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Abstract 
Atomic simulations were undertaken to analyse the effect of polymer chain scission on 

amorphous poly(lactide) during degradation. Many experimental studies have analysed 

mechanical properties degradation but relatively few computation studies have been 

conducted. Such studies are valuable for supporting the design of bioresorbable medical 

devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young’s 

modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness 

polymer may exist around chain scissions. In the Effective Cavity Theory, each chain 

scission is considered to instantiate an effective cavity. Finite Element Analysis simulations 

were conducted to model the effect of the cavities on Young’s modulus. Since polymer 

crystallinity affects mechanical properties, the effect of increases in crystallinity during 

degradation on Young’s modulus is also considered. To demonstrate the ability of the 

Effective Cavity Theory, it was fitted to several sets of experimental data for Young’s 

modulus in the literature.  

 

Key words: Biodegradable polymers, degradation, Young’s modulus, mechanical properties, 

computer modelling. 

 

 1 Introduction 
Biodegradable polymers such as poly(lactide) are used in medical devices that help support 

broken bones during the healing process. After a period of months or years, the devices 
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degrade and are absorbed by the body. The mechanical properties during degradation are 

of interest. Young’s modulus of biodegradable polymer is related to many factors of which 

molecular weight and crystallinity are particularly important. During degradation, crystallinity 

generally increases while molecular weight decreases. The increase in crystallinity may 

cause Young’s modulus to increase (Tsuji and Ikada, 1995) while molecular weight reduction 

results in a Young’s modulus decrease. Theoretical models help improve understanding of 

how mechanical properties degrade and can be used to simulate degradation in order to 

design the optimal device. Wang etc al. (Wang et al., 2010) considered the entropy spring 

model for rubbery amorphous polymer and considers short polymer chains to have negligible 

effect on the entropy change in a linear biodegradable polymer during its deformation. The 

model was demonstrated to be able to fit experimental data for Young’s modulus 

degradation. However, many biodegradable polymers are used below their glass transition 

temperature, in which case there is no current theoretical model that can be used to describe 

the degradation of Young’s modulus. The effect of entropy reduction on mechanical 

properties is not expected to be a major factors for polymers used below their glass 

transition temperature. Numerical  analysis of the effect of polymer chain scission on 

Young’s modulus both above and below the glass transition temperature was carried out by 

Ding et al. (Ding et al., 2011) using molecular dynamics (MD) simulations. It was found that 

below the glass transition temperature, chain scission reduces Young’s modulus as a result 

of lowering the Lennard-Jones interaction between polymer chains. The MD simulations in 

that study considered polyethylene chains. The analysis of complex biodegradable polymer 

molecules such as poly(lactide) was not possible due to computational demands.  

 

This paper presents a study on the effect of polymer chain scission on Young’s modulus of 

biodegradable polymers. The atomic finite element method (AFEM) is used, which was 

presented in the first of paper in this two-part series (Gleadall et al.). AFEM simulations are 

much less computationally demanding than MD so can be used for amorphous poly(lactide) 

polymer structures. A large number of scissions are applied to understand their effect on 

Young’s modulus. Also, individual chain scissions are analysed at the atomic-scale in order 

to understand the local effects of chain scission on force transfer through the polymer. 

Based on these new understandings obtained using the atomistic simulations, an Effective 

Cavity Theory is proposed, which can simply model the degradation of Young’s modulus due 

to chain scission. The effect of increasing crystallinity is also considered in the model.  
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 2 The atomic finite element method (AFEM) 
The atomic finite element model (AFEM) model has been described in detail in the 

accompanying paper (Gleadall et al.). Interatomic potential energy functions for covalent 

bonds and nonbonded interactions, which are taken from the PLAFF2 molecular dynamics 

force field for poly(lactide) (McAliley, 2009), are used in atomic finite element analysis 

simulations. The nonlinear interatomic potential energy functions are adapted to enable 

static linear analysis. The AFEM simulation technique is therefore greatly more 

computationally efficient than molecular dynamics (MD) simulations. This allows the analysis 

of polymer chain scission in large amorphous polymer structures. In AFEM, there a four 

main types of elements: three are used to simulate covalent bonds while the fourth 

represents nonbonded interactions including Lennard-Jones and Coulomb interactions. The 

three covalent bond elements are referred to as bond-stretch, bond-angle and bond-dihedral 

elements. They model the covalent bonds’ stiffness with respect to interatomic separation of 

two covalently bonded atoms, the angle between two covalent bonds, and the rotation of a 

polymer chain about a covalent bond, respectively. During the AFEM simulations, a strain is 

applied to the atomic structure and the resulting interatomic potential energy increase in the 

