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Abstract 

      Recent experimental investigations of small model boats propelled by propagating 

flexural waves carried out by the present author and his co-workers demonstrated viability of 

this type of propulsion as an alternative to a well-known screw propeller. Since the amplitudes 

of propagating flexural waves propelling the model boats are large enough, it is natural to 

consider the effect of nonlinear distortion of propagating localised flexural waves on 

generated thrust. This problem is explored in the present work by adding nonlinear harmonics 

of propulsive flexural waves to the well-known Lighthill's formula for generated thrust, which 

predicts a zero value of thrust in the case of linear flexural wave of constant amplitude. For 

simplicity, only the lowest (third) harmonic growing linearly with the distance of propagation 

is used. The resulting formula for the averaged thrust shows that, due to the effect of the third 

harmonic, the thrust is no longer zero, thereby demonstrating that nonlinear distortion of the 

propulsive flexural waves contributes positively to the generated thrust.  
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1.  Introduction  

 

      It is well known that the most common method of aquatic propulsion used in existing 

marine vessels is a screw propeller. It has a simple design, and it is reliable and efficient. 

However, the conventional propeller has a number of disadvantages. Among them are the 

presence of cavitation and generation of the associated under-water noise. Another big 

disadvantage associated with a propeller is a shaft-sealing problem. This problem is especially 

serious for deep-water exploration submarines operating under high hydrostatic pressures, 

whereas the need in such submarines has become apparent during the ecological disaster a 

few years ago at one of the deep-water oil rigs in the Gulf of Mexico.  

      To overcome the above-mentioned problems associated with a propeller, one could use 

alternative aquatic propulsive systems, in particular those taking inspiration from nature and 

attempting to emulate undulating fish swimming modes by using natural or artificially 

simulated wave motion in different immersed structures.  

       One of the first investigations of this kind has been undertaken by Botman (1965) who 

demonstrated the feasibility of using a mechanically excited undulating plate to propel a 

model catamaran. He has demonstrated experimentally that this type of propulsion is viable 

and it has a number of advantages over a propeller, such as the absence of shaft-sealing 

problem, low underwater noise (due to the absence of cavitation), safe environment for 
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swimmers, small idling drag and good thrust control. Paidoussis (1976) used a similar model 

catamaran with a submerged undulating plate. It is important to note that in both 

investigations mentioned above the authors tried to emulate the so-called ‘anguilliform’ fish 

swimming mode, which is a subcategory of the more general type of body and/or caudal fin 

locomotion (BCF) (Stakiotakis et al, 1999; Paidoussis, 2004; Colgate et al, 2004).  

       In more recent works, the anguilliform and other types of BCF locomotion have been 

subjected to numerous investigations and engineering imitations, using undulating plates, 

simple oscillating fins, or artificial waving structures made of linked fragments, each of them 

being actuated by a separate servo motor (Triantafyllou and Triantafyllou, 1995; Triantafyllou 

et al, 2000; Yamamoto et al, 1995; Sfakiotakis et al, 1999; Wolfgang et al, 1999; Guo et al. 

2003; Guglielmini et al, 2003; Schouveiler et al, 2005; Terada et al, 2006; Heo et al, 2007). 

One should note, however, that practical applications of anguilliform and other types of BCF 

propulsion are limited to unmanned autonomous underwater vehicles (AUV), which can be 

used for research and surveillance operations. For manned vessels the anguilliform and BCF 

propulsion is unsuitable, as the main body of the vessel in this case would be subject to 

intensive vibrations in reaction to the propulsion, which would make onboard conditions 

unsustainable for the crew and passengers.  

       For the above reason, emulating of another type of fish locomotion, the so-called median 

and/or paired fin (MPF) locomotion seems to be more suitable for manned vessels. One of the 

subcategories of this locomotion, called 'rajiform', which seems to be most suitable, is used in 

nature by stingrays and skates (Stakiotakis et al, 1999). There are several published 

experimental works that try to emulate rajiform mode of swimming in order to propel marine 

vessels (see e.g. Takagi et al, 2006; Low, 2009). In all these works, the authors use artificially 

created waving fins made of linked elements actuated by separate servo motors, which results 

in rather complicated constructions of the propulsion systems.  
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       The idea of wave-like aquatic propulsion of manned marine vessels that is considered in 

this paper has been first published by the present author (Krylov, 1994). This idea is based on 

employing the 'rajiform' type locomotion which is implemented using a special type of 

localised (guided) flexural waves freely propagating along edges of wedge-like structures 

immersed in water, also known as 'wedge elastic waves' (see Fig. 1). Different wedge-like 

structures supporting this type of guided localised elastic waves can be attached to a body of a 

small ship or a submarine as keels or wings that are to be used for aquatic propulsion.  

