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Abstract—With dual connectivity, a mobile user can be served
by a macro base station (MBS) and a pico base station (PBS)
simultaneously. In this paper, we address the problem of optimiz-
ing user-PBS association and power allocation in the uplink such
that the network can serve the users’ demand at the minimum
cost, where the PBSs are subject to backhaul capacity limitations
and minimum rate requirements of users. We show that this
non-convex problem can be formulated as a signomial geometric
programming (SGP) whose solution can be found by solving
a series of geometric programming (GP) problems. Simulation
results are provided to demonstrate traffic offloading trend to
PBSs for different cost and backhaul capacity settings, confirming
the effectiveness of the proposed iterative algorithm. They also
show that the output of the proposed algorithm closely matches
the global optimal solution with affordable complexity.

I. INTRODUCTION

Network densification has been identified as one of the dom-
inant themes for future fifth-generation (5G) networks, which
could facilitate meeting the growing mobile traffic demand [1].
Two of the key enabling trends for network densification are
heterogeneous networks and massive-MIMO. With proper re-
source allocation and interference management techniques, the
deployment of heterogeneous networks by introducing pico-
cells along with macro-cells can improve network throughput,
coverage and energy efficiency. Furthermore, implementing a
large number of antennas at macro base stations (MBSs) can
help to further enhance the spectral efficiency by minimizing
the inter and intra-cell interference.

Integration of pico-cells and macro-cells can be realized
in different forms. One of these options is dual connectivity
which has been introduced in Release 12 of Third Generation
Partnership Project (3GPP) specifications [2]. Dual connec-
tivity allows users to be simultaneously served by an MBS
and a pico base station (PBS), which are operating at non-
overlapping frequency carriers and are interconnected with
X2-based backhaul links. It has been demonstrated that dual
connectivity can significantly increase the user throughput
[2–4] and at the same time improve the robustness against
mobility [2].

Installing a massive number of antennas on MBSs can
significantly boost the spectral efficiency. On the other hand,
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operating a large number of antennas consumes non-trivial
amount of energy [5], and such cost must be taken care of
responsibly to minimize the impact to the environment. With
dual connectivity, part of the traffic can be off-loaded to PBSs,
which typically consume much less power than MBSs [6].

Since PBSs are typically deployed in hotspot areas with high
data-rate demands and their backhaul links are usually capacity
limited, data offloading to PBSs needs to be optimally and
dynamically adjusted such that the cost of serving the users
can be minimized. The dense deployment of PBSs can further
complicate the user-PBS association of the users which are
located at the edges of several pico-cells. This then brings
more difficulty to the decision of how data is to be split
between an MBS and the PBSs.

Previous works [3, 4, 7, 8] address the traffic splitting
optimization with dual connectivity without jointly considering
the user-PBS association optimization and backhaul limita-
tions. In this work, we focus on the optimization of traffic
splitting and user-PBS association in the uplink by taking into
account the backhaul capacity constraints of the single-antenna
PBSs, where the MBS is equipped with a large number of
antennas. Aiming to minimize the cost of serving the users’
data rate requirements, an optimization problem is formulated
to determine to which PBS each user should connect and
moreover how a user should balance its power budget between
the MBS and the associated PBS. The formulated problem is
non-convex. To solve the problem with affordable complexity,
we first transform it into a signomial geometric programming
(SGP), and then solve the SGP through a series of geometric
programming (GP) problems which can be solved efficiently.
Numerical studies illustrate that the proposed iterative algo-
rithm performs closely to the exhaustive search with affordable
complexity. Also, the variations of the achieved data rate at
the base station (BSs) are demonstrated for different cost and
backhaul capacity settings, demonstrating the effectiveness of
the proposed iterative algorithm.

The rest of this paper is organized as follows. Section II
presents the system model and the formulation of the joint user
association and power allocation problem. Section III develops
an iterative algorithm to solve the problem formulated in
Section II. Section IV illustrates simulation results to evaluate
the performance of the proposed iterative algorithm. Finally,
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Fig. 1. A schematic diagram of the system model. The MBS operates on
frequency band f1. The two PBSs operate on frequency bands f2 and f3,
respectively. At the same time, each user can only be connected to one PBS.

