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Abstract: A planetary gearbox model comprising five spur gears (sun, ring and three planets) 

and the carrier, has been developed and analyzed. The influence of gear teeth backlash and 

friction during mixed regime of lubrication have been taken into consideration. Greenwood 

and Tripp model is employed while viscous friction is calculated analytically using the 

functions of Evans and Johnson. A combined tribodynamics modeling approach has been 

implemented and modal analysis is performed in order to predict the coupled mechanism of 

tribological and dynamic behavior, subjected to backlash and excited at the gear meshing 

frequency. The software used for the simulations is ADAMS MSc (Student Edition), where 

the model variables (concerning gear geometry and forcing functions) have been added in a 

parametric way. The results showed that small variations of the Dynamic Transmission Error 

(DTE) affect notably the viscous friction through changing the contact load between the 

engaged teeth pairs. Also, higher values of the Stribeck oil parameter due to higher film 

thickness or lower surface roughness in the mixed lubrication regime lead to reduction of the 

boundary friction, whereas a reduction of the total generated friction occurs when increasing 

the angular velocity of the input gear body (due to higher film thickness and smaller asperity 

interactions). The above are leading to reduced power loss of the mechanism. Finally, a 

characterization of the system dynamics is presented using the calculated eigenvalues and 

eigenmodes of the corresponding linearised system. Potential interactions with the gear 

meshing frequency of the system are also examined.  
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1. Introduction 

Gears are widely used machine elements in power transmission applications, characterized by 

high efficiency. However, they can be subjected to severe operating conditions giving rise to 

aggressive dynamics. Planetary gears are rather compact mechanisms, excellent for 

transmitting significant power with large speed reductions (or amplifications). Such 

mechanisms are used in many applications (e.g. wind turbines, aircraft engines, hybrid car 

transmissions) because of their large bearing capacity, high reliability and long life-span.  

In the work of Bartelmus [1] computer simulations revealed that conditions similar to those 

occurring at resonance may lead to damage of teeth flanks during the service life of a gearbox 

system. The time varying teeth meshing stiffness and backlash, which influence the dynamic 

behaviour of the gearbox, are the main excitation parameters in the model of Łuczko [2], who 

studied the chaotic vibrations in a single stage spur gear transmission. The dynamics of a 

back-to-back planetary gear, experimental and numerical modal analysis techniques were 

investigated by Hammami et.al [3]. The gear teeth backlash is considered as one of the main 

nonlinearities and it may cause oscillations and inaccuracy, leading to poor performance of 

control systems in many applications [4-6]. Therefore, the dynamic modeling and 

performance analysis of planetary gear transmissions with backlash have attracted much 

attention.  

Z. M. Sun [7] established a nonlinear dynamic model of a planetary gear transmission 

considering backlash and mesh stiffness. M. Hamed [8] presented a mathematical model, 

where the dynamic transmission error was used to analyze the influence of nonlinear 

oscillations of spur gear pairs with backlash on planetary gear pairs. Q. L. Huang [9] built an 

optimized mathematical model of a gear transmission system on the basis of a nonlinear 

purely rotational dynamic model of a multistage closed-form planetary gear, aiming at 

minimizing the vibration displacement of the low-speed carrier. A lumped parameter 

nonlinear torsional vibration model of a single-stage planetary set is proposed by Shyyab and 

Kahraman [10]. It includes all possible power flow configurations, variation of number of 

planets in any spacing arrangement and planet mesh phasing configuration. 

Greenwood and Tripp [11] presented a method to determine boundary friction between two 

interacting surfaces. Their method assumes Gaussian distribution of the asperities on the 

solids (meshing teeth surfaces in the case of the examined system). Evans and Johnson [12] 

reported an analytical experimental expression for viscous friction under elastohydrodynamic 

conditions, high loads and non-Newtonian shear behaviour. Schulze et al. [13] presented a 

report regarding the load distribution in planetary gears using MDESIGN software, where it 
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was shown that uniform load distribution on gear flank leads to longer life of the mechanism. 

The software gives complete product information in the early phase of product life cycle 

(PLC). Mohammadpour et al. [14] presented a tribo-dynamic model for planetary gear sets of 

Hybrid-Electric-Vehicle configurations. Their model comprises a 6 degree-of-freedom 

torsional multi-body dynamic system, as well as a tribological contact model in order to 

evaluate the lubricant film thickness, friction and efficiency of the meshing gear teeth 

contacts. A model to simulate the dynamic behaviour of a single-stage planetary gear train 

with helical gears was developed by Kahraman [15]. His three-dimensional dynamic model 

includes all six rigid body motions of the gears and the carrier of the planetary mechanism. 

