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Abstract

The aim of this paper is to investigate the possibility of improving the ride quality of a two-axle railway vehicle

with single-stage suspension by means of passive suspensions employing the inerter device. The inerter is

a mechanical one-port element analogous to the capacitor in electrical circuits. The goal is to improve the

ride quality in both the vertical and lateral motion in response to track irregularities. Performance benefits

for several simple passive suspension layouts are demonstrated here in comparison with the conventional

scheme. The elastic effects of the damper and inerter device are then taken into consideration for practical

purpose. The optimum parameter values of the damper, inerter and the parameters representing the elastic

effects provide guidance for mechanical design purposes.
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Fig. 1 (Ideal) inerter modelling symbol.

1 Introduction

This paper considers the application of advanced passive suspension to two-axle single-stage railway vehicles.

Such vehicles dispense with the bogies and the secondary suspension and therefore offer simpler mechanical

constructions which is translated to 30–35% reductions in vehicle weight. Despite the advantage, widespread

use of the vehicle has been limited because the single stage of suspension leads to an unsatisfactory ride

quality. This applies both to the lateral and vertical dynamics. Whole-body vibrations in trains are known

to affect the performance of sedentary actions such as reading, writing, sketching, working on laptops, etc [1].

Goodall et al. ([2], [3]) studied the use of an active suspension to overcome these difficulties, however this

paper investigates the prospects of introducing inerters, together with the traditional spring and damper,

i.e. configuring a mechanical compensator without the need for active elements. This paper extends the

work of [4] on the vertical and considers the dynamics in the lateral direction.

The inerter [5] is a mechanical two-terminal element with the property that the applied force at the termi-

nals is proportional to the relative acceleration across the terminals, i.e. F = b (z̈1 − z̈2), in the notation

of Figure 1, where b is the constant of proportionality in kilograms, called inertance. The inerter, together

with spring and damper, provides a complete analogy between mechanical and electrical elements, which

allows arbitrary passive mechanical impedances to be synthesised. Applications of the method to vehicle

suspension [6, 7, 8], control of motorcycle steering instabilities [9, 10], vibration absorption [5] and building

suspension control [11, 12] have been identified. The inerter is now been deployed in suspension systems in

motor racing [13, 14].

Some of the possible applications of the inerter device to the rail suspensions have been explored in [15, 16,

17, 4]. However, non-ideal behaviour of the damper and inerter devices (e.g. compliance effects) have not

been considered in this literature except [15], in which some parasitic effects of the inerter device were taken
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into account for a bogied railway vehicle vertical model. A preliminary study of ride comfort improvement

in the vertical direction for a two-axle railway vehicle has been presented in [4]. The aim of this paper is

to study how the ride quality in both lateral and vertical directions of a single suspension two-axle railway

vehicle might be improved. Some beneficial layouts incorporating inerters are proposed and the related

improvements are discussed. For the parasitic effects of both dampers and inerters, we carry out a series

of optimisations in a systematic manner. For beneficial layouts, the effect on the suspension deflection is

also considered. Since throughout the investigation, the static stiffness is kept at its nominal values in both

lateral and vertical directions, together with good overall system damping, the suspension deflections when

the vehicle negotiates deterministic track features (e.g. a gradient and a curve) are similar to the default

values. For brevity, we do not include these results in the present paper. It needs to be pointed out that,

although it is recognised that flexible modes of the vehicle are important when additional components are

added across the suspension, in the present paper vehicle body flexible modes are excluded so that the

fundamental potential of the inerter can be assessed.

This paper is structured as follows. Section 2 introduces the candidate suspension layouts we investigate.

The potential improvement of ride quality in the lateral and vertical direction are investigated in Section 3

and 4, respectively. Section 5 presents a complete summary of the results and some general remarks.

2 Candidate Suspension layouts

In this paper, we first consider four simple layouts shown in Figure 2. In order to reveal the general trend

of the relationship between suspension layouts, parameter values and ride quality, the only constraint on

S1—S4 is that the element values be non-negative. No parasitic effects are considered. These layouts are

relatively simple to realise in practice [18, 19, 20]. S1 models a conventional parallel spring-damper layout

when k1 = ∞. S2—S4 each includes one or two inerters with S1. The mechanical admittance Y (s) for these

layouts can be calculated respectively, e.g. for S4:

Y (s) =
K

s
+

(

s

k1
+

1

c1
+

1

b1s

)−1

+ b2s.
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Fig. 2 Passive suspension layouts S1—S4 of theoretical interest.
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Fig. 3 Damper and inerter devices with elastic effects included.

