on the cathode side. TKK Pt/C catalyst based ink was hand painted 
on the GDLs to achieve a loading of 0.4 ±0.05 mg.cm-2.  Nafion 212 Polymer 
Electrolyte Membranes (PEM) are used. The electrodes and the membrane are hot 
pressed at 125OC and 1800kg.  The following cathode materials are presented in this 
paper. All cathode GDLs had a Micro Porous Layer (MPL) on one side of the GDL. 

 E-TEK  LT1200N (Non-woven carbon paper) 
 E-TEK LT1200W (Woven carbon cloth) 
 Sigracet SGL 24 BC (Non-woven carbon paper) 
 Sigracet SGL 25 BC (Non-woven carbon paper) 
 Sigracet SGL 34 BC (Non-woven carbon paper) 
 Sigracet SGL 35 BC (Non-woven carbon paper) 
 
Three MEAs of each cell type were fabricated to limit any errors resulting from MEA 
fabrication and during testing.  

Table 1: Selected materials data for GDLs (3) 



The study will focus on the samples LT1200W and LT1200N to study the effect of 
structure, and SGL 24BC and SGL 25BC to study the effect of substrate bulk density.  
Samples SGL 34BC and SGL 35BC are also analysed in this paper.  

 
The MEAs were soaked in deionised water (resistivity = 18MΩ.cm) overnight to 
accelerate the membrane activation process.  The MEAs were then randomly assigned 
to one of seven test chambers for in-situ testing, under the following operating, set point, 
conditions: 

 H2 flow rate: 80 sccm 
 Air flow rate: 200 sccm  
 Back pressure: 2 Bar 
 Cell temperature: 70 OC  
 Data logging rate: 1 Hertz 
 Relative humidity: 100% 

 

MEA ‘conditioning’ was achieved by holding the cells at variable current load to induce 
a potential of 0.6 ± 0.03 V for a period of three hours.  Once completed the MEA was 
subjected to 25 ‘rapid’ polarisation curves.  A three second time step was initiated, with 
25 current settings increasing to the maximum current load achievable by the MEA.  
Polarisation curve number 25 of the sequence was recorded.  A further polarisation 
curve with a 10 second step time was also carried out and recorded.  Polarisation curves 
are plotted by averaging the V / I values across each time step.  

 

  



Results 

Figure 1: polarisation curves for all GDLs with peak power 

Figure 1 shows the result of the polarisation curve from the best, representative, test 
sample from each material. 

 

 

 

 

 

 

 

 

Figure 2: Comparison of  LT1200W and LT1200N samples 
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Figure 2  shows a higher performance for the non woven LT1200N compared to the 
woven LT1200W. Comparison of the nonwoven (LTN 2A) variant to the woven (LTW 
3A) shows that the non-woven GDL outperforms the woven sample in rate of Ohmic 
loss in the polarisation curve, the onset of mass transportation losses in the final third of 
the curve, in the rate of mas transport loss and also in the peak current drawn. Figure 1 
also reveals that peak power is superior for the non-woven LTN 2A test piece. Closer 
examination of the temperature during testing shows that the non-woven GDL was 
actually tested at a significantly lower temperature (65.9oC for LTN 2A, compared to 
70.2oC for the LTW 3A test sample).  This leads to the conclusion that the improved 
performance of the LTN sample has actually been suppressed by the test conditions.  
Comparison to Table 1 shows that hydrophobicity (indicated by water contact angle), 
resistivity and permeability values are similar.  Density, thickness, porosity and mean 
pore diameter are all significantly different.  It should be kept in mind that the test cells 
have undergone uniform clamping pressures, and gasket heights have not been 
optimised for each GDL.  The increased thickness for the woven sample (LTW) could 
limit the effective porosity of the material still further through excessive clamping force. 

The non-woven material is superior in this instance, and the reduced mean pore size, 
combined with the increased total porosity, offers a possible mechanism to explain this.  
The increased total pore volume requires a greater volume of liquid water to fill before 
significant limits to the flow of reactants around and through the GDL are detected.  The 
reduced mean pore size may also play a role in accelerating liquid water away from the 
reaction surfaces. 

 

Figure 3: Comparison of  24BC  and 25BC samples 

In Figure 3 we see a reduced performance for the 25BC variant of GDL 
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The 24 and 25 BC GDLs are examined in Figure 3 and in this case there is a similarity 
in the GDL thickness, however porosity, density mean pore diameter and water contact 
angle differ.  In the BC tests, both samples have been tested in a narrower temperature 
range (68.7 oC and 72.1oC respectively).  If we refer to the previous results for the LT 
woven and non-woven materials; we see that smaller mean pore diameter and a greater 
porosity volume are linked to improved performance, as discussed previously.  
Examination of the material properties for the 24BC 2A and 25BC 2A test pieces 
reveals a similar relationship.  The most significant difference in properties between the 
two samples is mean pore size:  The 24BC GDL materials have a measured mean 
porosity 2.450 µm, and the 25BC have a mean pore diameter 0.842µm. 

25BC 2A outperforms 24BC 2A in rate of Ohmic loss in the polarisation curve, the 
onset of mass transportation losses in the final third of the curve, and also in the peak 
current drawn. Figure 1 also reveals that peak power is marginally superior for the 
25BC 2A test piece.  The fact that the rate of mass transport loss is slightly inferior (i.e. 
steeper) in the 25BC variant is interesting, and suggests that mean pore diameter is not 
dominant in this section of the curve, though more testing is required to confirm this to 
a reasonable degree of certainty. 

Once again we suggest that the reduced mean pore size, combined with the increased 
total porosity, of 25 BC 2A when compared to 24BC 2A, offers an explanation for the 
improved performance of 25BC 2A, through the same mechanisms discussed earlier. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of  34BC  and 35BC samples 

Figure 4 shows a more uniform performance from the two GDLs, with 34BC being 
marginally better, especially in the mass transport section of the curve 
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In the 34 BC and 35 BC GDLs we can examine the mean pore diameter and total 
porosity.  Table 1 reveals a smaller mean pore diameter and a larger total pore volume 
in 35 BC.  From our recent discussion we would expect to see 35 BC outperforming the 
34BC GDL.  However comparison to Figure 4 at first glance indicates that 34 BC is 
marginally superior.  The test temperature for the two samples was extremely uniform, 
with 70.3oC for the 34 BC and 69.9oC .  This narrow temperature range should not have 
a significant impact based on our previous observations.  The thickness of the sample is 
also at the higher end of the ranges tested, with 35 BC being the thickest of all the 
GDLs tested.  The compression force experienced in the test cell will be greatest for this 
material.  Plotting the peak power for these two samples, shows a very close match 
between the two, and the highest recorded peak power in this set is 0.3847W.cm-2 for 
sample 35 BC, exactly as predicted.  We suggest that the effect could be even more 
pronounced if the gasket height were optimised for both of these samples (thereby 
eliminating excessive compression forces from ‘closing off’ the porous structure). 