In this paper, a planetary gearbox, which includes five spur gears (sun, ring and three planets) 

and the carrier, is modeled in ADAMS environment. A combined tribodynamics modelling 

approach has been implemented and modal analysis is performed in order to predict the 

coupled mechanism of tribological and dynamic behaviour (subjected by backlash and excited 

at the gear meshing frequency). The results show that a small variation of the DTE affects 

notably the viscous friction through changing the contact load between the engaged teeth pair.  

 

2. The mechanical system 

The studied planetary gearbox comprises the sun (external spur gear), three planets (external 

spur gears), one carrier (plate) and one ring (internal spur gear). The gearbox stick diagram is 

presented in figure 1. 

The power can be provided either from the sun-gear (input A) or the carrier (input B) or the 

combination of those two (inputs A & B). The power is transmitted through the planets and 

the carrier to the ring-gear, which is the output of the gearbox. In order to maintain kinematic 

equilibrium, the following equations relating the angular velocity of the bodies (𝜔𝜔) and the 

number of gear teeth (𝑁𝑁) have to be fulfilled: 

 

(𝛮𝛮𝑟𝑟 + 𝛮𝛮𝑠𝑠) ∙ 𝜔𝜔𝑐𝑐 = 𝜔𝜔𝑟𝑟 ∙ 𝑁𝑁𝑟𝑟 + 𝜔𝜔𝑠𝑠 ∙ 𝑁𝑁𝑠𝑠                    (1a) 

𝑖𝑖𝑐𝑐 = 𝜔𝜔𝑠𝑠
𝜔𝜔𝑟𝑟

= 𝛮𝛮𝑟𝑟
𝛮𝛮𝑠𝑠

                        (1b) 

𝜔𝜔𝑟𝑟 = 𝜔𝜔𝑠𝑠/(𝛮𝛮𝑟𝑟
𝛮𝛮𝑠𝑠

+ 1)                               (1c) 

 𝜔𝜔𝑝𝑝 = 𝜔𝜔𝑟𝑟 ∙ 𝑁𝑁𝑟𝑟/𝑁𝑁𝑝𝑝                    (1d)
  

The fundamental meshing frequency is given as 
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𝑓𝑓𝑚𝑚 = (𝛮𝛮𝑠𝑠) ∙ (𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑟𝑟) = 𝜔𝜔𝑟𝑟 ∙ 𝑁𝑁𝑟𝑟 = 𝜔𝜔𝑝𝑝 ∙ 𝑁𝑁𝑝𝑝= �
𝑁𝑁𝑠𝑠 𝑥𝑥 𝑁𝑁𝑟𝑟

(𝑁𝑁𝑠𝑠+ 𝑁𝑁𝑟𝑟)
𝑥𝑥 𝜔𝜔𝑠𝑠� 60⁄  (Hz)   (1e) 

During the operation of the mechanism, friction forces and backlash take-up seem to increase 

vibration and noise, leading to reduction of gearbox efficiency. Generally, the reactions 

applied on each gear could be classified as: 

▪ external (e.g. the input torque) 

▪ moment of inertia (because of the angular velocity variation of each gear body) 

▪ internal friction torque (between the gear pairs) 

▪ dynamic transmission error (DTE) induced torque 

 

3. Teeth Backlash 

Constructional inaccuracy, intentional shape of the gear involute, as well as gear tooth wear 

are the reasons behind backlash. As the two gears are in mesh, there is a gap between the teeth 

surfaces in the meshing zone which contributes to non-linear effects in the system vibrations 

and noise. The DTE is often used as an indicative variable for predicting the system’s 

vibration and noise. The mathematical expression of the DTE, which relates the angular 

displacement (𝜃𝜃), and the rate of change 𝐷𝐷𝐷𝐷𝐷𝐷̇ , is presented below:  

 

𝐷𝐷𝐷𝐷𝐷𝐷12 = 𝑓𝑓𝑓𝑓 ∙ (𝜃𝜃1 ∙ 𝑟𝑟1 − 𝜃𝜃2 ∙ 𝑟𝑟2) (2) 

𝐷𝐷𝐷𝐷𝐷𝐷̇ 12 = 𝑓𝑓𝑓𝑓 ∙ �𝜃̇𝜃1 ∙ 𝑟𝑟1 − 𝜃̇𝜃2 ∙ 𝑟𝑟2� (3) 

 

The system non-linearity because of the backlash can be expressed by piecewise linear 

equations where DTE is compared each time with the backlash value (B). The result of this 

comparison defines the value of 𝑓𝑓𝑓𝑓 regulatory factor, which nullifies or not the corresponding 

torque. 

