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Abstract
In models of production theory and efficiency analysis, the inputs and outputs are as-

sumed to satisfy some form of disposability. In this paper, we consider the assumption of
weak input disposability. It states that any activity remains feasible if its inputs are simul-
taneously scaled up in the same proportion. As suggested in the literature, the Shephard
technology incorporating weak input disposability could be used to evaluate the effect of
input congestion. We show that the Shephard technology is not convex and therefore intro-
duces bias in evaluation of congestion. To address this, we develop an alternative convex
technology whose use in the evaluation of congestion removes the noted bias. We undertake
a further axiomatic investigation and obtain a range of production technologies, all of which
exhibit weak input disposability but are based on different, progressively relaxed, convex-
ity assumptions. Apart from the evaluation of input congestion, such technologies should
also be useful in applications in which some inputs are closely related or are overlapping,
and therefore satisfy only the weak input disposability assumption incorporated in the new
models.

Keywords: Data envelopment analysis; Production technology; Weak input disposability;
Congestion

1. Introduction

Assumptions of disposability of inputs and outputs are central to production theory and
to various models of efficiency analysis based on them (Shephard, 1974; Färe et al., 1985;
Ray, 2004). The most common variant of such assumptions is the strong (free) disposability
of inputs and outputs. It means that, if an activity (or decision making unit in the DEA
terminology) produces a vector of outputs from a vector of inputs, then it is also possible to
produce the same or a smaller (component-wise) vector of outputs from the same or a larger
(component-wise) vector of inputs. The assumption of strong disposability is incorporated
in the constant (CRS) and variable (VRS) returns-to-scale technologies of data envelopment
analysis (DEA) of Charnes et al. (1978) and Banker et al. (1984), and also in the free
disposal hull (FDH) technology of Deprins et al. (1984).

In some types of application, the assumption of strong disposability is deemed to be
unrealistic, so a more conservative assumption of weak disposability is used (Shephard,
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1974; Färe et al., 1985; Färe et al., 1994). The traditional non-parametric specifications of
technologies that replace strong disposability of inputs or outputs by its weak analogue, are
often referred to as the Shephard technologies.

An established example of this is the assumption of weak output disposability. It is
used in the Shephard technology that incorporates undesirable (bad) outputs (Färe and
Grosskopf, 2003), and in its convex analogue (Kuosmanen, 2005).1 In these models, the
assumption of weak output disposability means that the whole vector of good and bad
outputs can be reduced in an arbitrary proportion, which does not allow free disposal of bad
outputs (although the free disposal of good outputs is allowed by an additional axiom).

Similarly, the assumption of weak input disposability states that, if a vector of outputs
is produced from a vector of inputs, then the same vector of outputs can be produced if we
scale up all components of the input vector in the same proportion.

Although the assumptions of weak input and output disposability are conceptually clear,
their incorporation in the mathematical statement of production technology is less straight-
forward. Kuosmanen and Podinovski (2009) show that the Shephard technology, while
correctly incorporating the assumption of weak output disposability, at the same time in-
validates another basic assumption stating that the production technology is a convex set.
In this context, Kuosmanen and Podinovski (2009) use the axiomatic approach to formally
derive the convex technology that exhibits weak output disposability. The resulting convex
technology is the technology of Kuosmanen (2005), which is the convex hull of the Shephard
technology.

The focus of our paper is on the assumption of weak input disposability. The Shephard
technology based on this assumption is used in the methodology for measuring input con-
gestion developed by Färe and Grosskopf (1983), and is further discussed, e.g., by Färe et
al. (1985), Grosskopf (1986) and Byrnes et al. (1988).

In our paper, we show that the Shephard technology that incorporates weak input dis-
posability is generally not a convex technology, and that, consequently, its use for measuring
input congestion is problematic. As shown by Färe and Grosskopf (1983), one can obtain
the congestion measure as the ratio of the technical efficiency of an activity in the standard
VRS technology to its efficiency in the same technology in which strong input disposability
is replaced by weak input disposability. It is assumed that the latter technology should be
the Shephard technology.2 However, it would be incorrect to attribute the observed effect
entirely to input congestion, because the (unintended) loss of convexity in the Shephard
technology would introduce bias in this evaluation. This bias is subsequently transferred to
various aggregate efficiency indices based on the congestion measure (Färe and Karagiannis,
2017) and the corresponding decomposition approaches (Byrnes et al., 1988; Dervaux et al.,
1998; Färe and Grosskopf, 2000).

It is clear that, in order to remove the noted bias in the measurement of congestion, we
need to construct a technology that exhibits weak input disposability and, at the same time,
preserves convexity. Comparing the technical efficiency of an activity in the VRS technology

1The technology of Kuosmanen (2005) is closely related to a special case of the hybrid returns-to-scale
technology of Podinovski (2004). For a discussion and graphical illustration of this fact, see Kuosmanen and
Podinovski (2009).

2Tone and Sahoo (2004) introduce an alternative measure of congestion which does not assume any input
disposability at all and utilizes a smaller reference technology than the Shephard technology. It is clear that
the approach of Färe and Grosskopf (1983) measures congestion arising from the distortion of the relative
input proportions, while the model of Sahoo and Tone (2004) measures congestion arising from any increased
levels of individual inputs. In our paper we are considering the former approach. The latter approach is
given further consideration in Mehdiloozad et al. (2017).
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with its efficiency in this new convex technology would allow us to attribute any difference
in efficiency purely to the difference between the input disposability assumptions, i.e., to the
input congestion.

Motivated by the above problem, in our paper we address a broader spectrum of related
issues. We undertake a full axiomatic investigation of a range of production technologies, all
of which exhibit only weak input disposability, but differ in the type of convexity assumed.
Specifically, we define and obtain operational statements of such technologies for the follow-
ing three cases: 1) when the technology is assumed convex; 2) when only the input sets are
assumed convex; and 3) when no convexity assumption is made.

This progression of models is similar to the direction of study undertaken by Podinovski
and Kuosmanen (2011) in the case of weak output disposability, but our models and results
are of course different. In the above case 1, we obtain the convex analogue of the VRS
technology that allows only weak input disposability. In case 2, we obtain a weak input
disposable analogue of the technology with convex input sets of Petersen (1990) and Bogetoft
(1996). Case 3 results in an analogue of the FDH technology.3

We also obtain a full axiomatic characterization of the Shephard technology exhibiting
weak input disposability and show that it is positioned between the technologies exhibiting
full convexity and convexity only with respect to its input sets, developed in cases 1 and 2
above. We prove that the convex technology exhibiting weak input disposability (developed
in case 1) is the closure of the convex hull of the Shephard technology.

We finally consider an important situation in which only a subset of inputs is weakly dis-
posable, while the remaining inputs are strongly disposable, and show how this assumption
could be incorporated in the model of technology. From a practical perspective, this scenario
is applicable when there is a subset of closely related inputs (e.g., overlapping, embedded
one in another or highly statistically correlated). Assuming strong disposability of such
related inputs implies allowing arbitrary, including meaningless, proportions between them.
Instead, assuming a more conservative weak disposability means that all such inputs act as
a whole. In relation to the other inputs, this group of inputs is jointly strongly disposable,
but within the group, the inputs are only weakly disposable.

Evaluating technical efficiency of activities in the suggested technologies is straightfor-
ward. In particular, for the convex technology with weak input disposability, which could be
viewed as a convex replacement of the Shephard technology, calculating the input or output
radial efficiency of any activity requires solving a linear program.4 In contrast, in models
based on the Shephard technology, only the output orientation results in a linear program,
while the input orientation leads to a nonlinear problem.

Despite the seemingly close relationship of our development to the results of Podinovski
and Kuosmanen (2011), it is worth emphasizing that the two cases are not fully symmetrical
and are different in several respects. Thus, the range of models of Podinovski and Kuosmanen
(2011) are specifically developed for the simultaneous treatment of good and bad outputs in
the same technology. These models are based on the assumption that the good outputs are
both strongly and weakly disposable, the latter in conjunction with the bad outputs. This
dual assumption about the good outputs makes the models of Podinovski and Kuosmanen

3There are many other approaches to modelling nonconvex production technologies developed in the
literature, including those of Bogetoft et al. (2000), Kuosmanen (2001), Briec et al. (2004), Agrell et
al. (2005), Podinovski (2005) and Mehdiloozad et al. (2014), to name a few. In our paper, we limit our
investigation only to the three cases identified above.

4Using a more general approach based on directional distance functions (Chambers et al., 1998) also
results in a linear program.
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(2011) unsuitable for the measurement of output congestion, which would be symmetrical
to the input congestion considered in the current paper.

Because the axioms underlying the cases of weak input and output disposability are
different, the formal inference of technologies based on them is also different and independent
of each other. Interestingly, Podinovski and Kuosmanen (2011) do not explicitly assume that
the technology is closed, because this property follows from the other assumed axioms. In
contrast, the technology generated by the assumption of weak input disposability is not
generally closed, which requires a different mathematical development.