      The above-mentioned wedge elastic waves propagating in contact with water have been 

first predicted and investigated theoretically by the present author (Krylov, 1994, 1998). The 

principle of using localised elastic waves as a source of aquatic propulsion is similar to that 

used in nature by stingrays. It is vitally important for the application of localised elastic waves 

for propulsion of marine vessels that, in spite of vibration of the fins, the main body of the 

craft remains undisturbed because the energy of localised waves is concentrated near the 

wings’ tips (Krylov, 1994). This permits this method to be used for propulsion of manned 

marine vessels.  

      Comparing this method of propulsion with the methods developed in the other works 

emulating rajiform type locomotion using systems of actuators (Takagi et al, 2006; Low, 

2009), one can conclude that the former is much simpler as it uses natural wave propagation 

and does not need numerous actuators to simulate the localised propulsive wave. Such a wave 

already exists in the immersed fin structure under consideration, and only one actuator is 

needed to excite the wave of desirable frequency and amplitude.  

      The advantages of this method, in comparison with traditional methods of propulsion, 

such as propellers and jets, are largely the same as those associated with BCF propulsion and 

mentioned by Botman (1965) and Paidoussis (1976). Namely, the absence of propeller shaft-

sealing problem, low underwater acoustic noise (due to the absence of cavitation), safe 
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environment for swimmers, small idling drag, good thrust control, and the ability to propel 

vessels in muddy and weed-infested environments. The main envisaged applications of the 

proposed type of wave-like propulsion are small and medium sized manned deep-water 

exploration submarines, as well as autonomous underwater vehicles (AUV). Other possible 

applications can be for small and medium surface marine vessels, in particular for sailing 

boats (in times of low wind).  

      Wedge elastic waves that are to be used for this type of propulsion are very complex in 

nature. As a rule, they can be described only numerically, even for the simplest case of 

wedges in vacuum which was first considered back in the 1970's by Lagasse (1972) and 

Maradudin et al (1972) (see also the book of Biryukov et al (1995) and references therein). 

The degree of complexity is even higher for wedges in contact with water. However, for an 

important case of slender wedges the situation can be simplified in both cases by using the 

geometrical acoustics approximation. Using this approximation, one can solve the equations 

for bending vibrations of slender wedges of arbitrary shapes. As a result, one can obtain 

relatively simple and physically explicit solutions for localised waves propagating in wedges 

in contact with water (Krylov, 1994, 1998; Krylov et al, 2000; Shuvalov et al, 2000). Other 

known approaches to analysing wedge elastic waves in contact with water include Wiener-

Hopf techniques (Shanin et al, 2000) and finite element calculations (Hladky-Hennion et al, 

1997). It should be noted that wedge elastic waves in contact with water that should be used 

for propulsion are waves propagating in the subsonic regime of wave propagation (in 

comparison with the speed of sound in water). As it is well known, such waves do not 

generate sound in the surrounding water. Adding to this the absence of cavitation normally 

associated with propellers, one could expect that the proposed wave-like propulsion should be 

much quieter than a propeller.  
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      For the purpose of aquatic propulsion of manned vessels, one can use wedge waves 

propagating in wedges of any shapes, including linear wedges. All of them provide 

localisation of the wave energy in the lateral direction. The most suitable, however, appear to 

be quadratic wedges, which local thickness is described by the function  h(x) = εx2,  where  x  

is the distance from the edge and  ε  is a constant. In such wedges, all modes of guided 

flexural waves are dispersive, i.e. their phase velocities depend on frequency (Krylov et al, 

2000). In the case of using these waves for aquatic propulsion, this would allow an operator of 

a vessel to change wedge wave velocity by changing frequency, which may be convenient for 

efficient start and acceleration of the vessel from rest. Another advantage of using quadratic or 

higher profile wedges is that they utilise a larger proportion of their surfaces for localised 

wave propagation in comparison with linear wedges, which again is beneficial for aquatic 

propulsion.  

