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Cittadella Universitaria, 94100 Enna, Italy

e-mail: {maria.oliva, francesco.loiacono, giacomo.navarra}@unikore.it

2 School of Architecture, Building and Civil Engineering, Loughborough University
Loughborough, Leicestershire, UK

e-mail: g.barone@lboro.ac.uk

Keywords: Nonlinear Energy Sinks, performance analysis, white noise.

Abstract. Passive control devices are often used to protect slender and flexible structures from
dynamic actions, including earthquakes, wind and waves. The Nonlinear Energy Sink (NES)
has recently received increasing attention from researchers because of its capability to passively
and irreversibly absorb a significant amount of energy from the primary system over a wide
range of frequencies. In this paper, the application of two NESs acting in orthogonal directions
is considered to mitigate the response of a multi degree of freedom structure. Parameters for
each NES are obtained by considering a single degree of freedom structure, whose mass and
frequency are designed based on the fundamental mode of the original structure along the
direction of action of the device, and applying the empirical expressions proposed in Oliva et al.
(2017). Compared to standard Monte Carlo simulations, the use of these expressions requires
a significant lower computational effort, making their implementation suitable for practical
engineering purposes. A numerical application on a three-dimensional building is presented
to demonstrate the effectiveness of the proposed method. The NESs performance is analysed
varying the direction of the ground motion, showing the potential of this passive control system
in civil engineering applications. Results are reported in terms of statistics of the structural
response, determined by Monte Carlo simulation, and analysis of the energy dissipated by the
control devices.
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1 INTRODUCTION

In the last decades, great attention has been paid to research and to develop structural control
systems capable of protecting slender and flexible structures from dynamic actions. Passive
devices have been widely used for civil engineering structures because they require no external
power source to operate, they are usually relatively inexpensive and inherently stable [1]. How-
ever, the most commonly used passive absorbers (i.e.TMDs and TLCDs), have limited control
capacity since they are generally tuned to a single structural natural frequency [2–5]. They are
effective within a narrow frequency band and are very sensitive to detuning, that could occur as
effect of ageing, temperature or humidity variations, etcetera.

An efficient way to overcome these limitations is the use of the Nonlinear Energy Sink
(NES), consisting of a small mass coupled to the main structure with an essentially nonlin-
ear spring, which enables the device to resonate with any of the linearised modes of the pri-
mary system, and a linear viscous damping element, which dissipates the vibrational energy
transferred through resonant modal interactions. NES strong nonlinear nature precludes the ex-
istence of preferential resonant frequencies, hence reducing its sensitiveness to detuning. On
the other hand, the nonlinear stiffness makes the NES particularly sensitive to loading pertur-
bations. An additional feature of this device is the so-called Targeted Energy Transfer (TET)
or Nonlinear Energy Pumping, i.e. the irreversible energy transfer from the primary struc-
ture to the NES. TET has been widely investigated by many researchers through perturbations
methods, bifurcation and time-frequency analyses [6–12], as well as small and large-scale ex-
perimental tests [13–18]. It occurs when the input energy is above a certain critical level and can
be activated by one among three mechanisms: fundamental resonance capture, sub-harmonic
resonance capture, and nonlinear beating.

Due to its complex dynamic behaviour, the design of the main NES parameters is not
straightforward, hence the need for simplified design procedures of easy application for stan-
dard structures and excitations. Closed-form solutions to determine the optimal value of the
NES nonlinear stiffness capable to trigger TET have been proposed for transient and harmonic
excitations in [19–21]. Empirical formulae for determining the optimal parameters of an un-
grounded and lightweight NES installed on a Single Degree Of Freedom (SDOF) structure
under white noise base excitations have been recently proposed for pre-design purposes in [22],
based on the numerical results of a campaign of Monte Carlo Simulations (MCSs) by varying
the main structural parameters and the intensity of the external excitation.

In this paper, a simplified design procedure of two NESs acting in orthogonal directions is
proposed in order to reduce the dynamic response of MDOF structures subject to white noise
base excitations. The authors extend the application of the empirical formulae previously pro-
posed for SDOF structures [22], by considering dummy oscillators whose masses and natural
frequencies depend on the effective modal masses and modal frequencies of the main structure.
A two-storey steel frame has been used to show the effectiveness of the proposed passive con-
trol system, considering several scenarios by varying the direction of the ground motion acting
on the structure. Results are reported in terms of statistics of the response and energy dissipated
by the control devices.