Figure 5: Peak power 34 BC and 35 BC 
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Initial Observations: 

 

Based on the tests to date (55 of 90 test specimens completed): 

 Woven  structures do not out-perform non-woven materials in these tests 
o This may be due to the lack of cell optimisation for the increased through 

plane thickness of the woven sample used  
 Reduced mean pore size and  increased total porosity dominate in determining  

peak power  output for MEA assemblies 
 

  24BC 2A 25BC 2A   
temperature during test 68.7 72.1 oC 
mean pore D 2.45 0.84 microns 
% porosity 40.0 36.5 % 
Ohmic Loss -0.4456 -0.4109 Ohms 
Rate of Mass transport Loss -2.2769 -2.305 Ohms 
maximum current 0.7561 0.7961 A.cm-2 
Peak power 0.3570 0.3958 W.cm-2 

    

  LTW 3A LTN 2A   
temperature during test 70.2 65.9 oC 
mean pore size 1.06 0.77 microns 
% porosity 34.0 65.0 % 
Ohmic Loss -0.4046 -0.353 Ohms 
Rate of Mass transport Loss -3.9527 -1.7455 Ohms 
maximum current 0.6955 0.7817 A.cm-2 
Peak power 0.3613 0.4128 W.cm-2 

    

  34 BC 2A 35 BC 1A   
temperature during test 70.3 69.9 oC 
mean pore size 2.20 1.47 microns 
% porosity 47.5 52.6 % 
Ohmic Loss -0.4017 -0.4084 Ohms 
Rate of Mass transport Loss -2.1787 -3.659 Ohms 
maximum current 0.7411 0.7088 A.cm-2 
Peak power 0.3835 0.3847 W.cm-2 

 

Table 2: Key material properties and measured outputs 
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a b s t r a c t

Differentiating between the various polytetrafluoroethylene based structures inside poly-

mer electrolyte membrane fuel cells with a degree of certainty is necessary to optimize

manufacturing processes and to investigate possible degradation mechanisms. We have

developed a novel method using fluorescence microscopy for distinguishing the origin and

location of PTFE and/or Nafion® in Membrane Electrode assemblies and the gas diffusion

media from different sources and stages of processing. Fluorescent material was suc-

cessfully diffused into the PTFE based structures in the GDM by addition to the ‘ink’ pre-

cursor for both the microporous layer and the catalyst layer; this made it possible to map

separately both layers in a way that has not been reported before. It was found that hot

pressing of membrane coated structures resulted in physical dispersion of those layers

away from the membrane into the GDM itself. This fluorescence technique should be of

interest to membrane electrode assembly manufacturers and fuel cell developers and

could be used to track the degradation of different PTFE structures independently in the

future.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Polytetrafluoroethylene (PTFE) based polymers play several

important roles in polymer electrolyte membrane fuel cells

(PEMFCs). A sulphonated variant is the backbone of the most

commonly used solid electrolyte in the form of Nafion®

membranes. PTFE based polymers are also used as hydro-

phobic coatings on carbon fibers, binder agents for catalyst

layer (CL) inks, to provide structural integrity for microporous

layers (MPL) and as an adhesive binder for the various layers

that form the final membrane electrode assembly (MEA). By
N. McCarthy), r.chen@lboro

r Ltd on behalf of Hydrogen En
using PTFE based polymers for these differing functions,

improved adhesion between the various structures is pro-

moted by their broadly similar chemistry. For some types of

MEAs the various coatings and functional layers are applied

directly to the membrane, and in others the coatings are

applied to the gas diffusion media (GDM) adjacent to the

membrane. These are generally applied as a liquid suspen-

sion, and the impregnation of these PTFE solutions into the

GDM make a significant impact on the final porosity of the

completed MEA.

The hydrophobicity (water contact angle) of GDMs has

been commented on and studied extensively by a wide array
.ac.uk (R. Chen), gregory.offer@imperial.ac.uk (G. Offer), R.H.Thring@
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of authors [1e5], who all agree that the coatings applied, to

modify the hydrophobicity of the GDM, is an important factor

in determining its overall performance of the fuel cell.

Comprehensive reviews of this topic [6] and other GDM issues

[7] agree that water contact angle has a significant impact on

the fuel cell performance. Typically the control of the wetting

angle on the carbon fibers is achieved by the addition of a PTFE

based polymers to the carbon fibers during themanufacture of

the GDM, and in some cases this coating is an important part

of the GDM fabrication method, binding together non-woven

structures. In other cases the hydrophobic polymer content

is added solely to change the water transport properties of the

GDM. This additional polymer coating is, like many engi-

neering solutions, a compromise between increased hydro-

phobicity to facilitate water transport and a decrease in the

available pore volume for fluid transport in the GDM.

When it comes to the fundamental understanding of

reactant and product mass transport mechanisms in the fuel

cell, the through plane thickness, total volume or percentage

surface coverage of these various layers can be a significant

consideration. Typically an examination of ‘Spatially-Varying’

performance of fuel cells will consider the MEA as a plane.

These studies seek to understand localized performance var-

iations across the plane of the MEA, usually as a result of

reactant and product concentration changes, along the length

of the gas flow channels [8e10]. Some work in this area has

investigated the variation in the fuel cell through the plane of

theMEA [11], focusing on the distribution of water through the

plane of the GDM; not the direct measurement of PTFE

structures through the plane of the GDM.

For example, in agglomerate models of catalyst layers an

estimation of the thickness of CL is a key factor. This is often

done by determining the total mass of catalyst material

applied, and then assuming a uniform, monolayer distribu-

tion. For layered catalyst structures this estimation is done

iteratively for each subsequent level [12,13]. For the catalyst

coated substrate (CCS)manufacturingmethod ewhere the CL

is applied to the GDM and not the membrane e this is also

used. However, the validity of this through plane thickness

assumption becomes questionable as mass gain is no longer

an accurate indication of the dimensions of each layer applied

to the complex, porous surface of the carbon fiber GDM. This

same principle applies to other PTFE based surface treatments

such as the addition of microporous layers. In many cases

these PTFE based layers, and their exact dimensions, cannot

be defined with any certainty when the GDM has been pre-

treated with a hydrophobic (PTFE based) coating. Energy

Dispersive X-ray (EDX, or ‘EDaX’) techniques and secondary

backscatter electron imaging have all been used in conjunc-

tion with Scanning Electron Microscopy to map various

chemical species in the MEA [14]. Heavier atomic weight

molecules and atoms show up as a brighter contrast to lighter

species in the standard image with the induced emission of x-

rays (of a specific energy and frequency) being used to identify

the individual chemical species. This makes chemical species

that are largely composed of carbon difficult to distinguish

between. It is this brightness value and species identity that is

used to generate chemical compositionmaps such as those in

Fig. 1(c) where the Fluorine response has been highlighted in

red, and to distinguish it from the other adjacent carbon based
structures. For a comparison between the graphitized carbon

fibers of a typical GDM, and the largely carbon based PTFE

species present in the system, fluorine detection is typically

recommended. The limitation of this technique is that it is

impossible to distinguish the fluorine content of two different

PTFE sources. For example if a MPL layer has a PTFE based

dispersive agent, and the catalyst ink is applied with a 10wt%

solution aqueous Nafion solution, both will give an equal

response in fluorine mapping with EDX analysis. Fig. 1 (c & d)

show a typical fluorine map generated from EDX. As can be

clearly seen there is no way to numerically differentiate the

fluorine in the image between the various PTFE based poly-

mers (ink, MPL, CL and hydrophobic coatings on fibers) in the

MEA that generate a fluorine response.

In the case where SEM/EDX mapping of the MPL layer was

desirable, a low concentration of 10 weight percent of plat-

inum on carbon (10wt% Pt-on-C) can be deposited in the same

way as an MPL. This low concentration of heavy metals is an

attempt to differentiate between various layers of the MEA.

