
THE USE OF SYSTEMS 
ENGINEERING PRINCIPLES FOR 

THE INTEGRATION OF  
EXISTING MODELS AND 

SIMULATIONS 
 

 

 

 

 

By 

Robert Luff 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements for the award of PhD 

Electronic, Electrical, and Systems Engineering, 

Loughborough University 

 

March 2017 

 

Copyright Robert Luff 2017 

 



PAGE II 

  



PAGE III 

ABSTRACT  
With the rise in computational power, the prospect of simulating a complex 
engineering system with a high degree of accuracy and in a meaningful way is 
becoming a real possibility. Modelling and simulation have become ubiquitous 
throughout the engineering life cycle, as a consequence there are many thousands 
of existing models and simulations that are potential candidates for integration. This 
work is concerned with ascertaining if systems engineering principles are of use in 
the support of virtual testing, from desire to test, designing experiments, specifying 
simulations, selecting models and simulations, integrating component parts, verifying 
that the work is as specified, and validating that any outcomes are meaningful. A 
novel representation of systems engineering framework is proposed and forms the 
bases for the methods that were developed. It takes the core systems engineering 
principles and expresses them in a way that can be implemented in a variety of 
ways. An end to end process for virtual testing with the potential to use existing 
models and simulations is proposed, it provides structure and order to the testing task. 
A key part of the proposed process is the recognition that models and simulations 
requirements are different from those of the system being designed, and hence a 
modelling and simulation specific writing guide is produced. The automation of any 
engineering task has the potential to reduce the time to market of the final product, 
for this reason the potential of natural language processing technology to hasten 
the proposed processes was investigated. Two case studies were selected to test 
and demonstrate the potential of the novel approach, the first being an 
investigation into material selection for a squash ball, and the second being 
automotive in nature concerned with combining steering and braking systems. The 
processes and methods indicated their potential value, especially in the automotive 
case study where inconsistences were identified that could have otherwise affected 
the successful integration. This capability, combined with the verification stages, 
improves the confidence of any model and simulation integration. The NLP proof of 
concept software also demonstrated that such technology has value in the 
automation of integration. With further testing and development there is the 
possibility to create a software package to guide engineers through the difficult task 
of virtual testing. Such a tool would have the potential to drastically reduce the time 
to market of complex products.  

  



PAGE IV 

  



PAGE V 

ACKNOWLEDGMENTS  
I have been fortunate to have had the support of many fine individuals throughout 
my time at Loughborough University, however there are some that deserve special 
thanks. 

To Ron Summers, for his guidance and endless patience with my personal challenge 
of writing in an academic style, as well as his continued guidance throughout my 
PhD studies. 

To the other PhD Students involved in the PSi project, for their lively debate and 
thought provoking questions. 

To family and friends for their support and understanding throughout the many 
vacant conversations, as well as their persistence in trying to understand what I have 
been working on for the past three years. 

Finally, to Jaguar Land Rover for presenting the opportunity to be part of the PSi 
project, and the support that made this research possible. 

  



PAGE VI 

 
   

  



PAGE VII 

TABLE OF CONTENTS  
1 INTRODUCTION 1 

1.1 CONTEXT 3 
1.2 SYSTEMS ENGINEERING AND THE PROBLEM SPACE 5 
1.2.1 UNDERSTANDING OF THE PROBLEM SPACE 5 
1.2.2 SOFT SYSTEMS METHODOLOGY 5 
1.2.3 RICH PICTURES 5 
1.2.4 PROBLEM THEMES 7 
1.3 THE BOUNDS OF THE PROBLEM SPACE 8 
1.4 SCOPE OF THE THESIS 9 
1.5 AIMS AND OBJECTIVES 10 
1.5.1 AIM 10 
1.5.2 OBJECTIVES 10 
1.6 STRUCTURE OF THE THESIS 11 
1.7 OVERVIEW OF CONTRIBUTIONS TO KNOWLEDGE 12 

2 LITERATURE REVIEW OF MODELS, SIMULATIONS AND THEIR INTEGRATION 13 

2.1 INTRODUCTION 15 
2.2 THE USE OF SIMULATION 16 
2.2.1 HIGH FIDELITY SIMULATION 16 
2.2.2 THE PARTS BEING INTEGRATED 18 
2.3 CURRENT APPROACHES TO THE INTEGRATION OF MODELS AND SIMULATIONS 19 
2.3.1 CURRENT INTEGRATION METHODS 20 
2.3.2 EVALUATION OF THE INTEGRATION APPROACHES 28 
2.3.3 THE ROLE OF STANDARDS IN INTEGRATION 28 
THE APPLICATION OF STANDARDS IN PRACTICE 32 
2.4 IMPLEMENTING INTEGRATION OF MODEL AND SIMULATIONS 34 
2.4.1 DATA SHARING 34 
2.4.2 VARIABLE SHARING 36 
2.4.3 MIDDLEWARE 37 
2.4.4 FEDERATED SIMULATIONS 38 
2.4.5 HIGH LEVEL ARCHITECTURE 40 
2.4.6 DATA DISTRIBUTED SERVICE 42 
2.4.7 EVALUATION OF THE IMPLEMENTATION OF INTEGRATED MODELS AND SIMULATIONS 45 
2.5 THE EFFECTS ON INTEGRATION FROM TYPES OF MODELLING AND SIMULATION 47 
2.5.1 LINEAR METHODS 47 
2.5.2 REDUCED ORDER MODELS (ROMS) 47 
2.5.3 LOGIC BASED SIMULATIONS 49 
2.5.4 FEEDBACK LOOPS 49 
2.5.5 STATISTICAL METHODS 50 



PAGE VIII 

2.5.6 ARTIFICIAL NEURAL NETWORKS 50 
2.5.7 COMPUTATIONAL FLUID DYNAMICS (CFD) 51 
2.5.8 FINITE ELEMENT ANALYSIS (FEA) 51 
2.6 SEMANTICS AND THEIR EFFECTS ON MODELLING AND SIMULATION 52 
2.6.1 MULTISCALE MODELLING 55 
2.6.2 MULTISCALE INTEGRATION METHODS 56 
2.7 CURRENT METHODS TO OBTAIN A SHARED UNDERSTANDING OF MODELS AND SIMULATIONS 58 
2.8 CURRENT TOOLS FOR CREATION OF MODELS AND SIMULATIONS 60 
2.8.1 MATHEMATICS-BASED SOFTWARE 60 
2.8.2 GENERAL PURPOSE CO-SIMULATION SOFTWARE 61 
2.8.3 OFF-THE-SHELF MODELLING PACKAGES 61 
2.9 SUMMARY 63 
2.9.1 PRELIMINARY SIMULATION DESIGN 64 
2.9.2 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 66 
2.9.3 ARE THERE ANY EXISTING SIMULATIONS AND MODELS 66 
2.9.4 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS SESEMS 67 
2.10 EVALUATION OF METHODS 72 
2.10.1 STRENGTHS OF THE PROPOSED METHODS 72 
2.10.2 WEAKNESSES OF THE PROPOSED METHODS 74 
2.10.3 THE EFFECTIVENESS OF THE PROPOSED METHODS 75 
2.11 SUMMARY OF CASE STUDY TESTING 76 

3 SYSTEMS ENGINEERING FRAMEWORK AND PROCESSES 77 

3.1 INTRODUCTION 79 
3.2 NOVEL SYSTEMS ENGINEERING FRAMEWORK 80 
3.2.1 LINEAR SYSTEMS ENGINEERING 80 
3.2.2 STACKED SYSTEMS ENGINEERING WITH PARTIAL VERIFICATION 81 
3.2.3 STACKED SYSTEMS ENGINEERING INCLUDING VERIFICATION OF REQUIREMENTS 82 
3.2.4 STACKED SYSTEMS ENGINEERING 83 
3.3 DESIGN OF EXPERIMENTS 84 
3.3.1 THE PURPOSE OF A DESIGN OF EXPERIMENTS 84 
3.3.2 THE USE OF DESIGN OF EXPERIMENTS WITHIN MODELLING AND SIMULATION 85 
3.3.3 CONSIDERATIONS WHEN CREATING A DESIGN OF EXPERIMENTS 85 
3.4 SIMULATION REQUIREMENTS 88 
3.4.1 PHENOMENON TO BE MIMICKED 88 
3.4.2 ACCURACY OF THE MIMICRY 89 
3.4.3 CONSTRAINTS OF SIMULATION 89 
3.4.4 FUNCTIONALITY OF THE SYSTEM 89 
3.4.5 THE EFFECTS OF DIFFERING VIEWPOINTS 89 
3.4.6 REQUIREMENTS COMPLIANCE OF EXISTING MODELS AND SIMULATIONS 90 
3.5 SYSTEMS ENGINEERING PROCESSES 91 
3.5.1 SYSTEMS CREATION LIFECYCLE PROCESS 92 
3.5.2 VERIFICATION REPRESENTATION 94 



PAGE IX 

3.5.3 VALIDATION REPRESENTATION 95 
3.5.4 VERIFICATION AND VALIDATION OF SIMULATIONS 96 
3.5.5 THE ROLE OF SYSTEMS ENGINEERING IN INTEGRATED SIMULATIONS (SEIS) 97 
3.5.6 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS AND SIMULATIONS (SESEMS) (A SUB-PROCESS)
 100 
3.5.7 DEFINING GAPS IN SESEMS (A SUB-PROCESS) 103 
3.5.8 FILL GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 105 
3.6 SIMULATION AND MODELLING REQUIREMENT WRITING GUIDE 107 
3.6.1 INTRODUCTORY SECTIONS 107 
3.6.2 CHARACTERISTICS OF ACCEPTABLE MODELLING REQUIREMENTS 110 
3.6.3 SUMMARY OF THE REQUIREMENTS WRITING GUIDE 117 
3.7 INFORMATION NEEDS FOR MODEL INTEGRATION 118 
3.7.1 THE SOURCE OF INFORMATION FOR MODEL AND SIMULATION INTEGRATION 118 
3.7.2 THE TWO SIDES OF MODEL AND SIMULATION INTEGRATION 119 
3.7.3 INTEGRATION TABLES 121 
3.8 LEVELS OF ABSTRACTION 123 
3.9 SUMMARY OF SYSTEMS ENGINEERING FRAMEWORK AND PROCESSES 128 

4 CASE STUDIES 129 

4.1 INTRODUCTION AND THE PURPOSE OF CASE STUDIES 131 
4.1.1 IDENTIFIED BIAS 131 
4.1.2 DISPLAY OF PROCESS ELEMENTS 131 
4.2 DEVELOPMENTAL CASE STUDY: SQUASH 133 
4.2.1 CUSTOMER WANTS 133 
4.2.2 SYSTEM REQUIREMENTS 134 
4.2.3 SYSTEM ARCHITECTURE 134 
4.2.4 SYSTEM DESIGN 134 
4.2.5 SYSTEMS ENGINEERING IN MODEL INTEGRATION 134 
4.2.6 SEIMI DESIRE TO TEST POTENTIAL DESIGN 134 
4.2.7 DESIGN OF EXPERIMENT 134 
4.2.8 DEFINE ASSUMPTIONS OF EXPERIMENTAL SET UP 137 
4.2.9 DEFINE SIMULATION BOUNDARIES 138 
4.2.10 SIMULATION REQUIREMENTS 138 
4.2.11 SET STANDARDS IF THEY ARE TO BE USED 139 
4.2.12 VERIFICATION 139 
4.2.13 PRELIMINARY ARCHITECTURE 141 
4.2.14 VERIFICATION OF PRELIMINARY ARCHITECTURE 141 
4.2.15 PRELIMINARY SIMULATION DESIGN 142 
4.2.16 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 143 
4.2.17 ARE THERE ANY EXISTING SIMULATIONS AND MODELS? 144 
4.2.18 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS 144 
4.2.19 SET FIRM ARCHITECTURE 153 
4.2.20 ASSESS COMPUTATIONAL REQUIREMENTS 154 