From a practical perspective, our results identify a bias arising from the use of the
nonconvex Shephard technology for the measurement of congestion, and suggest a corrected
fully convex model suitable for the same purpose.

We proceed as follows. In Sections 2 and 3, we introduce basic definitions, notation and
axioms used in this paper. In Sections 4 and 5, we obtain a closed convex technology which
exhibits weak input disposability. In further development, this technology is proved to be
the closure of the convex hull of the Shephard technology. In Sections 6 and 7, we obtain
two further technologies exhibiting weak input disposability. Both of these technologies are
not convex. One of them has convex input sets and the other does not assume any form of
convexity. In Section 8, we give an axiomatic characterization of the Shephard technology.
We show that it is based on the rather unusual axiom of convexity first stated by Podinovski
and Kuosmanen (2011). This axiom allows convex combinations of observed activities, but
not of all activities in the technology. In Section 9, we discuss extensions of our models to
the practically important case in which only a subset of inputs is weakly disposable. The
concluding Section 10 presents a summary and outlines avenues for future research. All
proofs of mathematical statements are given in Appendix A.

2. Notation and preliminaries

Let Rd denote the d -dimensional Euclidean space, and let Rd
+ denote its nonnegative

orthant. We denote sets by uppercase calligraphic letters, and vectors by lowercase boldface
letters. By convention, all vectors are considered to be column vectors. The transposition of
a vector is indicated by superscript T . Vectors 0d and 1d are the d -dimensional vectors, all
components of which are equal to 0 and 1, respectively. For vectors a,b ∈ Rd, the inequality
a ≥ b (a > b) means that ai ≥ bi (ai > bi), for all i = 1, ..., d.

Throughout this paper, a production activity is represented by the pair (x,y), where
x = (x1, . . . xm)T ∈ Rm

+ is the non-zero input vector and y = (y1, . . . ys)
T ∈ Rs

+ is the non-zero
output vector. We assume that we have n observed activities (xj,yj), j ∈ J = {1, ..., n}.

A production technology T transforms input vectors x ∈ Rm
+ into output vectors y ∈ Rs

+,
and is interpreted as follows:

T =
{

(x,y) ∈ Rm
+ × Rs

+ | x can produce y
}
.

Equivalently, the technology can be represented using its input sets defined as follows:

QT (y) =
{
x ∈ Rm

+ | (x,y) ∈ T
}
, y ∈ Rs

+.

Because in empirical applications the technology is usually unknown, it has to be approx-
imated based on observed data and a set of assumed properties of production technology,
stated as production axioms (Shephard, 1974; Banker et al., 1984; Färe et al., 1985). The
following are the main axioms that we use in the subsequent sections.

Axiom IO (Inclusion of Observations) (xj,yj) ∈ T , for all j ∈ J .
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Axiom SOD (Strong Output Disposability) If (x,y) ∈ T , then (x, ŷ) ∈ T , for all 0s ≤ ŷ ≤ y.

Axiom WID (Weak Input Disposability) If (x,y) ∈ T , then (δx,y) ∈ T , for all δ ≥ 1.

According to Axiom WID, if an output vector y can be produced by an input vector x,
then y can also be produced by the input vector δx which represents a proportional increase
of all components of the original input vector x by the scaling factor δ ≥ 1. It is clear that
Axiom WID is weaker than strong input disposability, in the sense that the latter implies
the former, but the converse does not hold true, unless there is a single input, i.e., m = 1.

Axiom C (Closedness) T is closed.

Axiom CT (Convexity of Technology) T is convex.

Axiom CIS (Convexity of Input Sets) The input set QT (y) is convex, for any y ∈ Rs
+.

This last axiom implies that, if two input vectors x1 and x2 produce an output vector
y, then any convex combination of these vectors can also produce y. It is clear that Axiom
CIS does not imply Axiom CT, i.e., it does not imply that technology T is convex.

Finally, we remark that all our developments below are based on the assumption of VRS,
unless stated otherwise.

3. The input and output disposal hulls

In this section, we introduce several definitions used throughout this paper.

Definition 3.1. Let S be a subset of Rm
+×Rs

+. Then the strong output disposal hull (SODH)
of S is defined as

SS = {(x, z) | (x,y) ∈ S, 0s ≤ z ≤ y} .

Definition 3.2. Let S be a subset of Rm
+ ×Rs

+. Then the weak input disposal hull (WIDH)
of S is defined as

SW = {(δx,y) | (x,y) ∈ S, δ ≥ 1} .

Based on the above definitions, let DS
j be the SODH of the j th observed activity:

DS
j = {(xj,yj)}S = {(xj, zj) |0s ≤ zj ≤ yj } , j ∈ J .

We also define the disposal hull of the j th observed activity to be the WIDH of DS
j , and

denote it by DSW
j , i.e.,

DSW
j =

(
DS
j

)W
= {(δjxj, zj) |0s ≤ zj ≤ yj, δj ≥ 1} , j ∈ J . (1)

As an illustration, consider activities A and B defined in Table 1 and shown in Fig. 1.
In this example, x1 and x2 are inputs, and y is output.

Table 1: Input-output data for activities A and B

Activity x1 x2 y
A 2 1 1
B 1 3 5
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Figure 1: Disposal hulls generated by activities A and B.

By definition, the SODHs DS
A and DS

B are constructed by reducing the outputs of activ-
ities A and B along the output axis. Hence, DS

A and DS
B are, respectively, the vertical line

segments AG and BH in Fig. 1. The WIDHs DW
A and DW

B are, respectively, the rays AE and
BC. These are obtained by the radial expansion of the input vectors of activities A and B.
It is now clear that the flat surfaces EAGF and CBHI are, respectively, the disposal hulls
DSW
A and DSW

B . It is straightforward to verify that both disposal hulls DSW
A and DSW

B are
closed convex sets and that both satisfy Axioms IO, SOD and WID.

4. An intermediate not closed convex WID technology

As shown by Banker et al. (1984), the VRS technology is defined as the smallest tech-
nology (in the sense of the minimum extrapolation principle) that satisfies Axioms IO, CT
and strong output and input disposability. Our goal is to replace the latter with weak input
disposability (WID). This leads to the following definition.

Definition 4.1. The WID technology T̃ WID
0 is the intersection of all technologies T ⊂

Rm
+ × Rs

+ that satisfy Axioms IO, SOD, WID and CT.

It is straightforward to verify that technology T̃ WID
0 itself satisfies all Axioms IO, SOD,

WID and CT. Therefore, T̃ WID
0 is the smallest (or minimal) technology that satisfies the

specified axioms. Importantly, this technology includes only those activities that are needed
to satisfy the assumed axioms, and does not include any arbitrary activities. (Without
further mention, a similar observation applies to all the other technologies defined below.)

The following result shows that technology T̃ WID
0 coincides with the convex hull of the

union of disposal hulls of observed activities DSW
j , j ∈ J .

Theorem 4.1. Technology T̃ WID
0 is equivalently stated as follows:

T̃ WID
0 = conv

(⋃
j∈J

DSW
j

)
. (2)
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The proofs of Theorem 4.1 and the other statements are given in Appendix A.

Fig. 2 illustrates Theorem 4.1. It shows technology T̃ WID
0 generated by observed activities

A and B. To construct this technology, we first identify disposal hulls EAGF and CBHI, as
in Fig. 1. Technology T̃ WID

0 is obtained as their convex hull. Note that the relative interior
points on the side DBAE are obtained as convex combinations of activities B and E when
the latter tends to infinity. The ray BD cannot be obtained as such convex combination and
is not included in technology T̃ WID

0 . Furthermore, the relative interior points of the surface
CBD are not included in T̃ WID

0 , although the ray BC is included. This example shows that
technology T̃ WID

0 is generally not a closed set and therefore does not satisfy Axiom C.
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Figure 2: The convex but not closed technology T̃ WID
0 generated by activities A and B.

The following result gives an equivalent constructive definition of technology T̃ WID
0 .

Theorem 4.2. Technology T̃ WID
0 is equivalently stated as follows:

T̃ WID
0 =

{
(x,y)

∣∣∣∑
j∈J

λjδjxj = x,
∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ ≥ 0n, δ ≥ 1n

}
. (3)

Note that the equality for inputs included in (3) disallows strong input disposability.
However, it allows weak input disposability by incorporating the scaling factors δj that are
generally different for each j ∈ J .

Remark 1. It is easy to extend our development to the case of constant returns to scale
(CRS). In this case we require an additional axiom of “ray unboundness” (Banker et al.,
1984). This axiom states that any activity remains feasible in the technology if its input and
output vectors are proportionally scaled up or down by a nonnegative factor. If this axiom
is assumed, then Axiom WID becomes redundant, as it follows from ray unboundness and
Axiom SOD.