When tooth meshing surfaces are in contact, the stiffness and damping forces are applied and 

their value depends on the type of contact (single or double teeth pairs), according to a 

specific frequency of alternation, as shown in Fig. 4. So, backlash reset torques for each gear 

could be presented as in Fig.5:  

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 1: 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ∙ 𝑟𝑟1 ∙ �𝐷𝐷𝐷𝐷𝐷𝐷12 ∙ 𝑘𝑘𝑇𝑇12 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 12 ∙ 𝑐𝑐𝑇𝑇12�             (4) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 2: 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ∙ 𝑟𝑟2 ∙ �𝐷𝐷𝐷𝐷𝐷𝐷12 ∙ 𝑘𝑘𝑇𝑇12 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 12 ∙ 𝑐𝑐𝑇𝑇12�           (5) 
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These forces are applied on the line of action of the gear-pair and that is why 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 (gear 

pressure angle) is part of each body’s equation. During teeth meshing, hysteretic material 

damping needs to be included [14]. The damping coefficient for the contact of a single 

meshing teeth pair can be obtained as c=0.009k/fm, where fm is the meshing frequency. In 

order to obtain the total damping variation during meshing, a similar approach to the 

above equation is considered. 

 

4. Gear Teeth Friction 

During the operation of the planetary system, two kinds of friction are expected to be 

present: boundary (Tb) and viscous (Tv). The total friction is then calculated for each gear-

pair and it is assigned to each body [14]: 

 

𝛵𝛵𝐹𝐹𝐹𝐹 = 𝛵𝛵𝑏𝑏 + 𝑇𝑇𝑣𝑣                 (6) 

 

4.1 Boundary Friction 

Boundary friction forces are developed because of the asperity interaction of the 

boundary surfaces and are calculated using the Greenwood and Tripp (1970) model [11].  

Contact problems between rough surfaces have been studied by many researchers. It is 

known that in real life scenarios, the surfaces that are in contact are always rough. The 

first attempt was in 1966 by Greenwood and Williamson [16] for elastic rough surface 

contacts, assuming that rough surface asperities deform elastically. In reality, if the 

material’s yield strength is exceeded, elasto-plastic deformations occur. The latter 

scenario was investigated later. The Greenwood and Williamson [16] model assumes 

Gaussian distribution for asperity summits and the contact of two rough surfaces is 

considered as that of a rough surface that deforms elastically and a flat surface that is 

rigid. In the model, the asperities have the same radius for simplicity and the summits 

follow a Gaussian (height) distribution. Greenwood and Tripp [11] applies the contact 

model for two rough surfaces. 

Continuous efforts of researchers have expanded the study of the basic assumptions of 

Greenwood and Williamson [11, 16-18] and new methods have been proposed, such as 

fractal theory, numerical methods etc. [19-20]. In this work the authors are using the 

expanded model of Greenwood and Williamson extended by Greenwood and Tripp for 

line contacts. 
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According to this model, the friction force for the boundary surfaces 𝑓𝑓𝑏𝑏 can be expressed 

as: 

 

𝑓𝑓𝑏𝑏 = 𝜏𝜏𝐿𝐿 ∙ 𝐴𝐴𝑎𝑎                 (7) 

 

As it concerns the lubricant shear stress 𝜏𝜏𝐿𝐿: 

 

𝜏𝜏𝐿𝐿 = 𝜏𝜏𝑂𝑂 + 𝜀𝜀 ∙ 𝛲𝛲𝑚𝑚                 (8) 

 

where 𝛲𝛲𝑚𝑚 = 𝑊𝑊𝑎𝑎
𝐴𝐴𝑎𝑎

                (9) 

 

In order to calculate 𝐴𝐴𝑎𝑎 (asperity contact area) and 𝑊𝑊𝑎𝑎 (share of the contact load carried 

by the asperities), the statistical functions 𝐹𝐹2, 𝐹𝐹5
2�
 are used. These are polynomial 

functions of the Stribeck oil parameter (see Appendix) to estimate the distribution of 

asperity heights: 

 

𝐴𝐴𝑎𝑎 = 𝜋𝜋2 ∙ (𝜉𝜉 ∙ 𝛽𝛽 ∙ 𝜎𝜎)2 ∙ 𝛢𝛢 ∙ 𝐹𝐹2(𝜆𝜆)              (10) 

𝑊𝑊𝑎𝑎 = 16√2
15

∙ 𝜋𝜋 ∙ (𝜉𝜉 ∙ 𝛽𝛽 ∙ 𝜎𝜎)2 ∙ �
𝜎𝜎
𝛽𝛽
∙ 𝛦́𝛦 ∙ 𝛢𝛢 ∙ 𝐹𝐹5

2�
(𝜆𝜆)          (11) 

 

The Stribeck oil parameter (𝜆𝜆) is defined as the ratio of the lubricant film thickness (h) to 

the surface roughness (σ),  𝜆𝜆 = ℎ
𝜎𝜎
≤ 3. The different values of Stribeck oil parameter (λ 

less than 3) studied are in the range proposed of references [1, 2], indicating a mixed 

regime of lubrication close to boundary regime. Below, in Fig. 6, the typical Stribeck 

curve is presented, relating the friction coefficient to the Stribeck oil parameter. Three 

regimes of lubrication are present. 

