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a b s t r a c t 

In many industrial applications, thick-walled cylindrical components are subjected to high pressure and/or tem- 

perature. During the operation the cylinder wall may undergo elastic–plastic deformation. This paper presents 

plane-stress and plane-strain thermo-elastic–plastic stress analyses of thick-walled cylinders subjected to a radial 

thermal gradient. A three-dimensional finite element method (3D FEM) analysis of the thermo-elastic–plastic 

stresses in thick-walled cylinder is also carried out. The 3D FEM results are compared with the analytical plane 

stress and the generalized plane strain analyses in order to study the validity of these models on the basis of 

length to wall-thickness ratio of cylinders. The plane stress and generalized plane strain analyses are based on 

the Tresca yield criterion and associated flow rule. The strain hardening behavior of the material of the cylinder 

is taken into account. It is observed that for the length to wall thickness ratio of more than 6, the generalized 

plane strain analysis can provide sufficiently accurate results. Similarly, for the length to wall thickness ratio of 

less than 0.5, plane stress analysis can be used. When the length to wall thickness ratio is more than 0.5 but less 

than 6, a three-dimensional analysis is needed. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The thick-walled cylinders subjected to pressures and temperatures

nd several applications, e.g., in chemical industries and nuclear power

lants. In most of the cases, the design attempts to keep the stresses in

he cylinders within elastic limits. However, it is always better to carry

ut an elastic–plastic analysis in order to get an idea about safety in case

f untoward situations. Moreover, in an autofrettage process, the plastic

eformation is deliberately produced to induce compressive stresses in

he inner side of the cylinder. There are also examples where plastic

eformation is permitted by design. Thus, the elastic–plastic analysis of

he thick-walled cylinders is an attractive research area. 

Elastic–plastic deformation of thick-walled cylinders due to internal

ressure loading is well recognized and has been investigated by many

esearchers. Many analytical solutions are available for stress, strains

nd displacement fields during the elastic–plastic deformation of cylin-

ers. An early analysis of elastic–plastic deformation in thick tubes was

arried out by Hill et al. [1] assuming non-hardening material, Tresca

ield criterion and plane strain condition. Gao [2] developed a closed
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orm analytical solution for the elastic–plastic stress, strain and displace-

ents of an internally pressurized thick-walled cylinders under plane

tress condition using Hencky’s deformation theory and von Mises yield

riterion. Durban [3] , Gao [4] , and Bonn and Haupt [5] investigated

arge elastic–plastic deformations of thick-walled cylindrical tube under

nternal pressure. An analytical solution for stress, strain and displace-

ents in thick cylinder subjected to internal pressure was developed

y Gao [6] using strain gradient plasticity theory. An analytical solu-

ion for elastic–plastic stresses considering the Bauschinger effect and

resca yield criterion in thick-walled cylindrical vessel made of elastic

inear-hardening material was given by Darijani et al. [7] . 

The classical solution for thermo-elastic stresses in thick-walled

ylindrical bodies under steady state temperature distribution due to

emperature gradient is well known. However, only a few papers treat

he thermo-elastic–plastic analysis of thick-walled cylinders analyti-

ally. Bland [8] carried out an elastic–plastic analysis of thick-walled

ubes of work hardening material subjected to internal and external

ressures with outer and inner surfaces maintained at different temper-

tures. He considered that yielding took place only on the inner side of
 the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

http://dx.doi.org/10.1016/j.ijmecsci.2017.07.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmecsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2017.07.034&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:uday@iitg.ac.in
mailto:usd1008@yahoo.com
http://dx.doi.org/10.1016/j.ijmecsci.2017.07.034
http://creativecommons.org/licenses/by/4.0/


S.M. Kamal et al. International Journal of Mechanical Sciences 131–132 (2017) 744–752 

t  

S  

w  

d  

w  

a  

t  

e  

a  

a  

i  

m  

a  

n  

a  

t  

s  

s  

g  

c  

e  

[  

u  

a  

d

 

d  

d  

D  

g  

o  

h  

g  

i  

[

 

[  

h  

h  

n  

j  

a  

i  

t  

g  

t  

t  

a  

t

2

 

s  

w  

e  

u  

e  

e  

d  

d  

t  

i  

e  

e

𝜎  

w  

i  

e  

t  

f

𝑇  

 

s  

t

3

h

 

(  

g  

t  

m  

b

𝜎  

w  

i  

𝜎  

 

t  

y

 

t  

c  

(  

p  
Nomenclature 

a inner radius of cylinder 

b outer radius of cylinder 

c, d, e, f interface radii 

E Young’s modulus of elasticity 

K hardening coefficient 

n strain hardening exponent 

r radius of cylinder 

T a temperature at the inner wall of cylinder 

T b temperature at the outer wall of cylinder 

u radial displacement 

𝛼 coefficient of thermal expansion 

𝜀 r total radial strain 

𝜀 𝜃 total hoop strain 

𝜀 0 constant axial strain 

𝜀 𝑒 
𝑟 
, 𝜀 𝑒 

𝜃
, 𝜀 𝑒 

𝑧 
elastic radial, hoop and axial strain 

𝜀 
𝑝 
𝑟 , 𝜀 

𝑝 

𝜃
, 𝜀 

𝑝 
𝑧 plastic radial, hoop and axial strain 

𝜀 
𝑝 
eq equivalent plastic strain 

𝜈 Poisson’s ratio 

𝜎r radial stress 

𝜎𝜃 hoop stress 

𝜎z axial stress 

𝜎eq equivalent stress 

𝜎Y yield stress 

he cylinder leading to the formation of an inner plastic zone. Wong and

imionescu [9] developed an elastic–plastic analytical model of thick-

alled tube subjected to internal heating and pressure assuming small

isplacements, plane strain condition and the yield criterion of Tresca

ithout strain hardening. They did not consider the case in which there

re outer and inner plastic zones with an intermediate elastic zone. The

hermo-elastic–plastic deformation of tubes with inner plastic and outer

lastic zones due to internal heat generation was investigated by Orçan

nd Eraslan [10] considering the temperature-dependent mechanical

nd thermal properties. Sadeghian and Toussi [11] carried out an ax-

symmetric thermo-elastic–plastic stress analysis in cylindrical vessels

ade of functionally graded material. The stress analysis of a function-

lly graded thick-walled hyperelastic spherical vessel subjected to inter-

al and external pressure was carried out by Anani and Rahimi [12] ,

lbeit without considering thermal stresses. Some papers in the litera-

ure deal with the thermo-elastic–plastic analysis of solid cylinders and

pherical vessels. Orçan [13] carried out a thermo-elastic–plastic analy-

is of elastic-perfectly plastic cylindrical rod with uniform internal heat

eneration for generalized plane strain condition based on Tresca yield

riterion. He considered the case of two plastic zones separated by an

lastic zone. Cowper [14] , Johnson and Mellor [15] , and Darijani et al.