This is reliant on the assumptions that the platinum doped

carbon particles are uniformly spread through region of in-

terest, and that the PTFE based polymers used in the MPL ‘ink’

are dispersed throughout the material in the same way. This

‘functionalized’ MPL is equivalent to the dual layer catalyst

systems suggested by some researchers [15e18], and accord-

ing to their finding it must be acknowledged that fuel cell

performance is changed by this approach. Furthermore by

taking this approach we have now in turn made it impossible

to clearly differentiate between the MPL and CL. Additionally

this low concentration of Platinum approach cannot be used

at the same time for other PTFE structures in the MEA such as

the PTFE based hydrophobic coatings, especially for compar-

isons with standard GDMs used in fuel cell research. There

has been a great deal of work using novel imaging techniques

such as X-ray tomography (XRT) to aid the conceptualization

of the internal structures of the GDM and its impact on the

performance of performance of fuel cells [19,20]. Synchrotron

or neutron based imaging techniques can also be used to

visualize the water generation and flow inside a working fuel

cell in real time [21e24]. These processes require specialist

equipment, and in the case of XRT a significant level of

expertise and computer processing time to process the

captured images. Whist these techniques can demonstrate

the overall impact of water flow (neutron imaging), or identify

the totality of the combined structure of fibers and PTFE ad-

ditions (XRT); both suffer the same limitations as EDX and

cannot differentiate betweenmultiple sources of PTFE content

in the GDM.

An alternate methodology is needed for mapping the dis-

tribution of these various layers and coatings in the MEA. A

system that will not change the performance of the MEA

under operating conditions would obviously be preferred.

With this in mind the following work was undertaken to

determine if fluorescence based microscopy could be used to

differentiate between different polymeric materials within

the GDM; with the intention that this can be used to optimize

GDM/PTFE interactions. In this paper we present the use of a

fluorescent dye doped directly into the PTFE component of a

layer of interest, and map the PTFE distribution in a CL and

MPL separately in multiple MEAs.

http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
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Fig. 1 e SEM of standard cathode GDM (a) optical image, (b) SEM image, (c) Back scatter map of Fluorine, Black and White

processing of ‘c’ (d).
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Litster et al. [25] in 2006 utilized fluorescent water

impregnation to characterize the liquid penetration time

through GDM and also to gain greater understanding of the

pathways for water penetration through the material. Their

work provided the inspiration for this work to consider the

possibility of faster andmore cost effective ways of assessing

the PTFE distributions in the GDM in the CL and MPL. To date

there has been no work done to assess the interaction of

catalyst ink formulations and their impact on PTFE distri-

butions in the GDM or CCS type fuel cell assemblies. This is

due to the inability of SEM/EDX techniques in generating

clear separation of the elemental species in the carbon based

fibers, the carbon based catalyst inks, the carbon (PTFE)

based GDM binder agents and the Carbon (PTFE) based

catalyst ink suspensions. This inability to distinguish

chemically similar phases in a sample is not unique to the

field of fuel cells. Fluorescence in degradation products is

well known in the food sciences, yet they are often difficult to

distinguish for different stages of the ripening/decomposi-

tion process. As highlighted by Croptova et al. [26] it is

possible to correlate with a high degree of confidence (95%

confidence level easily achieved in their study) the emitted

fluorescence of a single phase of interest in a chemically

complex system, especially if the filter system used in the

experimental set up is optimized. Le Duigou et al. [27] have

also used fluorescence microscopy to differentiate between

optically similar samples in their confocal microscopy anal-

ysis; mapping resin impregnation into the fibrous structures

of an epoxy-flax composite. This is a very similar environ-

ment to the PTFE impregnated carbon fibers for the GDM.

Whittman et al. [28] examined the impact of organic
fluorescent dye on PTFE type materials, and indicated that,

with the correct heat treatment regime, the fluorescent dye

can alter the structure of the PTFE materials, and form a

PTFE/copolymer composite material. This provides solid ev-

idence that the proposed concept e that a fluorescent dye

will mix with the PTFE component of a catalyst ink formu-

lation and make it possible to track its distribution through

the GDM e is worthy of further investigation.
Experimental

Five fluorescent dye concentrations were investigated. Con-

centrations between 0.5 and 10 wt% of EpoDye™ added prior

to sonication of the ink formulation in each case. EpoDye™ is

a propriety brand of ‘Brilliant yellow 43’ (C20H24N2O2), which

typically has its highest stimulation frequencies in the

275 nme450 nm wavelengths, comfortably in the Ultraviolet

spectrum and so well suited to fluorescence microscopy with

mercury lamp illumination. The use of 2-propanol in the ink

formulation described in this paper indicates this solvent dye

should be suitable. The 1wt% EpoDye™ loading was found to

achieve the maximum luminescent response with the least

amount of material added, and was in line with the manu-

facturers recommended dosing levels. The 0.5wt% doped

fluorescent samples (Fig. 2 (b)) could, after a prolonged

exposure time, generate a usable image, and were very well

suited to generating sufficient contrast to examine the fiber

structure of the GDM. Higher weight percentages generated a

more complete coverage of the GDM surface as shown in

figures (c & d).

http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
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Fig. 2 e (a) Auto-fluorescence of cathode carbon fibers, (b) 0.5wt% EpoDye™ doped cathode carbon fibers, (c) 1.0wt% EpoDye™
doped cathode carbon fibers, (d) 400£ magnification image of Microporous layer structure.
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Catalyst ink formulations

Various ink formulations in the literature [29e31] were

adapted until a stable ink manufacturing procedure was

developed. DI water, and 30 ‘weight percent’ (30wt%) of plat-

inum (Pt) on carbon (C)1 and 10wt% aqueous Nafion® solution,

and 1 M 2-propanol solution (IPA) are sonicated together for

1 h. To determine the total amount of aqueous Nafion® solu-

tion required (in mL) for the ink; the mass of carbon desired

(catalyst weight not included) in mg is divided by the per-

centage Nafion solution strength (expressed as a decimal).

Nafionsoln:ðmlÞ ¼ mCarbonðmgÞ
%soln:ðasdecimalÞ (1)
1 Carbon black catalyst support was ‘Vulcan carbon black’ ac-
cording to the suppliers.
5.31 times this value derived in Eq. (1) gives the volume of 2-

propanol required

DI water with a volume equal to 10% of the measured out

volume of 2-propanol (isopropanol) is first added to the Pt on C

to reduce the possibility of combustion during mixing. The

whole mixture is then sonicated at room temperature for one

hour immediately before application. Single layers of ink are

painted on, and then allowed to dry for eight hours (or over-

night). The MEAs are weighed, and the process repeated until

the desired catalyst loading is achieved. The ink preparation is

sonicated for twenty minutes immediately prior to applica-

tion if it has been left static for a significant period of time

(more than three hours).