Section V draws the conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a heterogeneous cellular network which con-
sists of one MBS and N PBSs. The network serves K single-
antenna users on the uplink. We assume that dual connectivity
is supported1 in the system, so that each user can be served
simultaneously by an MBS and a PBS. Each BS, i.e., an MBS
or a PBS, uses a dedicated frequency band which is not used
by any other BS. We assume that the MBS is equipped with
a large number of antennas M ≫ 1, while a single antenna
is installed on each PBS. It is assumed that the MBS has the
perfect knowledge of the channels between each user and each
MBS/PBS. Fig. 1 shows an example of the system model.

Let K and N be the set of users and the PBSs, respectively.
Also, let P , [P0,P1, ...,PN ], P0 , [P1,0, P2,0, ..., PK,0]
and Pn , {P1,n, P2,n, ..., PK,n}, ∀n ∈ N , where Pk,0

denotes the transmission power of user k towards the MBS and
Pk,n represents the transmission power of user k towards PBS
n. In this setup, to comply with dual connectivity regulations,
we restrict the access of each user by the following constraint

C1 :C1 :C1 : Pk,n ·
( ∑

n′∈N\{n}

Pk,n′

)
= 0, ∀k ∈ K, ∀n ∈ N . (1)

The constraintC1C1C1 ensures that each user can only be connected
to one of the PBSs. More specifically, if user k is associated
with PBS n (i.e., non-zero Pk,n > 0), then no power would be
allocated toward any other PBS (i.e.,

∑
n′∈N\{n} Pk,n′ = 0).

We also consider finite power budget of each user as

C2 :C2 :C2 : Pk,0 +
∑

n∈N
Pk,n ≤ Pmax

k , ∀k ∈ K, (2)

where Pmax
k is the maximum power budget of user k.

Let hk,n represent the channel gain between user k and PBS
n, where the attenuation due to both the large-scale fading and

1Dual connectivity in the uplink is now being considered for future
extension of the 3GPP standardization [9].

the small-scale fading are included in hk,n. The achievable
uplink rate of user k at PBS n can be expressed as

Rk,n = log
(
1 +

Pk,n|hk,n|2

σ2
n +

∑
j ̸=k Pj,n|hj,n|2

)
,

⇒eRk,n = 1 +
Pk,n|hk,n|2

σ2
n +

∑
j ̸=k

Pj,n|hj,n|2
, ∀k ∈ K,∀n ∈ N , (3)

where σ2
n denotes the noise power at the PBS n and∑

j ̸=k Pj,n|hj,n|2 represents the intra-picocell interference.

Furthermore, denote dk as the large-scale fading between
user k and the MBS. In the perfect channel state information
(CSI) case, the achievable uplink rate of user k at the MBS
becomes (See [10])

Rk,0 = log
(
1 +

Pk,0Mdk
σ2
0

)
⇒ eRk,0 = 1 +

Pk,0Mdk
σ2
0

, (4)

where σ2
0 denotes the noise power at the MBS.

We assume that user k needs a minimum rate requirement
of Rrsv

k through the transmission towards both the MBS and a
PBS, which can be expressed as

C3 :C3 :C3 : Rk,0 +
∑

n∈N
Rk,n ≥ Rrsv

k , ∀k ∈ K. (5)

Moreover, from a user-plane perspective, we consider a dual
connectivity solution standardized by 3GPP, in which user-
plane data is split in the MBS, such that the data being sent to
the PBSs by the users need to be routed to the MBS via the
backhaul connections between the PBSs and the MBS. Since
the PBSs are interconnected with MBS through non-ideal X2
backhauls, we consider a maximum capacity on the backhaul
between PBS n and MBS as

C4 :C4 :C4 :
∑

k∈K
Rk,n ≤ Bn, ∀n ∈ N (6)

to avoid an excessive load on one PBS and its backhaul link
to MBS, where Bn gives the backhaul capacity of PBS n.
The capacity of the backhaul of the MBS is assumed to be
sufficiently large.