In order to make the suspension models closer to real suspension devices, we now include an end-stiffness

in the damper and a “buffer” network for the inerter devices consisting of a spring and damper in parallel

(reflecting the fact that a small amount of dissipation will always be present in practical inerters), both

of which we refer to as elastic effect (Figure 3). It can be seen from [21] that the end-stiffness for the

secondary lateral damper of a bogied vehicle equals 5× 106 N/m. Here we make a conservative assumption

that kc and kb are no greater than kmax, where kmax = 3.5× 106 N/m. The dissipation effect of an inerter

device has been studied in [15], where a damper in parallel with the end-stiffness has been included. The

value of the damping effect was estimated to be 3.2 × 103 Ns/m. Here, we select cb to be no greater than

cmax = 5 × 103 Ns/m. Figure 4 presents S1–S4 with elastic effects included. It should be noted that the

spring k1 has been excluded for these layouts, this is because if the optimisation results give a very low value

of the end-stiffness, an extra spring can then be included.
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(a) S1′ (b) S2′

(c) S3′ (d) S4′
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Fig. 4 Passive suspension networks for layouts S1—S4 including elastic effects, where kc1 , kb1 , kb2 ≤ kmax;

cb1 , cb2 ≤ cmax.
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3 Passive Suspensions in the Lateral Direction

In this section, we present the potential ride quality improvement in the lateral direction by passive suspen-

sions incorporating inerter. The plan view model we used here is a slight modification from [22]. The passive

suspension in the longitudinal direction has been included. The result shows big potential improvement by

the unconventional suspension layouts we proposed.

3.1 Two-Axle Railway Vehicle Plan View Model and Track Input

As shown in Figure 5, the plan view model consists of one vehicle body and two solid axle wheelsets.

Longitudinal and lateral connections between wheelsets and vehicle body have been included. Vertical and

roll modes are not modelled, and longitudinal connections are included only for their contribution to the

yaw modes. Hence the model contains six degrees-of-freedom: lateral and yaw modes for each wheelset

(yw1, θw1, yw2, θw2) and for the vehicle body (yv, θv). The mathematical model is described by the following

equations

mws
2ŷw1 = 2sY (s) (ŷv − ŷw1)−

2f22
V

sŷw1 + 2f22θ̂w1 + 2sY (s)lwxθ̂v, (1)

Iws
2θ̂w1 = −

2f11l
2
wy

V
sθ̂w1 −

2f11λlwy

r0
ŷw1 + 2 (Kx + sCx) l

2
x

(

θ̂v − θ̂w1

)

−
2f11λlwy

r0
ŷt1, (2)

mws
2ŷw2 = 2sY (s) (ŷv − ŷw2)−

2f22
V

sŷw2 + 2f22θ̂w2 − 2sY (s)lwxθ̂v, (3)

Iws
2θ̂w2 = −

2f11l
2
wy

V
sθ̂w2 −

2f11λlwy

r0
ŷw2 + 2 (Kx + sCx) l

2
x

(

θ̂v − θ̂w2

)

−
2f11λlwy

r0
ŷt2, (4)

mvs
2ŷv = 2sY (s) (ŷw1 − ŷv) + 2sY (s) (ŷw2 − ŷv) (5)

Ivs
2θ̂v = 2sY (s)lwx (ŷw1 − ŷv) + 2sY (s)lwx (ŷv − ŷw2) + 2 (Kx + 2Cx) l

2
x

(

θ̂w1 − θ̂v

)

+ 2 (Kx + sCx) l
2
x

(

θ̂w2 − θ̂v

)

− 4sY (s)l2wxθ̂v, (6)

where ŷw1 denotes the Laplace transform of yw1(t), etc, and parameter values are shown in Table 1. It

is a slight modification of the model introduced in [2, 22] with some parameter values being modified and

with suspension in the yaw direction added. Because our focus is on improving the ride comfort for straight

running without affecting the curving performance, we consider using the inerter device only in the lateral
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Fig. 5 Two-axle vehicle plan view model.
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direction and keep the suspension in the longitudinal direction fixed.