      Although waves in quadratic wedges seem to be the most suitable for aquatic propulsion 

of manned vessels, it is rather difficult to use them in the initial experimental investigations 

due to difficulties in manufacturing of experimental quadratic or higher profile wedges. To 

avoid this problem on the initial stage it is convenient to use the earlier established similarity 

between guided wave propagation in quadratic wedges and in the systems comprising thin 

ridges embedded into an elastic half-space (Krylov, 1990b). The latter systems are in turn 

similar to thin rectangular plates with one long edge being free and another one being 

clamped. Therefore, for experimental purposes, one can use guided flexural waves  

propagating along free edges of the 'clamped-free' plates (Fig. 2), instead of quadratic wedges. 

One should keep in mind though that, in contrast to quadratic wedges, such plates do transmit 

vibrations to the main body of a vessel. Therefore, they can not be recommended for 

applications in real-life manned vessels.  
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      The first practical implementation and experimental testing of this type of aquatic 

propulsion have been carried out using a small model catamaran (Fig. 3) employing guided 

localised flexural waves propagating in a vertical clamped-free rubber plate (Krylov et al, 

2007a,b). The test results have shown that the catamaran was propelled quite efficiently and 

could achieve the speed of 36 cm/s (or about one body length per second), thus demonstrating 

that the idea of wave-like aquatic propulsion of manned craft by propagating flexural waves is 

viable.  

        The above investigation was followed by the design and experimental testing of a small-

scale mono-hull model boat (Krylov et al, 2010) propelled by a localised flexural wave 

propagating along the free edge of a clamped-free rubber plate forming the boat’s keel (see 

Fig. 4). Experimental investigations have been carried out in a water tank (Fig. 5) and in open 

water conditions. The open-water tests included measurements of the boat speed as well as 

measurements of drag, thrust and propulsion efficiency. The propulsive plate was driven at 

the front edge by the exciter bar (Figs. 4 and 5). The exciter bar, which was driven by a servo 

motor, has been designed to allow maximum angle of 30o to be achieved either side of the 

centre line. With the exciter bar length used this gave a maximum amplitude of flexural wave 

displacement of 33 mm. To actuate the exciter bar of the propulsion system under 

consideration a commercial programmable servo motor was used. The measured results for 

steady state craft speed as a function of frequency and amplitude (see Fig. 6) have 

demonstrated the viability and efficiency of this type of propulsion (the maximum swimming 

speed was about 32 cm/s). The results for generated thrust (see Fig. 7) have been calculated 

from the measured values of steady-state swimming speed (Fig. 6) using the experimentally 

measured dependence of the craft's drag as a function of swimming speed.  

        It should be noted that the idea and method of wave-like aquatic propulsion described 

above have been subsequently explored for an underwater model of a 'robotic fish' (Liu et al, 
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2010). The propulsive system used by the authors was similar to the one that was used earlier 

to propel a model catamaran (Krylov et al, 2007a,b). Experimental measurements of 

generated thrust have shown its positive value. However, the numerical calculations carried 

out by the authors using the computational fluid dynamics (CFD) method predicted a negative 

value of thrust, which was in contradiction with the experiments.  

        In light of the above-mentioned successful experimental demonstrations of feasibility of 

the wave-like aquatic propulsion using guided flexural waves, it is important to achieve better 

understanding of the processes of generating hydrodynamic thrust by freely propagating 

flexural waves. Solution to this problem would allow the developers to determine optimal 

parameters of propagating waves and of the geometry of propulsive wedges and plates 

providing maximum efficiency of the propulsion.   

        The aim of the present paper is to report the results of the initial theoretical research into 

the role of nonlinear distortion of propagating flexural waves in generating thrust that could 

be applied to small marine craft experimentally tested in the papers by Krylov et al (2007a,b; 

2010). The main motivation for this investigation was the fact that the amplitudes of flexural 

waves used for propulsion of the model craft were large enough, so that nonlinear effects 

were expected to be important.  