16] analyzed the elastic–plastic stresses in thick-walled hollow sphere

nder steady state radial temperature gradient. In a recent paper, Zare

nd Darijani [17] studied elastic–plastic stresses in a thick-walled cylin-

er rotating at a very large angular velocity. 

In general, a thick-walled cylinder may undergo simultaneous plastic

eformations emanating from both inner and outer walls under the con-

ition of high thermal gradient. This case was analyzed by Kamal and

ixit [18,19] for a hollow disk and cylinder assuming plane stress and

eneralized plane strain conditions, respectively. The analyses are based

n Tresca yield criterion and its associated flow rule. The effect of strain

ardening was considered in the plane stress model [18] . However, the

eneralized plane strain model [19] did not include the strain harden-

ng, although the theoretical results matched well with the experiments

20] . 

In this work, the generalized plane strain model of Kamal and Dixit

19] is extended to incorporate the effect of strain-hardening. The strain-

ardening during plastic deformation is assumed to follow Ludwik’s
745 
ardening law. The plane stress and generalized plane strain models can-

ot predict the dimension-range in which the respective assumptions are

ustified. Hence, a three-dimensional finite element method (3D FEM)

nalysis is carried out in order to define the applicability of the analyt-

cal models. A criterion based on the length to wall thickness ratio of

he cylinders is developed to assess the validity of the plane stress and

eneralized plane strain assumptions. During the analysis, it is assumed

hat the maximum temperature induced in the cylinder is well below

he recrystallization temperature of the material. Hence, it is appropri-

te to treat the mechanical and thermal properties of the material as

emperature-independent. 

. Problem definition 

A thick-walled cylinder with inner radius a and outer radius b is con-

idered. The inner wall is subjected to a temperature T a and the outer

all is subjected to a temperature T b such that T b > T a . The thermo-

lastic–plastic stress analyses of a short cylinder (hollow circular disk)

sing the assumption of plane stress ( 𝜎z = 0) incorporating strain hard-

ning was carried out in [18] . Another analytical model based on a gen-

ralized plane-strain condition ( 𝜀 z = constant) applicable for long cylin-

ers is available in [19] . However, the generalized plane-strain model

id not include the effect of strain hardening. In the present work, the

hermo-elastic–plastic stress analysis in the cylinder under the general-

zed plane-strain assumption is presented incorporating the strain hard-

ning in Section 3 . The material is assumed to follow the Ludwik’s hard-

ning law given by [21] : 

eq = 𝜎𝑌 + 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 
, (1)

here 𝜎Y is the yield stress in uniaxial tension or compression, 𝜎eq ( >𝜎Y )

s the equivalent stress, 𝜀 
𝑝 
eq is the equivalent plastic strain, K is the hard-

ning coefficient and n is the strain hardening exponent. A steady-state

emperature distribution in the cylinder under a radial temperature dif-

erence ( T b − T a ) is given by [22] : 

 = 𝑇 𝑎 + 

(
𝑇 𝑏 − 𝑇 𝑎 

) ln ( 𝑟 

𝑎 

)
ln 
(

𝑏 

𝑎 

) . (2)

To test the validity of plane stress and generalized plane strain as-

umptions, a 3D FEM analysis is carried out for different length to wall

hickness ratios of cylinder. 

. Generalized-plane-strain analytical model considering strain 

ardening 

Under the condition of generalized plane strain condition

 𝜀 z = 𝜀 0 = constant), the thermo-elastic stresses in the cylinder are

iven by the equations provided in [23] , when the cylinder is subjected

o a sufficiently low temperature. At the inner radius the yielding of the

aterial of the cylinder begins according to the Tresca criterion given

y 

𝜃 − 𝜎𝑟 = 𝑘 1 𝜎eq , 𝜎𝑧 − 𝜎𝑟 = 𝑘 1 𝜎eq , (3)

here 𝜎eq is given by the Ludwik’s hardening law ( Eq. (1 )). Beyond the

nner radial position, the cylinder yields as per the Tresca yield criterion:

𝑧 − 𝜎𝑟 = 𝑘 1 𝜎eq . (4)

By substituting the thermo-elastic stresses in Eq. (3) at r = a , and

aking 𝜎eq = 𝜎Y , the temperature difference required for the initiation of

ielding at the inner radius can be obtained. 

When the material of the cylinder yields as per the Tresca yield cri-

erion, during first stage of elastic–plastic deformation the wall of the

ylinder consists of three zones —plastic zone I ( a ≤ r ≤ c ), plastic zone II

 c ≤ r ≤ d ), and elastic zone ( d ≤ r ≤ b ). During the second stage of elasto-

lastic deformation, the cylinder wall gets divided into five zones —two
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Fig. 1. Elastic and plastic zones in cylindrical segment during elastic–plastic deformation 

(generalized-plane-strain). 
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nner plastic zones: plastic zone I ( a ≤ r ≤ c ) and plastic zone II ( c ≤ r ≤ d ),

n intermediate elastic zone: d ≤ r ≤ e and two outer plastic zones: plas-

ic zone III ( f ≤ r ≤ b ) and plastic zone IV ( e ≤ r ≤ f ). The two consecutive

lastic zones in the cylinder correspond to two different sides of Tresca

ield locus. The general geometry of the cylinder during elastic–plastic

eformation is shown schematically in Fig. 1 . In the following subsec-

ions the stresses and plastic strain fields in the first and second stage of

lastic–plastic deformation are obtained by incorporating strain hard-

ning using Ludwik’s hardening law. 