MPL equivalent inks weremanufactured inmuch the same

way, but with carbon particles with no platinum, or in the case

where EDXmapping of theMPL dimensionswas requiredwith

a 10wt% Pt-on-C loading.

http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
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Fluorescent dye study

Due to the lack of contrast between the carbon based ink and

the carbon fiber support; typical opticalmicroscopy of the CCS

active surface results in a more or less uniform ‘black field’

image that has little or no discernible features that can be

effectively imaged. Non-woven fibers with a hydrophobic

coating and without carbon based ink coatings could, with

extremely long exposure times under UV light, induce any

PTFE present to emit characteristic auto fluorescence (Fig. 2

(a)). All microscopy images were captured using a Leica

DMRX fluorescentmicroscope equippedwith a Leica DFC480 5

Mega pixel digital color camera. Surface images of MEAs with

fluorescent dye doped inks demonstrate a characteristic

‘green’ color (Fig. 2 (b,c &d)) as a result of the use of a violet/

blue filter cube: an ‘E4’ band pass filter from Leica. This re-

duces the overall intensity of the light emitted, but also re-

duces the signal to noise ratio by filtering out much of the

visible light except for the 436/7 nm wavelength, and a pro-

portion of those frequencies at or above 513 nm. This can be

used beneficially to image themixed blue light (436/7 nm)with

the yellow/green light emitted from the EpoDye™ in solution

with the PTFE in the ink: Making it possible to differentiate

between the yellow florescence of the doped PTFE component

in the catalyst ink and the naturally ‘blue’ fluorescence of the

(untreated, PTFE based) binder agents, the phobicity control-

ling surface treatments of the GDM itself.

Having completed the conditioning and initial polarization

curves, samples were edge mounted and cross sectioned for

microscopy. In order tomaintain the GDM structure great care

was taken over the polishing procedure, as it was found more

aggressive polishing recipes resulted in fiber pull out and

disrupted the GDM structure. To maintain GDM structural

integrity in the polishing stage, all samples were mounted in

low viscosity epoxy resin (EpoFix™) and vacuum impregna-

tionwas used to support the carbon fibers during the polishing

process. The resin was then left to set for 24 h and polishing of

samples for optical microscopy was carried out.
MEA fabrication and test cell dimensions

The fabricated MEAs active surface area is 11.34 cm2. Graphite

current collection plates are used, with a single serpentine

circular (‘disc-like’) flow field. The GDM anode material was

Toray TGP-H-120 with a catalyst loading of 0.3 mg cm�2

(±0.02 mg cm�2). The cathode material was much the same

with 0.35 mg cm�2 (±0.02 mg cm�2) of catalyst. Nafion 212

Polymer Electrolyte Membranes (PEMs) are used. The elec-

trodes and the membrane are hot pressed at 125OC and

1.0 MPa for two minutes.

Two sets of MEA were fabricated. In order to analyze not

only the applicability of the fluorescence technique, but to

also determine how small a resolution of the PTFE distribution

could be effectively analyzed; a mixed application cathode

(MAC) manufacturing technique was used. A high Pt concen-

tration layer (40wt% Pt-on-C) was deposited directly onto the

membrane in one layer, and a low concentration (10wt% Pt-

on-C) was deposited directly onto the GDM in another layer.

This lower concentration layer acting as the effectiveMPL, but
with additional heavy metal in the hopes of aiding SEM image

capture at a later stage.

These two mixed application catalyst samples were iden-

tified asMAC1 andMAC2. InMAC1 the fluorescent dye is in the

catalyst layer, and in ‘MAC2’ it is the MPL that has been doped

with fluorescent dye. In this way we hope to see what the

minimum resolution of this technique could be. Recall in this

work the layer furthest away from the membrane is the low

concentration platinum layer and can be considered as a MPL

rather than as a true CL.

Having determined the mass loading for each layer as

described previously, the ink solutions were hand painted on.

The MEA was then fabricated up in the usual way. MAC1 has

1wt% EpoDye™ on the membrane side of the MAC assembly.

Mac 2 has 1wt% EpoDye™ on the GDM side of the assembly.

Polarization performance

Having established the feasibility of the approach, MEAs were

fabricated and tested under operational conditions. All MEAs

were conditioned at 0.6 V (þ/�0.05 V) for three hours at 60 �C.
Twenty polarization curves were then run on each sample.

After this conditioning cycle was completed an additional set

of polarizing curves were undertaken. All sampleswere tested

at 65 �C (þ/�2 �C) at 100% relative humidity with a hydrogen

flow rate of 60sccm and an air flow rate of 150sccm. All gases

were at 150 kPa absolute and the fuel cell clamping assembly

was tightened down to 2Nm of torque per bolt on a three bolt

system (circular geometry). The test apparatus is a ‘self

ehumidifying’ system that does not make use of pre-

humidified or pre-heated reactant gas streams. Such self-

humidifying systems result in an anticipated reduction in

the overall performance [32] of the cell when compared to pre-

humidified and pre-heated gas stream results.

The performance of the EpoDye™ doped fuel cells was very

poor, indicating the dye inhibits the system. For the ‘MAC2’

sample getting any sort of polarization curve at all took

several attempts, and the conditioning regime had to use a

significantly reduced load to achieve the twenty ‘conditioning’

polarization curves. A comparative MEA without fluorescent

dye (un-doped) is also shown (Fig. 3) labeled as control.
Results & discussion

SEM and EDX study

Images in Fig. 1 were taken with a Cambridge Instruments

Stereoscan 360 Tungsten Filament SEM. In Fig. 1(b) the stan-

dard SEM image of a prepared GDM in cross section can be

seen. The lighter, brighter section in the grey scale image

represents heavier atomic mass elements. EDX was used to

generate the map shown in Fig. 1(c). However, as shown in

Fig. 1(d) the ability of the technique to map the distribution of

the fluorine molecules (the only way to differentiate the PTFE

based Nafion® from the remaining carbon based structures) is

extremely limited. The F k series response in Fig. 1(d), gives no

clear demarcation between the various layers. Numeric

assessment of the two separate PTFE layers (MPL and CL) in

this sample was impossible when based on Fluorine

http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
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Fig. 3 e Polarization response of MEAs with and without

fluorescent dye.
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distribution only. When examining a GDM that has been pre-

treated with a hydrophobic layer, the ability to distinguish

PTFE based layers through fluorine molecule mapping be-

comes indeterminable (Fig. 1(c)).

In order to process such images the threshold has to be

‘turned up’ to the pointwherewhen running a standard image

analysis tests (using MatLab®) the simplified black and white

image as shown in Figs. 1(d) and 4(a) is produced. In this case

the threshold level used to decide if a given pixel should be
Fig. 4 e (a) Black and white processed image of standard

GDM cathode Fluorine content, (b) ‘centroid point’ locations

of individual particles in ‘a’.
converted to ‘black’ or ‘white’ is set at 50% of the total

brightness of all pixels in the equivalent grayscale image.

Fig. 4(a) shows two distinct regions of PTFE distribution, with

the histogram (Fig. 4(b)) showing the centroid point of each

discrete point mapped. Therefore it is not possible to answer

the question: has the CL or MPL added to this GDM actually

penetrated ~200 mm into the body of the GDM, or has the

image processing software incorrectly identified the pre-

existing hydrophobic coating in the GDM fibers instead?

Traditional EDX cannot answer this question.

As stated previously, a low Pt loading system is used to

help identify through scanning electron microscopy (SEM/

EDX) the likely distribution of the MPL. Comparison to Fig. 1(d)

the fluorine response is far superior in mapping the distribu-

tion of the PTFE based MPL, and the addition of a small

amount of Platinum is needed to define the boundaries of the

MPL itself.
Fluorescent dye study

Fig. 2(a) shows an ‘as received’ GDM material yet to be coated

with catalyst ink. Note the light blue highlights as a result of

the inherent PTFE based hydrophobic coating in the GDM

fluorescing as is common for many organic molecules (“auto-

fluorescence” [33]). The time taken to create this image was

extremely long; well in excess of 60 s. This is impractical for

the significant numbers of pictures used in large scale imaging

studies and automated quality control in mass production

lines. The fluorescent image could only be generated at 100�
magnification or greater. This reduces the field of view for the

surface of the GDM, and would again limit the utility for

catalyst optimization studies for larger surface area GDMs.