A state-space form can be readily derived from Equations (1) - (6) as given in (7):

ẋ = Ax+Bw, (7)

where

x =
[

ẏw1, yw1, θ̇w1, θw1, ẏw2, yw2, θ̇w2, θw2, ẏv, yv, θ̇v, θv

]T

,

w = [yt1, yt2]
T
.

The straight track lateral stochastic inputs (yt1, yt2) used in this paper are of a broad frequency spec-

trum with a relatively high level of irregularities. Here yt1 (t) denotes the output of a filter H1 (s) =
(

21.69s2 + 105.6s+ 14.42
)

/
(

s3 + 30.64s2 + 24.07s
)

whose input is a process with a single sided power spec-

tral density

Sy (fs) =
Al

f2
s

,

in which Al is the track roughness factor, and fs is a spatial frequency in cycles/metre. The idea is to

provide an approximation to the 1/f3 power spectrum [23]. The body lateral acceleration of the carriage is

quantified in terms of the root mean square (r.m.s.) acceleration J1,y, and can be evaluated by the covariance

method, time domain simulation method and frequency calculation method. For the frequency calculation,

J1,y is expressed by

J2
1,y =

∫ ∞

0

|Gẏt1→ÿv
(jω)H (jω)

(

1 + e−jωTd
)

|2Sẏdω ≈ ∆ωSẏ

30π
∑

ω=0.01

|Gẏt1→ÿv
(jω)H (jω)

(

1 + e−jωTd
)

|2,

where

Sẏ = 4π2AlV,
(

ms−1
)2

(rad/s)
−1

,

Td equals 2lwx/V seconds, which is the time delay (Td) of the track input between the front and rear

wheelsets, and Gẏt1→ÿv
represents the transfer function from the track velocity input ẏt1 to the lateral body

acceleration ÿv. The nominal speed is taken to be 31ms−1 as shown in Table 1, and the lateral acceleration

is considered for the middle point only for simplicity. For the ride quality assessment, frequency weighting

to allow for human susceptibility is often used, but here (and also for the vertical acceleration problem in

Section 4) the unweighted r.m.s. acceleration has been calculated so as not to obscure any undesirable effects

that might emerge via the introduction of unconventional suspension devices.
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Table 1 Parameters and default settings of the two-axle vehicle plan view model described by Equations (1)

- (6).

Symbol Parameter Unit Nominal Value

V Vehicle speed ms−1 31

mw Wheelset mass kg 1250

Iw Wheelset yaw inertia kgm2 700

mv Vehicle body mass kg 30000

Iv Vehicle body yaw inertia kgm2 558800

r0 Wheel radius m 0.45

λ Wheel conicity − 0.2

f11, f22 Longitudinal and lateral creepage coefficients N 1× 107

lwx Half wheelset spacing of the vehicle m 4.5

lwy Half gauge of weelset m 0.7

lx Semi-lateral spacing of longitudinal stiffness per axle

box

m 1

Kx Primary longitudinal stiffness per axle box Nm−1 1× 106

Cx Primary longitudinal damping per axle box Nsm−1 4× 103

yt1, yt2 Straight track lateral stochastic displacement at the

front and rear wheelsets

m −

g gravity ms−2 9.8

Al Lateral track roughness factor m 1.886× 10−9

Kl Lateral stiffness per axle box (parallel spring stiffness

in Figure 2)

Nm−1 2.555× 105
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Table 2 Optimisation results for minimising J1,y with the suspension layouts S1–S4 when V = 31 m/s.

Layouts Minimised

J1,y (m/s2)

Imprv.