       It was natural to use the well-known Lighthill’s theory of fish locomotion (Lighthill, 

1960; 1970) as the basis for analysing the role of nonlinear effects in generating thrust. It 

should be noted that Lighthill's theory in its standard form predicts zero thrust at all 

frequencies when applied to flexural waves of constant amplitude. Note in this connection 

that the localised flexural waves used for propulsion in the papers by Krylov et al (2007a,b; 

2010) were excited from the front edges of the propulsive plates via mechanical arms, which 

means that the amplitudes of these waves were maximal at the front edges of the propulsive 

plates and were decreasing (or at best were kept constant) over the length of the plates 
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towards the rear edges. According to Lighthill’s formula (Lighthill, 1960), this results in zero 

thrust, which is in contradiction with the above-mentioned experiments, in particular with the 

measured nonzero values of generated thrust (see Fig. 7). One should note in this connection 

that Lighthill’s theory of fish locomotion usually assumes that the amplitudes of propulsive 

waves created by fish body motion grow from zero on the front (at fish heads) to their 

maximum values at the tails. This is consistent with fish body motion in nature, but is not 

compatible with the behaviour of the propagating localised flexural waves employed for 

propulsion in the model vessels used in the experiments of Krylov et al (2007a,b; 2010).  

       It is suggested in the present paper that nonlinear distortion of localised flexural waves in 

the process of their propagation may play an important role in generating thrust in real 

experimental marine craft. Indeed, the Mach numbers of propagating flexural waves used for 

propulsion in the above-mentioned experimental works were as large as about two (Krylov et 

al, 2007a), which makes the above suggestion quite realistic. This hypothesis is explored in 

the present work by adding nonlinear harmonics of propulsive flexural waves, that are 

growing with the distance of propagation due to elastic nonlinearity, to the Lighthill's formula 

for generated thrust. For simplicity, only the lowest (third) harmonic of the localised flexural 

waves is used, similarly to the earlier work by Krylov et al (1992). Also for simplicity, the 

effect of wave dispersion on generation of the nonlinear harmonic is neglected, assuming that 

the plate-like structures used in the experiments are short enough in the direction of wave 

propagation. The sum of the initial time-harmonic wave and its third nonlinear harmonic 

having the amplitude linearly increasing with the distance of propagation is then substituted 

into Lighthill's formula to derive the analytical expression for the averaged thrust.  

      The derived analytical expression for the averaged thrust shows that, due to the effect of 

the third harmonic, the thrust calculated according to Lighthill's formula is no longer zero, 

thereby demonstrating that nonlinear distortion of the propulsive flexural waves may be 
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important for accurate description of wave-like aquatic propulsion of small marine craft 

employing freely propagating flexural waves. Using the derived expression, the initial 

numerical estimates of the generated thrust are carried out for the parameters of the 

experimental vessels and of the propulsive flexural waves used in the experiments.  

 

 

2.  Theoretical background  

 

2.1  Lighthill's approach to the theory of wave-like aquatic propulsion  

 

      One of the first theoretical papers on wave-like aquatic propulsion in application to fish 

locomotion has been published by Lighthill (1960) who developed a three-dimensional 

elongated body theory (EBT) (see also the paper of Cheng et al (1994)). Soon after Lighthill's 

publication, a two-dimensional theory applied to an infinite 'waving plate' has been published 

by Wu (1961). Since a three-dimensional approach seems to be more appropriate for 

description of the experimental propulsive systems used in the papers of Krylov et al 

(2007a,b; 2010), we will use Lighthill's approach in further consideration.  

       In his analysis of the problem, Lighthill considered a slender fish that remains stationary 

in a steady flow of water with the velocity  U  in the x-direction. It is assumed that when the 

fish is motionless, or ‘stretched straight’, there is no normal force acting upon the cross 

section. It was also assumed that the motion of the fish at any particular cross section can be 

modelled as a displacement  h  in the perpendicular direction (z-direction), which is a function 

of  x  and  t. This displacement causes the velocity of the fluid flowing past the cross section 

to change from the initial value of  U  to a new value,  V,  which is also a function of distance 

and time: 
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where  A(x)  is the area of the circumscribing circle of the ellipse-shaped cross section of the 

fish. Lighthill then assumes that the function  A(x)  and/or  h(x, t)  has a zero value for  x = 0  

(at fish head). He also assumes that  h(x, t)  grows towards the tail to reach its maximum there 

(at  x = L), which is a good approximation for real fish body motion in nature. In these cases 
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      Let us now apply the above expressions to the above-described experimental marine craft 

investigated in the papers by Krylov et al (2007a,b; 2010), keeping in mind that localised 

flexural waves used for propulsion in these papers were excited from the front edges of the 

propulsive plates via mechanical arms, which means that, contrary to Lighthill's assumption 

of  h(x,t) = 0  at  x = 0,  the amplitudes of these waves were maximal at the fronts of the 

propulsive plates (at  x = 0) and were decreasing (or at best were kept constant) over the 

length of the plates towards the rear edges. Also, instead of A(x) = 0  at x = 0, there is  A(x) = 

A = const ≠ 0.  