This long exposure time increases significantly the excitation

of fluorophores that are out of focus (beyond the depth of field

of the captured image as detailed in Table 1). Therefore whilst

the image contrast is increased by increased exposure times,

the amount of inefocus information is not increased at the

same rate and excess exposure can reduce the overall value of

a given fluorescent image. Therefore additional fluorescent

material is required to reduce the exposure time, and improve

image capture at lower magnifications.

It was found that at higher magnifications it was possible

to view the open structure of theMPL itself (note that in image

Fig. 2(d) the MPL has been dried overnight and the full devel-

opment of MPL structure as a result of hot pressing is not

represented here). Prior to MEA assembly, sample sections of

GDM were coated with the fluorescent catalyst ink, and it

proved possible to examine the CCS active surface in excellent

detail.

In the cross section (Fig. 5) of the same GDM in Fig. 1(a) we

clearly see florescence from the untreated PTFE binders, and
Table 1 e Depth of field at various magnifications.

Total magnification through camera 50� 100� 400�
Numeric Aperture (NA) 0.15 0.30 0.75

Focal Lens 5� 10� 40�
Depth of field (UV light source mean

l ¼ 350 nm)

15.5/mm 3.9/mm 0.6/mm
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Fig. 5 e Comparison of unfiltered (left) and filtered (right)

MEA cross sections at various magnifications (a) 100£, (b)

100£ filtered, (c)200£, (d)200£ filtered, (e)400£, (f)400£
filtered.

Fig. 6 e Observed ‘bright region’ on in MAC2 indicating

delamination of membrane and GDM.
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ink carrier solution, that can be imaged as the blue response. It

is not possible to differentiate with any confidence the mul-

tiple sources of PTFE based autofluorescence.

The 1wt% EpoDye™ treated sampleswere able to produce a

very strong fluorescence response immediately they were

illuminated with a suitable ultra violet (UV) source. The illu-

mination level does reduce the ability to identify specific fibers

on the surface of the GDM, but the decreased image capture

time makes this an attractive option.

The higher concentrations of fluorescent dye made no

improvements to the images captured. Typically the MPL

surface can be difficult to image with its characteristic ‘black

powder on black fiber’ lack of contrast. Fig. 2(c) shows the

active surface area of a ‘proof of concept’ test sample before

MEA fabrication began. The fluorescence time is far less, and it

is for this reason the texture of the fiber substrate in those

http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
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Fig. 7 e MAC1 Cathode image processing example (a)

brightness histogram, (b1) filtered 200£ fluorescent image,

(b2) Black and white image transform, (b3) Otsuo image

transform, (c1) PTFE region map for all particles, (c2) Otsuo
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areas not coated in catalyst ink is lost. This is the first time this

type of image has been reported in a fuel cells context. The

edge of the ink coated region is clearly visible, and there are

notable features in the painted catalyst surface, with clear

fissures in the surface of the active area leading deeper into

the GDM. This test sample highlights the ability of this tech-

nique to quickly and easily asses the uniformity of catalyst

coating for CCS fabrication procedures, and may prove useful

in ink deposition optimization studies in the future. Once

again we believe this is the first time it has been possible to

distinguish PTFE added as part of the ink formulation on

GDMs that have been pre-treated with a PTFE based hydro-

phobic coating.

The left hand images in Fig. 5 shows the standard response

for a fluorescence doped MAC-MEA (left). It is immediately

apparent that the characteristic ‘blue’ emission of the un-

treated PTFE is shifted to a green color, and also the charac-

teristic ‘yellow’ response of the EpoDye™ is also shifted to the

green as the two emitted frequencies ‘mix’. By the addition an

E4 filter the green response from the yellow EpoDye™ can be

increased and the range of auto-fluorescence frequencies

interfering with our understanding of the image can be

limited. The ability to reduce the intensity of the response

from the untreated PTFE in the Nafion® membrane, and the

untreated hydrophobic coating of the GDM, greatly increases

the contrast between phases, as can be seen in the right hand

images in Fig. 5.

Applying this same approach at 100� magnification pro-

duces images that can be characterized digitally.

At this level it is still is possible to differentiate the segre-

gation of PTFE layers in the GDM as a result of variable doping

with EpoDye™ if additional image processing is used. At

highermagnification still (400�) the flaring of the emitted light

through the transparent mounting resin (used in the vacuum

impregnation process) makes it impossible to differentiate

between any PTFE based structures with confidence (Fig. 5 (e)

and (f)).

The MAC 2 samples (where the MPL or ‘CCS portion’ of the

ink is EpoDye™ loaded) again showed no significant variation

in the emitted intensity response compared to those already

studied. It is not possible to differentiate the order in which

the fluorescent layers were painted on at any magnification

‘by eye’. There is a degree of reflection and refraction through

the doped PTFE, the un-doped hydrophobic coatings and the

transparent epoxy resin mounting system vacuum impreg-

nated into the GDM. It is possible that these light effects are

causing difficulty in imaging the exact presence of the PTFE in

the two separate ink layers. The depth of field may also be a

factor. The depth of field of the images is clearly defined as

follows for each magnification.

l

NA2
¼ dfieldð2Þ : Depth of field

Litster et al. [25] stated that the “… observable range of the

surface height … is 30 mm …”. Whilst our depths of field calcu-

lations are slightly less than theirs, we can reasonably expect
transform, (c3) centroid point locations of individual

particles in ‘c2’.
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Table 2 e MAC1 PTFE region area (top) and centroid point location (bottom) along x-axis for MAC1 images.

Area per object Section 1 (pixels) Section 4 (pixels) Section 5 (pixels) Mean of means (m) StDev (s) (s/m)

Mean 7.61Eþ03 7.65Eþ03 7.82Eþ03 7.69Eþ03 1.10Eþ02 1.43%

Centroid ‘x’ coordinate Section 1 (pixels) Section 4 (pixels) Section 5 (pixels) Mean of means (m)

Mean 388 406 401 398.3 9.29 2.33%
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to image fluorescent responses at a depth of 15 mm for the 50�
magnification as our approaches are similar. However the

washing out of the collected florescent light at high magnifi-

cations (and therefore reduced depth of field) indicate that

emitted light from even further into the body of the sample

than this assumed depth is being gathered. In order to over-

come this limitation in the higher magnifications; several at-

tempts weremade atmicrotoming very thin slices of theMEA.

Both the EpoFix™ epoxy mounting and standard epoxy filler

mounting were extensively tested in this fashion but no

specimens suitable formicroscopy could be producedwith the

time and resources available. Therefore the technique of

fluorescent doping, at its present stage of development, is only

well suited to images that are in the 50 to 100 times magnifi-

cation range.

