

Heuristic Methods for Coalition Structure Generation

by

Amir Aatieff Amir Hussin

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

June 14, 2017

© by Amir Aatieff Amir Hussin (2017)

ii

Abstract

The Coalition Structure Generation (CSG) problem requires finding an optimal partition of a

set of n agents. An optimal partition means one that maximizes global welfare. Computing an

optimal coalition structure is computationally hard especially when there are externalities, i.e.,

when the worth of a coalition is dependent on the organisation of agents outside the coalition.

A number of algorithms were previously proposed to solve the CSG problem but most of

these methods were designed for systems without externalities. Very little attention has been

paid to finding optimal coalition structures in the presence of externalities, although

externalities are a key feature of many real world multiagent systems. Moreover, the existing

methods, being non-heuristic, have exponential time complexity which means that they are

infeasible for any but systems comprised of a small number of agents.

The aim of this research is to develop effective heuristic methods for finding optimal coalition

structures in systems with externalities, where time taken to find a solution is more important

than the quality of the solution. To this end, four different heuristics methods namely tabu

search, simulated annealing, ant colony search and particle swarm optimisation are explored.

In particular, neighbourhood operators were devised for the effective exploration of the search

space and a compact representation method was formulated for storing details about the

multiagent system. Using these, the heuristic methods were devised and their performance

was evaluated extensively for a wide range of input data.

iii

Acknowledgements

After so much hard work I am finally able to submit this thesis which I hope will be at least a

particle among the particles of knowledge. All of this would not have been possible without

the dedication and persistence of my dear supervisor Shaheen Fatima. I owe you the world

and with my deepest sincerity I would like to express a million thanks and gratitude to you,

Dr Shaheen Fatima. You helped nurture my research by being supportive and patient with my

pace throughout the period of my studies. Thank you for giving me a chance to be an

apprentice as a PhD student under your supervision. I am truly proud to be a student of such

an outstanding and intelligent academic and utmost expert in multi-agent systems.

Nothing is more important than family, without their support no one can sail through the rough

seas of doing a PhD. My dearest wife Syuhada, may Allah bless you always. Your warmth,

kind, patient and tender loving care made me cheerful whenever I hit a brick wall with the

research. You, Adrianna, Adrian and Aarash sacrificed a lot for me throughout this journey,

this leap of faith. Failure would be to fail you all. It was not easy but we did it together. Mama,

Dedi, Thank you for believing in me and continuing to support me all throughout this journey,

for your endless spiritual, physical and financial support.. To my little brother Aarieff, thank

you for helping me apply for this scholarship and my sisters Aalia and Aafaff, you are the best

sister a brother could ask for, you literally ‘guaranteed’ my success, without you I would have

no scholarship. Mak, Bapak, thank you for always being there for me and for not losing hope

in me. Atif Sana Tarar, thank you for keeping our family strong. Thank you Bidah, for filling

in for Aarash. Bengah, Bede, Pik, Afiq, Nana, Ira, Aisyah, all of you add colours to my life.

A special thanks my former masters’ supervisor, the late Dr. Mohd Syazwan Abdullah who

encouraged me to pursue a PhD. Also to Judith Paulton who has tirelessly supported me

throughout the course of my studies at Loughborough University, for always being supportive

and always proactive in finding solutions when I needed help.

Thank you to all my compatriots from the MML clan. A personal thanks to those families

who has contributed so much to me and my family, my most closest of friends in

Loughborough Amran Ahmad, Farraen, Shafizal, Nafiss, Rifqi, Muhaimin, Syahibudil,

Safwan, Syuib Rambat, Shahrulizan, Nashrudin, Ezhan Johaniff, Faezz, Zack, Zulkifli Omar

and all the others which are too many to mention here.

iv

Table of Contents

 Page

Abstract ii

Acknowledgement iii

Table of Contents iv

List of Figures vii

List of Tables x

Chapter 1 Introduction

1.1 Background

1.2 Coalition Formation in Multiagent Systems

1.2.1 Coalitions and Coalition Structures

1.2.2 Characteristic Function Games

1.2.3 Partition Function Games

1.2.4 Coalition Structure Generation (CSG)

1.2.5 Methods for Optimal Coalition Structure Generation

1.3 Research Objectives

1.4 Research Contributions

1.5 Thesis Structure

1

2

5

6

6

7

8

9

10

11

Chapter 2 Coalitional Games

2.1 Characteristic Function Games

2.2 Partition Function Games

2.2.1 The General Partition Function Game

2.2.2 A compact representation for PFGs

2.2.2.1 Positive Externalities

2.2.2.2 Negative Externalities

2.2.2.3 A Representation for Mixed Externalities

2.3 Chapter Summary

12

13

13

16

17

18

19

29

Chapter 3 Coalition Structure Generation for Characteristic Function

Games: A Review of Literature

3.1 Design-to-Time Algorithms

3.1.1 Dynamic Programming

3.1.2 Improved Dynamic Programming

30

30

32

v

3.2 Anytime Algorithms

3.2.1 Coalition Structure Graph Search

3.2.2 Integer Partition-Based Search

3.3 Heuristic Algorithms

3.3.1 Genetic Algorithms

3.3.2 Simulated Annealing

3.3.3 Greedy-Based Method

3.3.4 Particle Swarm Optimisation

3.3.5 Ant Colony Optimisation

3.4 Chapter Summary

35

35

37

40

41

42

43

44

45

46

Chapter 4 Coalition Structure Generation Partition Function Games:

A Review of Literature

4.1 Integer Partition-based Algorithm for PFG

4.1.1 𝐼𝑃
+/−

 Algorithm

4.2 Distributed CSG with Externalities

4.3 PFGs with Mixed Externalities

4.4 Chapter Summary

48

49

52

53

54

Chapter 5 Heuristic Methods for Finding Optimal Coalition Structure

5.1 Tabu Search for Coalition Structure Generation (TACOS)

5.1.1 Neighbourhood Generation Operators

5.2 Simulated Annealing for Optimal Coalition Structure

5.3 Ant Colony Search for Optimal Coalition Structure

5.4 Particle Swarm Search

5.5 Chapter Summary

57

59

62

64

67

69

Chapter 6 Simulation Setup for Performance Evaluation

6.1 Evaluation Method

6.2 Data Generation for Performance Evaluation

6.2.1 Data for Characteristic Function Games

6.2.2 Data for Partition Function Games

6.3 Calculating Bounds

6.3.1 Calculating the Upper Bound for CFGs

6.3.2 Calculating the Upper Bound for PFGs

6.4 Chapter Summary

70

73

73

74

75

75

77

83

vi

Chapter 7 Performance Analysis for the Individual Probability Distributions

7.1 Performance for Characteristic Function Games

7.1.1 Performance for 25-Agent CFGs

7.1.2 Performance for 27-Agent CFGs

7.2 Performance for Partition Function Games

7.2.1 Performance for 10-Agent PFGs

7.2.2 Performance for 27-Agent PFGs

7.3 The Effect of Number of Agents on Performance

7.3.1 Performance for CFGs

7.3.2 Performance for PFGs

7.4 Statistical Test on Results

7.4.1 Tests on 25-agent CFG

7.4.2 Tests on 27-agent CFG

7.4.3 Tests on 10-agent PFG

7.4.4 Tests on 27-agent PFG

7.5 Chapter Summary

85

85

94

103

103

109

116

117

121

125

125

129

133

137

141

Chapter 8 Performance Analysis Across Distributions

8.1 Average Performance for CFGs

8.2 Average Performance for PFGs

8.3 Performance Comparison for Each Method

8.3.1 CFGs: The Effect of Number of Agents on Performance

8.3.2 PFGs: The Effect of Number of Agents on Performance

8.3.3 The Effect of Externalities on Performance

8.4 Memory Usage

8.5 Chapter Summary

144

147

150

150

151

152

153

153

Chapter 9 Conclusion and Future Work

9.1 Conclusions

9.2 Future Work

155

161

References 163

Appendix I 171

vii

List of Figures

 Page

Figure 2.1 A typical characteristic function game and its input. 12

Figure 2.2 A typical partition function game and its input. 14

Figure 3.1 Example DP movements for 4-agents. 32

Figure 3.2 Multiple paths leading to each CS with more than two coalitions. 33

Figure 3.3 Redundant edges removed as dotted lines. 34

Figure 3.4 Coalition structure graph for 4-agents (Sandholm et al. 1999). 35

Figure 3.5 An example IP search space and sub-spaces given 4 agents. 39

Figure 4.1 Integer Partition for six-agents. 49

Figure 5.1 Ant colony movement by operator strength. 67

Figure 6.1 Space of all coalition structures for 5 agents. 76

Figure 7.1 Performance Comparison for 25-agents (CFG) ≈ 30 seconds

running time.

91

Figure 7.2 Performance Comparison for 27-agents (CFG) ≈ 60 seconds

running time.

100

Figure 7.3 Performance Comparison for 10-agents (PFG) ≈ 180 seconds

running time.

107

Figure 7.4 Performance Comparison for 27-agents (PFG) ≈ 300 seconds

running time.

114

viii

Figure 7.5 Performance for 25-agent and 27-agent CFGs (Uniform

Distribution).

117

Figure 7.6 Performance for 25-agent and 27-agent CFGs (Normal

Distribution).

118

Figure 7.7 Performance for 25-agent and 27-agent CFGs (Gamma

Distribution).

118

Figure 7.8 Performance for 25-agent and 27-agent CFGs (Beta Distribution). 119

Figure 7.9 Performance for 25-agent and 27-agent CFGs (Exponential

Distribution).

120

Figure 7.10 Performance for 25-agent and 27-agent CFGs (Triangular

Distribution).

120

Figure 7.11 Performance for 10-agent and 27-agent PFGs (Uniform

Distribution).

121

Figure 7.12 Performance for 10-agent and 27-agent PFGs (Normal

Distribution).

122

Figure 7.13 Performance for 10-agent and 27-agent PFGs (Gamma

Distribution).

122

Figure 7.14 Performance for 10-agent and 27-agent PFGs (Beta Distribution). 123

Figure 7.15 Performance for 10-agent and 27-agent PFGs (Exponential

Distribution).

124

Figure 7.16 Performance for 10-agent and 27-agent PFGs (Triangular

Distribution).

124

Figure 7.17 Confidence Intervals 25-agent CFGs (% of Optimal). 129

Figure 7.18 Confidence Intervals 27-agent CFGs (% of Upper Bound). 133

ix

Figure 7.19 Confidence Intervals 10-agent PFGs (% of Optimal). 137

Figure 7.20 Confidence Intervals 27-agent PFGs (% of Upper Bound). 141

Figure 8.1 Average performance (25-agent CFGs). 144

Figure 8.2 Average performance (27-agent CFGs). 146

Figure 8.3 Average performance (10-agent PFGs). 147

Figure 8.4 Average performance (27-agent PFGs). 149

Figure 8.5 Effects of the number of agents on performance (CFGs). 151

Figure 8.6 Effects of the number of agents on performance (PFGs). 152

Figure 8.7 The effects of externalities on performance (27-agent games). 153

x

List of Tables

 Page

Table 1.1 Number of possible coalition structures. 8

Table 2.1 Possible Coalition Types for 3-agents. 20

Table 2.2 Possible Coalition Structure Types. 21

Table 2.3 Externalities for each coalition type in a structure type. 23

Table 2.4 Externalities for singletons. 24

Table 2.5 Formula for calculating positive/negative externalities. 24

Table 2.6 Externalities from Other Coalitions in 𝐶𝑆 on Coalition 𝐶. 25

Table 2.7 Externalities on Coalition 𝐶 in Coalition Structure 𝐶𝑆. 26

Table 3.1 An example showing how 𝑓1 and 𝑓2 are calculated. 31

Table 3.2 Comparison between DP and IDP. 34

Table 3.3 Comparison of the Anytime Algorithms. 40

Table 3.4 A Summary the Heuristic Algorithms. 46

Table 4.1 Comparison of Methods for CSG in PFGs. 55

Table 5.1 Comparison of the Heuristic Methods. 69

Table 6.1 Running Time (rounded to next decimal) for CFGs. 71

Table 6.2 Running Time (rounded to next decimal) for PFG. 71

xi

Table 6.3 Number of Iterations and the corresponding run time for each

method.

72

Table 6.4 Number of Integer Partitions for each 𝑘 for 27-agent games. 79

Table 6.5 Upper bound for partitions containing coalition of size 𝑘. 82

Table 7.1 Average Performance for 25-agent CFGs (Uniform

Distribution).

86

Table 7.2 Average Performance for 25-agents CFGs (Normal

Distribution).

86

Table 7.3 Average Performance for 25-agents CFGs (Gamma

Distribution).

87

Table 7.4 Extended Running Time for 25-agent CFGs (Gamma

Distribution).

88

Table 7.5 Average Performance for 25-agents CFGs (Beta Distribution). 88

Table 7.6 Average Performance for 25-agents CFGs (Exponential

Distribution).

89

Table 7.7 Extended Running Time for 25-agent CFGs (Exponential

Distribution).

90

Table 7.8 Average Performance for 25-agent CFGs (Triangular

Distribution).

90

Table 7.9 Performance of Each Method for 25-agent CFGs (1 Best – 4

Worst).

92

Table 7.10 Best and Worst Solutions (25-agent CFGs). 92

Table 7.11 Average Performance for 27-agents CFGs (Uniform

Distribution).

94

xii

Table 7.12 Average Performance for 27-agents CFGs (Normal

Distribution).

95

Table 7.13 Average Performance for 27-agents (Gamma Distribution). 96

Table 7.14 Extended Running Time for 27-agent CFGs (Gamma

Distribution).

96

Table 7.15 Average Performance for 27-agents CFGs (Beta Distribution). 97

Table 7.16 Average Performance for 27-agent CFGs (Exponential

Distribution).

98

Table 7.17 Extended Running Time for 27-agent CFGs (Exponential

Distribution).

98

Table 7.18 Average Performance for 27-agent CFGs (Triangular

Distribution).

99

Table 7.19 Performance of Each Method for 27-agent CFGs (1 Best – 5

Worst)

100

Table 7.20 Best and Worst Solutions (27-agent CFGs). 101

Table 7.21 Average Performance for 10-agent PFGs (Uniform

Distribution).

103

Table 7.22 Average Performance for 10-agent PFGs (Normal Distribution). 104

Table 7.23 Average Performance for 10-agent PFGs (Gamma Distribution). 104

Table 7.24 Average Performance for 10-agent PFGs (Beta Distribution). 105

Table 7.25 Average Performance for 10-agent PFGs (Exponential

Distribution).

105

Table 7.26 Average Performance 10-agent PFGs (Triangular Distribution) 106

xiii

Table 7.27 Performance of Each Method for 10-agents PFGs (1 Best – 4

Worst)

106

Table 7.28 Best and Worst Solutions (10-agent PFGs) 108

Table 7.29 Average Performance for 27-agent PFGs (Uniform

Distribution).

109

Table 7.30 Average Performance for 27-agent PFGs (Normal Distribution). 110

Table 7.31 Average Performance for 27-agents PFGs (Gamma

Distribution).

111

Table 7.32 Extended Running Time for 27-agent PFGs (Exponential

Distribution).

111

Table 7.33 Average Performance for 27-agent PFGs (Beta Distribution). 112

Table 7.34 Average Performance for 27-agens PFGs (Exponential

Distribution).

112

Table 7.35 Extended Running Time 27-agent PFGs (Exponential

Distribution).

113

Table 7.36 Average Performance for 27-agent PFGs (Triangular

Distribution).

113

Table 7.37 Performance of Each Method for 27-agents PFG (1 Best – 5

Worst).

115

Table 7.38 Best and Worst Solutions (27-agent PFGs). 116

Table 7.39 Confidence Interval 25-Agent CFG (Uniform Distribution). 126

Table 7.40 Confidence Interval 25-Agent CFG (Normal Distribution). 126

Table 7.41 Confidence Interval 25-Agent CFG (Gamma Distribution). 127

xiv

Table 7.42 Confidence Interval 25-Agent CFG (Beta Distribution). 127

Table 7.43 Confidence Interval 25-Agent CFG (Exponential Distribution). 128

Table 7.44 Confidence Interval 25-Agent CFG (Triangular Distribution). 128

Table 7.45 Confidence Interval 27-Agent CFG (Uniform Distribution). 130

Table 7.46 Confidence Interval 27-Agent CFG (Normal Distribution). 130

Table 7.47 Confidence Interval 27-Agent CFG (Gamma Distribution). 131

Table 7.48 Confidence Interval 27-Agent CFG (Beta Distribution). 131

Table 7.49 Confidence Interval 27-Agent CFG (Exponential Distribution). 132

Table 7.50 Confidence Interval 27-Agent CFG (Triangular Distribution). 132

Table 7.51 Confidence Interval 10-Agent PFG (Uniform Distribution). 134

Table 7.52 Confidence Interval 10-Agent PFG (Normal Distribution). 134

Table 7.53 Confidence Interval 10-Agent PFG (Gamma Distribution). 135

Table 7.54 Confidence Interval 10-Agent PFG (Beta Distribution). 135

Table 7.55 Confidence Interval 10-Agent PFG (Exponential Distribution). 136

Table 7.56 Confidence Interval 10-Agent PFG (Triangular Distribution). 136

Table 7.57 Confidence Interval 27-Agent PFG (Uniform Distribution). 138

Table 7.58 Confidence Interval 27-Agent PFG (Normal Distribution). 138

Table 7.59 Confidence Interval 27-Agent PFG (Gamma Distribution). 139

xv

Table 7.60 Confidence Interval 27-Agent PFG (Beta Distribution). 139

Table 7.61 Confidence Interval 27-Agent PFG (Exponential Distribution). 140

Table 7.62 Confidence Interval 27-Agent PFG (Triangular Distribution). 140

Table 8.1 Best and worst performance across distributions (25-agent

CFGs).

145

Table 8.2 Average number of neighbours explored (25-agent CFGs). 145

Table 8.3 Best and worst performance across distributions (27-agent

CFGs).

146

Table 8.4 Average number of neighbours explored (27-agent CFGs). 147

Table 8.5 Best and worst Performance across distributions (10-agent

PFGs).

148

Table 8.6 Average number of neighbours explored (10-agent PFGs). 148

Table 8.7 Best and worst Performance across distributions (27-agent

PFGs).

149

Table 8.8 Average number of neighbours explored (27-agent PFGs). 150

Table 9.1 Comparative summary of the performance of all methods

(CFGs).

158

Table 9.2 Comparative summary of the performance of all methods

(PFGs).

160

1

Chapter 1 Introduction

This chapter sets the background for this research and lists the main aims and objectives of

this research.

1.1 Background

In the modern age of computing, complex systems have evolved to become more independent

and self-aware. There is an increasing trend towards designing software systems that work

mostly autonomously requiring little or no human input. An intelligent agent is an agent that

exhibits three main characteristics (Wooldridge, 2009): pro-activeness, reactivity and social

ability. An agent is said to be proactive if it exhibits goal-directed behaviour, i.e. is capable

of taking initiative to better achieve its intended goal. It is said to be reactive if it can respond

to changes in the environment in time for the response to be useful. It is said to be social if it

is able to interact with other agents.

A multiagent system (MAS) is comprised of multiple intelligent agents that interact and

coordinate with each other. A key characteristic of a MAS is that the individual agents in it

have different skills and capabilities and each agent is limited in terms of its capabilities.

Cooperation and coordination between agents is therefore necessary in order for them to

achieve big and complex goals, i.e., goals that cannot be achieved by an agent individually.

Working together in some instances also helps the agents achieve the goals more efficiently

(Shehory & Kraus, 1998; Zlotkin & Rosenschein, 1994).

To bring about this cooperation, the individual agents in a MAS must form a group and work

together. In this context, the following two terms are useful:

Coalition: It is a subset of the agents that comprise a MAS.

Coalition structure: A typical MAS requires the formation of several coalitions that work

simultaneously. In this context, the term coalition structure refers to a partition of the agents

in a MAS.

Chapter 1. Introduction 2

The following are some applications that require the formation of coalitions:

1. Autonomous sensors networks where coalitions help to improve the coverage of

the surveillance area (Glinton et al., 2008).

2. A coalition of buyers working together to get cheaper prices by purchasing in bulk

(Sukstrienwong, 2011).

3. Intrusion detection systems (IDSs) to provide secure and dependable cloud

computing service (Liu et al., 2015).

4. Distributed vehicle routing applications where delivery companies need to

optimally allocate resources to coalitions within a structure (Sandholm & Lesser,

1997).

5. E-commerce systems where buyers group together to obtain discounts (Tsvetovat

& Sycara, 2000).

6. E-business systems that need to optimally allocate resources to market partitions

(Norman et al., 2004).

7. Distributed grid computing where virtual organisations must optimally share

resources (Foster & Kesselman, 2003; Yong et al., 2003).

8. Information gathering systems where clusters of information servers must process

queries together by forming optimal coalitions (Klusch & Shehory, 1996).

9. Multi-sensor surveillance networks where coalitions are used to provide better

coverage over a large area (Dang et al., 2006).

1.2 Coalition Formation in Multiagent Systems

The success of a MAS is frequently measured in terms of the overall system performance of

the system. The performance of a MAS depends on what coalitions form. Coalitions can form

in many different ways. If formed correctly, coalitions can increase the productivity of a MAS.

Likewise, badly formed coalitions can be counter-productive. It is therefore important for the

right coalitions to form. But finding the right coalitions is a difficult problem. This thesis is

aimed at finding methods for overcoming this difficulty. More precisely, the aim of this

research is to devise computational methods for finding optimal coalitions.

Chapter 1. Introduction 3

In order to understand the complexity of the problem, consider a system comprised of 3

agents. Let {a, b, c} be the set of agents. There are 7 different ways in which a coalition can

form:

1. {a}

2. {b}

3. {c}

4. {a, b}

5. {b, c}

6. {a, c}

7. {a, b, c}

 In general for a system comprised of n agents, there are 2𝑛−1 possible coalitions.

Again consider the system comprised of 3 agents {a, b, c}. There are 5 possible coalition

structures, i.e., 5 different ways of partitioning the 3 agents:

1. {{a}, {b}, {c}}

2. {{a, b}, {c}}

3. {{a, c}, {b}}

4. {{a}, {b, c}}

5. {{a, b, c}}

In general, for a system of n agents, the number of possible coalition structures is the Bell

number (𝐵𝑛) (see section 1.2.4 for details).

Different coalition structures yield different levels of performance. The problem is therefore

to determine an optimal coalition structure, i.e., a structure that optimizes system

performance.

In order to find an optimal coalition structure, we must first use a suitable representation for

describing the worth of a coalition and the worth of a coalition structure. The most commonly

used representation comes from the literature in game theory (Chalkiadakis et al., 2012).

Chapter 1. Introduction 4

A coalition game is defined in terms of the players playing the game (i.e., the agents that

comprise a MAS) and the worth of coalitions and coalition structures (Chalkiadakis et al.,

2012). There are two types of coalition games characteristic function games (CFG) and

partition function games (PFG).

1. Characteristic function games (Di Mauro et al., 2010; Keinänen & Keinänen, 2008;

Rahwan et al., 2012; Rahwan et al., 2013; Sen & Dutta, 2000; Yeh, 1986): These are

games in which the worth of a coalition depends on its member agents alone.

2. Partition function games (Banerjee & Kraemer, 2010; Epstein & Bazzan, 2013;

Michalak et al., 2008; Rahwan et al., 2012; Thrall & Lucas, 1963): These are games

in which the worth of a coalition depends not only on its member agents but also on

how the external agents form coalitions.

The difference between PFGs and CFGs is that PFGs take into account externalities from

forming coalitions. In PFGs the utility that is obtained from forming a coalition could be

influenced by other coalitions that are concurrently being formed. This means that the value

of a coalition depends on the coalition structure it is embedded with.

Example

Consider a game comprised of three agents {a, b, c}. For a CFG, the value of a coalition, say

{a}, is given in terms of the elements of the set {a}. The value of any coalition is a real number.

Thus the value of {a} in the structure {{a}, {b, c}} is equal to the value of {a} in the structure

{{a}, {b}, {c}}. However, this is not the case for PFGs. For a PFG, the value of {a} in the

structure {{a}, {b, c}} need not be equal to the value of {a} in the structure {{a}, {b}, {c}}.

Most of the existing literature on determining optimal coalition structures has focussed on

CFGs (Rahwan et al., 2015). However, in many cases, such as resource allocation (Dunne,

2005), the performance of a coalition is directly influenced how the external players are

organized. In such cases, a coalition that increases its consumption of resources in one part of

the system can have adverse effects that could impact the effectiveness of agents in another

part of the system. Another example of the occurrence of externalities is conspiracy attempt

in oligopolies. In these situations, cooperating organisations explore ways to undermine the

competitiveness of other companies in the market (Catilina & Feinberg, 2006).

Chapter 1. Introduction 5

Type of externality

Externalities can be of two types (Rahwan et al., 2009): positive or negative. Externalities are

said to be positive (negative) if the merger of two coalitions has a beneficial (harmful) impact

on the external players.

 An example of positive externalities is environmental policy arrangement among countries

(Plasmans et al., 2006). A decision made by a coalition of countries to cut pollution levels

will have a beneficial impact on the countries outside the coalition (Finus, 2003). An example

of negative externalities is the merger of technological companies; if say a giant like Microsoft

were to merge with Facebook, then this decision will typically have a negative impact on other

companies such as Google and Oracle.

Negative externalities also arise when major technology corporations decide to cooperate in

order to develop a new technology standard; those that are not part of the coalition see a

reduction their competitive position. For instance when a group of companies decided to form

Blu-ray Disc Association (BDA), the industry consortium that develops and licenses Blu-ray

Disc technology, the others that did not join BDA were recipients of negative externalities.

The effects of this can clearly be seen in the collapse of HD DVD developed by the DVD

Forum (Edwards et al., 2005). PFGs are necessary to model such systems with externalities.

1.2.1 Coalitions and Coalition Structures

In this section, we will introduce notation and formalize terms. The set of agents in a MAS

will be denoted 𝐴𝑔 = {𝑎1, … . , 𝑎𝒏}. The term coalition refers to a non-empty subset of 𝐴𝑔.

The term coalition structure refers to a set of pairwise-disjoint coalitions. Formally, a

coalition structure, 𝐶𝑆 is a set 𝐶𝑆 = {𝐶1 … . 𝐶𝑘} of disjoint coalitions such that

 ⋃𝐶𝑖 = 𝐶, and 𝐶𝑖 ∩ 𝐶𝑗 = for every 𝑖, 𝑗 ∈ {1 … . 𝑘} 𝑎𝑛𝑑 𝑖 ≠ 𝑗.

We will denote the set of all coalition structure over 𝐶 as Π𝐶 .

For example, for the four agent set 𝐴𝑔 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}, a possible coalition is 𝐶 =

{𝑎2, 𝑎3, 𝑎4} while a possible coalition structure is {{𝑎1}, {𝑎2}, {𝑎3, 𝑎4}}.

Chapter 1. Introduction 6

A coalition in a coalition structure will be denoted as 𝐶 combined with a subscript for example

𝐶1 or 𝐶𝑖 and combined with primes either in the form of 𝐶′ or 𝐶′′.

In coalitional games where externalities are considered, an embedded coalition is a pair

consisting of a coalition and a coalition structure over 𝐴𝑔. For example, (𝐶, 𝐶𝑆) is an

embedded coalition where 𝐶 represents a coalition and 𝐶𝑆 represents a coalition structure

which includes 𝐶, i. e.,

𝐶𝑆 ∈ Π𝐴𝑔 and 𝐶 ∈ 𝐶𝑆.

The space of all embedded coalitions will be denoted ℇ𝐶.

1.2.2 Characteristic Function Games

A characteristic function games is a pair (𝐴𝑔, 𝑣) where 𝐴𝑔 denotes a finite set of agents and

𝑣: 2𝐴𝑔 → ℝ is the characteristic function representing the value 𝑣(𝐶) given to coalition 𝐶 ∈

P(𝐴𝑔) where 𝐶 is the powerset of 𝐴𝑔 excluding the empty set. The value 𝑉(𝐶𝑆) of a coalition

structure 𝐶𝑆 is the sum of the values of the coalitions in the structure 𝐶𝑆:

 𝑉(𝐶𝑆) = ∑ 𝑣(𝐶𝑖)

𝐶𝑖∈𝐶𝑆

 (1.1)

1.2.3 Partition Function Games

Games in partition function form were introduced by Thrall and Lucas (Thrall & Lucas, 1963)

based on research into cooperative game theory by Neumann and Morgenstern (Neumann &

Morgenstern, 1947). For PFGs the value of a coalition is influenced both by the identities of

its members together with the ways non-members are partitioned. A PFGs is a pair (𝐴𝑔, 𝑣)

where 𝐴𝑔 is the set of agents and 𝑣, represents the value given to an embedded coalition,

(𝐶, 𝐶𝑆). Thus the value of a coalition C in the coalition structure CS is given by 𝑣((𝐶, 𝐶𝑆)).

Formally, this is expressed as 𝑣: ℇ𝐶 → ℝ.

Chapter 1. Introduction 7

The value of a coalition structure 𝑉(𝐶𝑆) is given by:

 𝑉(𝐶𝑆) = ∑ 𝑣(𝐶𝑖, 𝐶𝑆)

𝐶𝑖∈𝐶𝑆

 (1.2)

This means that in a typical CFG, a coalition 𝐶 ⊆ 𝐴𝑔 has only one value, whereas in a PFG

C may have as many values as the number of ways to partition the agents in 𝐴𝑔\𝐶.

1.2.4 Coalition Structure Generation (CSG)

The coalition structure generation (CSG) problem for both CFGs and PFGs involves finding

an optimal coalition structure 𝐶𝑆∗ ∈ Π𝐴𝑔 such that:

𝐶𝑆∗ ∈
𝑎𝑟𝑔𝑚𝑎𝑥(𝑉(𝐶𝑆)).

𝐶𝑆 ∈ Π𝐴𝑔

Solving the CSG problem is important because there are numerous applications in various

fields including bioinformatics, data mining, semantic web, natural language processing and

machine learning (Di Mauro et al., 2014). The problem of finding an optimal coalition

structure is computationally hard (Aziz & De Keijzer, 2011). While it is solvable using brute

force search, its time complexity is exponential in the number of agents in 𝐴𝑔. This is not

feasible with the processing capacity of the current state of the art computers.

For n agents, the number of possible coalition structures is given by the Bell number

𝐵𝑛 (Graham et al., 1994) or Stirling number of the second kind 𝑆(𝑛, 𝑘) (Knuth, 1992) where

the 𝑛th of these numbers counts the number of different ways to partition a set with 𝑛 elements

into exactly 𝑘 nonempty subsets. This is calculated by the following recursive formula:

𝐵𝑛+1 = ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝐵𝑘.

Chapter 1. Introduction 8

Table 1.1 – Number of possible coalition structures.

Number of elements/agents

𝑛

Bell number 𝐵𝑛

(Possible Number of Coalition Structures)

5 52

10 115,975

15 1,382,958,545

20 51,724,158,235,372

25 4,638,590,332,330,743,949

27 545,717,047,947,902,329,359

Table 1.1 shows how quickly the Bell number grows in 𝑛. Given these numbers, it is clear

that a brute force method using present computational technology is impractical for finding

an optimal coalition structure. Alternative methods that are practically feasible must be

devised. This is the goal of this thesis.

1.2.5 Methods for Optimal Coalition Structure Generation

Existing methods for solving the coalition structure generation problem can be divided into

three categories (Service & Adams, 2011):

(i) Anytime algorithms (Changder et al., 2016a; Rahwan et al., 2009; Rahwan et al.,

2012; Sandholm et al., 1998; Service & Adams, 2010) – the quality of the solution

generated improves with their execution time. Their disadvantage is that, in the

worst case, they need to check all coalition structure requiring 𝑂(𝑛𝑛) time

complexity.

(ii) Design-to-time algorithms (Yeh, 1986) – These methods guarantee returning an

optimal solution, however can only do so if allowed to run to completion. DP

(Yeh, 1986) belongs to this category and has a time complexity of 𝑂(3𝑛).

Chapter 1. Introduction 9

(iii) Heuristics algorithms (Di Mauro et al., 2010; Guo & Wang, 2006; Keinänen &

Keinänen, 2008; Sen & Dutta, 2000; Sukstrienwong, 2011) – These algorithm

prioritise speed over solution quality. However, when used, it is impossible to

provide any form of guarantees.

For CFGs, and more so for PFGs, finding an optimal coalition structure is computationally

hard. In the existing literature, a number of methods have been studied for CFGs but the

optimal coalition structure determination problem for PFGs has only recently become the

focus of attention (see Chapters 3 and 4 for a review of existing methods). A number of

deterministic methods have been developed for PFGs but they have exponential time

complexity. This presents the need for developing effective heuristic methods for finding a

good enough solution as quickly as possible, especially for settings with a large number of

agents. Such methods are important for example in mission critical systems where a group of

agents representing emergency responders need to partition their resources so the emergency

situation is handled optimally. In these systems the agents need to react quickly and time lost

looking for the absolute optimal can severely impact on handling the emergency. A quick

locally optimal solution would be better than a delayed globally optimal one because the

situation may have changed during the time (Di Mauro et al., 2014).

Against this background, the objectives of this research are as follows.

1.3 Research Objectives

The main objective of this research is to develop effective heuristic solutions to the coalition

structure generation problem. To this end, four different heuristic search methods will be

explored. Specifically, these four methods are as follows:

1. Tabu search method

2. Simulated annealing method

3. Ant colony search method

4. Particle swarm optimization method

Chapter 1. Introduction 10

A key consideration in the design of heuristics will be their suitability to CFGs and also to

PFGs. Other considerations are their running time memory space requirement, and their

scalability.

Given the complexity of the problem, it is especially important and desirable when designing

an algorithm, to balance the running time and the amount of memory required to execute a

method. This can be achieved, perhaps by using efficient memory management which has

been proven successfully adaptable in other combinatorial optimisation problems (Galinier et

al., 2008). For example, having a tabu list which is relatively small could potentially be a more

efficient way of using memory compared to the memory usage of other algorithms such as

Dynamic Programming (Yeh, 1986). It is also worth noting there are no existing heuristic

algorithms solving the optimal coalition structure generation problem for PFGs.

Thus, the aim of this thesis is to explore the above list heuristic approaches for solving the

coalition structure generation problem and conduct a comparative analysis of their

performance. Performance will be measured in terms of the above mentioned desirable

characteristics.

1.4 Research Contributions

Heuristic methods have been applied to related optimisation problems such as the travelling

salesman problem (Fiechter, 1994), bin packing problem (Lodi et al., 2004) and scheduling

problems (Nonobe & Ibaraki, 2002). In solving the CSG problem without externalities i.e.

CFGs, there are several heuristic methods such as greedy (Di Mauro et al., 2010), ant colony

(Sukstrienwong, 2011), simulated annealing (Keinänen & Keinänen, 2008) and genetic

algorithms (Sen & Dutta, 2000) that have been applied with promising results. However, there

are no existing heuristic methods for generating optimal coalition structures for PFGs. This

research contributes to the state of the art in the following ways:

1) Devising a range of heuristic methods for solving the coalition structure generation

problem for CSGs and for PFGs.

2) Devising neighbourhood operators for effective exploration of the search space.

3) Devising compact representations for PFGs.

4) Analysing the performance of each heuristic method.

5) Conducting a comparative analysis of the heuristic methods.

Chapter 1. Introduction 11

Publications from this research

A. Hussin and S. Fatima (Hussin & Fatima, 2016), Heuristic methods for optimal coalition

structure generation, Lecture Notes in AI, 10207, pages 1 – 16, 2017. (DOI: 10.1007/978-3-

319-59294-7 11)

1.5 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 provides background

information on coalitional games. Chapters 3 and 4 review the existing algorithms for solving

the coalition structure generation problem. The methods reviewed cover all three types of

methods present in literature, namely anytime algorithms, design to time algorithms and

heuristic algorithms. Chapter 3 reviews the existing literature for CFGs and Chapter 4 covers

existing methods for solving the CSG problem for PFGs. These including centralised and

distributed methods.