PAGE X 

4.2.21 VERIFICATION OF COMPUTATIONAL REQUIREMENTS 154 
4.2.22 DEFINE COMMUNICATIONS 154 
4.2.23 DETAILED DESIGN 155 
4.2.24 DEFINE GAPS 157 
4.2.25 FILL GAPS 164 
4.2.26 COMPETE INTEGRATION TABLES 170 
4.2.27 VERIFICATION OF DETAILED DESIGN 170 
4.2.28 INTEGRATE SIMULATIONS 175 
4.2.29 VERIFICATION OF SPECIFIC INTEGRATION POINTS 175 
4.2.30 VERIFICATION OF INTEGRATED SIMULATION AS A WHOLE 175 
4.2.31 CONDUCT EXPERIMENT 176 
4.2.32 FEEDBACK INTO DESIGN PROCESS 176 
4.3 AUTOMOTIVE CASE STUDY: ABS AND STEERING 177 
4.3.1 THE PURPOSE OF THE TEST 178 
4.3.2 THE SYSTEM BEING SIMULATED 178 
4.3.3 POTENTIAL BIAS 178 
4.3.4 CUSTOMER WANTS 179 
4.3.5 SYSTEM REQUIREMENTS 179 
4.3.6 SYSTEM ARCHITECTURE 180 
4.3.7 SYSTEM DESIGN 180 
4.3.8 SYSTEMS ENGINEERING IN MODEL INTEGRATION (SEIMI) 180 
4.3.9 DESIRE TO TEST SOMETHING 180 
4.3.10 DESIGN OF EXPERIMENT 180 
4.3.11 DEFINE ASSUMPTIONS OF EXPERIMENTAL SET UP 182 
4.3.12 DEFINE SIMULATION BOUNDARIES 182 
4.3.13 SIMULATION REQUIREMENTS 182 
4.3.14 SET STANDARDS IF THEY ARE TO BE USED 183 
4.3.15 VERIFICATION OF REQUIREMENTS 183 
4.3.16 PRELIMINARY ARCHITECTURE 184 
4.3.17 VERIFICATION OF PRELIMINARY ARCHITECTURE 185 
4.3.18 PRELIMINARY SIMULATION DESIGN 186 
4.3.19 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 187 
4.3.20 ARE THERE ANY EXISTING SIMULATIONS AND MODELS 188 
4.3.21 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS SESEMS 188 
4.4 EVALUATION OF METHODS 194 
4.4.1 STRENGTHS OF THE PROPOSED METHODS 194 
4.4.2 WEAKNESSES OF THE PROPOSED METHODS 196 
4.4.3 THE EFFECTIVENESS OF THE PROPOSED METHODS 197 
4.5 SUMMARY OF CASE STUDY TESTING 198 

5 NATURAL LANGUAGE PROCESSING 199 

5.1 NATURAL LANGUAGE PROCESSING 201 
5.1.1 CURRENT CAPABILITIES OF NATURAL LANGUAGE PROCESSING TECHNOLOGY 202 



PAGE XI 

5.1.2 UNDERSTANDING AND COMPREHENSION 202 
5.1.3 NATURAL LANGUAGE PROCESSING TECHNOLOGIES 203 
5.1.4 LANGUAGE AND THE CHALLENGES IT BRINGS TO NATURAL LANGUAGE PROCESSING 205 
5.1.5 FORMAL LANGUAGES AND NATURAL LANGUAGE PROCESSING 206 
5.1.6 USE OF LANGUAGE IN ENGINEERING DOCUMENTS 207 
5.1.7 CURRENT USES OF NATURAL LANGUAGE PROCESSING IN ENGINEERING PROJECTS 208 
5.1.8 CURRENT AVAILABLE NATURAL LANGUAGE PROCESSING TOOL LIBRARIES 208 
5.2 THE APPLICATION OF NATURAL LANGUAGE PROCESSING 210 
5.2.1 DESCRIPTIVE VS PRESCRIPTIVE LANGUAGES 210 
5.2.2 IMPLICATIONS OF DESCRIPTIVE LANGUAGE ON ENGINEERING PROJECTS 211 
5.2.3 IMPLICATIONS OF DESCRIPTIVE LANGUAGE FOR NATURAL LANGUAGE PROCESSING 211 
5.2.4 RULE AND SENTIMENT BASED NATURAL LANGUAGE PROCESSING 212 
5.2.5 NATURAL LANGUAGE PROCESSING PROOF OF CONCEPT 213 
5.2.6 NATURAL LANGUAGE PROCESSING PROOF OF CONCEPT REQUIREMENTS 214 
5.2.7 PROCESS FOR THE DEVELOPMENT OF PROOF OF CONCEPT CODE 219 
5.2.8 CAPABILITIES OF THE PROOF OF CONCEPT 222 
5.2.9 ALGORITHMS IMPLEMENTED IN THE PROOF OF CONCEPT 224 
5.2.10 STRUCTURE OF THE PROOF OF CONCEPT 231 
5.2.11 FUNCTIONALITY OF PROOF OF CONCEPT FUNCTIONS 232 
5.2.12 WHERE NATURAL LANGUAGE PROCESSING FITS INTO THE PROPOSED PROCESSES 234 
5.2.13 TESTING THE PROOF OF CONCEPT 236 
5.3 PROOF OF CONCEPT TESTING AND CASE STUDY ONE 237 
5.3.1 FINDINGS FROM TEST ONE 237 
5.3.2 FINDINGS FROM TEST TWO 239 
5.4 PROOF OF CONCEPT TESTING AND CASE STUDY TWO 241 
5.4.1 RESULTS FROM PROOF OF CONCEPT TESTING 243 
5.5 SUMMARY 245 

6 DISCUSSION 247 

6.1 INTRODUCTION 249 
6.2 PHILOSOPHICAL ASPECTS 250 
6.2.1 PHILOSOPHICAL ARGUMENT OF HIGH FIDELITY SIMULATION INTEGRATION 250 
6.2.2 REDUCTIONISM 250 
6.2.3 THE NEED FOR MODEL AND SIMULATION VALIDATION 251 
6.2.4 CHALLENGES WITH KNOWNS AND UNKNOWNS 253 
6.2.5 IMPACTS OF HARDWARE AND HUMAN IN THE LOOP TESTING 254 
6.2.6 SYSTEM CREATORS, END USERS, AND SYSTEM CUSTOMERS 256 
6.2.7 VIRTUAL SIMULATION VS PHYSICAL PROTOTYPE 257 
6.2.8 THE NEED AND PLACE OF PHYSICAL PROTOTYPES 258 
6.2.9 TIME SPENT ON A PROJECT 258 
6.2.10 IMPACT OF INCREASED COMPUTATIONAL POWER ON MODELLING AND SIMULATION 259 
6.3 SIMULATION AND MODEL INTEGRATION ISSUES 261 
6.3.1 IMPLEMENTATION PLATFORMS 261 



PAGE XII 

6.3.2 ABSTRACTION 261 
6.3.3 FIDELITY 262 
6.3.4 TIME 263 
6.3.5 LOCAL AND DISTRIBUTED INTEGRATION 264 
6.4 CURRENT METHODS OF STORING AND INTERROGATING MODELS FROM A REPOSITORY 266 
6.5 ONTOLOGIES AND THEIR USES FOR INTEGRATION 268 
6.5.1 ONTOLOGIES APPLIED TO SIMULATION INTEGRATION 269 
6.5.2 HOW ONTOLOGIES CAN AID IN INTEGRATION 270 
6.5.3 EVALUATION OF ONTOLOGIES FOR THIS PROBLEM SPACE 271 
6.6 BUSINESS CHALLENGES WITH MODEL AND SIMULATION INTEGRATION 273 
6.6.1 ADOPTION OF NEW TECHNOLOGIES 273 
6.6.2 VENDOR LOCK IN AND RISKS OF ONE SUPPLIER 273 
6.6.3 THE POSSIBILITY TO DO MORE WITH THE SAME 274 
6.6.4 COMMERCIAL-OFF-THE SHELF 274 
6.7 AUTOMATION OF ENGINEERING TASKS 279 
6.8 POTENTIAL PARADIGM SHIFT BROUGHT ABOUT BY MODEL INTEGRATION 280 
6.9 SUMMARY 282 

7 CONCLUSION 285 

7.1 CONCLUSION 287 
7.2 CONTRIBUTION TO KNOWLEDGE 291 
7.3 FUTURE WORK 293 

8 REFERENCES 295 

9 APPENDIX 310 

9.1 APPENDIX PROCESS ELEMENTS 312 
9.1.1 SYSTEM CREATION LIFECYCLE 312 
9.1.2 VERIFICATION REPRESENTATION 315 
9.1.3 VALIDATION REPRESENTATION 316 
9.1.4 SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 317 
9.1.5 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS AND SIMULATIONS 327 
9.1.6 DEFINING GAPS IN SEIES (A SUB PROCESS) 334 
9.1.7 FILL GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 336 
9.2 APPENDIX IDENTIFIED TOPICS FOR MODEL AND SIMULATION INTEGRATION AND REASONING 338 
9.2.1 IDENTIFIED TOPICS FOR MODEL AND SIMULATION STRUCTURE 339 
9.2.2 VERIFICATION EXPERIMENT 345 
9.2.3 MODEL INFORMATION 346 
9.2.4 MODEL ENVIRONMENT 350 
9.3 INTEGRATION TABLES 353 
9.3.1 BLANK INTEGRATION TABLES 354 
9.3.2 DEVELOPMENTAL CASE STUDY COMPLETED INTEGRATION TABLES 358 