Serving the uplink users comes at a cost at the MBS and
the PBSs. Assume that the price per unit of data at the MBS is
π0 ≥ 0 and the price per unit of data at PBS n is πn ≥ 0. Then,
we adopt the widely used linear cost model [11], such that the
cost for MBS and PBS n will respectively be π0

∑
k∈KRk,0

and πn
∑

k∈KRk,n. For ease of referencing, we define

ψ(P) , π0
∑

k∈K
Rk,0 + πn

∑
k∈K

Rk,n (7)

as the total cost of all the BSs.

In this work, we aim to jointly optimize user-PBS associa-
tion as well as power control between MBS and the associated
PBS in a dual-connectivity heterogeneous network. The goal
is to minimize the cost experienced by the network, while
satisfying the minimum data rate requirements of the users
and backhaul capacity limits of the PBSs. The joint user
association and power control optimization problem can be



formulated as

MinCost: minimize
P

ψ, subject to: C1C1C1−C4C4C4.

The objective function and constraints (C1C1C1,C3C3C3, and C4C4C4) in
MinCost are non-convex due to intra-cell interference in
pico-cells and user association restrictions. Next, we develop
an efficient algorithm to solve MinCost.

III. AN ITERATIVE ALGORITHM FOR JOINT USER
ASSOCIATION AND POWER CONTROL

In this session, we develop an iterative algorithm to solve
the optimization problem (8a). We show that the problem can
be transformed into a SGP. Then, to solve the SGP with low
complexity, we use successive convex approximation (SCA)
[12] in which a series of standard GPs are solved to find a
solution of the SGP, where a GP can be efficiently solved by
optimization toolboxes such as CVX [13].

A. Preliminary on SGP

A SGP in standard form can be written as [14]

minimize
x

x0, (8a)

subject to
fk(x)

f ′k(x)
≤ 1, k ∈ K1, (8b)

fk(x)

f ′k(x)
= 1, k ∈ K2, (8c)

where x , [x0, x1, ..., xN ] is the vector of optimization
variables, fk(x) and f ′k(x) are posynomials, and K1 and K2

are the index sets such that K1 ∩ K2 = ∅.
To solve a SGP with an affordable complexity, an iterative

algorithm based on SCA is proposed with guaranteed conver-
gence to an optimal point of the SGP [15]. More specifically,
in each iteration, a two-step transformation is performed to
formulate a GP which is an approximation of the original SGP.
An optimal solution can then be found by solving a series
of GPs, where a GP can be solved efficiently by a convex
optimization toolbox [16].

We now describe the details of the two-step transformations
to reach the GP formulation that approximates the original
SGP. Denote x(t) as the variables at the t-th iteration of the
iterative algorithm which solves (8). Also, define {sk(t)|k ∈
K2} as the set of auxiliary variables, and define {wk(t)|k ∈
K2} as the non-negative weighting factors on the respective
auxiliary variables. The problem (8) is first transformed into

minimize
x,{sk(t)|k∈K2}

x0(t) +
∑

k∈K2

wk(t)sk(t), (9a)

subject to
fk(x(t))

f ′k(x(t))
≤ 1, k ∈ K1 ∪ K2, (9b)

sk(t)
−1f ′k(x(t))

fk(x(t))
≤ 1, k ∈ K2, (9c)

sk(t) ≥ 1, k ∈ K2, (9d)

so that the equality constraints on ratios between posynomials
become inequality constraints. Note that (9) is equivalent to

(8) when all the constraints in (9d) are active [15]. To ensure
the equivalence, {wk(t)|k ∈ K2} can be configured as an
increasing function of t [15].

In the second step of the transformation, arithmetic-
geometric mean approximation (AGMA) is applied to the
denominators of the left hand sides (LHSs) of the constraints
in (9b) and (9c), so that the posynomials in the denominators
are approximated by monomials. After the AGMA, the con-
straints in (9b) and (9c) become upper bound constraints on
posynomials, so that (9) becomes a GP [16].