(%)

Parameter values (N/m, Ns/m, kg)

S1 0.0959 − k1 = ∞, c1 = 1.64× 104

S2 0.069 28 k1 = 4.535× 105, c1 = 4.1× 104, b1 = 1.2× 103

S3 0.0938 2.2 k1 = ∞, c1 = 1.685× 104, b1 = 1.035× 104

S4 0.0569 40.7 k1 = 3.15 × 105, c1 = 5 × 104, b1 = 6.8 × 103,

b2 = 1095

3.2 Performance Benefits Related to Minimising the Lateral Body Acceleration

J1,y

We keep the static spring stiffness K = Kl, (the default static stiffness in the lateral direction shown in

Table 1) and optimise over the remaining suspension elements in the lateral direction to minimise J1,y. The

vehicle speed and other parameters are kept at the nominal values as in Table 1. We first optimise over

S1—S4. The results are summarised in Table 2. For all the optimisations carried out in the present paper, we

use the matlab command patternsearch first, and then fminsearch for fine tune of the parameters. It can be

seen that the parallel inerter-damper layout (S2) provides more improvement than the series inerter-damper

layout (S3). The extra spring in series with c1 in S1 and S3 worsens the ride comfort index J1,y, hence the

optimum parameter value of k1 for these two layouts tends to infinity (see Table 2). On the other hand,

k1 turns out to be useful to improve J1,y performance in S2 and S4, where the percentage improvements

compared with default layout S1 are 28 and 40.7, respectively.

We then optimise over the structures shown in Figure 4. It can be seen from the optimisation results in

Table 3 that for S2′ and S4′, the percentage improvements are not reduced much compared to S2 and S4 in

Table 2, respectively. For S3′, the elastic effect of the inerter device (parallel kb1 and cb1) turns out to be

helpful, the percentage improvement increasing from 2.2 to 13.3 compared with S3 in Table 2.

The lateral body accelerations across all velocities for the four schemes in Tables 3 are shown in Figure 6. It

can be seen that the ride comfort can be largely improved at most speeds, except for some (middle range)
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Table 3 Optimisation results for minimising J1,y with the suspension layouts shown in Figure 4, where kc1 ,

kb1 , kb2 ≤ kmax; cb1 , cb2 ≤ cmax and c1, b1, b2 being physically realisable, and V = 31 m/s.

Layouts Minimised

J1,y (m/s2)

Imprv.

(%)

Parameter values (N/m, Ns/m, kg)

S1′ 0.0996 − kc1 = kmax, c1 = 1.59× 104

S2′ 0.0734 26.3 kc1 = 4.19× 105, c1 = 3.45× 104, kb1 = kmax, cb1 = cmax,

b1 = 898

S3′ 0.0864 13.3 kc1 = kmax, c1 = 3.33× 104, kb1 = 1.61× 105, cb1 = cmax,

b1 = 3.46× 103

S4′ 0.0608 39 kc1 = 5.87× 105, c1 = 4.33× 104, kb1 = 3.47× 106, cb1 =

500, b1 = 5.87× 103, kb2 = kmax, cb2 = cmax, b2 = 811

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Velocity (m/s)

La
te

ra
l b

od
y 

ac
ce

le
ra

tio
n 

(m
/s

2 )

 

 

S1’ in Table 3
S2’ in Table 3
S3’ in Table 3
S4’ in Table 3

Fig. 6 Lateral body acceleration vs. vehicle speed for the four layouts shown in Figure 4 and parameter

values corresponding to Table 3.
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Fig. 7 Power spectral density of lateral body acceleration under the excitation from random track irregularity

velocity input for the four layouts shown in Figure 4 and parameter values corresponding to Tables 3.
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Fig. 8 Bode plot of the mechanical admittance Y (s) for layouts S1, S2 and S2′ with parameter values

according to Tables 2 and 3.
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velocity values. This should not cause a problem because we are mostly concerned with the ride comfort at

the nominal speed V = 31 m/s. Also the values of J1,y around middle range of velocities are much lower in

comparison with high velocities. Figure 7 compares the power spectral density (PSD) of the vehicle body

lateral acceleration for the four schemes in Table 3 with V = 31 m/s. Decreased PSD for S2′, S3′ and S4′

over S1′ can be observed, especially the peaks of the curve around 1 and 4Hz are reduced. As pointed out in

[24] and [25, Chapter 10], the human body is more sensitive to lower frequency (around 1 Hz) vibrations in

the lateral direction according to BS6841, so the percentage improvement would be even bigger if frequency

weighting is used.