Mechanical components operate under lubricated conditions, where the main function of 

lubricant is the reduction of both friction and wear of the sliding parts. 

In most cases, the relationship between friction and lubrication is characterized based on 

the function ηV/W (oil viscosity x sliding velocity / normal load, Wakuri et al. [22]) in a 

curve called Stribeck diagram, reproduced from Bayer [21].  The friction behaviour in the 

Stribeck diagram is used to explain rubbing phenomena occurring in lubricated contacts. 

In high values of ηU/W, the friction coefficient is linearly ascending due to fluid film 
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lubrication; friction is related to viscous forces in the oil film. When load increases or oil 

viscosity and/or velocity decreases, the ηU/W factor falls. Then, the fluid film becomes 

thinner and, consequently, the friction coefficient decreases, up to a minimum value. For 

even smaller values of ηU/W, the fluid film thickness is further reduced, and metal-to-

metal contact starts to occur. Then, the friction coefficient increases as the ηU/W factor 

decreases. On the other hand, in the case of two rough surfaces, several authors, such as 

Hutchings [23]; Bayer [21]; Neale, [24], consider the λ value to characterize lubrication 

in rubbing contacts. This is determined by the relation of oil film thickness (h) and the 

equivalent surface roughness of both surfaces (σ). The oil film thickness h can be 

determined from calculations of the elastohydrodynamic film, such as those described in 

1960’s by Dowson et al. [25].  

λ value has been used to analyze wear and friction responses to a great extent in the 

literature.  However it can be considered somewhat inconsistent by Cann et.al [26], 

because some microscopic effects, such as the micro-elastohydrodynamic lubrication at 

the asperities, cannot be explained through λ value, because the film thickness becomes 

smaller than the height of surface asperities and then boundary lubrication takes place.  

The simplest method to obtain a Stribeck curve and the method most commonly used, 

provided one has the appropriate converging gap geometry, is to keep two variables fixed 

(e.g., load and viscosity) and vary the third (e.g., velocity) over a suitable range so that 

the contact interface goes through the region of asperity contact (boundary), as well as 

full fluid-film separation (hydrodynamic). In this work the examined mechanism is 

operating in mixed lubrication regime and the λ parameter was chosen to present directly 

the obtained results with the film thickens variation due to backlash.  

4.2 Viscous Friction 

Viscous friction is a shear force exerted on the teeth surfaces due to the presence of the 

lubricant film. The analytical experimentally obtained expression of Evans and Johnson 

(1986) is used, which takes into consideration the influence of generated heat during 

function [12].  

 

𝑓𝑓𝑣𝑣 = 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∙ �0.87 ∙ 𝑎𝑎 ∙ 𝜏𝜏0 + 1.74 ∙ 𝜏𝜏0
𝑝̅𝑝
∙ 𝑙𝑙𝑙𝑙 � 1.2

𝜏𝜏0∙ℎ
∙ � 2∙𝐾̇𝐾∙𝜂𝜂0

1+9.6∙𝜁𝜁
�
1
2�
��          (12) 

𝜁𝜁 = 4
𝜋𝜋
∙ 𝛫̇𝛫
ℎ 𝑅𝑅(𝑋𝑋)⁄ ∙ � 𝑝̅𝑝

𝐸́𝐸∙𝑅𝑅(𝑋𝑋)∙𝐾́𝐾∙𝜌́𝜌∙𝑐́𝑐∙𝑉𝑉
�
1
2�             (13) 
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Important variables in this calculation are the flank load and the lubricant film thickness. 

 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑘𝑘𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ ∙ 𝐶𝐶𝑇𝑇             (14) 

ℎ = 2.5 ∙ 𝑅𝑅(𝑋𝑋) ∙
�𝑉𝑉(𝑋𝑋)∙𝜂𝜂0∙𝛼𝛼

𝑅𝑅(𝑋𝑋) �
0.7
∙(𝑎𝑎∙𝐸́𝐸)0.1

�
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∙𝑎𝑎
2∙𝐿𝐿∙𝑏𝑏 �

0.26              (15) 

as per reference [27] 

5. Power Loss 

While boundary and viscous friction forces are applied on each body of a gear-pair, the 

power loss is the product of the total friction force with the relative sliding velocity 

between these two gears. 