To illustrate the AGMA, let

f̃j,k(x(t)) , φj,k

∏
i
xi(t)

δi,j,k (10)

be a monomial, where φj,k > 0 and δi,j,k is a real number.
Without loss of generality, the posynomial in the denominator
of the LHS of the k-th constraint in (9c) can be written as

fk(x(t)) ,
∑

j
f̃j,k(x(t)). (11)

From the AGMA, we have

1

fk(x(t))
=

1∑
j f̃k,j(x(t))

≤
∏

j

( f̃k,j(x(t))
bk,j(t)

)−bk,j(t)

, (12)

where bk,j(t) , f̃k,j(x(t−1))
fk(x(t−1)) and x(t − 1) is obtained from

the last iteration [15]. Then, using the right hand side of
(12) to approximate 1

fk(x(t))
, the constraints in (9c) can be

approximated as

sk(t)
−1f ′k(x(t))

∏
j

( f̃k,j(x(t))
bk,j(t)

)−bk,j(t)

≤1, k∈K2. (13)

Observe that the constraints in (13) are tighter than those
in (9c). As a result, the solution obtained from the iterative
algorithm is always feasible to the original SGP. Similar
approximations can be applied to the constraints in (9b), and
the details are omitted for simplicity.

In the following, we first reformulate the problem in (8a)
as a SGP, and then we apply the iterative GP approximation
method to solve (8a) in SGP form.

B. Reformulation of MinCost as a SGP

As a first step, we treat Rk,0 and Rk,n as new variables, so
that (4) and (3) become the new constraints of MinCost.
For formulating the new problem as a SGP, we need to
rewrite the constraints in (4) and (3) as equality constraints
on posynomials or ratios between posynomials. To this end,
we apply the Taylor series approximation on the exponential
functions, such that

eRk,j=
∑+∞

i=0

Ri
k,j

i!
≈1+

∑U

i=1

Ri
k,j

i!
, j∈{0}∪N , (14)

where U is a sufficiently large positive integer to ensure the
accuracy of the approximation. Then, the constraints in (3)



and (4) can respectively be rewritten as

C5:C5:C5:
∑U

i=1

Ri
k,0σ

2
0

i!·Pk,0Mdk
=1, ∀k∈K (15)

C6:C6:C6:
∑U

i=1

Ri
k,n·

(
σ2
n+

∑
j ̸=k Pj,n|hj,n|2

)
i!·Pk,n|hk,n|2

=1, ∀k, ∀n. (16)

The constraints in C2C2C2, C4C4C4, C5C5C5, and C6C6C6 are readily admissible
to a SGP. The constraints in C1C1C1 and C3C3C3 are equivalent to

Ĉ1 :Ĉ1 :Ĉ1 :1 + Pk,n ·
(∑

n′∈N\{n}
Pk,n′

)
= 1, ∀k,∀n (17)

and

Ĉ3 :Ĉ3 :Ĉ3 : Rrsv
k ·

(
Rk,0 +

∑
n∈N

Rk,n

)−1

≤ 1, ∀k ∈ K, (18)

respectively, where Ĉ1Ĉ1Ĉ1 and Ĉ3Ĉ3Ĉ3 can be accepted in a standard
SGP formulation. Then, MinCost can be rewritten as the
following SGP

MinCost-SGP :

minimize
P,R

ψ, subject to: Ĉ1Ĉ1Ĉ1, C2C2C2, Ĉ3Ĉ3Ĉ3, C4C4C4−C6C6C6,

where R , {R0,R1, ...,RN} gives the achieved rate of all
users at all the BSs, and {Rj , {R1,j , R2,j , ..., RK,j}|j =
0, 1, ..., N}.

C. Iterative GP approximations

Here, by following the two-step transformation in Section
III-A, we formulate the GP at the t-th iteration of the iterative
algorithm which approximate MinCost-SGP. For this rea-
son, in the sequel, the objective function and the variables in
MinCost-SGP will be appended with the index t.