Define the CRS technology T̃ CRS−WID
0 with weakly disposable inputs as the intersection

of all technologies T ⊂ Rm
+ × Rs

+ that satisfy Axioms IO, SOD, CT and the axiom of ray

unboundness. It is straightforward to prove that T̃ CRS−WID
0 is obtained from (3) by omitting
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the constraint 1Tnλ = 1 and setting all scaling factors δj equal to 1. It follows that technology
T̃ CRS−WID

0 is the conventional CRS technology in which the input inequalities are replaced
by equalities. Unlike the VRS technology T̃ WID

0 , technology T̃ CRS−WID
0 is a polyhedral, and

therefore, a closed set, i.e., it satisfies Axiom C.5

5. The closed convex WID technology

In the previous section we showed that technology T̃ WID
0 defined by Axioms IO, SOD,

WID and CT, is generally not closed. This fact was highlighted in our discussion of Fig. 2.
Requiring that, in addition to the above axioms, the technology is a closed set leads to the
following definition.6

Definition 5.1. The closed convex WID technology T WID
0 is the intersection of all technolo-

gies T ⊂ Rm
+ × Rs

+ that satisfy Axioms IO, SOD, WID, CT and C.

The following result shows that technology T WID
0 is the closure of technology T̃ WID

0 .

Theorem 5.1. The following equality is true:

T WID
0 = cl

(
T̃ WID

0

)
. (4)

The next result gives a constructive statement of technology T WID
0 . It is obtained from

the statement (3) of technology T̃ WID
0 by the following substitution:

µj = λj (δj − 1) , j ∈ J , (5)

which implies λjδj = λj +µj, for all j ∈ J . It turns out that the above substitution expands
technology T̃ WID

0 “just enough” to add all its missing limit points and make it a closed set.

Theorem 5.2. Technology T WID
0 is equivalently stated as follows:

T WID
0 =

{
(x,y)

∣∣∣∑
j∈J

(λj + µj) xj = x,
∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ,µ ≥ 0n

}
. (6)

Fig. 3 shows technology T WID
0 generated by activities A and B. This technology is

the closure of technology T̃ WID
0 depicted in Fig. 2. It includes the ray BD and the relative

interior of the facet CBD, which consist of the limit points of technology T̃ WID
0 . For example,

the ray BD is obtained as the set of of limit points for the line segments BE when the point
E tends to infinity along the ray AE. The facet CBD is the convex hull of rays BC and BD.

It is straightforward to show that technology T WID
0 is a polyhedral set.7 As known

from convex analysis, any polyhedral set can be decomposed as the Minkowski sum of
a bounded polyhedral set (polytope) and a polyhedral cone (see, e.g., Rockafellar 1970,
Theorem 19.1). For technology T WID

0 , such decomposition follows directly from Theorem 5.2.
In the statement below, the operator “cone” denotes the conical hull.

Corollary 5.1. (Decomposition theorem) Technology T WID
0 can be represented as

T WID
0 = conv

(⋃
j∈J

Dsj
)

+ cone ({(x1,0s) , . . . , (xn,0s)}) .

5A polyhedral set in Rn is defined as the intersection of a finite number of closed half-spaces (Rockafellar,
1970). The fact that technology T̃ CRS−WID

0 is a polyhedral set follows from the more general Proposition 1
proved in Podinovski et al. (2016).

6Note that the VRS technology of Banker et al. (1984) also satisfies Axiom C. However, this axiom does
not need to be stated explicitly because it follows from the other axioms that define the VRS technology.
Therefore, requiring that technology T WID

0 satisfy Axiom C does not impose an additional condition over
what is already incorporated in the VRS technology.

7The fact that technology T WID
0 is a polyhedral set is formally stated by Lemma 4 in Appendix A.
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Figure 3: The closed convex technology T WID
0 generated by activities A and B.

6. The WID technology with convex input sets

In this section we relax the assumption that technology should be a convex set. Instead,
we require that only the input sets be convex, i.e., we assume Axiom CIS instead of Axiom
CT. The resulting technology can be regarded as a weakly disposable (with respect to inputs)
analogue of the technologies considered by Petersen (1990) and Bogetoft (1996).

This technology is also useful in our further discussion of the Shephard technology in
Section 8. We show that the Shephard technology is generally not convex but has convex
input sets. A natural question arises if the Shephard technology is the smallest technology
that has convex input sets and satisfies Axiom WID. The answer to this question is negative.
The smallest technology that satisfies these properties is developed below, in this section.

Definition 6.1. The WID technology with convex input sets T WID
1 is the intersection of all

technologies T ⊂ Rm
+ × Rs

+ that satisfy Axioms IO, SOD, WID and CIS.

To give a constructive definition of technology T WID
1 , let us introduce the following

definitions. For a given vector λ ∈ Rn
+ such that 1Tnλ = 1, let J + (λ) = {j ∈ J | λj > 0}

be the index set of strictly positive components of vector λ. Define the component-wise
minimum of the observed output vectors yj = (yj1, . . . , yjs)

T ∈ Rs
+, j ∈ J , as follows:

min
λ

(y1, . . . ,yn) =
(

min
j∈J+(λ)

{yj1}, . . . , min
j∈J+(λ)

{yjs}
)T
.

Using the above notation, we obtain the following statement of technology T WID
1 .

Theorem 6.1. Technology T WID
1 is equivalently stated as follows:

T WID
1 =

{
(x,y)

∣∣∣∑
j∈J

δjλjxj = x, min
λ

(y1, . . . ,yn) ≥ y ≥ 0s, 1Tnλ = 1, λ ≥ 0n, δ ≥ 1n

}
.

(7)

Theorem 6.2. Technology T WID
1 satisfies Axiom C.
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Technology T WID
1 also allows an alternative statement based on the notion of selective

convexity (Podinovski, 2005). This notion applies to technologies in which only a subset
of inputs IC and a subset of outputs OC can form convex combinations. The remaining
inputs and outputs from the sets INC and ONC are taken at their most conservative levels
(minimum for outputs and maximum for inputs), across all combined activities.

For our purposes, we assume that IC = {1, . . . ,m} and ONC = {1, . . . , s}. Consider any
technology T ⊂ Rm

+ × Rs
+. The following axiom is a special case of the axiom of selective

convexity (A3′) given by Podinovski (2005).8

Axiom SCI (Selective Convexity of Inputs) For any (x1,y1) , (x2,y2) ∈ T , and any λ1,
λ2 ≥ 0 such that λ1 + λ2 = 1, the selective convex (s-convex ) combination (λ1x

1 +
λ2x

2,minλ (y1,y2)) belongs to T .

If technology T satisfies Axiom SCI, we refer to it as an s-convex technology. In tech-
nology T is s-convex, then any convex combination of a pair of input vectors taken with
positive weights, can produce the minimum of each of the component outputs that they can
produce individually.

It is clear that Axiom SCI implies Axiom CIS. The converse is also true, provided tech-
nology T satisfies Axiom SOD.

Theorem 6.3. Let technology T satisfy Axiom SOD. Then T satisfies Axiom SCI if and
only if it satisfies Axiom CIS.

This last result, together with Definition 6.1, implies that technology T WID
1 is equivalently

defined as the smallest technology that satisfies Axioms IO, SOD, WID and SCI.

Definition 6.2. Let S be a non-empty set in Rm
+ × Rs

+. We define the s-convex hull of the
set S as

sconv (S) =
{( p∑

k=1

λkx
k,min

λ

(
y1, . . . ,yp

))∣∣∣ (xk,yk) ∈ S, k = 1, ..., p,

1Tpλ = 1, λ ≥ 0p

}
.

(8)

Definition 6.2 states that the s-convex hull of the set S consists of all (finite) s-convex
combinations of elements of S. It can be proved that sconv (S) is equivalently defined as the
intersection of all s-convex sets that contain S. Therefore, sconv (S) is the smallest s-convex
set containing S.

The following theorem shows that technology T WID
1 is the s-convex hull of the union of

the disposal hulls generated by all observed activities.

Theorem 6.4. Technology T WID
1 is equivalently stated as follows:

T WID
1 = sconv

(⋃
j∈J

DSW
j

)
. (9)

8Olesen et al. (2015, 2017) use the notion of selective convexity to define technologies in which some
inputs and outputs are represented by ratio data, such as percentages and averages. This reflects the fact
that ratio measures cannot be combined in convex combinations in the same way as volume measures. In the
context of technologies with ratio measures, Olesen et al. (2017) refer to s-convex combinations of activities
(decision making units) as their ratio-convex (R-convex) combinations.
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Fig. 4 shows technology T WID
1 generated by activities A and B. Note that, for every

level of output y, the corresponding input set Q(y) is convex. For example, the output of
activity A is equal to 1, and Q(1) is the unbounded polyhedron MLAE. Similarly, the
output of activity B is equal to 5, and the set Q(5) is the ray BC. Furthermore, according
to the statement (9), T WID

1 includes all s-convex combinations of its activities. For example,
combining activities A and B with the weights λA > 0 and λB = 1− λA > 0, we obtain the
convex combinations only for their input components, while keeping the resulting output
equal to 1, which is the minimum of the outputs of activities A and B. This generates the
open line segment LA, which is included in the technology.
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Figure 4: Technology T WID
1 generated by activities A and B.