       Let us assume that the flexural waves that were generated in the experiments of the 

papers by Krylov et al (2007a,b; 2010) are time-harmonic and have a constant amplitude  H  

along the length of the flexible plate (fin):  

 

( ) ( )kxtHtxh −= ωcos, .                                                    (5) 

 

Here  k = ω/c  is the wavenumber of the localised flexural wave, where  ω  is the circular 

frequency, and  c  is the velocity of the localised wave propagation along the propulsive plate. 

It must be noted that in the case of localised flexural waves used in the experiments the wave 

amplitudes were not constant at different points along the perpendicular direction (y-axis). 

However, for simplicity, it is assumed in Eqn (5) that the amplitudes are constant everywhere 

over the plate.  

      As it follows from Eqn (5), the Lighthill's assumption of  h(x, t) = 0 at  x = 0  is no longer 

applicable, and in order to calculate the mean mechanical work  W  one should use Eqn (2) 

instead of Eqn (3). Similarly, instead of using Eqn (4) to calculate thrust, one should use the 

full expression  
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Here  A = π(d2/4),  where  d  is the width of the propulsive plate.  

      Substituting Eqn (5) into Eqn (6), one can see that the resulting long-time average thrust is 

zero. This means that, according to Lighthill's theory, there is no thrust produced by a 

propulsive wave of constant amplitude described by Eqn (5). This contradicts the 

experimental results of Krylov et al (2007a,b; 2010) showing that there is a significant 

amount of thrust generated (see Fig. 7). Therefore, one can conclude that the above-

mentioned theoretical analysis must be neglecting some mechanisms that are present in real 

experiments and are responsible for generation of non-zero thrust.  

 

2.2  Some other theoretical approaches  

 

       It should be noted that the numerical calculations using CFD (Shirgaonkar et al, 2008) do 

predict a non-zero thrust generated by linear harmonic waves of constant amplitude 

propagating along a ribbon-fin system similar to the propulsive plates used in the papers of 

Krylov et al (2007a,b; 2010). Moreover, the general behaviour of the predicted thrust, in 

particular its growth with frequency, is in line with the experimental observations of Krylov et 

al (2007a,b; 2010). The earlier developed analytical approach to a similar propulsive system 

(Lighthill et al., 1990) also predicts a non-zero thrust, but the results are significantly 

underestimated in comparison with the paper of Shirgaonkar et al. (2008).  

       As was mentioned above, the numerical calculations in the paper of Liu et al (2010) have 

predicted the negative value of thrust for a similar system propelling a 'robotic fish'. In their 

calculations, the authors considered the propulsive wave with the amplitude decaying with 
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propagation distance. Therefore, this result is in agreement with Lighthill's formula for this 

case, but it is in contradiction with the experimental observations of the same authors 

demonstrating a positive thrust for this model.  

      It is suggested in the present paper that one of the 'missing' mechanisms responsible for 

generation of non-zero thrust, in addition to those that can be captured by CFD (Shirgaonkar 

et al, 2008), may be the nonlinear waveform distortion (Vinogradova et al, 1979; Whitham, 

1974) of the propulsive flexural waves during their propagation from the front to the rear edge 

of the plate. A detailed exploration of this idea is presented in the next section.  

 

 

3.  Accounting for generation of nonlinear harmonics  

 

       In this section, we explore the hypothesis that one of the mechanisms contributing to a 

positive thrust observed in the experiments described in the papers by Krylov et al. (2007a,b; 

2010) may be the nonlinear distortion of the waveforms of the propulsive flexural waves 

during their propagation. Using a spectral interpretation, this nonlinear distortion can be 

described as a result of generation of higher order harmonic waves propagating along the 

length of the propulsive plate. This hypothesis is backed up by the experimental data from the 

paper by Krylov et al (2010), as the results for the lowest wave amplitude tested (15 mm 

displacement) were practically zero, and only at the larger amplitudes there was a significant 

thrust achieved (see Fig. 7).  