 

𝑃𝑃 = 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝛥𝛥𝑉𝑉(𝑋𝑋)               (16) 

 

Thus, the friction torque for the gear is given by: 

 

 𝛵𝛵 = 𝛲𝛲
𝜔𝜔

                (17) 

 

6. Equations of Motion 

For the gears of the planetary system, the following equations of motion are obtained: 

 

Sun:  𝐽𝐽𝑠𝑠 ∙ 𝜃̈𝜃𝑠𝑠 + cos𝜑𝜑 ∙ 𝑟𝑟𝑠𝑠 ∙ ∑ �𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�3
𝑖𝑖=1 − 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑇𝑇𝑠𝑠              (18) 

 

Planet: 𝐽𝐽𝑝𝑝𝑝𝑝 ∙ 𝜃̈𝜃𝑝𝑝𝑝𝑝 − cos𝜑𝜑 ∙ 𝑟𝑟𝑝𝑝𝑝𝑝 ∙ �𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ∙ 𝑟𝑟𝑝𝑝𝑝𝑝 ∙

�𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� − 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = 0           (19) 

 

Ring:  𝐽𝐽𝑟𝑟 ∙ 𝜃̈𝜃𝑟𝑟 − cos𝜑𝜑 ∙ 𝑟𝑟𝑟𝑟 ∙ ∑ �𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷̇ 𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�3
𝑖𝑖=1 − 𝑇𝑇𝐹𝐹𝐹𝐹𝐹𝐹 = −𝑇𝑇𝑟𝑟        (20) 

 

The first term refers to the body’s inertia; the second one is the contribution of the DTE; 

the third term is the total friction torque that is applied on the body; the sum of those 

three terms is equal to the external torque that is exercised on each gear. For the sun-gear 

the external torque is the input torque to the gearbox system. As for the ring, this term 
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means the resisting torque (the applied load) that is transferred out of the planetary 

mechanism. 

If the carrier is fixed, the DTE equations are as below: 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑓𝑓 ∙ �𝜃𝜃𝑠𝑠 ∙ 𝑟𝑟𝑠𝑠 − 𝜃𝜃𝑝𝑝 ∙ 𝑟𝑟𝑝𝑝�             (21) 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑓𝑓 ∙ �𝜃𝜃𝑝𝑝 ∙ 𝑟𝑟𝑝𝑝 − 𝜃𝜃𝑟𝑟 ∙ 𝑟𝑟𝑟𝑟�             (22) 

7. ADAMS Model 

In order to simulate the dynamics of the planetary mechanism, a model has been 

developed using ADAMS MSC Software (student edition), which allows for dynamic 

simulations. The constraints and bodies of the model are presented in Table 1: 

 
Table 1: Constrains and bodies of the ADAMS Model 

Constrain  Body 1 Body 2 Constrain Point  
JOINT1/revolute Ground Sun Center mass of sun gear 
JOINT2/fixed Ground Carrier Carrier center mass 
JOINT3/revolute Ground Ring Ring center mass 
JOINT4/revolute Carrier Planet 1 Planet 1 center mass 
JOINT5/revolute Carrier Planet 2 Planet 2 center mass 
JOINT6/revolute Carrier Planet 3 Planet 3 center mass 

 

The gear forces are calculated analytically with the model variables set in a parametric 

way. The atmospheric dynamic viscosity of the lubricant is 0.08 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠, at about 700C.  

The simulations carried out refer to the case that the input of the mechanism is at the sun-

gear, while the carrier remains stationary. The basic parameters of the sun, planets and 

ring are presented in Table 2. 

 
Table 2: Geometrical features of the studied gearbox 

 Sun Planet Ring 

Number of teeth 30 20 70 

Module[mm] 0.8 

Pressure angle [°] 21.34 

 

Different values of the backlash (B), Stribeck oil parameter (𝜆𝜆) and angular velocity (𝜔𝜔) 

in the input body (sun-gear) are leading to interesting case studies. These are the 

following: 
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- For 𝐵𝐵 [𝑚𝑚]: 2.0𝑒𝑒 − 7, 2.5𝑒𝑒 − 7, 3.0𝑒𝑒 − 7, 3.5𝑒𝑒 − 7 

- For 𝜆𝜆 [−]: 1, 1.25, 1.5, 1.75, 2 

- For 𝜔𝜔 [𝑟𝑟𝑟𝑟𝑟𝑟]: 1000, 2000, 3000. 

 

In Table 3 the basic roughness and lubricant parameters are presented. 

 
Table 3: Lubricant and roughness parameters 

Symbol Value Units 
ξβσ 0,055 - 
σ/β 0,001 - 
𝐾̇𝐾 2000 W/mK 
α 2,1E-08 1/Pa 
ηο 0,08 Pa*s 
το 2,3E+06 Pa 

 

8. Results and discussion 

In this section, the results for different case studies are displayed, followed by 

representative plots. It is shown how friction (viscous and boundary) and applied body 

forces, lubricant film thickness and power losses can differ by changing the values of 

backlash, Stribeck oil parameter and input angular velocity. 