Remark 2. The statement (7) of technology T WID
1 is nonlinear. Using substitution (5) and

implementing the linearization technique employed by Kuosmanen (2001), it is straightfor-
ward to show that T WID

1 can be restated in the following equivalent form:

T WID
1 =

{
(x,y)

∣∣∣ ∑
j∈J

(λj + µj) xj = x, λjyrj ≥ λjyr, yr ≥ 0, ∀j, r, 1Tnλ = 1, λ,µ ≥ 0n

}
.

(10)
The above statement of technology T WID

1 is useful for computational purposes. For
example, the evaluation of the input radial efficiency of activity (xo,yo) in technology T WID

1

based on its statement (10) requires solving a linear program. As shown by Podinovski (2005)
and Podinovski and Kuosmanen (2011) for similar programs, computations of the output
radial efficiency and, more generally, the efficiency using the directional distance function
approach of Chambers et al. (1998), require solving a mixed integer linear program.

7. The WID technology without convexity assumptions

In this section we obtain a technology that exhibits weak input disposability and strong
output disposability, without imposing any convexity assumption. Such technology may be
regarded as an adaptation of the FDH technology to the situation in which the inputs are
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closely related and cannot be freely disposed of. We show that the resulting technology is
generally significantly smaller than the conventional FDH technology.

Definition 7.1. Technology T WID
2 is the intersection of all technologies T ⊂ Rm

+ ×Rs
+ that

satisfy Axioms IO, SOD and WID.

The next result shows that technology T WID
2 has a very simple structure.

Theorem 7.1. Technology T WID
2 is equivalently stated as follows:

T WID
2 =

⋃
j∈J

DSW
j . (11)

Corollary 7.1. Technology T WID
2 satisfies Axiom C.

As an illustration, in Fig. 1, technology T WID
2 is the union of disposal hulls DSW

A and
DSW
B of activities A and B, i.e., the union of the surfaces EAGF and CBHI.

Based on Theorem 7.1, we have the following constructive statement of technology T WID
2 .

Theorem 7.2. Technology T WID
2 is equivalently stated as follows:

T WID
2 =

{
(x,y)

∣∣∣∑
j∈J

λjδjxj = x,
∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ ∈ {0, 1}n, δ ≥ 1n

}
. (12)

Comparing the statement (3) of technology T̃ WID
0 with the statement (12) of technol-

ogy T WID
2 , we observe that, in the former case, the components of vector λ take on real

values, while in the latter case, they are binary. Therefore, we always have the embedding
T WID

2 ⊆ T̃ WID
0 . In fact, a stronger result is available showing that T WID

2 is always a subset
of technology T WID

1 . This follows directly from the definitions of the two technologies.

Corollary 7.2. The following embedding is true: T WID
2 ⊆ T WID

1 .

Remark 3. It is clear that, in practical applications, the disposal hulls DSW
j generated by

observed activities (xj,yj), j ∈ J , are likely to be mutually disjoint sets. In this case, each
observed activity belongs only to its own disposal hull, and is efficient in technology T WID

2

as a result. The only exception of this is the case in which the input vector of one activity
is obtained by proportional scaling of the input vector of the other.

The evaluation of the input or output radial efficiency of activity (xo,yo) in technology
T WID

2 stated in the form (12) would require solving a mixed integer nonlinear program. A
more straightforward approach is to use a simple enumeration algorithm at each step of
which the efficiency of activity (xo,yo) is evaluated in the single disposal hull DSW

j , j ∈ J ,
which is an elementary task. The input or output radial efficiency of activity (xo,yo) is then
obtained as the minimum of its efficiencies calculated in the individual sets DSW

j , for which
(xo,yo) ∈ DSW

j , j ∈ J .9

Alternatively, using Theorem 7.2, we can state technology T WID
2 in the following equiv-

alent form:

T WID
2 =

{
(x,y)

∣∣∣∑
j∈J

δjxj = x,
∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ ∈ {0, 1}n, λ ≤ δ ≤Mλ
}
,

(13)
where M is a sufficiently large constant representing an upper bound on the feasible values of
components of vector δ. This upper bound can be assessed using the input equality in (13).
Assessing the input or output radial efficiency of activity (xo,yo) in technology T WID

2 using
its statement (13) requires solving a mixed integer linear program.

9Obviously, if (xo,yo) ∈ T WID
2 , then there exists at least one j′ ∈ J such that (xo,yo) ∈ DSW

j′ .
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8. The Shephard WID technology

The Shephard technology is often used in applications that involve undesirable (bad)
outputs (Färe and Grosskopf, 2003). In this technology, the good outputs are assumed to be
strongly disposable, while the bad and good outputs are jointly only weakly disposable. The
assumption of weak disposability of outputs is modeled by allowing the outputs of convex
combinations of observed activities to be scaled down by a single (abatement) factor δ.

Kuosmanen and Podinovski (2009) show that the Shephard technology with bad outputs
is not convex, and that this is because it effectively associates the same abatement factor
δ with each observed activity. Furthermore, Podinovski and Kuosmanen (2011) give an
axiomatic characterization of the Shephard technology. They show that an axiomatic reason
why the Shephard technology is not convex is that it is based on a rater unusual axiom of
convexity that allows only observed activities to form convex combinations. This axiom is
stated as follows.

Axiom CO (Convexity of Observations) T contains all convex combinations of the observed
activities.

Below we explore the Shephard technology stated under the assumption of weak dis-
posability of inputs (Färe and Grosskopf, 1983; Grosskopf, 1986). Similar to its output
analogue, this technology attaches a single scaling factor δ to all inputs. As a result, and as
shown below, it is not a convex technology.

To maintain consistency with the previous sections, we start by the axiomatic definition
of the Shephard technology and explore its operational statements and theoretical properties
afterwards.

Definition 8.1. Technology T WID
S is the intersection of all technologies T ⊂ Rm

+ ×Rs
+ that

satisfy Axioms IO, SOD, WID and CO.

The following theorem reveals the structure of the Shephard technology T WID
S in terms

of SODHs of observed activities.

Theorem 8.1. Technology T WID
S is equivalently stated as follows:

T WID
S =

(
conv

(⋃
j∈J

DS
j

))W

. (14)

Let C be the convex hull of the set of all observed activities (xj,yj), j ∈ J , and let

CSW =
(
CS
)W

be the disposal hull of the set C, as defined in Section 3.

Corollary 8.1. T WID
S = CSW =

(
CS
)W

.

The following theorem gives a constructive statement of technology T WID
S . It is equivalent

to the statement given by Grosskopf (1986).

Theorem 8.2. Technology T WID
S is equivalently stated as follows:

T WID
S =

{
(x,y)

∣∣∣ δ∑
j∈J

λjxj = x,
∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ ≥ 0n, δ ≥ 1
}
. (15)

Theorem 8.3. Technology T WID
S satisfies Axiom C.

13
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Figure 5: The non-convex Shephard technology T WID
S generated by activities A and B.

Table 2: Input-output data for activities J and K

Activity x1 x2 y
J 6 3 1
K 2 6 5

Fig. 5 shows technology T WID
S generated by observed activities A and B. To construct

this technology, we first identify the line segments AG and BH, representing the SODHs DS
A

and DS
B, respectively. The trapezium ABHG is the convex hull of these SODHs. Technology

T WID
S is obtained as the WIDH of trapezium ABHG, i.e., by adding the horizontal rays

emerging from all activities in ABHG in the directions away from the output axis.
Note that the Shephard technology T WID

S in Fig. 5 is not convex. For example, consider
activities J and K that are defined in Table 2 and are in technology T WID

S . (Activity J is
obtained from activity A by increasing its inputs by a factor 3. Similarly, K is obtained from
B by increasing its inputs by a factor 2.) Note that the relative interior of the line segment
joining activities J and K defined in Table 2 is outside this technology, which implies that
T WID
S is not a convex set.10

The reason why the Shephard technology T WID
S is not convex becomes clear by comparing

its statement (14) with the statement (2) of the convex technology T̃ WID
0 . The latter can be

restated as

T̃ WID
0 = conv

((⋃
j∈J

DS
j

)W)
. (16)

10For example, consider the midpoint P of the line segment JK. Its two inputs and single output are
equal to 4, 9/2 and 3, respectively. Substitute this into (15), taking into account that the two observed
activities are A and B defined by Table 1. The resulting two input equations and the equation 1T

nλ = 1
have the unique solution λ1 = 3/5, λ2 = 2/5 and δ = 5/2. However, for this solution, the output inequality
in (15) is not satisfied. Therefore, the point P does not belong to T WID

S .
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The only difference between the statements (14) and (16) is in the order in which the
operations of taking the convex hull and constructing the WIDH of the union of the sets
DS
j , j ∈ J , are performed. Taking the convex hull before the WIDH is constructed, as in

formula (14), results in the nonconvex technology T WID
S .