      In the earlier published theoretical paper on generation of nonlinear harmonics in wedge 

elastic waves (Krylov et al, 1992), it was shown that in the case of anti-symmetric localised 

waves, which is also the case for the propulsive waves used in the above-mentioned 

experiments (Krylov et al, 2007a,b; 2010), the lowest order of nonlinearity is the third order, 
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as the quadratic term vanishes because of the symmetry of the problem. Therefore, the 

description of the nonlinear distortion of the time-harmonic propulsive waves for the problem 

under consideration can be limited to the accounting for the third nonlinear harmonic only, for 

simplicity.  

      In light of the above, let us consider the addition of a nonlinear third harmonic to the 

Lighthill’s formula, Eqn (6). Based on the results of Krylov et al (1992), we will assume that 

the amplitude of the generated third harmonic is proportional to  H3,  and it grows with 

distance  x  linearly, starting from zero at the front edge of the propulsive plate. The addition 

of the third harmonic thus changes the expression (5) for  h(x,t),  which now takes the form: 

 

( ) ( ) ( )ψωω −−+−= kxtxHFkxtHtxh nl 33cos)(cos, .                            (7) 

 

Here  Fnl(H),  which is proportional to  H3,  is a non-dimensional function describing the 

effect of nonlinearity, and  ψ  is the initial phase for the nonlinear term. The function Fnl(H)  

also depends on the nonlinear elastic moduli of the material of the propulsive plate, which 

constitutes 'elastic nonlinearity'. In what follows we will assume that the material of the 

propulsive plate is rubber, as it was in the experiments (Krylov et al, 2007a,b; 2010).  

      In the expression (7), it is assumed that  H = const, i.e. that the amplitude of the first 

(main) harmonic does not change with the distance as a result of nonlinear distortion. This 

initial rather rough approximation, which can be called the 'approximation of a given field' 

(Vinogradova et al, 1979), will be considered here first. Later on, we will take the change of 

amplitude of the first harmonics into account using energy conservation law.  

       Substituting Eqn (7) into Eqn (6) and doing the required operations, we obtain that the 

generated thrust is no longer zero, and it is defined by the following expression:  
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It follows from Eqn (8) that thrust is generated due to the nonlinearity if the expression in 

brackets is positive, i.e. when  c > U,  which is the usual condition for the velocity  c  of an 

elastic wave propagating along the plate to be larger than the velocity of swimming  U. 

Although the expression (8) for the thrust is meaningful, the correctness of the assumption  H 

= const  in application to this problem does not look very convincing.  

      For that reason, we now consider a more refined approach taking into account the change 

in the amplitude of the first harmonic with the distance of propagation because of the 

nonlinear generation of the third harmonic. This can be done using energy conservation law. 

In the approximation of only two interacting harmonics, the first and the third, this law takes 

the form  
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where  H  now denotes the initial amplitude of the first harmonics  (at  x = 0), and  H(x)  

represents its changing value at  x > 0.  It follows from Eqn (9) that the changing amplitude  

H(x)  can be expressed as   

 

222 )(9)( xHFHxH nl−= .                                                 (10) 

 

We now expand the expression in the right-hand side of Eqn (10) into the Taylor series, 

retaining terms up to the fourth order in  Fnl. This gives the following approximate expression 

for  H(x): 
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Let us now replace Eqn (7) by the more precise expression taking into account the changing 

amplitude of the first harmonic  H(x)  according to Eqn (11),   
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and substitute it into Eqn (6) for generated thrust, keeping terms up to the fourth power of 

Fnl(H).  After rather bulky derivations, it can be shown that all terms of the second order in  

Fnl(H)  cancel each other, and the resulting expression for generated thrust takes the form  

 




















+−= 222

2

2

424 211
)(

4
81

2
1

Lkc
U

H

LHF
AP nl ω
ρ ,                                 (13) 

 

where  k = ω/c  is the wavenumber of the propagating flexural wave. This means that the 

initial ‘approximation of a given field’, Eqn (7), is insufficient, and the expression for 

generated thrust, Eqn (8), following from that approximation is incorrect as it does not take 

into account some terms of the second order in  Fnl(H)  that appear due to the change of 

amplitude of the first harmonic with the propagation distance, which results in the mutual 

cancellation of all terms of the same (second) order in  Fnl(H), and thus in zero thrust 

generated in this order of nonlinearity. Using a more refined formula for  h(x, t),  Eqn (12), 
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and keeping all the terms of the fourth order versus  Fnl(H)  in further derivations results in the 

expression for generated thrust, Eqn (13), that is proportional to the fourth power of  Fnl(H).  