AFEM simulations, which indicates stain energy, is used to identify Young’s modulus for the 

polymer. Since the simulations are for linear analysis, the magnitude of applied strain does 

not affect the calculation of Young’s modulus. A value of 2% strain is used. A nonbond cut-

off distance of 0.95nm is utilised unless otherwise indicated since this value is often 

implemented in MD simulations. The atomic structure used in this study is the amorphous 

unit cell for poly(lactide), which was also used in the accompanying paper (Gleadall et al.). 

The structure was obtained from the PhD thesis by McAliley (McAliley, 2009). Scissions are 

applied in the AFEM simulations by removing one polymer repeat unit from the structure.  

 

For an atomic structure subject to tensile strain the unit cell images on opposite sides of the 

central unit cell apply opposite forces to the central unit cell in order to elongate it. These 

forces are transferred through AFEM elements in the structure from one side to the other. 

Fig. 1 (a) shows how equal and opposite forces applied to atoms 1 and 3 in the figure must 

transfer through the two elements and through the central atom. The labelled forces in the 

figure are the forces that must be applied to the atoms (by other AFEM elements or external 

forces) in order to strain the elements being considered. The force that is transferred through 

an element can be calculated based on the stiffness of the element and the atomic 

displacement. For 3D simulations, the component of the force that is in the direction of 

applied stress is of interest. Since an atom may be utilised in several elements, the force that 

transfers through the atom is calculated as the sum of the force contributions from all the 
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elements in which the considered atom is contained. The bond-angle and bond-dihedral 

elements contain more than two atoms, and the force that is transferred through the element 

changes at different positions within the element. In order to determine the force transferred 

through a particular atom, an imaginary cut is applied to the structure immediately next to the 

atom in question. This is shown in Fig. 1 (b) with respect to atom 1 for a bond-angle element 

connecting three atoms. The force that is transferred through the element at the location of 

the imaginary cut plane in the figure is calculated as the sum of forces (applied to the 

element by other elements) for all atoms that are in the positive direction of applied strain 

(atoms 2 and 3 in the figure).  

 

 

Fig. 1 a) A simple transfer of force through two bond-stretch elements and b) the force 

transferred to atom 1 by a bond-angle element between three atoms can be considered 

using an imaginary cut through the element. 

 

 3 Atomic simulations for polymer chain scission  
During degradation the value of Young’s modulus decreases as a result of polymer chain 

scission and a reduction in molecular weight. The AFEM simulations can be used to simulate 

the degradation of Young’s modulus and help understand the trends that are found 

experimentally. For the purpose of analysing the effect of chain scission on Young’s modulus, 
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chain scissions are applied cumulatively the amorphous structure and Young’s modulus is 

calculated at various molecular weights. Chain scission of the crystalline phase in semi-

crystalline poly(lactide) is not expected to play an important role in degradation since the 

crystalline phase degrades slowly compared to the amorphous phase. Therefore a 

relationship between Young’s modulus and molecular weight is only studied for the 

amorphous phase. Fig. 2 (a) shows the relationship between normalised Young’s modulus 

and molecular weight that is found in the AFEM simulations for the amorphous polymer unit 

cell. The values of Young’s modulus calculated are normalised by the values found at 8950 

g mol-1 to ensure clarity in the figure. This is the number averaged molecular weight after 

three scissions have been applied to each of the original polymer chains. The results for a 

regular AFEM setup are indicated by the solid line and demonstrate a reduction in Young’s 

modulus only after the molecular weight has considerably reduced. This trend that Young’s 

modulus degradation is initially delayed behind molecular weight degradation is also found in 

many experimental studies in the literature (Lam et al., 1994; Migliaresi et al., 1994; Saha 

and Tsuji, 2006; Tsuji, 2000, 2002, 2003; Tsuji and Muramatsu, 2001; Tsuji and Suzuyoshi, 

2002a, b; Weir et al., 2004; Yuan et al., 2002). To test the sensitivity of the AFEM technique, 

the AFEM setup is varied in two ways: (i) the stiffness of nonbond AFEM elements are 

reduced by 99%, and (ii) the nonbond cut-off distance is reduced from 0.95nm to 0.5 nm. 