One area observed in the fluorescence microscopy of the

MAC 2 sample was notably different to the rest. In Fig. 6 there

is a highly defined region with significantly increased emis-

sion. This ‘lightening flash’may be a feature brought about by

poor vacuum impregnation and represent light passing up

through air gaps in the GDM. However the fact that the MAC2

sample gave such a very poor response when attempting to
Fig. 8 e FEG-SEM of standard cathode GDM (a) FEG-SEM image, (b

back scatter fluorine map.
generate polarization curves gives rise to the far more likely

possibility that this was a pre-existing defect in theMEA itself,

and the fluorescent dye has congregated in the void space. In

all probability this is a delamination effect (separation of the

membrane and the catalyst/GDM layers from each other). It is

unclear if the addition of the EpoDye™ is the cause of the

delamination or not; but the reduced performance in both

samples compared to the control sample could well be

explained by a reduction in the adhesion of the various layers

brought about by the addition of the fluorescent dye. If a more

chemically compatible fluorescent dye, that does not reduce

fuel cell performance, can be developed in the future; then

there is an interesting possibility that this fluorescence mi-

croscopy method could be used for defect detection in MEA

manufacturing techniques in the future.

Digital image analysis

Whilst it may not be possible to differentiate the layers sep-

aration visually, as can be seen in Fig. 7, the gathered data is

amenable to image processing. Standard black and white

conversion (Fig. 7 (b2)) leaves much to be desired. Setting the
) back scatter carbonmap, (c) back scatter platinummap, (d)
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Fig. 9 e MAC2 Cathode image processing example (a)

bimodal brightness histogram, (b) Otsuo transform, (c)

centroid point of each particle distribution.
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threshold at the mean point of all brightness in the original

image results in the loss of too much information (Fig. 7(b2)),

and so another method is required. The use of Otsu's method

[34,35] (through the ‘Graythresh’ command in Matlab) shown

in Fig. 7 (b3) does an acceptable conversion of the image for

further analysis. For this approach to be valid the following

assumptions must be true:

(i) Histograms (and therefore the image) are bi-modal

(ii) There is no relevant structure or geometry that needs to

be specifically included

(iii) Illumination is uniform across the image and so bi-

modality is a function of the time imaged and not a

lighting effect

A bi-modal brightness distribution was achieved by crop-

ping the field of view down to the point where only the

Cathode GDM was largely visible (excluding as much of the

Nafion membrane layer as was feasible). It is now possible to

quantify the data (see Table 2). The ‘graythresh’ command in

Matlab® automatically applies Otsuo's method to the selected

image, and is applicable in this case. Fig. 7(a) assesses this, and

whilst the bi-modal nature of the image could, ideally, be

greater; it is strong enough that Otsu's method improves the

number of PTFE regions in the GDM identified (as shown in

Fig. 7 (b3)).

‘Particle’ identification
Having completed the converting of the image from the

grayscale to black and white, the inbuilt image analysis

functions in Matlab® can be used. It is simple to detect and

quantify all the identified regions that are continuous with

each other (the ‘particle’ effect) and those regions can be

defined in several ways. Fig. 7(c1) shows the discretized

‘continuous’ regions as identified by the analysis parameters

created from Otsu's Method.

As in all image analysis a certain degree of cautionmust be

exercised when viewing the data, giving due consideration to

the relative intensity for all possible test samples, lighting

conditions and fluorescent responses. With care and practice

the methodology can be applied with confidence of achieving

consistent, repeatable results. Utilizing the inbuilt capabilities

of the MatLab® program we can accurately return the area of

all identified PTFE ‘particle’ or regions, their mean size, mea-

sure the perimeter of each particle or determine the ‘centroid

point’ of each particle. As a measure of the distribution of the

Nafion added into the GDM by the catalyst ink (or its MPL

equivalent) the centroid point approach has been selected for

this study.

Fig. 7 (c3) shows the histogram of doped PTFE regions and

their position along the x axis of the image as defined by the

centroid point.

In Fig. 7 (b2 and c2) we can see a region of depleted PTFE

content approximately in the middle third of the image. This

highlights the usefulness of this technique. Using this fluo-

rescent methodology it is clear that we are failing to achieve a

uniform distribution of PTFE based polymers in the CL (in the

case the ‘MAC1’ test sample). In future work we could now

optimize out catalyst deposition and MEA fabrication

methods to reduce or eliminate the variation in the PTFE
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Table 3 e MAC2 PTFE region Area (top) and Centroid Point location (bottom) along x-axis for MAC2 images.

Area per object Section 3 (pixels) Section 4 (pixels) Section 7 (pixels) Mean of means (m) StDev (s) (s/m)

Mean 5.97Eþ03 5.86þ03 5.72 Eþ03 5.85Eþ03 1.27Eþ02 2.17%

Centroid ‘x’ coordinate Section 1 (pixels) Section 4 (pixels) Section 5 (pixels) Mean of means (m)

Mean 178 158 200 178.7 21.01 11.76%
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component of the CL, and seek to optimize the performance of

the MEA over time. Recall that Otsuo's method assigns pixels

into one of two ‘bins’ and the automated thresholding pro-

cedure has excluded a significant amount of information from

the original image in the central region of the image. The

unprocessed image gave a false impression of a uniform PTFE

distribution due to the refracted/reflected light traveling up

through the transparent areas in the GDM. The automated

image analysis now excludes light from the center of the

image as it is not sufficiently bright to originate the within our

depth of field study area (approx. 15 mm or less) surface of the

sample.

Recall that in manufacturing sample ‘MAC1’, the non-

doped MPL was applied directly to the GDM, and the doped

CL was applied directly to the Membrane layer. The fluores-

cent dye has clearly moved away from the surface of the

membrane. Utilizing a SEM (Fig. 8 was captured using a Leo

(Carl Zeiss) 1530VP FEG-SEM (Germany) fitted with an Oxford

Instruments X-Max 80mm EDS detector (England) in the hope

of improving PTFE image capture. As can be seen in Fig. 8 this

did not prove to be the case.

Comparison to the PTFE distribution in Fig. 5 (d) and the

processed images in Fig. 7, and the platinum distribution

(Fig. 8 c) it is clear that the Pt has largely remained near the

surface of themembrane, but that the PTFE suspensionmedia

of the catalyst ink has tracked up into the body of the GDM. It

is equally clear that the EDX map for PTFE tracking in Fig. 8(d)

has failed to identify this (the bright fluorine response from

the Nafion membrane has ‘swamped’ the less bright fluorine

response in other structures). The movement of the PTFE

binder (with its dissolved fluorescent dye) up into the GDM

fibers can only have happened at the time when the various

parts of the MEA (MPL coated GDM and catalyzed membrane)

were hot pressed together to form a single, fully adhered, unit.

This is the first time it has been established that the PTFE

component of a catalyst ink formulation can segregate away

from the heavy metal component during MEA hot pressing. In

the future it should be possible to utilize this fluorescent mi-

croscopy technique to optimize the MEA manufacturing

technique and the degree of separation of Pt and PTFE

required for optimum performance.
Table 4 e Catalyst layer thickness estimation.

MAC1 Mean layer
location (pixels)

Mean layer
thickness (pixels)

Mean l
alo

Layer 1 (CL) 398.3 228.3 733

MAC 2 Mean layer

location (pixels)

Mean layer

thickness (pixels)

Mean

along

Layer 2 (MPL) 178.7 316.7 329
The addition of a small amount of platinum into the ‘MPL’

equivalent low concentration CL helps to map its distribution,

and Fig. 8 (c) shows the MPL layer has penetrated a large way

into the GDM (almost completely through in some places).