      It is convenient to simplify Eqn (13) using a typical relationship between the parameters 

of the problem. Usually,  L ≈ 2λ = 4π/k.  Therefore,  k2L2 ≈ 16π2 ≈ 158  and  2/(k2L2) ≈ 0.013,  

which is much less than 1. Thus, the second term in round brackets can be neglected. This 

results in a simplified expression for generated thrust:   
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      Let us now specify the nonlinear function  Fnl(H). The easiest way to proceed is to use the 

results of the work by Krylov et al (1992), where this function has been calculated for wedge 

elastic waves in linear wedges, which are localised non-dispersive flexural modes propagating 

along wedge tips (Fig. 1). Although linear elastic wedges are not exactly the structures that 

have been used in the experiments of Krylov et al (2007a,b; 2010), they are interesting for 

their own sake and they also can be used for rough estimates of the experimental situation. 

According to Krylov et al (1992), the function  Fnl(H)  for linear elastic wedges in vacuum 

takes the form  

 

3
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2
)(

4
1)( Hk

na
b

Q
PHFnl

θ
= .                                             (15) 

 

Here  P  and  Q  are dimensionless parameters depending on modal shapes of wedge modes,  

a =  E/12(1-σ2) = ρscp
2/12  is a non-specified parameter, where  E  is the Young's modulus,  σ  

is the Poisson's ratio,  ρs  is the mass density of the wedge material, and  cp  is the velocity of 
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plate compression waves for the wedge material,  θ  is the wedge angle, and  k = ω/c is  the 

wavenumber of a wedge mode characterised by the number  n = 1, 2, 3,...,  where  c  is the 

velocity of wedge mode of number n (for shortness,  k  and  c  are written without index  n), 

and the value of  ψ  in Eqn (12) should be taken as -π/2.  The parameter  b = 0.4f(ct/cl)6  

describes the nonlinear properties of the structure. Here  ct  and  cl  are the velocities of shear 

and longitudinal elastic waves in the wedge material, and  f  is the relevant 4th order elastic 

module describing cubic nonlinearity. 

       For linear elastic wedges immersed in water, we will calculate  Fnl(H)  using the same 

Eqn (15), but with the wavenumbers  k = ω/c  being replaced by those for wedge waves in 

water. This means that instead of wedge wave velocities  c  for wedges in vacuum (Krylov, 

1989; 1990a),   

 

n
c

c p θ
3

= ,                                                         (16) 

 

we will use the expression for wedge wave velocities for wedges in water (Krylov, 1998),  
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and  D = 2.102.  
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4.  Numerical calculations and discussion  

 

       Numerical calculations have been carried out to determine the thrust generated by the 

first order (n = 1) localised wedge mode for a given swimming speed  U  using formulas (14), 

(15) and (17), (18) for the parameters of the problem shown in Table 1. Because of the lack of 

reliable information about the forth order elastic moduli of rubber, we used a typical value of 

the relation between the forth and second order moduli, assuming that  f/E ≈ 10.  For the 

fraction  P/Q,  we took the estimated value of 2, which was based on the numerical 

calculations of the paper by Krylov et al (1992).  For convenience of comparison with the 

experiments (Krylov et al, 2010), the thrust was calculated in gramms, rather than in 

Newtons. We remind the reader that the relationship between the same forces  F  expressed in 

Newtons (N) and in gramms (g) is  

1000)()(
gFF Ng = ,                                                      (19) 

 

where  g = 9.81 m/s2  is gravity acceleration.  

      Before discussing the results for generated thrust, it is instructive to visualise the nonlinear 

waveform distortion of the propagating localised flexural wave calculated according to Eqns 

(12) and (15). The results are presented in Fig. 8; the waveforms are shown for the initial 

harmonic wave at frequency  f = 4.5 Hz  and amplitude  H = 28 mm  (at x = 0) and for the 

nonlinearly distorted wave after its propagation until the point  x = 0.17 m.  

      The results of the calculations of thrust are shown in Fig. 9 in the frequency range  2 – 4.8 

Hz  for the flexural wave amplitude  H = 28 mm. For comparison, the experimental results of 

Krylov et al (2010) are also shown in Fig. 9 by boxes (see also Fig. 7 for experimental data).  
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      The results of the calculations of thrust for the flexural wave amplitude  H = 22 mm are 

shown in Fig. 10 in the same frequency range. Also, the corresponding experimental results of 

Krylov et al (2010) are shown in Fig. 10 by boxes. 