PAGE XIII 

9.4 NLP APPLICATION POC CODE 371 
9.4.1 SETTING_UP_FILES_TO_COMPAIR.PY 371 
9.4.2 A1_VERB_NOUN_SENTENCE_PAIR_FN 372 
9.4.3 ACTUAL_DIF 374 
9.4.4 BAR_CHART_COMPAIR_TWO_DICS 375 
9.4.5 COMMON_IDENTIFIED_WORDS 377 
9.4.6 COMPANEY_DICTONARY 377 
9.4.7 COMPARING_IDENTIFIEC_COMPANY_WORDS 379 
9.4.8 NOUN_VERB_SEARCH_AND_RECORD 381 
9.4.9 NUMBER_OF_TIMES_A_WORD_APPEARS 385 
9.4.10 SAME_TAG_IDENTIFYER 386 
9.4.11 TAG_COUNT 388 
9.4.12 TAG_PERCENTAGE 395 
9.4.13 TEXT_CHARACTARISTICS 395 
9.5 TEST FILES FOR PROOF OF CONCEPT VERIFICATION 398 
9.5.1 TEST FILE ONE 399 
9.5.2 TEST FILE TWO 401 
9.5.3 TEST FILE THREE 402 
9.5.4 RESULT OF THE PROOF OF CONCEPT TEST FILE 403 
9.5.5 VERIFICATION ANALYSIS TWO 407 
9.5.6 VERIFICATION ANALYSIS THREE 410 
9.5.7 READ_TEXTFILE_ANDTAG 398 
9.6 OUTPUTS FROM THE PROOF OF CONCEPT APPLICATION 413 
9.6.1 CASE STUDY ONE SQUASH COURT 414 
9.6.2 ANALYSIS ONE 414 
9.6.3 ANALYSIS TWO 420 
9.6.4 ANALYSIS THREE 424 
9.6.5 ANALYSIS FOUR 429 
9.6.6 ANALYSIS FIVE 433 
9.6.7 ANALYSIS SIX 438 
9.7 DOCUMENTS USED FOR CASE STUDY ONE 442 
9.7.1 REQUIREMENTS FOR CASE STUDY ONE SQUASH BALL MOVING AROUND A COURT 443 
9.7.2 DOCUMENTATION OF A PARTICLE MOVING IN FREE SPACE 444 
9.7.3 DOCUMENTATION OF ENERGY TRANSFER MODEL 446 
9.7.4 DOCUMENTATION OF SQUASH COURT IN OR OUT MODEL 448 
9.8 CASE STUDY TWO AUTOMOTIVE CASE STUDY 452 
9.8.1 ANALYSIS ONE 453 
9.8.2 ANALYSIS TWO 458 
9.8.3 ANALYSIS THREE 462 
9.8.4 ANALYSIS FOUR 465 
9.8.5 ANALYSIS FIVE 469 
9.8.6 ANALYSIS SIX 473 
9.9 DOCUMENTS USED FOR CASE STUDY TWO 477 
9.9.1 REQUIREMENTS FOR A COMBINED BRAKING AND STEERING SYSTEM 478 
  



PAGE XIV 

LIST OF TABLES  
TABLE 4.1: VERIFICATION RAG ASSESSMENT OF PRELIMINARY ARCHITECTURE. 64 
TABLE 4.2: RAG ASSESSMENT OF THE PRELIMINARY DESIGN. 66 
TABLE 4.3: REPRESENTATION OF THE ASSESSMENT OF THE DOCUMENTATION AVAILABILITY. THREE SYMBOLS ARE USED;  FULL, ▬ 

PARTIAL, AND  NOT AT ALL. 68 
TABLE 4.4: RAG ASSESSMENT OF THE SELECTED POTENTIAL MODELS. RED (R) DOES NOT COMPLY, AMBER (A) PARTLY COMPLICIT, 

AND GREEN (G) FULLY COMPLICIT. 69 
TABLE 4.5: ASSESSMENT OF WHETHER THE POTENTIAL MODELS CAN BE MODIFIED. THE ASSESSMENT IS A SIMPLE YES () OR NO().

 70 
TABLE 4.6: ASSESSMENT OF WHETHER THE POTENTIAL SELECTED MODELS ARE USABLE. THE ASSESSMENT IS A SIMPLE YES () OR 

NO(). 70 
TABLE 3.1 HIERARCHICAL MAPPING OF NUMERICAL AND TEXTUAL REPRESENTATIONS. 124 
TABLE 3.2 THE ABSTRACTION LEVEL OF A BALL BOUNCING BETWEEN TWO SURFACES AND THE RELEVANT EQUATIONS WHICH ARE 

APPROPRIATE TO THAT LEVEL. 125 
TABLE 4.1 VERIFICATION RAG ASSESSMENT OF SIMULATION REQUIREMENTS. 140 
TABLE 4.2: VERIFICATION RAG ASSESSMENT OF THE PROPOSED ARCHITECTURE. 142 
TABLE 4.3: RAG ASSESSMENT OF THE PRELIMINARY DESIGN. 143 
TABLE 4.4: RAG ASSESSMENT OF THE PARTICLE IN FLIGHT MODEL. 146 
TABLE 4.5: RAG ASSESSMENT OF THE ENERGY TRANSFER MODEL. 147 
TABLE 4.6: RAG ASSESSMENT OF THE SQUASH COURT IN OR OUT MODEL. 148 
TABLE 4.7:RAG ASSESSMENT OF THE MODIFIED PARTICLE MOVING IN FREE SPACE MODEL. 150 
TABLE 4.8: RAG ASSESSMENT OF THE MODIFIED ENERGY TRANSFER MODEL. 151 
TABLE 4.9: RAG ASSESSMENT OF THE MODIFIED SQUASH COURT IN OUT MODEL. 152 
TABLE 4.10: COMPUTATIONAL REQUIREMENTS FOR THE COMPONENT PARTS OF THE ARCHITECTED SIMULATION. 154 
TABLE 4.11: RAG ASSESSMENT OF THE COMPUTATIONAL OVERHEADS OF THE PROPOSED INTEGRATED SIMULATION. 154 
TABLE 4.12: RELATIONSHIP TABLE CAPTURING THE COMMUNICATION PATHS AND DATA TYPES OF THE DETAILED DESIGN. 156 
TABLE 4.13: RAG ASSESSMENT OF THE THREE SELECTED MODELS AGAINST THE OVERALL SIMULATION REQUIREMENTS. 158 
TABLE 4.14: THE COMMUNICATIONS BETWEEN THE OUTPUTS OF THE SQUASH COURT IN OR OUT MODEL AND THE INPUTS OF ALL 

OTHER COMPONENT PARTS OF THE SIMULATION ARE REPRESENTED. 161 
TABLE 4.15: THE COMMUNICATIONS BETWEEN THE OUTPUTS OF THE ENERGY TRANSFER MODEL, THE PARTICLE MOVING IN FREE 

SPACE MODEL, AND THE INPUTS OF ALL OTHER COMPONENT PARTS OF THE SIMULATION ARE REPRESENTED. 162 
TABLE 4.16: THE COMMUNICATIONS BETWEEN THE OUTPUTS OF THE ENERGY TRANSFER MODEL AND PARTICLE IN FREE SPACE, THE 

BALL ON RACKET MODEL, AND THE INPUTS OF ALL OTHER COMPONENT PARTS OF THE SIMULATION ARE REPRESENTED. 163 
TABLE 4.17 : RAG ASSESSMENT OF THE COMPONENT PARTS OF THE OVERALL SIMULATION AFTER THE FILL THE GAPS IN SUB-PROCESS 

PART ONE. 166 
TABLE 4.18 :RAG ASSESSMENT OF THE COMPONENT PARTS OF THE OVERALL SIMULATION AFTER THE FILL THE GAPS IN SUB-PROCESS 

PART TWO. 167 
TABLE 4.19: RAG ASSESSMENT OF THE COMPONENT PARTS OF THE OVERALL SIMULATION AFTER THE FILL THE GAPS IN SUB-PROCESS 

PART ONE. 168 
TABLE 4.20 : RAG ASSESSMENT OF THE COMPONENT PARTS OF THE OVERALL SIMULATION AFTER THE FILL THE GAPS IN SUB-PROCESS 

PART TWO. 169 
TABLE 4.21: VERIFICATION THAT ASCERTAINS IF THE PROPOSED SIMULATION MEETS THE ORIGINAL PURPOSE OF THE TEST. 171 
TABLE 4.22: VERIFICATION TABLE SHOWING COMMUNICATIONS BETWEEN; SQUASH COURT IN OR OUT, ENERGY TRANSFER MODEL, 

PARTICLE MOVING IN FREE SPACE, AND SAVING DATA. 172 
TABLE 4.23: VERIFICATION TABLE SHOWING COMMUNICATIONS BETWEEN; ENERGY TRANSFER MODEL, PARTICLE MOVING IN FREE 

SPACE, SQUASH COURT IN OR OUT, ENERGY TRANSFER MODEL, PARTICLE MOVING IN FREE SPACE, AND SAVING DATA. 173 



PAGE XV 

TABLE 4.24: VERIFICATION TABLE SHOWING COMMUNICATIONS BETWEEN ENERGY TRANSFER MODEL; PARTICLE MOVING IN FREE 

SPACE, BALL ON RACKET, PARTICLE MOVING IN FREE SPACE, SQUASH COURT IN OR OUT, ENERGY TRANSFER MODEL, 
PARTICLE MOVING IN FREE SPACE, AND SAVING DATA. 174 

TABLE 4.25: RECORD OF THE RESULTS OF THE VERIFICATION OF THE INTEGRATIONS BETWEEN THE COMPONENT PARTS. RED, AMBER, 
AND GREEN REPRESENT, SIGNIFICANT ISSUE, MINOR ERROR WHICH CAN BE EASILY RECTIFIED, AND NO ISSUES, RESPECTIVELY.
 175 

TABLE 4.26: VERIFICATION RAG ASSESSMENT OF SIMULATION REQUIREMENTS. 184 
TABLE 4.27: VERIFICATION RAG ASSESSMENT OF PRELIMINARY ARCHITECTURE. 186 
TABLE 4.28: RAG ASSESSMENT OF THE PRELIMINARY DESIGN. 188 
TABLE 4.29: REPRESENTATION OF THE ASSESSMENT OF THE DOCUMENTATION AVAILABILITY. THREE SYMBOLS ARE USED;  FULL, ▬ 

PARTIAL, AND  NOT AT ALL. 190 
TABLE 4.30: RAG ASSESSMENT OF THE SELECTED POTENTIAL MODELS. RED (R) DOES NOT COMPLY, AMBER (A) PARTLY COMPLICIT, 

AND GREEN (G) FULLY COMPLICIT. 191 
TABLE 4.31: ASSESSMENT OF WHETHER THE POTENTIAL MODELS CAN BE MODIFIED. THE ASSESSMENT IS A SIMPLE YES () OR NO().