Each pixel in the analyzed image space for the transformed

images is 1.84 mm wide. In MAC 2, the (very low Pt concen-

tration) ‘MPL’ applied to the GDM first was doped with the

EpoDye™ and the subsequent CL applied to the membrane

was not. A typical Otsuo transform and PTFE distribution for

sample MAC2 is shown in Fig. 9. Table 3 shows a typical

assessment of the PTFE regions within the GDM. The PTFE

map using fluorescent microscopy and Otsuo's image analysis

generates a similar depth of penetration. i.e. the both the PTFE

and low concentration platinum ‘tracker’ have moved

together through the GDM.

The layer thickness for CL and MPL, based on these results

for the two separate MEAs can now be accurately determined

as shown in Table 4. Note that in Fig. 10 the x plane represents

the thickness of the GDM, with the value of ‘0’ being the point

furthest away from the membrane and the catalyst layer.
Conclusion and outlook

A new method for distinguishing the origin and location of

PTFE in gas diffusion media as a result of catalyst ink or MPL

applications is reported for the first time and report the

following findings

a) It is possible to use Fluorescence microscopy to map the

penetration of PTFE based products in the Catalyst Layer

(CL) inks or Microporous layers (MPL) or applied to a sub-

strate, and their penetration into the GDM itself.

b) The PTFE component of a catalyst ink formulation can

track into the body of the GDM during the hot pressing

stage of MEA manufacture.

c) Fluorescence based PTFE tracking is well suited tomapping

the location of MPLs applied as a coated substrate directly

to the GDE

d) The proposed system of fluorescence microscopy on Epo-

Dye™ doped MEAs is accurate, with a low variance (less
ayer location
ng x (mm)

Standard
error (mm)

Mean layer
thickness (mm)

Standard
error (mm)

9.9 420 49.6

layer location

x (mm)

Standard

error (mm)

Mean layer

thickness (mm)

Standard

error (mm)

22.4 583 52.7
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Fig. 10 e Mean centroid location and mean layer thickness

comparison for MAC1 (CL) and MAC2 (MPL).
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than 12% of the measured value in any image captured;

typically much less) and distinct separation between the

standard errors for each region (380 mm between mean

locations of individual layers in the GDM).

e) The total area of the two samples (‘MAC1’ a Membrane

Coated layer and ‘MAC2’ a GDM coated layer) shows a

similar degree of separation e with the ‘Fluorescent CL

layer’ (MAC1) having the largest area of the two samples

This is the first time it has been possible to differentiate

between the likely distributions of PTFE in the GDM added as a

result of catalyst ink or MPL applications and subsequent

manufacturing processes. Whilst the distribution of some

atomically heavier materials in the GDM can be tracked

through X-ray techniques, these methods cannot distinguish

between carbon structures. It has been until now difficult to

differentiate with certainty between fibers and the binder

agents present. . Fluorine mapping using scanning electron

microscopy techniques such as EDX to map fluorine distri-

bution ineffective. It cannot reliably differentiate between

different sources of PTFE present in the GDM (e.g. those found

in Nafion, CL ink, MPL binder or hydrophobic coating on GDM

fibers).

The use of common digital analyses techniques, such as

Otsu's method, utilized in the Matlab® command ‘graythresh’,

is effective and produces quantifiable results that are of use in

a research context when combined with fluorescence micro-

scopy. The depth of field for the fluorescence images gener-

ated means the technique is best suited to cross sectional

images of MEAs in the 50 to 100 times magnification range.

Further developments in the compatibility of fluorescent

dyes with PTFE based binder agents for use in PEMFCs, so that

the PEMFC can work normally, is required. This would be a

significant body of work, that would make possible direct

observation of degradation effects on PTFE based structures in

the GDM over its working life. If several different frequency

responses could be developed (i.e. different colored fluores-

cent dyes that do not negatively impact the performance the

completed MEA), individual PTFE structures such as the hy-

drophobic coating, the MPL and the binder agents for the CL

could all be analyzed separately in a single MEA. Their

contribution to losses in performance over time could then be
calculated directly and optimization of fuel cell performance

could be advanced.
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Nomenclature

T threshold brightness

W Brightness intensity ‘weighting’

n A number (of pixels)

Greek

m mean value

s2 variance

Subscripts

b background

f foreground
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[21] Manke I, Hartnig C, Grünerbel M, Lehnert W, Kardjilov N,
Haibel A, et al. Investigation of water evolution and transport
in fuel cells with high resolution synchrotron x-ray
radiography. Appl Phys Lett 2007;90:174105.

[22] Zhang J, Kramer D, Shimoi R, Ono Y, Lehmann E, Wokaun A,
et al. In situ diagnostic of two-phase flow phenomena in
polymer electrolyte fuel cells by neutron imaging: part B.
Material variations. Electrochim Acta 2006;51:2715e27.

[23] T€otzke C, Gaiselmann G, Osenberg M, Bohner J, Arlt T,
Mark€otter H, et al. Three-dimensional study of compressed
gas diffusion layers using synchrotron X-ray imaging. J
Power Sources 2014;253:123e31.

[24] Lee J, Hinebaugh J, Bazylak A. Synchrotron X-ray
radiographic investigations of liquid water transport
behavior in a PEMFC with MPL-coated GDLs. J Power Sources
2013;227:123e30.

[25] Litster S, Sinton D, Djilali N. Ex situ visualization of liquid
water transport in PEM fuel cell gas diffusion layers. J Power
Sources 2006;154:95e105.

[26] Cropotova J, Tylewicz U, Cocci E, Romani S, Dalla Rosa M. A
novel fluorescence microscopy approach to estimate quality
loss of stored fruit fillings as a result of browning. Food Chem
2016;194:175e83.

[27] Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C.
Interfacial properties of flax fibreeepoxy resin systems:
existence of a complex interphase. Compos Sci Technol
2014;100:152e7.

[28] Wittmann JC, Meyer S, Damman P, Dosi�ere M, Schmidt H.
Preparation and characterization of side-chain liquid
crystalline polymer thin films aligned on PTFE friction-
transferred layers. Polymer 1998;39:3545e50.

[29] Takahashi I, Kocha SS. Examination of the activity and
durability of PEMFC catalysts in liquid electrolytes. J Power
Sources 2010;195:6312e22.

[30] Frey T, Linardi M. Effects of membrane electrode assembly
preparation on the polymer electrolyte membrane fuel cell
performance. Electrochim Acta 2004;50:99e105.

[31] Marquis J, Coppens M-. Achieving ultra-high platinum
utilization via optimization of PEM fuel cell cathode catalyst
layer microstructure. Chem Eng Sci 2013;102:151e62.

[32] Gerteisen D, Zamel N, Sadeler C, Geiger F, Ludwig V,
Hebling C. Effect of operating conditions on current density
distribution and high frequency resistance in a segmented
PEM fuel cell. Int J Hydrogen Energy 2012;37:7736e44.

[33] Ploem JS, Walter F. Multi-wavelength Epi-illumination in
fluorescence microscopy, 2015. 2001.

[34] Otsu N. A threshold selection method from gray-level
histograms, systems, man and cybernetics. IEEE Trans
1979;9:62e6.