Chapter 5 describes the four heuristic search methods: tabu search, simulated annealing, ant

colony search, and particle swarm search methods.

Chapter 6 is a description of the set-up for conducting simulations for performance evaluation.

Chapter 7 provides the result of the simulations. Performance is evaluated both in terms of

the time taken to generate a solution and the quality of solution. The heuristic methods are

also evaluated in terms of their scalability and how well they handle externalities. This chapter

analyses the performance of each of the four heuristic methods for six different probability

distribution data.

Chapter 8 presents an analysis of the average performance of each heuristic method across all

the data sets. Scalability and the impact of externalities on performance are also analysed.

Chapter 9 lists the main conclusions of this research and provides pointers for further research.

12

Chapter 2 Coalitional Games

This chapter is a background on coalitional games. Section 2.1 introduces characteristic

function games and provides details regarding the definition of values of coalitions. Section

2.2 does the same for partition function games.

2.1 Characteristic Function Games

In some multi-agent systems, each coalition pursues its own goal with little or no interaction

with other coalitions. A lack of interaction between coalitions means that the value generated

by a coalition is independent of the external coalitions. Games with no externalities are known

as characteristic function games (CFGs).

A CFG is represented as a pair (𝐴𝑔, 𝑣) where 𝐴𝑔 is the set of agents and 𝑣 is the characteristic

function that gives the value of any coalition (Neumann & Morgenstern, 1947; Rapoport,

1970).

𝑣: 2𝐴 → ℝ.

Figure 2.1 is an illustration of values for an example game of 3 agents.

Figure 2.1 – A typical characteristic function game and its input.

Chapter 2. Coalitional Games 13

Definition 1. A coalition structure is an exhaustive partition of a set of agents 𝐴𝑔 into

pairwise-disjoint (or non-overlapping) coalitions. For example, for 𝐴𝑔 = {𝑎1, 𝑎2, 𝑎3}, there

are exactly 5 possible coalition structures:

{{𝑎1}, {𝑎2}, {𝑎3}}, {{𝑎1, 𝑎2}, {𝑎3}}, {{𝑎1, 𝑎3}, {𝑎2}}, {{𝑎1}, {𝑎2, 𝑎3}} and {{𝑎1, 𝑎2, 𝑎3}}

For n agents, there are Bell (𝐵𝑛) ∼𝑂(𝑛𝑛) possible coalition structures, i.e., the number of

coalition structures is exponential in 𝑛.

The value of a coalition structure is the sum of the values of its coalitions:

 𝑉(𝐶𝑆) = ∑ 𝑣(𝐶𝑖)

𝐶𝑖∈𝐶𝑆

(2.1)

The precise details about how the value of a coalition is defined will be the subject of Chapter

6.

2.2 Partition Function Games

For partition function games (PFGs), the value of a coalition can be effected by the way the

agents external to the coalition are organised (Thrall & Lucas, 1963).

2.2.1 The General Partition Function Game

A coalition structure 𝐶𝑆 is a partition of the set of agents in 𝐴𝑔. Any coalition 𝐶 ⊆ 𝐴𝑔 that is

a member of a coalition structure 𝐶𝑆 is embedded in 𝐶𝑆. If the value assigned to a coalition 𝐶

is influenced by other coalitions in that structure, then each coalition may have different

values depending on which structure it is embedded in. Let (𝐶; 𝐶𝑆) denote an embedded

coalition. Let ℇ𝐶 represent the set of all embedded coalitions, and Π the set of all coalition

structures.

Chapter 2. Coalitional Games 14

A PFG is comprised of:

 A set of agents, 𝐴𝑔 = {𝑎1, . . , 𝑎𝑛}

 A partition function 𝑤 that takes an embedded coalition (𝐶, 𝐶𝑆) ∈ ℇ𝐶 as input and

assigns a real number value to coalition 𝐶 in the coalition structure 𝐶𝑆.

𝑤: ℇ𝐶 → ℝ

The value of a coalition structure 𝐶𝑆 is given by:

 𝑉(𝐶𝑆) = ∑ 𝑤(𝐶𝑖, 𝐶𝑆)

𝐶𝑖∈𝐶𝑆

(2.2)

This is illustrated in Figure 2.2. A mentioned in Chapter 1, externalities are two main types:

positive and negative. However, in some games, externalities may occur in both positive and

negative forms. These are called mixed externalities games.

A mixed externalities game consists of a set of agents, 𝐴𝑔 and a partition function which

takes, as input, every feasible coalition structure (CS), and for each coalition in each structure,

outputs a numerical value that reflects the performance of the coalition in that structure which

can either have positive (increase) or negative (decrease) value when moving from one

structure to the other.

Figure 2.2 – A typical partition function game and its input.

Chapter 2. Coalitional Games 15

Example

Given two coalition structures 𝐶𝑆 and 𝐶𝑆′ where 𝐶𝑆 = {{𝐶1}, {𝐶2}, {𝐶3}} and 𝐶𝑆′ =

{{𝐶1}, {𝐶2 ∪ 𝐶3}} the value of {𝐶1} may be different in 𝐶𝑆′ compared to 𝐶𝑆 as a result of the

merger between 𝐶2 and 𝐶3. This condition effecting 𝐶1 is usually attributed as an externality

implied on 𝐶1 by the formation of coalition {𝐶2 ∪ 𝐶3} resulting from the merger of 𝐶2 and 𝐶3

(Michalak et al., 2008).

Types of PFGs

Three types of Partition Function Games (PFGs) have been studied in literature:

 Games with positive externalities (Rahwan et al., 2012).

 Games with negative externalities (Rahwan et al., 2012).

 Games with mixed externalities (Banerjee & Kraemer, 2010).

A brief description of each is as follows:

1. Games with positive externalities – In games with positive externalities, the merger of

some coalitions in a coalition structure adds value to the players who are external to

that coalition, making them better off. In other words, the merger of any two coalitions

gives a positive impact to other existing coalitions in the system (Rahwan et al., 2012).

An example of environmental policy arrangement maybe the decision of a coalition

of countries to cut pollution levels. This decision will impact other countries leading

to positive externalities (Finus, 2003).

2. Games with negative externalities – For games with negative externalities, the merger

of any two coalitions does not benefit the other existing coalitions (Rahwan et al.,

2012). For example, collusion in oligopolies where cooperating organisations explore

ways to undermine the competitiveness of other companies in the market (Catilina &

Feinberg, 2006) gives rise to negative externalities.

3. Games with mixed externalities – In a game with mixed externalities, the formation

of a new coalition can either induce a positive or negative externality upon other (non-

member) coalitions in the structure. This game is a neither positive only nor negative

only externality game as considered by Michalak et al. (2008). A game with mixed

Chapter 2. Coalitional Games 16

externalities can be modelled using agent types where two types of agents will form

coalitions that induces either a positive or negative externality on the other type

(Banerjee & Kraemer, 2010).

In general, for games with mixed externalities, it would be very difficult to find a solution to

the coalition structure generation problem without exploring the entire space and checking

every coalition structure (Rahwan et al., 2015). To put in perspective, consider a coalition

structure generation problem with externalities where all the structures have been examined

except one single structure. It is possible that this single structure has a higher value compared

to all the other coalition structures in the system resulting from the externalities imposed on

it.

In order to understand the degree of complexity involved in solving the CSG problem for

PFGs, we must compare the size of their search space to the size of the search space for CFGs.

Storing the values of coalitions by exhaustively listing them in memory is infeasible for all

but very small PFGs, i.e., those with very few agents. This is because the number of possible

partitions grows very rapidly as the number of agent increases. For example, for 20 agents,

there are 4 × 1014 possible structures and exhaustive enumeration requires 394 terabytes of

memory (Rahwan et al., 2012). For PFGs, any coalition can have as many different values as

there are coalition structures. Storing the value of each coalition in memory is therefore

infeasible for any but very small games. Figure 2.2 gives an indication of the size of search

space for a PFG of 3 agents.

We therefore need more concise methods for dealing with this problem. The following section

provides details regarding our approach for dealing with this problem. Note that Section 2.2.2

is our contribution and does not form part of literature review.

2.2.2 A compact representation for PFGs

In order to define coalition values compactly, we used the following approach. The value of

a coalition in a structure is calculated in terms of two components:

 an externalities-free value, and

 an externalities factor.

Chapter 2. Coalitional Games 17

The externalities-free value of a coalition C is defined in the same way as for a CFG, i.e.

𝑣: 2𝐴 → ℝ. The externalities factor is defined in terms of two components:

1. The size of the coalition, i.e., the number of member agents.

2. The size of the structure it is embedded in, i.e., the number of coalitions in the

structure.

 For a coalition 𝐶, this factor is denoted ef and is calculated as follows:

𝑒𝑓 =

|𝐶|

𝑑

(2.3)

where 𝑑 is the number of coalitions in the structure in which C is embedded.. As described

below, this factor can be used to represent both positive and negative by adding and

subtracting the externality free value using the formula given in Table 2.5.

2.2.2.1 Positive Externalities

In a PFG with positive externalities, the merger of any two coalitions decreases their joint

value (or keeps it constant), and increases the values of other coalitions in the structure (or

keeps them constant). The value 𝑣(𝐶) of any coalition 𝐶 is calculated as follows. Let 𝑅𝑉

denote a randomly drawn value from any probability distribution. This random value is

increased by a factor of 𝑒𝑓 to obtain 𝑣(𝐶) as follows:

 𝑣(𝐶) = 𝑅𝑉 + (𝑅𝑉 × 𝑒𝑓) (2.4)

Therefore, we have the following:

1. If external coalitions merge, the number of coalitions in the structure, i.e. 𝑑 decreases. As

a result, 𝑒𝑓 increases.

2. If 𝑒𝑓 increases, then 𝑣(𝐶) increases as well.

Chapter 2. Coalitional Games 18

Examples of games where only positive externalities occur includes projects to reduce

deforestation in a group of countries benefits other countries environmentally. Another

example is the decision by one group of countries to reduce pollution, which has a positive

impact on other countries or regions, it induces positive externalities. The sharing of cars

between people in a community, if a car is a coalition then merging two coalitions of people

into a single car (coalition) benefits the other coalitions as there will be less cars in the

structure reducing the traffic resulting in a positive externality on other coalitions in the

structure.

2.2.2.2 Negative Externalities

Externalities are said to be negative if the merger of two coalitions reduces the value (or keeps

them constant) of the other coalitions in the structure. Again, 𝑅𝑉 denotes a randomly drawn

value from any probability distribution. This random value is decreased by a factor of 𝑒𝑓 to

obtain 𝑣(𝐶) as follows:

 𝑣(𝐶) = 𝑅𝑉 − (𝑅𝑉 × 𝑒𝑓) (2.5)

Therefore, we have the following:

1. If external coalitions merge, number of coalitions in the structure, i.e.,𝑑 decreases and 𝑒𝑓

increases, and so will the value to be deducted from 𝑣(𝐶).

2. If 𝑒𝑓 increases, then 𝑣(𝐶) decreases as the original value is subtracted by 𝑅𝑉 × 𝑒𝑓

Situations where negative externalities occur are for example, when high-tech companies

decide to cooperate in order to develop a new technology standard, other companies lose some

of their competitive position, i.e., they are subject to negative externalities. Research &

Development coalitions among pharmaceutical companies, when two companies decide to

jointly develop a new drug, the market position of other companies is likely to decrease.

Collusion in oligopolies, exogenous coalition formation in e-market places, as well as multi-

agent systems with shared resources and/or conflicting goals all invoke negative externalities.

Chapter 2. Coalitional Games 19

A PFG with mixed externalities is represented as follows. Recall that when a coalition is

effected by positive externalities, its value is calculated using Equation (2.4) and when it is

effected by negative externalities, its value is calculated using Equation (2.5). In order to

incorporate mixed externalities, we take the following approach which is similar to the

approach taken by Banerjee and Kraemer (Banerjee & Kraemer, 2010):

1. The agents in a game are divided into different types.

2. Then, based on the types of member agents, coalitions are divided into different types.

3. Finally, based on the types of coalitions, coalition structures are divided into different

types.

The underlying idea is that the type of a coalition is correlated to the type of externality it can

impose on external players.

Details regarding the types of agents, the types of coalitions and the types of coalition

structures are the subject of the following section.

2.2.2.3 A Representation for Mixed Externalities

Using this concept, agents are divided into two distinct types with the restriction that any

game must contain both types of agents. The two types of agents are:

i) Type A

ii) Type B

Given that there are two type of agents, there can be the following three types of coalitions:

i) Type AA – All agents in the coalition are Type A.

ii) Type BB – All agents in the coalition are type B.

iii) Type MX – Some agents in the coalition are type A while others are type B.

Chapter 2. Coalitional Games 20

Example:

In a 3-agent comprised of 2 Type A agents and 1 Type B agent, the following types of

coalitions are possible (supposing that agents a1 and a2 are Type A, and agent a3 is Type B):

Table 2.1 – Possible Coalition Types for 3-agents.

Coalition Coalition Type

{a1} Type AA

{a2} Type AA

{a1, a2} Type AA

{a3} Type BB

{a1, a3} Type MX

{a2, a3} Type MX

{a1, a2, a3} Type MX

Three types of coalitions give rise to the following 5 types of coalition structures:

i) Type AABB – the structure consists of type AA and type BB coalitions

ii) Type AAMX – the structure consists of type AA and type MX coalitions.

iii) Type BBMX – the structure consists of type BB and type MX coalitions.

iv) Type AABBMX – the structure consists of type AA, type BB and MX coalitions.

v) Type MXMX – the structure consists only of type MX coalitions.

Chapter 2. Coalitional Games 21

Example:

In a 3-agent system comprised of 2 Type A agents and 1 Type B agent, the following types

(see Table 2.2) of coalition structures are possible (supposing that agents a1 and a2 are Type

A, and agent a3 is Type B):

Table 2.2 – Possible Coalition Structure Types.

Coalition Structures Coalition Structure Type

{{a1, a2, a3}} Type MXMX (Grand Coalition)

{{a1, a2}, {a3}} Type AABB

{{a1, 3}, {a2}} Type AAMX

{{a1}, {a2, a3}} Type AAMX

{{a1}, {a2}, {a3}} Type AABB

In PFGs with only one agent of a type, certain types of coalition structure will not exist. The

grand coalition will always be Type MXMX and the coalition structure of singletons is always

type AABB if there is at least one agent of each type.

Example:

Number of Agents by Type Coalition Structure Types that Do Not Exist

1 Type A agent, 𝑛 − 1 Type B agents There will be no Type AAMX coalition structure

1 Type B agent, 𝑛 − 1 Type A agents There will be no Type BBMX coalition structure

Chapter 2. Coalitional Games 22

The effect of externalities

We defined the effect of externalities in terms of the types of coalitions. More precisely, the

impact on a coalition when other coalitions form is defined as follows:

1) When a Type MX coalition forms as a result of a merger of a Type AA and a Type

BB coalition, it will give positive externalities to Type AA coalitions but negative

externalities to Type BB. The collusion will always benefits Type AA coalitions but

always harms Type BB coalitions.

2) When a Type MX coalition forms and no Type AA or Type BB are present (i.e. the

coalition structure consists only of Type MX coalitions), all coalitions in the structure

are effected negatively. The idea is that Type MX coalition is a collusion between

Type A and Type B agents. Therefore, if the coalition structure consists only of

colluders that are colluding against each other, everyone loses.

3) When a Type AA coalition forms as a result of a merger of two Type AA coalitions,

all other coalition types that are not singletons have their value increased due to

positive externalities.

4) When a Type BB coalition form as a result of a merger of two Type BB coalitions, all

other coalition types that are not singletons have their value increased due to positive

externalities.

Special case for singletons (working alone may not be beneficial):

1) The effect of the formation of a structure on a singleton Type AA coalition is defined

as follows. If the structure is Type AAMX or AABBMX, then the externality on the

singleton is positive. If the structure is Type AABB, then the externality on the

singleton is negative.

2) The effect of the formation of a structure on a singleton Type BB coalition is defined

as follows. Regardless of the type of the structure, the externality on the singleton is

negative.

The effect of externalities for coalition structures with no singletons is shown in Table 2.3.

Chapter 2. Coalitional Games 23

Table 2.3 – Externalities for each coalition type in a structure type.

Coalition

Structure

Type

Coalition Structure

Membership

First Coalition

Type (Value)

Second

Coalition Type

(Value)

Third

Coalition Type

(Value)

AABB {{AA}{BB}} {AA} +

(Increased)

{BB} +

(Increased)

N/A

AAMX {{AA}{MX}} {AA} +

(Increased)

{MX} +

(Increased)

N/A

BBMX {{BB}{MX}} {BB} –

(Decreased)

{MX} +

(Increased)

N/A

AABBMX {{AA}{MX}{BB}} {AA} +

(Increased)

{MX} +

(Increased)

{BB} –

(Decreased)

MXMX {{MX}{MX}} {MX} –

(Decreased)

{MX} –

(Decreased)

N/A

Different consideration is given for singletons. Working alone is always bad for Type BB

coalitions. However for Type AA coalitions when there is a Type MX coalition in the

structure, it benefits from this coalition type (see Table 2.4).

Chapter 2. Coalitional Games 24

Table 2.4 – Externalities for singletons.

Coalition

Structure

Type

Coalition Structure

Membership

First

Coalition

Type

(Value)

Second

Coalition

Type

(Value)

Third

Coalition

Type

(Value)

Fourth

Coalition

Type

(Value)

Fifth

Coalition

Type

(Value)

AABB {{A}{AA}{BB}{B}} [A] –

(Decreased)

[AA] +

(Increased)

[BB] +

(Increased)

[B] –

(Decreased)

N/A

AAMX {{A}{AA}{MX}} [A] +

(Increased)

[AA] +

(Increased)

[MX] +

(Increased)

N/A N/A

BBMX {{B}{BB}{MX}} [B] –

(Decreased)

[BB] –

(Decreased)

[MX] +

(Increased)

N/A N/A

AABBMX {{A}{AA}{MX}{BB}{B}} [A] +

(Increased)

[AA] +

(Increased)

[MX] +

(Increased)

[BB] –

(Decreased)

[B] –

(Decreased)

The calculation of the value of a coalition for each of the two types of externalities is

summarized in Table 2.5.

Table 2.5 – Formula for calculating positive/negative externalities.

Equation Externality Formula

(2.4) Positive Externality 𝑣(𝐶) = 𝑅𝑉 + (𝑅𝑉 × 𝑒𝑓)

(2.5) Negative Externality 𝑣(𝐶) = 𝑅𝑉 − (𝑅𝑉 × 𝑒𝑓))

Chapter 2. Coalitional Games 25

The calculation of the value of a coalition based on the structure it is embedded in is shown

in Table 2.6.

Table 2.6 – Externalities from Other Coalitions in 𝐶𝑆 on Coalition 𝐶.

Coalition 𝐶 Other Coalitions in CS Value Calculation

Type AA Single Type (2.4)

Type BB Single Type (2.4)

Type AA At least one Mixed Type (2.4)

Type BB At least one Mixed Type (2.5)

Type MX Single Type (2.5)

Type MX At least one Type AA or BB (2.4)

Type AA Singleton At least one Mixed Type (2.4)

Type AA Singleton Single Type (2.5)

Type BB Singleton At least one Mixed Type (2.5)

Type BB Singleton Single Type (2.5)

The type of externality (i.e., positive or negative) imposed on a coalition in a structure is

summarised in Table 2.7.

Chapter 2. Coalitional Games 26

Table 2.7 – Externalities on Coalition 𝐶 in Coalition Structure 𝐶𝑆.

Non-Singleton Coalitions

 Coalition (𝐶) Type Coalition Structure (𝐶𝑆) Type Externality

S1. Type AA Type AABB POSITIVE

S2. Type AA Type AAMX POSITIVE

S3. Type AA Type AABBMX POSITIVE

S4. Type BB Type AABB POSITIVE

S5. Type BB Type BBMX NEGATIVE

S6. Type BB Type AABBMX NEGATIVE

S7. Type MX Type MXMX NEGATIVE

S8. Type MX Type AAMX POSITIVE

S9. Type MX Type BBMX POSITIVE

S10. Type MX Type AABBMX POSITIVE

Singleton Coalitions

S11. Type AA Singleton Type AABB NEGATIVE

S12. Type AA Singleton Type AAMX POSITIVE

S13. Type AA Singleton Type AABBMX POSITIVE

S14. Type BB Singleton Type AABB NEGATIVE

S15. Type BB Singleton Type BBMX NEGATIVE

S16. Type BB Singleton Type AABBMX NEGATIVE

Chapter 2. Coalitional Games 27

This representation is much more compact relative to the representation where a different

value is stored for each coalition in each coalition structure. This is because, the externality

free value (i.e., RV) is all that is needed to be saved in memory. Externalities are then

incorporated on the fly by employing Equation 2.4 for positive and Equation 2.5 for negative.

Let’s view the externalities in the context of Producers (Agent Type B) and Consumers (Agent

Type A) for each of the scenario in Table 2.7. In a typical setting Producers are traditionally

competitors thus the assumption is for each case is:

S1. Suppose a structure of Type AABB has resulted from the merger of two Type AA

coalitions. Then the externality imposed on each coalition in the resulting structure

is positive. Intuitively, this means that when small consumer coalitions come

together to form a bigger coalition of consumers, their purchasing power increases.

As a result, trade for products at the top end of the market increases and therefore

both producers and consumers benefit (this corresponds to scenarios S1 and S4)

except for singleton consumers. Intuitively, this means that, as singletons, they

have less purchasing power and are at the bottom end of the market and the prices

of products at this end of the market remain unchanged. The singleton consumers

correspond to scenario S11.

S2. Suppose a structure of Type AAMX has resulted from the merger of two Type AA

coalitions. Then the externality imposed on each coalition in the resulting structure

is positive. Intuitively, this means that when small consumer coalitions come

together to form a bigger coalition of consumers their purchasing power increases.

As a result, trade for products at the top end of the market increases and therefore

both producers and consumers (i.e. coalitions of Type AA and MX) benefit

everyone (this corresponds to scenarios S2 and S8). Intuitively this means that,

even singleton consumers gain because of the existence of Type MX coalitions

which may contain just one consumer. Since even single consumers in Type MX

coalition benefits, this advantage is passed on to external singleton consumers .The

singleton consumers correspond to scenarios S12 and S13.

S3. Suppose a structure of Type AABBMX has resulted from the merger of two Type

AA coalitions. Then the externality imposed on each Type AA coalition in the

resulting structure is positive. Intuitively, this means that when small consumer

coalitions join together to form a bigger coalition of consumer their purchasing

Chapter 2. Coalitional Games 28

power increases. This translates into real benefit for them and Type AA coalitions

gets a positive externality. However the coalitions of Type BB get a negative

externality (this corresponds to S6 and S16). Intuitively, this means that the needs

of the newly merged Type AA coalition of consumers is met by producers in Type

MX coalitions. Therefore Type MX coalitions benefit i.e. get a positive

externality. Type AA singletons (singleton consumers) benefit and get a positive

externality (this corresponds to S13).

S4. Suppose a structure of Type AABB has resulted from the merger of two Type BB

coalitions. Then the externality imposed on each coalition in the resulting structure

is positive. Intuitively, this means that when small producer coalitions come

together to form a bigger coalition of producers their production power increases.

As a result, all coalitions except the smallest of producers gain (are effected

positively by externalities). What we mean by the smallest of producers is a

singleton producers. The singleton producers corresponds to scenario S14 that get

a negative externality.

S5. Suppose a structure of Type BBMX has resulted from the merger of two Type BB

coalitions. Then the externality imposed on each Type BB coalition in the resulting

structure is negative. Intuitively, this means that when small producer coalitions

join together to form a bigger coalition of producers their production power

increases, but this does not translate to a benefit but rather results in increased cost

of creating a merger. This is because of the presence of Type MX coalitions.

Intuitively this means that the consumers in the Type MX coalitions being already

together in a coalition with producers prefer to work with those producers and not

with the newly form merger of producers. This benefits Type MX coalitions and

translates to positive externality on it. This corresponds to scenario S9.

S6. Suppose a structure of Type AABBMX has resulted from the merger of two Type

BB coalitions. Then the externality imposed on each Type BB coalition in the

resulting structure is negative (this corresponds to S6 and S16). Intuitively, this

means that when small producer coalitions join together to form a bigger coalition

of producers their production power increases, but this does not translate to a

benefit but rather results in increased cost of creating a merger. This is because the

needs of consumers are met by producers outside the newly formed merger.

However, existing coalitions of consumers i.e. Type AA coalitions gain from the

Chapter 2. Coalitional Games 29

merger of producers and this translates into positive externality on Type AA

coalitions (this corresponds to S3 and S13). In the same way Type MX coalitions

are affected by positive externality.

S7. Suppose a structure of Type MXMX has resulted from the merger of two Type

MX coalitions. Then the externality imposed on each Type MX coalition in the

resulting structure is negative. Intuitively, this means the merger is unnecessary

and counterproductive.

S8. Suppose a structure of Type AAMX has resulted from the merger of two Type MX

coalitions. Then the externality imposed on each Type MX coalition in the

resulting structure is positive.

S9. Suppose a structure of Type BBMX has resulted from the merger of two Type MX

coalitions. Then the externality imposed on each Type MX coalition in the

resulting structure is positive. However Type BB coalitions are affected

negatively.

S10. Suppose a structure of Type AABBMX has resulted from the merger of two Type

MX coalitions. Then the externality imposed on each Type MX and each Type AA

coalition in the resulting structure is positive. However Type BB coalitions are

affected negatively.

The above discussion is just a possible way of viewing the definition of positive and negative

externalities. However our aim is not to consider a specific PFG such as that for producers

and consumers. Rather it is to define a general coalitional game with all three externalities i.e.

positive, negative and mixed inherent in the game.

2.3 Chapter Summary

This chapter introduced the key concepts that underlie coalitional games. A brief introduction

to Characteristic Function Games and Partition Function Games was given. Finally, we

introduced our approach for a compact representation of PFGs.

30

Chapter 3 Coalition Structure Generation

for Characteristic Function Games:

A Review of Literature

As outlined Chapter 1, algorithms for finding an optimal coalition structure can be classified

into 3 categories (Service & Adams, 2011):

 design-to-time algorithms,

 anytime algorithms, and

 heuristic algorithms.

This chapter provides a review of the existing methods in each of these three categories.

Section 3.1 is about design-to-time algorithms, Section 3.2 about anytime algorithms, and

Section 3.3. about heuristic algorithms.

3.1 Design-to-Time Algorithms

These algorithms are guaranteed to provide an optimal solution. However, a solution can only

be provided when the algorithm terminates. Since they are not anytime, it is impossible to

return any form of solution before completion. These algorithms have mostly been designed

using dynamic programming (DP).

3.1.1 Dynamic Programming

Yeh (1986) developed a method based on dynamic programming (Bellman, 1952). Their

algorithm maintains two tables 𝑓1 and 𝑓2 that contain an entry for every possible coalition. For

every coalition 𝐶 ⊆ 𝑁, 𝑓1[𝐶] and 𝑓2[𝐶] are computed as follows: A best possible split (if any)

for 𝐶 is stored in 𝑓1[𝐶] and its evaluation in 𝑓2[𝐶]. If it is best not to split 𝐶 then 𝑓1[𝐶] contains

𝐶 and 𝑓2[𝐶] the value of 𝐶. The value of every splitting 𝐶′, 𝐶′′ of 𝐶 is evaluated as 𝑓2[𝐶′] +

 𝑓2[𝐶′′]. This method does not evaluate the splitting of size 𝑠 until it has finished computing

 𝑓2 for the coalition of sizes 1 to 𝑠 − 1. Table 3.1 shows an example of how 𝑓1 and 𝑓2 are

computed for 𝑁={a1,a2,a3,a4}. Once 𝑓1 and 𝑓2 are computed for every coalition, the optimal

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 31

structure 𝐶𝑆∗ is computed recursively. In the example below, this is done by first

setting 𝐶𝑆∗={a1,a2,a3,a4}. Then looking at 𝑓1{{a1,a2,a3,a4}} we find it is beneficial to split

it into {a1,a2} and {a3,a4}. Similarly, it is beneficial to split {a1,a2} into {a1} and {a2}, but

it is better to keep {a3,a4} as it is. The optimal structure is therefore {{a1}, {a2}, {a3,a4}}.

Although DP gives an exact optimum, it requires a large amount of memory for storing the

three tables 𝑣, 𝑓1 and 𝑓2 (see the example in Table 3.1).

Table 3.1 – An example showing how 𝑓1 and 𝑓2 are calculated.

Input value Size Coalition Evaluations to determine splitting is beneficial 𝑓1 𝑓2

v({a1}) = 35

v({a2}) = 45

v({a3}) = 30

v({a4}) = 50

v({a1,a2}) = 55

v({a1,a3}) = 65

v({a1,a4}) = 85

v({a2,a3}) = 60

v({a2,a4}) = 75

v({a3,a4}) = 85

v({a1,a2,a3}) = 95

v({a1,a2,a4}) = 125

v({a1,a3,a4}) = 105

v({a2,a3,a4}) = 120

v({a1,a2,a3,a4}) = 145

1 {a1} v({a1}) = 35 {a1} 35

{a2} v({a2}) = 45 {a2} 45

{a3} v({a3}) = 30 {a3} 30

{a4} v({a4}) = 50 {a4} 50

2 {a1,a2} v({a1,a2}) = 55 𝑓2[{𝑎1}] + 𝑓2[{𝑎2}]= 80 {a1} {a2} 80

{a1,a3} v({a1,a3}) = 65 𝑓2[{𝑎1}] + 𝑓2[{𝑎3}]= 65 {a1,a3} 65

{a1,a4} v({a1,a4}) = 85 𝑓2[{𝑎1}] + 𝑓2[{𝑎4}]= 85 {a1,a4} 85

{a2,a3} v({a2,a3}) = 60 𝑓2[{𝑎2}] + 𝑓2[{𝑎3}]= 75 {a2} {a3} 75

{a2,a4} v({a2,a4}) = 75 𝑓2[{𝑎2}] + 𝑓2[{𝑎4}]= 95 {a2} {a4} 95

{a3,a4} v({a3,a4}) = 85 𝑓2[{𝑎3}] + 𝑓2[{𝑎4}]= 80 {a3,a4} 85

3
{a1,a2,a3}

v({a1,a2,a3}) = 95 𝑓2[{𝑎1}] + 𝑓2[{𝑎2, 𝑎3}]= 95

𝑓2[{𝑎2}] + 𝑓2[{𝑎1, 𝑎3}]= 105 𝑓2[{𝑎3}] + 𝑓2[{𝑎1, 𝑎2}]= 85
{a2} {a1,a3} 105

{a1,a2,a4}
v({a1,a2,a4}) = 125 𝑓2[{𝑎1}] + 𝑓2[{𝑎2, 𝑎4}]= 110

𝑓2[{𝑎2}] + 𝑓2[{𝑎1, 𝑎4}]= 130 𝑓2[{𝑎4}] + 𝑓2[{𝑎1, 𝑎2}]= 105
{a2} {a1,a4} 130

{a1,a3,a4}
v({a1,a3,a4}) = 105 𝑓2[{𝑎1}] + 𝑓2[{𝑎3, 𝑎4}]= 120

𝑓2[{𝑎3}] + 𝑓2[{𝑎1, 𝑎4}]=115 𝑓2[{𝑎4}] + 𝑓2[{𝑎1, 𝑎3}]= 105
{a1} {a3,a4} 120

{a2,a3,a4}
v({a2,a3,a4}) = 120 𝑓2[{𝑎2}] + 𝑓2[{𝑎3, 𝑎4}]= 130

𝑓2[{𝑎3}] + 𝑓2[{𝑎2, 𝑎4}]=105 𝑓2[{𝑎4}] + 𝑓2[{𝑎2, 𝑎3}]= 110
{a2} {a3,a4} 130

4

{a1,a2,a3,a4}

v({a1,a2,a3,a4}) = 145 𝑓2[{𝑎1}] + 𝑓2[{𝑎2, 𝑎3, 𝑎4}]= 155

𝑓2[{𝑎2}] + 𝑓2[{𝑎1, 𝑎3, 𝑎4}]= 150 𝑓2[{𝑎3}] + 𝑓2[{𝑎1, 𝑎2, 𝑎4}]= 155

𝑓2[{𝑎4}] + 𝑓2[{𝑎1, 𝑎2, 𝑎3}]= 145 𝑓2[{𝑎1, 𝑎2}] + 𝑓2[{𝑎3, 𝑎4}]= 140

𝑓2[{𝑎1, 𝑎3}] + 𝑓2[{𝑎2, 𝑎4}]= 140 𝑓2[{𝑎1, 𝑎4}] + 𝑓2[{𝑎2, 𝑎3}]= 145

{a3} {a1,a2,a4} 155

Figure 3.1 illustrates how this method traverses the coalition structure graph. The nodes of

the graph represent coalition structures. Nodes are grouped in levels. The coalition structures

at a level are obtained from the ones at the level below by splitting a coalition in the structure

below. We start at level L1 (i.e., the node {a1,a2,a3,a4}) and move upwards in the graph until

an optimal structure (i.e. {{a1},{a2},{a3,a4}}) is found. In this figure, there are 3 paths from

the initial node to the optimal one indicated as dotted, dashed and bold lines.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 32

Figure 3.1 – Example DP movements for 4-agents.

Finding an optimal structure does not require evaluating every possible splitting of every

possible coalition. It is possible to avoid evaluation of some splittings and still be able to find

an optimal structure.

Nodes are divided into 𝑛 levels where n is the number of agents in the system. In the example

of Figure 3.1, n = 4. The set of coalition structures at level Lk consists of nodes with

k coalitions. The method begins at L1 with a coalition structure 𝐶𝑆 consisting of {a1,a2,a3,4}.

Splitting the coalitions 𝐶 ∈ 𝐶𝑆 into {𝐶′, 𝐶′′} is shown for example by the dotted line with the

arrow indicating the movement from the node consisting of 𝐶𝑆 to the node consisting

of (𝐶𝑆\𝐶) ∪ {𝐶′, 𝐶′′}. DP evaluates all possible splits starting at the bottom node and moving

upward path through the connected nodes until an optimal node is reached shown as the

dashed line in Figure 3.1.

3.1.2 Improved Dynamic Programming

After evaluating the movements of DP, Rahwan & Jennings (2008a) concluded that it was

possible to avoid evaluation of some splittings and still be able to find an optimal structure.

In their method, they exploited this characteristic to more efficiently find an optimal structure.

This method known as improved dynamic programming (IDP) (Rahwan & Jennings, 2008a)

improves upon the memory usage (by storing less information from the splittings) and speed

of DP (by avoiding some splittings). However, IDP, like the original DP is still not anytime

and has the same time complexity of 𝑂(3𝑛).

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 33

IDP was designed to perform fewer operations by avoiding unnecessary evaluations of as

many splitting as possible while maintaining the guarantees of finding the optimal coalition

structure. It is therefore necessary to eliminate as many unnecessary edges from the coalition

structure graph as possible while avoiding the removal of those edges that lead to an optimal

node. The method first ensures that each node in the coalition structure graph is connected to

another node by at least one path. In a coalition structure graph, any coalition structure that

has more than two coalitions will have more than one path leading to it (shown in Figure 3.2

as dotted, dashed and bold lines).

Figure 3.2 – Multiple paths leading to each CS with more than two coalitions.

IDP involves movements through the edges of a coalition structure graph where certain splits

are not evaluated. This is represented by removing these edges from the graph while

preserving a path leading to any possible optimal node. The remaining edges that are not

removed should be sufficient for every node to have a path leading to it, thus IDP only

evaluates those edges to find the optimal coalition structure. This is shown in Figure 3.3 where

the dotted lines represent some of the redundant edges removed with every CS with more than

2 coalitions still having more than one edge connected to it. The removal of these edges means

IDP performs fewer operations that DP. Simulation results showed that IDP evaluated around

38% of the splits evaluated by DP (Rahwan & Jennings, 2008a). However, owing to the

tremendous complexity of dynamic programming, alternative methods with anytime property

were developed.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 34

Figure 3.3 – Redundant edges removed as dotted lines.