 192 
TABLE 4.32: ASSESSMENT OF WHETHER THE POTENTIAL SELECTED MODELS ARE USABLE. THE ASSESSMENT IS A SIMPLE YES () OR 

NO(). 192 
TABLE 5.1 FUNCTIONAL REQUIREMENTS RAG TEST. THIS FIGURE SHOWS FOR EACH OF THE REQUIREMENTS IF IT HAS BEEN FULFILLED 

OR NOT. GREEN PASS, AMBER SHOWS PROMISE, AND RED NOT CAPABLE AT ALL WITH NO SIGHT OF BEING ABLE TO DO SO. 222 
TABLE 5.2 RAG ANALYSIS OF THE FUNCTIONAL CONSTRAINTS OF THE POC. 223 
TABLE 5.3 : DEFINITION OF THE LOGICAL SYMBOLS USED IN MATHEMATICAL DESCRIPTIONS. 224 
TABLE 5.4 THIS TABLE SHOWS ALL THE POSSIBLE TAGS THAT CAN BE ASSIGNED BY THE NLTK POS TAGGER. THE CONTENT OF THIS 

TABLE WAS COMPILED FROM THE NLTK HELP FILES. [116] 227 
TABLE 5.5 CATEGORIES OF WORDS WITH EXAMPLE WORDS AND THEIR RESPECTIVE SYMBOLS USED IN LOGICAL DESCRIPTIONS. 230 
TABLE 5.6: THE INPUTS FOR CASE STUDY ONE ANALYSIS TEST CASES ONE TO THREE. 237 
TABLE 5.7: NUMBER OF IDENTIFIED NOUN-VERB PHRASES WITH A BREAKDOWN AS TO IF THE MATCH IS MEANINGFUL FOR ANALYSIS 

ONE TO THREE. 238 
TABLE 5.8: DOCUMENTATION BASIC CHARACTERISTICS INCLUDING NUMBER OF WORDS AND THE NUMBER OF LINES. 239 
TABLE 5.9: ANALYSIS INPUTS TO THE NLP POC. 239 
TABLE 5.10: NUMBER OF IDENTIFIED NOUN-VERB PHRASES WITH A BREAKDOWN AS TO IF THE MATCH IS MEANINGFUL OR NOT FOR 

ANALYSIS FOUR TO SIX. 240 
TABLE 5.11: INPUTS TO THE NLP POC FOR THE NLP TESTING CASE STUDY TWO. 241 
TABLE 5.12: NLP CASE STUDY TWO TEST RESULTS THE NUMBER OF IDENTIFIED NOUN-VERB PHRASES WITH A BREAKDOWN AS TO IF 

THE MATCH IS MEANINGFUL OR NOT. 242 
TABLE 9.1: TEXTUAL DESCRIPTION OF SYSTEMS CREATION LIFECYCLE STAGES. 314 
TABLE 9.2: TEXTUAL DESCRIPTIONS OF THE STAGES OF THE VERIFICATION TESTING PROCESS. 315 
TABLE 9.3: TEXTUAL DESCRIPTIONS OF THE STAGES OF THE VALIDATION TESTING PROCESS. 316 
TABLE 9.4 TEXTUAL DESCRIPTION OF SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS PROCESS ELEMENTS. 326 
TABLE 9.5 TEXTUAL DESCRIPTION OF THE STAGES OF THE SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS PROCESS. 333 
TABLE 9.6 TEXTUAL DESCRIPTION OF THE DEFINING GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS PROCESS.

 335 
TABLE 9.7 TEXTUAL EXPLANATION OF THE STAGES OF THE SILL THE GAPS IN PART OF SYSTEMS ENGINEERING IN INTEGRATION OF 

SIMULATIONS PROCESS. 337 
TABLE 9.8 IDENTIFIED TOPICS FOR MODEL AND SIMULATION INTEGRATION AND REASONING. 344 
TABLE 9.9 IDENTIFIED TOPICS FOR VERIFICATION EXPERIMENT. 345 
TABLE 9.10 IDENTIFIED TOPICS FOR MODEL INFORMATION. 349 
 

  



PAGE XVI 

LIST OF FIGURES 
FIGURE 1.1RICH PICTURE OF THE PROBLEM SPACE. 6 
FIGURE 1.2: THE AREA OF INTEREST FOR THIS RESEARCH CUTS ACROSS THE IDENTIFIED AREAS OF ENGINEERING PROJECTS. 8 
FIGURE 1.3: A HIGH LEVEL REPRESENTATION OF THE SCOPE OF THE RESEARCH SUPPORTING THE TASK OF TAKING A BUCKET OF EXISTING 

MODELS THROUGH TO AN INTEGRATED SIMULATION. 9 
FIGURE 1.4: THE MAPPING BETWEEN THE SYSTEMS METHOD, THE STRUCTURE OF THIS THESIS, AND THE MAPPING TO OBJECTIVES. 11 
FIGURE 2.1 A REPRESENTATION OF MIDDLEWARE BETWEEN TWO MODELS 21 
FIGURE 2.2 ONE MODEL RUNNING IN ANOTHER MODELS EXECUTION ENVIRONMENT 24 
FIGURE 2.3 THE ISO/IEC/IEEE EXAMPLE OF REQUIRED SYNTAX OF TEXTUAL REQUIREMENTS[27] 32 
FIGURE 2.4 DATA SHARE INTEGRATION BETWEEN TWO OR MORE MODELS AND SIMULATIONS. THE DOTTED LINE DENOTES THE 

POTENTIAL FOR FURTHER MODELS TO BE INTEGRATED. 35 
FIGURE 2.5 INTEGRATION USING THE SHARING OF VARIABLES. MODEL 1 IS PRODUCING A VARIABLE AND MODEL 2 IS CONSUMING THE 

DATA. 36 
FIGURE 2.6 SIMPLE REPRESENTATION OF FEDERATED SYSTEM 38 
FIGURE 2.7 REPRESENTATION OF WEB SERVICES OFTEN USED AS PART OF FEDERATED SYSTEMS. 39 
FIGURE 2.8 THE ORGANISATION OF A HLA AGENT NOTE THE SIMULATIONS BEING ONLY A PART OF THE FEDERATE 41 
FIGURE 3.1 LINEARISED SYSTEMS ENGINEERING METHOD. THIS REPRESENTATION SHOWS HOW THE STAGES STARTING AT THE PROBLEM 

WITH EACH STAGE BUILDING ON THE PREVIOUS STAGE. NOTE HOW THE UNDERSTANDING OCCUPIES LESS AREA THAN THE 

PROBLEM. 80 
FIGURE 3.2 BASIC STACKED SYSTEMS ENGINEERING. THE PROBLEM IS NOW AN UNBOUNDED PLANE AND VERIFICATION HAPPENS 

CONCURRENTLY WITH ARCHITECTURE AND DESIGN. 81 
FIGURE 3.3 STACKED SYSTEMS ENGINEERING VERIFICATION OF REQUIREMENTS QUESTIONED. NOTE THE BOX WITH A QUESTION MARK 

IN DENOTING THE AREA IN QUESTION. 82 
FIGURE 3.4 STACKED REPRESENTATION OF SYSTEMS ENGINEERING. THE REQUIREMENTS ARE PARTIALLY VERIFIED AND ARE USED TO 

GUIDE ARCHITECTURE, VERIFICATION, AND VALIDATION STAGES. 83 
FIGURE 3.5 SYSTEMS LIFECYCLE. THIS PROCESS IS AN IMPLEMENTATION OF SYSTEMS ENGINEERING FOR THE DEVELOPMENT OF A 

PRODUCT USING VIRTUAL SIMULATION AND TESTING. 93 
FIGURE 3.6 SYSTEMS ENGINEERING VERIFICATION. THIS FIGURE SHOWS THE BASIS OF ALL VERIFICATION THAT IS PROPOSED IN THESE 

PROCESSES. IT USES THE SAME FLOW CHART SEMANTICS AS THE OTHER PROPOSED METHODS IN THIS WORK. 94 
FIGURE 3.7 SYSTEMS ENGINEERING VALIDATION. NOTE HOW THE TEST IS CONDUCTED WITHIN THE OPERATIONAL ENVIRONMENT OF 

THE SYSTEM BEING VALIDATED. 96 
FIGURE 3.8A SYSTEMS ENGINEERING IN MODEL INTEGRATION. THE FIRST HALF OF THE PROCESS INCLUDING WHAT IS NEEDED BEFORE 

THE SIMULATION TESTS COMMENCE AND TO THE POINT OF THE VERIFICATION OF THE SIMULATION DESIGN. THE STAGES THAT 

ARE BEFORE THE MODEL AND SIMULATION BOUNDARY ARE NOT STRICTLY PART OF THE PROCESS BUT RATHER STAGES THAT ARE 

PREREQUISITE TO THE SIMULATION PROCESS. 98 
FIGURE 3.9A SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS PART A. NOTE THE DARKER SHADED BOXES THESE ARE THE 

AREAS WHERE NLP TECHNOLOGIES MAY BE OFF ASSISTANCE SEE SECTION 5 FOR MORE INFORMATION REGARDING NLP AND ITS 

POTENTIAL USE IN THESE TASKS. 101 
FIGURE 3.10 DEFINING GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS PROCESS. THE PROCESS REQUIRES A 

DETAILED DESIGN AND OUTPUTS WHICH ARE USED TO DEFINE THE GAPS BETWEEN THE AVAILABLE MODELS. 104 
FIGURE 3.11 FILL THE GAPS IS PART OF THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS PROCESS. THESE ARE A DESIGN 

AND BUILD PROCESS BASED ON THE INFORMATION FROM THE DEFINING GAPS IN SYSTEMS ENGINEERING INTEGRATION OF 

SIMULATIONS PROCESS. 105 
FIGURE 3.12 A MIND MAP OF THE REQUIRED TOPICS OF INFORMATION FOR MEANINGFUL INTEGRATION. THE STRUCTURE OF THE 

REQUIRED INFORMATION BECAME APPARENT ONCE THE REQUIRED INFORMATION WAS COMPILED. 120 
FIGURE 3.13 THE INTENDED LAYOUT OF THE INTEGRATION TABLES. THE CATEGORY IS DEFINED BY THE INFORMATION IN THE PREVIOUS 

SECTION AND THE VALUE RELATES TO THE MODEL OR SIMULATION THAT IS BEING EVALUATED. 121 



PAGE XVII 

FIGURE 3.14 HIERARCHICAL DECOMPOSITION DISPLAYING VARIABLES AND RELATIONS BETWEEN LEVELS. THERE ARE FOUR LEVELS OF 

ABSTRACTION THAT HAVE BEEN IDENTIFIED. LEVEL ONE IS THE HIGHEST LEVEL OF ABSTRACTION AND LEVEL FOUR IS THE LOWEST 

LEVEL OF ABSTRACTION. THE GREEN BOXES REPRESENT AN INPUT OR OUTPUT. THE LINES BETWEEN THE BOXES REPRESENT THE 

EXISTENCE OF A RELATIONSHIP. 123 
FIGURE 3.15: A SIMPLE REPRESENTATION OF A BALL BOUNCING BETWEEN TWO SURFACES THE ARROWS SHOW THE DIRECTION THAT 

THE BALL IS MOVING. 125 
FIGURE 3.16 HIERARCHICAL DECOMPRESSION OF LEVELS OF FIDELITY OF A BOUNCING BALL. FOUR LEVELS OF ABSTRACTION, THE 

VARIABLES THAT ARE CONSIDERED AND THE RELATIONSHIPS BETWEEN THE VARIABLES. 126 
FIGURE 4.1THE BEHAVIOURAL STATES OF THE SQUASH BALL THAT ARE OF INTEREST FOR THE EVALUATION OF THE DESIGN. 133 
FIGURE 4.2 VISUAL REPRESENTATION OF THE PURPOSE OF THE TEST 135 
FIGURE 4.3 BRAIN STORM OF THE POTENTIAL PARTS OF THE BEHAVIOUR OF A SQUASH BALL AND ITS INTERACTIONS. 136 
FIGURE 4.4 SIMULATION BOUNDARIES SHOWING WHAT IS WITHIN AND OUTSIDE OF CONSIDERATION. 138 
FIGURE 4.5 PRELIMINARY ARCHITECTURE FOR THE SIMULATION OF SQUASH BALL FLIGHT 141 
FIGURE 4.6: A REPRESENTATION OF THE FIRM ARCHITECTURE OF THE SIMULATION. 153 
FIGURE 4.7: THE SIMULATION ARCHITECTURE AFTER THE FILL THE GAPS ALTERATIONS. NOTE THE CHANGE IN STRUCTURE FROM THAT 

IN FIGURE 4.6. 165 
FIGURE 4.8: THE PRELIMINARY ARCHITECTURE OF THE SIMULATION DESIGNED TO TEST THE EFFECTS OF A NEW POTENTIAL BRAKE 