2 GOVERNING EQUATIONS

Consider a n-DOF linear structure connected to p lightweight NESs through pure cubic
stiffnesses and linear viscous dampers, and subject to a white noise ground motion process
sample Ẍg (t). The dynamic equations of motion of the system in its uncontrolled configuration
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(i.e. with no NES attached) assume the following form:

MuẌu (t) +CuẊu (t) +KuXu (t) = −MuτuẌg (t) (1)

where Xu (t), Ẋu (t), Ẍu (t) are the n-dimensional generalised displacement vector and its
derivatives, respectively; capital letters indicate stochastic processes; τ is the influence vector;
Mu, Cu and Ku are the mass, damping and linear stiffness matrices of the primary system,
respectively. On the other hand, in its controlled configuration the dynamic equations become:

MẌ (t) +CẊ (t) +KX (t) + g (X (t)) = −Mτ Ẍg (t) (2)

in which X (t), Ẋ (t), Ẍ (t) are the N -dimensional generalised displacement vector and its
derivatives, respectively; N = n + p is the number of degrees of freedom of the combined
system; M, C and K are the mass, damping and linear stiffness matrices of the combined
system, respectively, i.e.:

X (t) =

[
Xu

XNES

]
(3)

M =

[
Mu 0(n×p)
0(p×n) MNES

]
(4)

C =

[
Cu 0(n×p)

0(p×n) 0(p×p)

]
+ LCNESL

T (5)

K =

[
Ku 0(n×p)

0(p×n) 0(p×m)

]
(6)

In Eq. 5, L is the N × p linear transformation matrix returning the vector of relative dis-
placements of each NES device, Y (t), as a function of the selected degrees of freedom:

Y (t) = LX (t) (7)

with the i-th column of L corresponding to the i-th NES. Moreover, MNES and CNES are the
diagonal matrices of mass and the linear damping of the NESs, respectively, whereas g (X)
is the vector collecting all the nonlinear forces. The latter can be expressed, in general, as a
function of the relative displacements Y as:

g (X) = LT gL (Y) (8)

where the i-th term of the vector gL (Y) is:

{gL (Y)}i = kNES,i Y
3
i (9)

being kNES,i the nonlinear stiffness of the i-th NES.

3 SIMPLIFIED DESIGN OF THE NES FOR MDOF STRUCTURES

To the authors’ knowledge, there are neither analytical nor numerical formulae for deter-
mining the NES parameters for the mitigation of the dynamical response of MDOF structures
excited by random excitations. In this section, a simplified procedure is proposed for the case
of a single NES aimed at mitigating the vibrations in a pre-determined direction of motion,
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selected as reference degree of freedom for the main structure. The same procedure will be
extended to the case of two concurrent NESs acting in orthogonal directions into next sections.

The first step in the proposed design approach is the definition of a dummy SDOF oscillator
having mass equivalent to the effective modal mass at the first mode of the main structure, m1,e,
and frequency and damping equivalent to its first modal frequency and damping, ω1,e and ζ1,e,
respectively. The mass ratio between the NES and the dummy structure, εe = mNES/m1,e, is
assigned based on engineering judgements.

Then, based on [22], the optimal parameters of the NES can be determined as:

mNES = εe ·m1,e

cNES = λopt ·m1,e (10)
kNES = κopt ·m1,e

in which:

log10 κopt = − log10 S0 + 4.98 log10 ω1,e + 0.21 log10 ζ1,e + 1.33 log10 εe − 1.908 (11)

λopt = (0.204 εe − 0.001) ζ−0.11,e ω1,e (12)

and S0 is the white noise Power Spectral Density (PSD) amplitude expressed in (m/s2)2/(rad/s).
Eqs. (11) and (12) show that:

• κopt is inversely proportional to the amplitude of the PSD function of the white noise, yet
it increases with the frequency ω1.e, damping ratio ζ1.e, and mass ratio εe.

• λopt is independent from the intensity of the white noise excitation, increases for increas-
ing frequency ω1.e and mass ratio ε1.e and for decreasing damping ratio of the SDOF
equivalent structure, ζ1.e.

Alternatively, based on Eqs. (11) and (12), optimal NES design charts can be considered to
determine the optimal NES parameters. These charts allow to quickly determine the optimal
NES damping and stiffness for assigned main structure, and selected mass ratio and intensity of
the random excitation.