Both design-to-time algorithms are able to return an optimal solution with a time complexity

of 𝑂(3𝑛). However IDP has some advantages over DP (see Table 3.2).

Table 3.2 – Comparison between DP and IDP.

Method Advantages Disadvantages

Dynamic

Programming

 Returns absolute

optimal.

 Requires large amount of memory to

store the 𝑣, 𝑓1 and 𝑓2 tables.

 Not Anytime, requires completion to

return solution

Improve Dynamic

Programming

 Returns absolute

optimal

 Avoids exploring

redundant splittings.

 Requires large amount of memory

despite evaluating only 38% of splits

explored by DP.

 Not Anytime, requires completion to

return solution

In the next section, we will be looking at anytime algorithms.

3.2 Anytime Algorithms

The key feature of an anytime algorithm is the ability to allow early termination whilst still

providing some guarantees on the solution. The disadvantage however is that most anytime

algorithms have a worst case run time of 𝑂(𝑛𝑛). This means that, in the worst-case, they will

end up exhaustively searching the entire space of all coalition structures.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 35

Anytime methods can be classified into two types: coalition structure graph search methods

and integer partition based search methods. In the following two subsections, we will look at

each of these two types of methods.

3.2.1 Coalition Structure Graph Search

The first anytime algorithm for coalition structure generation was proposed by Sandholm et

al. (1999). Their algorithm guarantees incremental improvements of the worst-case bound as

the search progresses. The search space is divided into levels 𝐿𝑘, 1 ≤ 𝑘 ≤ 𝑛. A node at each

level represents a coalition structure with 𝑘 coalitions. For 𝑛 = 4, this is shown in Figure 3.4.

Figure 3.4 - Coalition structure graph for 4-agents (Sandholm et al., 1999).

Each level 𝐿𝑘 consists of nodes with 𝑘 coalitions. The algorithm moves through levels

𝐿1, 𝐿2 … … . 𝐿𝑛 in a breadth-first search manner and searches through all coalition structures

at level 𝐿𝑘. This algorithm starts by calculating the value of the structure at level 𝐿1. Once this

is completed it stores both the coalition structure and its value into memory as the current

optimal. It then performs an exhaustive search of level 𝐿2 i.e. it computes the value of every

coalition structure on this level.

If the value of a structure at this level is found to be greater than the current optimal value

(which before this was the highest value found in level 𝐿1), this information is updated and

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 36

both the structure and its value is stored in memory as the current optimal. The levels

𝐿𝑛, 𝐿𝑛−1 … … . 𝐿3 are then searched sequentially in an exhaustive manner as in level 𝐿2 until

some stopping conditions are met i.e. the running time has expired or all of the search space

has been explored. Upon termination, the current optimal value is returned as the output.

As more levels of the space are searched, this bound drops. The biggest hurdle is that the

search space at each level is still large, which means an exhaustive search will take

exponential time. Although this algorithm is anytime and can produce an approximate

solution within a bound of the optimal, its operations usually takes longer due to the

exhaustive search needed at each level of the graph. Given that, with any characteristic

function game (𝐴𝑔, 𝑣) no less that 2𝑛−1 coalition structure needs to be evaluated to obtain a

bound an initial bound. Thus this algorithm only guarantees to return an optimal coalition

structure after all the coalition structure values has been computed (that is in the worse-case

it may end up searching the entire space).

This may not be practical for when the value of 𝑛 i.e. the number of agent is large. It can also

be argued that the bounds obtained by this algorithm may not be substantial enough to warrant

the amount of computation required. For example, if 𝑛 = 12, then to attain a bound of
𝑛

4
 the

algorithm needs to search levels 𝐿1, 𝐿2, 𝐿12, 𝐿11, 𝐿10 and 𝐿9 of the coalition structure graph. It

can be argued that, the number of structures that needs to be explored in these levels is too

large to for obtaining this relatively small bound.

Following the concepts proposed above, Dang & Jennings (2004) proposed an improved

anytime algorithm. Their anytime algorithm performs the first two steps i.e. the value of the

structure at level 𝐿1 then performs an exhaustive search of level 𝐿2. However the remaining

search spaces are searched by computing the value of a particular structure as opposed to the

exhaustive search for Sandholm et al. (1999) algorithm. This means that after computing all

the values of coalition structures of level 𝐿1 and of level 𝐿2, instead of continuously and

reviewing all the coalition structures of level 𝐿𝑛 to 𝐿3 it computes the value of particular

coalition structures instead. The set of structures chosen can be a size that is chosen by an

arbitrary decision, based on random choice, rather for any particular reason. When a new

structure is found with a value that is bigger that the current optimal, the structure and its

value is kept in memory as the new optimal. It then improves on this estimate by exploring

more of the search space calculating a new set of structures of different sizes. Whatever

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 37

structure that is in memory will be returned as the optimal structure when the algorithm

terminates.

Rahwan et al. (2007) extended Dang & Jennings (2004) work to produce an improved near-

optimal anytime coalition structure generation algorithm. By examining only a minute portion

of the space (approx.3 × 2𝑛−1) it was still possible to come up with near optimal solution.

This method employed a novel representation of the search space according to configurations

of coalition structures, thus allowing it to cycle through the list of coalition structures by

avoiding redundant coalition structures. This method was proven to use 33.3% less memory

that Sandholm’s.

3.2.2 Integer Partition-Based Search

Rahwan et al. (2007) developed an algorithm that uses integer programming (IP) with anytime

property that utilizes pre-processing techniques. They represent the search space by

partitioning it into sub-spaces according integer partitions so that an upper and lower bound

on the best coalition structures found in them can be computed. These bounds are used to

determine which sub-space have the least chance of containing the optimal coalition structure

and can thus be pruned. With useless sub-spaces eliminated, search is focussed on the

remaining sub-spaces. An exhaustive search is avoided by using a branch and bound

technique. Like other anytime algorithms, the worst case situation can still require searching

the entire space which results in time complexity 𝑂(𝑛𝑛). The following is a more detailed

description of this method.

Representing the search space of possible coalition structures as partitions of smaller, disjoint

sub-spaces allows their independent exploration. In this representation, coalition structures

are categorised into sub-spaces based on the size of the coalitions they contain instead of the

number of coalitions (as represented in a coalition structure graph). The advantage with this

representation is the average values of the coalition structures within each sub-space can be

computed easily. This allows an upper and lower bound to be calculated based on the value

of the best coalition structure that is found in each sub-space. Comparing these bounds makes

it possible to identify those sub-spaces that have a higher potential of containing an optimal

coalition structure while those that cannot contain a solution can be pruned from the search to

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 38

avoid redundant explorations. Branch-and-bound is then applied to the remaining sub-spaces

to further reduce the amount of search.

The algorithm starts by partitioning the space into sub-spaces that contain coalition structures

based on the integer partition of the number of agents. An integer partition of 𝑛 represents a

multiset of positive integers that amount to the exactly the value of 𝑛. For example, in a system

of four agents (𝑛 = 4), there are five partitions representing the sub-spaces: [4], [3,1], [2,2],

[2,1,1] and [1,1,1,1].

An integer partition can be visualised as a sub-space containing coalition structures as shown

in Figure 3.5. The sub-spaces are categorised into levels according to their integer partitions.

Level 𝑃𝑖 corresponds to an integer partition with 𝑖 parts, for example level 𝑃2 corresponds to

integer partitions with two parts such as [3, 1] and [2, 2]. This allows the partitioning of the

space into smaller, disjoint sub-spaces to be independently explored to look for optimal

solutions. Once the space has been partitioned, IP proceeds with the following steps:

1) Scan the input and compute the bounds for every sub-space and at the same time:

i) Identify the best coalition structures within each subspace by:

a) calculating the upper bound of the subspace

b) computing the lower bound of the subspace

ii) Prune the remaining sub-spaces based on their upper bounds by:

a) excluding subspaces whose upper bounds are lower than the lower bounds

in the other subspaces.

iii) Set a worse-case bound on the quality of the best-known solution (found so

far)

2) Search within the remaining sub-spaces (after pruning). Pruning allows the search to

be more focussed, and, in particular, it:

i) avoids making unnecessary comparison to subspaces with lower value upper

bound thus unlikely to contain the optimal.

ii) avoids calculating the value of the same coalition structure repeatedly.

iii) enables the application branch-and-bound to reduce the search time even

further.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 39

The remaining sub-spaces to be searched after scanning the input are those that have been

pruned where the upper bound is lower that best one found so far. This pruning process is

repeated with the remaining sub-spaces until the condition to terminate is reached. This

condition is:

1) the best coalition structure found so far fits within the best bounds found, and

2) all sub-spaces remaining has either been searched or pruned.

Depending on the CFG, IP may be able to quickly find an optimal solution.

Figure 3.5 – An example IP search space and sub-spaces given 4 agents.

The method proposed by Sandholm et al. (1999) and that of Rahwan et al. (2007) both have

advantages and disadvantages, the highlights are shown in Table 3.3

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 40

Table 3.3 – Comparison of the Anytime Algorithms.

Method Advantages Disadvantages

Coalition

Structure

Graph Search

 Anytime – able to return

good quality solutions if

stopped before completion.

 Requires searching at least the

two bottom level of the coalition

structures graph to establish initial

bound bounds.

 Requires exhaustive search at

each level to improve bound.

 In the worst case the algorithm

ends up searching the entire

space.

Integer

Partition-based

(IP) Search

 Anytime – able to return

good quality solutions if

stopped before completion.

 Better pruning by removing

non-promising integer

partitions based on bound.

 In the worst case the algorithm

ends up searching the entire

space.

In the next section, we will be looking at heuristic algorithms.

3.3 Heuristic Algorithms

Heuristic methods spend little computational effort to find solutions that are not necessarily

optimal but are close to optimal (Blumenfeld, 2009). In general, it is difficult to guarantee that

a method produces an optimal solution. However they provide solutions that are adequate for

practical use. Their main aim is to find acceptable solutions as quickly as possible. This

section reviews some of the existing heuristic methods for solving the coalition structure

generation problem for CFGs.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 41

3.3.1 Genetic Algorithms

Evolutionary computation is a type of technique used in computational and artificial

intelligence to solve continuous optimization and combinatorial optimization problems. It is

a form of heuristic or stochastic optimization (Fogel, 1998). In general, such methods

iteratively progress through the generations in the evolution of a population of individuals. A

population is selected using a randomized guided search, sometimes with parallel processing,

to simulate the survival of the fittest individuals (Jones, 2002). A population for the next

generation is created through recombination, mutation, and selection of relevant individuals

(Goldberg, 1989).

Most of the genetic operators are inspired by biological structures similar to those found in

natural evolution. Genetic algorithms (GA) have been found to be effective in solving function

optimization and combinatorial optimization problems that are NP-complete (Dasgupta &

Michalewicz, 1997), as long as there is some regularity in the search space.

One of the earliest heuristic techniques to solve the coalition structure generation based on

this approach was proposed by Sen and Dutta (Sen & Dutta, 2000). This is a form of stochastic

search process to discover the optimal coalition structure. The algorithm employs an order-

based genetic algorithm (OBGA). The advantages of OBGA are its scalability to larger

problem sizes (Sen & Dutta, 2000). The drawback of OBGA is it has no performance

guarantees.

The OBGA algorithm starts by randomly generating an initial population of coalition

structures. This is followed by a repetition a set of three steps; evaluation, selection and

recombination (Deb, 2001). First, every member (i.e., a coalition structure) of the current

population is evaluated. In the selection phase, individuals are chosen based on their fitness.

These form the next generation. The final step is recombination, in which new members are

constructed by revising and swapping combination of individuals (Goldberg, 1989). The

search covers several levels of the coalition structure graph (see Figure 3.5) at the same time.

This means, the next set of coalition structures that will be evaluated are constructed based on

the current set in the population.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 42

Regarding crossover, the standard position based uniform, single, and two-point crossover

operators result in unacceptable coalition structures. Unacceptability arises from multiple

occurrences of the same agent in a structure. To overcome this, the edge recombination

(Starkweather et al., 1991) crossover and mutation operators were used to ensure that each

agent is only represented once in every coalition structure. This is achieved through the order

preservation capability of the operator which produces a coalition structure with all the agents

but without any duplication.

Results of experiments by Sen & Dutta (2000) showed that there was negligible performance

differences across the coalition sizes. This is due to regularity in the initial population. For

example, in a set of agents with a group size of 𝑛, coalition structures whose sizes are biggest

and smallest will be poorly evaluated allowing the algorithm to quickly find the groups with

the optimal size. Once the coalition structures with the right size is found more resources can

be devoted to finding the optimal composition.

3.3.2 Simulated Annealing

Simulated Annealing, a stochastic local search method (Kirkpatrick et al., 1983), has also

been applied to solve the coalition structure generation problem. (Keinänen & Keinänen,

2008). This method combines neighbourhood search with simulated annealing. The algorithm

works by first setting an initial temperature, an initial value which is reduced by a factor of

alpha 𝛼 where 0 < 𝛼 < 1. At the start an initial random solution is generated. It then

continuously loops until a certain termination condition is met. This condition means that the

system has cooled sufficiently i.e. when a minimum temperature value is used as the exit

parameter or the maximum number of iterations has been reached and an approximately good

solution has been found. The intermediate step is to decide whether the current solution is

better than the initial solution. If it is better, then move to set the new solution as the current

solution. Otherwise, it is accepted with a certain acceptance probability. Once this is decided,

the algorithm will move to decrease the temperature and continue looping.

In more detail, an initial random coalition structure 𝐶𝑆 is generated. Another random coalition

structure 𝐶𝑆′ is then generated inside the neighbourhood of 𝐶𝑆. If 𝐶𝑆′is superior to 𝐶𝑆, then

𝐶𝑆′ is the new CS. If not, CS’ is CS by calculating the acceptance probability using the

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 43

formula 𝑒
𝑉(𝐶𝑆′)−𝑉(𝐶𝑆)

𝜏
 . The parameter τ is a temperature parameter and 𝑒, Euler's number

which has the value of 2.71828. τ decreases in value after each iteration. The decrease in

value follows a defined annealing schedule τ = ατ. Tests conducted using this algorithm

demonstrated that for certain neighbourhoods with appropriate characteristics, a good enough

solution can be found within a short runtime.

3.3.3 Greedy-Based Methods

Di Mauro et al. (2010) proposed a new algorithm called GRASP-CSG. This method combines

two methods. One is the greedy method called Greedy Randomised Adaptive Search

Procedure (GRASP), a heuristics approach first proposed by Feo & Resende (1995). The other

method is a stochastic local search method. It involves greedily constructing a candidate

solution (coalition structure), and then conducting local search to improve upon the solution.

The GRASP-CSG algorithm uses a randomised constructive search procedure to compute a

solution and subsequently performs a local search on this solution. The search is conducted

to further improve upon the solution provided from the greedy construction. A new candidate

solution is constructed by adding a randomly selected solution component iteratively based

on a uniform distribution. The selection comes from a special set known as the restricted

candidate list or RCL consisting of a number of best ranked solutions. High value components

i.e. some coalitions with high value from the coalition structures stored in this list are

randomly selected to form a new coalition structure.

Once an RCL is constructed, a local search is done. If a neighbour is found to have a higher

value than any coalition structure in the RCL, it will be added to the RCL. In the next iteration,

the components from the newly added structure are chosen when a new candidate solution is

constructed. It was assumed by Di Mauro et al. (2010) that, over time (as the algorithm runs

for a higher number of iterations), with more high value structures added to the RCL, the

choice of selection for high value components (member coalitions of the structures in the list)

will lead to the construction of higher value solutions.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 44

3.3.4 Particle Swarm Optimisation

An algorithm for coalition structure generation based on swarm intelligence (Kennedy &

Eberhart, 1995) was proposed by Guo & Wang (2006). The particle swarm optimisation

(PSO) algorithm is designed to find the best subsets of the search space with high quality

solution candidates. This is achieved by interaction among particles that represents agents in

coalitions. Particle group together as swarms. PSO works by initializing a random group of

particles, i.e., solutions. From this group, it searches for the best solution iteratively. At each

iteration, every particle is assigned two values Pbest and gbest. Pbest is a private best which

denotes the best fitness value (coalition structure value) of every particle (solutions) in the

population based on the initial performed search. The variable gbest represents the global best

value obtained thus far by any particle in the population. While going through each iteration,

the individual particles make continuous velocity which determines their rate of exploration

changes in the solution space to figure out the best direction and distance to cover the areas

which Pbest and gbest points to.

Compared to GAs, PSO has no genetic operations such as crossovers and mutation which are

not relevant to the way PSO works. Instead, it focuses on changing the speed of exploration

for each particle in the search space. PSO has fewer parameters to be adjusted and can thus

be easier to optimise. It shares information in a completely unique way. As opposed to the

approach taken by GA where chromosomes share information with each other resulting in the

whole swarm moving to the best area in a concurrent path, with PSO information moves in

one direction where only gbest transfers information to other particles making the subsequent

iterations follow the current best fitness. In the simulations conducted by Guo & Wang (2006),

PSO was shown to converge to a solution and obtain the best fitness much quicker than GA

using information from the history of previous iterations.

The advantage of this method includes execution speed through parallel processing,

robustness and ease of managing the search. This is suitable for application in coalition

formation in a MAS where the number of agents is larger due to its scalable characteristics

(Dos Santos & Bazzan, 2012).

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 45

3.3.5 Ant Colony Optimisation

Ant Colony optimisation (ACO) first introduced by Dorigo et al. (1996) is a stochastic

metaheuristics that mimics the behaviour of ants walking along a path looking for sources of

food. The main idea behind ACO is based on the idea of artificial agents behaving as ants. To

apply ACO, a suitable representation of the problem in the form of a weighted graph is needed

as the movements of the ants is akin to finding the best path over this graph. The ants build

new solutions by exploring the paths of the graph and using a pheromone model to keep track

of promising paths. The pheromone can either be nodes or edges in the graph.

A variation of the ACO method was formulated for the formation of buyer groups in electronic

marketplaces. The goal is to form groups of buyers (coalitions) whose utilities will maximise

the value of the entire coalition structure (Sukstrienwong, 2011). The authors devised an

algorithm called BCF_2ACO (BuyerCoalitionFormation_2AntColonyOptimisation). They

applied the concept of coalition structure for fairer distribution of utility to buyer coalitions.

In their research the values of coalitions are not known priori, i.e. each coalition needs to be

constructed and its value calculated before a coalition structure can be built. To do this, their

approach deploys two ant colonies. The first one finds the best way to form buyer coalitions

according to the total reward received from the sellers, i.e., the utility gained by each buyer

by finding the best disjoint subsets of all buyers. Once the buyer coalitions have been formed,

a second ant colony then finds the best way to partition those buyer coalitions into coalition

structures that are able to achieve the highest total.

Although like other heuristics, ACO is not guaranteed to return the optimal solution. However,

BCF_2ACO was shown to perform better compared to the GA method proposed by Hyodo et

al. (2003) for forming buyer coalitions (Sukstrienwong, 2011).

Each of the heuristics reviewed have their own strength and weaknesses. Table 3.4 provides

a summary of the advantages and disadvantages of the heuristic methods reviewed.

Chapter 3. CSG for Characteristic Function Games: A Review of Literature 46

Table 3.4 – A Summary the Heuristic Algorithms.

Method Advantages Disadvantages

Genetic

Algorithm

 Scalable to larger problems. No performance guarantees

 Requires strict regularity in input.

Simulated

Annealing

 Able to move to worst solution

in the hope of escaping local

optima.

 No performance guarantees

 Highly depended on

neighbourhood definition.

Greedy

(GRASP-CSG)

 Greedily construct an initial

solution then local search helps

to explore neighbouring

solution.

 Requires memory to store high

value coalitions, candidates for

greedy construction.

 No performance guarantees.

Particle Swarm

Optimisation

 Parallel exploration of the search

space.

 No performance guarantees.

Ant Colony

Optimisation

 History of best path taken using

pheromones model

 No performance guarantees

 Requires space representation

with weighted graphs.

3.4 Chapter Summary

This chapter provides a review of existing algorithms for generating an optimal coalition

structure for CFGs. These algorithms were divided into three classes: design-to-time, anytime,

and heuristic. Each of these classes of algorithms has its own strengths and weaknesses. The

fastest design-to-time algorithms for CFGs have time complexity 𝑂(3𝑛) (Rahwan & Jennings,

2008a; Yeh, 1986). Although they generate an exact solution, they however must to be

allowed to run to completion. This can be very time consuming, especially for large games.

In contrast, anytime algorithms have the key feature that the quality of solution improves with

time they can be terminated at any time. To get a good may still be time consuming. Unlike

design-to-time and anytime methods, heuristic methods are designed to quickly return a good

enough solution. However, in most cases, they cannot provide guarantees on the quality of

solutions.

The next Chapter will focus on the literature review for coalition structure generation for

partition function games i.e. games with externalities.

47

Chapter 4 Coalition Structure Generation

for Partition Function Games:

A Review of Literature

Chapter 3 focused on methods for determining optimal coalition structures for characteristic

function games. In these types of games, the value of a coalition is independent of how other

coalitions are formed. However, in some multiagent systems, the value of a coalition depends

on the how external coalitions are formed. Such systems are modelled as games in partition

function form (Thrall & Lucas, 1963).

An example where the formation of an external coalition impacts the value of an existing

coalition is when a group of companies working together tries to erode the market share or

competitiveness of other companies in the market. When these companies form alliances and

develop a new standards that is proprietary which cannot be used by others outside the

coalition, this reduces the competitiveness of other companies which does not have access to

these standards. An example of this is the Very Large Scale Integration (VLSI) consortium

and well as the Fifth Generation Computer Systems (FGCS) project which subject negative

externalities to other companies who were not members (Yi, 2003).

Recall that, in a PFG, the value of a coalition may be influenced by the creation of another

coalition in the system. Consider an example of two coalition structures CS and CS’ where

𝐶𝑆 = {𝐶𝐴, 𝐶𝐵, 𝐶𝐶} and 𝐶𝑆′ = {𝐶𝐴, 𝐶𝐵 ∪ 𝐶𝐶}. 𝐶𝐴 Might have a different value in CS compared

to CS’ as result of the union between 𝐶𝐵 ∪ 𝐶𝐶 . This effect is known as externalities and in

this example, it is imposed on 𝐶𝐴 by the merger between 𝐶𝐵 and 𝐶𝐶 to form coalition 𝐶𝐵 ∪ 𝐶𝐶 .

Externalities are vital in multiagent systems where coalitions have either contradictory or

overlapping goals. This chapter reviews the existing methods for coalition structure

generation in partition function games. Despite the importance of externalities in many

applications, less attention has been given to the computational aspects of games with

externalities. At the time of writing, there were no existing heuristic methods for solving the

CSG problem for the general classes of PFGs. This chapter reviews the existing non-heuristic

methods.

Chapter 4. CSG for Partition Function Games: A Review of Literature 48

The chapter is organised as follows. Section 4.1 outlines methods based on the Integer

Partition-based (IP) algorithm. Section 4.2 describes a distributed approach. All the methods

in sections 4.1 and 4.2 deal with games with either exclusively positive or exclusively negative

externalities. Section 4.3 describes a method which considers mixed externalities where both

externalities exists in the same game.

4.1 Integer Partition-based Algorithm for PFG

One of the early works that considered coalition structure generation in games with

externalities was by Michalak et al. (2008). They used the same representation as Rahwan et

al. (2007) for dividing the space into integer partitions and calculating the bounds for each

coalition structure size. This is represented by the partition of integers. In an example for 4-

agents, the integer partition [1,1,2] represents a coalition structure with two coalitions of size

1 and one coalition of size two i.e. 𝐶𝑆 = {{𝑎1}, {𝑎2}, {𝑎3, 𝑎4}}. Each integer partition is

known as a configuration.

Initially, their research considered four types of PFG settings:

 those that are super-additive and have positive externalities (𝑃𝐹𝑠𝑢𝑝
+),

 those that are super-additive and have negative externalities (𝑃𝐹𝑠𝑢𝑝
−),

 those that are sub-additive and have positive externalities (𝑃𝐹𝑠𝑢𝑏
+) and

 those that are sub-additive and have negative externalities (𝑃𝐹𝑠𝑢𝑏
−).

They proved that, in each of these four PFG settings it was possible to bound the values of

every coalition. Of the four games considered above, they showed that for 𝑃𝐹𝑠𝑢𝑝
+ , the optimal

𝐶𝑆 is always the grand coalition while for (𝑃𝐹𝑠𝑢𝑏
−) the optimal will always be the coalition

structure of singletons. This would make these two settings trivial when studying the CSG

problem as the computing of the optimal structure is straightforward. Therefore, they only ran

simulations and tested their algorithm on the 𝑃𝐹𝑠𝑢𝑝
− and 𝑃𝐹𝑠𝑢𝑏

+ settings.

The primary contribution of their research was devising a way to construct bounds on the

value of every coalition for every coalition structure in a 𝑃𝐹𝑠𝑢𝑝
− or 𝑃𝐹𝑠𝑢𝑏

+ games. Once the

bounds value of each coalition size is known, this can be used to construct the upper and lower

bound for each configuration where a configuration is the integer partition denoting the size

of the coalition structure i.e. [1,1,1,1],[1,1,2],[1,3],[2,2] and [4] for a set of 4-agents. Being

Chapter 4. CSG for Partition Function Games: A Review of Literature 49

able to construct bounds on the value of every coalition in games with externalities gave them

the ability to adapt the state-of-the-art IP algorithm for CFG for use in a PFG setting.

Their algorithm for the PFG setting does the same kind of partitioning and pruning of the

search space as Rahwan et al. (2007) algorithm for CFGs. It also uses a similar way of

searching through promising subspaces. Important techniques deployed by the IP algorithm

for CFGs such as avoiding redundant calculation where no 𝐶𝑆 is considered more than once

is directly transferred into their adaptation of the algorithm for the PFG settings. The branch-

and-bound rule however required modifications to avoid exploring hopeless routes when

constructing candidate solutions for PFGs. Their simulation results found that in some cases

for the 𝑃𝐹𝑠𝑢𝑏
− settings, the pruning technique used was less effective and almost all of the

space needed to be searched to find the optimal. They argued that this is due to the nature of

𝑃𝐹𝑠𝑢𝑏
− setting where the value of the structure in a configuration is dependent on the value of

the structures in the previous levels (see dashed line in Figure 4.1).

Figure 4.1 – Integer Partition for six-agents.

4.1.1 𝑰𝑷
+/−

 Algorithm

The previous algorithm (Michalak et al., 2008) deals with two specific classes of PFGs known

as 𝑃𝐹𝑠𝑢𝑝
− and 𝑃𝐹𝑠𝑢𝑏

+ . In 𝑃𝐹𝑠𝑢𝑏
+ , the merger between any two coalitions will either decrease their

joint value or keep it constant but increases the values of the other coalitions in that structure

(or keep it constant as well). That is, the values of the coalitions are weakly sub-additive

meaning their value can increase because the externalities are positive or it can remain the

Chapter 4. CSG for Partition Function Games: A Review of Literature 50

same (externalities equal to zero). In 𝑃𝐹𝑠𝑢𝑝
− The merger between any two coalitions will either

increase their joint value or keep it constant but decrease the values of the other coalitions in

that structure (or keep it constant). This means that the values of the coalitions are weakly

super-additive, thus their value can decrease because the externalities are negative or it can

remain the same (where externalities are equal to zero).

𝑃𝐹𝑠𝑢𝑝
− and 𝑃𝐹𝑠𝑢𝑏

+ are widely used in economics and social sciences to model relationships

between coalitions which is usually the main focus of the problem studied. An example for

𝑃𝐹𝑠𝑢𝑏
+ is in the coordination of environmental policy between countries. When countries

decide to join an international coalition to reduce emissions, this may have a negative impact

on their economy i.e. slower growth (a sub-additive property). However, their actions could

have a positive impact on the other countries outside the coalition thus maximising the overall

welfare of everyone i.e. the world. Similarly, in the pharmaceutical industry, when two

companies form a coalition to develop a new drug, this can increase their market share (super-

additive property) at the expense of the other players (other coalitions of companies in the

market) who will likely lose market share. As the internet becomes the de facto marketplace

of the future and the transactions becomes more complicated, there may be a need for the

formation of ad hoc coalitions which will need to consider externalities in a more extensive

manner without the limitations imposed by 𝑃𝐹𝑠𝑢𝑝
− and 𝑃𝐹𝑠𝑢𝑏

+ with the assumptions of super-

and sub-additivity.

This means that, these two classes (𝑃𝐹𝑠𝑢𝑝
− and 𝑃𝐹𝑠𝑢𝑏

+) are too rigid (restricted) to be able to

represent a number of settings. For example, a merger between coalitions may be beneficial

when their sizes are smaller. However, if the newly created group is so large that it results in

issues such as communication problems (the merger should have resulted in positive impact

for the coalitions), then the cost may far outweigh the benefits. This type of scenario is neither

super-additive nor sub-additive.

Due to the strict nature of the 𝑃𝐹𝑠𝑢𝑏
+ and 𝑃𝐹𝑠𝑢𝑝

− settings, Rahwan et al. (2009) proposed an

algorithm called 𝐼𝑃
+/−

 that deals with a wider class of PFGs. These classes of PFGs

denoted 𝑃𝐹+ and 𝑃𝐹− which drop the assumptions of super- and sub- additivity, are:

Chapter 4. CSG for Partition Function Games: A Review of Literature 51

 𝑃𝐹+ – Games where externalities are weakly positive externalities, i.e. the

externalities are always positive (non-negative). Which means the merger of any two

coalitions will never decrease the value of other coalitions in the system.

 𝑃𝐹− – Games where externalities are weakly negative externalities, i.e. the

externalities are always are negative (non-positive). Which means the merger of any

two coalitions will always decrease the value of other coalitions in the system.

For these more general type of PFG games, Rahwan et al. (2009) developed a novel anytime

algorithm with a new way of bounding the value of any group of coalitions in a 𝑃𝐹+

/ 𝑃𝐹− game. Compared to the approach taken by Michalak et al. (2008) which bounds the

value of any given coalition 𝐶, they bound the value to a given partition of 𝐶. Once the bounds

for each coalition in each partition can be successfully computed, they apply the same

technique as Rahwan et al. (2007) to prune any unpromising subspace (partitions). Although

for the general PFG case it is not possible to prune any partition of a subset of agents, they

were able to show that pruning was possible for 𝑃𝐹+ / 𝑃𝐹− under specific conditions using

their own pre-processing techniques. They devised two algorithms for searching these

subspaces. The first one is a pre-processing algorithm which prunes the subspaces by

comparing the upper and lower bounds. The second one is 𝐼𝑃
+/−

 which is an updated version

of the IP algorithm introduced in Rahwan et al. (2009).

To test their algorithm, they needed to provide a suitable way of generating input instances

that comply to the 𝑃𝐹+ / 𝑃𝐹− settings. To this end, they provided an equation for generating

the input and showed that the input instances generated satisfied the conditions of the 𝑃𝐹+

/ 𝑃𝐹− settings. They also showed that although the function they devised consists of 𝑂(𝑛𝑛)

values, it only requires 𝑂(2𝑛) values to be stored in memory. This overcomes the limitations

encountered in Michalak et al. (2008) where they were unable to test their algorithm for any

problem size larger than 10-agents due to the need of storing the value for every pair (𝐶, 𝐶𝑆) ∶

 𝐶 ∈ 𝐶𝑆. Using this function to generate the input, it was possible for them to evaluate and

provide results PFGs with up to 24-agents. The initial work in (Rahwan et al., 2009) was only

tested on the Uniform and Normal distributions. However, they later extended their

investigation with 𝐼𝑃
+/−

 to include the NDCS distribution (Rahwan et al., 2012).

Chapter 4. CSG for Partition Function Games: A Review of Literature 52

4.2 Distributed CSG with Externalities

Modern computing brings multiprocessing power to the mass market, in a typical personal

computer today the central processor or CPU usually includes at least two or more processors.

This allows for multiple threads to be processed and executed at the same time. It would be

unwise not to take advantage of this processing power where computers that are capable or

simultaneously processing 4 or 8 thread are common. The algorithms for solving the CSG

problem in PFG mentioned so far are centralized i.e. single-thread sequentially executed

algorithms. Perhaps this was the motivation behind the development of a distributed algorithm

for solving the CSG problem in PFGs. Distributing the calculations has the benefit of splitting

the processing and memory costs among the agents. Allocating resources by distributing the

load so that agents with superior resources and capacity get a bigger chunk of the workload,

increases overall efficiency. These and other desirable characteristics of a distributed

approach were highlighted by Rahwan & Jennings (2007).

A distributed algorithm for the CSG problem in PFG was introduced by Epstein & Bazzan

(2013). They presented DCSGE (Distributed Coalition Structure Generation with Externality)

which builds upon the work of Michalak et al. (2010). The original D-IP algorithm introduced

in Michalak et al. (2010) is an improvement on the IP algorithm (Rahwan et al., 2009) which

added parallel processing and can be used for both distributed and centralized environments.

However, D-IP did not take into account externalities from coalition formation.

A contribution made by Rahwan et al. (2012) provided the equation to calculate the

externalities for each coalition. The main characteristics of this equation are that the

externalities effecting each coalition must be of a single type, either positive only or negative

only. This made it possible to set the upper and lower bounds for any coalition and also

provide worst case guarantees on solution quality. Using the methods for distributing the

calculation of D-IP; and the equation on calculating externalities in 𝐼𝑃
+/−

, (Epstein & Bazzan,

2013) combined certain constructs of the two methods to create DCSGE.

The DCSGE algorithm is split into two stages. Stage one involves evaluating the values of

the coalitions belonging to selected coalition structures. As explained in Rahwan et al. (2009),

it is possible to compute the maximum and minimum values of a coalition in for any PFG in

the 𝑃𝐹+ / 𝑃𝐹− settings. Thus once these are computed, the values are then communicated

and shared among the agents.

Chapter 4. CSG for Partition Function Games: A Review of Literature 53

At the second stage, the agents then select which configuration i.e. which integer partition it

will choose to begin search for the optimal 𝐶𝑆 with the information obtained in the first stage.

The information obtained in the first stage will guide the agents in the second stage to explore

only promising configuration to enable the optimal to be located more quickly. As the search

progresses and information on the bounds are exchanged between the agents, more parts of

the space can be eliminated. The distributed exploration of multiple configurations enable

more space to be covered at any given time. This, it was hoped, will allow for quicker

improvements on the bound and thus convergence to the optimal. The authors claim that the

distributed computation allows for faster elimination of non-promising configuration thus

reducing amount of space that needed to be searched to return the optimal solution. They

claim that from simulation results, in some cases just 0.01% of search space needed to be

searched before an optimal is found.

4.3 PFGs with Mixed Externalities

The methods reviewed thus far in this chapter deal with PFGs where the externalities are

either always positive (𝑃𝐹𝑠𝑢𝑏
+ & 𝑃𝐹+) or always negative (𝑃𝐹𝑠𝑢𝑝

− & 𝑃𝐹−) (Epstein & Bazzan,

2013; Michalak et al., 2008; Rahwan et al., 2009; Rahwan et al., 2012). None of these methods

considered PFG settings where both negative and positive externalities are present i.e. where

the externalities are mixed such that some externalities are negative while others are positive

in the same game. Despite being given less attention in the CSG literature, games with mixed

externalities reflect many real world situations where a merger of two coalitions may

positively impact one coalition but negatively impact another.

For example, A merger between to large conglomerates which will create a giant

conglomerate will have a negative impact (negative externality) on smaller organisations in

the market At the same time, it will benefit coalitions of stock traders as the shares of the

newly merged conglomerate will most likely increase in value (positive externality). This

example represents many real life scenarios where not all the players in an environment is of

the same type. Thus different types of players merging into different types of coalitions will

have different impact on other types of players or coalition in the same domain. Based on this

concept, (Banerjee & Kraemer, 2010) introduced a framework to represent coalitional games

with mixed externalities i.e. where positive and negative externalities co-exist.