[35] Greensted A. Otsu thresholding, 2015. 2010.

http://refhub.elsevier.com/S0360-3199(16)32325-4/sref9
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref9
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref9
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref9
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref9
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref10
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref10
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref10
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref10
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref10
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref11
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref11
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref11
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref11
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref12
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref12
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref12
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref12
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref13
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref13
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref13
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref13
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref14
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref15
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref15
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref15
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref15
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref16
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref17
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref17
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref17
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref17
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref17
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref18
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref18
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref18
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref18
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref18
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref19
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref19
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref19
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref19
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref19
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref20
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref20
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref20
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref20
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref20
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref21
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref21
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref21
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref21
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref22
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref22
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref22
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref22
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref22
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref23
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref24
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref24
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref24
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref24
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref24
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref25
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref25
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref25
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref25
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref26
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref26
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref26
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref26
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref26
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref27
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref28
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref29
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref29
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref29
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref29
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref30
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref30
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref30
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref30
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref31
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref31
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref31
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref31
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref32
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref32
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref32
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref32
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref32
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref33
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref33
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref34
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref34
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref34
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref34
http://refhub.elsevier.com/S0360-3199(16)32325-4/sref35
http://dx.doi.org/10.1016/j.ijhydene.2016.07.270
http://dx.doi.org/10.1016/j.ijhydene.2016.07.270

	FINAL_NMcC Thesis Corrected MKII
	1 Introduction
	1.1. Fuel cell structures and principles
	1.
	1.1.
	1.2. Aims and objectives: Statistics & multivariate analysis
	1.1.1. Aims
	1.1.2. Objectives
	1.2.  Outline of thesis

	2 Literature Review
	1.
	2.
	2.1. Introduction to Chapter 2
	2.2. Statistics & multivariate analysis
	2.3.  Degradation and fuel cells
	2.4.  Gas diffusion media
	2.5. Catalyst layers
	2.6. Degradation of carbon-based gas diffusion media
	2.7. Key findings
	2.8. Summary of Chapter 2
	3.

	3 Statistical Methods
	3.1. Introduction to Chapter 3
	3.2. Linear regression models

	1
	3.3. t-test
	3.3.1.  Weighting and blocking

	3.4. Factorial designs
	3.5. Design of experiment process
	3.6. ANOVA
	3.6.1. ANOVA, sum of squares and F-values
	3.6.2.  Bonferroni limits
	3.6.3. ANOVA summation

	3.7. M-ANOVA and matrix algebra
	3.7.1. Non-linear or polynomial applications

	3.8. Fractional factorials
	3.9. Response surface methods
	3.10. Summary of Chapter 3

	4  Data Analysis of Gas Diffusion Media
	4.
	4.1. Introduction to Chapter 4

	2
	4.2. GDM conceptual models
	4.2.1. GDM two-dimensional numeric model
	4.2.2. GDM degradation and time dependence

	4.3. Assessment of multivariate methods
	4.3.1. Test conditions
	4.3.2. Fuel Cell Component Analyser
	4.3.3. Ink Formulation
	4.3.4. MEA fabrication
	4.3.5.  Anode GDEs
	4.3.6.  Cathode GDEs
	4.3.7.  GDM Historic Data Matrix

	4.4. Historic data assessment results
	4.4.1. Example results
	4.4.2. Regional assessment of polarisation curve gradients

	4.5. Historic data DoE for loss regions and their gradient in cathode GDMs
	4.5.1.  Activation loss gradient multivariate analysis
	4.5.2.   Discussion of gA
	4.5.3.  Ohmic loss gradient multivariate analysis
	4.5.4.  Discussion of gO
	4.5.5.  Mass loss gradient multivariate analysis
	4.5.6. Discussion of gM
	4.5.7. Maximum power multivariate analysis
	4.5.8.  Wmax Discussion

	4.6. Historic data analysis of multiple covariant factors initial findings
	4.7. Further linear regression model refinement

	4.8. Reduced complexity regression model final result
	4.8.1.  Reduced complexity gA regression model
	4.8.2. Reduced complexity gO regression model
	4.8.3.  Reduced Complexity gM Regression model
	4.8.4. Reduced complexity Wmax regression model
	4.9. Reduced complexity regression for GDMs discussion

	4.10. Validation of reduced complexity models
	4.10.1. Repeatability of results
	4.10.2. Validation conclusion
	4.11. Key findings from developed models
	4.11.1. Reduced complexity model responses

	4.12. Reduced complexity regression for GDMs conclusion
	4.13. Summary of Chapter 4

	5 Expanded Literature Review and Investigation of Catalyst layers
	3
	5.
	5.1. Introduction to Chapter 5
	5.2. Catalyst layers in PEMFCs
	5.2.1. Catalyst layer degradation
	5.3. Catalyst layer through-plane thickness models
	5.3.1.  One dimensional agglomerate model catalyst activation
	5.3.2. Characterisation of layered catalyst structures

	5.3.3. Scanning electron microscopy and layered catalysts
	5.4. Gas diffusion media, catalyst layers and degradation
	5.5. Summary of Chapter 5

	6 Dual Layer Catalyst Materials, Gas Diffusion Media and Degradation
	6.1 Introduction to Chapter 6

	4
	6.2 Design of Experiments
	6.3 Experimental method
	6.4 DoE duel layered catalyst, GDM and degradation results
	6.4.1 MEA ID 02
	6.4.2 MEA ID 04
	6.4.3 MEA ID 06
	6.4.4 MEA ID 08
	6.4.5 MEA ID 10
	6.4.6 MEA ID 12
	6.4.7 MEA ID 14
	6.4.8 MEA ID 16
	6.4.9 MEA ID 18
	6.4.10 MEA ID 19
	6.4.11 MEA ID 23
	6.4.12 MEA ID 24

	6.5 Analysis and discussion GDM, dual layer catalysts and degradation results
	6.5.1  Sample Selection and Alternate Fitting Procedures

	6.6 Degradation rate calculations and validation
	6.7 Numeric quantification of polarisation curves and degradation
	6.7.1 MEA performance improvements and reversible degradation
	6.7.2  Structure and catalyst interactions weighted values

	6.8 Summary of Chapter 6

	7 Summary Discussion
	7.1.1 Novel contributions to the field

	8 Conclusions and Proposed Future Work
	5
	6.
	8.1 Conclusions
	8.2 Future work

	9 References
	10 Appendices

	Appendix 1
	Appendix 1
	Toray-Paper-TGP-H-Datasheet
	freudenberg GDM data
	msds isopropanol
	Nafion membrane MSDS

	Appendix 2
	Appendix 3
	Initial M-ANoVAR (ManCoVar) results
	Activation loss gradient multivariate analysis
	Ohmic loss gradient multivariate analysis
	Mass loss gradient multivariate analysis
	Maximum Power  multivariate analysis

	Appendix 4
	Appendix 5
	NMcC_n_AEK_ABAF13_FINAL
	1-s2.0-S0360319916323254-main
	PTFE mapping in gas diffusion media for PEMFCs using fluorescence microscopy
	Introduction
	Experimental
	Catalyst ink formulations
	Fluorescent dye study
	MEA fabrication and test cell dimensions
	Polarization performance

	Results & discussion
	SEM and EDX study
	Fluorescent dye study
	Digital image analysis
	‘Particle’ identification


	Conclusion and outlook
	Acknowledgments
	Nomenclature
	References