The scissions are applied to the same polymer repeat units in all three test setups. In both of 

the modified setups, the Young’s modulus degradation occurs earlier, with respect to 

molecular weight degradation, than for the regular AFEM setup. This is due to the fact that 

both variations result in an increased contribution to overall Young’s modulus from the 

covalent bond elements of the main polymer chains. When the polymer chains have a more 

important contribution, the scissions applied to these chains have a greater impact on 

Young’s modulus.  
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a) 

 
b) 

 

Fig. 2 AFEM simulations are used to find a relationship for normalised Young’s modulus 

versus a) number averaged molecular weight and b) the number of chain scissions in the 

amorphous polymer unit cell. Simulations are conducted with a regular AFEM setup, with 99% 

reduced stiffness nonbonds, and with a reduced nonbond cut-off of 0.5 nm. 
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Fig. 2 (b) shows the relationship between normalised Young’s modulus and the number of 

chains scissions applied to the amorphous polymer unit cell. It can be seen to be almost 

linear for all three AFEM setups. This can explain why Young’s modulus drops more 

suddenly at lower molecular weights. Consider the chain scission of a polymer structure 

containing 10 initial polymer chains. Table 1 indicates the number of scissions that are 

required to reduce normalised molecular weight by various amounts. To reduce the 

normalised molecular weight by ≈0.1 takes just 1 scission initially. After 40 scissions have 

been applied such that normalised molecular weight is 0.2 however, 50 scissions are 

required in order to reduce the normalised molecular weight by 0.1. In a degraded polymer 

with lower molecular weight, many more scissions are required to further reduce molecular 

weight. Therefore for a near-linear relationship between Young’s modulus and the number of 

scissions, as identified in Fig. 2 (b), the reduction of Young’s modulus accelerates greatly as 

molecular weight reduces.  

 

Table 1 Demonstration of how the number of scissions must increase acceleratedly as 

normalised molecular weight reduces in order to further reduce normalised molecular weight.  

number of chains number of scission normalised Mn 
10 0 1.000 
11 1 0.909 
12 2 0.833 
15 5 0.667 
20 10 0.500 
30 20 0.333 
40 30 0.250 
50 40 0.200 
100 90 0.100 
200 190 0.050 

 

 4 AFEM simulations for effective cavities due to chain scission 
In addition to the effect of chain scission on overall Young’s modulus, the effect of chain 

scission is investigated in terms of the interatomic force that is transferred through the 

structure. For such analysis it is useful to consider the effects of individual chain scissions. 

Fig. 3 (a) shows the amorphous poly(lactide) unit cell that is used in the AFEM simulations. 

One chain scission has been applied to the polymer. In Fig. 3 (b) atoms are only shown if the 

interatomic force that they transfer in the direction of applied strain reduces by a threshold 

value in the simulation with the chain scission versus the simulation without the chain 

scission. The threshold is chosen to be a reduction in transferred force of at least 50% of the 
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average force transferred for all atoms. The clusters of atoms above and below the scission 

may indicate that there are volumes of polymer above and below the scission that have a 

reduced force. The AFEM simulations do not consider the reconfiguration of the polymer as 

a result of chain scission, but it is reasonable to expect the end of chain ends to be more 

free to move than polymer units in the middle of a chain. This extra freedom may cause the 

local surrounding polymer have a lower Young’s modulus than a region of polymer without a 

chain end.  

 

 

Fig. 3 The polymer unit cell is shown a) in its entirety and b) with atoms only displayed if they 

demonstrate a threshold reduction (as a result of the chain scission) in the force that they 

transfer through the polymer. 