      As can be seen from Figs. 9 and 10, the nonlinear mechanism gives rather large 

contributions to thrust at higher frequencies, but it significantly underestimates the 

experimental values of thrust at lower frequencies. This means that the nonlinear mechanism 

of thrust generation is important at higher frequencies. However, in the current stage of the 

theory, its contribution to thrust grows very rapidly with frequency, which does not agree well 

with the experimental values. One of the possible reasons for that could be the fact that elastic 

wedges of linear profile have been used in this paper for modelling the real plate-like 

propulsive structures used in the experiments. Wedge elastic waves propagating in wedges of 

linear profile have no dispersion, whereas localised flexural waves propagating in clamped-

free plates used in the experimental propulsive systems are dispersive. This could have a 

substantial effect on limitation of the nonlinear generation of the third harmonic in the 

experimental plate-like propulsive structures. Further theoretical and experimental research 

would be required in this direction.  

 

 

5.  Conclusions  

 

      The results of the initial research into the effect of elastic nonlinearity on the theory of 

aquatic propulsion by propagating flexural waves presented in this paper demonstrate that the 

nonlinear distortion of the propagating flexural waves may be important for generating a 

positive thrust at higher frequencies.  
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       The comparison between the theoretical calculations of generated thrust and the 

experimental measurements at higher frequencies, where the contribution of nonlinear 

distortion is essential, shows that the theory predicts a too rapid increase of thrust with 

frequency. One of the possible reasons for that could be the modelling of the real plate-like 

propulsive structures used in the experiments by elastic wedges of linear profile that cause no 

dispersion for propagating localised flexural waves and thus facilitate the development of 

nonlinear effects during wave propagation.  

       Further theoretical and experimental research in this direction is needed. In particular, it 

would be important to acquire experimental evidence of the nonlinear distortion of localised 

flexural waves propagating in immersed propulsive wedges and plates.  
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Fig. 1  Propagation of localised elastic waves along the tip of a linear wedge 

(Krylov, 1994).  
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Fig. 2  Guided flexural waves propagating along the free edge of a clamped-free 

plate.  
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Fig. 3  View of the model catamaran with a  propulsive rubber plate before testing 

in the experimental pool (Krylov et al, 2007a,b).  
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Fig. 4  Underwater view of the mono-hull model boat with the assembled 

propulsive rubber plate (Krylov et al., 2010).  
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Fig. 5  Underwater view of the hull and of the assembled propulsive plate in 

action (Krylov et al., 2010); localised flexural wave propagation in 

the propulsive plate is clearly seen (at 3 Hz frequency and 20 mm 

amplitude).  
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Fig. 6  Experimental values of steady state swimming speed of a model 

boat as functions of the propulsive wave frequency and amplitude 

(Krylov et al., 2010).  
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Fig. 7  Experimental values of generated thrust for a model boat as functions of 

the propulsive wave frequency and amplitude (Krylov et al., 2010).  
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Fig. 8  Calculated waveform distortion of a localised flexural wave due to its 

nonlinear propagation at frequency  f = 4.5 Hz and amplitude H = 28 mm 

along the tip of a rubber wedge immersed in water; calculations have been 

carried out for x = 0 (solid line) and for x = 0.17 m (dashed line).  
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Fig. 9  Calculated thrust as a function of the propulsive wave frequency for the 

wave amplitude of 28 mm (solid line) in comparison with the 

corresponding experimental data (boxes) obtained for a mono-hull 

model boat (Krylov et al, 2010).  
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Fig. 10  Calculated thrust as a function of the propulsive wave frequency for the 

wave amplitude of 22 mm (solid line) in comparison with the 

corresponding experimental data (boxes) obtained for a mono-hull 

model boat (Krylov et al, 2010).  
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Tables  

 

 

 

 

Table 1:   Values of the parameters used in calculations  

 

Parameter Notation Values 

Wedge wave displacement amplitude (m) H 0.028;  0.022 

Wedge angle (degrees)  5 

Mass density of rubber (kg/m
3
) s 1100 

Shear wave speed in rubber (m/s) ct 30 

Swimming speed (m/s) U 0.23;  0.19 

Propulsive length (m) L 0.25 

Effective width of fin (m) d 0.055 

Poisson ratio of rubber  0.49 
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