 

8.1 Viscous Friction 

As it can be observed from Fig. 7, by increasing the DTE values, the viscous friction 

between the gear pairs of sun-planet and planet-ring is increasing as well. This can be the 

result of contact load increase. 

 

8.2 Boundary Friction 

In Fig. 8, the friction force that is developed as a function of the Stribeck parameter λ, is 

presented. In a mixed lubrication regime, higher Stribeck oil parameter, due to higher 

film thickness or lower surface roughness, leads to reduction of the boundary friction. 

 

8.3 Applied Body Forces 

The tangential, radial, as well as total applied force and torque at the planet-gear body, 

are shown in the following plots, when the input torque is about 63Nm. It appears that by 

increasing the input speed and the λ coefficient, the forces are also increasing.  
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8.3 Lubricant Film Thickness 

The diagrams of lubricant film thickness variation for each gear-pair with respect to input 

body rotation velocity, are presented in Fig. 10. As it can be seen, the lubricant film 

thickness increases as the rotational speed of the input sun gear increases. 

 

8.4 Power Losses 

Reduction of the total generated friction seems to occur while increasing the angular 

velocity of the input gear body (sun). This is caused by higher film thickness and smaller 

asperity interactions between the engaged teeth pairs. This reduction in friction leads to 

lower power loss of the mechanism, as shown in Fig.11. The model considers power 

losses due to friction between the meshing gear teeth and viscous damping of the 

spinning gear shafts. 

9. Eigenvalue problem 

The high-power-density design of planetary gear sets combined with their kinematic 

flexibility in achieving different speed ratios makes planetary gear transmissions often an 

optimum choice. The eigenproblem of the prescribed system (Figure 1) is solved using 

the corresponding linearised system. 

The dynamic models of the sun - planet, ring - planet and carrier - planet are shown in 

Figures 12a-c. Each gear or carrier is generally allowed to translate in x, y and z (axial) 

directions and rotate in ρx, ρy and θ directions as per [15]. A displacement vector qj and a 

mass matrix mj, corresponding to q, can be defined for each component j (j = sun, planet, 

ring, carrier) as below:  

 

[ , , , , , ]T
j j j j xj yjdiag x y z w w u=q       (20) 

 
2 2 2[ , , , / , / , / ]j j j j j j j j j jdiag m m m I r I r j r=m       (21) 

 

where mj, Ij and Jj are the mass, the diametral and polar mass moments of inertia, 

respectively and , ,xj j xj yj j yj j jw r w r u rr r θ= = = . 

The undamped equations of motion for the twelve degrees of freedom of the sun - planet 

pair take the following form:  
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−        
+ =        −       
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 
     (22) 

 

For the ring - planet it is: 

 

0
0

r r r riri ri

pi pi pi rpiri ri

k k
k k

−        
+ =        −        

m q q f
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 
     (23) 

 

While for the planet - carrier it is: 
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11 12

22

0
0 T

c i
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pi pi pi rpic i

k k

k k

−        
+ =        −         

m q q f
m q q f

 

 
     (24) 

 

 

The Ksi and Kri and Kc12i and Kc11i matrices are given by [15]: 

 
2 2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2

2

si si si si si si si si

si si si si si si

si si
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si si si si

si si
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c s c s s c s c s c s s c s

s s c s s c s
K K

s c s c s c s c
s s c s s

c

β ψ β ψ ψ β β ψ β β ψ β β ψ ψ β ψ
β ψ β β ψ β β ψ ψ β β ψ β ψ

β β ψ β ψ β β
β ψ β ψ ψ β β ψ

β ψ β β ψ
β

 − −
 − − 
 − −

=  
− 

 −
 
 

(25) 

 
2 2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2

2

ri ri ri ri ri ri ri ri

ri ri ri ri ri ri

ri ri
ri sp

ri ri ri ri

ri ri

c c c c s c s c c s c c s c s c c
c s c s s c s c s c s s c s

s s c s s c s
K K

s c s c s c s c
s s c s s

c

β ψ β ψ ψ β β ψ β β ψ β β ψ ψ β ψ
β ψ β β ψ β β ψ ψ β β ψ β ψ

β β ψ β ψ β β
β ψ β ψ ψ β β ψ

β ψ β β ψ
β

 − −
 − − 
 − −

=  
− 

 −
 
 

(26) 
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2
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0
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0
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  (28) 

 

The helix angle β is zero (spur gears) and si i saψ ψ= −  , ri i raψ ψ= − , where ar, as are the 

transverse operating pressure gear angles, sins β≡ , cosc β≡ , 
2 2

22 [ , , , , ,0]
y y x xi xx yy zz w w w wk diag k k k k kgg = , /c pr rγ = , 2/

y yw w y y ck rr r=  and 

2/
x xw w x x ck rr r= . The angular position of the planets has been defined as 900, -300 and 

2100. 