It is clear that, because Axiom CT implies Axiom CO, we have T WID
S ⊆ T̃ WID

0 . The
following result is a more precise statement of this relationship.

Theorem 8.4. Technology T̃ WID
0 is the convex hull of technology T WID

S :

T̃ WID
0 = conv

(
T WID
S

)
.

Taking into account (4), we immediately obtain the following statement:

Corollary 8.2. Technology T WID
0 is the closure of the convex hull of technology T WID

S :

T WID
0 = cl

(
conv

(
T WID
S

))
.

Although, as demonstrated, technology T WID
S is not convex, the following result shows

that all of its input sets are convex.

Theorem 8.5. For any y ∈ Rs
+, the input set QWID

S (y) is convex.

The above theorem shows that technology T WID
S satisfies Axiom CIS. However, as already

noted, T WID
S is not the smallest technology that satisfies this property and exhibits weak

input disposability. Indeed, taking into account the definition of technology T WID
1 , we obtain

the following result.

Corollary 8.3. The following is true

T WID
1 ⊆ T WID

S .

Finally, we consider a special case in which all observed activities produce the same
output vector.

Theorem 8.6. Let all observed activities have the same output vector ỹ, i.e., yj = ỹ, for
all j ∈ J . Then T WID

S = T̃ WID
0 = T WID

0 = T WID
1 .

The above result identifies a special case in which the generally nonconvex technologies
T WID

1 and T WID
S are convex, and the generally not closed technology T̃ WID

0 is closed.

9. Convex technology with a subset of inputs exhibiting WID

It is straightforward to extend our previous results to the case in which only a subset
of inputs is weakly disposable, while the rest of the inputs are strongly disposable. Let us
point out two application areas for such an extension. First, as suggested by Byrnes et al.
(1988), this can be used to identify a subset of inputs that cause congestion. This requires
comparing the technical efficiency of an activity in the technology in which a subset of inputs
exhibits weak disposability with its efficiency in the technology in which all inputs exhibit
weak disposability.

Second, in many applications there is often a subset of highly correlated or overlapping
inputs. For example, in the public sector applications such as schools or hospitals, the
inputs representing the teaching or doctor and nurse provision may be strongly linked to
administration costs. In applications to banking, operational expenses may be linked to the
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value of deposits. In various applications, the input representing staff holding high level of
qualification is a subset of all staff.

In all such cases it may be deemed inappropriate to assume strong disposability of related
inputs, as this would imply allowing unrestricted proportions between them. Instead, it
might be reasonable to assume only weak disposability of such inputs relative to each other,
which will not distort proportions between them, while allowing strong disposability for the
remaining inputs. In this model, the group of related inputs acts as a whole: it is effectively
strongly disposable with respect to the remaining inputs, while within the group, the inputs
are mutually only weakly disposable.

Obtaining the required technologies is similar to our previous development. To avoid
repetition, below we outline only the case of the fully convex technology which is likely to
be of the most practical interest.

Let us represent each input vector as x =
(
xW,xS

)
, where xW and xS are the subvectors

of weakly and strongly disposable inputs. The difference between the two subvectors is
reflected in the following axioms.

Axiom SDSI (Strong Disposability of a Subset of Inputs) If
(
xW,xS,y

)
∈ T , then

(
xW, x̂S,y

)
∈

T , for all x̂S ≥ xS.

Axiom WDSI (Weak Disposability of a Subset of Inputs) If
(
xW,xS,y

)
∈ T , then

(
δxW,xS,y

)
∈

T , for all δ ≥ 1.

Using the minimum extrapolation principle, define the closed convex technology T WDSI
0

that satisfies the above two axioms and the axiom of strong output disposability, as follows.

Definition 9.1. Technology T WDSI
0 is the intersection of all technologies T ⊂ Rm

+ ×Rs
+ that

satisfy Axioms IO, SOD, SDSI, WDSI, CT and C.

The following result is an analogue of Theorem 5.2.

Theorem 9.1. Technology T WDSI
0 is equivalently stated as follows:

T WDSI
0 =

{(
xW,xS,y

) ∣∣∣ ∑
j∈J

(λj + µj) xW
j = xW,

∑
j∈J

λjx
S
j ≤ xS,

∑
j∈J

λjyj ≥ y ≥ 0s, 1Tnλ = 1, λ,µ ≥ 0n

}
.

The proof of Theorem 9.1 is similar to that of Theorem 5.2, and is omitted.

10. Concluding remarks

In this paper, we consider a range of production technologies that incorporate the as-
sumption of weak input disposability. According to this assumption, if an output vector
y can be produced from an input vector x, then y can also be produced if all inputs are
increased in the same proportion δ ≥ 1, i.e., from the input vector δx.

The assumption of weak input disposability is more conservative than the assumption of
strong input disposability incorporated in the conventional VRS and CRS technologies of
data envelopment analysis, and also in the FDH technology. The latter assumption allows
all inputs to be increased independently of each other. As pointed in our paper, this strong
assumption may be inappropriate if some or all inputs are deemed to be closely related to
each other. This may be because there is a strong statistical or perceptual relation between
them, or because they represent overlapping measures, or because one input is embedded in
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another. In these cases, using a model that allows strong disposability of all inputs would
imply allowing arbitrary, including meaningless, subvectors of the related inputs.

The assumption of weak input disposability is incorporated in the known Shephard
technology. Färe and Grosskopf (1983) suggest using this technology to measure the level
of input congestion. The idea of this method is to calculate the technical efficiency of an
activity in the strongly disposable VRS technology and also in the Shephard technology.
The ratio of the two efficiencies is interpretable as the congestion measure.

The mathematical statement of the Shephard technology is obtained from the conven-
tional statement of the VRS technology, by assigning a single scaling factor δ to the input
vectors of all observed activities, and replacing the input inequalities by equalities. In our
paper, we show that such a modification, while correctly representing weak input dispos-
ability, simultaneously makes the resulting Shephard technology nonconvex. We argue that
this unintended side effect appears problematic, for example, in the calculation of conges-
tion measure. Ideally, congestion should be measured relative to a technology which has
the same axiomatic properties as the VRS technology, except for replacing the strong input
disposability by weak input disposability. Using the Shephard technology for this purpose
is problematic because not only the type of input disposability is changed, but also the
convexity assumption is disposed of. In other words, the Shephard technology is too small
for this purpose, and its use creates a bias in the evaluation of congestion measure.

Our development is motivated by the two factors outlined above. First, it is a practical
need to have suitable technologies that incorporate weak input disposability, to be used in
situations with closely related inputs. Second, it is a need to correct the bias arising from
the use of the Shephard technology in the evaluation of congestion measure.

The range of technologies introduced in our paper exhibit weak input disposability, strong
output disposability, and are based on progressively relaxed convexity assumptions. Tech-
nology T WID

0 is a convex production technology, technology T WID
1 is not convex but has

convex input sets, and technology T WID
2 does not assume any type of convexity.

Additionally, we prove that the Shephard technology, denoted T WID
S , fits in the above

progression by satisfying the rather unusual axiom of convexity introduced by Podinovski
and Kuosmanen (2011). Namely, the Shephard technology allows convex combinations of
only observed activities. This makes it smaller than the fully convex technology T WID

0 but
larger than the technology T WID

1 with convex input sets.
Overall, combining several results stated in the main sections of this paper, we have the

following embedding:
T WID

2 ⊆ T WID
1 ⊆ T WID

S ⊆ T WID
0 .

The above technologies treat all inputs as being weakly disposable. In the final section
of our paper we consider a situation in which only a subset of inputs is weakly disposable,
while the remaining inputs are strongly disposable. We show that the above models are easy
to adjust to this scenario. In practice, the resulting models should be useful in two cases.
First, they are more precise in representing situations in which only some inputs are closely
related and require modelling using weak input disposability. Second, as shown by Byrnes
et al. (1988), such models could be used in identifying which inputs are congested.

From a computational perspective, assessing the technical efficiency of activities in the
output and input orientations (i.e., assessing the input and output radial efficiency) in
technology T WID

0 requires solving only linear programs, and the same is true for using the
directional distance function approach of Chambers et al. (1998). This contrasts favourably
with the Shephard technology whose use in evaluation of technical efficiency leads to a
linear program only in the output orientation. In technologies T WID

1 and T WID
2 similar
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computations require solving mixed integer linear programs.
The new models developed in our paper open up a number of further research avenues.