An example of chart is shown in Figure 1, for the case of εe = 0.05. The chart reports curves
corresponding to various frequencies (black lines) and damping ratios (red lines). Once the
exact values for f1,e and ζ1,e are known, the intersection of matching curves returns the optimal
NES damping on the horizontal axis, and the logarithm of the product (κopt S0) on the vertical
one (i.e. the optimal nonlinear stiffness is identified once the amplitude of the white noise is
determined).

The procedure for determining the optimal NES parameters, proposed in [22], has been
tested by means of an error analysis in terms of the reduction of the structural response, and
using as performance index the ratio of the Root Mean Square (RMS) of the displacements
of a reference structure in its controlled and uncontrolled configurations. Figure 2 reports the
variation of the selected performance index with respect to the normalised nonlinear stiffness
of the NES, κ, and the normalised NES damping coefficient, λ, and the corresponding value
obtained by designing the NES by means of Eqs. (11) and (12) (red dot), showing that the
proposed formulae are able to find the optimal parameters with high accuracy and reduced
computational effort.
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Figure 1: Design chart for determining the optimal NES parameters.
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Figure 2: Optimal NES parameters obtained using the empirical formulae on a SDOF reference structure (adapted
from [22]).

4 CASE STUDY

The applicability of the proposed optimisation procedure for MDOF structures is herein
presented through a numerical application on the low-rise, multi-bay building depicted in Figure
3. The structure is a two-storey steel frame having an overall height of 7.5 m (4 m + 3.5 m)
and a mass of approximately 86 tons. The building has two geometrical axes of symmetry, in
the following indicated as x and y. However, in order to take into account the uncertainties on
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the actual position of the centre of mass (e.g. effects of uneven variable load distributions), the
latter has been positioned at a distance equal to 5% of the overall building dimensions, both
along the x and y directions. Each floor consists of concrete slabs supported by six HE400A
steel columns, and IPE360 beams. A schematic representation of the system is depicted in
Figure 3a.

In the following analysis, axial deformations of the beams and columns have been considered
negligible and the two floor diaphragms have been assumed to be rigid in their own plane, while
flexible in bending. Under these assumptions, the motion of the system is determined by only
6 DOFs (three for each floor), i.e., for the i-th floor, the translations uxi and uyi in the x and y
directions and the rotation uϕi about the vertical direction (Figure 3b). Hence, the generalised
displacement vector of the uncontrolled structure becomes:

Xu (t) =
[
ux1 uy1 uϕ1 ux2 uy2 uϕ2

]T (13)

H
E

4
0

0 A
H

E
4

0 0
A

IPE 360IPE 360

H
E

4
0

0
A

H
E

4
0

0
A

IPE 360IPE 360

H
E

40
0

A

H
E

40
0

A

IP
E 3

60IPE 360IPE 360

H
E

4
0

0
A

H
E

40
0

A

IPE 360IPE 360IPE 360

H
E

4
0

0
A

H
E

40
0

A

IP
E 3

60

IPE
360

H
E

4
0

0
A

IPE 360
IPE

360

H
E

4
0

0
A

XY XZY Z

11.2 m

5.
6 

m

uyi

uxi
uφi
G

CMi

(a) (b)

Figure 3: (a) Schematic representation of the building exported from the SAP2000 software; (b) Degrees of
freedom of the i-th storey.

The mass and stiffness matrices, determined by using the software SAP2000 and by utilising
the static condensation technique, are:

Mu =


44.42 0 −19.32 0 0 0
0 44.42 9.66 0 0 0

−19.32 9.66 736.59 0 0 0
0 0 0 41.42 0 −19.32
0 0 0 0 41.42 9.66
0 0 0 −19.32 9.66 650.49

 · 10
3 (14)

.
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Ku =


15.31 0 0 −6.74 0 0
0 4.10 0 0 −2.09 0
0 0 205.93 0 0 −96.73

−6.74 0 0 4.49 0 0
0 −2.09 0 0 1.69 0
0 0 −96.73 0 0 70.63

 · 10
7 (15)

and the damping ratio is set at 2%, which is a typical value for middle-low rise steel structures.
Both mass and stiffness matrices have been computed using international system units, i.e.
length are expressed in m, forces in N and masses in kg. The resulting frequencies and the
percentages of the effective modal mass γ at each mode are listed in Table 1.

Mode fi [Hz] ωi [rad/s] γx [%] γy [%]
1 1.70 10.67 0.004 93.257
2 2.62 16.43 53.166 0.072
3 2.94 18.46 35.726 0.053
4 5.55 34.89 0.000 6.613
5 9.31 58.50 2.778 0.005
6 10.68 67.08 8.326 0.001

Table 1: Frequencies and percentage of effective modal mass for the i-th mode.