Chapter 4. CSG for Partition Function Games: A Review of Literature 54

They showed that this framework which models externalities on the concept of competition

and complementation conforms to the previous 𝑃𝐹+ and 𝑃𝐹− setting considered in Rahwan

et al. (2009) as a special case. For generating the input data, they used an identical approach

to Rahwan et al. (2009), except when assigning values to each coalition. Whereas in Rahwan

et al. (2009), the externalities are solely added or subtracted, their approach needed to consider

the relationship between the type of coalition 𝐶 and each coalition in 𝐶𝑆\{𝐶}. They do this by

defining two sets of coalition types. One coalition type is a potential collaborator (externalities

on will be positive on 𝐶) while the other is a competitor (externalities will be negative on 𝐶).

Thus the values are either added or subtracted on 𝐶 depending on the type of other coalitions

in the structure. This allows a similar input instance to be generated as in (Rahwan et al.,

2009) which only requires 𝑂(2𝑛) values to be stored in memory.

While in Rahwan et al. (2009) it was possible to prune the integer partition space, this is not

possible when considering agents of different types as the space now changes into a type-

space where each integer partition contains different types of coalition structures containing

coalitions with different types of agents. Therefore, they adapted a branch and bound search

algorithm to their mixed externalities setting for exploring this type-space which allows

significant pruning of the search space. One of the most important findings from their

simulations is that their branch and bound algorithm actually increases in performance i.e. the

speed of the search is faster for a larger number of agents (larger problem instances). Their

method however, unlike the other methods reviewed in this chapter only works in a PFG

settings and is not applicable to CFGs. Another lacking feature is that their method is not

anytime thus requires the search to complete to return a solution.

4.4 Chapter Summary

This chapter presents a review of existing methods for coalition structure generation for

partition function games. Most of these methods are based on the IP algorithm (Epstein &

Bazzan, 2013; Michalak et al., 2008; Rahwan et al., 2009; Rahwan et al., 2012). Moreover,

all these methods considered games with externalities in either exclusively positive or

exclusively negative form instead of games where both are present i.e. mixed externalities.

The only method to consider mixed externalities is Banerjee & Kraemer (2010) which models

the mixed externalities effect caused by the mixing of agent types.

Chapter 4. CSG for Partition Function Games: A Review of Literature 55

Table 4.1 – Comparison of Methods for CSG in PFGs.

Method Advantages Disadvantages

IP for PFG (Michalak et

al., 2008)

Tested Up to 10-agents.

 Works for CFG and PFG.

 Anytime properties of IP retained.

 Able to find Optimal 𝐶𝑆 searching

just 1.75% of search space at

minimum.

 Centralised

 Input requires value stored

for every pair (C, CS) i.e.

consumes more memory.

 Consider games with either

positive or negative

externalities separately not

with both externalities in the

same game

 Tested only on Uniform

Distribution

 Larger part space needs to

be explored to find optimal

in 𝑃𝐹𝑠𝑢𝑝
− setting.

𝐼𝑃+ −⁄ (Rahwan et al.,

2009; Rahwan et al.,

2012)

Tested Up to 24-agents.

 Works for CFG and PFG

 Anytime.

 Less memory required to store input

due to pre-computed externalities on

each coalition value.

 Tested three different probability

distributions (Uniform, Normal and

NDCS distributions).

 Able to find Optimal 𝐶𝑆 searching

just 0.0001% of search space at

minimum.

 Centralised

 Considers games with either

positive or negative

externalities exclusively not

with both in one game i.e.

mixed externalities.

 Larger part space needs to

be explored to find optimal

in 𝑃𝐹− setting.

Branch and Bound for

Mixed Externalities

(Banerjee & Kraemer,

2010)

Tested Up to 14-agents.

 Considers games with Mixed

Externalities.

 Works for both CFG and PFG

 Uses similar input instance as

(Rahwan et al., 2012) thus less

memory required.

 Able to find Optimal 𝐶𝑆 searching

just 0.048% of search space at

minimum.

 Centralised

 Tested only on Uniform

Distribution

 Not Anytime.

DCSGE (Epstein &

Bazzan, 2013)

Tested Up to 16-agents.

 Distributed method.

 Works for both CFG and PFG

 Can be run as centralised or

distributed search.

 Uses similar input instance as

(Rahwan et al., 2012) thus less

memory required.

 More than one distribution type

considered (Uniform & Normal).

 Able to find Optimal 𝐶𝑆 searching

just 0.01% of search space at

minimum.

 Considers games with either

positive or negative

externalities exclusively not

with both in one game i.e.

mixed externalities.

 Not Anytime.

Chapter 4. CSG for Partition Function Games: A Review of Literature 56

While the methods proposed in Banerjee & Kraemer (2010), Michalak et al. (2008), Rahwan

et al. (2009) and Rahwan et al. (2012) are centralised, the DCSGE algorithm proposed in

Epstein & Bazzan (2013) distributes the coalition structure generation process to several

agents. DCSGE is a more comprehensive algorithm as it can be run in both centralised as well

as distributed manner. Table 4.1 provides a comparison of the methods for solving the CSG

problem in PFGs, listing the advantages and disadvantage of each method.

The performance of each method varies in terms of the minimum amount of search space

explored before an optimal solution can be found. The method proposed by Rahwan et al.

(2012) can find the optimal while exploring just 0.0001% of the search space for 24 agents

while Michalak et al. (2008) needed to explore 1.75% of the space to find the optimal for just

a 10-agent game.

It should be noted that while the methods in Michalak et al. (2008), Rahwan et al. (2009) and

Rahwan et al. (2012) are anytime, the methods in Banerjee & Kraemer (2010) and Epstein &

Bazzan (2013) are not. From the reviewed literature it was found that no design-to-time

algorithms exist for CSG in PFG at time of writing. As for heuristic methods, Sen & Dutta

(2000) explored genetic algorithms to find optimal coalition structures. Their simulations

were conducted for both CFGs and PFGs, however their search space was restricted by

stringent regularity unlike the general classes of PFGs considered in this thesis.

57

Chapter 5 Heuristic Methods for Finding

Optimal Coalition Structure

This chapter gives algorithmic descriptions of the following four heuristic methods for

determining an optimal coalition structure:

1. A tabu search method we call TACOS (TAbu Search for COalition Structure).

2. A simulated annealing method.

3. An ant colony optimization method

4. A particle swarm optimization method.

These four methods form the focus of this research.

These methods were chosen due to their suitability for adaptation to use neighbourhood

operators to explore the space. This allows for the same neighbourhood generation operator

to be used for all the methods.

5.1 Tabu Search for Coalition Structure Generation (TACOS)

Tabu search (TS), first proposed by Glover & Laguna (1997), is a general purpose heuristic

that uses of neighbourhood search combined with tabu memory to quickly return high quality

solutions. The tabu memory is used to store a list of coalition structures (points in the search

space) already visited by the search. This avoids the same points and points known to be

inferior in the tabu list from being revisited again as the search progresses. Avoiding already

visited solutions ensures that the search continues from unexplored regions of the search

space. It also avoids being stuck at a local maxima enabling better solutions to be found as

the search continues.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 58

TS is a highly adaptable method that can be combined with problem-specific heuristics. In

some cases, TS has been shown to find solutions very close to optimal (Crainic et al., 2009;

Lin et al., 2014; Lodi et al., 2004). It has also been used effectively for solving combinatorial

optimization problems (Chang et al., 1999; Rolland et al., 1996).

Tabu search is an improvement on a typical Local Search (LS) in that it enables LS to

overcome local optima. The basic principle of tabu search is to perform local search in the

neighbourhood of a local optimum. Useful information gained during local search is

maintained in a memory called tabu list. This information is used to guide the search toward

potentially good directions and prevent visiting a point repeatedly. In other words, this list

records the history of search. A typical Tabu search begins by moving to some local optima.

To avoid redundancy in making the same move again, moves are stored in one or more tabu

lists.

Using the general framework of TS, TACOS was devised to work as follows. To begin, a

random coalition structure is generated as the initial starting point (see Algorithm 1). This

start point is set as current best solution and the coalition structure is added as the initial entry

to the tabu list. The tabu list is an array that keeps those coalition structures that are forbidden

from being revisited again in subsequent iterations of the search.

A neighbourhood for the starting coalition structure is generated using a set of neighbourhood

operators (see section 5.1.1 for details). Three operators are used for neighbourhood

generation:

i. Merge

ii. Split

iii. Shift

Within the neighbourhood generated by these operators, a local maximum and minimum is

identified. The local minimum is added to the tabu list to prevent future iterations from visiting

the coalition structure again. A choice was made to only add the worst solution instead of

adding all visited solutions as this would have contributed to a larger tabu list and consumed

more memory potentially slow down the search. If a local maxima is found to be better than

the current best, the maxima becomes the current best.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 59

Algorithm 1 TACOS: Tabu search algorithm for finding an optimal coalition structure

1: 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡 ← [] {Tabu list initially empty}
2: 𝐶𝑆 ← randomly generated CS; {Generate a random start point}
3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 ← 𝐶𝑆
4: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 ← 1, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: Generate a neighbourhood 𝑁 of 𝐶𝑆 with chosen operators
6: Find the 𝑏𝑒𝑠𝑡𝐶𝑆 and the 𝑤𝑜𝑟𝑠𝑡𝐶𝑆 in 𝑁
7: if 𝑤𝑜𝑟𝑠𝑡𝐶𝑆 not in 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡 then
8: Add 𝑤𝑜𝑟𝑠𝑡𝐶𝑆 to 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡
9: end if

10: if 𝑣(𝑏𝑒𝑠𝑡𝐶𝑆) > 𝑣(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡) then
11: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡 ← 𝑏𝑒𝑠𝑡𝐶𝑆
12: end if
13: if 𝑏𝑒𝑠𝑡𝐶𝑆 not in 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡 then
14: Add 𝑏𝑒𝑠𝑡𝐶𝑆 to 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡
15: 𝐶𝑆 ← 𝑏𝑒𝑠𝑡𝐶𝑆
16: else
17: 𝐶𝑆 ← A randomly generated coalition structure that is not in 𝑡𝑎𝑏𝑢𝐿𝑖𝑠𝑡
18: end if
19: end for
20: Return 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡

At any iteration during the search where a local maximum is not in the tabu list, it will be

added and the search proceeds from this point. Otherwise, if it is already in the tabu list, this

means that this point and its neighbourhood have already been explored, thus will not be

visited again. When this happens, a random point is generated repeatedly until a point that is

not in the tabu list is found and search continues from this newly generated coalition structure.

This cycle continues for a fixed number of iterations, and once finished the best solution found

in returned as the optimal.

5.1.1 Neighbourhood Generation Operators

As is the case with any general purpose heuristic method, a suitable adaptation to the problem

domain is needed. Tabu search requires a suitable neighbourhood generation operator that is

problem specific to be defined so that an effective exploration of the search space is possible.

One of the key factors that influences performance is the choice of neighbourhood operators.

When defining neighbourhood operators, a key consideration is good coverage of the search

space. Well-designed neighbourhood operators contribute heavily to the success of tabu

search and with this in mind, the three operators, i.e., merge, split, shift were designed as

follows.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 60

Merge Operator

The merge operator generates neighbours of a coalition structure by merging two coalitions

in the structure. The 𝑖𝑚𝑚𝑖𝑑𝑖𝑎𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑖𝑚(𝐶𝑆) of a coalition structure 𝐶𝑆 if 𝐶𝑆 is the

grand coalition is the grand coalition. Otherwise, 𝑖𝑚(𝐶𝑆) is the coalition structure generated

by merging the first two coalitions in 𝐶𝑆. The merging is done repeatedly to generate a set of

structures that form the neighbourhood 𝑁𝑚 of 𝐶𝑆. Thus, the neighbourhood is defined as:

𝑁𝑚(𝐶𝑆) = 𝑖𝑚(𝐶𝑆) ∪ 𝑖𝑚(𝑖𝑚(𝐶𝑆)) ∪ … .∪ 𝑖𝑚(𝐺𝑟𝑎𝑛𝑑𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛)

Merge operation is performed until the merger of two coalitions results in the grand coalition

where no further merges can be made.

Consider the following example. Let 𝐶𝑆 = {{a1}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9,

a11}, {a10}}.

Neighbouring CS generated using the MERGE operator

Neighbour 1

Neighbour 2

Neighbour 3

Neighbour 4

{{a1, a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}}

{{a1, a2, a3, a4, a5, a6, a8, a12}, {a7, a9, a11}, {a10}}

{{a1, a2, a3, a4, a5, a6, a7, a8, a9, a11, a12}, {a10}}

{{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12}}

In the structure 𝐶𝑆 = {{a1}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}}, the first

two coalitions are {a1} and {a2, a3, a4, a6, a8, a12}, thus the first neighbour Neighbour 1

results from merging {a1} and {a2, a3, a4, a6, a8, a12} into {a1, a2, a3, a4, a6, a8, a12}

resulting in the neighbour Neighbour 1 = {{a1, a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11},

{a10}}. Then, Neighbour 2 is obtained from Neighbour 1 by merging the first two coalitions

in Neighbour 1. This process repeats until Neighbour 4, which is grand coalition, is generated.

No further merges are possible. The neighbourhood is therefore comprised of four structures

Neighbour 1 to Neighbour 4.

Split Operator

The split operator generates neighbours by splitting a coalition in the structure. The

𝑖𝑚𝑚𝑖𝑑𝑖𝑎𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑖𝑠𝑝(𝐶𝑆) of a coalition structure 𝐶𝑆 is a 𝐶𝑆 whose member coalitions

consists of singletons. Otherwise, 𝑖𝑠𝑝(𝐶𝑆) is the coalition structure generated by splitting the

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 61

largest coalition in 𝐶𝑆 in the middle to generate two coalitions of the same size. If the largest

coalition has an even number of agents, it will be split in the middle into two coalitions of

equal size. If the largest coalition has an odd number of agents, it will be split in the middle

into two coalitions with one coalition containing one more agent than the other. To generate

a set of neighbours, splitting is repeated until no further splits are possible, i.e., when a

structure is comprised only of singletons. The neighbourhood 𝑁𝑠𝑝 of a structure 𝐶𝑆 is defined

as:

𝑁𝑠𝑝(𝐶𝑆) = 𝑖𝑠𝑝(𝐶𝑆) ∪ 𝑖𝑠𝑝 (𝑖𝑠𝑝(𝐶𝑆)) ∪ … .∪ 𝑖𝑠𝑝(𝐴𝑙𝑙𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠)

Consider the example coalition structure 𝐶𝑆 = {{a1}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9,

a11}, {a10}}.

Neighbouring CS generated using the SPLIT operator

Neighbour 1

Neighbour 2

Neighbour 3

Neighbour 4

Neighbour 5

Neighbour 6

Neighbour 7

{{a1}, {a2, a3, a4}, {a5}, {a6, a8, a12}, {a7, a9, a11}, {a10}}

{{a1}, {a2}, {a3, a4}, {a5}, {a6, a8, a12}, {a7, a9, a11}, {a10}}

{{a1}, {a2}, {a3, a4}, {a5}, {a6}, {a7, a9, a11}, {a8, a12}, {a10}}

{{a1}, {a2}, {a3, a4}, {a5}, {a6}, {a7}, {a8, a12}, {a9, a11}, {a10}}

{{a1}, {a2}, {a3, a4}, {a5}, {a6}, {a7}, {a8, a12}, {a9}, {a10}, {a11}}

{{a1}, {a2}, {a3, a4}, {a5}, {a6}, {a7}, {a8}, {a9}, {a10}, {a11}, {a12}}

{{a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a7}, {a8}, {a9}, {a10}, {a11}, {a12}}

The largest coalition in 𝐶𝑆 is {a2, a3, a4, a6, a8, a12}, so the first neighbour is generated by

splitting of {a2, a3, a4, a6, a8, a12} into {a2, a3, a4} and {a6, a8, a12} resulting in the

neighbouring Neighbour 1 = {{a1}, {a2, a3, a4}, {a5}, {a6, a8, a12}, {a7, a9, a11}, {a10}}.

In the structure {{a1}, {a2, a3, a4}, {a5}, {a6, a8, a12}, {a7, a9, a11}, {a10}} where there

are 3 largest coalitions. The first largest coalition, in this case {a2, a3, a4}, will be split.

Because it is of odd size 3, it is split into {a2} and {a3, a4}. The resulting neighbouring

Neighbour 2 = {{a1}, {a2}, {a3, a4}, {a5}, {a6, a8, a12}, {a7, a9, a11}, {a10}} and this

process is repeated until no further splits are possible. Seven neighbours Neighbour 1 to

Neighbour 7 are thus generated.

Shift Operator

The shift operator generates neighbours by moving an agent from one coalition to another.

The 𝑖𝑚𝑚𝑖𝑑𝑖𝑎𝑡𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑖𝑠ℎ(𝐶𝑆) of a coalition structure 𝐶𝑆 is 𝐶𝑆 if it is the grand

coalition. Otherwise, 𝑖𝑠ℎ(𝐶𝑆) is the coalition structure generated by moving an agent from

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 62

one coalition to another coalition in the structure. For moving, each individual agent is

considered one by one. For each individual agent within a structure, a neighbour is generated

by moving it to an external coalition. Thus for an agent and a structure, |CS| - 1 neighbours

are generated. This is repeated for each individual agent. The neighbourhood 𝑁𝑠ℎ of 𝐶𝑆

defined as:

𝑁𝑠ℎ(𝐶𝑆) = 𝑖𝑠ℎ(𝐶𝑆) ∪ 𝑖𝑠ℎ(𝑖𝑠ℎ(𝐶𝑆)) ∪ … .∪ 𝑖𝑠ℎ(𝐺𝑟𝑎𝑛𝑑𝐶𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛)

Consider the example with 𝐶𝑆 = {{a1}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}}

and the movement of agents 1 and 2.

Neighbouring CS generated using the SHIFT operator on Agent 1

Neighbour 1

Neighbour 2

Neighbour 3

Neighbour 4

{{a1, a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}}

{{a1, a5}, {a2, a3, a4, a6, a8, a12}, {a7, a9, a11}, {a10}}

{{a1, a7, a9, a11}, {a2, a3, a4, a6, a8, a12}, {a5}, {a10}}

{{a1, a10}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}}

Neighbouring CS generated using the SHIFT operator on Agent 2

Neighbour 1

Neighbour 2

Neighbour 3

Neighbour 4

{{a1, a2}, {a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}}

{{a1}, {a2, a5}, {a3, a4, a6, a8, a12}, {a7, a9, a11}, {a10}}

{{a1}, {a2, a7, a9, a11}, {a3, a4, a6, a8, a12}, {a5}, {a10}}

{{a1}, {a2, a10}, {a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}}

In the example, 𝐶𝑆 = {{a1}, {a2, a3, a4, a6, a8, a12}, {a5}, {a7, a9, a11}, {a10}} has five

member coalitions. The agent to be shifted cannot shift into its own coalition. Thus, there are

|𝐶𝑆| − 1 possible shifts. In this example with |𝐶𝑆| = 5, the maximum number of shift

operations on an agent is 4. This operation is repeated for the remaining agents in the structure

until all agents in the shift neighbourhood are generated.

Consider another example where 𝐶𝑆 = 𝐴𝑙𝑙𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠. Each agent generates |𝐶𝑆| −

1 neigbours. For 27-agents, the shifting of an agent into another coalition generates 26

neighbouring coalition structures. In total, the neighbourhood consists of 702 coalition

structures.

5.2 Simulated Annealing for Optimal Coalition Structure

Simulated annealing (SA) is an enhancement of the randomised local search method. SA is

analogous to the metropolis algorithm (Metropolis et al., 1953). This method iteratively

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 63

generates random solutions similar to gradient descent. The main differentiating factor

between SA and standard gradient descent is the provision for accepting inferior solutions

with some non-zero probability. This enables escaping local optima and enabling a more

extensive search for optimal solution.

The SA method devised in this thesis for solving the CSG problem is given in Algorithm 2.

The search begins by constructing a random coalition structure 𝐶𝑆 as the starting point.

Algorithm 2 SA: Simulated Annealing search algorithm for finding an optimal coalition structure

1: 𝐶𝑆 ← randomly generated CS; {Generate a random start point}

2: 𝑏𝑒𝑠𝑡𝐶𝑆 ← 𝐶𝑆

3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ← 1.0 {Initialize temperature}

4: α ← 0.99 {Initialize α used to update temperature}

5: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 ← 1, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6: Generate a neighbourhood 𝑁 of 𝐶𝑆 with shift, merge, split

7: 𝐶𝑆′ ← A structure from 𝑁 chosen uniformly at random

8: if 𝑣(𝐶𝑆′) ≥ 𝑣(𝐶𝑆) then

9: 𝐶𝑆 ← 𝐶𝑆′ {Update 𝐶𝑆}

10: else
11:

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑦 ← 𝑒
𝑣(𝐶𝑆′)−𝑣(𝐶𝑆)

𝑡 {Set probability of accepting an inferior solution}

12: 𝐶𝑆 ← 𝐶𝑆′ {Update 𝐶𝑆}

13: end if
14: if 𝑣(𝐶𝑆′) ≥ 𝑣(𝑏𝑒𝑠𝑡𝐶𝑆) then

15: 𝑏𝑒𝑠𝑡𝐶𝑆 ← 𝐶𝑆 {Update 𝑏𝑒𝑠𝑡𝐶𝑆}

16: end if

17: 𝑡 ← 𝑡 × 𝛼 {Update 𝑡}What is alpha? Where is this defined?

18: end for
19: Return 𝑏𝑒𝑠𝑡𝐶𝑆

At each iteration a neighbourhood 𝑁 of 𝐶𝑆 is generated. From this neighbourhood, 𝐶𝑆′ is a

random structure chosen uniformly at random. If the value of 𝐶𝑆′ is better than the value

of 𝐶𝑆, 𝐶𝑆′ becomes 𝐶𝑆. Otherwise, with an acceptance probability of 𝑒
𝑣(𝐶𝑆′)−𝑣(𝐶𝑆)

𝑡 , 𝐶𝑆′

becomes 𝐶𝑆. If the value of 𝐶𝑆 is better than 𝑏𝑒𝑠𝑡𝐶𝑆, then 𝑏𝑒𝑠𝑡𝐶𝑆 ← 𝐶𝑆. At the end of each

iteration, the temperature is updated. This is repeated for a fixed number of iterations, with

the best solution found during the course of the search being returned as the optimal solution.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 64

5.3 Ant Colony Search for Optimal Coalition Structure

Ant colony algorithms (Dorigo et al., 1996) are methods which mimic the movement of ants

along a path between a food source and their colony. This method was used in Dorigo et al.

(1996) to explore optimal paths in a graph. Ants move around a space searching for food

source and laying pheromones along the way. The pheromones help other ants in the colony

to identify which paths are best when searching for food. The stronger the pheromone trail,

the more likely the other ants will follow this path.

For the CSG problem that we consider, each of the three neighbourhood operators (defined in

Section 5.1) is associated with a pheromone level which is a number between 0 and 1. The

higher the number, the stronger the pheromone. The pheromone levels are initially assigned

the following values:

1. Pheromone for shift (Phsh) is 0.1.

2. Pheromone for merge (Phm) is 0.1.

3. Pheromone for split (Phsp) is 0.1.

To begin, a virtual ant generates an initial random coalition structure 𝐶𝑆 and conveys this to

three other virtual ants. These three ants stand for the three neighbourhood operators shift,

merge, and split. The ant that corresponds to shift operator generates a random neighbour

(called neighbour 1) of 𝐶𝑆 using shift. Likewise, the ant that corresponds to merge (split)

operator generates a random neighbour of 𝐶𝑆 using merge (split). The neighbours of 𝐶𝑆

generated by merge are called neighbour 2 and those generated by split are called neighbour

3.

Let 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 be the best of neighbour 1, neighbour 2, and neighbour 3. If 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 is better

than 𝐶𝑆, then the complete neighbourhood of 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 is generated using the same

neighbourhood operator that generated 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 from 𝐶𝑆. If the best candidate, say X, in this

neighbourhood is better than 𝐶𝑢𝑟𝐵𝑒𝑠𝑡, then 𝐶𝑆 is assigned X and the next iteration begins.

On the other hand, if 𝐶𝑆 is better than 𝐶𝑢𝑟𝐵𝑒𝑠𝑡, then the best neighbourhood operator is

calculated based on the strengths of each of the three neighbourhood operators. The

calculation of operator strength is described in the following box.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 65

Strength of a neighbourhood operator:

OSsh : Denote the strength of shift operator.

OSm : Denotes the strength of merge operator.

OSsp : Denotes the strength of split operator.

The strength of an operator is defined in terms of three factors:

1. The difference in the value of CS and the value of the neighbour generated by the

operator.

2. The pheromone level of the operator.

3. The cost of the operator.

A cost is assigned to each operator as follows:

1. Cost of shift Operator (Csh) – It is assigned the lowest value among the three.

2. Cost of merge Operator (Cm) – It is assigned a value between the highest and lowest.

3. Cost of split Operator (Csp) – It is assigned a higher value among the three.

Then the strength of shift operator OSsh is calculated as follows:

𝑂𝑆𝑠ℎ =

(𝑣(𝐶𝑆) − 𝑣(𝐶𝑆′)) × Psh

Csh

(5)

OSm and OSsp are calculated analogously.

A complete neighbourhood of 𝐶𝑆 is generated using the highest strength neighbourhood

operator. If the best candidate, say X, in this neighbourhood is better than 𝐶𝑆, then 𝐶𝑆 is

assigned X and the next iteration begins. Otherwise, although the value of 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 is lower

it will become 𝐶𝑆 and the next iteration begins (see Algorithm 3).

Pheromone Update

In order to reinforce positive feedback from pheromones and also to avoid getting caught in

local optima, the pheromone levels are updated as follows. At the beginning of each iteration,

once the neighbours are generated, the pheromone level corresponding to the operator that

generated the highest value neighbour is increased by a random value drawn from a uniform

distributed between 0 and 1. The more frequently an operator finds the highest quality

solution, the higher the pheromone level for that operator.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 66

Then, to avoid getting stuck in a local optima, the pheromone evaporation schedule is set as

follows. At every iteration, the value of the pheromones is decreased at the rate of 25%. Thus

the pheromone values fluctuate throughout the search. This avoids being stuck in a local

optima. Below, we illustrate with an example how the value of pheromones effects the

operator strengths when choosing to move to inferior solutions.

Algorithm 3 ACS: Ant Colony search algorithm for finding an optimal coalition structure

1: 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑠 ← []{initialise pheromones with each operator merge, split, shift}

2: 𝑐𝑜𝑠𝑡 ← []{initialise cost for each operator merge, split, shift}

 𝐶𝑆 ← randomly generated 𝐶𝑆; {generate a random start point}

3: 𝑏𝑒𝑠𝑡𝐶𝑆 ← 𝐶𝑆
4: for iterationCount ← 1, maxIterations do

5: Generate the neighbourhood 𝑁 of 𝐶𝑆 with shift, merge and split operators

6: 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 ← best neighbouring structure within 𝑁

7: if a 𝑣(𝐶𝑢𝑟𝐵𝑒𝑠𝑡) in 𝑁 > 𝑣(𝐶𝑆) then

8: 𝐶𝑆 ← 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 {Update 𝐶𝑆}

9: update 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 operator pheromone

10: Generate the neighbourhood 𝑁′ of 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 using same operator as 𝐶𝑢𝑟𝐵𝑒𝑠𝑡

11: if a 𝑣(X) in 𝑁′ > 𝑣(𝐶𝑢𝑟𝐵𝑒𝑠𝑡) then

12: 𝐶𝑆 ← X {Update 𝐶𝑆}

13: end if

14: else
15: if all 𝑣(𝐶𝑢𝑟𝐵𝑒𝑠𝑡) in 𝑁 < 𝑣(𝐶𝑆) then

16:
 calculate 𝑂𝑆𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 =

(𝑣(𝐶𝑆)−𝑣(𝐶𝑆′))×Poperator

Coperator
 {evaluate inferior solution}

17: 𝐶𝑆 ← 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 with highest 𝑂𝑆𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 value

18: update 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 operator pheromone

19: Generate the neighbourhood 𝑁′ of 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 using same as 𝐶𝑢𝑟𝐵𝑒𝑠𝑡

20: if a 𝑣(𝑋) in 𝑁′ > 𝑣(𝐶𝑆) then

21: 𝐶𝑆 ← 𝑋 {Update 𝐶𝑆}

22: else

23: a 𝑣(𝑋) in 𝑁′ < 𝑣(𝐶𝑆) then

24: 𝐶𝑆 ← 𝐶𝑢𝑟𝐵𝑒𝑠𝑡 {Update 𝐶𝑆}

25: end if

26: if 𝑣(𝐶𝑆) ≥ 𝑣(𝑏𝑒𝑠𝑡𝐶𝑆) then
27: 𝑏𝑒𝑠𝑡𝐶𝑆 ← 𝐶𝑆 {Update 𝑏𝑒𝑠𝑡𝐶𝑆}

28: end for
29: Return 𝑏𝑒𝑠𝑡𝐶𝑆

Example

For this particular example (see Figure 5.1), at the start of the iteration, the value of 𝐶𝑆 shown

as ant(start) is 6. Using the three neighbourhood operators, three neighbouring solution shown

as ant(shift), ant(merge) and ant(split) are generated. Among these three, none has a value

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 67

higher than ant(start). Thus to decide which solution to use to continue the search from, the

operator strengths are calculated using the formula given in Equation (5).

Figure 5.1 – Ant colony movement by operator strength.

The resulting operator strengths for 𝑂𝑆𝑠ℎ, 𝑂𝑆𝑚 and 𝑂𝑆𝑠𝑝 are 6, 7.5 and 0.67 respectively.

Thus ant(merge) has the highest operator strength. Therefore, the search will continue by

generating an entire neighbourhood of ant(merge) as shown in Figure 5.1. Within this

neighbourhood, ant(mgc6) has a higher value than ant(merge). Thus the next iteration will

start with ant(mgc6) as the starting solution.

If none of the neighbours in the colony have a higher value than ant(merge) then ant(merge)

will become the starting solution for the next iteration. This cycle only applies when the

neighbouring solutions generated from ant(start) are inferior to ant(start). Otherwise if anyone

of the ant(shift), ant(merge), ant(split) solution has a higher value, the next iteration will start

from the ant with the higher value.

5.4 Particle Swarm Search

Particle swarm optimisation (PSO), a heuristic method for solving combinatorial optimisation

problems, was first introduced by Kennedy & Eberhart (1995) to emulate social behaviour.

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 68

This is represented as movements of organisms (particles) for example in a school of fish or

flock of birds. Using this behaviour to move a swarm toward good solutions in the search

space is known as swarm intelligence (Kennedy & Eberhart, 1995).

PSO has been applied to numerous hard problems such as the travelling salesman problem

(Clerc, 2004) and coalition formation problem (Guo & Wang, 2006). The method can, in

general, be used to solve any optimisation problem. Application of this method requires

correct modelling and adaptation of the problem space to the movement of particles flying

through the search space looking for solutions. Many variants of the method have been

proposed (Trelea, 2003). A particle swarm based method devised for solving the CSG

problem is given in Algorithm 4.

Algorithm 4 PSS: Particle Swarm search algorithm for finding an optimal coalition structure

1: 𝑔𝑏𝑒𝑠𝑡 ← [] {𝑔𝑏𝑒𝑠𝑡 initially empty}
2: 𝑎𝑐 ← set initial acceptance criteria {minimum solution quality for 𝑝𝑏𝑒𝑠𝑡}
3: for iterationCount ← 1, maxIterations do
4: 𝑝𝑏𝑒𝑠𝑡 ← [] {𝑝𝑏𝑒𝑠𝑡 initially empy}
5: SP ← Initialize start particles
6: 𝐶𝑆 ← randomly generated 𝐶𝑆; {SP generate a random start point}
7: Generate the neighbourhood 𝑁 of 𝐶𝑆 with selected Neighbourhood Operators
8: Sort the neighbours in 𝑁 from highest to lowest {Highest solution on top}
9: Update the highest value found into 𝑝𝑏𝑒𝑠𝑡

10: SW ← Initialize swarm particles SWx {x is the particle number e.g. SW1)
11: SWx ← Generate the neighbourhood Nx {x is the index of the neighbour e.g. N1)
12: Update the highest value found for each SWx into 𝑝𝑏𝑒𝑠𝑡
13: if one of the 𝑝𝑏𝑒𝑠𝑡 > 𝑔𝑏𝑒𝑠𝑡 then
14: 𝑔𝑏𝑒𝑠𝑡 ← 𝑝𝑏𝑒𝑠𝑡
15: 𝐶𝑆 ← 𝑝𝑏𝑒𝑠𝑡
16: else
17: no 𝑝𝑏𝑒𝑠𝑡 > 𝑔𝑏𝑒𝑠𝑡
18: evaluate highest value 𝑝𝑏𝑒𝑠𝑡
19: if 𝑝𝑏𝑒𝑠𝑡 meets acceptance criteria
20: 𝐶𝑆 ← 𝑝𝑏𝑒𝑠𝑡
21: else
22: 𝐶𝑆 ← a randomly generated coalition structure
23: end if
24: end if
25: end for
26: Return 𝑔𝑏𝑒𝑠𝑡

There are two key variables: a global best (gbest) that stores the best solution found so far in

the entire search space, and personal best (pbest) that is best within a swarm. To begin, gbest

is initialised to a random coalition structure. Then, a complete neighbourhood of CS is

generated using all the three neighbourhood operators. Suppose we want to create four

swarms. Then, the four best coalition structures will be chosen from the generated

Chapter 5. Heuristic Methods for Finding Optimal Coalition Structure 69

neighbourhood. These are used to generate four swarms SW1, SW2, SW3, and SW4. Then

the neighbourhood of each swarm is generated. We then find the pbest for each of the four

swarm neighbourhoods. If the best of the four pbest solutions (call it X) is better than gbest,

then gbest is updated to X. Otherwise, if the value of gbest is better than X, and value of X is

at least Y% of the value of CS, then CS is updated to X (this is done to escape local optima).

Otherwise, CS takes on a random coalition structure and the next iteration is commenced. The

value of Y is initially set at 50 but is increased with the number of iterations. (see Algorithm

4).

Table 5.1 – Comparison of the Heuristic Methods.

 Tabu Search Simulated Annealing Particle Swarm Ant Colony

Search

Movement

Moves are recorded,

tabu list keeps a record

of previous moves to

guide the search to

move to areas of the

search space yet to be

explored. Moving to a

solution already found

in the tabu list is

prohibited.

Moves are random and

accepted on a certain

acceptance probability.

Acceptance probability

depends on several

parameters such as

temperature. No record

is kept of already

visited solution.

Moves from one

good solution to the

next as a swarm

(parallel), when a

non-improving

solution found a

fitness function is

used to determine

fitness of next move.

Global best is kept to

be used when

calculating fitness.

Mimic the movement of

ants in a colony. Start by

moving to good source

of food then bring

colony to find good

solutions around it. If no

better solution found,

refer to history on which

moves was beneficial

and moves in that

direction.

Advantages Guided search and a

structured

neighbourhood

enables systematic

search of the solution

space. Eliminates

explored solution from

search, only explores

new solution space

avoiding repeated

moves.

Moves are quicker as it

does not need to

generate a

neighbourhood

structure to evaluate its

movement. Memory

less implementation,

requires less resources.

Inherent parallelism.

Search moves as a

swarm with potential

to horizontally cover

a wider space. Uses

small amounts of

long term memory to

store global best and

short term memory

to store own best.

Moves are guided by

trails left by other ants in

previous search, when a

non-improving move

encountered, refer to

history of moves to

guide next move, some

move history preserved.

Short term memory only

to store pheromones.

Disadvantages Requires generation of

a neighbourhood to

evaluate moves.

Requires keeping in

memory a list called

tabu list that consumes

more resources. May

use a lot of long term

memory.

Random selection

could result in repeated

moves. Unguided

jumps could mean

exploration might be

stuck in worse parts of

the search space.

Sometimes slower

convergence

especially when

many non-improving

solution encountered

slowing down

movement to new

parts of the space.

Implementation is

strictly problem specific,

care must be given to

parameters used for

keeping search history.

Keeping pheromones for

too long will effect

search.

5.5 Chapter Summary

This chapter presented four heuristic methods for finding the optimal coalition structure.