.1. First stage of elastic–plastic deformation 

The stresses and plastic strains in all the three zones during the first

tage of elastic–plastic deformation are obtained in a similar manner

s described in Kamal and Dixit [19] . The stresses in the elastic zone,

 ≤ r ≤ b are provided in [19] . However, the stresses and strains in the

lastic zone get modified due to the incorporation of strain-hardening

ollowing the Ludwik’s hardening law. The resulting fields of stresses

nd strains in the plastic zones I, a ≤ r ≤ c and II, c ≤ r ≤ d are obtained

s follows: 

Plastic zone I, a ≤ r ≤ c : 

Using Eq. (3) in the stress equilibrium equation [19] , the radial, hoop

nd axial stresses in the plastic zone I are obtained as 

𝑟 = 𝑘 1 𝜎𝑌 ln 𝑟 + 𝑘 1 𝐾 ∫
𝑟 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 𝐶 3 , (5)

𝜃 = 𝜎𝑧 = 𝑘 1 𝜎𝑌 ( 1 + ln 𝑟 ) + 𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 + 𝑘 1 𝐾 ∫

𝑟 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 𝐶 3 . (6)

Using the condition of plastic incompressibility, the strain-

isplacement relation and the generalized Hooke’s law, the expression

or the radial displacement, the total hoop and radial strains can be ob-

ained [19] . The plastic parts of the hoop, radial and axial strains are

btained by subtracting the elastic parts from the total strain compo-

ents. They are given by 

 

𝑝 

𝜃
= 

1 − 2 𝜈
𝐸 

[ 
1 
2 
(
𝑘 1 𝜎𝑌 ln 𝑟 + 𝐶 3 

)
+ 

2 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑎 

𝑟 1 
(
𝜀 
𝑝 
eq 
)𝑛 d 𝑟 1 

− 𝑘 1 𝐾 ∫
𝑟 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 

3 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑎 

{ 

𝑟 2 ∫
𝑟 2 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

d 𝑟 2 

] 

− 

3 − 2 𝜈
4 𝐸 

𝑘 1 𝜎𝑌 − 

1 − 𝜈

𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 + 

1 
2 
𝛼𝑇 𝑎 

+ 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ln 

(
𝑏 

𝑎 

) { 

ln 
(
𝑟 

𝑎 

)
− 

3 
2 

} 

− 

1 
2 
𝜀 0 + 

𝐶 4 
𝑟 2 

. (7)
746 
 

𝑝 
𝑟 
= 

1 − 2 𝜈
𝐸 

[ 

1 
2 
(
𝑘 1 𝜎𝑌 ln 𝑟 + 𝐶 3 

)
+ 2 𝑘 1 𝐾 ∫

𝑟 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

− 

2 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑎 

𝑟 1 
(
𝜀 
𝑝 
eq 
)𝑛 d 𝑟 1 − 

3 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑎 

{ 

𝑟 2 ∫
𝑟 2 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

d 𝑟 2 

] 

+ 

7 − 6 𝜈
4 𝐸 

𝑘 1 𝜎𝑌 + 

2 ( 1 − 𝜈) 
𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 + 

1 
2 
𝛼𝑇 𝑎 

+ 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ln 

(
𝑏 

𝑎 

) { 

ln 
(
𝑟 

𝑎 

)
+ 

3 
2 

} 

− 

1 
2 
𝜀 0 − 

𝐶 4 
𝑟 2 

. (8) 

 

𝑝 
𝑧 
= 𝜀 0 − 

1 − 2 𝜈
𝐸 

{ 

𝑘 1 𝜎𝑌 ln 𝑟 + 𝐶 3 + 𝑘 1 𝐾 ∫
𝑟 

𝑎 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

− 

1 − 𝜈

𝐸 

𝑘 1 𝜎𝑌 − 

1 − 𝜈

𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 

− 𝛼𝑇 𝑎 − 𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

) ln ( 𝑟 

𝑎 

)
ln 
(

𝑏 

𝑎 

) . (9) 

The equivalent plastic strain 𝜀 
𝑝 
eq is given by 

 

𝑝 
eq = 

√ 

2 
3 
𝜀 
𝑝 

𝑖𝑗 
𝜀 
𝑝 

𝑖𝑗 
, (10)

here 𝜀 
𝑝 

𝑖𝑗 
denotes the component of the plastic part of the strain tensor.

Plastic zone II, c ≤ r ≤ d : 

Using the Tresca yield criterion ( Eq. (4 )) and its associated flow rule

long with the strain compatibility [19] , the elastic–plastic radial and

oop stresses are obtained as 

𝑟 = 𝐶 5 𝑟 
−1+ 

√
2 ( 1− 𝜈) + 𝐶 6 𝑟 

−1− 
√
2 ( 1− 𝜈) + 

𝑘 1 𝜎𝑌 
( 2 𝜈 − 1 ) 

+ 

𝑘 1 𝐾 𝑟 −1+ 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 + 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) ∫

𝑟 

𝑐 

𝑟 1 
− 
√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 

− 

𝑘 1 𝐾 𝑟 −1− 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 − 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) ∫

𝑟 

𝑐 

𝑟 1 

√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 

+ 

𝐸𝛼𝑇 𝑎 

( 2 𝜈 − 1 ) 
+ 

𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
( 2 𝜈 − 1 ) 

ln 
(

𝑟 

𝑎 

)
ln 
(

𝑏 

𝑎 

)

− 

2 𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
( 2 𝜈 − 1 ) 2 ln 

(
𝑏 

𝑎 

) − 

𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
( 2 𝜈 − 1 ) ln 

(
𝑏 

𝑎 

) − 

𝐸 𝜀 0 
( 2 𝜈 − 1 ) 

, (11) 

𝜃 = 𝐶 5 
√
2 ( 1 − 𝜈) 𝑟 

√
2 ( 1− 𝜈) −1 − 𝐶 6 

√
2 ( 1 − 𝜈) 𝑟 − 

√
2 ( 1− 𝜈) −1 + 

𝑘 1 𝜎𝑌 
( 2 𝜈 − 1 ) 

+ 

𝑘 1 𝐾 

√
2 ( 1 − 𝜈) 𝑟 

√
2 ( 1− 𝜈) −1 

{ 

1 − 𝜈 + 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) 

×∫
𝑟 

𝑐 

𝑟 1 
− 
√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 

+ 

𝑘 1 𝐾 

√
2 ( 1 − 𝜈) 𝑟 − 

√
2 ( 1− 𝜈) −1 

{ 

1 − 𝜈 − 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) 

×∫
𝑟 

𝑐 

𝑟 1 

√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 + 𝜈𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 

+ 

𝐸𝛼𝑇 𝑎 

( 2 𝜈 − 1 ) 
+ 

𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
( 2 𝜈 − 1 ) 

ln 
(

𝑟 

𝑎 

)
ln 
(

𝑏 

𝑎 

) − 

2 𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
( 2 𝜈 − 1 ) 2 ln 

(
𝑏 

𝑎 

) − 

𝐸 𝜀 0 
( 2 𝜈 − 1 ) 

. 