First, define {s1,k,n(t)|k ∈ K, n ∈ N}, {s2,k(t)|k ∈ K},
and {s3,k,n(t)|k ∈ K, n ∈ N} as the auxiliary variables for
the equality constraints in Ĉ1Ĉ1Ĉ1, C5C5C5, and C6C6C6, respectively. Also,
define {w1,k,n(t)|k ∈ K, n ∈ N}, {w2,k(t)|k ∈ K}, and
{w3,k,n(t)|k ∈ K, n ∈ N} as the corresponding non-negative
weighting factors for the auxiliary variables. Moreover, denote
s(t) and w(t) as the vectors containing all the auxiliary vari-
ables and there corresponding weighting factors, respectively.
The problem in MinCost-SGP can be transformed into

minimize
P(t),R(t),s(t)

z(t), subject to:

Ĉ1Ĉ1Ĉ11, Ĉ1Ĉ1Ĉ12, C2C2C2, Ĉ3Ĉ3Ĉ3, C4C4C4, C5C5C51, C5C5C52, C6C6C61, C6C6C62,

s(t) ≥ 1, (19)

where

z(t) ,ψ(t) +
∑

k∈K
w2,k(t)s2,k(t)

+
∑

j=1,3

∑
k∈K

∑
n∈N

wj,k,n(t)sj,k,n(t), (20)

and the constraints Ĉ1Ĉ1Ĉ11, Ĉ1Ĉ1Ĉ12, C5C5C51, C5C5C52, C6C6C61, and C6C6C62 are
defined as follows,

Algorithm 1 Iterative GP Approximations
1: Initialize P(0). Initialize R(0) according to P(0).
2: Initialize w(0) to small positive values.
3: Set t := 0.
4: while Stopping criterion is not met do
5: t = t+ 1.
6: Solve GP-Appx(t).
7: Set w(t) such that w(t) > w(t− 1).
8: end while
9: return P(t).

Ĉ1Ĉ1Ĉ11::: 1+
∑

n′∈N\{n}
Pk,n(t)Pk,n′(t)≤1, ∀k∈K, ∀n∈N ,

Ĉ1Ĉ1Ĉ12::: s
−1
1,k,n(t)·

[
1+

∑
n′∈N\{n}

Pk,n(t)Pk,n′(t)
]−1

≤1, ∀k, ∀n,

C5C5C51:::
∑U

i=1

Ri
k,0(t)σ

2
0

i!·Pk,0(t)Mdk
≤1, ∀k∈K,

C5C5C52::: s
−1
2,k(t)·

( U∑
i=1

Ri
k,0(t)σ

2
0

i!·Pk,0(t)Mdk

)−1

≤1, ∀k∈K,

C6C6C61:::
∑U

i=1

Ri
k,n(t)

(
σ2
n+

∑
j ̸=k Pj,n(t)|hj,n|2

)
i!·Pk,n(t)|hk,n|2

≤1, ∀k, ∀n,

C6C6C62::: s
−1
3,k,n(t)·

[
U∑
i=1

Ri
k,n(t)

(
σ2
n+

∑
j ̸=k

Pj,n(t)|hj,n|2
)

i!·Pk,n(t)|hk,n|2

]−1

≤1,

∀k∈K, ∀n∈N .

Then, by applying the AGMA in (12), the constraints in Ĉ1Ĉ1Ĉ12,
Ĉ3Ĉ3Ĉ3, C5C5C52, and C6C6C62 can be approximated by the constraints in
C̃1C̃1C̃12, C̃3C̃3C̃3, C̃5C̃5C̃52, and C̃6C̃6C̃62, respectively, where the details of C̃1C̃1C̃12,
C̃3C̃3C̃3, C̃5C̃5C̃52, and C̃6C̃6C̃62 are given in Appendix A.