These methods are Tabu Search, Simulated Annealing, Ant Colony, and Particle Swarm

Search. Table 5.1 gives a general comparison between the four heuristics. The implementation

details of these methods was given earlier in this chapter.

70

Chapter 6 Simulation Setup for

Performance Evaluation

The four heuristic methods viz., tabu search, simulated annealing, ant colony, and particle

swarm were evaluated and compared in terms of two criteria:

1. Running time, i.e., time taken to generate a solution.

2. Quality of solution, i.e., how close a heuristic solution is to the exact optimum. In

those cases, where the search for exact optimum was computationally infeasible, an

upper bound on the exact optimum was used.

Performance evaluation and comparison was done for CFGs as well as PFGs. All the

simulations were run on an Apple iMac computer equipped with Intel Core i5 4570R

Processor running at 2.7 GHz (3.2 GHz Turbo) and 8GB of RAM running Windows 7

Enterprise Edition. All four heuristic methods were implemented in Python (Python Software

Foundation, https://www.python.org/).

This chapter is organised as follows. Section 6.1 is a description of how the quality of a

heuristic solution was determined. Section 6.2 is a description of how data was generated for

evaluating performance. Section 6.3 is a description of how the upper bounds for an exact

optimum were calculated.

6.1 Evaluation Method

The quality of a heuristic solution relative to the exact optimum is calculated as follows.

Let 𝐶𝑆𝑇𝐴𝐶𝑂𝑆, 𝐶𝑆𝑆𝐴, 𝐶𝑆𝐴𝐶𝑆, 𝐶𝑆𝑃𝑆𝑆 be the solutions (i.e., coalition structures) returned by

TACOS, simulated annealing, ant colony and particle swarm methods respectively. Let 𝐶𝑆𝑜𝑝𝑡

be the exact optimal solution. The quality of a solution generated by TACOS is measured as

follows:

𝑣(𝐶𝑆𝑇𝐴𝐶𝑂𝑆)

𝑣(𝐶𝑆𝑜𝑝𝑡)
× 100 (6.1)

The quality for simulated annealing, ant colony, and particle swarm is analogous.

https://www.python.org/)

Chapter 6. Simulation Setup for Performance Evaluation 71

Quality of solution relative to an upper bound is measured as follows:

𝑣(𝐶𝑆𝑇𝐴𝐶𝑂𝑆)

𝑣(𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑)
× 100 (6.2)

where 𝑣(𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑) is the upper bound on the exact optimum. Details regarding the

calculation of 𝑣(𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑) can be found in Section 6.3.

Time taken to generate a heuristic solution is set as follows. Each of the four heuristic methods

was given the same average running time over a fixed number of iterations (see Table 6.3).

This running time was calculated as follows. For 25 agent CFGs, we ran TACOS for 1800

iterations. This took 30000ms.

For CFGs, these times were set as shown in Table 6.1.

Table 6.1 – Running Time (rounded to next decimal) for CFGs.

Input Size Average Running Time (ms)

25-agents 30000

27-agents 60000

For a CFG comprised of 25 agents, the quality of a heuristic solution was evaluated relative

to the exact optimum. For 27 agents, computing the exact optimum was infeasible, so the

quality of a heuristic solution was evaluated relative to the upper bound for the exact optimum.

For PFGs with 10 agents, heuristic solution quality was evaluated relative to the exact

optimum. For PFGs with 27 agents, heuristic solution quality was evaluated relative to the

upper bound for the exact optimum. The running times for PFGs were set as shown in Table

6.2.

Table 6.2 – Running Time (rounded to next decimal) for PFG.

Input Size Average Running Time (ms)

10-agents 180000

27-agents 300000

Chapter 6. Simulation Setup for Performance Evaluation 72

It should be noted that, for a heuristic method, the number of iterations possible within the

targeted average running time differs depending on the heuristic method. For example, within

a 1 minute running time, more iterations may be possible with TACOS compared to ACS or

PSS.

The tabu search method TACOS was run in two different modes: single agent mode (this

corresponds to a single thread) and multiagent (this corresponds to multiple threads) mode.

The former is denoted TACOS(S) and the latter TACOS(M). A multiagent approach (i.e.,

TACOS(M)) resulted in a lower number of iterations due to the need to initialise multiple

threads and synchronise them. For a fixed running time, the number of iterations for different

methods are as given in Table 6.3.

Table 6.3 – Number of Iterations and the corresponding run time for each method.

Simulation Type Method Number of Iterations Average Running Time

25-agent CFG TACOS 1800 30 Seconds

SA 300

ACS 6000

PSS 200

27-agent CFG TACOS-S 2500 1 Minute

TACOS-M 1100

SA 250

ACS 8000

PSS 120

10-agent PFG TACOS 10 3 Minutes

SA 200

ACS 30

PSS 3

27-agent PFG TACOS-S 12000 5 Minutes

TACOS-M 6000

SA 2500

ACS 1000

PSS 100

Chapter 6. Simulation Setup for Performance Evaluation 73

6.2 Data Generation for Performance Evaluation

The data needed to evaluate performance is the value of each coalition. Data sets comprised

of coalition values were generated randomly using six different probability distributions

(details regarding these distributions are given in Section 6.2.2). The probability distributions

chosen are commonly used in recent literature (Michalak et al., 2016; Sandholm et al., 1998)

with the exception of the Triangular distribution which was chosen to explore a distribution

that has yet been studied for the CSG problem.

Since the performance of all four heuristic methods is sensitive to the starting point, which is

random, each method was run ten-times for each of the datasets generated. Average solution

quality and average running time were then measured across the ten runs for each data set.

Ten datasets were generated for each of the six probability distributions. This means that, in

total, there are 60 datasets for each scenario. Four different scenarios were considered: (25-

agent CFGs, 27-agent CFGs, 10-agent PFGs, and 27-agent PFGs).

6.2.1 Data for Characteristic Function Games

In CFGs, each coalition has a single value that is independent of external coalitions. Thus, the

value of each coalition is drawn only once from a probability distribution. The six probability

distributions used to generate coalition values are as follows:

1. Uniform: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~U(0, |C|)

2. Normal: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~N(µ, σ2) where µ = |C|, σ = 0.1

3. Gamma: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~|C| × Gamma(k, θ), where k = 7.5, θ = 0.5

4. Beta: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~|C| × Beta(α, β), where α = β = 0.5.

5. Exponential: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~|C| × exp(λ), where λ = 3.

6. Triangular: For all 𝐶 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶)~⊿ (a, b, c) where a = 0, b = 1, c=none

These distributions were used to generate data for 10-agent, 25-agent and 27-agent games.

The parameters chosen are similar to those found in literature (Michalak et al., 2016;

Sandholm et al., 1998).

Chapter 6. Simulation Setup for Performance Evaluation 74

6.2.2 Data for Partition Function Games

In PFGs, the value of a coalition depends on the coalition structure in which the coalition is

embedded. Thus, data for PFGs requires much more storage. For example, in a search space

with 20-agents, if a coalition is a member of 150 different structures, it means that there are

150 possible values for just this one coalition. Storing all these coalition values for games

with more than ten agents is infeasible in terms of memory space. Thus, simulations were

conducted for 10-agent games. A random value for a coalition was drawn for each structure

it is embedded in. The probability distributions used are the ones listed above.

Two types of externalities can arise: positive and negative (De Clippel & Serano 2008).

 Positive externality: An increase in the value of a coalition that results from

reorganization of external coalitions means the externality on the coalition is positive.

 Negative externality: A decrease in the value of a coalition that results from

reorganization of external coalitions means the externality on the coalition is negative.

In order to facilitate the calculation of upper bounds (see Section 6.3 for details regarding the

calculation of upper bounds), data for 27-agent games was generated with two different

parameters for each probability distribution. Depending on the number of member agents,

coalitions were divided into two types: those of size 2 ≤ 𝑘 ≤ 𝑛 − 1, and for a given k, those

of size 𝑖 (𝑖 ≠ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛). The value of a coalition was generated using the following

parameters for probability distributions (here 𝑛 is the number of agents in a game):

1. Uniform Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~U(𝑎, 𝑏) where 𝑎 = 0 and 𝑏 = 𝑛

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~U(𝑎, 𝑏) where 𝑎 = 𝑛2 and 𝑏 = 2(𝑛2)

2. Normal Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~N(µ, σ2) where µ = 𝑛, σ = 0.2

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~N(µ, σ2) where µ = (𝑛 + 1)2 , σ = 0.2

3. Gamma Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~Gamma(k, θ), where k = 7.5, θ = 0.5

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~(𝑛 + 1)2 × Gamma(k, θ), where k = 7.5, θ = 0.5

Chapter 6. Simulation Setup for Performance Evaluation 75

4. Beta Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~Beta(α, β), where α = 5 and β = 1

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~ 𝑛2 × Beta(α, β), where α = 5 and β = 1

5. Exponential Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~ exp(λ), where λ = 3.

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~ 𝑛2 × exp(λ), where λ = 3.

6. Triangular Distribution:

For all 𝐶𝑖 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑖)~⊿ (a, b, c) where a = 0, b = 𝑛 , c=none

For all 𝐶𝑘 ∈ 𝐶𝐴𝑔, the value 𝑣(𝐶𝑘)~⊿ (a, b, c) where a = 𝑛2, b = 2(𝑛2), c=none

These parameters only apply to simulations for 27-agent games.

6.3 Calculating Bounds

We used two different methods for calculating the upper bound on the value of a coalition

structure. One method is for CFGs and the other for PFGs.

6.3.1 Calculating the Upper Bound for CFGs

In order to understand the calculation of bounds, we need to first understand how coalition

structures are represented. The space of all coalition structures, can be represented as a

coalition structure graph (T. Sandholm et al., 1998) or as integer partitions (Rahwan &

Jennings, 2007). We shall be using the latter representation as it is more suitable for our

purposes.

An integer partition of n is a sequence of positive integers whose sum is exactly 𝑛. As an

example, consider a set of 𝑛 = 5 agents. There are 7 possible partitions: [5], [2, 3], [1, 4], [1,

2, 2], [1, 1, 3], [1, 1, 1, 2] and [1, 1, 1, 1, 1]. The parts in an integer partition represent the

sizes of the coalitions in a coalition structure. For example, the coalition structure

{{a1},{a2},{a3,a4,a5}} and {{a2},{a3},{a1,a4,a5}} corresponds to the integer partition [1,

1, 3] as there are three coalitions, two of which are of size one and of size three.

Chapter 6. Simulation Setup for Performance Evaluation 76

The number of integer partitions of n grows exponentially in 𝑛. For 27-agents, the integer

partition count is 3010, while there are 134,217,728 possible coalitions, and over five hundred

forty five quadrillion (≈ 545,717,047,947,902,329) coalition structures.

The integer partition representation divides the search space into subspaces. All partitions

with an equal number of parts are put in the same subspace. For example, the two part

partitions [2, 3] and [1, 4] belong to the same subspace containing all partitions with two parts.

Therefore, when there are 5 agents, the sub-spaces are defined as shown in Figure 6.1.

Figure 6.1 – Space of all coalition structures for 5 agents.

Here, Π denotes the space of all coalition structures while 𝑆𝑃𝑖 denotes the subspace with

integer partitions comprised of 𝑖 parts (e.g. 𝑆𝑃2 contains all structures with two parts or two

coalitions. We let CS|i,j| denote the set of all coalition structures with two parts, the first part

of which contains i agents and the second part contains j agents.

The upper bound on the value of structures in the set CS|i,j| is calculated as follows. Recall

that the value of a coalition is drawn from a distribution. The maximum value of a coalition

thus depends on the parameters of the distribution from which it is drawn. For example, for

Chapter 6. Simulation Setup for Performance Evaluation 77

the Uniform distribution 𝑈(𝑎, 𝑏), the values drawn depend on two parameters: 𝑎 and 𝑏. This

means that the minimum possible value of a coalition is 𝑎 and the maximum is 𝑏.

The upper bound on the value of structures in the set CS|IP| is the sum of the upper bounds of

each part in IP. Likewise, the lower bound on the value of structures in the set CS|IP| is the

sum of the lower bounds of each part in IP.

For some probability distributions, the upper bound on the value of a coalition cannot be easily

determined in terms of the parameters of the distribution. For example, for the Normal

distribution, a randomly drawn value may go up to infinity. For such cases, the upper bound

on the value of a coalition of a certain size was the highest of all randomly drawn values (in

the data sets) for coalitions of that size. Then, the upper bound for a coalition structure is the

sum of the upper bounds for each integer partition of the structure (as in (Rahwan et al.,

2007)).

For PFGs, the calculation of upper bound is not as straightforward as it is for CFGs. The

following section describes upper bound calculation for PFGs.

6.3.2 Calculating the Upper Bound for PFGs

For PFGs, externalities must to be considered. Recall from Chapter 2, that externalities are

modelled by agent type. Recall also that there are two types of agents: Type A and Type B.

The default ratio between the number of Type A and Type B agents for n-agent games is set

as follows:

a) Number of Type A agents is
𝑛

3

b) 𝑁umber of Type B agents is 𝑛 −
𝑛

3

Now, the upper bound for the value of a coalition of a given size depends not only on its size

but also on the structure it is embedded it. In order to incorporate externalities, we introduce

an externality factor. This factor is then used to calculate the value of a coalition. In PFGs,

the value of a coalition depends on

1. the of member agents in it, and

2. the organization of external coalitions.

Chapter 6. Simulation Setup for Performance Evaluation 78

Thus, we defined externality factor for a coalition as follows. Let 𝑚 = |𝐶|, denote the size of

a coalition 𝐶 and 𝑑 = |𝐶𝑆|, denote the number of coalitions in the

structure 𝐶𝑆 𝑖𝑡 𝑖𝑠 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑖𝑛. Externalities imposed on a coalition 𝐶 ∈ 𝐶𝑆 are given by an

externality factor. The externality factor, 𝑒𝑓, for coalition C in structure CS is calculated as

follows:

𝑒𝑓 =
𝑚

𝑑
 (6.3)

As with CFGs, the value of a coalition for PFGs is randomly drawn. However, for PFGs, the

randomly drawn value is combined with the externality factor of the coalition. As there are

two types of externalities, positive and negative, we have the following two formulae for

calculating the value of a coalition.

1. Positive externalities: The value 𝑣(𝐶) of any coalition 𝐶 is calculated as follows. Let

𝑅𝑉 denote a randomly drawn value from any probability distribution. This value is

increased by a factor of 𝑒𝑓 to obtain 𝑣(𝐶) as follows:

𝑣(𝐶) = 𝑅𝑉 + (𝑅𝑉 × 𝑒𝑓) (6.4)

2. Negative externalities: The value 𝑣(𝐶) of any coalition 𝐶 is calculated as follows. Let

𝑅𝑉 denote a randomly drawn value from any probability distribution. This value is

decreased by a factor of 𝑒𝑓 to obtain 𝑣(𝐶) as follows

𝑣(𝐶) = 𝑅𝑉 − (𝑅𝑉 × 𝑒𝑓) (6.5)

Suppose 2 ≤ 𝑘 ≤ n-1 and for a given k, let i≠k. The entire search space will consist of the

following three types of coalition structures:

i) Type k structure: A coalition structure all of whose members are coalitions of size

k. Such a structure is denoted 𝐶𝑆𝑘 .

ii) Type i structure: A coalition structure all of whose members are coalitions of size

i. Such a structure is denoted 𝐶𝑆𝑖 .

Chapter 6. Simulation Setup for Performance Evaluation 79

iii) Type i,k structure: A coalition structure some of whose members are coalitions of

size i and some of size k. Such a structure is denoted 𝐶𝑆𝑖,𝑘 .

For simulations, we set 𝑘 = 2 since this provided the largest coverage of the search space for

any number 𝑛 of agents. Table 6.4 shows this for a 27-agent scenario.

Table 6.4 – Number of Integer Partitions for each 𝑘 for 27-agent games.

𝑘 Number of Integer Partitions with coalitions of size 𝑘

2 1958

3 1575

4 1255

5 1002

6 792

7 627

8 490

9 385

10 297

11 231

12 176

13 135

14 101

15 77

We denote the upper and lower bound on the value of a coalition as follows:

i) 𝑈𝐵𝑘 denotes the upper bound on the value of any coalition of size k.

ii) 𝐿𝐵𝑘 denotes the lower bound on the value of any coalition of size k.

iii) 𝑈𝐵𝑖 denotes the upper bound on the value of any coalition of size i.

iv) 𝐿𝐵𝑖 denotes the lower bound on the value of any coalition of size i.

Chapter 6. Simulation Setup for Performance Evaluation 80

The parameters of the probability distributions are set such that the following relation is true.

 𝐿𝐵𝑘 ≫ 𝑈𝐵𝑖 (6.6)

The data (i.e. the values of coalitions drawn from the six probability distributions mentioned

earlier) was verified so that it satisfies the relationship in Equation (6.6) such that the value

of any coalition structure with at least one size 𝑘 coalition is always greater than the value of

any coalition structure without a coalition of size 𝑘.

The upper bound on the value of any coalition structure of type 𝐶𝑆𝑖 are computed as follows:

 𝑈𝐵(𝐶𝑆𝑖) =
𝑛

𝑖
× 𝑈𝐵𝑖

(6.7)

Likewise, the upper bound on the value of any coalition structure of type 𝐶𝑆𝑘 are computed

as follows:

 𝑈𝐵(𝐶𝑆𝑘) =
𝑛

𝑘
× 𝑈𝐵𝑘

(6.8)

And for type 𝐶𝑆𝑖,𝑘, some of whose members are coalitions of size 𝑖 and others of size 𝑘, the

upper bound on the value is:

𝑈𝐵(𝐶𝑆𝑖,𝑘) = (∑ 𝑈𝐵𝑖

𝐶∈𝐶𝑆𝑖,𝑘,|𝐶|=𝑖

+ ∑ 𝑈𝐵𝑘

𝐶∈𝐶𝑆𝑖,𝑘,|𝐶|=𝑘

)

(6.9)

We will illustrate the calculation of bounds in the context of the following example.

Chapter 6. Simulation Setup for Performance Evaluation 81

Example:

Consider a 4 agent PFG. For 4 agents, there are 5 possible integer partitions: [1,1,1,1], [1,1,2],

[1,3], [2,2] and [4]. Assume that 𝑘 = 2.

Recall form Chapter 2 that there are two types of agents: Type A and Type B. From these

two agent types, three different types of coalitions can be formed:

1. Type AA: Recall that such a coalition contains only Type A agents.

2. Type BB: Recall that such a coalition contains only Type B agents.

3. Type MX coalitions: Recall that such a coalition contains both Type A and Type B

agents.

This means that there are five distinct types of coalition structures possible:

1. Type AABB: Recall that such a structure contains some coalitons of Type AA and

others of Type BB.

2. Type AAMX: Recall that such a structure contains some coalitons of Type AA and

others of Type MX.

3. Type BBMX: Recall that such a structure contains some coalitons of Type BB and

others of Type MX.

4. Type MXMX: Recall that such a structure only contains coalitons of Type MX.

5. Type AABBMX: Recall that such a structure contains some coalitons of Type AA,

some of Type BB and others of Type MX.

In this 4 –agent example, suppose agent types are as follows:

i) There is only one Type A agent.

ii) There are three Type B agents.

Since there is only 1 Type A agent, there can be only 2 (out of the five possible types listed

above) types of coalition structures:

i) Type BBMX whose member coalitions are of Type BB and Type MX.

ii) Type AABB whose member coalitions are of Type AA and Type BB.

Chapter 6. Simulation Setup for Performance Evaluation 82

Although the grand coalition can be formed, externalities on it are not considered as they are

no external coalitions in that structure. In this example, because there is only one Type A

agent, the coalitions of size 𝑘 (recall also that k=2) can only be of Type BB and that only

partitions [1, 1, 2] and [2, 2] have coalitions of size 𝑘.

Due to (6.6), any integer partition that does not contain coalitions of size 𝑘 can be ruled out

from having the upper bound. Let 𝑅𝑉1 denote the randomly drawn value for a coalition of size

𝑖 and 𝑅𝑉2 that for size 𝑘. The inequality 𝐿𝐵k ≫ 𝑈𝐵𝑖 means that the upper bound on 𝑅𝑉1 will

always be lower than the lower bound value of 𝑅𝑉2. With this in mind, the upper bound for

each integer partition containing a coalition of size 𝑘 can be calculated using Equations (6.8)

and (6.9) as shown in Table 6.5.

Table 6.5 – Upper bound for partitions containing coalition of size 𝑘.

Type Possible

Partition

Value of structure Upper bound

BBMX [2,2] 𝑅𝑉2 − (
2

2
× 𝑅𝑉2) + 𝑅𝑉2 + (

2

2
× 𝑅𝑉2) 2 ∗ 𝑈𝐵(𝑅𝑉2)

 [1,1,2] 𝑅𝑉1 − (
1

3
× 𝑅𝑉1) + 𝑅𝑉1 − (

1

3
× 𝑅𝑉1) +

𝑅𝑉2 + (
2

3
× 𝑅𝑉2)

4

3
𝑈𝐵(𝑅𝑉1) +

5

3
𝑈𝐵(𝑅𝑉2)

AABB [1,1,2] 𝑅𝑉1 − (
1

3
× 𝑅𝑉1) + 𝑅𝑉1 − (

1

3
× 𝑅𝑉1) +

𝑅𝑉2 + (
2

3
× 𝑅𝑉2)

4

3
𝑈𝐵(𝑅𝑉1)+

5

3
𝑈𝐵(𝑅𝑉2)

In this example, there can be only two types of coalition structures: BBMX and AABB.

First, consider Type BBMX structure shown as Row 1 in Table 7.8. For partition [2,2] there

can only be a coalition structure of Type BBMX where the value of Type BB coalition is

decreased due to the presence of a Type MX coalition (refer to Chapter 2 for details on

determining positive or negative externalities). Thus the upper bound for partition [2,2] is

twice the upper bound for RV2. The upper bound for RV2 is the highest randomly drawn value

(for size 2 coalition) between all data sets.

Chapter 6. Simulation Setup for Performance Evaluation 83

For the other partition [1,1,2], when the coalition structure is of Type BBMX and coalition 2

is TypeMX, the other two coalitions can only be Type BB as there is only one Type A agent.

Thus, the value of coalition 2 is changes into
5

3
𝑈𝐵(𝑅𝑉2). Each one of the other two coalitions

will be Type BB. Then, due to the presence of a Type MX coalition, their values are decreased.

Thus, the total value of this coalition structure is
4

3
𝑈𝐵(𝑅𝑉1)+

5

3
𝑈𝐵(𝑅𝑉2) which is lower than

2 ∗ 𝑈𝐵(𝑅𝑉2) due to the relationship in (6.6).

Next, consider Type AABB structure shown as the third row in Table 6.5. When the coalition

structure is of Type AABB and coalition 2 is Type BB while the other two coalitions is of

Type AA and Type BB respectively the value of coalition 2 is increased thus the upper bound

5

3
𝑅𝑉2. For the other two coalitions, their values are decreased with

4

3
𝑅𝑉1 being the sum of the

value of both coalition. Thus, the total value of this coalition structure is
4

3
𝑅𝑉1+

5

3
𝑅𝑉2 that is

also lower than 2𝑅𝑉2.

Thus, between all 3 inter partitions possible, the upper bound for integer partition [2, 2] is the

highest (note that this integer partition contains the maximum number of size 𝑘 coalitions)

and this will be taken as the upper bound for performance evaluation.

6.4 Chapter Summary

This chapter provided information on the simulation setup for evaluating the methods

implemented. First we presented our method of evaluating the performance of each algorithm.

This is followed by information how the input instances are generated. Lastly we provided

details on how the bound for each setting was obtained.

84

Chapter 7 Performance Analysis for the

Individual Probability Distributions

All four heuristic methods, tabu search, simulated annealing, particle swarm, and ant colony

were evaluated in the simulation set up detailed in Chapter 6. This chapter is about the results

of simulations and a comparative performance analysis of these four methods. More precisely,

the objectives of this chapter are as follows:

1. To study the performance of each of the four heuristic methods for each of the six

probability distributions for CFGs.

2. To study the performance of each of the four heuristic methods for each of the six

probability distributions for PFGs.

3. To study the effect of an increase in the number of agents on the performance of each

of the four heuristic methods for each of the six probability distributions for CFGs.

4. To study the effect of an increase in the number of agents on the performance of each

of the four heuristic methods for each of the six probability distributions for PFGs.

Recall that data sets comprise values of coalitions. These values were generated randomly

using six different probability distributions. For CFGs, the evaluation was done for two

settings: 25 agent CFGs and 27 agent CFGs. These settings were chosen because 25-agent

was the maximum size where an actual optimal can be obtained for comparison and 27-agents

was the maximum coalition value data that can be accepted by Python.

For PFGs, the evaluation was done for two settings: 10 agent PFGs and 27 agent PFGs. All

heuristic methods were run for the some duration of time. These two settings was chosen

because 10-agent was the maximum size where an actual optimal can be obtained in PFGs,

27-agents was the maximum coalition value data that can be accepted by Python. This was

the reasoning behind the choice of the four scenarios considered in this thesis .The run time

was fixed so that TACOS achieved a solution that was 80% of optimal.

Chapter 7. Performance Analysis for the Individual Probability Distributions 85

The rest of this chapter is organized as follows. The results for CFGs are given in Section 7.1

and for PFGs in Section 7.2. Section 7.3 is a study of the effect of the number of agents on

heuristic performance for CFGs and for PFGs.

7.1 Performance for Characteristic Function Games

We will first consider 25 agent CFGs in Section 7.1.1 and then 27 agent CFGs in Section

7.1.2. These results are the averages of 100 runs over 10 datasets for each game.

7.1.1 Performance for 25-Agent CFGs

We will examine performance for each of the six probability distributions individually.

The Uniform Distribution

The run time was set at 30 seconds. The performance of a heuristic solution is measured as a

percentage of the exact optimum. The performance of each heuristic method is shown in Table

7.1. All the four heuristic methods performed well with each returning an average solution

quality that is above 90% of the optimum (see Table 7.1).

TACOS(S) performed the best achieving a solution that is 99.77% of the optimum within 30

seconds. This is followed by ACS at 98.01%, then PSS with 96.97% with SA yielding the

lowest results of 93.38% of optimum. Note that all methods are quite close to each other and

even the worst performing heuristic achieves over 93% of the optimum.

Let us now examine the number of neighbours explored by each method (see Table 7.1). SA

explored the most number of neighbours as it ran for a higher number of iterations, however

this did not translate into best performance among all the methods here. The reason for this is

that SA is a memory less method. It does not remember the good/bad performing neighbours,

only the solution that is best so far. TACOS(S) on the other hand explored just slightly more

neighbours than PSS and achieved 2.8% higher solution quality relative to PSS.

These results show that exploring more neighbours does not necessarily give a better quality

solution. It is important to remember the good/bad neighbours. This results in:

Chapter 7. Performance Analysis for the Individual Probability Distributions 86

1. Avoiding repeatedly visiting the same neighbours.

2. Directing search in the promising directions.

Table 7.1 – Average Performance for 25-agent CFGs (Uniform Distribution).

Uniform Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 204901 99.77

SA 1391243 93.38

ACS 306913 98.01

PSS 204259 96.97

The Normal Distribution

For Normal distribution (see Table 7.2), ACS performed the best, with an average solution

quality that is better than TACOS by 1.72% (with ACS at 96.92% vs 95.20% for TACOS(S)).

Note that ACS explored more coalition structures than TACOS(S) here, and this translated to

a real performance gain for ACS. Third place again belongs to PSS followed closely by SA,

with PSS having only 0.73% advantage over SA which is again the lowest performing method.

Table 7.2 – Average Performance for 25-agents CFGs (Normal Distribution).

Normal Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 206511 95.20

SA 1486927 92.84

ACS 305823 96.92

PSS 202742 93.57

Chapter 7. Performance Analysis for the Individual Probability Distributions 87

Looking at the number of neighbours explored, the ordering in Table 7.2 for Normal

distribution is the same as the ordering in Table 7.1 for the Uniform distribution. Despite this,

the performance ranking in the tables is different, except for SA which got rank four for both

distributions.

The Gamma Distribution

We shall now take a look at the Gamma distribution. TACOS(S) again takes the lead with a

solution quality of around 78.54% of optimal (see Table 7.3). This time, SA is the second best

performing method followed by ACS and PSS. The performance of SA here could be due to

the higher average number of neighbours explored compared to ACS and PSS. PSS is the

lowest performing method. Here, the average number of coalition structures explored by

TACOS(S) is the least, yet TACOS returned the highest average solution quality

demonstrating its search efficiency.

Table 7.3 – Average Performance for 25-agents CFGs (Gamma Distribution).

Gamma Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 201653 78.54

SA 1496818 65.38

ACS 305143 63.83

PSS 204885 63.59

All the methods performed poorly for the Gamma distribution compared to Uniform or

Normal distributions. Thus, simulation run time was extended to 60 seconds in order to

investigate if this can improve performance. The results for the extended run time are shown

in Table 7.4. With the exploration of as many as twice the number of neighbours, TACOS(S)

was able to return a solution quality of 82.14% while the other methods showed only marginal

increases in solution quality.

Chapter 7. Performance Analysis for the Individual Probability Distributions 88

Table 7.4 – Extended Running Time for 25-agent CFGs (Gamma Distribution).

Gamma Distribution Extended Running Time

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Optimal

(≈60 Seconds Running Time)

TACOS(S) 414632 82.14

SA 1843561 67.49

ACS 633682 65.80

PSS 325852 64.80

The Beta Distribution

For the Beta distribution, all four methods performed very well with each returning an average

solution quality that is better than 98% of the optimum. TACOS(S) takes the lead again

followed closely by PSS, ACS and SA. The differences in performance between TACOS(S),

PSS and ACS are negligible as all three method exceeded 99% average solution quality.

With regard to the number of neighbours explored, the ordering remains in the same as that

for the Gamma distribution (with 30 sec run time).

Table 7.5 – Average Performance for 25-agents CFGs (Beta Distribution).

Beta Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 201369 99.99

SA 1395754 98.82

ACS 305775 99.29

PSS 202658 99.52

Chapter 7. Performance Analysis for the Individual Probability Distributions 89

The Exponential Distribution

For the exponential distribution (see Table 7.6), TACOS(S) returned the best solution quality

of 73.91% in 30 seconds. SA is second best with a 22.39% gap between the two. In the third

place is ACS and the worst performing method is PSS.

With regard to the number of neighbours explored, SA ranks first yet the quality of its solution

is the worst.

Table 7.6 – Average Performance for 25-agents CFGs (Exponential Distribution).

Exponential Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 205038 73.91

SA 1391455 51.52

ACS 305694 49.99

PSS 203781 44.20

Since the best heuristic for exponential distribution, i.e., TACOS(S), only achieved 73% of

the optimum, each method was given an extended running time of 30 seconds (i.e., a run time

of 60 seconds). Once again TACOS(S) exceeded the performance of the others (see Table

7.7). However, SA lost its second place to ACS and came in last after PSS.

Chapter 7. Performance Analysis for the Individual Probability Distributions 90

Table 7.7 – Extended Running Time for 25-agent CFGs (Exponential Distribution).

Exponential Distribution Extended Running Time

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Optimal

(≈60 Seconds Running Time)

TACOS(S) 409321 82.24

SA 19102038 53.46

ACS 621054 59.38

PSS 630462 53.76

The Triangular Distribution

For the triangular distribution, all four heuristic methods performed well (see Table 7.8). The

highest performance is attained by TACOS(S) followed by ACS, PSS and then SA.

Table 7.8 – Average Performance for 25-agent CFGs (Triangular Distribution).

Triangular Distribution

Method Average Neighbours Explored

(≈30 Seconds Running Time)

Average Performance - % of Optimal

(≈30 Seconds Running Time)

TACOS(S) 203617 97.91

SA 1477862 87.44

ACS 305208 92.78

PSS 205103 92.08

Chapter 7. Performance Analysis for the Individual Probability Distributions 91

Figure 7.1 and Table 7.9 show a combined comparative summary of the results.

Figure 7.1 – Performance Comparison for 25-agents (CFG) ≈30 seconds running time.

TACOS(S) performed well across all distributions and is the highest performing method for

five out the six probability distribution. It was only outperformed slightly by ACS for the

Normal distribution where ACS takes the lead with 96.92% compared to 95.20% for

TACOS(S).

Chapter 7. Performance Analysis for the Individual Probability Distributions 92

Table 7.9 – Performance of Each Method for 25-agent CFGs (1 Best – 4 Worst).

Performance Uniform Normal Gamma Beta Exponential Triangular

1 TACOS(S) ACS TACOS(S) TACOS(S) TACOS(S) TACOS(S)

2 ACS TACOS(S) SA PSS SA ACS

3 PSS PSS ACS ACS ACS PSS

4 SA SA PSS SA PSS SA

SA and PSS trade places as the lowest performing method for 3 out the total of the six

distributions considered.

A comparison of best and worst solutions

To further analyse the overall performance of each method, we will now take a look at the

highest and lowest coalition structure value attained by each method for each distribution (see

Table 7.10). Highest (Lowest) indicates the highest value attained by a heuristic between all

the data sets.

Table 7.10 – Best and Worst Solutions (25-agent CFGs).

25-Agent CFG - Highest and Lowest CS Value found (% of Optimal)

Distribution Uniform Normal Gamma Beta Exponential Triangular

Method Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest

TACOS 99.96 99.47 97.02 94.10 91.74 69.12 100 99.99 88.59 57.73 99.70 95.81

SA 99.25 73.85 94.63 91.39 76.85 56.07 99.99 92.42 80.89 41.20 97.40 75.38

ACS 99.61 95.44 99.51 92.83 80.75 51.86 99.99 92.42 82.74 31.66 97.45 84.80

PSS 99.68 91.32 95.61 91.88 77.10 50.97 99.99 97.27 70.97 27.32 97.40 84.03

Chapter 7. Performance Analysis for the Individual Probability Distributions 93

For the Uniform distribution, the highest quality solution is 99.96% of the optimal value and

the lowest is 99.47%. The gap between the highest and lowest value is small demonstrating

the ability of TACOS in consistently finding high quality solution. The gap between highest

and lowest value found increases with ACS at 4.17% and PSS at 8.36% respectively. The

highest gap of 25.40% is shown by SA. Thus SA is the most variational of all the four heuristic

methods considered.

ACS returned highest quality solution for the Normal distribution and indeed it is the best

performing method for this distribution, slightly outperforming TACOS(S). Although ACS is

the highest performing method, the gap between the highest and lowest solution value found

is also the highest among all the methods at 6.68%. However, it was still able to outperform

all the others possibly due to frequently returning solutions that are closer to the highest value

which is already 2.48% higher than the second best method TACOS(S). TACOS(S) still

maintains its consistency by having the smallest gap of 2.92%, which is smaller than both SA

and PSS at 3.23% and 3.73% respectively. ACS was best for the Normal distribution although

the randomness exhibited by the gap between the highest and lowest deserves further

attention.

For the Gamma distribution, ACS had the widest gap between the best and worst quality

solutions. This was followed by PSS, TACOS and then by SA. The best coalition structure

found by SA is just 76.85% of the optimal making it the lowest performing method here

although it has the smallest gap. TACOS(S) found the coalition structure with the best value

of 91.74% of the optimal.

All the heuristics performed well for the Beta distribution. The best quality solution for all the

methods exceeded 99% with TACOS(S) finding the optimal 𝐶𝑆 in just a few of its runs.

TACOS(S) is again the highest performing method for this distribution although the

performances of the other algorithms are indistinguishable. ACS again has the largest gap of

7.58% which is slightly more than simulated annealing. TACOS(S) once again attained the

smallest gap between the highest and lowest value solution found.

For the Exponential distribution, TACOS(S) returned the best solution at 88.59% of the

optimal. The lowest performing method here was PSS. The method with the largest gap of

51.08% was ACS. TACOS(S) once again demonstrating it efficiency by having the smallest

Chapter 7. Performance Analysis for the Individual Probability Distributions 94

gap of 30.86%. This rather large gap explains why the overall average performance for all

these methods (see Table 7.7 and Table 7.8) are lower compared to other distributions.