The big improvement obtained in Table 3 can be seen also from the Bode plot of the admittance function

Y (s). Here we compare S1, S2 in Table 2 and S2′ in Table 3 as an example. It can be seen from Figure 8

that the damper series spring k1 and the parallel inerter b1 in S2 provides magnitude and phase changes

in the middle frequency range. However, due to the parallel connected inerter b1, the magnitude increases

at +20 dB/dec for the frequencies above 10 Hz. This will transmit high frequency vibrations and is not

desirable. With elastic effects being considered in S2′, the magnitude becomes −20 dB/dec around 10 Hz

and eventually becomes flat at a much higher frequency. The peak of the magnitude plot for S2′ is at the

oscillation frequency of the inerter device (Figure 3(a)). It can be checked that these elastic effects can also

improve the high frequency performance for S3′ and S4′ substantially in a similar way.

We further checked the sensitivity of J1,y to the suspension parameters for S2′ and S4′ in Table 3. For

quantitative comparison, the sensitivity of ride comfort to a suspension parameter (e.g. c1) is defined as

follows [26]:

SJ =
d(J1,y)/(J1,y)

d(c1)/c1
≈

∆J1,y
∆c1

c1
J1,y

.

The sensitivities of J1,y to c1 and b1 are shown in Figure 9. It can be seen that in general the sensitivity SJ

is small (always below 1). Furthermore, J1,y is more sensitive to the change of b1 than c1. Same is also true

for S4′ in Table 3.
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Fig. 9 Sensitivity of J1,y to suspension parameters c1 and b1 for S2′ in Table 3.

4 Passive Suspensions in the Vertical Direction

In this section, the ride quality improvement in the vertical direction by passive suspensions incorporating

the inerter device is investigated. We go further than [4] by considering more realistic suspension layouts

and carrying out optimisations in a more systematic manner.

4.1 Two-Axle Railway Vehicle Side View Model and Track Inputs

The side view model (with bounce and pitch modes) [3] shown in Figure 10 is considered. This model

consists of a vehicle body with mass m and pitch inertia J , two candidate suspension layouts with the same

admittance Y (s), where z and θ are the vertical position of the centre of the mass and pitch angle, zt1 and

zt2 are the vertical movements of the leading and trailing wheelsets, which are also the track inputs to the

system. We take zt2 (t) = zt1
(

t− LV −1
)

where L is the distance between the two wheelsets and V is the

vehicle speed. The vehicle body bending mode is not included so that the fundamental potential of using

inerters can be assessed. The mathematical model can be described as follows

ms2ẑ = sY (s) (ẑt1 − ẑ) + sY (s) (ẑt2 − ẑ) , (8)

Js2θ̂ =
L

2
sY (s)

(

−ẑt1 −
L

2
θ̂

)

+
L

2
sY (s)

(

ẑt2 −
L

2
θ̂

)

, (9)

where ẑ denotes the Laplace transform of z(t), etc.
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Fig. 10 Side view of a two-axle train model.

For random track input data representing vertical track irregularities, we define zt1 (t) to be the output of

a first order filter H2 (s) = 1/ (0.03185s+ 1) (with cutoff frequency around 5Hz) whose input is a process

with a single sided power spectrum given by

Ss (fs) =
Av

f2
s

,

in which Av is the track roughness factor while fs is a spatial frequency in cycles/metre. In this paper, the

evaluation of ride quality is assessed by the body accelerations at the leading (L), middle (M) and trailing

(T) positions (respectively z1, z and z2 according to Figure 10), and is quantified in terms of the root mean

square (r.m.s.) acceleration J1,z as expressed by

J2
1,z =

∫ ∞

0

(Gżt1 (jω)H (jω))2 Ṡzdω ≈ ∆fṠz

30π
∑

ω=0.01

(Gżt1 (jω)H (jω))2

where

Ṡz = 4π2AvV,
(

ms−1
)2

(rad/s)
−1

and Gżt1 represents the transfer function from the track velocity input żt1 to the accelerations z̈1, z̈ or z̈2 at

the L, M or T positions. The nominal parameter values are shown in Table 4, which are the same as in [3].

4.2 Performance Benefits Related to Minimising the Vertical Body Accelera-

tion J1,z

For each of the L, M and T positions, J1,z is minimised with the suspension elements in Figure 2. We keep

the spring stiffnesses K = Kv (the default static stiffness in the vertical direction shown in Table 4) and

15



Table 4 Parameters and default settings of the two-axle vehicle side view model described by Equations (8)

- (9).

