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ABSTRACT   

Although coherence scanning interferometry (CSI) commonly achieves a sub-nanometre noise level in surface 
topography measurement, the absolute accuracy is difficult to determine when measuring a surface that contains varying 
local slope angles and curvatures. Recent research has shown that it is possible to use a single sphere with a radius much 
greater than the source wavelength to calibrate the three-dimensional transfer function of a CSI system. A major 
requirement is the accurate knowledge of the sphere radius, but the three-dimensional measurement of a sphere with 
nanometre level uncertainty is a highly challenging metrology problem, and is not currently feasible. Perfect spheres do 
not exist and every measurement has uncertainty. Without having a quantitative understanding of the tolerance of the 
sphere radius, the calibration method cannot be used confidently for calibration of the transfer function of a CSI system 
that may be used in research laboratories or industry. In this paper, the effects of the tolerance of the radius of the 
calibration sphere on surface topography measurements are quantitatively analysed through a computational approach. 
CSI measurements of spherical, sinusoidal and rough surfaces are investigated in the presence of various degrees of 
radius error. A lookup table that relates the surface height error as a function of the radius error and surface slope angle is 
provided. The users may estimate the required tolerances of the sphere radius for their specific surface measurements if 
this calibration approach is used. The output of this paper provides a feasibility analysis for this calibration method for 
further development and applications. 
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1. INTRODUCTION  
Coherence scanning interferometry (CSI) has been widely employed in the research and manufacturing environments for 
conducting surface topography measurement and dimensional micrometrology1. CSI, also known as scanning white light 
interferometry, encodes surface height information into the phase of the interference signal generated from a broadband 
source2,3, and the surface height is calculated using a reconstruction algorithm, e.g. the frequency domain analysis 
(FDA)3 or envelope detection method4. The precision of modern CSI systems may achieve the sub-nanometre level5, but 
the absolute measurement uncertainty can be as high as tens or even hundreds of nanometres due to optical aberrations, 
signal processing errors and the complex geometrical form of a surface that contains varying local slope angle and 
curvature6-8. In the presence of tilt and curvature dependent errors, traditional step artefacts that contain two parallel flat 
surfaces are not sufficient for calibration of CSI systems9.  

A recent theoretical study10,11 showed that the surface measurement by a CSI system can be considered as a 3D linear 
filtering operation on the basis of scalar diffraction theory. For the so-called “foil model” of a surface to be valid, the 
Kirchhoff approximation is assumed, i.e. that the surface is slowly varying at the optical scale12. Within this validity 
regime, the CSI signal is linearly related to the object function that is determined by the surface topography and optical 
properties of the object. The 3D linear filtering process can be characterised by the transfer function (TF) of a CSI 
system. The TF contains the information on the bandwidth of the measuring system in the spatial frequency domain, and 
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