(12) 



S.M. Kamal et al. International Journal of Mechanical Sciences 131–132 (2017) 744–752 

 

b

 

s  

z

𝜀

 

r  

c  

p  

v  

t  

z

 

p  

p  

a  

b  

𝜎  

t  

w  

v  

E  

p  

d  

𝜀  

E  

u  

u  

T  

t  

u  

t  

a  

t  

p  

w  

a

3

 

z  

a

𝜎  

 

n  

𝜎  

 

i  

c  

C  

s  

[  

L  

f

 

e

𝜎  

𝜎  

 

a

𝜀

𝜀

𝜀

 

g

𝜎

 

f  

s  
The expression for 𝜎z can be obtained from the Tresca criterion given

y Eq. (4) . 

Using the Tresca associated flow rule, the plastic part of the hoop

train in the plastic zone is obtained as zero implying 𝜀 
𝑝 
𝑟 = − 𝜀 

𝑝 
𝑧 . In this

one, the plastic strains are given by 

 

𝑝 
𝑟 
= − 𝜀 𝑝 

𝑧 
= 

𝐶 5 
𝐸 

𝑟 −1+ 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 − 𝜈
√
2 ( 1 − 𝜈) 

} 

+ 

𝐶 6 
𝐸 

𝑟 −1− 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 + 𝜈
√
2 ( 1 − 𝜈) 

} 

+ 

𝑘 1 𝐾 𝑟 −1+ 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 − 𝜈
√
2 ( 1 − 𝜈) 

} { 

1 − 𝜈 + 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) 𝐸 

×∫
𝑟 

𝑐 

𝑟 1 
− 
√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 

− 

𝑘 1 𝐾 𝑟 −1− 
√
2 ( 1− 𝜈) 

{ 

1 − 𝜈 + 𝜈
√
2 ( 1 − 𝜈) 

} { 

1 − 𝜈 − 𝜈
√
2 ( 1 − 𝜈) 

} 

2 
√
2 ( 1 − 𝜈) 𝐸 

×∫
𝑟 

𝑐 

𝑟 1 

√
2 ( 1− 𝜈) (𝜀 𝑝 eq )𝑛 d 𝑟 1 

+ 

(
1 − 𝜈2 

)𝑘 1 𝐾 

𝐸 

(
𝜀 
𝑝 
eq 
)𝑛 + 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
ln 
(

𝑏 

𝑎 

) ( 1 + 𝜈) 
( 2 𝜈 − 1 ) 

, (13) 

The constants C 5 and C 6 are determined by using the continuity of

adial stresses and plastic strains at the elastic–plastic interface. The

ontinuity of radial stresses at the interface of the plastic zones I and II

rovides the constant C 3 and the continuity of plastic hoop strain pro-

ides the constant C 4 . The constant axial strain 𝜀 0 is obtained by using

he free-end condition, i.e., making the resultant of the axial stresses

ero. 

To evaluate the unknown boundary radii, c and d , a numerical

rocedure needs to be used. The procedure involves an iterative ap-

roach to estimate the values of c and d . The initial estimates for c

nd d can be obtained from non-hardening case ( K = 0) by using the

oundary conditions of vanishing radial stress at the inner radius and

𝜃

( plastic zone II ) = 𝜎𝑧 
( plastic zone II ) 

at r = c and solving them using FSOLVE func-

ion in MATLAB 

®. The initial guess value of 𝜀 
𝑝 
eq is taken as zero every-

here in the plastic zones I and II. With these values of c and d , the

alues of 𝜀 
𝑝 

𝜃
, 𝜀 

𝑝 
𝑟 and 𝜀 

𝑝 

0 are updated in Eqs. (7) − (9) for plastic zone I.

q. (10) provides the updated values of 𝜀 
𝑝 
eq at any radial position in the

lastic zone I. Similarly, using Eq. (13) , the values of 𝜀 
𝑝 
𝑟 at different ra-

ial positions in the plastic zone II are updated. The updated values of

 

𝑝 
eq at different radial positions in the plastic zone II are obtained from

q. (10) . These values of equivalent plastic strain are used to obtain the

pdated components of plastic strain. From these components, the val-

es of 𝜀 
𝑝 
eq are updated further for fixed c and d in both the plastic zones.

his procedure is repeated till the convergence in 𝜀 
𝑝 
eq is achieved. The in-

egral terms involved in the expressions can be evaluated numerically by

sing two-Gauss-point formula. Now, using the converged values of 𝜀 
𝑝 
eq ,

he boundary conditions of vanishing radial stress at the inner radius

nd 𝜎𝜃
( plastic zone II ) = 𝜎𝑧 

( plastic zone II ) 
at r = c are solved again to get the new es-

imates of c and d . If these new estimates of c and d are same as the

reviously estimated values of c and d the procedure is stopped, other-

ise the whole procedure is repeated till the convergence for c and d is

chieved. 

.2. Second stage of elastic–plastic deformation 

In the second stage of elastic–plastic deformation, the outer plastic

one, i.e., plastic zone III ( f ≤ r ≤ b ), develops in the wall of the cylinder

ccording to the Tresca yield criterion given by 

𝜃 − 𝜎𝑟 = − 𝑘 1 𝜎eq , 𝜎𝑧 − 𝜎𝑟 = − 𝑘 1 𝜎eq (14)

Another plastic zone, i.e., plastic zone IV ( e ≤ r ≤ f ) develops simulta-

eously along with the plastic zone III as per the Tresca yield criterion:
747 
𝜃 − 𝜎𝑟 = − 𝑘 1 𝜎eq . (15)

The stress and strain expressions for the plastic zones I and II dur-

ng the second stage of elastic–plastic deformation are same as in the

ase of first stage of elastic–plastic deformation. However, the constants

 3 , C 4 , C 5 and C 6 change due to change of continuity conditions. The

tress solutions in the intermediate elastic zone are available in Ref.