 

In the Effective Cavity Theory presented in this study, each scission is represented by an 

effective cavity. In order to identify the shape of the effective cavity, ten scissions are 

individually applied to random polymer units in the amorphous polymer structure used in 

AFEM simulations. Fig. 4 shows the AFEM results for the ten individual scissions, viewed 

normal to the direction of applied strain. The threshold is reduced from 50% used in Fig. 3 to 

10% in Fig. 4 to enable more atoms to be visualised. The schematic in the figure 

demonstrates that flat-tipped cones may be used to approximate the volumes of the effective 

cavity that result from a chain scission. For each scission, effective cavities may be 

considered to exist in the shape of flat-tipped cones oriented tip-to-tip. Pairs of flat-tipped 

cones are overlaid onto each of the simulation results in the figure to demonstrate that such 

applied strain 
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a shape is a suitable approximation of the reduced stiffness polymer near each chain 

scission. The orientation of the flat-tipped cones depends on the direction of applied strain. If 

the direction of applied strain changes, so too does the position of effective cavities that 

result from chain scission. Based on Fig. 4, a flat-tipped cone shape is used to represent the 

shape of effective cavities when developing the Effective Cavity Theory to relate Young’s 

modulus to chain scission. There is some variation between the shapes of the cones in Fig. 

4. The shape can be characterised (i) by the ratio of the top radius to the base radius, and (ii) 

by the ratio of the cone height to the base radius. The base radius, top radius and cone 

height are all labelled in Fig. 4. For the ten cone shapes given in Fig. 4, the ratio of the top 

radius to the base radius varies from approximately 0.25 to 0.5 and the ratio of the cone 

height to the base radius varies from approximately 1 to 1.25. In order to account for the 

variation in cone dimensions during the development of the Effective Cavity Theory, a range 

of ratios are studied: the ratio of the top radius to the base radius is varied from 0 to 0.667 

and the ratio of the cone height to the base radius is varied from 1 to 2.  

 

 5 Effective Cavity Theory for change in Young’s modulus due to chain 
scissions 

The Effective Cavity Theory model for the degradation of Young’s modulus in biodegradable 

polymers combines models for the effect of both chain scission and crystallinity on Young’s 

modulus. In the model for chain scission, effective cavities in the shape of flat-tipped cones 

are considered to result from each chain scission. As the concentration of chain scissions 

increases in a polymer during degradation, the volume fraction of effective cavities increases. 

The model for chain scission effective cavities relates the volume fraction of effective cavities 

to Young’s modulus. As crystallinity increases, Young’s modulus increases because the 

crystallites have greater stiffness than amorphous polymer. Crystallites are generally 

considered to be cuboidal in shape, and hence the model for crystallinity considers a cubic 

crystal particle in a cubic matrix of amorphous polymer. To develop the models, the finite 

element analysis package COMSOL Multiphysics 4.3b (license 7074366) is used.  

 

5.1 Effect of chain scission on Young’s modulus 
To develop the model for effective cavities associated with chain scission, one quarter of a 

flat tipped cone is modelled as a void in a cubic matrix, which represents amorphous 

polymer. The FEA model including the mesh is shown in Fig. 5.  The height and large radius 

of the cone are set to be 1nm. The small radius of the cone is set to be 0.333nm. These 
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values are adjusted and discussed later in this section to investigate the effect of cone shape 

on the 

 

Fig. 4 Ten scissions are individually applied to the amorphous polymer. Atoms are only 

displayed if they demonstrate a threshold reduction in the force that they transfer through the 

polymer as a result of the chain scission. A volume of less stiff polymer may exist around 

each scission, which takes the shape of two flat-tipped cones oriented tip-to-tip in the 
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direction of applied strain. This shape is chosen for the model of the Effective Cavity Theory 

presented in this study. 

effective cavity theory. For the simulation shown in the figure, the overall cubic cell has side 

lengths of 1.5nm. Symmetry is assumed across the left, front and bottom faces of the cube 

in Fig. 5, which represents a cube eight times the volume containing two flat-tipped cone 

voids oriented tip-to-tip. Strain is applied to the top face of the cube in Fig. 5, while the back 

and right faces are free to displace in order to accommodate Poisson’s ratio but remain 

planar. The bottom face is restrained in the z direction. These boundary conditions represent 

the case that the larger cube, containing eight reflections of the cube shown in Fig. 5, is a 

unit cell that repeats to infinity in all directions. During the FEA simulations that develop the 

Effective Cavity Theory, the size of the flat-tipped cone effective cavity is kept constant while 

the overall cubic cell size reduces. A smaller cubic cell represents a reduced separation 

between chain scissions in the polymer and therefore more scissions per unit volume and a 

more degraded polymer. 