First, it is hoped that the assumption of weak input disposability in the convex technology
T WID

0 , especially applied to a subset of inputs, would be attractive in practical applications
with a group of closely related inputs, as an alternative to the standard VRS technology.
Second, it should be interesting to extend the treatment of weak input disposability in the
nonconvex technology T WID

1 to a related and mathematically more general model incorpo-
rating ratio inputs and outputs of Olesen et al. (2015, 2017). From a practical perspective,
it should also be worthwhile to explore the dual representation of technology T WID

0 and
its use for evaluation and interpretation of the scale elasticity and returns to scale on the
efficient frontier.
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Appendix A. Proofs

Lemma 1. Let K be the set on the right-hand side of (2). Then

K =
{

(x,y)
∣∣∣ ∑
j∈J

λjδjxj = x,
∑
j∈J

λjzj = y,

0s ≤ zj ≤ yj, j ∈ J , 1Tnλ = 1, λ ≥ 0n, δ ≥ 1n

}
.

(A.1)

Proof of Lemma 1. Denote W the set on the right-hand side of (A.1). We need to prove
that K = W . Let (x,y) ∈ K. By Carathéodory’s theorem, activity (x,y) is a convex
combination of a finite number of activities from the sets DSW

j , j ∈ J . Because each set
DSW
j is convex, without loss of generality, we assume that all such activities are taken from

different sets DSW
j . By definition of the sets DSW

j , each of these activities is stated in the
form (δjxj, zj), where δj ≥ 1 and 0s ≤ zj ≤ yj. Therefore, (x,y) ∈ W , and K ⊆ W .

Conversely, let (x,y) ∈ W . Then each activity (δjxj, zj) defined by (A.1) is in the
corresponding set DSW

j , j ∈ J . Because (x,y) is their convex combination, (x,y) ∈ K.
Therefore, W ⊆ K. �

Lemma 2. Let K be the set on the right-hand side of (2). Then K satisfies Axioms IO,
SOD, WID and CT.

Proof of Lemma 2. Clearly, K satisfies Axiom IO and CT. To prove that K satisfies
Axiom SOD, let (x,y) ∈ K, and let 0s ≤ ŷ ≤ y. We need to prove that (x, ŷ) ∈ K.

By Lemma 1, (x,y) can be stated as in (A.1). By definition of vector ŷ, for each
r = 1, ..., s, we have 0 ≤ ŷr ≤ yr =

∑
j∈J λjzjr. Then there exists a σr ∈ [0, 1] such that

ŷr =
∑

j∈J λj (σrzjr). Denote ẑjr = σrzjr. Then

ŷ =
∑
j∈J

λj ẑj, 0s ≤ ẑj ≤ yj, j ∈ J .

Therefore, (x, ŷ) ∈ K, and K satisfies Axiom SOD. To prove that K satisfies Axiom
WID, let γ ≥ 1. Then (γx,y) satisfies all conditions in (A.1) with the vector δ replaced by
γδ. Therefore, (γx,y) ∈ K. �

Proof of Theorem 4.1. Let K be the set on the right-hand side of (2). By Lemma 2,
K satisfies Axioms IO, SOD, WID and CT. Because T̃ WID

0 is the smallest set that satisfies
these axioms, we have T̃ WID

0 ⊆ K.
Conversely, because the set T̃ WID

0 is convex, it suffices to show that DSW
j ⊆ T̃ WID

0 , for all

j ∈ J . For any j ∈ J , let (δjxj, zj) ∈ DSW
j , where 0s ≤ zj ≤ yj and δj ≥ 1. Because T̃ WID

0

satisfies Axioms IO and WID, we have (δjxj, zj) ∈ T̃ WID
0 , and the proof follows. �

Proof of Theorem 4.2. By Theorem 4.1 and Lemma 1, T̃ WID
0 = K, where the set K

is stated in the form (A.1). Let M be the set on the right-hand side of (3). Clearly,
T̃ WID

0 ⊆ M. Conversely, let (x̄, ȳ) ∈ M. Then (x̄, ȳ) satisfies all conditions of (3) with
some vectors λ̄ ≥ 0n and δ̄ ≥ 1n. Similar to the proof of Lemma 2, we define vectors z̄j,
j ∈ J , such that (x̄, ȳ) satisfies (A.1) with the vectors λ̄, δ̄ and z̄j, j ∈ J . Therefore,
(x̄, ȳ) ∈ T̃ WID

0 . �

Lemma 3. The following embedding is true: T̃ WID
0 ⊆ T WID

0 .

Proof of Lemma 3. The set T WID
0 satisfies axioms IO, SOD, WID and CT. The proof is

completed by noting that T̃ WID
0 is the smallest set that satisfies these axioms. �
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Lemma 4. Denote P the set on the right-hand side of equality (6). Then P is a polyhedral
set, which implies that it satisfies Axioms CT and C. Furthermore, P satisfies Axioms IO,
SOD, and WID.

Proof of Lemma 4. The fact that P is a polyhedral set follows from the projection
lemma (see, e.g., the proof of Proposition 1 in Podinovski et al. (2016)). Therefore, P
satisfies Axioms CT and C. Clearly, P also satisfies Axiom IO. Let (x̄, ȳ) ∈ P . Then (x̄, ȳ)
satisfies (6) with some vectors λ̄ and µ̄.

Consider Axiom SOD. Let 0s ≤ ŷ ≤ ȳ. Then (x̄, ŷ) satisfies (6) with the same λ̄ and µ̄.
Therefore, P satisfies Axiom SOD. Finally, consider any γ ≥ 1. Then (γx̄, ȳ) satisfies (6)
with λ̂ = λ̄ and µ̂ found from the equation λ̄+µ̂ = γ

(
λ̄ + µ̄

)
, i.e., with µ̂ = γ

(
λ̄ + µ̄

)
−λ̄.

Therefore, P satisfies Axiom WID. �

Lemma 5. Let P be the set on the right-hand side of equality (6). Then P = cl
(
T̃ WID

0

)
.

Proof of Lemma 5. If (x̄, ȳ) ∈ T̃ WID
0 , then (x̄, ȳ) satisfies (3) with some vectors λ̄ and

δ̄. Then (x̄, ȳ) satisfies (6) with the same λ̄ and the vector µ̄ defined by (5). Therefore
(x̄, ȳ) ∈ P , and T̃ WID

0 ⊆ P . By Lemma 4, P is a closed set. Therefore, cl
(
T̃ WID

0

)
⊆ P .

Conversely, let (x̄, ȳ) ∈ P . Then (x̄, ȳ) satisfies (6) with some vectors λ̄ and µ̄. We need
to prove that (x̄, ȳ) ∈ cl

(
T̃ WID

0

)
. Two cases arise.

Case 1. Suppose that λ̄ > 0n. Using (5), define vector δ̄ as follows. For all j ∈ J , let
δ̄j =

(
λ̄j + µ̄j

)
/λ̄j, which implies λ̄j + µ̄j = λ̄j δ̄j. Note that δ̄ ≥ 1n. Then (x̄, ȳ) satisfies (3)

with vectors λ̄ and δ̄. Therefore, (x̄, ȳ) ∈ T̃ WID
0 ⊆ cl

(
T̃ WID

0

)
.

Case 2. Suppose that the inequality λ̄ > 0n is not true. Let us show that, in this case,
(x̄, ȳ) is the limit of some sequence {(x̄t, ȳt)}, t = 1, 2 . . . , each element of which is in T̃ WID

0 .
Because cl

(
T̃ WID

0

)
is a closed set, (x̄, ȳ) ∈ cl

(
T̃ WID

0

)
.

To define the required sequence, first let (x∗,y∗) be the simple average of all observed
activities (xj,yj), j ∈ J . Note that (x∗,y∗) satisfies (6) with vectors λ∗ and µ∗ = 0n, where
λ∗j = 1/n, for all j ∈ J . Define the elements of the above sequence as follows:

(x̄t, ȳt) = (1− 1/t) (x̄, ȳ) + (1/t) (x∗,y∗) , t = 1, 2, . . . (A.2)

Each (x̄t, ȳt) defined by (A.2) satisfies (6) with vectors λt = (1− 1/t) λ̄ + (1/t)λ∗ and
µt = (1− 1/t) µ̄ + (1/t)µ∗ = (1− 1/t) µ̄. Because λt > 0n, as proved above, (x̄t, ȳt) ∈
T̃ WID

0 . Then the limit of this sequence (x̄, ȳ) ∈ cl
(
T̃ WID

0

)
.

The two considered cases imply that P ⊆ cl
(
T̃ WID

0

)
, which completes the proof. �

Proof of Theorem 5.1. By Lemma 4, P satisfies Axioms IO, SOD, WID, CT and C. By
definition of T WID

0 , we have T WID
0 ⊆ P . Conversely, by Lemma 3, we have T̃ WID

0 ⊆ T WID
0 .