In this work only the rotational (torsional) degree of freedom ( j ju r θ= ) is considered. 

Thus, the equations of motion (22) - (24) are reduced to the following (for free 

vibrations): 

 
2 2

2 2

0 0
0 0

s s s
sp

pi pi pi

j u uc c
k
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β β
β β
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β β
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      −  
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The overall planetary system equations of motion can be written as: 

 

+ =Mx Kx 0                                      (32) 

 

Where for the rotational mode of vibration, 

 

1 2 3
2 2 2 2 2 2

1 2 3
[ , , , , , ]p p ps cr

s p p p r c

J J JJ JJdiag r r r r r r=M      (33) 

 

1 2 3[ , , , , , ]T
s p p p r cθ θ θ θ θ θ=X          (34)  
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n
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n

c i
i
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k k k k k
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k

=

=

=

 − − − 
 

+ + − 
 + + − 
 = + + −
 
 
 
 
 
  

∑

∑

∑

K  (35) 

 

For the time invariant case related the eigenvalue problem can be written as follows, 

having neglected the gyroscopic terms due to the relatively low carrier rotational speed: 

 

(Κ – Μ 𝜔𝜔𝑖𝑖
2) Φi         (36) 

 

where ωi are the natural frequencies and Φi are the eigenvectors. The system properties of 

Table 4 are used in order to solve the eigenproblem. 

 
Table 4. Properties of the examined planetary gear system 

 Sun Ring Carrier Planet 
Mass (kg) 0.272 0.779 1.5 0.1 

j/r2 (kg) 0.136 0.389 0.75 0.05 

Base Diameter (m) 0.024 0.056 0.040 0.016 
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Mesh single contact 
stiffness (N/m) 2.0E+08 2.0E+08 2.0E+08 2.0E+08 

 

The following overall stiffness and mass matrices containing the torsional degrees of 

freedom have occurred: 

 

0, 272
0,1

0,1
0,1

0,759
1,5

 
 
 
 

=  
 
 
 
  

M       (37) 

 

6e+8 2 8 2 8 2 8 0 0
4 8 0 0 2 8 0

4 8 0 2 8 0
4 8 2 8 0

6 8 0
8,04 8

e e e
e e

e e
K

e e
SYMMETRIC e

e

− + − + − + 
 + − + 
 + − +

=  + − + 
 +
 

+  

  (38) 

 

Solving the eigenproblem, the natural frequencies below are obtained for the planetary 

system (table 5):  

 

Table 5. Natural frequencies of the planetary system for Ksp=2e8N/m 

fn (Hz) 
0 (rigid body mode) 

3687 
5956 

10070 
10070 
11948 

 

9.1 Gear meshing frequency (GMF) effects 

The gear meshing frequency defined as the rotational velocity of the gear wheel 

multiplied by the number of gear teeth is one of the main noise features in transmissions. 

Gear meshing creates oscillations in its meshing frequency because of the transmission 

error, machining errors, stiffness variation, torque fluctuations etc. Consequently, the 
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dynamic tooth mesh forces are periodic at the mesh frequency and the calculated 

response contains integer multiples of the harmonics of the fundamental tooth mesh 

frequency for the operating speeds considered. This result is consistent with the static 

transmission error excitation model used in lumped-parameter representations. In 

planetary gear mechanisms, due to the complicated mechanical structure of power 

distribution, the gears that transmit power for long periods of time are more susceptible to 

accumulating tooth wear, resulting in larger transmission errors, reduction of the meshing 

stiffness, and increase of backlash. 

In order to study the modal behaviour of the planetary gear system (table 1 data) under 

typical operating conditions, the sun speed was taken as 1000rpm and the input torque 

constant at 63Nm. The meshing frequency is then fm = 350Hz. During the planetary gear 

mechanism operation, the mesh stiffness can be mistuned due to manufacturing 

irregularities. In Figure 13, the variation of the first three natural frequencies of the 

system is presented. As it can be seen there can be interactions with the meshing 

frequency that affect the mechanism operation (leading to potential resonances) as Ksp is 

varied between 1.5E3N/m to 1.5E4 N/m. 

As it can be seen in Figure 14, the vibration modes can change drastically as Ksp varies.  

Thus, the above analysis can provide planetary system designers with a tool that 

calculates accurately the dynamic and tribological interactions between the mating gear 

wheels in the planetary mechanism. It may also assist the proper selection of the gear 

design parameters to avoid resonance conditions if errors lead to excitation of the 

mechanism with frequencies close to the fundamental gear meshing frequency and its 

harmonics. 