19] . The equations for stresses and plastic strains incorporating the

udwik’s hardening law in the plastic zones III and IV are obtained as

ollows: 

Plastic zone III, f ≤ r ≤ b : 

Using the Tresca yield criterion ( Eq. (14 )) and the stress equilibrium

quation, the radial, hoop and axial stresses are given by 

𝑟 = − 𝑘 1 𝜎𝑌 ln 𝑟 − 𝑘 1 𝐾 ∫
𝑟 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 𝐶 7 , (16)

𝜃 = 𝜎𝑧 = − 𝑘 1 𝜎𝑌 ( 1 + ln 𝑟 ) − 𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 − 𝑘 1 𝐾 ∫

𝑟 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 𝐶 7 . (17)

The plastic parts of the hoop, radial and axial strains are obtained in

 similar way as described in Section 3.1 and are given by 

 

𝑝 

𝜃
= 

1 − 2 𝜈
𝐸 

[ 
1 
2 
(
𝐶 7 − 𝑘 1 𝜎𝑌 ln 𝑟 

)
− 

2 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑓 

𝑟 1 
(
𝜀 
𝑝 
eq 
)𝑛 d 𝑟 1 

+ 𝑘 1 𝐾 ∫
𝑟 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 − 

3 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑓 

{ 

𝑟 2 ∫
𝑟 2 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

d 𝑟 2 

] 

+ 

3 − 2 𝜈
4 𝐸 

𝑘 1 𝜎𝑌 + 

1 − 𝜈

𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 + 

1 
2 
𝛼𝑇 𝑎 

+ 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ln 

(
𝑏 

𝑎 

) { 

ln 
(
𝑟 

𝑎 

)
− 

3 
2 

} 

− 

1 
2 
𝜀 0 + 

𝐶 8 

𝑟 2 
, (18) 

 

𝑝 
𝑟 
= 

1 − 2 𝜈
𝐸 

[ 

1 
2 
(
𝐶 7 − 𝑘 1 𝜎𝑌 ln 𝑟 

)
− 2 𝑘 1 𝐾 ∫

𝑟 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

+ 

2 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑓 

𝑟 1 
(
𝜀 
𝑝 
eq 
)𝑛 d 𝑟 1 + 

3 𝑘 1 𝐾 

𝑟 2 ∫
𝑟 

𝑓 

{ 

𝑟 2 ∫
𝑟 2 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

d 𝑟 2 

] 

− 

7 − 6 𝜈
4 𝐸 

𝑘 1 𝜎𝑌 − 

2 ( 1 − 𝜈) 
𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 + 

1 
2 
𝛼𝑇 𝑎 

+ 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ln 

(
𝑏 

𝑎 

) { 

ln 
(
𝑟 

𝑎 

)
+ 

3 
2 

} 

− 

1 
2 
𝜀 0 − 

𝐶 8 

𝑟 2 
, (19) 

 

𝑝 
𝑧 
= 𝜀 0 − 

1 − 2 𝜈
𝐸 

{ 

− 𝑘 1 𝜎𝑌 ln 𝑟 + 𝐶 7 − 𝑘 1 𝐾 ∫
𝑟 

𝑓 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

+ 

1 − 𝜈

𝐸 

𝑘 1 𝜎𝑌 

+ 

1 − 𝜈

𝐸 

𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 − 𝛼𝑇 𝑎 − 𝛼

(
𝑇 𝑏 − 𝑇 𝑎 

) ln ( 𝑟 

𝑎 

)
ln 
(

𝑏 

𝑎 

) . (20) 

Plastic zone IV, e ≤ r ≤ f : 
Using Eq. (15) in stress equilibrium equation, the radial stress is

iven by 

𝑟 = 
𝐸𝛼

( 2 𝜈 − 1 ) 
𝑇 𝑎 + 

𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ( 1 − 𝜈) ln 

(
𝑏 

𝑎 

)[ 
1 

( 2 𝜈 − 1 ) 

{ 

ln 
(
𝑑 

𝑎 

)
+ 1 

2 
− 𝑒 

2 

2 𝑑 2 

} 

− ln 
(
𝑒 

𝑎 

)] 

+ 
{ 

1 
2 𝜈 − 1 

( 

1 + 𝑒 
2 

2 𝑑 2 

) 

+ 1 
2 
− ln 

(
𝑟 

𝑒 

)} 

𝑘 1 𝜎𝑌 + 
𝐸 𝜀 0 

( 1 − 2 𝜈) 
− 𝑘 1 𝐾 ∫

𝑟 

𝑒 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 . 

(21) 

Knowing the expression for 𝜎r , the expression for 𝜎𝜃 can be obtained

rom Eq. (15) . The Tresca associated flow rule indicates that the axial

train in the plastic zone IV is wholly elastic. Hence, the axial stress
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Table 1 

Material properties of aluminum. 

Yield stress, 𝜎Y 

(MPa) 

Modulus of 

elasticity, E 

(GPa) 

Poisson’s ratio, 𝜈 Coefficient of 

thermal expansion, 𝛼

(/°C) 

Mass density, 𝜌

(kg/m 

3 ) 

Thermal 

conductivity, k 

(W/m. K) 

Specific heat, c p 
(J/kg. K) 

50 .3 69 0 .30 22 .2 ×10 − 6 2700 205 900 
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Fig. 2. Elastic–plastic stresses in aluminum cylinder: (a) plane-stress, (b) generalized- 

plane-strain. 

t  

v  

i  

o  

w  

f  

p

 

d  

a  

s  

a  

s  

r  

r  

d  

g

omponent can be obtained by using the generalized Hooke’s law [19] .

he resulting expression for axial stress is given by 

𝑧 = 

𝐸𝛼

( 2 𝜈 − 1 ) 
𝑇 𝑎 + 

𝐸𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ( 1 − 𝜈) ln 

(
𝑏 

𝑎 

)[ 
2 𝜈

( 2 𝜈 − 1 ) 