Symbol Parameter Unit Nominal Value

m Vehicle body mass kg 2× 104

J Vehicle body pitch inertia kgm2 3.2× 105

L Distance between the two wheelsets m 9

Av Vertical track roughness factor m 2.5× 10−7

Kv Vertical static stiffness (parallel spring stiffness in

Figure 2)

Nm−1 3.5× 105

optimise over the remaining parameters to minimise J1,z. The vehicle speed V is the same as in Table 1

and other parameters are kept at the nominal values shown in Table 4. We first optimise over S1—S4. The

results are summarised in Tables 5–7. It can be seen that the series inerter-damper layout (S3) provides

more advantage than the parallel inerter-damper layout (S2). The extra spring stiffness in series with c1 in

S1 and S3 worsens the J1,z performance at the L and T positions (Tables 5 and 7, respectively), hence the

optimum k1 value tends to infinity. On the other hand, k1 turns out to be useful for S2 and S4 at L, M and

T positions. It should be noted that for the M position, a very low value of k1 for S3 and S4 provides a big

improvement (in Table 6). However, it can be checked that J1,z for the L and T positions will be doubled

with these two schemes, hence these are not useful choices. It should be noted that due to the delay between

the track inputs to the front and rear wheelsets, the optimised results for the L and T positions are different

from each other.

We then optimise over the structures shown in Figure 4 for ride quality at the T position. It can be seen

from Table 8 that due to the elastic effects, the improvement for S2′ reduced to almost 0. However, for S3′

and S4′, the percentage improvements are not changed much compared to S3 and S4 in Table 7. Also, with

these schemes, J1,z at the L and M positions improve by a similar amount (see Table 8).

Figure 11 compares the power spectral density (PSD) of the vehicle body accelerations at the T position for

three of the four schemes in Table 8. A decreased PSD for layouts S3′ and S4′ over S1′, especially around

1−2 Hz, can be observed. It can be seen from [25, Chapter 10] that the frequency range from 0.5 to 12 Hz is
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Table 5 Optimisation results for minimising J1,z at the leading position with the suspension layouts S1–S4

when V = 31 m/s.

Layout Minimised J1,z

at L (m/s2)

Imprv.

(%)

Parameter values (Ns/m, kg)

S1 0.2327 0 k1 = ∞, c1 = 2.2× 104

S2 0.2242 3.7 k1 = 3.64× 106, c1 = 2.27× 104, b1 = 280

S3 0.2116 9 k1 = ∞, c1 = 2.58× 104, b1 = 6123

S4 0.2017 13.32 k1 = 2.1× 106, c1 = 2.75× 104, b1 = 5.8× 103, b2 = 6123

Table 6 Optimisation results for minimising J1,z at the middle position with the suspension layouts S1–S4

when V = 31 m/s.

Layout Minimised J1,z

at M (m/s2)

Imprv.

(%)

Parameter values (Ns/m, kg)

S1 0.1422 0 k1 = ∞, c1 = 2.65× 104

S2 0.1359 4.4 k1 = 2.15× 106, c1 = 2.97× 104, b1 = 296

S3 0.1282 9.8 k1 = 2.72× 105, c1 = 5.55× 104, b1 = 6090

S4 0.1215 14.6 k1 = 3× 105, c1 = 5.8× 104, b1 = 6700, b2 = 220

Table 7 Optimisation results for minimising J1,z at the trailing position with the suspension layouts S1–S4

when V = 31 m/s.

Layout Minimised J1,z

at T (m/s2)

Imprv.

(%)

Parameter values (Ns/m, kg)

S1 0.2702 0 k1 = ∞, c1 = 3.04× 104

S2 0.2593 4 k1 = 3.98× 106, c1 = 3.2× 104, b1 = 349

S3 0.2469 8.6 k1 = ∞, c1 = 3.33× 104, b1 = 1× 104

S4 0.2322 14 k1 = 2.16×106, c1 = 3.6×104, b1 = 9×103, b2 = 339
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Table 8 Optimisation results for minimising J1,z at the trailing position with the suspension layouts shown

in Figure 4, where kc1 , kb1 , kb2 ≤ kmax; cb1 , cb2 ≤ cmax and c1, b1, b2 being physically realisable, and

V = 31 m/s.

Layout Minimised

J1,z at T

(m/s2)

Imprv.