TACOS(S) again performs best for the Triangular distribution where it found the highest

value solution which is 99.70% of optimal. It also has the smallest gap between the highest

and lowest value found among all the methods thus demonstrating its consistency in searching

through the space and returning high value solution.

7.1.2 Performance for 27-Agent CFGs

For 27-agent CFGs, the average running time was 60 seconds. TACOS was run in a single

thread mode denoted TACOS(S) and also in a multi-threaded mode TACOS(M). Each thread

simulates an agent running the search. Since searching for the exact optimum was

computationally infeasible for 27 agent CFGs, the performance was measured as a percentage

of the upper bound.

The Uniform Distribution

For the Uniform distribution (see Table 7.11), both TACOS(S) and TACOS(M) performed

better than all the other methods. TACOS(S) and TACOS(M) have almost similar

performance.

Table 7.11 – Average Performance for 27-agents CFGs (Uniform Distribution).

Uniform Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 310317 99.83

TACOS(M) 286063 99.81

SA 1145346 92.45

ACS 851413 97.48

PSS 331455 96.67

Chapter 7. Performance Analysis for the Individual Probability Distributions 95

ACS is the second best performing method, followed by PSS while the worst performance

comes from SA despite exploring a higher number of neighbouring structures. This is

consistent with the findings for the 25-agent CFG.

The Normal Distribution

For the Normal distribution (see Table 7.12), the results for 27 agents are consistent with those

for 25-agent CFGs. ACS performed the best, marginally outperforming both TACOS(S) and

TACOS(M) by about 2.03% and 1.99% respectively. The two methods at the bottom remain

PSS and SA. SA coming in last in terms of overall average solution quality.

Table 7.12 – Average Performance for 27-agents CFGs (Normal Distribution).

Normal Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 308268 87.64

TACOS(M) 284456 87.68

SA 1112277 85.65

ACS 818941 89.67

PSS 700302 85.97

The Gamma Distribution

For the Gamma Distribution (see Table 7.13), TACOS(S) and TACOS(M) again performed

better than all the other methods. The performance between TACOS(S) and TACOS(M) are

within a fraction of each other with TACOS(S) slightly ahead by 0.49%. Third place is ACS

followed by PSS in fourth and SA coming in last with an average solution quality that is just

41.75% of the upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 96

Table 7.13 – Average Performance for 27-agents (Gamma Distribution).

Gamma Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 309051 63.92

TACOS(M) 283474 63.43

SA 1004789 41.75

ACS 807410 52.27

PSS 367344 47.51

Since none of the methods were able to attain better than 64% solution quality, simulations

were conducted with an extended running time of 3 minutes (triple the original running time).

The results are shown in Table 7.14.

Table 7.14 – Extended Running Time for 27-agent CFGs (Gamma Distribution).

Gamma Distribution Extended Running Time

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Upper Bound

(≈180 Seconds Running Time)

TACOS(S) 921025 67.66

TACOS(M) 861019 65.83

SA 3625934 44.01

ACS 1655885 58.84

PSS 412880 48.72

Although there was an increase in the number of neighbours explored, the increase in average

solution quality for each method was small. Thus the performance for the Gamma distribution

requires further investigation. Perhaps, a dedicated TACOS-GAMMA algorithm that is

optimised only for Gamma can be formulated. In this thesis, the focus is on general-purpose

heuristics methods that work well with all distributions.

Chapter 7. Performance Analysis for the Individual Probability Distributions 97

The Beta Distribution

The results for the Beta distribution are shown in Table 7.15. Consistent with the performance

exhibited for the 25-agent CFGs, all heuristics performed well. Four out of five methods

returned an excellent average solution quality of over 99%. Even SA returned an overall

average solution quality of 97.05% of the upper bound. Both TACOS(S) and TACOS(M)

performs exactly the same returning an average solution quality of 99.99% of the upper bound.

As with the other distributions, SA was the lowest performing method. However, this time

the gap between it and the others is really small, just 2.95% of TACOS(S) and TACOS(M)

Table 7.15 – Average Performance for 27-agents CFGs (Beta Distribution).

Beta Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 310065 99.99

TACOS(M) 285016 99.99

SA 1020971 97.05

ACS 836271 99.54

PSS 363258 99.33

The Exponential Distribution

The results for the Exponential distribution are in Table 7.16. With 27-agents, there is a

noticeable reduction (relative to the results for 25 agent CFGs) of performance for all

methods. TACOS(S) and TACOS(M) remains the highest performing method, however the

average quality of solution was 51% of the upper bound. ACS came in second with a huge

difference of 37.58%. Both PSS and SA returned a poor sub-30% average solution quality

with SA returning the lowest average solution quality of just 22.24% of upper bound.

Chapter 7. Performance Analysis for the Individual Probability Distributions 98

Table 7.16 – Average Performance for 27-agent CFGs (Exponential Distribution).

Exponential Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 313318 51.59

TACOS(M) 285125 51.82

SA 1080725 22.24

ACS 827223 37.58

PSS 314245 29.25

Due to the lower performance, further simulations were conducted with an extended time

period three times the original running time. The results are shown in Table 7.17.

Running the algorithms three times longer did not translate into tangible performance

increases. All the methods recorded a less than encouraging increase given the extra amount

of time to search the space. TACOS(S) and TACOS(M) only recording a 1% to 2% increase

despite exploring about three time more neighbours. This performance is similar to the one

encountered with the Gamma distribution and deserves attention in future extensions of this

research.

Table 7.17 – Extended Running Time for 27-agent CFGs (Exponential Distribution).

Exponential Distribution Extended Running Time

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Upper Bound

(≈180 Seconds Running Time)

TACOS(S) 917710 53.01

TACOS(M) 863159 52.73

SA 3084480 28.18

ACS 1660544 38.91

PSS 1011361 35.86

Chapter 7. Performance Analysis for the Individual Probability Distributions 99

The Triangular Distribution

For the Triangular distribution (see Table 7.18), like the Uniform, Normal and Beta

distributions, all methods performed reasonably well exceeding 90% on average. TACOS(S)

and TACOS(M) are the best performing methods with both returning an average solution

quality of around 97%. ACS was consistently just behind TACOS while SA and PSS both

returned an average solution quality of around 91.9%.

Table 7.18 – Average Performance for 27-agent CFGs (Triangular Distribution).

Triangular Distribution

Method Average Neighbours Explored

(≈60 Seconds Running Time)

Average Performance - % of Upper Bound

(≈60 Seconds Running Time)

TACOS(S) 309005 97.82

TACOS(M) 285701 97.75

SA 1048315 91.92

ACS 854167 93.56

PSS 265965 91.99

As with any parallelised implementation, more resources are needed for initialising the search.

As such TACOS(M) runs at a lower number of iterations for the same amount of time (see

previous chapter for details). Consistent with the simulation results for 25-agents, the for 27-

agents exhibit a similar pattern. Both TACOS(S) and TACOS(M) are consistently the best

performing method for all other distributions except the Normal distribution (see Table 7.12).

For the Normal distribution, ACS very slightly outperformed TACOS(M) by returning an

average solution quality that is 1.99% higher (89.67% for ACS vs . 87.68% for TACOS(M)).

Chapter 7. Performance Analysis for the Individual Probability Distributions 100

Figure 7.2 and Table 7.19 show a combined comparative summary of the results.

Figure 7.2 – Performance Comparison for 27-agents (CFG) ≈ 60 seconds running time.

Table 7.19 – Performance of Each Method for 27-agent CFGs (1 Best – 5 Worst)

Performance Uniform Normal Gamma Beta Exponential Triangular

1 TACOS(S) ACS TACOS(S) TACOS(S) TACOS(M) TACOS(S)

2 TACOS(M) TACOS(M) TACOS(M) TACOS(M) TACOS(S) TACOS(M)

3 ACS TACOS(S) ACS ACS ACS ACS

4 PSS PSS PSS PSS PSS PSS

5 SA SA SA SA SA SA

Chapter 7. Performance Analysis for the Individual Probability Distributions 101

The lower performing methods here are PSS and SA for all distributions with SA consistently

returning the lowest performance across all distributions. We shall now take a look at the

performance of each method on individual distributions starting with the Uniform

distribution.

27-Agent CFG - Highest and Lowest CS Value found (% of Upper Bound)

Distribution Uniform Normal Gamma Beta Exponential Triangular

Method Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest

TACOS(S) 99.98 99.64 92.25 82.40 79.47 56.76 100.00 99.99 76.84 41.15 99.25 96.41

TACOS(M) 99.95 99.56 92.42 82.36 79.47 55.43 100.00 99.99 82.45 40.22 99.25 96.18

SA 99.63 81.47 89.54 80.41 56.05 30.43 99.98 81.88 37.32 13.29 94.76 88.83

ACS 99.65 89.79 94.18 84.11 62.15 38.68 100.00 95.67 59.00 22.17 98.65 88.30

PSS 99.63 86.48 90.92 81.41 59.09 36.37 100.00 96.24 46.66 17.08 97.13 84.79

Table 7.20 – Best and Worst Solutions (27-agent CFGs).

A comparison of best and worst solutions

We will now take a look at the performance of each method in terms of the highest and lowest

quality solutions found (see Table 7.20).

For the Uniform distribution, TACOS(S) and TACOS(M) showed the smallest gap. This re-

affirms the findings from the 25-agent simulations that TACOS consistently returns high

quality solutions with less randomness on their quality. SA had the highest gap which explains

why it is the lowest performing method in terms of average solution quality. ACS has the third

smallest gap while PSS has the fourth. This is consistent with the performance of these

methods in terms of average solution quality.

Chapter 7. Performance Analysis for the Individual Probability Distributions 102

The situation is different for the Normal distribution. All four methods showed the same 10%

gap. Recall that only for this distribution ACS is the highest performing method in terms of

average solution quality, and indeed as demonstrated here ACS returns the highest solution

quality that is 1.76% higher than the nearest competitor TACOS(M). The frequency with

which ACS was able to return such high solution may be a contributing factor to its marginally

superior 1.99% lead over TACOS(M). PSS and SA remained in the second last and last places

respectively. This is consistent with their performance for 27-agent simulations.

For the Gamma distribution, the gap was wider for all the heuristic methods. When compared

to the average solution quality, the best is significantly higher than the average. For example,

while the highest quality for TACOS(S) for the Gamma distribution is 79.47% of the upper

bound, the overall average quality was a mere 67.66%. This shows that while TACOS was on

occasions able to discover high quality solutions, the frequency of such high quality solutions

being found is much less resulting in a lower overall average of 11.81% shy of the highest

quality found. This implies that, for the Gamma distribution, heuristic methods were all

effected by hits and misses where the gap is high, resulting in a wider range of solution quality

which hampers the overall average performance.

For the Beta distribution, the gaps is smallest for TACOS(S) and TACOS(M), and this is

followed by PSS and ACS. For some simulations, TACOS(S) and TACOS(M) returned

solutions that is 100% the value of the upper bound. The highest quality found by ACS is

slightly higher than the quality of PSS, although the gap is smaller for PSS. ACS was able to

perform better than PSS despite its larger gap. As it was with other distributions, ACS was in

third place right behind TACOS(S) and TACOS(M).

The results for the Exponential distribution showed a similar pattern to the Gamma

distribution. Big gaps exist which hamper the performance of all the methods. Although a

single search may return a solution as high as 82.45% such as that returned TACOS(M), the

overall average is much. Thus, for this distribution, all the methods return solutions of varying

qualities; they sometimes give good results but are mostly bad.

The Triangular distribution is one of the distributions where all the heuristic methods gave

good overall performance. TACOS(S) and TACOS(M) has the smallest gap of less than 3%.

This puts both of them ahead of all the other methods. ACS comes in just after these two,

although as was found in the other distributions, the higher gap for ACS has less influence on

Chapter 7. Performance Analysis for the Individual Probability Distributions 103

its average performance. It has a higher gap compared to SA but outperforms SA on average.

This is also true for PSS. Although SA has a smaller gap, it performed poorly compared to

ACS and PSS.

7.2 Performance for Partition Function Games

For Partition Function Games, simulations were run for 10-agents with heuristic solutions

compared to the exact optimum. For 27-agents, the heuristic solutions were compared to the

upper bound because it is computationally infeasible to find an exact optimum.

The simulations involved 100 runs for each 10 dataset for each distribution. For 10-agents,

each method was run for an average of 3 minutes and for 27-agents each method was run for

an average of 5 minutes. We will discuss the performance of each method for each individual

distribution and then give a combined summary of the main results.

7.2.1 Performance for 10-Agent PFGs

TACOS(S) gave good results and so TACOS(M) was not evaluated.

For the Uniform distribution (see Table 7.21), the average solution quality was above 90% of

the optimum. TACOS(S) gave the best average performance with the other methods

following closely behind with a 1-2% gap in between them.

Table 7.21 – Average Performance for 10-agent PFGs (Uniform Distribution).

Uniform Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 416 97.35

SA 53666 93.64

ACS 281 95.70

PSS 535 94.42

Chapter 7. Performance Analysis for the Individual Probability Distributions 104

The Normal Distribution

ACS performed better than other heuristic methods (see Table 7.22). ACS led by a very slim

margin of 0.12%. PSS and SA took the third and fourth places respectively.

Table 7.22 – Average Performance for 10-agent PFGs (Normal Distribution).

Normal Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 466 96.96

SA 53168 96.34

ACS 269 97.07

PSS 587 96.63

The Gamma Distribution

The results are as shown in Table 7.23. TACOS(S) and ACS performed reasonably well

despite exploring fewer neighbours compared to the other methods. Both PSS and SA, despite

exploring more neighbours, performed rather poorly.

 Table 7.23 – Average Performance for 10-agent PFGs (Gamma Distribution).

Gamma Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 435 84.77

SA 53206 74.58

ACS 299 81.70

PSS 573 78.70

Chapter 7. Performance Analysis for the Individual Probability Distributions 105

The Beta Distribution

All methods performed well for 10-agent PFGs. All methods were able to provide an average

solution quality that is at least 95% of the optimal (see Table 7.24).

Table 7.24 – Average Performance for 10-agent PFGs (Beta Distribution).

Beta Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 429 99.09

SA 53202 95.50

ACS 282 98.76

PSS 553 97.60

The Exponential Distribution

Exponential distribution continues to be a difficult distribution (see Table 7.25). The best

performing method, TACOS(S), was only able to provide an average solution quality of

67.29%. The other methods gave an even lower average solution quality with SA managing

just 54.41%. This consistently poor performance for CFGs and PFGs deserves further

attention. This is part of future work.

Table 7.25 – Average Performance for 10-agent PFGs (Exponential Distribution).

Exponential Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 440 67.29

SA 53469 54.41

ACS 254 64.28

PSS 516 59.19

Chapter 7. Performance Analysis for the Individual Probability Distributions 106

The Triangular Distribution

For the Triangular distribution (see Table 7.26), all the methods except SA exceeded 90%

average solution quality. TACOS(S) was the best performing method while SA was the

poorest but returning an overall average of 88.96%.

Table 7.26 – Average Performance 10-agent PFGs (Triangular Distribution).

Triangular Distribution

Method Average Neighbours Explored

(≈180 Seconds Running Time)

Average Performance - % of Optimal

(≈180 Seconds Running Time)

TACOS(S) 431 93.55

SA 53962 88.96

ACS 261 92.66

PSS 581 91.14

A combined summary of results

Figure 7.3 and Table 7.27 provide a combined summary of the results for 10 agent PFGs.

Table 7.27 – Performance of Each Method for 10-agents PFGs (1 Best – 4 Worst).

Performance Uniform Normal Gamma Beta Exponential Triangular

1 TACOS(S) ACS TACOS(S) TACOS(S) TACOS(S) TACOS(S)

2 ACS TACOS(S) ACS ACS ACS ACS

3 PSS PSS PSS PSS PSS PSS

4 SA SA SA SA SA SA

Chapter 7. Performance Analysis for the Individual Probability Distributions 107

Figure 7.3 – Performance Comparison for 10-agents (PFG) ≈ 180 seconds running time.

TACOS(S) outperformed all other methods for Uniform, Gamma, Beta, Exponential and

Triangular distributions. Consistent with other results shown so far, ACS again slightly

outperformed TACOS(S) for the Normal distribution (see Figure 7.3). For all other

distributions, ACS was the second best method for all distributions followed by PSS and SA

(see Table 7.27).

A comparison of best and worst solutions

Next we will take a look at the best and the worst solutions found for each heuristic method

by distribution. These results are shown in Table 7.28. For the Uniform distribution, all the

methods were able to at one point in their search locate the actual optimum. Although, the

gaps between the best and worst meant that the method with the smallest gap, i.e., TACOS(S)

outperformed all the others in terms of average solution quality.

Chapter 7. Performance Analysis for the Individual Probability Distributions 108

Table 7.28 – Best and Worst Solutions (10-agent PFGs).

10-Agent PFG - Highest and Lowest CS Value found (% of Optimal)

Distribution Uniform Normal Gamma Beta Exponential Triangular

Method Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest

TACOS(S) 100.00 91.38 99.64 94.77 100.00 69.13 100.00 97.13 100.00 37.78 100.00 86.22

SA 100.00 84.17 99.14 93.74 100.00 56.54 100.00 84.41 81.50 32.35 100.00 75.63

ACS 100.00 84.80 99.14 93.08 100.00 57.12 100.00 95.56 100.00 35.53 100.00 77.40

PSS 100.00 80.95 99.14 93.74 99.51 60.00 100.00 88.63 100.00 30.86 100.00 83.14

For the Normal distribution, the gap was around 5% to 6% for all the methods which is why

their performances was indistinguible from each other, with ACS taking a very narrow lead

over TACOS(S) (see Table 7.23).

For the Gamma distribution, TACOS(S), SA and ACS were in some instances able to reach

the actual optimal solution during the search. However with the gaps of 30% or more, the

overall average of each method was much lower. SA which has the highest gap of 43.46% is

the worst performing method for the Gamma distribution.

Conversely for Beta, all the methods at some point in the search was able to locate the exact

optimal solution and the gaps between the best and the worst solutions were narrower. This

contributes to the better average performance of each method for this distribution.

Unsurprisingly, SA, the method with the highest gap is the poorest performing method for the

Beta distribution.

For the Exponential distribution, TACOS(S), ACS and PSS were able to locate the optimal

solution at least once during the course of simulations. However, the gap was between 60-

70% for each method. This meant a lack of consistency. With solutions ranging from the

highest (100% of the optimal) to the lowest (≈ 30% of the optimal), the average overall

Chapter 7. Performance Analysis for the Individual Probability Distributions 109

performance suffers as a result. This is true for all the methods for the Exponential

distribution.

The Triangular distribution on the other hand was always a heuristic friendly distribution. All

the methods including SA were at some point able to find the optimal solution. The small gap

between the best and worst solutions meant that all the heuristics performed well for this

distribution type (see Table 7.28).

7.2.2 Performance for 27-Agent PFGs

For 27-agents PFGs, performance of the heuristic methods was evaluated with respect to the

upper bounds (details regarding the calculation of upper bounds can be found in Chapter 6).

The externalities inherent in PFGs make the task of finding a solution that is close to optimum

much harder relative to CFGs. Thus each heuristic method was given a longer run time of 5

minutes.

The Uniform Distribution

TACOS(S) and TACOS(M) performed ahead of all the other methods (see Table 7.29

although the average solution quality returned by ACS is just 0.35% lower than TACOS(M).

The third best was SA followed by PSS.

Table 7.29 – Average Performance for 27-agent PFGs (Uniform Distribution).

Uniform Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1343787 90.73

TACOS(M) 760977 88.81

SA 959743 67.19

ACS 675131 88.46

PSS 646751 60.48

Chapter 7. Performance Analysis for the Individual Probability Distributions 110

The Normal Distribution

For the Normal distribution (see Table 7.30), TACOS(S) and TACOS(M) outperformed ACS

which had consistently been the best performing method for this distribution for 25 and 27-

agent CFGs as well as 10-agent PFGs. For this particular case, this could be due to the larger

number of neighbours explored. Both TACOS(S) and TACOS(M) explored more neighbours

than ACS.

Table 7.30 – Average Performance for 27-agent PFGs (Normal Distribution).

Normal Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1348962 98.69

TACOS(M) 768815 98.61

SA 955210 82.99

ACS 672218 93.59

PSS 642057 74.19

The Gamma Distribution

As the number of agents increase, the performance of all the heuristics on the Gamma

distribution decreases due in part to the higher complexity of the problem due to a larger space

and externalities considered (see Table 7.31).

Chapter 7. Performance Analysis for the Individual Probability Distributions 111

Table 7.31 – Average Performance for 27-agents PFGs (Gamma Distribution).

Gamma Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1341988 56.15

TACOS(M) 765587 54.18

SA 955437 38.14

ACS 680327 55.92

PSS 644015 33.31

Running the search for an increased duration of time did not help increase the overall average

by a significant amount. Marginal increases was recorded which re-affirms the need to extend

investigation into the peculiarity of the Gamma distribution and its relationship to heuristic

performance in future work. One consistent trend is that the order in which each method

performed remained the same with TACOS(S) giving a dismal best average of just 58.138%

and the lowest performing method remaining to be PSS and returning an average of just

34.876% (see Table 7.32).

Table 7.32 – Extended Running Time for 27-agent PFGs (Exponential Distribution).

Gamma Distribution Extended Running Time

Method Average Neighbours Explored

(≈600 Seconds Running Time)

Average Performance - % of Upper Bound

(≈600 Seconds Running Time)

TACOS(S) 2637194 58.14

TACOS(M) 1498678 55.07

SA 1902333 40.96

ACS 1356438 58.67

PSS 1340154 34.88

Chapter 7. Performance Analysis for the Individual Probability Distributions 112

The Beta Distribution

For the Beta distribution (see Table 7.33), all four heuristics methods performed well.

TACOS(S), TACOS(M) and ACS returned an average solution quality above 90% of the

upper bound. SA and PSS trailed behind at 77% and 68% respectively.

Table 7.33 – Average Performance for 27-agent PFGs (Beta Distribution).

Beta Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1344200 98.79

TACOS(M) 764556 97.47

SA 959117 77.11

ACS 683536 94.28

PSS 647730 68.21

The Exponential Distribution

Like the Gamma distribution, the Exponential distribution was difficult for all four heuristic

methods to handle. TACOS(S) and ACS lead the table. SA and PSS performs the worst

returning a less than 20% average solution quality (see Table 7.34).

Table 7.34 – Average Performance for 27-agens PFGs (Exponential Distribution).

Exponential Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1346263 33.89

TACOS(M) 764497 31.62

SA 952678 16.72

ACS 675094 33.88

PSS 643249 14.06

Chapter 7. Performance Analysis for the Individual Probability Distributions 113

Extending the running time by twice, enabled all the methods to explore a larger portion of

the space (see Table 7.35). However, this still failed to increase the average solution quality

by any significant amount. With the extended time, ACS was the only method with a good

increase in average solution quality.

Table 7.35 – Extended Running Time 27-agent PFGs (Exponential Distribution)

Exponential Distribution Extended Running Time

Method Average Neighbours Explored

(≈600 Seconds Running Time)

Average Performance - % of Upper Bound

(≈600 Seconds Running Time)

TACOS(S) 2682541 34.40

TACOS(M) 1496641 37.78

SA 1891400 18.82

ACS 1332405 46.71

PSS 1291644 16.29

The Triangular Distribution

With Triangular distribution, TACOS(S), TACOS(M) and ACS were able to exceed 80%

average solution quality. However, no method exceeded 90% while both SA and PSS again

falling below 70% (see Table 7.36).

Table 7.36 – Average Performance for 27-agent PFGs (Triangular Distribution).

 Triangular Distribution

Method Average Neighbours Explored

(≈300 Seconds Running Time)

Average Performance - % of Upper Bound

(≈300 Seconds Running Time)

TACOS(S) 1346947 89.07

TACOS(M) 757745 87.77

SA 953529 67.68

ACS 676111 85.94

PSS 643064 61.21

Chapter 7. Performance Analysis for the Individual Probability Distributions 114

A combined summary of results

A combined summary of results is given in Figure 7.4 and Table 7.37. TACOS returned a

high quality solution for 4 out of the 6 distribution (see Figure 7.4). TACOS(S) was the best

performing method for all six distributions.

Figure 7.4 – Performance Comparison for 27-agent (PFG) ≈ 300 seconds running time.

TACOS(M) was the second best method for the Uniform, Normal, Gamma, Beta and

Triangular distributions, while ACS took the second best spot for Exponential distribution.

The poorest performing method for all distributions was PSS while SA was slightly better

than PSS across all distributions (see Table 7.37).

Chapter 7. Performance Analysis for the Individual Probability Distributions 115

Table 7.37 – Performance of Each Method for 27-agents PFG (1 Best – 5 Worst).

Performance Uniform Normal Gamma Beta Exponential Triangular

1 TACOS(S) TACOS(S) TACOS(S) TACOS(S) TACOS(S) TACOS(S)

2 TACOS(M) TACOS(M) ACS TACOS(M) ACS TACOS(M)

3 ACS ACS TACOS(M) ACS TACOS(M) ACS

4 SA SA SA SA SA SA

5 PSS PSS PSS PSS PSS PSS

A comparison of best and worst solutions

We shall now evaluate the performance of each method with regard to the best and the worst

quality solutions found (see Table 7.38). For the Uniform distribution, TACOS(S) and

TACOS(M) returned the best average solution quality and indeed this is consistent with the

lowest gap. Although ACS was able to find a better solution, the gap was bigger so that when

it comes to the average performance, it lost to TACOS(S) and TACOS(M). Both SA and PSS

have huge gaps relegating them to the bottom of the performance spectrum.

For the Normal distribution, TACOS again had the smallest gap proving the consistency of

the method in always returning high quality solution. The gap was highest for PSS which is

no surprise that it is the poorest performing method for this distribution.

For the Gamma distribution, ACS comes in second after TACOS(S) overtaking TACOS(M)

and all the other methods.

For the Beta distribution, TACOS(S), TACOS(M) and ACS were able to find solutions that

are 100% of the upper bound. The gap between the best and the worst solutions was lower

for all methods except PSS which came in last in terms of performance.

Chapter 7. Performance Analysis for the Individual Probability Distributions 116

Table 7.38 – Best and Worst Solutions (27-agent PFGs).

27-Agent PFG – Highest and Lowest CS Value found (% of Upper Bound)

Distribution Uniform Normal Gamma Beta Exponential Triangular

Method Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest

TACOS(S) 96.33 84.49 98.95 98.14 66.43 42.30 100.00 95.13 47.79 29.13 94.01 84.76

TACOS(M) 94.91 83.13 98.95 98.14 64.92 41.25 100.00 92.46 44.29 18.52 96.48 79.29

SA 80.61 55.18 90.79 82.07 46.54 27.55 88.25 72.32 27.82 7.53 77.71 63.26

ACS 98.48 76.30 99.21 86.91 67.98 40.74 100.00 88.47 53.82 7.53 94.83 76.95

PSS 80.64 43.23 90.74 58.93 48.80 19.65 89.84 51.17 26.12 8.07 78.66 48.52

All the methods performed poorly for the Exponential distribution. Again, investigating this

forms part of future work.

For the Triangular distribution, the gap was high for all the methods. However, the good

quality solution found by TACOS(S), TACOS(M) and ACS are attributed to these methods

more frequently returning higher quality solutions.

7.3 The Effect of Number of Agents on Performance

We will now look at the effect on each method as the number of agent increases. For CFGs,

we will compare the performance for 25-agent games with that for 27-agent games. For PFGs,

we will compare the performance for 10-agent games with 27-agent games.

Chapter 7. Performance Analysis for the Individual Probability Distributions 117

7.3.1 Performance for CFGs

TACOS(M) was run only for 27-agent games while TACOS(S) was run for both 25 and 27

agent games, thus comparison will only be made for TACOS(S). We will examine the change

in the performance of a heuristic method for each of the six probability distributions.

The Uniform Distribution

For the Uniform distribution, all the methods experience very little degradation in

performance. Their performances are almost identical for both 25-agent and 27-agent games

taking almost no impact from the increase in the number of agents (see Figure 7.5).

Figure 7.5 – Performance for 25-agent and 27-agent CFGs (Uniform Distribution).

The Normal Distribution

Next we will take a look at Normal distribution. Increasing the number of agents has a slight

impact on all the methods (see Figure 7.6). The drop in performance is roughly the same for

all four methods.

99.77
93.38

98.01 96.9799.83
92.45

97.48 96.67

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Uniform Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 118

Figure 7.6 – Performance for 25-agent and 27-agent CFGs (Normal Distribution).

The Gamma Distribution

For the Gamma distribution, all the methods experienced a large reduction in performance

(see Figure 7.7). SA is the most effected with the largest gap in its performance as the number

of agents increases while ACS shows the smallest decline.

Figure 7.7 – Performance for 25-agent and 27-agent CFGs (Gamma Distribution).

95.20 92.84
96.92

93.57
87.64 85.65

89.67
85.97

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Normal Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

78.54

65.38 63.83 63.5963.92

41.75

52.27
47.51

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Gamma Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 119

The Beta Distribution

We will now look at the Beta distribution. Similar to the Uniform distribution, the

performance of all four methods for Beta distribution is excellent (shown in Figure 7.8). There

is barely noticeable degradation in performance from the increase in the number of agents.

Figure 7.8 – Performance for 25-agent and 27-agent CFGs (Beta Distribution).

The Exponential Distribution

Now, let’s take a look at the performance for Exponential distribution. Huge reductions in

performance can be seen across all the methods as the number of agents increase (see Figure

7.9). The largest impact again is on SA which see its performance drop by more than 50%.

99.99 98.82 99.29 99.5299.99 97.05 99.54 99.33

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Beta Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 120

Figure 7.9 – Performance for 25-agent and 27-agent CFGs (Exponential Distribution).

The Triangular Distribution

Figure 7.10 shows the performance for the Triangular distribution. For this distribution, all

the method performed very well. TACOS(S) and PSS showing little or no reduction in

performance while SA and ACS actually performed better for 27-agent games.

Figure 7.10 – Performance for 25-agent and 27-agent CFGs (Triangular Distribution).

73.91

51.52 50.00
44.20

51.59

22.24

37.58

29.25

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Exponential Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

97.91

87.44
92.78 92.08

97.82
91.92 93.56 91.99

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Triangular Distribution
25-agent vs 27-agent

25-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 121

7.3.2 Performance for PFGs

For PFGs we will examine the effect on the performance of a method for 10-agent games and

for 27-agent games. Here, TACOS(M) was run for only 27-agent games while TACOS(S)

was run for both 10 and 27 agent games. We will examine the change in performance of each

method for each of the six probability distributions.

The Uniform Distribution

For the Uniform distribution (see Figure 7.11), the drop in performance with the increase in

the number of agents was more for some methods than for others. TACOS(S) showed the

lowest impact compared to the other methods. PSS is most effected losing more than 30% of

its performance.

Figure 7.11 – Performance for 10-agent and 27-agent PFGs (Uniform Distribution).

The Normal Distribution

Next we will look at the Normal distribution. For this, all methods except TACOS(S) showed

a reduction in performance (shown in Figure 7.12). Surprisingly, TACOS(S) actually

performs better for 27-agent games. PSS is the most impacted again, losing its performance

in by more than 20%.

97.35
93.64 95.70 94.42

90.73

67.19

88.46

60.48

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Uniform Distribution
10-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 122

Figure 7.12 – Performance for 10-agent and 27-agent PFGs (Normal Distribution).

The Gamma Distribution

For the Gamma distribution, the impact is quite bad for all the methods as shown in Figure

7.13. Each method lost more than 25% of its performance as the number of agents increased.

This means that the Gamma distribution is not a heuristic friendly distribution.

Figure 7.13 – Performance for 10-agent and 27-agent PFGs (Gamma Distribution).

96.96 96.34 97.07 96.6398.69

83.00

93.59

74.19

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Normal Distribution
10-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

84.77

74.58
81.70 78.70

56.15

38.14

55.92

33.31

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Gamma Distribution
10-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 123

The Beta Distribution

Figure 7.14 – Performance for 10-agent and 27-agent PFGs (Beta Distribution).

Next is the Beta distribution (see Figure 7.14). Here, the performance of TACOS(S) for 10-

agent and 27-agent games is consistent with no real reduction seen. ACS showed a very small

decrease while SA and PSS again showed the highest reduction in performance.

The Exponential Distribution

None of the methods performed well for 10-agent games for this distribution. Increasing the

number of agents to 27 resulted in all the methods performing worse and losing at least 50%

of their performance (see Figure 7.15). This pattern echoes the performance on CFGs.

99.09
95.50 98.76 97.6098.79

77.11

94.28

68.21

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Beta Distribution
10-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 124

Figure 7.15 – Performance for 10-agent and 27-agent PFGs (Exponential Distribution).

The Triangular Distribution

For the Triangular distribution, the impact is not so bad for TACOS(S) and ACS. Both

methods scaled well with smaller degradation in performance as the number of agents

increased. As was the case with the other distributions, SA and PSS are the most impacted

(see Figure 7.16).

Figure 7.16 – Performance for 10-agent and 27-agent PFGs (Triangular Distribution).

67.29

54.41

64.28
59.19

33.89

16.72

33.88

14.06

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Exponential Distribution
10-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

93.55
88.96

92.66 91.1489.07

67.68

85.94

61.21

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Triangular Distribution
25-agent vs 27-agent

10-Agents 27-Agents

% of exact/upper bound

Chapter 7. Performance Analysis for the Individual Probability Distributions 125

7.4 Statistical Test on Results

To statistically analyse the performance of each method, a statistical test using Confidence

Intervals (CI) was done. A confidence interval (also referred to as an interval estimate) is a

range (or an interval) of values used to estimate the true value of a population parameter

(Triola, 2006). Here we are using CI to compare with the actual average (mean) presented in

the results. The purpose is to measure consistency by taking a number samples from the

results, calculate the CI then draw some conclusion between the relationships of the values

obtained from the CI and the actual mean.

Samples were randomly taken from the results data and CI was calculated for each individual

distribution for the four different scenarios (25-agent CFGs, 27-agent CFGs, 10-agent PFGs

and 27-agent PFGs). In each scenario the number of samples is n = 33, thus the critical value

found using 32 degrees of freedom (where 𝑡𝛼
2⁄ has 𝑛 − 1 degrees of freedom) is 𝑡𝛼

2⁄ = 2.037

such that the margin of error 𝐸 is calculated as 𝐸 = 2.037 ∙ 𝑠
√33⁄ where 𝑠 is the sample

standard deviation. The CI is then computed as:

�̅� − 𝐸 < 𝜇 < �̅� + 𝐸

Therefore, the confidence interval limit is be between �̅� − 𝐸 and �̅� + 𝐸 where 𝜇 denotes the

population mean. This limit is being calculated based on a 95% confidence level as this is

most commonly used in the majority of studies found in literature (Triola, 2006). We will now

take a look at each of the scenarios considered starting with 25-agent CFGs.

7.4.1 Tests on 25-agent CFG

We start with 25-Agent CFGs. The CI for each of the six probability distributions were

individually computed.

The Uniform Distribution

For the Uniform distribution we can see that CI limit for TACOS and ACS are the narrowest

while SA has the widest limit (see Table 7.39). This is to say that for say, we are 95%

confident that the average performance is between 89.65% and 94.64%. The results shown in

section 7.1.1 shows that the average solution quality found for SA was 93.38% of the optimal

which is within the CI calculated using the randomly chosen samples.

Chapter 7. Performance Analysis for the Individual Probability Distributions 126

This is true for all the other methods as well, however their CI limit is much smaller compared

to SA. A smaller CI limit indicates that these other methods are more consistent as the

solutions they found were less varied which led to their higher performance. The order

between the widest and narrowest CI limits also follows the pattern of the actual 𝜇 found in

the results with the method with the smallest interval limit TACOS(S) performing best,

followed by ACS, PSS and finally SA. The CI limit for TACOS(S) is very small that as can

be seen in Figure 7.17.