Finally, we obtain the GP approximation of MinCost-SGP
at the t-th iteration as

GP-Appx(t) : minimize
P(t),R(t),s(t)

z(t), subject to:

Ĉ1Ĉ1Ĉ11, C̃1C̃1C̃12, C2C2C2, C̃3C̃3C̃3, C4C4C4, C5C5C51, C̃5C̃5C̃52, C6C6C61, C̃6C̃6C̃62, and (19).

Algorithm 1 outlines the steps of the proposed iterative algo-
rithm that solves the problem in MinCost-SGP. To ensure
that Algorithm 1 returns a solution that is close to the optimal
solution of MinCost-SGP, the algorithm should stop at the
τ -th iteration when

1) The difference between z(τ) and z(τ −1) is sufficiently
small, and

2) All elements in s(τ) are close to 1’s.
It has been shown that the SCA can converge to a Karush-

Kuhn-Tucker (KKT) point of an SGP [15]. We state this con-
vergence property of Algorithm 1 in the following proposition,
where we refer interested readers to [15] for the proof.

Proposition 1. Algorithm 1 converges to a KKT point of
MinCost-SGP when sj,k,n = 1, s2,k = 1, ∀j, k, n.
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Fig. 2. Comparisons between Algorithm 1 and exhaustive search, where
N = K = 2, π0 = 1, π2 = 0.5, B2 = 2, and Rrsv
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2 = 1. (a)

B1 = 2. (b) π1 = 0.2.

IV. SIMULATION STUDIES

In this section, we present simulation results in a network
with one MBS located at the origin and multiple PBSs and the
users distributed around it. The channel gains between user k
and the MBS is modeled as dk = l−δ

k,0, where lk,0 represents the
normalized distance between user k and the MBS, and δ = 2
denotes the path-loss exponent. Note that the small-scale fad-
ing between a user and the MBS is ignored because the MBS
is equipped with massive MIMO and therefore the channel
gain due to small-scale fading converges to a deterministic
value. On the other hand, the channel gain between user k
and the n-th PBS is modeled as hk,n = l−δ

k,nρk,n, where lk,n
represents the normalized distance between user k and PBS n
and ρk,n denotes the small scale fading component. The value
of ρk,n is randomly picked from an exponential distribution
with unit mean.

Fig. 2 compares the performance of Algorithm 1 with the
exhaustive search, where K = 2 and N = 2. In this example,
there are two PBSs located at (5, 0.5) and (5,−0.5) as well
as two users located in between the two PBSs, creating a
complicated situation for user association. More specifically,
the locations of the two users are randomly generated within
the square whose corners are (5.1, 0.1), (4.9, 0.1), (4.9,−0.1),
and (5.1,−0.1). The results in Fig. 2 confirm the close-
to-optimal performance of the proposed iterative algorithm,
where the objective function of MinCost found by Algorithm
1 is sufficiently close to the optimal value found by the
exhaustive search. Also, the maximum value of the auxiliary
variables sj,k,n among all j, k, n is 1.001, showing that
Algorithm 1 converges to a KKT point of MinCost-SGP.

From Fig. 2(a), we can see that ψ first increases and then
saturates as π1 increases, and the rate of increase of ψ versus
π1 consistently reduces. This can be explained by Fig. 3(a),
where PBS 1 serves less data as π1 increases, and PBS 1
serves almost zero data when π1 > π0 and π1 > π2 given that
PBS 1 has enough backhaul capacity.

Fig. 2(b) shows that when π1 < π0 and π1 < π2, ψ
decreases as B1 increases. This observation is supported by
Fig. 3(b), where the data rate served by PBS 1 increases as
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B1 increases and the data rate served by the other two BSs
decreases at the same time. Then, the total cost of the network
reduces because the cost of PBS 1 is the lowest.