{ 

ln 
(
𝑑 

𝑎 

)
+ 

1 
2 
− 

𝑒 2 

2 𝑑 2 

} 

+2 𝜈 ln 
(
𝑟 

𝑒 

)
− 2 ln 

(
𝑟 

𝑎 

)]
+ 

{ 

2 𝜈
2 𝜈 − 1 

( 

1 + 

𝑒 2 

2 𝑑 2 

) 

− 2 𝜈 ln 
(
𝑟 

𝑒 

)} 

𝑘 1 𝜎𝑌 + 

𝐸 𝜀 0 
( 1 − 2 𝜈) 

−2 𝜈𝑘 1 𝐾 ∫
𝑟 

𝑒 

(
𝜀 
𝑝 
𝑒𝑞 

)𝑛 
𝑟 1 

d 𝑟 1 − 𝜈𝑘 1 𝐾 

(
𝜀 
𝑝 
eq 
)𝑛 
. (22)

The plastic part of the hoop strain, 𝜀 
𝑝 

𝜃
(= − 𝜀 

𝑝 
𝑟 ) is given by 

 

𝑝 

𝜃
= 

𝛼
(
𝑇 𝑏 − 𝑇 𝑎 

)
2 ( 1 − 𝜈) ln 

(
𝑏 

𝑎 

)(
𝜈2 − 1 

)
+ 

(
1 − 𝜈2 

)𝑘 1 𝜎𝑌 
𝐸 

+ 

4 𝜈2 

𝐸 𝑟 2 
𝑘 1 𝐾 ∫

𝑟 

𝑒 

{ 

𝑟 2 ∫
𝑟 2 

𝑒 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 

} 

d 𝑟 2 

+ 

2 𝜈2 

𝐸 𝑟 2 
𝑘 1 𝐾 ∫

𝑟 

𝑒 

𝑟 1 
(
𝜀 
𝑝 
eq 
)𝑛 d 𝑟 1 + 

(
1 − 𝜈2 

)𝑘 1 𝐾 

𝐸 

(
𝜀 
𝑝 
eq 
)𝑛 

− 

2 𝜈2 𝑘 1 𝐾 

𝐸 

∫
𝑟 

𝑒 

(
𝜀 
𝑝 
eq 
)𝑛 

𝑟 1 
d 𝑟 1 + 

𝐶 9 

𝑟 2 
. (23)

The constants C 5 and C 6 are obtained by employing the continuity

ondition of radial stresses and radial plastic strains at the elastic–plastic

nterface radius d . The constant C 3 is obtained by using continuity of ra-

ial stresses at r = c . The continuity condition of the plastic hoop strains

t r = c provides the constant C 4 . To obtain the constant C 7 , continuity

f the radial stresses at r = f can be employed. The constants C 9 and C 8 

an be obtained by using the boundary conditions of continuity of the

lastic part of the hoop strains at the interface radii e and f , respectively.

he constant axial strain 𝜀 0 in the second stage of elastic–plastic defor-

ation can be obtained by using the free-end condition. The interface

adii c, d, e and f are obtained in a manner similar to that described in

ection 3.1 . 

. Numerical simulations 

In this section, numerical simulations with the plane-stress and

eneralized-plane-strain models are carried out for a typical cylinder.

he objective is to compare the solutions for stresses and plastic strains

f these two models under a radial thermal gradient. An aluminum cylin-

er with a = 10 mm and b = 20 mm is considered. The material properties

f aluminum are provided in Table 1 . 

The hardening coefficient K and strain hardening exponent n for the

ylinder are taken as 58.18 MPa and 0.482 [18] . The temperature dif-

erence required to initiate the yielding at the inner wall of the cylin-

er is obtained as 53.66 °C for plane stress model and 37.56 °C for gen-

ralized plane strain model. The simulation is carried out for a tem-

erature difference, ( T b − T a ) = 75 °C. With this temperature gradient

echanical and thermal properties do not vary much [24] . The inner

all is assumed to be at T a = 25 °C. According to plane stress model,

or ( T b − T a ) = 75 °C, the cylinder undergoes first stage of elastic–plastic

eformation with an inner plastic zone propagating outwards up to a ra-

ius c = 11.0121 mm. However, as per generalized plane strain model,
748 
he cylinder undergoes second stage of elastic–plastic deformation di-

iding the cylinder wall into two inner-plastic, two outer-plastic and an

ntermediate-elastic zone. At the inner wall, plastic zone I propagates

utwards to a radius c = 11.4973 mm and plastic zone II propagates out-

ards to a radius d = 12.0215 mm. A plastic zone III propagates inwards

rom the outer radius to a radius f = 19.0966 mm and plastic zone IV

ropagates inwards to a radius e = 18.3296 mm. 

The elastic–plastic stresses generated in different zones of the cylin-

er for plane stress and generalized plane strain conditions are shown

long a radial path in Fig. 2 . It is observed from Fig. 2 (a) that for plane

tress case, the maximum value of hoop stress in the cylinder is gener-

ted at the inner radius of the cylinder and is tensile in nature. Fig. 2 (b)

hows that the maximum value of hoop stress exists at the interface

adius c and the maximum value of axial stress exists at the interface

adius d as per generalized plane strain model. The magnitudes of ra-

ial stresses along the radial path are smaller for plane stress as well as

eneralized plane strain model. 
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Fig. 3. Plastic strain distribution in aluminum cylinder: (a) plane-stress, (b) generalized- 

plane-strain. 
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Fig. 4. Residual stress distribution in aluminum cylinder: (a) plane-stress, (b) generalized- 

plane-strain. 
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The plastic parts of radial, hoop and axial strains produced in the

ylinder are obtained for both plane stress and generalized plane strain

odels ( Fig. 3 ). It is observed from Fig. 3 (a) that the plastic parts

f strains are numerically very small for plane stress case. However,

ig. 3 (b) shows that for generalized plane strain case, although the plas-

ic parts of strains are larger in magnitude as compared to plane stress

ase, their magnitudes are still small (of the order of 10 − 3 ). Thus, the

agnitude of equivalent plastic strain generated in the cylinder is also

ot very substantial. As the value of equivalent stress 𝜎eq in the plas-

ic zone for yielding depends on the equivalent plastic strain, here the

alue of 𝜎eq will not deviate much from 𝜎Y . The maximum deviation

f 𝜎eq from 𝜎Y is only 2% for the plane stress condition and 4.87% for

he generalized plane strain condition. The maximum equivalent plastic

train occurs at the inner radius. 