Table 7.39 – Confidence Interval 25-Agent CFG (Uniform Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 99.77, 𝑠 = 0.12 99.73 < 𝜇 < 99.81

SA 𝑛 = 33, �̅� = 92.14, 𝑠 = 7.04 89.65 < 𝜇 < 94.64

ACS 𝑛 = 33, �̅� = 97.15, 𝑠 = 0.87 97.79 < 𝜇 < 98.41

PSS 𝑛 = 33, �̅� = 98.10, 𝑠 = 1.60 96.58 < 𝜇 < 97.72

The Normal Distribution

For the Normal distribution, the ACS has the widest CI limit between 96.10 and 97.10 (see

Table 7.40). However because the CI of ACS does not overlap with the CI of any other

method, it could suggest that ACS performed differently compared to the others where it

found solutions with higher quality that were at least 96% of the optimal. This means that in

this particular distribution it was able to outperform TACOS(S) with a CI that has smaller

limit but finds solutions whose quality is no higher than 95.33% of the optimal. None of the

CI overlap each other and the actual average performance falls within the CI for all the

methods.

Table 7.40 – Confidence Interval 25-Agent CFG (Normal Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 95.10, 𝑠 = 0.66 94.86 < 𝜇 < 95.33

SA 𝑛 = 33, �̅� = 92.72, 𝑠 = 0.76 92.45 < 𝜇 < 92.99

ACS 𝑛 = 33, �̅� = 96.60, 𝑠 = 1.42 96.10 < 𝜇 < 97.10

PSS 𝑛 = 33, �̅� = 93.41, 𝑠 = 1.03 93.04 < 𝜇 < 93.78

Chapter 7. Performance Analysis for the Individual Probability Distributions 127

The Gamma Distribution

The Gamma distribution was one of the worst performing distributions for all the methods.

When calculating the CI, it was found that the CI was wider for all the methods (see Table

7.41). This gap between the lower and upper limit of the CI shows that none of the methods

could generate solutions with consistent solution quality. The CI of SA, ACS and PSS overlap

each other which explains the similar performance for these methods. TACOS(S) had the

smaller CI limit and conversely had the best performance for the gamma distribution here

with an average solution quality of 78.54% which is within the CI computed.

Table 7.41 – Confidence Interval 25-Agent CFG (Gamma Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 78.05, 𝑠 = 4.10 76.60 < 𝜇 < 79.51

SA 𝑛 = 33, �̅� = 64.86, 𝑠 = 6.46 62.56 < 𝜇 < 67.15

ACS 𝑛 = 33, �̅� = 64.63, 𝑠 = 6.33 62.38 < 𝜇 < 66.87

PSS 𝑛 = 33, �̅� = 62.95, 𝑠 = 6.57 60.62 < 𝜇 < 65.28

The Beta Distribution

For the Beta distribution, again the CI for SA, ACS and PSS overlap each other although the

CI limit for PSS was narrowest among the three (see Table 7.42). This also corresponds to

its overall average performance as found in section 7.1.1 where it outperformed both SA and

ACS. TACOS(S) leads the pack with the narrowest CI limit which also corresponds to its

overall performance for the Beta distribution in 25-agent CFGs. The CI for TACOS(S) also

does not overlap with any other methods indicating a different consistency level compared

to the others.

Table 7.42 – Confidence Interval 25-Agent CFG (Beta Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 99.99, 𝑠 =0.002 99.99 < 𝜇 < 100.00

SA 𝑛 = 33, �̅� = 98.72, 𝑠 = 2.42 97.86 < 𝜇 < 99.58

ACS 𝑛 = 33, �̅� = 99.07, 𝑠 = 0.40 98.31 < 𝜇 < 99.84

PSS 𝑛 = 33, �̅� = 99.50, 𝑠 = 2.16 99.36 < 𝜇 < 99.64

Chapter 7. Performance Analysis for the Individual Probability Distributions 128

The Exponential Distribution

As it was with the Gamma distribution, the CI limit for the Exponential distribution for each

method is also wider (see Table 7.43). This indicates that the samples taken, the estimated 𝜇

is within a wider range of values which could be due to the variations of the solution quality

found. Unfortunately, a wider CI also meant that the performance for each method was lower

for this distribution. TACOS(S) which was the best performing method here managed an

average solution quality of 73.91% which is within the CI limits computed.

Table 7.43 – Confidence Interval 25-Agent CFG (Exponential Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 74.75, 𝑠 = 8.49 71.74 < 𝜇 < 77.76

SA 𝑛 = 33, �̅� = 52.76, 𝑠 = 8.20 49.85 < 𝜇 < 55.67

ACS 𝑛 = 33, �̅� = 51.37, 𝑠 = 9.05 48.16 < 𝜇 < 54.57

PSS 𝑛 = 33, �̅� = 45.38, 𝑠 = 8.69 42.30 < 𝜇 < 48.46

The Triangular Distribution

The Triangular distribution exhibits the same pattern as for SA, ACS and PSS where their CI

limit was wider compared to TACOS(S) (see Table 7.44). The CI for ACS and PSS overlap

each other which explains their similar performance. Similarly the upper limit of CI for SA

was less than 90% which means it is the lowest performing method for this distribution while

TACOS(S) has the narrowest CI which means it is also the top performing method on average.

Table 7.44 – Confidence Interval 25-Agent CFG (Triangular Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 97.94, 𝑠 = 0.71 97.69 < 𝜇 < 98.20

SA 𝑛 = 33, �̅� = 87.88, 𝑠 = 5.74 85.84 < 𝜇 < 89.91

ACS 𝑛 = 33, �̅� = 92.98, 𝑠 = 2.71 92.02 < 𝜇 < 93.94

PSS 𝑛 = 33, �̅� = 92.28, 𝑠 = 3.47 91.04 < 𝜇 < 93.51

Chapter 7. Performance Analysis for the Individual Probability Distributions 129

Figure 7.17 – Confidence Intervals 25-agent CFGs (% of Optimal).

Figure 7.17 shows the CI for each method in each individual distribution for the 25-agent

CFG setting. The next section will take look at 27-agent CFGs.

7.4.2 Tests on 27-agent CFG

For the 27-agent CFG setting, simulations were conducted with both the single-threaded

TACOS(S) as well as the multi-threaded TACOS(M). Now let us look at the CI computed for

the 27-agent CFGs starting with the Uniform Distribution.

The Uniform Distribution

For the Uniform distribution, the CI limit for SA was the widest (see Table 7.45). Unlike the

pattern found with the 25-agent CFG for the Uniform distribution, the CI for ACS and PSS

overlap each other indicating similar performance although the actual results found that ACS

Chapter 7. Performance Analysis for the Individual Probability Distributions 130

slightly outperformed PSS on the overall average. TACOS(S) and TACOS(M) whose CI are

narrower compared to the others had the best performance and their respective averages fall

within the CI computed here.

Table 7.45 – Confidence Interval 27-Agent CFG (Uniform Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 99.85, 𝑠 = 0.09 99.82 < 𝜇 < 99.88

TACOS(M) 𝑛 = 33, �̅� = 99.83, 𝑠 = 0.09 99.80 < 𝜇 < 99.86

SA 𝑛 = 33, �̅� = 93.47, 𝑠 = 5.36 91.57 < 𝜇 < 95.37

ACS 𝑛 = 33, �̅� = 97.89, 𝑠 = 2.27 96.27 < 𝜇 < 98.69

PSS 𝑛 = 33, �̅� = 97.04, 𝑠 = 2.18 97.09 < 𝜇 < 97.81

The Normal Distribution

ACS was the best performing method for the Normal distribution (see section 7.1.2) and this

average falls within the computed CI. When computing the CI for this distribution it was

found that the CI for ACS was the only one that did not overlap any other method. TACOS(S)

and TACOS(M) has overlapping CIs, so do SA and PSS. The methods with overlapping CI

performs similarly to each other and average for each method still falls within the CI

computed here.

Table 7.46 – Confidence Interval 27-Agent CFG (Normal Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 87.56, 𝑠 = 2.60 86.63 < 𝜇 < 88.48

TACOS(M) 𝑛 = 33, �̅� = 87.60, 𝑠 = 2.59 86.68 < 𝜇 < 88.51

SA 𝑛 = 33, �̅� = 85.53, 𝑠 = 2.47 84.66 < 𝜇 < 86.41

ACS 𝑛 = 33, �̅� = 89.56, 𝑠 = 2.33 88.73 < 𝜇 < 90.40

PSS 𝑛 = 33, �̅� = 85.86, 𝑠 = 2.36 85.03 < 𝜇 < 86.68

Chapter 7. Performance Analysis for the Individual Probability Distributions 131

The Gamma Distribution

For the 27-agent CFGs, the performance for each method for the Gamma distribution was so

good. The CI for each method was wider for this distribution which can be directly contributed

by the variations in the solution quality of the samples chosen. The average performance does

fall within the computed CI showing the consistency of sampling. However this also means

that the wider CI indicates that randomness of the results which means none of the methods

was able to consistently find high quality solutions when the input is generated with the

Gamma distribution. Table 7.47 shows the CI for each method for the Gamma distribution.

Table 7.47 – Confidence Interval 27-Agent CFG (Gamma Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 63.41, 𝑠 = 4.58 61.78 < 𝜇 < 65.03

TACOS(M) 𝑛 = 33, �̅� = 62.96, 𝑠 = 5.28 61.09 < 𝜇 < 64.83

SA 𝑛 = 33, �̅� = 41.17, 𝑠 = 5.81 39.11 < 𝜇 < 43.23

ACS 𝑛 = 33, �̅� = 52.03 , 𝑠 = 4.52 50.42 < 𝜇 < 53.63

PSS 𝑛 = 33, �̅� = 47.30, 𝑠 = 4.53 45.70 < 𝜇 < 48.91

The Beta Distribution

The Beta distribution found the narrowest CI for TACOS(S) and TACOS(M) between 99.98

and 99.99 (see Table 7.48). The rest had a wider CI but overall, this coincides with the actual

results and the ranks between the best and worst performing method follows the pattern shown

by the CI where the method with a narrower CI generally performing better than those with a

wider CI.

Table 7.48 – Confidence Interval 27-Agent CFG (Beta Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 99.99, 𝑠 =0.001 99.98 < 𝜇 < 99.99

TACOS(M) 𝑛 = 33, �̅� = 99.99, 𝑠 =0.001 99.98 < 𝜇 < 99.99

SA 𝑛 = 33, �̅� = 97.78, 𝑠 = 2.34 96.95 < 𝜇 < 98.61

ACS 𝑛 = 33, �̅� = 99.72, 𝑠 = 0.74 99.46 < 𝜇 < 99.98

PSS 𝑛 = 33, �̅� = 99.49, 𝑠 = 0.50 99.31 < 𝜇 < 99.67

Chapter 7. Performance Analysis for the Individual Probability Distributions 132

The Exponential Distribution

Each method continues to experience a drop in performance for the Exponential distribution.

As it was with the Gamma distribution, the CI for each method here was wider. This pattern

corresponds to the actual results where the wider the CI, the lower the performance of the

method. The average performance for each method fall within the CI shown in Table 7.49.

Table 7.49 – Confidence Interval 27-Agent CFG (Exponential Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 51.63, 𝑠 = 6.10 49.47 < 𝜇 < 53.79

TACOS(M) 𝑛 = 33, �̅� = 51.87, 𝑠 = 6.77 49.47 < 𝜇 < 54.27

SA 𝑛 = 33, �̅� = 22.36, 𝑠 = 6.16 20.18 < 𝜇 < 24.54

ACS 𝑛 = 33, �̅� = 37.96, 𝑠 = 6.82 35.54 < 𝜇 < 40.38

PSS 𝑛 = 33, �̅� = 29.26, 𝑠 = 5.37 27.36 < 𝜇 < 31.17

The Triangular Distribution

The CI for ACS and PSS overlap each other for the Triangular distribution (see Table 7.50).

Although the actual average falls within the CI limit, the results indicates that the two methods

did not have similar performance as ACS outperformed PSS. The CI for SA and PSS also

overlap, however the CI computed is more indicative of the results as these two methods

performed similarly. TACOS(S) and TACOS(M) had the narrowest CI limits which also

translates into the actual average performance where they were the top performing methods

for this distribution.

Table 7.50 – Confidence Interval 27-Agent CFG (Triangular Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 97.76, 𝑠 = 0.68 97.51 < 𝜇 < 98.00

TACOS(M) 𝑛 = 33, �̅� = 97.66, 𝑠 = 0.75 97.39 < 𝜇 < 97.93

SA 𝑛 = 33, �̅� = 91.21, 𝑠 = 2.45 90.34 < 𝜇 < 92.08

ACS 𝑛 = 33, �̅� = 93.23, 𝑠 = 2.19 92.46 < 𝜇 < 94.01

PSS 𝑛 = 33, �̅� = 91.64, 𝑠 = 2.83 90.64 < 𝜇 < 92.65

Chapter 7. Performance Analysis for the Individual Probability Distributions 133

Figure 7.18 shows the CI for each method in each individual distribution for the 27-agent

CFG setting. From this figure we can clearly see how the CI of some methods are wider than

the others and which methods have their CI overlapping each other.

Figure 7.18 – Confidence Intervals 27-agent CFGs (% of Upper Bound).

The next section will take look at PFGs in which 10-agent and 27-agent PFGs were considered

for each distribution.

7.4.3 Tests on 10-agent PFG

Next, we will look at 10-agent PFGs. Only the single-threaded TACOS(S) was ran for the 10-

agent PFG setting. CI was computed for each of the six distributions for all four methods. We

will look at each of these beginning with the Uniform distribution.

Chapter 7. Performance Analysis for the Individual Probability Distributions 134

The Uniform Distribution

For the Uniform distribution, SA has the widest CI, this corresponds to its lower performance

compared to the other methods (see Table 7.51). TACOS(S) which has the narrowest CI

coincidentally performs well. ACS performs better than PSS despite having a wider CI. This

is due to the worst solution quality returned by ACS being higher than PSS (see Table 7.28)

despite the wider range of results returned by ACS.

Table 7.51 – Confidence Interval 10-Agent PFG (Uniform Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 97.34, 𝑠 = 1.70 96.74 < 𝜇 < 97.94

SA 𝑛 = 33, �̅� = 93.57, 𝑠 = 4.46 91.99 < 𝜇 < 95.15

ACS 𝑛 = 33, �̅� = 96.15, 𝑠 = 2.83 95.15 < 𝜇 < 97.15

PSS 𝑛 = 33, �̅� = 94.61, 𝑠 = 3.57 93.34 < 𝜇 < 95.88

The Normal Distribution

ACS is the best performing method for the Normal distribution in 10-agent PFG. However

the CI computed is found to be wider than TACOS(S) which means the quality of solutions

returned by TACOS(S) is more consistent. The CI does give some indication of why ACS

performed better than the other. If we look at the overall average performance (the real mean

of the results), for ACS the average is towards the upper limit of the CI while for TACOS(S)

it leans towards the lower limit of its CI. This means than it returns higher quality solutions

than times than TACOS(S) which explains it higher overall average performance.

Table 7.52 – Confidence Interval 10-Agent PFG (Normal Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 96.67, 𝑠 = 0.98 96.32 < 𝜇 < 97.02

SA 𝑛 = 33, �̅� = 96.02, 𝑠 = 1.08 95.64 < 𝜇 < 96.40

ACS 𝑛 = 33, �̅� = 96.86, 𝑠 = 1.36 96.38 < 𝜇 < 97.34

PSS 𝑛 = 33, �̅� = 96.32, 𝑠 = 1.33 95.85 < 𝜇 < 96.79

Chapter 7. Performance Analysis for the Individual Probability Distributions 135

The Gamma Distribution

For the Gamma distribution, the CI computed for all the methods are wide (see Table 7.53).

This means that none of the methods were consistent in the quality of solutions returned.

However, TACOS(S) is the best among the four with a narrower CI. This is consistent with

its performance as the best performing method on average for the Gamma distribution. For

the rest of the methods, their CI also corresponds their performance and the method with the

widest CI (SA) performed worst for the Gamma distribution.

Table 7.53 – Confidence Interval 10-Agent PFG (Gamma Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 83.13, 𝑠 = 7.82 80.36 < 𝜇 < 85.90

SA 𝑛 = 33, �̅� = 72.19, 𝑠 = 9.66 68.76 < 𝜇 < 75.62

ACS 𝑛 = 33, �̅� = 80.20, 𝑠 = 9.04 76.99 < 𝜇 < 83.41

PSS 𝑛 = 33, �̅� = 76.74, 𝑠 = 9.12 73.51 < 𝜇 < 79.97

The Beta Distribution

All the methods performed well for the Beta distribution (see Figure 7.3), among these

TACOS which has the narrower CI (see Table 7.54) is the best performing method. The rest

of the method ranks in performance from best to worst according to their interval size with

the method that has a wider CI performing worst, in this case it is SA.

Table 7.54 – Confidence Interval 10-Agent PFG (Beta Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 98.82, 𝑠 = 0.91 98.50 < 𝜇 < 99.14

SA 𝑛 = 33, �̅� = 93.87, 𝑠 = 5.17 92.04 < 𝜇 < 95.70

ACS 𝑛 = 33, �̅� = 98.28, 𝑠 = 1.45 97.77 < 𝜇 < 98.79

PSS 𝑛 = 33, �̅� = 96.66, 𝑠 = 2.93 95.62 < 𝜇 < 97.70

Chapter 7. Performance Analysis for the Individual Probability Distributions 136

The Exponential Distribution

For the Exponential distribution even for a smaller number of agents, all the heuristics

struggled to consistently return higher quality solutions. The only anomaly found from the

computed CI is that SA has the narrowest CI (see Table 7.56) despite being the worst

performing method among all the methods. This could be due to the random sample taken

favouring SA, however the overall average for each method still falls within their computer

CI.

Table 7.55 – Confidence Interval 10-Agent PFG (Exponential Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 67.22, 𝑠 = 12.86 62.66 < 𝜇 < 71.78

SA 𝑛 = 33, �̅� = 54.13, 𝑠 = 12.49 49.70 < 𝜇 < 58.56

ACS 𝑛 = 33, �̅� = 64.16, 𝑠 = 12.89 59.59 < 𝜇 < 68.73

PSS 𝑛 = 33, �̅� = 59.70, 𝑠 = 14.64 54.51 < 𝜇 < 64.89

The Triangular Distribution

TACOS(S) is the best performing method for the Triangular distribution, correspondingly

the computed CI for TACOS(S) is the narrowest. Consequently here the method with the

widest CI, SA is the worst performing method. ACS and PSS comes in second and third

position with their computed CI reflecting the overall average performance.

Table 7.56 – Confidence Interval 10-Agent PFG (Triangular Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 93.73, 𝑠 = 3.18 92.60 < 𝜇 < 94.86

SA 𝑛 = 33, �̅� = 88.86, 𝑠 = 4.52 87.26 < 𝜇 < 90.46

ACS 𝑛 = 33, �̅� = 92.41, 𝑠 = 3.64 91.12 < 𝜇 < 93.70

PSS 𝑛 = 33, �̅� = 90.79, 𝑠 = 4.16 89.31 < 𝜇 < 92.27

Figure 7.19 shows the CI for each method in each individual distribution for the 10-agent PFG

setting, it help to depict how wide the CI for each method is compared to another. We can

also see that the CI of some methods overlap each other indicating a similar performance

envelope.

Chapter 7. Performance Analysis for the Individual Probability Distributions 137

Figure 7.19 – Confidence Intervals 10-agent PFGs (% of Optimal).

7.4.4 Tests on 27-agent PFG

Finally, we calculate the CI for 27-agent PFGs. As this size of the problem is larger for this

setting, simulations were conducted for both TACOS(S) and TACOS(M). We will now take

a look at the CI computed for each input distribution starting with the Uniform distribution.

The Uniform Distribution

The CI for both TACOS(S) and TACOS(M) is narrower than the other methods for the

Uniform distribution. This is followed by ACS. In consequent to this TACOS(S), TACOS(M)

and ACS are the top performing methods here (see Figure 7.4). PSS which has the widest CI

(see Table 7.57) is the worst performing method.

Chapter 7. Performance Analysis for the Individual Probability Distributions 138

Table 7.57 – Confidence Interval 27-Agent PFG (Uniform Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 91.03, 𝑠 = 2.88 90.01 < 𝜇 < 92.05

TACOS(M) 𝑛 = 33, �̅� = 89.21, 𝑠 = 2.91 88.18 < 𝜇 < 90.24

SA 𝑛 = 33, �̅� = 68.16, 𝑠 = 7.10 65.65 < 𝜇 < 70.68

ACS 𝑛 = 33, �̅� = 88.79, 𝑠 = 3.71 87.48 < 𝜇 < 90.11

PSS 𝑛 = 33, �̅� = 61.33, 𝑠 = 8.11 58.45 < 𝜇 < 64.20

The Normal Distribution

For the Normal distribution, TACOS(S) and TACOS(M) has a very narrow CI which can

hardly be shown (see Figure 7.20). PSS has the widest CI (see Table 7.59) which corresponds

to it performance where it is the worst performing method for the Normal distribution.

Table 7.58 – Confidence Interval 27-Agent PFG (Normal Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 98.62, 𝑠 = 0.17 98.56 < 𝜇 < 98.68

TACOS(M) 𝑛 = 33, �̅� = 98.61, 𝑠 = 0.24 98.52 < 𝜇 < 98.69

SA 𝑛 = 33, �̅� = 82.91, 𝑠 = 1.40 82.41 < 𝜇 < 83.40

ACS 𝑛 = 33, �̅� = 92.76, 𝑠 = 4.53 91.15 < 𝜇 < 94.36

PSS 𝑛 = 33, �̅� = 75.76, 𝑠 = 8.39 72.79 < 𝜇 < 78.74

The Gamma Distribution

ACS has the widest CI for the Gamma distribution. However it the average performance is

better than PSS and SA. From the CI shown in Figure 7.20 we can see that the CI of ACS

overlaps with TACOS(S) and TACOS(M). This indicates that it returns higher quality

solution similar to TACOS(S) and TACOS(M) which are higher than those returned by PSS

and SA which also has wide CIs however they do not overlap with the CI of ACS (see Table

7.59).

Chapter 7. Performance Analysis for the Individual Probability Distributions 139

Table 7.59 – Confidence Interval 27-Agent PFG (Gamma Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 57.42, 𝑠 = 3.70 56.11 < 𝜇 < 58.73

TACOS(M) 𝑛 = 33, �̅� = 55.51, 𝑠 = 4.02 54.08 < 𝜇 < 56.93

SA 𝑛 = 33, �̅� = 39.46, 𝑠 = 3.99 38.04 < 𝜇 < 40.87

ACS 𝑛 = 33, �̅� = 57.43, 𝑠 = 4.75 55.74 < 𝜇 < 59.11

PSS 𝑛 = 33, �̅� = 34.75, 𝑠 = 4.57 33.13 < 𝜇 < 36.38

The Beta Distribution

For the Beta distribution, PSS has the widest CI compared to the other methods. Moreover,

the solutions returned are considerably worse compared to the other method. This wider CI

also means that the range of solution quality returned is erratic and non-consistent. ACS which

has a narrower CI compared to SA, performed just behind TACOS(S) and TACOS(M).

Table 7.60 – Confidence Interval 27-Agent PFG (Beta Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 98.46, 𝑠 = 1.29 98.00 < 𝜇 < 98.92

TACOS(M) 𝑛 = 33, �̅� = 97.06, 𝑠 = 1.44 96.55 < 𝜇 < 97.57

SA 𝑛 = 33, �̅� = 76.21, 𝑠 = 3.03 75.14 < 𝜇 < 77.28

ACS 𝑛 = 33, �̅� = 93.63, 𝑠 = 2.29 92.82 < 𝜇 < 94.44

PSS 𝑛 = 33, �̅� = 66.53, 𝑠 = 5.53 64.57 < 𝜇 < 68.49

The Exponential Distribution

The widest CI for the Exponential distribution was found to be for ACS. The random sample

taken returned a wide CI for ACS although the average performance falls in the middle of the

upper and lower CI limit. This indicates that the quality of solution given by ACS is highly

inconsistent and involves extremes of high and low values. TACOS(S) and TACOS(M) still

have the narrower CIs compared to the others (see Table 7.61) and are the best performing

methods here. However the wide CI for ACS overlaps with TACOS(S) and TACOS(M) which

shows that its performance falls with the performance of these two.

Chapter 7. Performance Analysis for the Individual Probability Distributions 140

Table 7.61 – Confidence Interval 27-Agent PFG (Exponential Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 33.29, 𝑠 = 5.90 31.20 < 𝜇 < 35.38

TACOS(M) 𝑛 = 33, �̅� = 31.46, 𝑠 = 5.76 29.42 < 𝜇 < 33.50

SA 𝑛 = 33, �̅� = 16.77, 𝑠 = 4.82 15.06 < 𝜇 < 18.48

ACS 𝑛 = 33, �̅� = 34.00, 𝑠 = 11.09 30.07 < 𝜇 < 37.93

PSS 𝑛 = 33, �̅� = 14.06, 𝑠 = 3.70 12.75 < 𝜇 < 15.37

The Triangular Distribution

PSS has the widest CI for the Triangular distribution and it does not overlap with any of the

other methods. Its upper limit is also much lower than the second worst performing method,

SA. The average performance of each method falls within the computed CI shown in Table

7.62. TACOS(M) has a rather wide CI however it overlaps with that of TACOS(S) indicating

their average performance should be similar of which they are.

Table 7.62 – Confidence Interval 27-Agent PFG (Triangular Distribution).

Method Descriptive Statistics 95% Confidence Interval

TACOS(S) 𝑛 = 33, �̅� = 88.94, 𝑠 = 2.07 88.21 < 𝜇 < 89.67

TACOS(M) 𝑛 = 33, �̅� = 87.65, 𝑠 = 3.45 86.43 < 𝜇 < 88.87

SA 𝑛 = 33, �̅� = 67.55, 𝑠 = 3.19 66.42 < 𝜇 < 68.68

ACS 𝑛 = 33, �̅� = 85.84, 𝑠 = 3.04 84.76 < 𝜇 < 86.92

PSS 𝑛 = 33, �̅� = 60.98, 𝑠 = 6.82 58.56 < 𝜇 < 63.39

Figure 7.20 shows the CI for each method in each distribution for the 27-agent PFG setting.

It can be seen from the figure below that PSS consistently have a wide CI. Surprisingly SA

exhibits a consistently narrow CI across the distributions. However, its perform within its own

performance envelope where the upper limit in each distribution is much lower than the lower

limits of TACOS(S), TACOS(M) and ACS.

Chapter 7. Performance Analysis for the Individual Probability Distributions 141

Figure 7.20 – Confidence Intervals 27-agent PFGs (% of Upper Bound).

It must be noted however, while we were able to draw certain conclusions from the

comparison between the various CIs calculated, these should only be taken as tentative

indications. To make definitive conclusions would require more involved statistical testing

which is outside the scope of this research but is worthy of consideration in future work.

7.5 Chapter Summary

This chapter presented the results of the simulations and discussed the performance of each

of the four heuristic methods for each of the six probability distributions. For CFGs, the

solution quality was measured relative to the exact optimum for 25 agent games and to the

upper bound on the exact optimum for 27 agent games. For PFGs, solution quality was

measured relative to the exact optimum for 10 agent games and to the upper bound on the

exact optimum for 27 agent games.

Chapter 7. Performance Analysis for the Individual Probability Distributions 142

In terms of the ranking between the methods, In CFGs, TACOS is the best ranking method in

the majority of distributions tested with the exception of the Normal Distribution where ACS

was best. In PFGs for the smaller problem size of 10-agents, the same pattern follows the CFG

ranking, TACOS is the best ranking method in the majority of distributions while ACS was

best performing for the Normal distribution. TACOS(S) was the overall best performing

methods for the larger PFG games in all distributions. In summary, for CFG, TACOS was the

best method for over 83% of the time while for PFG it was 91% of the time the best performing

method. This makes TACOS the highest ranking method among the 4 in both CFG and PFGs.

When comparing the impact of an increase in the problem size, i.e. the number of agents, we

noticed stark differences between CFGs and PFGs. For CFGs, increasing the number of agents

had a much lower impact on the reduction in the performance of each method. This is true

except for SA whose performance was severely impacted for the Gamma and Exponential

distributions. Remarkably, its performance increased for the Triangular distribution as the

number of agents increased from 25 to 27 agents.

For PFGs, as the complexity of the problem increases (a larger problem space resulting from

the more agents), noticeable decrease in performance can be see for all the methods. When

comparing the performance for 10-agent and 27-agent PFGs, TACOS and ACS suffered the

least impact for each individual distribution. The performances of SA and PSS were severely

reduced for each distribution type with PSS being the method most effected by the increase

in the number of agents. In the next chapter, we attempt to analyse the average performance

of each method across all the distributions.

143

Chapter 8 Performance Analysis Across

Distributions

As is now clear from Chapter 7, the performance of heuristic methods depends on the

probability distribution from which the values of coalitions are drawn. Chapter 7 gave a

detailed analysis of the performance of each heuristic method for each of the six probability

distributions. However, it is also important to know how the performance of these methods

compares, on average, across all the six probability distribution. Further, in order to fully

understand the performance of heuristics, we need to know how well they can scale to larger

games. Another consideration is the impact of externalities on the performance of heuristic

methods. To this end, the objectives of this chapter are as follows:

1. To examine the performance of the heuristic methods averaged over all the six

probability distributions. This analysis is important because it is conceivable that the

values of coalitions are drawn from various different distributions and not just one

single distribution. Note that all the four heuristic methods (tabu search, simulated

annealing, ant colony, and particle swarm) are oblivious to the probability distribution

from which the values of coalitions are drawn.

2. To examine the scalability of the four heuristic methods. The practical value of any

heuristic method depends on its scalability. It is therefore important to know which

heuristics scale well and which ones do not.

3. To analyse how externalities affect the performance of heuristics. The introduction of

externalities makes the search problem considerably harder. It is therefore important

to understand the extent to which externalities impact the performance of heuristic

methods.

This chapter is organised as follows. Section 8.1 is a comparative analysis of the average

performance of the four heuristic methods for CFGs. This analysis is conducted first for 25

agent games and then for 27 agent games. Section 8.2 is a comparative analysis of the average

performance of the four heuristic methods for PFGs. This analysis is conducted first for 10

Chapter 8. Performance Analysis Across Distributions 144

agent games and then for 27 agent games. Section 8.3 shows the effect of the number of agents

and the effect of externalities on the performance of a heuristic. Section 8.4 describes the

memory usage.

8.1 Average Performance for CFGs

We will first compare the average performance of the heuristics for 25 agent CFGs. The

performance of each of the four heuristics, averaged across all the six distributions, is shown

in Figure 8.1.

Figure 8.1 – Average performance (25-agent CFGs).

TACOS(S) is the best performing method with an average solution quality was about 91% of

the exact optimum. There are two reasons for best performance of TACOS(S). First, although

TACOS(S) performed best for the Beta distribution (just like the other three heuristic

methods), the gap between the best and worst solutions (see Table 8.1), is smallest for

TACOS(S). This gap is around 26% (99.9 – 73.9 as shown in row 1 of Table 8.1). After

TACOS(S), ACS is second followed by PSS and then SA. PSS and SA have nearly identical

performance.

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

90.89

81.56 83.47 81.66

Average Performance Across All Distributions
25-Agent CFGs

% of Exact Optimum

Chapter 8. Performance Analysis Across Distributions 145

Table 8.1 –Best and worst performance across distributions (25-agent CFGs).

Method Best

Performance

Value – % of

Optimal

Worst

Performance

Value – % of

Optimal

TACOS(S) Beta 99.99 Exponential 73.91

SA Beta 98.82 Exponential 51.52

ACS Beta 99.29 Exponential 49.99

PSS Beta 99.52 Exponential 44.20

In terms of the numbers of neighbours explored (see Table 8.2), SA explored the most number

of neighbours. PSS, although exploring a lot less neighbours was able to match SA in

performance. On the other hand, while ACS explores more neighbours than TACOS(S), the

latter still performed better than ACS. This superior performance of TACOS is attributed to

its memory; it uses memory to avoid repeatedly visiting the same points in the search space.

Table 8.2 – Average number of neighbours explored (25-agent CFGs).

Method Average neighbours explored

TACOS(S) 203848

SA 1440010

ACS 305759

PSS 203905

Next we will take a look at the performance for 27-agent games for which TACOS was run

in single-threaded TACOS(S) mode as well as the multi-threaded TACOS(M) mode. Figure

8.2 shows the average performance for all the four heuristics. Consistent with the results for

the 25-agent games, both TACOS(S) and TACOS(M) were ahead of the other methods. This

is followed by ACS, then PSS and then SA. Unlike the 25-agent games, the difference

between the performance of SA and PSS is noticeable (it was almost identical for 25-agents).

TACOS(S) and TACOS(M) gave identical performance with very negligible differences in

overall average.

Chapter 8. Performance Analysis Across Distributions 146

Figure 8.2 – Average performance (27-agent CFGs).

As before, there is a link between average performance and the the gap between the best and

worst solutions found by a method. Table 8.3 shows the distribution for which each method

performed best and also the distribution for which each method performed the worst. As with

25 agent games, each of the four heuristic methods performed best for the Beta distribution

and worst for the Exponential distribution. TACOS(S) and TACOS(M) have the smallest

gap. The gap is widest for the worst performing method, i.e., SA.

Table 8.3 – Best and worst performance across distributions (27-agent CFGs).

Method Best

Performance

Value – % of

Upper Bound

Worst

Performance

Value – % of

Upper Bound

TACOS(S) Beta 99.99 Exponential 51.59

TACOS(M) Beta 99.99 Exponential 51.82

SA Beta 97.05 Exponential 22.24

ACS Beta 99.54 Exponential 37.58

PSS Beta 99.33 Exponential 29.25

As was the case with 25-agent games, the method that explored the maximum number of

neighbours was SA (see Table 8.4). Although PSS explored the smallest number of

neighbours but it performed slightly ahead of SA. On the other hand ACS explorer twice as

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) TACOS(M) SA ACS PSS

83.47 83.41

71.84
78.35 75.12

Average Performance Across All Distributions
27-Agent CFGs

% of Upper Bound

Chapter 8. Performance Analysis Across Distributions 147

many neighbours compared to TACOS(S) and TACOS(M), however this did not translate

into an advantage for the method as its performance across all distributions is lower than them.

Table 8.4 – Average number of neighbours explored (27-agent CFGs).

Method Average number of neighbours explored

TACOS(S) 310004

TACOS(M) 284973

SA 1068737

ACS 832571

PSS 390428

8.2 Average Performance for PFGs

The average performance for PFGs was measured for 10-agent and 25-agent games. We will

start by looking at the 10-agent games. The performance of each method averaged across the

six distributions is shown in Figure 8.3.

Figure 8.3 – Average performance (10-agent PFGs).

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

89.83
83.90

88.36 86.28

Average Performance Across All Distributions
10-Agent PFGs

% of Upper Bound

Chapter 8. Performance Analysis Across Distributions 148

TACOS(S) gave the best average performance, followed by ACS, then PSS and then SA.

TACOS(S), ACS and PSS formed best for the Beta distribution (see Table 8.5) while SA

performed best for the Normal distributions. All heuristics performed worst for the

Exponential distribution.

Table 8.5 – Best and worst Performance across distributions (10-agent PFGs).

Method Best

Performance

Value – % of

Optimal

Worst

Performance

Value – % of

Optimal

TACOS(S) Beta 99.09 Exponential 67.29

SA Normal 96.34 Exponential 54.41

ACS Beta 98.76 Exponential 64.28

PSS Beta 97.60 Exponential 59.19

Here too, best performance corresponds to smallest gap between the best and worst solutions.

With regard to the number of neighbours, TACOS(S) explored the fewest neighbours and

achieved the best performance. ACS explored fewer neighbours compared to PSS and SA,

but performed better than both these methods (see Table 8.6).

Table 8.6 – Average number of neighbours explored (10-agent PFGs).

10-Agent Average neighbours explored

TACOS(S) 203848

SA 1440010

ACO 305759

PSO 203905

The average performance for 27-agent games is shown in Figure 8.4. Surprisingly, it was

TACOS(S) that took the lead. In this case, more iterations allowed TACOS(S) to take the lead

although TACOS(M) was very close.

Chapter 8. Performance Analysis Across Distributions 149

Figure 8.4 – Average performance (27-agent PFGs).

The best performing distribution was different for different methods (see Table 8.7).