SYSTEM ON THE LONGITUDINAL BEHAVIOUR OF A CAR. 177 
FIGURE 4.9 THE STEERING AND BRAKE SYSTEMS ISOLATED (LEFT). THE STEERING AND BRAKE SYSTEMS INTEGRATED USING A CONTROL 

SYSTEM (RIGHT). 179 
FIGURE 4.10: SIMULATION BOUNDARY SHOWING WHAT IS WITHIN AND OUTSIDE OF CONSIDERATION. 182 
FIGURE 4.11: PRELIMINARY ARCHITECTURE FOR THE SIMULATION. 185 
FIGURE 5.1 THE BASIC STAGES OF NLP WHEN MACHINE READABLE FILES ARE AVAILABLE. THE ARROWS DENOTE THE PROGRESSION OF 

THE STAGES. THERE ARE SOME APPLICATIONS OF NLP THAT ONLY PRESENT THE RESULTS TO THE USER WHEREAS OTHER 

APPLICATIONS SAVE THE RESULTS FOR FURTHER ANALYSIS THIS IS DENOTED BY A DOTTED LINE. 201 
FIGURE 5.2: THE OVERLAP OF ENGINEERING DISCIPLINE LANGUAGES. 207 
FIGURE 5.3 PUGH MATRIX FOR THE SELECTION OF THE LANGUAGE TO CONDUCT THE NLP POC. EACH SCORE IS BETWEEN 0 AND 5 

REPRESENTING LEAST AND GREATEST DESIRABILITY RESPECTIVELY. 217 
FIGURE 5.4 A PUGH MATRIX TO AID IN THE SELECTION OF SCRIPTING TOOLS FOR POC DEVELOPMENT. EACH SCORE IS BETWEEN 0 AND 

5 REPRESENTING LEAST AND GREATEST DESIRABILITY RESPECTIVELY. 218 
FIGURE 5.5 THE PLANNED ARCHITECTURE FOR THE NLP POC. A TOP LEVEL SCRIPT ORCHESTRATES THE CALLING OF FUNCTIONS WHICH 

ARE FORMED FROM OTHER COMPONENT FUNCTIONS. THE SOLID LINES DENOTE A DATA EXCHANGE. THE DASHED LINES DENOTE 

THE EXPANDABLE NATURE WHERE ADDITIONAL FUNCTIONS CAN BE ADDED. 219 
FIGURE 5.6 THIS IS A NEW TAKE ON THE TRADITIONAL SPIRAL. IT HAS AN INVESTIGATE, ARCHITECT, IMPLEMENT, AND TEST, AS THE 

CONSTITUENT PARTS OF THE PROCESS. AT THE END OF EACH CIRCUMNAVIGATION A NEW BEHAVIOUR IS AVAILABLE TO USE. 220 
FIGURE 5.7 FINAL ARCHITECTURE OF THE POC. WHITE BOXES DENOTE FUNCTIONS THAT WERE CREATED FOR THIS PROJECT. BOXES 

SHADED IN GREY ARE FUNCTIONS FROM EXISTING LIBRARIES. 232 
FIGURE 6.1: HARDWARE IN THE LOOP SIMULATION PARTS 255 
FIGURE 6.2: HUMAN IN THE LOOP COMPONENT PARTS 255 
FIGURE 6.3 THE INTERSECTIONS BETWEEN THE THREE GROUPS INVOLVED WITH THE DEVELOPMENT OF A SYSTEM; CUSTOMERS, 

CREATOR, AND END USERS. 257 
FIGURE 6.4: THE TRADE-OFF BETWEEN THE SYSTEMS ENGINEERING APPROACH AND THE TRADITIONAL USE OF PROTOTYPES. 259 
FIGURE 6.5 TWO MODELS FROM DIFFERENT DOMAINS USING ONTOLOGIES TO CAPTURE THE SEMANTICS OF THE MODELS. A META 

LANGUAGE IS USED TO PRODUCE A META ONTOLOGY. THE INFORMATION FROM THE META ONTOLOGY IS USED TO PERFORM THE 

SYNTACTIC PART OF THE MODEL INTEGRATION. 271 
FIGURE 6.6: A REPRESENTATION OF THE COTS PROCESS TIME REPRESENTED TOP DOWN. 275 
FIGURE 6.7: OUTPUTS OF AN INTEGRATED SIMULATION ARE MORE THAN THE OUTPUT OF THE INDIVIDUAL COMPONENTS AS THE 

BEHAVIOUR OF THE SYSTEM AS WHOLE IS ALSO CAPTURED. 280 
FIGURE 9.1MODEL INFORMATION 354 



PAGE XVIII 

FIGURE 9.2 MODEL STRUCTURE 355 
FIGURE 9.3 MODEL ENVIRONMENT 356 
FIGURE 9.4 VERIFICATION EXPERIMENT 357 
FIGURE 9.5PARTICLE MOVING IN FREE SPACE MODEL INFORMATION. 359 
FIGURE 9.6 PARTICLE MOVING IN FREE SPACE STRUCTURE. 360 
FIGURE 9.7 PARTICLE MOVING IN FREE SPACE ENVIRONMENT 361 
FIGURE 9.8 PARTICLE MOVING IN FREE SPACE VERIFICATION EXPERIMENT 362 
FIGURE 9.9 ENERGY TRANSFER MODEL, MODEL INFORMATION 363 
FIGURE 9.10 ENERGY TRANSFER MODEL, STRUCTURE 364 
FIGURE 9.11 ENERGY TRANSFER MODEL, ENVIRONMENT 365 
FIGURE 9.12 ENERGY TRANSFER MODEL, VERIFICATION 366 
FIGURE 9.13 SQUASH COURT IN OR OUT MODEL, MODEL INFORMATION 367 
FIGURE 9.14 SQUASH COURT IN OR OUT MODEL, MODEL STRUCTURE 368 
FIGURE 9.15SQUASH COURT IN OR OUT MODEL, ENVIRONMENT 369 
FIGURE 9.16 SQUASH COURT IN OR OUT MODEL, VERIFICATION EXPERIMENT 370 
FIGURE 9.17: OUTPUT FROM THE NLP POC WHEN THE TEST FILE IS BOTH DOCUMENT A AND B. 403 
FIGURE 9.18 : OUTPUT FROM THE NLP POC WHEN THE NLP_TEST_FILE IS BOTH DOCUMENT A AND B. 407 
FIGURE 9.19 : OUTPUT FROM THE NLP POC WHEN DOCUMENT A IS NLPTESTFILE AND NLPTESTFILE_2 IS INPUT B. 410 
FIGURE 9.20: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

ONE. 414 
FIGURE 9.21: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

TWO. 420 
FIGURE 9.22: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

THREE. 424 
FIGURE 9.23: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

FOUR. 429 
FIGURE 9.24: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

FIVE. 433 
FIGURE 9.25: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY ONE ANALYSIS 

SIX. 438 
FIGURE 9.26: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

ONE. 453 
FIGURE 9.27: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

TWO. 458 
FIGURE 9.28: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

THREE. 462 
FIGURE 9.29: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

FOUR. 465 
FIGURE 9.30: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

FIVE. 469 
FIGURE 9.31: THE PERCENTAGE DISTRIBUTION OF TAGS WITHIN THE TWO COMPARED DOCUMENTS FROM CASE STUDY TWO ANALYSIS 

SIX. 473 
 

  



PAGE XIX 

GLOSSARY  
TERM DEFINITION 
Abstraction This is a concept by which the behaviour of a system 

can be conceived and judgements made without the 
need to fully understand all of the exact workings of the 
system. 

Actor An individual or role that interacts with the system of 
interest. 

ANN Artificial Neural Network: a mathematical model 
consisting of interconnected process units and weights. 

API Application Programming Interface: A defined set of 
functions and procedures to facilitate the creation of 
applications which access the features, or data of a 
specific existing application.  

Black box understanding  An understanding of the inputs and outputs of a system 
combined with a functional understanding of how the 
system should behave, without a detailed understanding 
of how it operates. 

Boundaries The demarcation between two distinct areas of interest   
Brownfield  When referring to an engineering situation it indicates 

that there are existing solutions, components, factors, or 
resources that need to be taken into consideration.  

C A procedural computer language 
C# An object oriented computer language   
CFD Computational Fluid Dynamics: a mathematical method 

for representing fluids which are moving in, on, or around 
a system that is being investigated. 

Complex/ity A descriptive term used to capture the behaviour of the 
interactions between system components as a result of 
the variation of the: components, control mechanisms, 
scales, communications, and number of elements. 

Co-simulation The use of two or more simulations that share or 
exchange values during execution. 

COTS Commercial Off The Shelf: sub system/s are outsourced 
to external companies to design and produce. 

CPU Central Processing Unit: a general purpose processor 
that can be used for many different computations.  

CSV Comma Separated Values: a commonly used file type 
for the saving and communication of data.   

Data set A collection of data that has been captured in a form 
that can be interrogated e.g. table, list, csv file. 

Data transfer The communication of data from one location to 
another. 

DCPS Data Centric Publish Subscribe: an approach to sharing 
data across a network. 

DDS Data Distribution Service: an OMG standard concerned 
with the transfer of data between multiple points 
involving different hardware and software. 



PAGE XX 

Dependence A resource that a simulation or model requires to 
operate that is external to it. 

Development 
environment 

Computer software used to create models and 
simulation software. 

DLRL Data Local Reconstruction Layer: a layer of the OMG 
DDS specification focused on the application level of the 
approach. 

DMSO Defence Modelling and Simulation Office: has been 
renamed the Modelling and Simulation Coordination 
Office. This falls under the jurisdiction of the USA 
Department of Defense. 

Domain expert An individual that is well versed, understands, and 
practices within a specific area. 

Downstream A term to indicate that decisions or actions taken at a 
point will directly affect work later on in the product 
lifecycle. 

ECU Electronic Control Unit an electronic device that is used 
to control elements of a system. 

Emulation The process of making one thing seem or act like 
another.  

Environment A boundary within which a system operates. 
EPSRC Engineering and Physical Sciences Research Council: an 

agency for funding research in engineering and the 
physical sciences in the UK. 

Equation A mathematical representation of a phenomenon. 
exe A common file extension denoting an executable file, 

suitable for Microsoft Windows or Dos operating systems. 
FAMOS Framework for Adaptive Modelling and Ontology-driven 

Simulation: a custom made ontology for the capture of 
integrated models and simulations. 

FEA Finite Element Analysis: A mathematical method 
involving breaking down the system under analysis into a 
number of discrete elements that are analysed 
individually. 

Feature creep The gradual increase in required functionality of the 
system compared to the initial requirements. 

Federated system In HLA terminology, a set of simulations that are 
interoperating is a federation. 

Federates Component simulations which are a part of a federated 
system. 

Fidelity A concept that compares the behaviour of a system to 
that of a phenomenon that it is representing. 

FMI Functional Mock-up Interface: a tool-independent 
standard to support model exchange and co-simulation.  

FMU Functional Mock-up Unit: a functional model or 
simulation that complies with the FMI standard. 

FPGA Field Programmable Gate Array: a type of integrated 
circuit comprising logic gates, the connections of which 
are user defined.  



PAGE XXI 

GB Gigabyte: a unit of measurement for digital memory that 
equals 1073741824 bytes. 

General systems thinking The foundational concepts of systems thinking 
established in the main by Ludwig von Bertalanffy. 