When the temperature difference ( T b − T a ) is removed, i.e., when

he cylinder is cooled to room temperature, the residual stresses are set

p in the wall of the cylinder. Considering the unloading process to be

ompletely elastic, the residual stresses can be obtained by subtract-

ng the thermo-elastic stresses [21] from the respective stress equations

f elastic–plastic zones. The resulting residual stress distribution in the

ylinder for the plane stress and the generalized plane strain condition

s shown in Fig. 4 . It is observed from Fig. 4 (a) and (b) that the com-

ressive residual hoop stresses are generated at and around the inner

adius of the cylinder. For the same temperature difference, the gen-
749 
ralized plane strain model predicts larger magnitude of compressive

esidual hoop stress at the inner radius. Fig. 4 (b) shows that for gener-

lized plane strain condition the axial residual stresses generated at and

round the inner radius of the cylinder are also compressive. The com-

ressive residual stresses at and around the inner radius of the cylinder

elps in reducing the net maximum stress produced in the cylinder in

he next loading stage. This amounts to increase the load carrying ca-

acity of the cylinder. The magnitudes of tensile hoop and axial stresses

re small at and around the outer wall of the cylinder. 

. Three-dimensional finite-element modeling of elastic plastic 

tresses in thick cylinders due to temperature gradient 

From the numerical simulations of both the plane stress and gen-

ralized plane strain analytical models, it is not clear which model is

alid for a particular length of the cylinder. To assess the validity of the

nalytical models, a 3D FEM analysis using ABAQUS 6.10 package is

arried out. A homogeneous thick-walled hollow cylinder with inner ra-

ius a and outer radius b is considered. The inner wall is subjected to a

emperature T a and the outer wall is subjected to a temperature T b such

hat T b > T a . The problem is solved using ABAQUS standard code. Under

he radial temperature difference, ( T b − T a ), the steady state condition

s assumed in ABAQUS standard simulation. The strain hardening of the

aterial during plastic deformation is considered. For comparison of the

EM results with the plane-stress and generalized-plane-strain models,

he analytical solution developed in [18] and the stress solution devel-
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Table 2 

Mesh sensitivity analysis. 

Mesh Number of elements in Maximum value of Screentime (s) 

Radial direction Circumferential 

direction 

Axial direction Radial stress 

(MPa) 

Hoop stress 

(MPa) 

Axial stress 

(MPa) 

Mesh 1 6 4 25 20 .61 48 .71 58 .20 2 

Mesh 2 12 4 25 11 .45 59 .50 58 .04 5 

Mesh 3 24 4 25 10 .48 62 .40 58 .00 16 

Mesh 4 48 4 25 10 .58 63 .14 57 .99 34 

Mesh 5 24 8 25 12 .39 59 .71 58 .34 35 

Mesh 6 24 16 25 12 .63 61 .07 59 .18 247 

Mesh 7 24 32 25 12 .74 62 .24 61 .28 926 

Mesh 8 24 64 25 12 .90 62 .90 62 .29 2959 

Mesh 9 24 32 50 12 .74 62 .76 61 .21 3664 

Mesh 10 24 32 100 12 .73 62 .93 61 .19 4346 

Mesh 9 indicated in the boldfaced is the optimum mesh. 

Table 3 

Comparison of stresses between 3D FEM and analytical models. 

L /( b − a ) L 2 norm of error in stresses L 2 norm of error in stresses between 

between FEM and plane stress (MPa) FEM and generalized plane strain (MPa) 

𝜎r 𝜎𝜃 𝜎z 𝜎r 𝜎𝜃 𝜎z 

10 5 .5849 26 .7094 134 .5956 2 .4418 4 .3992 2 .5369 

8 5 .5148 27 .3775 136 .0487 2 .5578 4 .7597 2 .7440 

6 5 .9687 29 .4939 137 .3141 2 .4754 7 .6960 4 .1740 

5 7 .4358 28 .3009 133 .9557 4 .9296 8 .7777 11 .7016 

4 7 .8224 40 .6167 112 .6305 3 .8787 31 .2258 24 .3158 

2 4 .6443 36 .8936 30 .4968 4 .9293 43 .5744 110 .0771 

1 3 .4278 5 .1446 3 .6140 8 .2861 33 .3531 135 .7536 

0 .5 2 .7080 3 .7979 1 .3881 7 .1190 33 .2992 136 .0458 

The boldfaced values correspond to the cases in which all stress components show less than 10% 

error. 
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Fig. 5. Schematic of 3D part in ABAQUS along with the boundary conditions. 
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ped in Section 3 are used. The detailed analysis of 3D FEM is presented

n the following subsections. 

.1. 3D finite-element modeling 

A 3D FEM model for analysing thermo-elastic–plastic stresses in the

ylinder under the radial temperature difference was developed using

ommercial finite element package ABAQUS 6.10. A coupled thermo-

echanical approach is used to obtain the steady-state thermal stress so-

utions in ABAQUS/Standard. In thermal autofrettage process, the cylin-

er is subjected to non-homogeneous elastic–plastic deformation due to

adial thermal gradient between the outer and inner wall of the cylin-

er. Hence, for the stress solution in thermal autofrettage process, cou-

led temperature-displacement elements of ABAQUS/Standard [25] are

sed. The part considered for the 3D FEM analysis is a thick-walled solid

xtruded cylinder with open ends. 

.2. Material properties 

An aluminum cylinder is considered. The inner and outer radii of the

ylinder are taken as 10 mm and 20 mm, respectively. The temperature

ifference across the wall thickness of the cylinder is taken as 75 °C.

he thermal stress analysis during the thermal loading and unloading of

ylinder for different lengths is carried out. The mechanical and thermal

roperties of aluminum are presented in Table 1 . The model used von

ises criterion with isotropic hardening. 

.3. Boundary conditions and mesh generation 

The thermal stresses in the cylinder are induced due to the radial

hermal gradient across the wall thickness. For analyzing the thermal

tress, the Dirichlet temperature boundary conditions are specified at

he inner and outer surfaces of the cylinder. The temperature of the

nner surface is prescribed as T = 25 °C and that of the outer surface is
a 

750 
rescribed as T b = 100 °C. At each node, there are three translational de-

rees of freedom, viz., radial displacement u r , circumferential displace-

ent u 𝜃 and axial displacement u z . In the analysis, the circumferential

isplacement, u 𝜃 vanishes. This implies that the rotation in the circum-

erential direction is constrained, but the cylinder is free to expand axi-

lly and radially. A schematic of the 3D part in ABAQUS along with the

hermal and displacement boundary conditions is shown in Fig. 5 . 