Then, taking into account Lemma 5, we have P = cl
(
T̃ WID

0

)
⊆ cl

(
T WID

0

)
= T WID

0 . �

Proof of Theorem 5.2. By Theorem 5.1 and Lemma 5, we have T WID
0 = cl

(
T̃ WID

0

)
= P ,

where P be the set on the right-hand side of equality (6). �

Lemma 6. Let H be the set on the right-hand side of equality (7). Then H satisfies Axioms
IO, SOD, WID and CIS.

Proof of Lemma 6. Clearly, H satisfies Axiom IO. Let (x̄, ȳ) ∈ H. Then (x̄, ȳ) satisfies
the conditions in (7) with some vectors λ̄ and δ̄. Let ŷ ≤ ȳ. Then (x̄, ŷ) satisfies (7) with
the vectors λ̄ and δ̄. Therefore, H satisfies Axiom SOD. Let γ ≥ 1. Then (δx̄, ȳ) satisfies (7)
with the vectors λ̄ and δ = γδ̄. Therefore, H satisfies Axiom WID.
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To prove that H satisfies Axiom CIS, consider (x̄1, ȳ), (x̄2, ȳ) ∈ H and any σ ∈ (0, 1).
We need to prove that (xσ,yσ) = σ (x̄1, ȳ) + (1 − σ) (x̄2, ȳ) ∈ H. Let (x̄1, ȳ) and (x̄2, ȳ)
satisfy the conditions in (7) with vectors λ1 and δ1, and λ2 and δ2, respectively. It is
straightforward to verify that (xσ,yσ) satisfies the conditions in (7) with the vectors λσ and
δσ, where

λσj = σλ1
j + (1− σ)λ2

j , δσj =
σδ1

jλ
1
j + (1− σ)δ2

jλ
2
j

λσj
, j ∈ J .

Note that δσj ≥ 1, for all j ∈ J . Therefore, (xσ,yσ) ∈ H. �

Proof of Theorem 6.1. By Lemma 6, the set H on the right-hand side of (7) satisfies
Axioms IO, SOD, WID and CIS. Because T WID

1 is the smallest technology that satisfies
these axioms, we have T WID

1 ⊆ H. Conversely, let (x̄, ȳ) ∈ H. Then (x̄, ȳ) satisfies all
conditions in (7) with some vectors λ̄ and δ̄. Because T WID

1 satisfies Axioms IO, SOD and
WID,

(
δ̄jxj, ȳ

)
∈ T WID

1 , for all j ∈ J such that λ̄j > 0. Because T WID
1 satisfies Axiom CIS,

we have (x̄, ȳ) ∈ T WID
1 . Therefore, H ⊆ T WID

1 . �

Proof of Theorem 6.2. Consider the statement of technology T WID
1 by (7). Let some

sequence
{(

xk,yk
)
| k = 1, 2, . . .

}
⊂ T WID

1 converge to (x̂, ŷ). For any k,
(
xk,yk

)
satisfies

all conditions in (7) with some vectors λk and δk. Because the sequence
{
λk
}

belongs to a

compact set, without loss of generality, let
{
λk
}

converge to some vector λ̂. A more careful

treatment is required for the sequence
{
δk
}

.

It holds that 1Tn λ̂ = 1. Consider any j∗ ∈ J such that λ̂j∗ > 0. Based on the assumption
about the observed activities made in Section 2, xj∗ 6= 0m. Therefore, there exists an input
i∗ ∈ {1, . . . ,m} such that xj∗i∗ > 0. Furthermore, there exists a sufficiently large k̄ such

that, for all k ≥ k̄, we have λkj∗ ≥ λ̂j∗/2 and xki∗ ≤ x̂i∗ + 1. Then, based on (7), for input i∗

we have:

x̂i∗ + 1 ≥ xki∗ =
∑
j∈J

δkj λ
k
jxji∗ ≥ δkj∗λ

k
j∗xj∗i∗ ≥ δkj∗

λ̂j∗

2
xj∗i∗ .

Therefore, for all k ≥ k̄, we have δkj∗ ∈ [1, D], where D = 2 (x̂i∗ + 1) /
(
λ̂j∗xj∗i∗

)
. Then,

without loss of generality, we can assume that the sequence
{
δkj∗
}

converges to some δ̂j∗ .

For any j ∈ J such that λ̂j = 0, we arbitrarily define δ̂j = 1. Taking the limits by k of both

sides of the input equality in (7) stated for xk, we have
∑

j∈J δ̂jλ̂jxj = x̂. Finally, to prove

that the output inequality in (7) is true for ŷ and λ̂, note that, if λ̂j > 0, then, for all k ≥ k̄,
we have λkj > 0. Therefore, yj ≥ yk. Then at the limit, we have yj ≥ ŷ. We have proved
that (x̂, ŷ) ∈ T WID

1 . Therefore, T WID
1 is a closed set. �

Proof of Theorem 6.3. The proof follows follows from a more general Lemma 2 proved
in Podinovski (2005). �

Lemma 7. Let B be the set on the right-hand side of (9). Then B satisfies Axioms IO,
SOD, WID and CIS.

Proof of Lemma 7. Clearly, B satisfies Axioms IO and CIS. Suppose that (x̄, ȳ) ∈ B.
Then there exist a finite number of pairs

(
x̄k, ȳk

)
∈
⋃
j∈J DSW

j , k = 1, . . . , p, and a vector

λ̄ ≥ 0p, such that 1Tp λ̄ = 1 and

x̄ =

p∑
k=1

λ̄kx̄
k, ȳ = min

λ̄

(
ȳ1, . . . , ȳp

)
. (A.3)
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For each k = 1, . . . , p, there exists a j(k) ∈ J such that
(
x̄k, ȳk

)
∈ DSW

j(k). By (1), we

have x̄k = δ̄kxj(k), where δ̄k ≥ 1, and ȳk ≤ yj(k). Restate the first equality in (A.3) as

x̄ =

p∑
k=1

λ̄kδ̄kxj(k). (A.4)

To prove that B satisfies Axiom SOD, let ŷ ≤ ȳ. Consider any k = 1, . . . , p, such
that λ̄k > 0. By (A.3), ŷ ≤ yj(k). Because the set DSW

j satisfies Axiom SOD, we have(
δ̄kxj(k), ŷ

)
∈ DSW

j(k). By (8), (x̄, ŷ) ∈ B. Therefore, B satisfies Axiom SOD.

Consider any γ ≥ 1. Then (γx̄, ȳ) satisfies conditions (A.4) in which we replace δ̄ by γδ̄.
Therefore, (γx̄, ȳ) ∈ B, and B satisfies Axiom WID. �

Proof of Theorem 6.4. By Lemma 7, the set B satisfies Axioms IO, SOD, WID and CIS.
By Definition 6.1, we have T WID

1 ⊆ B. Conversely, by Definition 6.1 and Theorem 6.3, T WID
1

is s-convex. Therefore, it suffices to show that DSW
j ⊆ T WID

1 , for all j ∈ J . For any j ∈ J ,
let (δjxj, zj) ∈ DSW

j , where 0s ≤ zj ≤ yj and δj ≥ 1. Because T WID
1 satisfies Axioms IO

and WID, we have (δjxj, zj) ∈ T WID
1 , and the proof follows. �

Proof of Theorem 7.1. Let F denote the set on the right-hand side of (11). We need to
prove that T WID

2 = F . Clearly, F satisfies Axiom IO. Furthermore, let (x̄, ȳ) ∈ F . Then
there exists a j′ ∈ J such that (x̄, ȳ) ∈ DSW

j′ . Because DSW
j′ satisfies Axioms SOD and WID,

F also satisfies them. Because T WID
2 is the smallest set that satisfy Axioms IO, SOD and

WID, we have T WID
2 ⊆ F . Conversely, because T WID

2 satisfies Axioms IO, SOD and WID,
we have DSW

j ⊆ T WID
2 , for all j ∈ J . Therefore, F ⊆ T WID

2 . �

Proof of Corollary 7.1. Technology T WID
2 is closed as the union of a finite number of

closed sets DSW
j , j ∈ J . �

Proof of Theorem 7.2. Denote G the set on the right-hand side of (12). Let (x̄, ȳ) ∈ G.
Then (x̄, ȳ) satisfies all conditions of (12) with some vectors λ̄ and δ̄. There exists a single
j′ ∈ J such that λ̄j′ = 1, and λ̄j = 0, for all j 6= j′, j ∈ J . Then (12) implies that
(x̄, ȳ) ∈ DSW

j′ . By (11), (x̄, ȳ) ∈ T WID
2 . Therefore, G ⊆ T WID

2 .

Conversely, the set G clearly satisfies Axioms IO, SOD and WID. Because T WID
2 is the

smallest set that satisfies these axioms, we have T WID
2 ⊆ G, and the proof follows. �

Lemma 8. Let V be the set on the right-hand side of (14). Then V satisfies Axioms IO,
SOD, WID and CO.