 

 

Fig. 5 The flat-tipped cone FEA model used to determine the model for a flat-tipped cone 

effective cavity in cubic matrix. The finite element mesh is indicated. 

 

For the cubic amorphous matrix, the material properties found in the AFEM simulations in 

the accompanying paper (Gleadall et al.) are used. Young’s modulus is 37.1 GPa and 

Poisson’s ratio is 0.255. Twelve simulations are conducted in total, in which the side length 

nm 

nm 

nm 
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of the cube varies from the same height as the flat-tipped cone to twenty times longer. 

Further refinement of the mesh has little impact on the results. Young’s modulus is 

calculated by finding the average stress that is applied to the top face of the cube in order to 

achieve 2% strain through static linear analysis. The results for normalised Young’s modulus 

versus the volume fraction of effective cavities for all twelve simulations are given in Fig. 6. 

The values of Young’s modulus found in the simulations are normalised by the initial value 

for a full cube without any effective cavity. A line of best fit indicates the relationship of 

 
1 

 

in which  is normalised Young’s modulus (no units) and Xec is the volume fraction of the 

effective cavity in the polymer matrix (no units). The final data point in Fig. 6 is not included 

when fitting the line of best fit in order to determine Eq. 1 because the relationship between 

normalised Young’s modulus and pore volume fraction begins to deviate from the curve for 

earlier data points. This is due to high interaction between the effective cavity and the cell 

boundaries at such a high volume fraction. The model therefore must be considered with 

caution for Young’s modulus drops greater than 50%.  

 

 
Fig. 6 Normalised Young’s modulus versus effective cavity volume fraction for 12 simulations 

of a flat-tipped cone effective cavity in a cubic polymer matrix. An exponential line of best 

fitting to the first 11 data points (solid filled diamonds) is shown. 

 

The cone shapes in Fig. 4 show some variation. The value of the exponent in Eq. 1 is 

dependent on the cone dimensions. In order to test the effect of cone dimensions on the 
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relationship found in Eq. 1, the simulations discussed above are repeated for a range of 

cone dimensions. The fitting shown in Fig. 6 is repeated for each simulation setup. Table 2 

gives the cone dimensions and the corresponding value of the exponent for Eq. 1. When 

fitting the Effective Cavity Theory to experimental data in Section 5.4, error margins indicate 

the range of Effective Cavity Theory results that the range of exponents in Table 2 gives. For 

the cone with a height of 2nm, the unit cell is adjusted to be twice as tall as it is wide to 

maintain proportionality. 

 

Table 2 Table of cone dimensions used in simulations and respective exponents for Eq. 1. 

Cone height (nm) Cone large radius (nm) Cone small radius (nm) Eq. 1 exponent value 
1 1 0 -3.439 
1 1 0.333 -2.483 
1 1 0.667 -1.845 
2 1 0.333 -2.041 

 

 

5.2 Effect of crystallinity on Young’s modulus 
A similar approach is used to develop the model for crystallinity as was used for chain 

scissions in the previous section.  The setup of the model is the same except the flat-tipped 

cone shaped void is replaced by a cube of material that represents a crystallite particle in an 

amorphous polymer matrix. Fig. 7 shows the model for a crystal with side lengths equal to 50% 

of the overall cube side length including the FEA mesh. As with the chain scission model, 

symmetry boundary conditions are applied to the left, front and bottom faces to represent an 

overall cube of eight times the volume of the one shown, which contains a single centrally 

located crystal particle. The bottom face is restrained in the z direction and the top face is 

displaced by 2% of the overall side-length. Poisson’s contraction is permitted but the 

boundaries are constrained to be planar. For the amorphous matrix, Young’s modulus is 