An eight-node continuum C3D8T thermally coupled brick, trilinear

isplacement and temperature element is used to generate the mesh

n the cylinder. The meshed cylinder is shown in Fig. 6 . Although the

ylinder is modeled as open-ended, the axial stresses are produced in it

ue to the thermal gradient. When the inner surface of the cylinder is

t a temperature lower than that of the outer surface, the tendency to

xpand in the axial direction is less in the vicinity of the inner surface

han in the vicinity of the outer one. This causes tensile axial stresses on

he inner side and compressive axial stresses at the outer side. However,

he resultant axial force due to these stresses is zero. 
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Fig. 6. Cylindrical geometry with typical C3D8T element. 
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Fig. 7. Comparison of elastic–plastic stresses between 3D FEM and (a) generalized-plane- 

strain for L/ ( b − a ) = 10, (b) plane-stress for L/ ( b − a ) = 0.5 in aluminum cylinder. 
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.4. Mesh sensitivity analysis 

A mesh sensitivity analysis is carried out in order to select an

ppropriate mesh size. The mesh sensitivity analysis is presented in

able 2 based on the maximum values of radial, hoop and axial stresses

enerated in the cylinder. The length of the cylinder was taken as

00 mm. It is observed from Table 2 that the Mesh 9 with 24 elements

n the radial direction, 32 elements in the circumferential direction and

0 elements in the axial direction leads to the convergent mesh. This

esh has a total of 38,400 elements. Mesh 9 provides less than 1% de-

iation in the solution in comparison to Mesh 8 and Mesh 10. Hence, it

s considered as the optimum mesh. The thermo-elastic–plastic stresses

enerated in the cylinder are analyzed varying the length of the cylinder

sing Mesh 9. A comparative study with the plane stress and generalized

lain strain models is presented for different length to wall-thickness ra-

ios of the cylinder in Section 5.5 . 

.5. Comparison of 3D finite element elastic–plastic thermal stresses with 

lane-stress and generalized-plane-strain models for different length to wall 

hickness ratios of cylinder 

The 3D FEM simulations are carried out for different length to wall

hickness ratios of the cylinder and the results are compared with ana-

ytical plane stress and generalized plane strain model. The present FEM

nalysis is carried out in 2.40-GHz processor and 2.60-GB random-access

emory (RAM) ACER PC and it takes about 1 h of screen time. However,

he analytical models provide the solution in less than 10 min. The com-

arison of radial, hoop and axial stresses between 3D FEM and analytical

odels along the radial path for different length to wall thickness ratio

s shown in Table 3 using L 2 norm of error in stresses. The stresses along

 radial path from the 3D ABAQUS finite element model are obtained

onsidering a radial path at the mid-length of the cylinder. The stresses

long a radial path at the edges become sufficiently low in FEM model

nd are not taken into account for the analysis. 

It is observed from Table 3 that L 2 norm of error in stresses between

D FEM and generalized plane strain are reasonably small when the

ength to wall thickness ratio of the cylinder is greater than or equal

o 6. Thus, the generalized plane strain model is well established for

 /( b − a ) ≥ 6. It is also observed from Table 3 that when L /( b − a ) ≤ 1,

he L 2 norm of error between 3D FEM and plane stress becomes smaller.

his shows that the plane stress analytical model is valid for length to

all thickness ratio, L /( b − a ) ≤ 1. The comparison of 3D finite element

olutions with the generalized plane strain model for L /( b − a ) = 10 is

hown in Fig. 7 (a). Fig. 7 (b) shows the comparison of 3D finite element
751 
esults with the plane stress model for L /( b − a ) = 0.5 in aluminum cylin-

er. 

.6. Residual stress solutions 

The whole cylinder is cooled to room temperature (25 °C) by im-

osing the cooling boundary condition in ABAQUS/Standard. This gen-

rates the residual stresses in the cylinder. The finite element resid-

al stresses in the cylinder are obtained along a radial path at the

id-length. The results for long and short cylinders are depicted in

ig. 8 along with the predictions of generalized plane strain model for

/ ( b − a ) = 10 and plane stress model for L/ ( b − a ) = 0.5. It is observed

hat the finite element predictions of the residual stresses are in close

greement with the analytical models. 

. Conclusions 

The main objective of this work is to compare thermo-elastic–plastic

lane-stress and generalized-plane-strain analyses with 3D FEM simula-

ions. For the plane-stress analysis, the model of Kamal and Dixit [18] is

sed. For the generalized-plane-strain analysis, the model of Kamal and

ixit [19] is extended to incorporate the effect of strain hardening. The

EM results are compared with the analytical solutions for different

ength to wall thickness ratio, L /( b − a ), of the cylinder. The compar-

son suggests the applicability of the developed analytical models on

he basis of L /( b − a ) ratio of the cylinder. The generalized plane strain

nalytical model provides realistic solution for L /( b − a ) ≥ 6. Thus, this
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Fig. 8. Comparison of residual stresses between 3D FEM and (a) generalized-plane-strain 

for L/ ( b − a ) = 10, (b) plane-stress for L/ ( b − a ) = 0.5 in aluminum cylinder. 
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odel is suitable for long cylinders such as gun barrels, pressure vessels

nd thick pipes subjected to thermal gradient. The plane stress analyti-

al model provides good results for very short cylinders (thin disks) such

s fastener holes with L /( b − a ) ≤ 1. It is to be noted that the CPU time

equired is much more in case of FEM analysis compared to the solution

btained by analytical models. Thus, the analytical models have their

wn importance mainly due to computational efficiency. The validity

f the plane-stress and the generalized-plane-strain assumptions is in-

erred based on the same material model and the fixed b/a ratio. This

tudy highlights that for L /( b − a ) ratio between 1 and 6, a 3D analysis

s required. For other types of cylinder, the range of L /( b − a ) requiring

D analysis may differ. It will be interesting to carry out a similar study

or a number of cylinder geometries, loading conditions and material

odel formulations, and develop a generalized criterion for the validity

f each model. 
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