Proof of Lemma 8. Clearly, V satisfies Axiom IO and CO. Denote

V0 = conv
(⋃
j∈J

DS
j

)
. (A.5)

Then
V = VW

0 . (A.6)

Consider any (x̄, ȳ) ∈ V . By (A.6), there exist a (x̃, ȳ) ∈ V0 and a δ̄ ≥ 1 such that
(x̄, ȳ) =

(
δ̄x̃, ȳ

)
. To prove that V satisfies Axiom SOD, let 0s ≤ ŷ ≤ ȳ. We need to prove

that (x̄, ŷ) ∈ V . As in the proof of Lemma 2, it is straightforward to show that V0 satisfies
Axiom SOD. Therefore, (x̃, ŷ) ∈ V0. Then

(
δ̄x̃, ŷ

)
∈ VW

0 , i.e., (x̄, ŷ) ∈ V .
To prove that V satisfies Axiom WID, let γ ≥ 1. Then (γx̄, ȳ) =

(
(γδ̄)x̃, ȳ

)
∈ V . �
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Lemma 9. Let C be the convex hull of the set of all observed activities (xj,yj), j ∈ J , and
let CS be the SODH of the set C. Then CS = V0, where the set V0 is defined by (A.5).

Proof of Lemma 9. To prove that V0 ⊆ CS, consider any (x̄, ȳ) ∈ V0. By Carathéodory’s
theorem, (x̄, ȳ) is a convex combination of a finite number of activities from the union of sets
DS
j , j ∈ J . Because each set DS

j is convex, without loss of generality, we assume that all such
activities are taken from different sets DS

j . Therefore, there exist activities (xj, z̄j) ∈ DS
j ,

such that 0s ≤ z̄j ≤ yj , for all j ∈ J , and a vector λ̄ ≥ 0n, such that 1Tn λ̄ = 1 and

x̄ =
∑
j∈J

λ̄jxj, ȳ =
∑
j∈J

λ̄j z̄j.

Let ŷ =
∑

j∈J λ̄jyj. Then (x̄, ŷ) ∈ C. Because ȳ ≤ ŷ, (x̄, ȳ) ∈ CS. Therefore, V0 ⊆ CS.
Conversely, note that C ⊆ V0. As in the proof of Lemma 2, it is straightforward to prove

that V0 satisfies Axiom SOD. Therefore, CS ⊆ V0. �

Proof of Theorem 8.1. In this proof we use notation introduced in Lemmas 8 and 9. By
Lemma 8, the set V satisfies Axioms IO, SOD, WID and CO. Because T WID

S is the smallest
set that satisfies these axioms, we have T WID

S ⊆ V .
Conversely, because T WID

S satisfies Axioms IO and CO, we have C ⊆ T WID
S . Because

T WID
S satisfies Axiom SOD, we have CS ⊆ T WID

S . By Lemma 9, V0 ⊆ T WID
S , where V0

is defined by (A.5). Finally, because T WID
S satisfies Axiom WID, we have VW

0 ⊆ T WID
S .

Noting (A.6) completes the proof. �

Proof of Corollary 8.1. By Theorem 8.1 and (A.6), we have T WID
S = V = VW

0 . By

Lemma 9, VW
0 =

(
CS
)W

= CSW. �

Proof of Theorem 8.2. Let U denote the set on the right-hand side of (15). By Corol-

lary 8.1, it suffices to prove that U =
(
CS
)W

. Let (x̄, ȳ) ∈ U . Then (x̄, ȳ) satisfies all
conditions of (15) with some vector λ̄ and scalar δ̄. By definition of the set C, we have
(x̂, ŷ) ∈ C, where

x̂ =
∑
j∈J

λ̄jxj, ŷ =
∑
j∈J

λ̄jyj. (A.7)

Then (x̂, ȳ) ∈ CS, and
(
δ̄x̂, ȳ

)
= (x̄, ȳ) ∈

(
CS
)W

. Therefore, U ⊆
(
CS
)W

. Conversely, let

(x̄, ȳ) ∈
(
CS
)W

. Then there exists a δ̄ ≥ 1 such that x̄ = δ̄x̂ and (x̂, ȳ) ∈ CS. Furthermore,
by definition of CS, there exists a vector ŷ such that ŷ ≥ ȳ and (x̂, ŷ) ∈ C. By definition
of C, there exists a vector λ̄ such that equalities (A.7) are true. Then (x̄, ȳ) satisfies all

conditions of (15) with the above λ̄ and δ̄. Therefore, (x̄, ȳ) ∈ U , and
(
CS
)W ⊆ U . �

Proof of Theorem 8.3. The proof is similar to the proof of Theorem 6.2, so we only outline
its idea. Let some sequence

{(
xk,yk

)
| k = 1, 2, . . .

}
⊂ T WID

S converge to (x̂, ŷ). We need
to prove that (x̂, ŷ) ∈ T WID

S . For any k,
(
xk,yk

)
satisfies all conditions in (15) with some

vector λk and scalar δk. Because the sequence
{
λk
}

belongs to a compact set, without loss

of generality, we assume that it converges to some vector λ̂. Furthermore, we have λ̂j > 0
for some j ∈ J . This and the fact that xj 6= 0m imply that there exists a constant D such
that δk ∈ [1, D]. Therefore, without loss of generality, the sequence {δk} converges to some
δ̂. Taking the limit of all conditions in (15), we prove that (x̂, ŷ) satisfies (15). �

Proof of Theorem 8.4. Because T WID
S ⊆ T̃ WID

0 and T̃ WID
0 is a convex technology, we

have conv
(
T WID
S

)
⊆ T̃ WID

0 . Conversely, let (x̄, ȳ) ∈ T̃ WID
0 . By (2) and by Carathéodory’s

theorem, (x̄, ȳ) is a convex combination of a finite number of activities from the sets DSW
j ,
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j ∈ J . Because T WID
S satisfies Axioms WID and SOD, we have DSW

j ⊆ T WID
S , for all j ∈ J .

Therefore, (x̄, ȳ) ∈ conv
(
T WID
S

)
. �

Proof of Theorem 8.5. Let y ∈ Rs
+ and let x1,x2 ∈ QWID

S (y). Then (x1,y) and (x2,y)
satisfy all conditions of (15) with some scalars δ1, δ2 and vectors λ1,λ2. For any σ ∈ [0, 1],
define xσ = σx1 + (1− σ) x2. Then (xσ,y) satisfies all conditions of (15) with

δ′ = σδ1 + (1− σ) δ2, λ′ =
σδ1

δ′
λ1 +

(1− σ) δ2

δ′
λ2.

Therefore, xσ ∈ QWID
S (y), which completes the proof. �

Lemma 10. Let all observed activities produce the same output vector ỹ. Then T̃ WID
0 =

T WID
S .

Proof of Lemma 10. Any (x̂, ŷ) ∈ T WID
S satisfies (15) with some vector λ̂ and scalar

δ̂. Then (x̂, ŷ) satisfies (3) with the same vector λ̂ and δj = δ̂, for all j ∈ J . Therefore,
(x̂, ŷ) ∈ T̃ WID

0 , and T WID
S ⊆ T̃ WID

0 .
Conversely, let (x̄, ȳ) ∈ T̃ WID

0 . Then (x̄, ȳ) satisfies (3) with some vectors λ̄ and δ̄.
Because all observed activities have the same output vector ỹ, from (3) we have:

x̄ =
∑
j∈J

λ̄j δ̄jxj, ȳ ≤
∑
j∈J

λ̄jȳj = ỹ. (A.8)

Define δ̃ =
∑

j∈J λ̄j δ̄j. Restating (A.8), we obtain

x̄ = δ̃
∑
j∈J

λ̄j δ̄j

δ̃
xj, ȳ ≤

∑
j∈J

λ̄j δ̄j

δ̃
ỹ.

Define λ̃j = λ̄j δ̄j/δ̃, for all j ∈ J . Then (x̄, ȳ) satisfies (15) with the vector λ̃ and
scalar δ̃. Therefore, (x̄, ȳ) ∈ T̃ WID

S , and T̃ WID
0 ⊆ T WID

S . �

Lemma 11. Let all observed activities produce the same output vector ỹ. Then T̃ WID
0 =

T WID
1 .

Proof of Lemma 11. Under the condition of this lemma, the output inequalities of
statement (3) of technology T̃ WID

0 and statement (7) of technology T WID
1 take on the form

ỹ ≥ y. The two statements are identical and, therefore, T̃ WID
0 = T WID

1 . �

Proof of Theorem 8.6. By Lemma 10, we have T WID
S = T̃ WID

0 . Taking the closure of both
sides and noting that, by Theorem 8.3, T WID

S is a closed set, we have T WID
S = cl

(
T̃ WID

0

)
=

T WID
0 , where the last equality follows from (4). Noting Lemma 11 completes the proof. �
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Färe, R., & Grosskopf, S. (2003). Non-parametric productivity analysis with undesirable outputs: Comment.
American Journal of Agricultural Economics, 85 (4), 1070–1074.
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