TACOS(S) and ACS performed best for the Beta Distribution. TACOS(M), SA and PSS

performed best for the Normal distribution. All four methods performed worst for the

Exponential distribution.

Table 8.7 – Best and worst Performance across distributions (27-agent PFGs).

Method Best

Performance

Value – % of

Upper Bound

Worst

Performance

Value – % of

Upper Bound

TACOS(S) Beta 98.79 Exponential 33.39

TACOS(M) Normal 98.61 Exponential 31.62

SA Normal 83.00 Exponential 16.72

ACS Beta 94.28 Exponential 33.88

PSS Normal 74.19 Exponential 14.06

Let us now examine the number of neighbours explored (see Table 8.8). TACOS(S) explored

the maximum number of neighbours. This suggests why it performed the best. This is also

true when comparing the performance of SA against PSS, SA explored more neighbours than

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) TACOS(M) SA ACS PSS

77.80 76.41

58.31

75.35

51.91

Average Performance Across All Distributions
27-Agent PFGs

% of Upper Bound

Chapter 8. Performance Analysis Across Distributions 150

PSS which reflected in its performance being better than PSS. Similarly, ACS explored more

neighbours compared to PSS and it too performed better than PSS.

In summary, as the size of search space grew, the relation between the number of neighbours

explored and the average performance became more evident.

Table 8.8 – Average number of neighbours explored (27-agent PFGs).

27-Agent Average neighbours explored

TACOS(S) 1345358

TACOS(M) 763696

SA 955952

ACS 677070

PSS 644478

8.3 Performance Comparison for Each Method

We shall now take a look at how the number of agents effects the performance for each

method for both CFGs and PFGs.

8.3.1 CFGs: The Effect of Number of Agents on Performance

Figure 8.5 shows the effects of the number of agents on performance. Still looking at the

overall average across distributions, we can see that when increasing the number of agents

from 25 to 27, the overall average slightly decreases. Note that for 25 agents the comparison

was made to the optimal while for 27 agents it was made to the upper bound. It would be ideal

to be find the exact optimum for 27-agent games but this was not practical in terms of

computation time and memory space.

Each one of the four methods deteriorated in performance with the increase in the number of

agents. However, the degree to which performance dropped varied from method to method.

The drop was least for ACS and most for SA.

Chapter 8. Performance Analysis Across Distributions 151

Figure 8.5 – Effects of the number of agents on performance (CFGs).

8.3.2 PFGs: The Effect of Number of Agents on Performance

For PFGs, the effects of the number of agents on performance is shown in Figure 8.6. From

the results it can be seen that when the number of agent is small i.e. 10 agents, the average

performance of all the heuristics across distributions is mostly encouraging with very small

differences between them. Increasing the number of agents affected the performance of

different methods to different degrees. For some methods, an increase in the number of agents

resulted in a bigger drop in performance relative to others. Between the four heuristics, the

drop was least for TACOS(S). This suggests that TACOS(S) is the most scalable between all

the four methods.

Once again, it must be noted that performance is compared to the upper bound and not to the

exact optimum.

90.89

81.56 83.47 81.6683.47

71.84
78.35 75.12

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Performance Comparison
25-Agent vs 27-Agent CFGs

25-Agents 27-Agents

% of Optimal/Upper Bound

Chapter 8. Performance Analysis Across Distributions 152

Figure 8.6 – Effects of the number of agents on performance (PFGs).

8.3.3 The Effect of Externalities on Performance

We shall now take a look at how externalities impact the performance of the four methods.

This comparison is done in terms of the average performances across all six distributions for

27-agent CFGs and PFGs.

Figure 8.7 shows the difference in performances for each method. This depicts the effects of

externalities on performance. The performances were measured against an upper bound.

TACOS(S) and TACOS(M) performed best for both CFGs and PFGs for 27-agents. All the

methods experienced a reduced performance when considering a PFG compared to CFG.

TACOS(S), TACOS(M) and ACS showed a smaller reduction in performance while SA and

PSS showed a sharper decline.

89.83
83.90

88.36 86.28
77.80

58.31

75.35

51.91

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) SA ACS PSS

Performance Comparison
10-Agent vs 27-Agent PFG

10-Agents 27-Agents

% of Optimal/Upper Bound

Chapter 8. Performance Analysis Across Distributions 153

Figure 8.7 – The effects of externalities on performance (27-agent games)

8.4 Memory Usage

The results of simulation showed that TACOS is the best performing between all four heuristic

methods. The main difference between TACOS and the other methods is that it uses long term

memory while the other methods are memory-less. Thus, we will now examine the memory

usage of TACOS for each of the four settings: 25 and 27 agent CFGs, and 10 and 27 agent

PFGs. The size memory used for storing the tabu list depends on the number of iterations in

TACOS. For TACOS(S) the number of iterations was 2500. In each iteration, at most two

coalition structure can get added to the list. So the memory needed for the tabu list will be

2500 times the memory space needed to store two coalition structure. This is additional

memory needed by TACOS but not by the other 3 heuristics.

8.5 Chapter Summary

This chapter presents the results of the simulations and discussed the performance of each

method across all the distributions. For 25-agent and 27-agent CFGs, TACOS(S) is the best

performing method. Even though SA explored on average the most number of neighbours, it

83.47 83.41

71.84
78.35

75.1277.80 76.41

58.31

75.35

51.91

0

10

20

30

40

50

60

70

80

90

100

TACOS(S) TACOS(M) SA ACS PSS

Performance - CFG vs PFG
27-Agents

CFG PFG

% of Upper Bound

Chapter 8. Performance Analysis Across Distributions 154

is the worst performing method across all distributions. When increasing the number of agents

from 25 to 27, each method experienced a reduction in performance. ACS took the least

performance hit while SA's performance degrade the most and was almost 10% lower. In

terms of scalability, ACS is the most scalable as it showed the lowest gap in performance

when moving to a bigger search space. However, TACOS(S) still managed to be best method

by being able to return an overall average solution quality of more than 80% across all

distributions.

For PFGs, it was still TACOS(S) that performed best on average over all distributions for both

10-agent and 27-agent games. The performance for all four methods was very similar for 10-

agent games. However, increasing the number of agents to 27 saw SA and PSS taking the

biggest impact with a performance drop of over 20%. For 27-agent games SA explored more

neighbours and was slightly better than PSS. The average performance across all distributions

was below 80% for 27-agent PFGs with TACOS(S) having the best average performance

compared to the other methods.

When comparing 27-agent CFG and PFG games, we were able to see that externalities caused

an impact on the performance of all the methods. TACOS(S), TACOS(M) and ACS were the

least impacted when comparing CFGs against PFGs. The introduction of externalities have a

greater impact on PSS which was the worst performing method. While it performed better

than SA for a smaller number of agents, increasing the number of agents reduced its

performance dramatically. The gap between the best and the worst solutions found is higher

for PSS compared to SA. This means it is the least scalable method when it comes to PFGs

which explains its poor performance.

The analysis provided an observation on the relationship between the overall performance and

the scalability of the methods. While ACS is more scalable, its performance is not the best.

While the gap is slightly bigger for TACOS, its performance is consistently the best.

155

Chapter 9 Conclusion and Future Work

This chapter presents conclusions and avenues for future work.

9.1 Conclusions

The problem of determining the optimal coalition structures is something that arises in many

multiagent systems. This problem is computationally hard. Existing solutions to this problem

are mostly design-to-time or anytime especially for PFGs. These solutions have exponential

time complexity which means they are suitable only for small multiagent systems. For large

systems, there is a need for methods that can quickly generate a solution that is not necessarily

optimal but is close to the optimum. The aim of this research is to address this need.

More precisely, this research was aimed at exploring four different heuristic approaches, viz.,

tabu search, simulated annealing, ant colony search, and particle swarm search.

These four heuristic algorithms were devised so that they can be applied to different types of

coalition games. In particular, there are two types of coalition games, viz., those in

characteristic function form and those in partition function form. Two of these methods, viz.,

tabu search and simulated annealing are single agent approaches. The other two, viz., ant

colony search and particle swarm search are population based.

The main contributions of this research are as follows.

Contributions

 A primary contribution of this research is devising the four heuristic algorithms for

finding an optimal coalition structure. Although the heuristic methods are not entirely

novel, they only provide a general framework that must be tailored to the problem at

hand. Our contribution is in tailoring these methods for solving the CSG problem for

CSGs and also for PFGs

Chapter 9. Conclusion and Future Work 156

 The second contribution of this thesis is the development of a compact representation of

the values of coalitions. A compact representation is crucial in finding optimal coalition

structures for PFGs in reasonable time. The representation we developed allows for the

feasible representation of values of coalitions for PFGs. Without this representation, it

would be impractical to run or test the heuristic methods.

 The third contribution was development of a method for calculating the upper bound on

the value of an optimal coalition structure. The performance of the heuristics was

evaluated relative to these bounds. Without this method for calculating the bounds, it

would be impractical to evaluate performance since it is impractical to compute the exact

optimum for large games.

 The fourth contribution of this thesis is the testing of our implementations of the four

heuristic methods for CFGs using six different probability distributions. It must be noted

that all the implemented heuristics are oblivious to the probability distributions from

which the input is drawn. The performance of each heuristic method was analysed for

each individual distribution. Specifically, performance was evaluated in terms of running

time, the quality of the solution, and the scalability to larger games.

 The fifth contribution of this thesis is the testing of our implementations of the four

heuristic methods for PFGs using six different probability distributions. Again, it must

be noted that all the implemented heuristics are oblivious to the probability distributions

from which the input is drawn. The performance of each heuristic method was analysed

for each individual distribution. Again, performance was evaluated in terms of running

time, the quality of the solution, and the scalability to larger games.

 The sixth contribution of this thesis is average performance evaluation. The average

refers to average taken across all the six probability distributions. Again, the evaluation

was in terms of running time, the quality of the solution, and the scalability to larger

games. Further, the impact of externalities on heuristic performance was also analysed.

A summary of the main results:

 Empirical results suggest that the performance of each algorithm is influenced by the

probability distribution from which the input is drawn, as well as on the size of the

problem.

Chapter 9. Conclusion and Future Work 157

 All the heuristic methods performed reasonably well for four of the six distributions.

These four distributions are Uniform, Normal, Beta and Triangular.

 For the other two distribution types, Gamma and Exponential, the performance was not

so good with some methods performing much worse than others. We investigated the

results and found that this is due to the gaps between the best and worst solution found.

Thus it can be concluded that none of the heuristics was able to consistently find high

value solutions in the problem instances with these input probabilities. We also come to

the conclusion that the lower performance in these two distribution was significantly

lower than other distributions and deserves further attention.

 When it comes to scalability, we found that each method takes a hit in overall average

performance when moving from a smaller to larger problem games. The difference is that

some heuristics take a larger hit than others. This varies across distributions but the

pattern observed is that for PFG games, the decrease in performance is more obvious.

 We would like to note that, although we used (Rahwan & Jennings, 2007) integer

partition graph approach to compute the bound, we did not use these bound to do any

pruning of the search space i.e. removing non-promising integer partitions. Rather, the

heuristics implemented were allowed to search the entire space of coalition structures.

This was done to measure the real viability of heuristics as a general purpose method

which theoretically can perform well even when the input is not known a priori, i.e. when

it is impossible to compute bounds as the values of the coalitions are not known. Despite

no pruning of the space and concentrating the methods to search only promising

subspaces, the heuristics performed well in 4 out of the 6 probability distribution types.

This stand to shows that the heuristics are quite promising method for finding an optimal

coalition structure in CFGs and PFGs.

Summary of results for CFGs

In terms of overall performance, each method has its own advantages and disadvantages in

performance. Table 9.1 shows a comparative summary of the performance for each method

in the CFG as well as the advantages and disadvantages of each method.

 For CFGs, TACOS returns the best quality solution on average across all the

distributions. This is despite it being the method that explores the least number of

Chapter 9. Conclusion and Future Work 158

neighbours. It is also consistent as evident by the lowest gap between the best and worst

solution found. The drawback is that it needs more memory to store the tabu list. Also, it

was found that parallelising the search with TACOS(M) lowers the performances slightly

as the cost of initialising parallel process resulted in fewer iterations and consequently

fewer neighbours being explored compared to TACOS(S).

Table 9.1 – Comparative summary of the performance of all methods (CFGs).

Method Advantages Disadvantages

TACOS Returns the best quality solution

across all six distributions

despite the lowest number of

neighbours explored.

 Lowest gap between best and

worst solution

 Requires more memory to store

tabu list.

 Parallelisation lowers

performance as TACOS (M)

explores fewer neighbours than

TACOS(S).

SA No additional memory

analogous to tabu list

 Explores the most neighbours

but performs worst due to

redundant explorations.

 Highest gap between best and

worst solutions.

 Least scalable

ACS No additional memory

analogous to tabu list

 Less memory than TACOS

 Quality of solution almost as

good as TACOS

 Most Scalable

 Average overall performance

lower than TACOS.

PSS No additional memory

analogous to tabu list

 Parallelisation does not justify

quality of solution

 For SA, it had the advantage of not needing additional memory as it does not store any

information that is analogous to the tabu list. However, it would seem that although it

explores the most neighbours, it is the worst performing method. This could be attributed

to redundant exploration as it does not keep track of previously explored solutions. It was

also shown to be the least scalable, taking the most performance hit when moving to a

Chapter 9. Conclusion and Future Work 159

bigger problem size. Moreover, it can be said that it is the most random with the highest

gap between the best and worst solution.

 Like SA, ACS also does not maintain a large list like the tabu list used by TACOS, it too

has the advantage of requiring less memory. One of its strengths is that, despite this, it

returns an overall average quality of solution that is comparable to TACOS. It is also the

most scalable, taking the least hit on performance as problem size increases. However,

its only shortcoming is that overall average performance is slightly lower than TACOS.

 PSS is the average performer for CFGs, its advantage like SA and ACS is low memory

usage. Its performance is comparable with SA overall. However, being a parallelised

method, the performance does not justify the extra cost incurred to by parallelisation i.e.

the extra time needed to initialise parallel threads.

Summary of results for PFGs

We shall now summarise the results for the performance of each method in the PFG setting.

Table 9.2 provides a comparative summary of the performance for each method, listing their

advantage and disadvantages.

 The result is consistent for TACOS in PFGs as well. Again it is the best performing

method across all the distribution types. It exhibited the lowest gap between the best and

worst solution and for PFGs it is the most scalable method with a smaller performance

hit with the increase in problem size. The same disadvantages are inherited however, it

does require more memory (to store the tabu list) and parallelisation has the same effect

as it was for CFGs, i.e., lower performance.

 SA is the least scalable method for PFGs, having the biggest drop in performance when

moving to larger games. It still suffers from redundant exploration as evident by the fact

that the number of neighbours explored did not gave it an advantage as other methods

that explored less gave better results. It still however, has the advantage of using less

memory than TACOS.

 ACSs performance in PFGs is analogous to its performance in CFGs. It requires no

additional memory as there is no tabu list. Also, it is the least impacted by externalities

when considering the same problem size. The impact for ACS in settings where there are

externalities (PFGs) and where there are no externalities (CFGs) is smaller compared to

Chapter 9. Conclusion and Future Work 160

the other methods. Its only disadvantage is that its overall average performance is slightly

lower than that of TACOS.

Table 9.2 – Comparative summary of the performance of all methods (PFGs).

 Advantages Disadvantages

TACOS Returns the best quality solution

across all six distributions

 Lowest gap between best and

worst solution

 Most Scalable

 Requires more memory to store

tabu list

 Parallelisation lowers

performance as TACOS (M)

explores fewer neighbours than

TACOS(S).

SA No additional memory

analogous to tabu list

 Explores the most neighbours

but performs worst due to

redundant explorations.

 Redundant exploration

 Least scalable

ACS No additional memory analogous

to tabu list

 Quality of solution almost as

good as TACOS

 Least impacted by externalities

 Average overall performance

lower than TACOS

PSS No additional memory

analogous to tabu list

 Parallelisation does not justify

quality of solution

 Highest gap between best and

worst solutions.

 Impacted the most by

externalities

 Least scalable

 Finally, we take a look at the performance of PSS in PFGs. Its only advantage is that it

requires no additional memory for storing a tabu list unlike TACOS. However it is the

worst performing method for PFGs. It has the highest gap between the best and worst

solution found. It is the most impacted by externalities, losing a lot of performance when

Chapter 9. Conclusion and Future Work 161

considering PFGs with the same problem size. Lastly, it is also the least scalable in the

PFG setting, taking the most performance hit as the problem becomes larger i.e. moving

from 10 to 27-agents.

With the main contributions and summary of main results given, we shall now look at some

future work that could be done to further the work done in this research.

9.2 Future Work

From the extensive experiments and the conclusions drawn from this research, we found that

more can be done to further this research and continue to contribute to the field of knowledge.

In the future we would like to extend this research as follows:

 Investigate the possibility of implementing short term memory for tabu search – This

can be done by introducing a tabu tenure where the size of the tabu list is limited. This

will help to reduce the memory usage of TACOS. The effect of having a smaller tabu

list has to be investigated to determine its effect compared to the current

implementation where the size of the increases with the number of iterations.

 Improve performance for Gamma and Exponential – Although overall the heuristics

performed well in the majority of the distributions considered, they did not perform

quite as good for the Gamma and Exponential distributions. This deserves further

investigation with the possibility of creating versions of the algorithms with

neighbourhood operators that are tailored to such distributions.

 Building combined heuristic algorithms – Looking at best and the worst solutions

found for Gamma and Exponential, the gap for these two distributions suggests that

the value of the input coalitions sits between two extremes that is so random that no

heuristic can perform well. Thus as future work, it might be interesting devise a

method which combines two or more heuristics such as combining greedy with tabu

search or ant colony with tabu search which may yield better results. As greedy works

by constructing solutions based on high value components, it may help to start the

algorithm with a greedy solution rather than the random solution used currently as the

starting point. Combination of ant colony with tabu search allows the algorithm to

remove forbidding moves i.e. coalition structures in the tabu list and keeps track of

promising neighbourhood operators. Searching the space with historically good

Chapter 9. Conclusion and Future Work 162

operators while avoiding already explored solutions should increase the algorithms

performance.

 Improvements on neighbourhood operators – Although the neighbourhood operators

performed rather well in most case, their performance for Gamma and Exponential is

still left to be desired. For future work, improved operators with better exploration

guarantees should be devised. These operators must be of better quality to be able to

boost the performance of the heuristics. More analysis will have to be conducted on

operator performance alone in order to achieve this.

 Conduct more thorough statistical testing and analysis to further investigate the

difference in performance from one distribution to the other. Advance, more detailed

statistical analysis techniques such as ANOVA to be considered.

 Devise ways for larger games – Another limitation that we would like to address is the

limiting size of the problem. Due the limit imposed by storing the value of all

coalitions which only allow us to run simulations of up to 27-agents, perhaps a way

can be devised to restrict the problem instance that allow generating input for integer

partitions where the optimal coalition may be. This way instead of generating the value

of all the coalitions, we just generate the value of the coalitions in the promising

partitions as contemplated by (Changder, Dutta, & Ghose, 2016b). We then have to

modify the algorithm and their neighbourhood operators to generate only

neighbourhoods that are of the size of the promising integer partitions. This to deserve

further research and if successful will allow the CSG problem to be scaled to a larger

number of agents.

References 163

References

Aziz, H., & De Keijzer, B. (2011). Complexity of coalition structure generation. Proceedings

of the 10th International Conference on Autonomous Agents and Multiagent Systems –

Volume 1, pp. 191-198.

Banerjee, B., & Kraemer, L. (2010). Coalition structure generation in multi-agent systems

with mixed externalities. Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems - Volume 1, pp. 175-182.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National

Academy of Sciences, United States of America, 38(8), pp. 716-719.

Blumenfeld, D. (2009). Operations research calculations handbook, CRC Press.

Catilina, E. P., & Feinberg, R. M. (2006). Market power and incentives to form research

consortia. Review of Industrial Organization, 28(2), pp. 129-144.

Chalkiadakis, G., Elkind, E., & Wooldridge, M. J., (2012). Computational aspects of

cooperative game theory. San Rafael, Calif: Morgan & Claypool.

Chang, C. S., Lu, L. R., & Wen, F. S. (1999). Power system network partitioning using tabu

search. Electric Power Systems Research, 49(1), pp. 55-61.

Changder, N., Dutta, A., & Ghose, A. K. (2016a). Coalition structure formation using anytime

dynamic programming. Proceedings of the International Conference on Principles and

Practice of Multi-Agent Systems (PRIMA2016), Phuket, Thailand.

Changder, N., Dutta, A., & Ghose, A. K. (2016b). A kernelization approach for anytime

coalition structure generation using Knuth Algorithm X. Proceedings of the International

Conference on Principles and Practice of Multi-Agent Systems (PRIMA2016), Phuket,

Thailand.

Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling salesman

problem. New optimization techniques in engineering (pp. 219-239) Springer.

Crainic, T. G., Perboli, G., & Tadei, R. (2009). TS2PACK: A two-level tabu search for the

three-dimensional bin packing problem. European Journal of Operational Research, 195(3),

pp. 744-760.

References 164

Dang, V. D., Dash, R. K., Rogers, A., & Jennings, N. R. (2006). Overlapping coalition

formation for efficient data fusion in multi-sensor networks. Proceedings of the 21st National

Conference on Artificial Intelligence - Volume 1, Boston, Massachusetts, pp. 635-640.

Dang, V. D., & Jennings, N. R. (2004). Generating coalition structures with finite bound from

the optimal guarantees. Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems - Volume 2, New York, New York, pp. 564-571.

Dasgupta, D., & Michalewicz, Z. (1997). Evolutionary algorithms in engineering

applications. United States: Springer Science & Business Media.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. United States of

America: Wiley.

De Clippel, G., & Serrano, R. (2008). Marginal contributions and externalities in the

value. Econometrica, 76(6), pp. 1413-1436.

Di Mauro, N., Basile, T. M., Ferilli, S., & Esposito, F. (2010). Coalition structure generation

with GRASP. Artificial intelligence: Methodology, systems, and applications (pp. 111-120)

Springer.

Di Mauro, N., Basile, T., Ferilli, S., & Esposito, F. (2014). GRASP and path-relinking for

coalition structure generation. Fundamenta Informaticae, 129(3), pp. 251-277.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1), pp. 29-41.

Dos Santos, D. S., & Bazzan, A. L. C. (2012). Distributed clustering for group formation and

task allocation in multiagent systems: A swarm intelligence approach. Applied Soft

Computing, 12(8), pp. 2123-2131.

Dunne, P. E. (2005). Multiagent resource allocation in the presence of externalities. In

Pechoucek, Michal, Petta, Paolo, Varga, Laszlo Zsolt (Eds.) (Ed.), Multi-agent systems and

applications IV: 4th international Central and Eastern European Conference on Multi-agent

Systems, CEEMAS 2005, budapest, hungary, september 15-17, 2005, proceedings (pp. 408-

417). Berlin, Heidelberg: Springer.

References 165

Edwards, C., Burrows, P., Grover, R., Lowry, T., & Hall, K. (2005). Daggers drawn over

DVDs. Business Week, pp. 32-35.

Epstein, D., & Bazzan, A. C. (2013). Distributed coalition structure generation with positive

and negative externalities. Lecture Notes in Computer Science, 8154, pp. 408-419.

doi:10.1007/978-3-642-40669-0_35

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6, pp. 109-133.

Fiechter, C. (1994). A parallel tabu search algorithm for large traveling salesman problems.

Discrete Applied Mathematics, 51(3), pp. 243-267.

Finus, M. (2003). Environmental policy in an international perspective. In L. Marsiliani, M.

Rauscher & C. Withagen (Eds.), (pp. 19-49). Dordrecht: Springer Netherlands.

Fogel, D. B. (1998). Evolutionary computation: The Fossil Record, Wiley-IEEE Press.

Foster, I., & Kesselman, C. (2003). The Grid 2: Blueprint for a new computing infrastructure

Elsevier.

Galinier, P., Hertz, A., & Zufferey, N. (2008). An adaptive memory algorithm for the k-

coloring problem. Discrete Applied Mathematics, 156(2), pp. 267-279.

Glinton, R., Scerri, P., & Sycara, K. (2008). Agent-based sensor coalition formation. 2008

11th International Conference on Information Fusion, pp. 1-7.

Glover, F., & Laguna, M. (1997). Tabu search. Norwell, MA, USA: Kluwer Academic

Publishers.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning

Addison-Wesley.

Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). In Patashnik O. (Ed.), Concrete

Mathematics: A Foundation for Computer Science (2nd Edition). Reading, Massachusetts,

Addison-Wesley.

Guo, B., & Wang, D. (2006). Optimal coalition structure based on particle swarm

optimization algorithm in multi-agent system. The Sixth World Congress on Intelligent

Control and Automation 2006 (WCICA2006) (Volume: 1), pp. 2494-2497.

References 166

Hussin, A., & Fatima, S. (2016). Heuristic methods for optimal coalition structure generation.

Multi-agent Systems and Agreement Technologies (pp. 124-139) Springer.

Hyodo, M., Matsuo, T., & Ito, T. (2003). An optimal coalition formation among buyer agents

based on a genetic algorithm. Proceedings of the 16th International Conference on

Developments in Applied Artificial Intelligence, Loughborough, UK, pp. 759-767.

Jones, G. (2002). Genetic and evolutionary algorithms. Encyclopaedia of computational

chemistry, John Wiley & Sons, Ltd.

Keinänen, H., & Keinänen, M. (2008). Simulated annealing for coalition formation.

Proceedings of the 18th European Conference on Artificial Intelligence, pp. 857-858.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (PSO). Proc. IEEE

International Conference on Neural Networks, Perth, Australia, pp. 1942-1948.

Kirkpatrick, S., Gelatt, C. D.,Jr, & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science (New York, N.Y.), 220(4598), pp. 671-680.

Klusch, M., & Shehory, O. (1996). A polynomial kernel-oriented coalition algorithm for

rational information agents. Proceeding of International Conference on Multi-Agent Systems

ICMAS-96, AAAI, Kyoto (Japan), pp 157-164.

Knuth, D. E. (1992). Two notes on notation. American Mathematical Monthly, pp. 403-422.

Lin, G., Zhu, W., & Ali, M. M. (2014). A tabu search-based memetic algorithm for

hardware/software partitioning. Mathematical Problems in Engineering, 2014, p 15.

Liu, J., Shen, S., Yue, G., Han, R., & Li, H. (2015). A stochastic evolutionary coalition game

model of secure and dependable virtual service in sensor-cloud. Applied Soft Computing, 30,

pp. 123-135.

Lodi, A., Martello, S., & Vigo, D. (2004). TSpack: A unified tabu search code for multi-

dimensional bin packing problems. Annals of Operations Research, 131(1-4), pp. 203-213.

doi:10.1023/B:ANOR.0000039519.03572.08

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6), pp. 1087-1092.

References 167

Michalak, T. P., Dowell, A., McBurney, P., & Wooldridge, M. (2008). Optimal coalition

structure generation in partition function games. Proceedings of the 18th European

Conference on Artificial Intelligence, pp. 388-392.

Michalak, T., Sroka, J., Rahwan, T., Wooldridge, M., McBurney, P., & Jennings, N. R.

(2010). A distributed algorithm for anytime coalition structure generation. Proceedings of the

9th International Conference on Autonomous Agents and Multiagent Systems – Volume 1, pp.

1007-1014.

Michalak, T., Rahwan, T., Elkind, E., Wooldridge, M., & Jennings, N. R. (2016). A hybrid

exact algorithm for complete set partitioning. Artificial Intelligence, 230, pp. 14-50.

doi:http://dx.doi.org/10.1016/j.artint.2015.09.006

Neumann, L. J., & Morgenstern, O. (1947). Theory of games and economic behavior,

Princeton: Princeton University Press.

Nonobe, K., & Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource

constrained project scheduling problem. Essays and Surveys in Metaheuristics, pp. 557-588

Springer, doi:10.1007/978-1-4615-1507-4_25

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D., Gray, W. A.

(2004). Agent-based formation of virtual organisations. Knowledge-Based Systems, 17(2), pp.

103-111.

Plasmans, J. E., Engwerda, J., Van Aarle, B., Di Bartolomeo, G., & Michalak, T. (2006).

Dynamic modeling of monetary and fiscal cooperation among nations, Springer Science &

Business Media.

Rahwan, T., & Jennings, N. R. (2007). An algorithm for distributing coalitional value

calculations among cooperating agents. Artificial Intelligence, 171(8), pp. 535-567.

Rahwan, T., & Jennings, N. R. (2008a). An improved dynamic programming algorithm for

coalition structure generation. Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems – Volume 3, pp. 1417-1420.

Rahwan, T., Michalak, T. P., & Jennings, N. R. (2012). A hybrid algorithm for coalition

structure generation. Proceedings of the 26th Conference on Artificial Intelligence (AAAI-12),

Toronto, Canada, pp. 1443-1449.

References 168

Rahwan, T., Michalak, T. P., Jennings, N. R., Wooldridge, M., & McBurney, P. (2009).

Coalition structure generation in multi-agent systems with positive and negative externalities.

Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09),

(9), pp. 257-263.

Rahwan, T., Ramchurn, S. D., Dang, V. D., Giovannucci, A., & Jennings, N. R. (2007).

Anytime optimal coalition structure generation. Proceedings of the 22nd Conference on

Artificial Intelligence, (7), pp. 1184-1190.

Rahwan, T., Ramchurn, S. D., Dang, V. D., & Jennings, N. R. (2007). Near-optimal anytime

coalition structure generation. Proceedings of the 20th International Joint Conference on

Artificial Intelligence (IJCAI), pp. 2365-2371.

Rahwan, T., Ramchurn, S. D., Jennings, N. R., & Giovannucci, A. (2009). An anytime

algorithm for optimal coalition structure generation. Journal of Artificial Intelligence

Research, 34(2), 521.

Rahwan, T., & Jennings, N. R. (2008b). Coalition structure generation: Dynamic

programming meets anytime optimization. Proceedings of the 23rd National Conference on

Artificial Intelligence - Volume 1, Chicago, Illinois, pp. 156-161.

Rahwan, T., Michalak, T. P., Elkind, E., Wooldridge, M., & Jennings, N. R. (2013). An exact

algorithm for coalition structure generation and complete set partitioning, DCS.

Rahwan, T., Michalak, T. P., Wooldridge, M., & Jennings, N. R. (2015). Coalition structure

generation: A survey. Artificial Intelligence, (229), pp. 139-174.

Rahwan, T., Michalak, T., Wooldridge, M., & Jennings, N. R. (2012). Anytime coalition

structure generation in multi-agent systems with positive or negative externalities. Artificial

Intelligence (186), pp. 95-122.

Rapoport, A. (1970). N-person game theory: Concepts and applications Courier Corporation.

Rolland, E., Pirkul, H., & Glover, F. (1996). Tabu search for graph partitioning. Annals of

Operations Research, 63(2), pp. 209-232.

References 169

Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1998). Anytime

coalition structure generation with worst case guarantees. Proceedings of the National

Conference on Artificial Intelligence, Madison, Wisconsin USA, pp. 46-53.

Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition

structure generation with worst case guarantees. Artificial Intelligence, 111(1), pp. 209-238.

Sandholm, T. W., & Lesser, V. R. (1997). Coalitions among computationally bounded agents.

Artificial Intelligence. 94(1-2), pp. 99-137. doi:10.1016/S0004-3702(97)00030-1

Sen, S., & Dutta, P. S. (2000). Searching for optimal coalition structures. Proceedings of the

Fourth International Conference on Multiagent Systems (2000), pp. 287-292.

Service, T. C., & Adams, J. A. (2010). Anytime dynamic programming for coalition structure

generation. Proceedings of the 9th International Conference on Autonomous Agents and

Multiagent Systems, pp. 1411-1412.

Service, T. C., & Adams, J. A. (2011). Randomized coalition structure generation. Artificial

Intelligence, 175(16), pp. 2061-2074.

Shehory, O., & Kraus, S. (1998). Methods for Task allocation via Agent Coalition Formation

Artificial Intelligence, 101, pp. 165-200

Starkweather, T., Mcdaniel, S., Whitley, D., Mathias, K., Whitley, D., & Dept, M. E. (1991).

A comparison of genetic sequencing operators. Proceedings of the Fourth International

Conference on Genetic Algorithms, pp. 69-76.

Sukstrienwong, A. (2011). Searching optimal buyer coalition structure by ant colony

optimization. International Journal of Mathematics and Computers in Simulation, 5, pp. 352-

360.

Thrall, R. M., & Lucas, W. F. (1963). N-person games in partition function form. Naval

Research Logistics Quarterly, 10(1), pp. 281-298. doi:10.1002/nav.3800100126

Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and

parameter selection. Information Processing Letters, 85(6), pp. 317-325.

Triola, M. F. (2006). Elementary statistics, Pearson/Addison-Wesley, Reading, MA.

References 170

Tsvetovat, M., & Sycara, K. (2000). Customer coalitions in the electronic marketplace.

Proceedings of the Fourth International Conference on Autonomous Agents (AGENTS '00),

pp. 263-264. doi:10.1145/336595.337479

Wooldridge, M. J. 1. (2009). An introduction to multiagent systems. Chichester, U.K.: John

Wiley & Sons.

Yeh, D. Y. (1986). A dynamic programming approach to the complete set partitioning

problem. BIT Numerical Mathematics 1986, Volume 26, Issue 4, pp. 467-474

Yi, S. (2003). Endogenous formation of economic coalitions: A survey on the partition

function approach. The Endogenous Formation of Economic Coalitions, Carlo Carraro, Ed.,

Edward Elgar, London.

Yong, G., Li, Y., Wei-Ming, Z., Ji-chang, S., & Chang-ying, W. (2003). Methods for resource

allocation via agent coalition formation in grid computing systems. Proceedings of the 2003

IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 1, pp.

295-300.

Zlotkin, G., & Rosenschein, J. S. (1994). Coalition, cryptography, and stability: Mechanisms

for coalition formation in task oriented domains. In Proceedings of the Twelfth National

Conference on Artificial Intelligence (AAAI94), pp. 432-437.

Appendix I 171

Appendix I – Generating the Input Data

Python comes with pseudo-random number generators for various distributions. This is

included in the Python Library random.py (see https://docs.python.org/2/library/random.html

for more information).

The following functions from the Python random module was used to generate the values for

each subset:

1. random.uniform(a, b)

2. random.triangular(low, high, mode)

3. random.betavariate(alpha, beta)

4. random.expovariate(lambd)

5. random.gammavariate(alpha, beta)

6. random.normalvariate(mu, sigma)

The parameters chosen are given in Chapter 6.

Here are some example pseudocode for the data generation for the 25-agent CFG, 27-agent

CFG and 10-agent PFG.

An example pseudocode for generating the coalition value for the uniform distribution:

for each 𝐶 ∈ 𝐶𝐴𝑔

 cardinality = |C|

 coalitionvalue = random.uniform(0,cardinality)

write to inputfile.csv coalitionvalue

Another example for the beta distribution:

for each 𝐶 ∈ 𝐶𝐴𝑔

 cardinality = |C|

 coalitionvalue = cardinality × random.betavariate(0.5,0.5)

write to inputfile.csv coalitionvalue

https://docs.python.org/2/library/random.html

Appendix I 172

For the 27-agent PFG where the value of coalitions of size 𝑘 are different from other

coalition sizes, here are the example pseudocode for generating the coalition values.

For the uniform distribution:

 Initialize n = number of agents

Initialize k = 2

for each 𝐶 ∈ 𝐶𝐴𝑔

 cardinality = |C|

 if cardinality == k

 coalitionvalue = random.uniform(n2 , 2(n2))

 else

 coalitionvalue = random.uniform(0, n)

write to inputfile.csv coalitionvalue

An example pseudocode for the beta distribution:

Initialize n = number of agents

Initialize k = 2

for each 𝐶 ∈ 𝐶𝐴𝑔

 cardinality = |C|

 if cardinality == k

 coalitionvalue = n2 × random.betavariate(0.5,0.5)

 else

 coalitionvalue = random.betavariate(0.5,0.5)

write to inputfile.csv coalitionvalue