37.1 GPa and Poisson’s ratio is 0.255, which are the values found in the atomic simulations 

for amorphous poly(lactide) in the first study in this series (Gleadall et al.). For the crystal 

particle, Young’s modulus is 77.4 GPa, which is the mean of the x, y and z values for 

crystalline poly(lactide) Young’s modulus that is found in the atomic simulations in the 

accompanying paper (Gleadall et al.). Although the values for Young’s modulus are higher 

than expected experimentally, which is discussed in the previous chapter, they are used 

because no experimental values for crystalline Young’s modulus are available. In the 

simulations here, the absolute values do not affect the results; it is the ratio of 

crystalline:amorphous Young’s moduli that is important. The ratio of 2.1 used here is 

reasonable. And this ratio is varied later in this section to ensure the results are not critically 
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sensitive to it. The shape and isentropic properties of crystals are not well understood so it 

the model in this thesis is simplified to be isotropic and cube shaped. Poisson’s ratio of the 

crystal particle is 0.239, which is the mean of the six Poisson’s ratio values, νxy, νxz, νyx, νyz, 

νzx, νzy, found in the accompanying paper (Gleadall et al.). 

 

 

Fig. 7 The crystal cube within a cube FEA model used to determine the model for a crystal 

particle in an amorphous polymer matrix. The finite element mesh is indicated. 

 

In the FEA simulations used to develop the model for crystallinity, the crystallite particle size 

remains constant while the size of the cubic cell amorphous matrix varies. As the overall 

cube size reduces relative to the crystal particle size, the cubic cell represents a polymer in 

which the crystallites are closer together and occupy a greater volume fraction. Therefore 

crystallinity is greater. Simulations were completed for 10 different ratios of particle side 

length to overall cube side length, varying from 0 to 0.9. The results for normalised Young’s 

modulus versus crystal volume fraction are shown in Fig. 8. The exponential line of best fit 

indicates that normalised Young’s modulus is related to crystal volume fraction Xc (no units) 

by 

. 
2 

 

The value of the exponent in Eq. 2 depends on the ratio between Young’s modulus of the 

crystal particle and amorphous matrix. It also depends of the ratio between the values of 
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Poisson’s ratio. To determine the effects that the choices of Young’s modulus and Poisson’s 

ratio have on the exponent, a range of values for Young’s modulus and Poisson’s ratio are 

investigated here. In the above results, the isotropic crystal particle material properties are 

taken as the mean of the x, y and z uniaxial isentropic material properties found in the 

atomic simulations of the first paper in this series (Gleadall et al.). Two additional simulations 

are conducted here, which represent upper and lower bounds. The material properties used 

are given in Table 3. For the upper bound, the crystal particle Young’s modulus is taken as 

the maximum of the x, y and z Young’s modulus and the Poisson’s ratio is taken as the 

maximum of all six Poisson’s ratio terms, found in the accompanying paper for crystalline 

poly(lactide) (Gleadall et al.). This represents a crystal particle with high stiffness oriented in 

the direction of applied strain.  For the lower bound, the crystal particle is given the minimum 

of all Young’s modulus and Poisson’s ratio values found in the atomic analysis (Gleadall et 

al.), which represents a crystal particle with high stiffness oriented normal to the direction of 

applied strain.  The fitting shown in Fig. 8 is repeated for the upper and lower bound setups 

to find the updated exponent values for Eq. 2. These are given in Table 3 and are used in 

Section 5.4, when fitting the Effective Cavity Theory to experimental data, in order to indicate 

error margins. 

 

 
Fig. 8 Normalised Young’s modulus versus crystal particle volume fraction for 10 simulations 

of a crystal particle in a cubic amorphous matrix. An exponential line of best fitting is shown. 
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Table 3 Table of crystal material properties used in the simulations and the respective 

exponents for Eq. 2. 

Crystal properties Young’s modulus (GPa) Poisson’s ratio Eq. 2 exponent value 
Matrix Crystal Matrix Crystal 

Mean x, y, z 37.1 77.4 0.255 0.239 0.754 
Lower bound 37.1 128 0.255 0.328 1.246 
Upper bound 37.1 50.4 0.255 0.110 0.326 

 

 

5.3 Young’s modulus of semi-crystalline polymers 
The model for chain scission and the model for crystallinity are combined to consider semi-

crystalline polymers. Fig. 9 shows how effective cavities are assumed to incorporate both 

crystal particles and the amorphous polymer matrix. It is out of scope in this work to consider 

interaction between crystallites and effective cavities. Since the size of crystallites is not 

known, the model was also successfully fitted to experimental data utilising an assumption of 

large crystallites such that the voids occupy the amorphous phase only. Future studies may 

extend the model to consider the interaction between crystallites and effective cavities. 