4.1 NESs design and their effectiveness

The procedure described in Section 3 has been applied to the case study structure to design
a system of two independent NESs located at the top storey of the frame and acting along the x
and y geometrical axes, respectively. It has been assumed that the total mass of the two NESs
should not exceed 10% of the mass of the primary structure. The performance of the passive
control system has been analysed considering random ground motions modelled as a Gaussian
white noise process with constant PSD amplitude S0 = 10-3 (m/s2)2/(rad/s), selected in order to
generate base acceleration peaks in the order of 0.25 g (typical range of ground accelerations in
civil engineering applications). To assess the mutual effects of the two NESs, the analysis has
been performed considering various epicentral directions of the ground motion.

Based on the results of the preliminary modal analysis on the uncontrolled structure (see
Table 1):

• the NES acting in the y direction has been designed by applying Eqs. (11) and (12) to a
dummy SDOF structure with natural frequency equal to the 1st modal frequency of the
building (ω1 = 10.67 rad/s);

• the NES in the x direction has been designed with respect to a dummy SDOF structure
having natural frequency equal to the 2nd modal frequency (ω2 = 16.43 rad/s);

In both cases, the damping ratio of the equivalent SDOF has been set to 2% (as for the main
building) and the NES masses have been calculated as 5% of the effective modal masses for the
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NES along x-axis NES along y-axis
mNES,x kNES,x cNES,x mNES,y kNES,y cNES,y

[kg] [N/m3] [Ns/m] [kg] [N/m3] [Ns/m]

3.28 · 103 109.72 1.02 · 104 4.00 · 103 109.03 1.16 · 104

Table 2: NES parameters for the two NESs obtained using the proposed method.

first two modes, respectively, i.e.:

mNES,y = 0.05m1e,y = 0.05 γ(1)y τ T
y Muτy (16)

mNES,x = 0.05m1e,x = 0.05 γ(2)x τ T
x Muτx

In Eq.(16), τx and τy are the influence vectors for the cases of ground motion acting in the x
and y directions respectively; γ(1)y and γ(2)x are the percentages of effective modal masses at the
fundamental modes in y-direction and in x-direction, respectively; Mu is the mass matrix of the
primary structure, as shown in Eq. (14). The resulting parameters of the two NESs are reported
in Table 2. The equations of motion of the combined system are given by Eqs. (2) and (5),
considering p = 2, and L and τ as:

L =



0 0
0 0
0 0
1 0
0 1
0 0
−1 0
0 −1


; τ =



cos θ
sin θ
0

cos θ
sin θ
0

cos θ
sin θ


. (17)

The effects of the NESs have been investigated varying the epicentral direction of the ground
motion, θ, ranging from 0◦ (i.e. x-direction) to 90◦ (i.e. y-direction) with step of 15◦. Results
of the analysis are presented in terms of statistics of the response, and energy dissipated by the
primary structure and by the passive control system.

The first comparison between the uncontrolled and controlled configurations is presented in
terms of variance of the magnitude of the inter-storey displacements, defined as:

d1,U =
√
u2x1,U + u2y1,U d2,U =

√
(ux2,U − ux1,U)2 + (uy2,U − uy1,U)2 (18)

d1,C =
√
u2x1,C + u2y1,C d2,C =

√
(ux2,C − ux1,C)2 + (uy2,C − uy1,C)2 (19)

where the subscripts U andC stand for uncontrolled and controlled configurations, respectively.
Numerical results have been obtained by performing MCSs using, for each analysis, 10,000
base acceleration time histories, 20 s long, sampled with a time step of 0.01 s. The nonlinear
equations of motion have been integrated by the 4th-order Runge-Kutta method.
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Figure 4: (a) Variance of inter-storey displacements of the structure in its controlled and uncontrolled configura-
tions versus the incidence angle of the ground motion; (b) Ratio of the variances of inter-storey displacements of
the structure between the controlled and uncontrolled configurations for each floor versus the incidence angle of
the ground motion.

without NES
with NES

θ = 0°

without NES
with NES

θ = 0°

G
U

x
1

2 /(
ra

d/
s)

]
[m

G
U

x
2

2 /(
ra

d/
s)

]
[m

0 10 20 30 40 50 60 70
10
−12

10
−10

10
−8

10
−6

10
−4

ω [rad/s]
0 10 20 30 40 50 60 70

10
−12

10
−10

10
−8

10
−6

10
−4

ω [rad/s]