(%)

Parameter values (Ns/m, kg) J1,z

at L

(m/s2)

J1,z

at M

(m/s2)

S1′ 0.2808 − kc1 = kmax, c1 = 2.98× 104 0.2493 0.1465

S2′ 0.2799 0.3 kc1 = kmax, c1 = 2.98× 104, 0.2484 0.1459

kb1 = 2.179× 105, cb1 = 10, b1 = 6

S3′ 0.2535 9.7 kc1 = kmax, c1 = 3.43× 104, 0.2286 0.1459

kb1 = kmax, cb1 = cmax, b1 = 8232

S4′ 0.2466 12.2 kc1 = kmax, c1 = 3.62 × 104, kb1 = 1.64 × 106,

cb1 = cmax, b1 = 7527, kb2 = 3.68 × 105, cb2 =

cmax, b2 = 91

0.2235 0.1417
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Fig. 11 Power spectral density of vehicle body acceleration at the trailing position (T) under the excitation

from random track irregularity velocity input for three of the four layouts shown in Figure 4 and parameter

values corresponding to Table 8.
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Fig. 12 J1,z at the trailing position vs. vehicle speed for three of the four layouts shown in Figure 4 and

parameter values corresponding to Table 8.

the most important according to ISO2631 and BS6841. The vertical body accelerations across all velocities

with these three schemes in Table 8 are shown in Figure 12. It can be seen that J1,z at position T has been

improved across all velocities with S3′ and S4′ compared with S1′.

We further checked the sensitivity of J1,z to the suspension parameters for S4′ in Table 8. For quantitative

comparison, the sensitivity of ride comfort to a suspension parameter (e.g. c1) is defined as follows [26]:

SJ =
d(J1,y)/(J1,y)

d(c1)/c1
≈

∆J1,y
∆c1

c1
J1,y

.

The sensitivities of J1,z to c1, b1 and b2 are shown in Figure 13. It can be seen that in general the sensitivity

SJ is very small (always below 0.1). Furthermore, J1,z is also more sensitive to the change of c1 in this case.

5 Conclusions and General Remarks

This paper has investigated the potential performance benefit of incorporating inerters in the lateral and

vertical suspensions of a two-axle railway vehicle. With simple suspension layouts including elastic effects,

we obtain around 39% improvement for the ride comfort in the lateral direction and 12.2% improvement in

the vertical direction. For the plan view and side view two-axle railway vehicle models we investigated, the

following conclusions can also be drawn based on the results obtained.
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Fig. 13 Sensitivity of J1,z to suspension parameters c1, b1 and b2 for S4′ in Table 8.
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1. According to the optimisation results, layout S1 provides optimum ride quality in both lateral and

vertical direction when k1 = ∞ (see Tables 2 and 6—7). This agrees with the findings in [27] for a

quarter-car vehicle model, though this may seem counter-intuitive.

2. For both lateral and vertical direction models, when the inerter device is added in parallel, the elastic

effect of the damper c1 (kc1) turns out to be helpful to provide better optimum ride quality (e.g. see

Tables 2, 3, and 5—7).

3. When the elastic effects are included, the optimum inerter values become smaller (e.g. compare the

inerter values for S2—S4 in Tables 2, 7 and for S2′—S4′ in Tables 3 and 8).

4. In the lateral direction, when the optimum values of the elastic effects for the parallel inerter are equal

to kmax and cmax (S2′ and S4′ in Table 3), the ride comfort can be improved substantially. Sufficient

values for end-stiffness and dissipation effect are very important, they can keep the oscillation frequency

at a higher value and better damping of the inerter device, respectively. For example, if we can design

the inerter device with a higher value of damping (cb), the peak of the magnitude plot for S2′ in

Figure 8 will be further reduced.

5. Systems with suspension layouts S2′—S4′ have better high frequency performance compared with those

with S2—S4 which do not include elastic effects.

6. It should be observed that dampers and inerters (and other elements) can be built in single integrated

packages (see e.g. [14]).

Benefits from the inclusion of inerters has been established, so the next steps are to introduce further

practicalities as follows.

a. To use measured track data for comparison with results using the synthesised track inputs.

b. To include body flexible modes so that series end-stiffness of dampers and inerters can be more effectively

optimised.

c. To compare basic RMS accelerations with appropriate frequency weighted results according to specific

industry needs.
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