Fig. 4 examines the scenario where number of PBSs (i.e.,
N ) increases in the network. In this example, the PBSs
are randomly placed within the circle centered at the origin
whose radius is five. Moreover, the closest normalized distance
between two PBSs is 0.5, and the closest distance between
the MBS and any PBS is 1. Two users are randomly placed
in the vicinity of each PBS, where the normalized maximum
and minimum distances between a user and a PBS are set to
be 0.25 and 0.04, respectively. We can see that the number of
iterations required by Algorithm 1 increases at a sub-linear rate
with respect to N . In other words, let tconv be the number of
iterations needed for Algorithm 1, then tconv is upper bounded



by a multiple of N , or tconv = O(N).
Moreover, based on [16], the number of required itera-

tions for solving a GP using the interior-point method is
tGP = ⌈ log(ϕ)−log(ϵτ0)

log(µ) ⌉, where ϕ is the number of constraints,
and ϵ, τ0, and µ are parameters related to the accuracy
of the interior-point method. The number of constraints in
GP-Appx(t) is counted as ϕ = 6KN + 5K + N . Thus,
for fixed ϵ, τ0, and µ as well as a fixed ratio between N
and K, tGP = O(log(N)). Together with the observation that
tconv = O(N), the total number of required iterations for
Algorithm 1 using the interior-point method in the considered
network setup is O(N log(N)). In other words, the total
number of required iterations only grows quasi-linearly with
N .

V. CONCLUSION

In this paper, we have studied the problem of joint user
association and power allocation on the uplink of a heteroge-
neous network, where dual connectivity is enabled. We have
formulated the cost minimization problem from the network
perspective, where a user can be served simultaneously by
the MBS and one of the PBSs on different frequency bands.
To solve the non-convex problem, we have proposed an itera-
tive algorithm which guarantees reaching an optimal solution
(locally or globally) after convergence. Simulation studies
have verified the close-to-optimal performance of the proposed
algorithm with affordable complexity.

APPENDIX A
APPROXIMATIONS ON Ĉ1Ĉ1Ĉ12 , Ĉ3Ĉ3Ĉ3, C5C5C52 , AND C6C6C62

Define the following new variables, i.e.,

αk,n,j(t) ,
{
Pk,n(t)Pk,j(t), j ̸= n,

1, j = n,
(21)

βk,i(t) ,
Ri

k,0(t)σ
2
0

i! · Pk,0(t)Mdk
, i = 1, 2, ..., U, (22)

γk,n,i,j(t) ,


Ri

k,n(t)Pj,n(t)|hj,n|2

i!·Pk,n(t)|hk,n|2 , j ̸= k,
Ri

k,n(t)σ
2
n

i!·Pk,n(t)|hk,n|2 , j = k,
(23)

Then, by applying the AGMA in (12), the constraints in Ĉ1Ĉ1Ĉ12,
Ĉ3Ĉ3Ĉ3, C5C5C52, and C6C6C62 can be approximated as

C̃1C̃1C̃12 ::: s
−1
1,k,n(t) ·

N∏
j=1

(
αk,n,j(t)ζk,n(t)

αk,n,j(t− 1)

)−
αk,n,j(t−1)

ζk,n(t)

≤ 1,

∀k ∈ K, ∀n ∈ N ,

C̃3C̃3C̃3 ::: Rrsv
k ·

N∏
j=0

(
Rk,j(t) · ηk(t)
Rk,j(t− 1)

)−
Rk,j(t−1)

ηk(t)

≤ 1, ∀k ∈ K,

C̃5C̃5C̃52 ::: s
−1
2,k(t) ·

U∏
i=1

(
βk,i(t)θk(t)

βk,i(t− 1)

)−
βk,i(t−1)

θk(t)

≤ 1, ∀k ∈ K,

and

C̃6C̃6C̃62 ::: s
−1
3,k,n(t) ·

U∏
i=1

K∏
j=1

(
γk,n,i,j(t)ϑk,n(t)

γk,n,i,j(t− 1)

)−
γk,n,i,j(t−1)

ϑk,n(t)

≤ 1, ∀k ∈ K, ∀n ∈ N ,

respectively, where

ζk,n(t),
∑N

j=1
αk,n,j(t−1), ηk(t),

∑N

j=0
Rk,j(t−1),

θk(t),
∑U

i=1
βk,i(t−1), and ϑk,n(t),

U∑
i=1

K∑
j=1

γk,n,i,j(t−1).
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