 

 
Fig. 9 Effective cavities are considered to occupy a volume of combined crystal and 

amorphous phases. 
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According to Eq. 2, the Young’s modulus of the combined crystal particles and amorphous 

matrix phases, Ec (GPa), is empirically assumed to follow the relationship 

 
3 

 

in which the Young’s modulus of a fully amorphous polymer with no effective cavities or 

crystallinity,  (GPa), is calculated from initial experimental measurements for Young’s 

modulus, number average molecular weight and crystallinity. Ec is used as the Young’s 

modulus of the matrix phase in which the effective cavities occur. Therefore for the Effective 

Cavity Theory, Eq. 1 is used to model the overall polymer Young’s modulus, Ep (GPa), 

according to 

. 
4 

 

Effective cavities are assumed to occur at the sites of initial chain ends as well as the 

polymer chain ends that result from chain scission to reflect the theory that the effective 

cavities are associated with chain ends. At any time during degradation the molar number of 

chains per unit volume, Nchain (mol m-3), can be calculated from molecular weight according 

to  

 
5 

 

in which ρp (g m-3) is the density of the polymer and Mn (g mol-1) is the number averaged 

molecular weight. The concentration of chain ends, Cend (mol m-3), is  

 
6 

 

And the volume fraction of effective cavities Xec (no units) is therefore given by 

 
7 

 

in which Vec (m3 mol-1) is the molar volume of each effective cavity.  

 

5.4 Fitting of the Effective Cavity Theory with experimental data 
In order to demonstrate the Effective Cavity Theory in Eqs. 3 - 7, a fitting of the model to 

experimental data for the degradation of Young’s modulus is completed for five sets of 

experimental data . These sets of data are chosen because they concern poly(lactide) and 

have regular measurements for crystallinity, molecular weight and Young’s modulus. The 

only variable that is adjusted in the experimental data fittings is the effective cavity volume 

Vec. The value of Xc is measured experimentally in all cases. The density, ρp, is taken to be 

1.25 x106 g m-3. The values of Nchain and Cend are derived from measured Mn, and therefore 

Xc
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allow the value of initial Xec to be calculated in Eq. 7 based on the set value of Vec. The value 

of  is derived from Eq. 3 by substitution of the initial measured Young’s modulus into Eq. 

4 as Ep, along with the measured and derived values of Xc and Xec. The experimental setup 

and initial measurements are given for the five datasets in Table 4, where PBS indicates 

phosphate buffer solution. 

  

Table 4 Experimental setups and initial measurements for the five sets of data that are used 

in the Effective Cavity Theory fitting. 

Data Set [reference] A  B  C  D  E  
Initial Mn (g mol-1) 159000 584000 153000 152000 42000 
Initial Xc 0.448 0.540 0.480 0 0.570 
Initial Young’s 
modulus (GPa) 

0.668 0.100 6.86 5.58 1.43 

Sample type 0.8 mm 
plate 

0.050 mm 
film 

2 mm rod 3 mm rod 0.033 mm 
film 

Polymer type PLLA PLLA PLLA PLLA PLLA 
Degradation medium 37°C PBS 

pH7.4  
37°C PBS 
pH7.4  

38°C PBS 
pH7.4  

38°C PBS 
pH7.4  

37°C PBS 
pH7.4 

 

 

Fig. 10 shows the experimental data for Young’s modulus along with the Effective Cavity 

Theory results. In Fig. 10 (c) and (d), crystallinity was not measured at week 12 so the 

values used for the Effective Cavity Theory fitting are taken as the average of the 

measurements at weeks 8 and 16. The Effective Cavity Theory fitting gives discrete data 

points because Eqs. 4 - 7 are used at each experimental measurement time. A molar 

volume of 9.41 x10-3 m3 mol-1 is used for effective cavity volume Vec for all five data sets in 

Fig. 10. It is justifiable to use several effective cavity volumes, since the samples may have 

different polymer chain configuration due to the different experimental setups. However, the 

value is not adjusted between fittings in order to reduce the number of parameters that can 

be varied to achieve the best fitting. The fittings can be improved if the value of Vec is 

allowed to vary. The error bars indicate the minimum and maximum Young’s moduli found 

by the Effective Cavity Theory for all combinations of exponents given in Table 2 and Table 

3 being used in Eq. 4 and Eq. 3, respectively. The Effective Cavity Theory gives a very good 

fitting to the experimental data. 