GPGPU  General Purpose computing using Graphics Processing 
Unit: using the functionality of GPUs for many repetitive 
calculations rather than using CPU. 

GPU Graphics Processing Unit: this is dedicated hardware 
which is used for the processing of computer graphics. 

Grey literature Refers to documents that are not found in the public 
domain. 

HIL Hardware In the Loop: the use of physical hardware with 
sensors as part of a simulation. 

HITL Human In The Loop: using a human machine interface 
as part of a simulation. 

HLA High Level Architecture: an architecture that is intended 
to provide interoperability and reusability across all types 
of simulations. 

HPC High Performance Computing: This term is often given to 
computer systems running applications that operate in 
excess of a teraflop.  

HTTP Hypertext Transfer Protocol: it is the foundation of 
communications for the world wide web. 

IEEE A professional engineering association dedicated to 
advancing technological innovation. 

In house  To conduct the task within the confines of the 
organisation in question. 

in silico Models developed within a virtual environment. 
Integration The act of bringing together component subsystems into 

one system. 
Interface The accessible data inputs and outputs available from a 

system. 
Interoperability The ability for the system to work without issue with other 

systems either currently or in the future. This requires a 
complete transparent understanding of the interfaces 
and how the system operates. 

ISO International Organisation for Standardisation: a 
publisher of International Standards. 

JLR  Jaguar Land Rover: An automotive manufacturer 
LAN Local Area Network: A network that connects a limited 

number of computers. 
Macroscale The largest physical scale considered part of a system or 

area of interest. 
Mathematical function A mathematical equation that contains a time variable. 
MB Megabyte: a unit of digital memory measurement. One 

megabyte is one million bytes of information. 
MBSE Model Based Systems Engineering: an approach to  

systems engineering and its application to project tasks. 
Mesoscale The physical scale that sits between the largest and 

smallest scale within the system or interest. 



PAGE XXII 

Meta An overarching higher concept. 
Microscale The smallest physical scale within the system or interest. 
Model An application of mathematical functions which 

produces a set output. 
Model/ simulation 
Platform 

The support needed to implement a model or simulation. 
This could be in the form of software, hardware, or even 
pen and paper. 

Multi-scale The simultaneous consideration of phenomena at 
different scales to elicit greater understanding. 

NATO North Atlantic Treaty Organization: an alliance between 
European and North American governments. 

Natural language A language that has been developed by its users 
without being formalised. It is often the transport medium 
used to communicate ideas. It can be audible (speech) 
or visual (written word) in nature.  

NLP Natural Language Processing: is the use of a computer 
to analyse natural language, can take the form or 
textual or audio analysis. 

NP complete Non deterministic Polynomial time complete: a term 
used in computational theory denoting a problem that 
can be verified quickly, however there is no known 
efficient way to find a solution. 

OEM Original Equipment Manufacturer: a company that 
produces products that are used as parts by other 
companies.  

OMG Object Modelling Group: an international, open 
membership, not-for-profit computer industry consortium 
that has task forces which develop enterprise integration 
specifications for software technologies. 

Operational environment  The environment within a system operates.  
OS Operating System: low level software that handles the 

basic functions of a computer. 
Parameter  A value that is set at the start of a simulation and remains 

static. 
Platform A series of products designed using a common set of 

components.  
POC Proof Of Concept: A demonstration of technology to 

discern if it its application is feasibility for a defined 
situation. 

Point to point integration The bespoke, one-off integration of two or more models 
or simulations by considering their inputs and outputs. 

Problem space The conceptually bound area that the problems which 
are to be solved reside within. 

Python A high-level general purpose computer programming 
language. 

QoS Quality of Service: the performance of a network. 
Metrics include latency, error rate, and ability to achieve 
maximum possible bandwidth use.  

RAG Red Amber Green: a method of rating statements based 
of the concepts of traffic lights.  



PAGE XXIII 

RAM Random Access Memory: the volatile memory that is 
used by computers to temporarily store data. 

Real time This term is used to describe a system that will operate 
with the perception of executing at the same rate as the 
real phenomenon being modelled. 

Real world The physical world that is experienced. 
Requirement A statement detailing what a potential solution is to be 

capable of achieving, or constraining the solution space 
which it is to operate within.  

Runtime engine The computational solver used to execute a code 
written using a specific development environment. It can 
be run separately from the development environment. 

SEIS Systems Engineering In Integrated Simulations: A defined 
process detailed in this work in chapter 3. 

Semantics Relating to models and simulation - The underlying 
meaning of a model or simulation as a result of the 
developer’s viewpoint. The viewpoint includes but is not 
limited to, scale, timing, subject, implementation 
platform etc.  
Relating to linguistics – A branch of linguistics concerned 
with what is meant by the components of a language.  

SESEMS Systems Engineering of Selection of Existing Models and 
Simulations: A defined process detailed in this work in 
chapter 3. 

SI unit The International System of units. Based on the Meter for 
length, Kilogram for mass, Second for time, Ampere for 
electrical current, Kelvin for temperature, Candela for 
luminous intensity and Mole for the amount of a 
substance. All other SI units can be derived from these, 
defined units.  

Simulation A simulation is an experiment which uses a dynamic 
implementation of a mathematical model. 

SOA Service Oriented Architecture: a style of computer 
architecture that uses applications communicating with 
sections of code (services) which are available over a 
network. 

SoI System of Interest: the System that is the focus of work to 
be conducted. 

Specialist A domain expert that has focused on a specific aspect 
of their domain. 

Stakeholder An individual who interacts with the system of interest. 
Standard  Engineering standards documents specify the 

characteristics, technical details, and other aspects that 
are to be met by the systems and process that are 
specified.  

Sub-system A section or component part of the larger system. 
Syntax A set of agreed up on rules, relating to the structure of a 

sentence covering, order of words, phrases and 
punctuation. 



PAGE XXIV 

SysML Systems Modelling Language: a general purpose 
graphical modelling language for specifying, analysing, 
designing, and verifying complex systems. 

System A combination of interacting elements organised to 
achieve one or more stated purposes. 

System being emulated The system that the model or simulation represents the 
behaviour of. 

Systems methods The application of systems thinking to produce a tool 
procedure or process. 

Systems theory 
 

Relates to the philosophy of general systems thinking. 

TCP/IP Transmission Control Protocol / Internet Protocol: The 
transmission protocol which is used for communication 
over the internet.  

Trade off A decision which has to be made with two or more 
desirable objectives where it is impossible to completely 
satisfy both objectives.   

UML Unified Modelling Language: a specification language 
for object modelling. 

US DOD United States Department of Defense: the military 
branch of the United States government. 

User The individual or group that interact with the system of 
interest 

Validation Provides objective evidence that the system of interest, 
when in use, fulfils its stakeholder requirements, achieving 
its intended use in its intended operational environment. 

Variable  A value that is used within a simulation that has the 
potential to change over the duration of the simulation. 

Verification Provides objective evidence that a system or system 
element fulfils its specified system requirements, 
architecture, design and behaviour. 

Viewpoint The perception of a stakeholder or actor based upon 
their world view and life experiences. 

White box understanding A full and detailed understanding of exactly how the 
system operates. 

XML Extensible Markup Language: A machine readable and 
human readable descriptive language that forms part of 
the interoperability standard. 

  



PAGE 1 

 

 

 

1 INTRODUCTION   



PAGE 2 

  



PAGE 3 

1.1 CONTEXT 
This study investigates the application of systems engineering to modelling and 
simulation with special reference to the challenges involved in the integration of 
existing resources. The work will cover the information needed and technologies 
that exist to support the integration task, and in so doing will identify gaps in 
current knowledge and understanding of the topic. An example of a ‘gap’ is the 
future opportunity to automate the process of integration using the methods 
exposed in this thesis section 5. 

As will be seen in later chapters, the systems engineering discipline is being 
applied to real-world phenomena of ever increasing complexity. It therefore 
follows that the models and simulations used to represent these phenomena are 
also becoming more complex. The increasing numbers of elements and their 
inter-relationships makes the integration task all the more difficult. At the same 
time methods and tools used to perform the integration task are becoming more 
specialised to meet the demand for a holistic interpretation with increased 
accuracy. Equally there is a business driver to reduce time to market of 
innovative engineering products. This study responds to these challenges by 
investigating methods that take the complexity indicated above and produce 
ways of integrating models and simulations that respond to the business driver in 
both a timely and purposeful way. This study is sponsored by Jaguar Land Rover, 
as a consequence some of the examples used stem from automotive 
applications including one of the case studies adopted to test out novel 
methods for model and simulation integration.  

Current engineering processes often use virtual simulation as a way to test new 
ideas and designs before physical prototype testing. Virtual prototyping is used 
as it is far cheaper and quicker to test out new ideas than producing resource 
heavy physical prototypes. By reducing the numbers of physical prototypes, 
companies reduce the overall developmental costs of new products or services. 
It is clear from even the most casual glance at engineering literature which has 
been published in the past 20 years, that the use of simulation for testing has 
gathered momentum and become increasingly commonplace. Many large 
Original Equipment Manufacturers (OEMs) are now in the position where they 
have thousands of models that mimic the behaviour of many different parts of 
current and past products. Models and simulations are still costly to produce as 
they require skilled modellers to construct them, specific software, and 
computers capable of executing them.  

Now that organisations have reached the point where the majority of the piece 
parts of their products are simulated, there is the potential to test all of the 
component parts in a monolithic full product test. The prospect of such a test is 
enticing as it may be possible to identify and isolate interactions between 
subsystems that previously had not been perceived as they cross between 



PAGE 4 

departments or development teams. Producing a full system simulation opens up 
the possibility to conduct holistic optimization of constraints.  

Simulation does not just have to be used for testing the design of a system. 
Hardware In the Loop (HIL) has made it possible to push simulation further into the 
development process. It is possible to take real physical prototype components 
and replace sections with simulations. This style of simulation not only brings in real 
world data that the system under test is likely to experience, but also gives the 
engineers a reference point to validate any virtual models that have been 
developed up to this point. In the same way that HIL replaces physical 
components with simulations, HITL (Human In The Loop) replaces any model of 
the human operator with an actual human user/s. This allows for aspects of the 
user experience to be assessed before a full physical prototype is constructed. 

In the recent past the complexity of engineering projects has increased at a 
rapid rate [1]. This growing complexity has been met with an increased growth of 
the complexity of the simulations of the products being designed. To enable 
engineers to produce these detailed models and simulations of specific domains, 
specialist simulation packages have been developed. This is a growing market 
and there are many new software tools being released regularly. These tools add 
variety and further enhance the complexity of any potential integrated solution. 

In many situations, the way in which organisations attempt to cope with the 
increased complexity of the designs and solutions is to take a reductionist 
approach. The result of such an approach increases the number of piece parts. 
This increase then often results in an increase in the number of people working on 
the project. The increase in the number of people working on a single project 
creates further issues relating to shared understanding, organisation, and product 
management and can exacerbate complexity even further. By breaking the 
problem down it also allows the organisation to use COTS (Commercial Off The 
Shelf) technologies. Using COTS allows for sections of the product to be designed 
and produced by third parties. COTS also allows for the organisation to benefit 
from expertise that they do not have in-house. By adding in third parties to the 
design process the support structure of the project also increases in variety. From 
this consideration of current business practices it is clear that any potential 
solution must take into consideration the wider issues of integration such as the 
business practices of modern engineering organisations. 