(a) (b)

without NES
with NES

θ = 90°

without NES
with NES

θ = 90°

G
U

y
1

2 /(
ra

d/
s)

]
[m

G
U

y
2

2 /(
ra

d/
s)

]
[m

(c) (d)

0 10 20 30 40 50 60 70
10
−12

10
−10

10
−8

10
−6

10
−4

ω [rad/s]
0 10 20 30 40 50 60 70

10
−12

10
−10

10
−8

10
−6

10
−4

ω [rad/s]

Figure 5: Comparison between the uncontrolled and controlled configurations of the system in terms of: (a)-(b)
PSD of the displacements of the first and second floor, respectively, in x direction for θ = 0◦; (c)-(d) PSD of the
displacements of the first and second floor, respectively, in y direction for θ = 90◦.

Figure 4 shows the outcome of the numerical analysis varying θ. The variance of the struc-
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Figure 6: Comparison between the uncontrolled and controlled configurations of the system in terms of: (a)-(b)
PSD of the displacements of the first and second floor, respectively, in x direction for θ = 45◦; (c)-(d) PSD of the
displacements of the first and second floor, respectively, in y direction for θ = 45◦.

tural displacements increases with θ for both controlled and uncontrolled configurations. How-
ever, in terms of percentage reduction of the response, the NES effectiveness is actually larger
for higher values of θ, with a maximum reduction of the variance of the displacements of around
60% (Figure 4b).

For a better understanding of the actual effects of the two NESs, the response of the uncon-
trolled and controlled configurations are also compared in terms of PSDs of the displacements,
in the x and y directions, of the two storeys of the examined building. For θ = 0◦ and θ = 90◦,
the PSDs of the displacements in the x and y directions, respectively, are depicted in Figure 5.
Additionally, Figure 6 shows the PSDs of both displacements in x and y directions, for both
storeys, when θ = 45◦. While the effects of the NES is prevalent on the first two modes of
the structure (i.e. on the modes considered for the design of the NES parameters), the whole
passive control system also affects the 3rd mode.

Finally, the NES performance has been analysed in terms of total dissipated energy in the two
configurations (uncontrolled and controlled), obtained as the average of the energy dissipated
over the 10,000 samples. In particular, Figure 7 shows:

• the energy dissipated by the structure in the uncontrolled configuration, Ed,U ;

• the energy dissipated in the controlled configuration by (i) the primary structure, Ed,C ;
(ii) the NES in the x direction, Ed,Nx; (iii) the NES in the y direction, Ed,Ny;
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• the total energy dissipated in the controlled configuration, Ed,Ctot =Ed,C+Ed,Nx+Ed,Ny.

The contribute of energy dissipated by the system of the two NESs varies from 40% to 62%
of the total dissipated energy, depending on the direction of the ground motion. The energy
dissipated by the NESs increases with θ changing from 0◦ to 90◦. Positively, the variance
of the displacements of the uncontrolled structure increases with θ, therefore the two nonlinear
devices dissipate a higher percentage of energy when the system is more affected by the external
excitation, which is the most desirable behaviour for the passive control system. This also
confirms the results shown in Figure 4b.

5 CONCLUSIONS

In this paper, a simplified procedure for evaluating the NES parameters to mitigate the dy-
namic response of a MDOF structure subject to white noise base excitations has been proposed
and validated. The NES design can be carried out by considering dummy SDOF structures
whose dynamic parameters depend on the fundamental modes of the structure. Then, each NES
is optimised with respect to one of the dummy structures by using the empirical formulae or,
alternatively, the design charts proposed in [22].

The applicability of this procedure to MDOF structures has been demonstrated through a
case study consisting of a low-rise building controlled by two NESs and excited by white noise
base processes. The reference structure is a two-bay and two-storey steel frame supporting
concrete slabs, having eccentric centre of mass.

It has been shown that the proposed procedure allows to quickly design the two NESs so that
they both dissipate a significant percentage of energy in the main system. Naturally, the effect
of each NES depends on the direction of the ground motion. However, it has been observed
that the effectiveness of the whole passive control system increases with the raise of the frame
displacements. This is the most desirable behaviour, and confirms the validity of the proposed
procedure. Further research is necessary to validate the proposed approach against a full nu-
merical optimisation of the NES parameters, and to establish the most effective position and
direction of action for each NES to achieve the highest performance.
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