 

The model is able to consider Young’s modulus increase due to crystallinity as demonstrated 

in the first two data points in Fig. 10 (c) and the first few weeks in Fig. 10 (d). The Effective 

Cavity Theory also correctly reproduces the slightly erratic nature of Young’s modulus 

∞E
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reduction Fig. 10 (a). The trend can be linked to the molecular weight experimental 

measurements, which fluctuate in a similar manner to Young’s modulus. The Effective Cavity 

Theory is intended for Young’s modulus reductions up to 50% as discussed in relation to Fig. 

6. Therefore, for the later stages in each of the fittings, the results should be considered with 

caution. However, the data fittings quite accurately model Young’s modulus reduction to zero. 

For the chosen effective cavity volume, the experimental data considered in Fig. 10 (e) has a 

very high initial volume fraction of effective cavities (56%) compared to the other four studies 

(4-15%) because it has a much lower initial molecular weight. Although the Effective Cavity 

Theory is not intended for the data in Fig. 10 (e), it can be seen to achieve quite a good 

fitting, using the same volume of effective cavity.  

 

The simple model presented in Eqs. 3 - 7 for the Effective Cavity Theory is based on the 

model for an isolated flat-tipped cone void and does not consider overlap of the effective 

cavities. If effective cavity overlap was considered in the Effective Cavity Theory, following a 

theory such  
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Fig. 10 Experimental data and the Effective Cavity Theory model for Young’s modulus in five 

degradation studies: a) , b) , c) and d)  and e) . 

as crystal overlap based on Avrami Theory presented by Han and Pan (Han and Pan, 2009), 

the rate of Young’s modulus reduction would reduce as it approached zero. Such a trend 

may result in a better fitting towards the end of degradation for the experimental data sets in 

Fig. 10 (c) and (d). The value of Vec used in the Effective Cavity Theory model represents a 

cone height of 2.74 nm for the effective cavities. In the AFEM analysis, the chain scissions 

affect a smaller volume than that used in the fitting here. This can be explained by the fact 

that the AFEM analysis underestimates the effect of chain scission due to polymer properties 

being simulated at 0 Kelvin.  

 

The Effective Cavity Theory may be combined with existing mathematical models from the 

literature for biodegradable polymer degradation, such as those presented in earlier work 
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(Gleadall et al., 2012; Han and Pan, 2009; Han et al., 2010), to give a combined model for 

molecular weight, crystallinity and Young’s modulus throughout degradation. 

 

 6 Conclusion 
The atomic finite element method, developed in the accompanying paper (Gleadall et al.), 

was used to analyse the effect of chain scission on Young’s modulus degradation in 

biodegradable polymers. Up to 258 scissions were applied to the amorphous polymer 

structure in order to model an overall trend for Young’s modulus versus molecular weight in 

a degrading poly(lactide). It was found that Young’s modulus degradation delayed behind 

molecular weight reduction. This trend has also been found in many experimental studies in 

the literature.  

 

The effect of individual chain scissions was also studied. It was found that chain scissions 

may instantiate a volume of reduced-stiffness polymer near to the scission. The Effective 

Cavity Theory was presented, in which effective cavities are considered to exist by chain 

scissions. In addition to modelling Young’s modulus degradation due to chain scission, the 

Effective Cavity Theory also considers the effect of crystallinity increases during degradation. 

Finite element analysis simulations were conducted to find a relationship between (i) the 

volume fraction of effective cavities and Young’s modulus, and (ii) crystallinity and Young’s 

modulus. The Effective Cavity Theory model was fit to experimental data for Young’s 

modulus in five sets of data in the literature. A good fitting was achieved when the same 

model parameter values were used for all five data fittings; the only inputs to the model that 

varied were the experimentally measured values of molecular weight, crystallinity and initial 

Young’s modulus. 
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