Traditionally one of the most significant barriers to producing a high fidelity, full 
product simulation has been the computational power required. There are many 
reasons as to why the computational burden is high for such a task and these are 
discussed in section 6.2.10. It is only now with the advances in high performance 
computation that integrated simulations and co-simulations have the real 
potential for more than just the most vital test cases. This possibility stems from the 
significant computational power now available due to reliable distributed 
computing, high performance clusters, and cloud computing.   



PAGE 5 

1.2 SYSTEMS ENGINEERING AND THE PROBLEM SPACE 
The systems engineering aspect of this work uses a multi-disciplinary approach 
which aids in not only understanding the problem space but also supports the 
exploration of potential solutions and respective implementation technologies. 
Throughout this work various established systems engineering methods have 
been used. Additional systems methods have been created and developed as 
part of this work. 

1.2.1 UNDERSTANDING OF THE PROBLEM SPACE 
A critical part of the systems engineering approach is to understand the problem 
situation. The understanding of the problem space is the foundation for all further 
work. Any misconceptions regarding the problem situation can result in sub 
optimal solutions being formulated. It is indeed possible for such misconceptions 
to be the cause of potential solutions to be formulated that do not solve the 
problems that they were intended to.  

For this research, multiple methods have been used to gain the best possible 
understanding of the problem situation and its environment. As this research is 
focused around the implications of using systems engineering, any potential 
solution cannot be domain specific. Any proposed methods are to be 
applicable in many situations across multiple domains. For this reason the 
information used originates from multiple domains so as to allow for a wide net of 
possible solutions to be considered. Within this problem space there are issues 
relating to the effective gathering of accurate information. Despite this, a 
detailed literature review will be conducted that incorporates both white and 
grey literature as well as informal communications with engineers from multiple 
disciplines and domains. 

1.2.2 SOFT SYSTEMS METHODOLOGY 
Soft systems methods focus on human activity systems and have proved 
themselves to be a worthy approach to understand the human perspectives in a 
system. Such successful soft systems method can be found in the literature 
[2].With soft systems methods having been used in similar ‘messy’ situations, some 
of their aspects have been applied as a means to establish a solid foundation of 
understanding of the problem space. This understanding facilitates the 
formulation of meaningful and purposeful aims and objectives. 

1.2.3 RICH PICTURES 
The rich picture was proposed by Peter Checkland as a part of his seven stage 
soft systems methodology [2].The purpose of a rich picture is to present a holistic 
view of the problem situation that can be easily understood by stakeholders. The 
rich picture is a visual representation of an observer’s viewpoint of the problem 
space where they deal with both the physical (hard) issues and the soft issues 
that include the opinions of stakeholders. The rich pictures that were created for 
this problem space can be seen in Figure 1.1. These images were verified by 



PAGE 6 

showing them to engineers currently involved in model and simulation integration 
tasks. Alterations were made to capture the additional information as it became 
apparent during this verification process. 

 

Figure 1.1Rich picture of the problem space.  



PAGE 7 

1.2.4 PROBLEM THEMES 
Once verification of the rich pictures had been established the next stage of 
Checkland’s methodology could be implemented, that is the identification of 
problem themes. The purpose of identifying problem themes is to encapsulate 
aspects of the problem space in a clear, concise manner. The problem themes 
are textual representations of issues that have been taken from the rich pictures. 
Some of the issues in the problem space are not new as in the 1980s, Beer posed 
a research question that remains an open problem,  

“How is it possible for multiple control elements, human or mechanical, 
each one possessing only limited powers of perception, computation and 
action, to achieve the enormous tasks of regulation needed to achieve 
complex purposes, or even any kind of identifiable continuity - that is to 
say, stability - in turbulent, noisy, and sometimes aggressively competitive 
environments?” [3]. 

The problem identified is an element that appears in the problem space of this 
study. 

The problem themes considered here are: 

• Push from management [for high fidelity, full system, testing] 
• Complexity of models and simulations  
• Software environments 
• Model ownership 
• Communication between modellers  
• Will to re-use existing models and simulations 

 
The identified problem themes were verified with the same engineers that 
verified the accuracy and completeness of the information in the rich pictures. 
The engineers agreed that the problem themes were real and indicative of the 
current modelling and simulation domain. These definitions are to be used to 
formulate any potential solution throughout the research.  

  



PAGE 8 

1.3 THE BOUNDS OF THE PROBLEM SPACE 
To define factors that are within and outside the bounds of the research 
consideration is given first to the boundaries of the solution space. A graphical 
representation of the areas under consideration can be seen in Figure 1.2 below. 

 

Figure 1.2: The area of interest for this research cuts across the identified areas of engineering 
projects. 

As shown in Figure 1.2, the area of interest is encompassed within the overall 
umbrella domain of engineering projects, it also crosses through complex 
engineering projects, however predominately largely projects using multiple 
existing models and simulations. Studying the intersection between the identified 
boundaries provide interesting information. With the area of interest identified, 
consideration can be given as to what is within and outside of the bounds of this 
research.  

  



PAGE 9 

1.4 SCOPE OF THE THESIS 
This thesis follows the process of locating and developing technologies to assist 
engineers with the task of integrating existing models and simulations to provide 
a reliable mechanism by which full unit virtual tests can be produced repeatedly. 
A very high level representation of this can be seen in Figure 1.3 below, where a 
bucket of models exists, a selection is made, and the models integrated for the 
purpose of test. 

 

 
 

Figure 1.3: A high level representation of the scope of the research supporting the task of taking a 
bucket of existing models through to an integrated simulation. 

The thesis contains methods that aid the integration engineer, from the desire to 
test a phenomenon through selection, integration, and throughout verification 
and validation. Any technology that is produced is not intended to be a fully 
useable product but rather a proof of concept for application in this domain. 
However any technologies that are produced will be tested with real 
engineering examples. 

  



PAGE 10 

1.5 AIMS AND OBJECTIVES 
Approaching the identified problem space from a systems engineering 
perspective results in a particular viewpoint being formulated.  In this instance by 
using the first stages of Checkland’s methodology, a large proportion of the 
viewpoint can be communicated between individuals. From the Rich Pictures 
and identified problem themes, the aim and objectives for this study were 
constructed.  

1.5.1 AIM 
Provide a complete end to end process for successful, meaningful, and 
purposeful integration of existing models and simulations from a repository.  

1.5.2 OBJECTIVES  
A. Determine the potential of automatic identification of model and 

simulation dependencies, and the respective assumptions encapsulated. 
B. Discern the means by which levels of abstraction can be identified and 

the impact on the task of integration established. 
C. Develop a means by which the generation and creation of middleware 

can be automated. 
D. Validate the designed process with a case study using real world models. 

  



PAGE 11 

1.6 STRUCTURE OF THE THESIS 
This research is considered to be a project in its own right, and as such the way in 
which systems engineering principles are mapped to the chapters of this thesis 
can be seen in Figure 1.4 below. 

 

Figure 1.4: The mapping between the systems method, the structure of this thesis, and the mapping 
to objectives. 

The mapping between the systems method and the thesis structure is not as 
simple as a one-to-one mapping. Both the methods and NLP chapters have 
elements of requirements, architecture, design, and verification. This is due to 
both of these chapters containing distinct sections of work that build from the 
initial understanding. Due to the approach taken, verification occurs in chapters 
where there is a reference point of work that has been created, hence why it is 
mapped to Methods and NLP. Validation is only conducted on the complete 
system in its operational environment, hence why validation is mapped directly 
to Case Studies. The results of the validation also feed into the discussion and 
conclusion chapters. The thesis objectives are also mapped to the thesis structure. 
Each of the objectives maps to two or more sections of the thesis. 

  



PAGE 12 

1.7 OVERVIEW OF CONTRIBUTIONS TO KNOWLEDGE 
The contributions to knowledge in this work are both in the methodological and 
process domains. For an in depth discussion of where each of the contributions 
are addressed see section 7.2.  

The key contributions to knowledge proposed in this work are: 

• A representation of systems thinking usage within an organisation 
• The information needed for meaningful model and simulation 

integration 
• A method of describing the levels of abstraction across a model or 

simulation integration 
• A means by which to verify and validate the integration of two or more 

models or simulations 
• Identification and potential solution to the dislocation between virtual 

modelling simulation testing and classical engineering 
• The identification of requirements for a model and simulation being 

different from the requirements of the system being emulated 
• A complete modelling and simulation requirements writing guide 
• An end-to-end guide for engineers who are tasked with the virtual 

simulation and test of a potential design using existing models and 
simulations 

• Natural Language Processing (NLP) technology has the real potential to 
aid in establishing if two or more models or simulations can be 
meaningfully integrated. 

 

 

  



PAGE 13 

 

 

2 LITERATURE REVIEW OF 
MODELS, SIMULATIONS AND 
THEIR INTEGRATION 

  



PAGE 14 

  



PAGE 15 

2.1 INTRODUCTION  
This Chapter presents a literature review that investigates the challenges of 
model and simulation integration. The key areas that have been investigated are 
as follows. 

• The reasons why models and simulations are used as part of the 
engineering project life cycle. 

• The benefits of using integrated models and simulations as part of an 
engineering project. 

• The methods used for model and simulation integration. 
• The modelling techniques used in engineering and the effects on the 

integration task.  
• How semantics and model assumptions are linked to whether an 

integration is meaningful or not. 
• The challenge of crossing between spatial scales. 
• The current state of communications within engineering projects, the 

forms that communication takes, and the tools that have been 
developed to assist. 

• The current types of modelling and simulation tools that are in common 
use within engineering. 
 

It is recognised that any literature review is essentially incomplete. However, it is 
hoped that the comprehensive nature of what is attempted here satisfies both 
the breadth and depth of background knowledge that is necessary to 
understand the problem space to a sufficient degree that is purposeful to satisfy 
the stated aims and objectives.  

  



PAGE 16 

2.2 THE USE OF SIMULATION 
Simulation is becoming ever more present in the engineering life cycle of 
complex products and services, however it is a time consuming and costly 
endeavour. Most simulations are primarily used to gain an understanding of 
phenomena that form a part of the problem that is being investigated. Hence 
the most common use of modelling and simulation is to investigate the behaviour 
of a potential solution, its environment, or a solution in its intended environment. 
By conducting such activities it is intended that a greater understanding can be 
gained in a more timely and cost effective way than using physical prototype 
testing [4]. In this case physical testing involves conducting tests in the intended 
operational environment, for example data collection of the environment or the 
testing of a potential design in the intended operational environment. Simulation 
has the benefit of allowing for large numbers of factors to be analysed and 
varied with little resource overhead which can be far cheaper than equivalent 
physical testing [5]. Regardless of the means of testing it is intended that the 
additional information will directly impact upon the design of the system being 
created.  

In the automotive industry simulation and virtual testing is often used as part of 
the product design phase of the developmental lifecycle. This virtual testing has 
taken hold in this domain due to today’s competitive market where time and 
cost is at a premium. Simulation allows multiple tests of many potential solutions 
to be conducted in a relatively short time frame, and more critically allows the 
understanding gained to be made while reducing the number of expensive 
prototypes that have to be developed. Bold statements are made in the 
literature such as,  

“Execution speed is roughly 500 times faster than real-time…” [6];  

“…several weeks of engineering time can be performed in a matter of 
hours“ [7].  