  

Conclusions 

In this work, a combined tribodynamics modeling approach has been implemented and 

modal analysis is performed in order to predict the coupled mechanism of tribological 

and dynamic behavior of a five-spur gear planetary gearbox. Backlash and excitation at 

the gear meshing frequency have been considered. The tribological and dynamic 

characteristics of the system have been investigated.  

The results showed that: 

 A small variation of DTE affects notably the viscous friction  

 Higher Stribeck oil parameter leads to reduction of the boundary friction in the 

mixed lubrication regime  
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 Reduction of the total generated friction seems to occur while increasing the 

angular velocity of the input gear body. This reduction leads to lower power loss 

of the mechanism. 

 Modal analysis is also performed, showing the effects of the meshing frequency 

on the eigenvectors and the eigenmodes of the mechanism. 

The future work should comprise the addition of all the dynamic parameters and degrees 

of freedom to the numerical model. Since real word applications require higher 

efficiencies, an extension of the work could be also to improve the model in terms of 

choosing interactively the input either from the sun, the carrier or their combination. The 

time variant properties of the system (transmission error and meshing stiffness) and their 

effects in the gear box response and power losses will be examined in a future 

investigation. 

 

Notation 

A apparent contact area T torque 
𝐴𝐴𝑎𝑎 asperity contact area 𝑇𝑇𝑏𝑏 boundary friction torque 
b half-width of Hertzian contact 𝑇𝑇𝐹𝐹𝐹𝐹 total friction torque 
B backlash 𝑇𝑇𝑣𝑣 viscous friction torque 
c damping coefficient 𝜏𝜏𝐿𝐿 lubricant limiting shear stress 

𝑐́𝑐 thermal capacity of conjunctional 
solids 𝜏𝜏𝑂𝑂 lubricant’s limiting shear stress at 

atmospheric pressure 𝐷𝐷𝐷𝐷𝐷𝐷 dynamic transmission error 
𝐷𝐷𝐷𝐷𝐷𝐷̇  variation of DTE V(X) instant velocity 
𝐸́𝐸 equivalent modulus of elasticity V speed of entraining motion of the lubricant 

fa regulatory factor 𝑊𝑊𝑎𝑎 share of the contact load carried by the 
asperities 

𝑓𝑓𝑏𝑏 boundary friction force X instantaneous meshing position 
𝑓𝑓𝑣𝑣 viscous friction force α pressure-viscosity coefficient 
𝐹𝐹2 statistical function 

ε pressure-induced shear coefficient of 
bounding surfaces 𝐹𝐹5

2�
 statistical function 

𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 flank load ζ viscous friction force coefficient 

h lubricant film thickness 𝜂𝜂𝑜𝑜 atmospheric dynamic viscosity of the 
lubricant 

J, I moment of inertia θ angular displacement 
k stiffness 𝜃̇𝜃 angular velocity 
𝑘𝑘𝑖𝑖𝑖𝑖 stiffness mean values 𝜃̈𝜃 angular acceleration 
𝐾̇𝐾 lubricant conductivity λ Stribeck oil parameter 
𝐾́𝐾 surface solid conductivity 𝜌́𝜌 density of conjunctional solids’ material 
L gear flank width φ pressure angle 

P power Φ eigenmodes (in eigenvalue problem 
section) 

𝑃𝑃𝑚𝑚 stress from Wa load at Aa area ω angular velocity 
𝑝̅𝑝 average contact pressure ω  eigenfrequencies (in eigenvalue problem 
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section) 
r gear wheel radius ξβσ roughness parameter 

R(X) instant position σ/β representation of the average asperity 
slope 

m Mass matrix qj Displacements vector 

fm Fundamental gear mesh frequency   
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Figure 7: Viscous friction force vs DTE at 1000rpm input speed for a) sun-planet gear pair, b) 

planet-ring gear pair 
Figure 8: Boundary friction force vs Stribeck oil parameter for a) sun-planet gear pair, b) planet-

ring gear pair 
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Lengthy mathematical expressions 

𝐹𝐹5
2�

(𝜆𝜆) = �−0.004 ∙ 𝜆𝜆5 + 0.057 ∙ 𝜆𝜆4 − 0.296 ∙ 𝜆𝜆3 + 0.784 ∙ 𝜆𝜆2 − 1.078 ∙ 𝜆𝜆 + 0.617, 𝜆𝜆 ≤ 3
0, 𝜆𝜆 > 3 

𝐹𝐹2(𝜆𝜆) = �−0.002 ∙ 𝜆𝜆5 + 0.028 ∙ 𝜆𝜆4 − 0.173 ∙ 𝜆𝜆3 + 0.526 ∙ 𝜆𝜆2 − 0.804 ∙ 𝜆𝜆 + 0.5, 𝜆𝜆 ≤ 3
0, 𝜆𝜆 > 3 
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