Such statements demonstrate not only the physical possibilities of the approach 
but also the verve and confidence that engineers currently place in simulation as 
a design philosophy. Due to these perceived benefits, it is common within the 
automotive industry for each sub-system of the product being developed to be 
simulated before any physical implementation is ever considered.  

2.2.1 HIGH FIDELITY SIMULATION  
The concept of fidelity can be defined as the extent to which the simulation 
output reflects that of the phenomenon that it has been created to represent. 
This definition means that it is a relative term rather than a static scale that all 
models can be held against. The reason to define fidelity in this way is to assure 
that as a simulation progresses, the concepts that are discussed are not lost 



PAGE 17 

within the semantics of specific simulations and where they fit on a static scale of 
fidelity.  

The idea behind using high fidelity simulation is to produce a simulation that uses 
a detailed understanding of the exact ways in which the phenomenon being 
simulated operates and to replicate this behaviour as closely as possible in an 
attempt to make the results of the simulation match the real world. This however 
is not necessarily as straightforward as it may first seem.  

As time progresses and our understanding of the ways in which the universe 
works improves, so too can our simulations of it. Hence as time progresses what 
once were considered high fidelity simulations may not now be. In practice, this 
may appear as older work being considered as inaccurate or of a lower fidelity 
than what can now be produced. As organisations often do not openly share all 
of their knowledge relating to the modelling and simulation of phenomena, 
situations can occur where organisational understanding of specific situations 
are different. Hence what they consider to be a high fidelity simulation regarding 
specific phenomena is also different. This results in the term ‘high fidelity‘ having a 
different meaning across domains but also a term that has a changing definition 
across organisations within the same domain.  

From the literature various factors are alluded to when considering the fidelity of 
a model or simulation. The recurring trade-offs that have been identified for 
consideration include: 

• Time to develop the simulation 
• Tools available to conduct the simulation  
• Current understanding of the phenomena  
• Mathematical methods for mimicking the phenomena 
• Run time of the final simulation 
• Skills available within the organisation to produce such a simulation. 

 
Due to the added investment in resources to successfully implement a high 
(rather than low) fidelity simulation, there is a question as to why an engineer 
would invest in the resources to create such a simulation. There is a trend for high 
fidelity simulations to be conducted on parts of the system being designed where 
current understanding does not allow for engineering judgement to bolster the 
results of low fidelity simulations. Alternatively, high fidelity models are used in 
situations where low fidelity models do not give the granularity of information that 
is needed for meaningful decisions to be made about the system being 
designed.  

There are many teams of people working on means by which high fidelity 
simulations can be integrated and run as co-simulations. The reasons given as to 
why they wish to conduct high fidelity simulations vary from greater accuracy of 
simulating interconnected but mechanically different components [8], to 



PAGE 18 

attempting to represent the behaviour of complex systems as a whole by 
modelling their component parts [9]. However, the common goal of all teams is 
to gain information. 

The prospect of high fidelity simulations integration leads to the possibility for 
unknown interactions to be captured earlier in the design phase rather than 
waiting to find the issues later using resource heavy physical prototypes. This task 
looks to have the prospect of going further, making it possible to produce high 
fidelity simulations for all of the component parts of a vehicle [10]. This is a 
potential that requires many aspects to fall into line, including modelling methods, 
hardware, and software. On a more fundamental level, it will require a change in 
the way in which engineers approach modelling, simulation, and their testing. 

From the grey literature there are many software tools that are being specifically 
designed for high fidelity modelling of specific situations. For example ANSYS is a 
general purpose high fidelity modelling and simulation tool [11] which has been 
developed specifically for simulating pumps [12]. Such tools are becoming more 
widespread, which can be used as evidence to infer their level of demand and 
use.  

Topics regarding the integration of high fidelity modelling and simulation for co-
simulation are currently either ignored or are only mentioned in passing. If any 
mentions or claims are made in the literature then evidence is not given to 
substantiate them. This void indicates that it is not currently possible, or that the 
competitive advantage of such a capability has been recognised and 
companies do not wish to publicise their capabilities. Either way this shows that 
this area is suitable for further research. 

2.2.2 THE PARTS BEING INTEGRATED  
There are many component parts of models and simulations which could 
potentially be integrated. Within the literature there are references to utilising the 
whole simulation, however such examples tend to be more apparent in the grey 
literature with tool vendors displaying case studies, such as Mentor Graphics 
when publicising their Flowmaster tool (the co-simulation of engine cooling 
systems) [13]. However the academic literature is more wary with consideration 
being given to the use of only some parts of existing models [14]. Bartholet [13] 
indicates that there are many component parts of a simulation that could be 
eligible for integration, from sections of code through to whole simulations.  

  



PAGE 19 

2.3 CURRENT APPROACHES TO THE INTEGRATION OF MODELS 
AND SIMULATIONS 

The concept of integrating models and simulations is not a new one, neither are 
the challenges of integrating existing models. Existing methods have been 
developed to help cope with the complexity of the integration task. The 
challenges are covered in detail in 0 and 2.6. However it is worth noting that 
there are only limited current methods of coping with the task of selecting 
possible components from a bank of existing models. Even this task has been 
found to be nowhere near as simple to conduct on a computer as it may at first 
seem. Work conducted in 2005 by Bartholet and colleagues used formal logic to 
prove that  

“Even with the existence of an oracle that can in one step determine 
which objectives have been met by any component or set of 
components, component selection alone has been shown to be NP-
Complete”[15].  

This is an important piece of information as if the problem is NP-Complete we do 
not have sufficient methods or computational power to solve it in a timely 
manner. This is potentially why the majority of the current methods ignore the 
selection process and give no assurance of semantic integration, but rather 
focus around the interconnection and data transfer between component parts. 
Such existing integration methods rely on engineering or scientific judgement to 
overcome these semantic issues rather than using automated computational 
processes.  

There are issues relating to searching for tools and technologies that either 
conduct or facilitate the integration of models and simulations due to the lack of 
common terms between the technologies. From each engineering or scientific 
domain there is a different vocabulary that is used to describe the modelling 
concepts that they use. These tools and techniques can be called anything from 
‘simulation re-use’ to ‘high level architectures’. Searching for potential solutions 
means investigating different domains, from looking at modelling forest fires [16] 
to the addition of NATO viewpoints to US DOD architectures [17]. 

There are COTS integration software packages available to engineers, however 
due to the domain in which the author works any current or potential future 
capabilities of any COTS integration tool will not be explicitly discussed in this 
work. Generalisations, however, regarding the market offerings are identified. The 
available tools often fall into two broad categories; the first act as an 
orchestration engine such as Dassault Systemes application Isight [8]; and the 
second style is one built from the ground up for a specific type of analysis, such 
as Engin softs modeFRONTIER [18], which was designed primarily for multi 
objective optimisation. Regardless of if the tool was intended for general purpose 
integration and co-simulation, or for a specific purpose, many of these tools have 



PAGE 20 

specific limitations regarding what they are capable of handling. Such limitations 
include but are not limited to: the number of potential component parts; the 
development environment or tool that was used to create the component part; 
the specific version of the package that was used to create the component part; 
and the communication protocols that can be used. The most significant issue 
with current COTS integration tools is that they give little to no assistance to aid in 
discerning if it is meaningful to connect two or more models or simulations. 

By casting the search as wide as possible, an attempt was made to capture as 
many methods as possible, finding common themes, and asserting current state 
of art for model and simulation integration. From this investigation it has been 
found that there is a significant disconnect between academic studies and 
engineering practitioners. On the most part the academic literature makes bold 
claims about the capabilities of proposed methods and tools, however in 
practice these methods are either largely ignored (for a variety of reasons) or 
they only work in an impractically constrained problem space. However all is not 
lost for engineers working in this domain; there are instances where engineering 
tools have proved sufficient flexibility to allow for limited point-to-point integration. 
This does not mean that all of the academic literature has been disregarded in 
this study rather that each technology is commented upon for its suitability for 
the specified problem space based on the results of their use in real world 
situations. 

With the ever decreasing cost per calculation and increasing overall 
computational power available to engineers, how to best use this capability in 
the product life cycle is a question yet to be answered. There is very little 
literature other than that produced by tool vendors that covers practical advice 
as to how to go about integrating models and simulations. Even less evidence is 
available to guide an engineer from conception through to testing as a 
complete end-to-end guide.   

2.3.1 CURRENT INTEGRATION METHODS 
At present there is no automated means by which models created in disparate 
environments can be integrated. There are some limited parts of the integration 
process that have been automated with success. The difficulties in integration of 
existing models and simulations in practice are covered later, see section 2.4. 
However at this stage it is worth noting that the ways in which some of the 
modelling and simulation packages are constructed make it impossible to 
integrate them with any other environment [14], or in some cases even other 
instances within the same environment. This is due to the way in which the 
software is constructed, there is no way of accessing the values that they use or 
produce via programming. Though such modelling and simulation environments 
are becoming increasingly rare, they still warrant a mention here. 

Due to the difficulties faced when integrating models and simulations, instances 
where automation is demonstrated either only focus on the data handling 



PAGE 21 

between component parts or they use model and simulation components that 
have been purpose built to be flexible with their IO and use a strict standard to 
reduce semantic issues. To reduce the difficulty of such automated integration 
they only use a constricted problem space. Many of the automated examples 
recognise that the solution may be sub-optimal for reasons discussed in section 
2.6. The factors are not representative of the problem space that is defined in 
section 1.2.1. Such examples are not of concern to this work.  

The implementation section has to be separated from the approach section to 
ensure that there is a clear distinction between the overarching way in which the 
model and simulation integration is being implemented and the details of each 
individual problem that have to be overcome when integrating two or more 
models or simulations, for such information section 2.4. 

There are two common methods that are employed to aid in the manual 
integration of components: manually defined integration of models; and, 
simulations where an engineer specifies which component parts are to be 
connected, in what order, how they communicate; the orchestration of 
execution is often implemented in one of two ways that are discussed below.  

The first commonly used method is the use of bespoke middleware to act as a 
means of communication between two or more models. Middleware code acts 
as a means of communication and can also be a way to orchestrate execution. 
The code for the middleware may be written in the development environment of 
one of the models being integrated [17] or in a completely unrelated 
environment using a completely different language and/or interface. 

 

Figure 2.1 A representation of middleware between two models 

In essence the middleware process involves finding a way to get the models and 
simulations to output data to an accessible port as well as receive data from 
external sources and daisy chain them together. A simple example of this can be 
seen in Figure 2.1. The middleware code sits between the two models and acts 
as an interface. Data A may contain the same information as Data B but in a 



PAGE 22 

different format be that via a data transform or otherwise; the same goes for 
Data D and Data C. This can be easier said than done as not all tools have a 
means by which a programmer can access the variables and parameters in a 
desirable form, if at all. If using existing models or simulations with this method it 
may involve a considerable amount of re-work of the model and simulation to 
get them to a point where the necessary information is accessible (see section 
2.4.2 for challenges of variable accesses during run time). 

Middleware is used and demonstrated extensively throughout the literature; the 
technology is at a maturity where it has been widely commercialised. Some 
COTS middleware has been specifically designed to operate with two clearly 
defined software packages [13]. Others attempt to be more general in their 
approach by having multiple packages that they can aid in the communication 
between the component parts [8]. There are strengths and weaknesses in having 
integration middleware tools that can support multiple simulation environments. 
One of the most significant criticisms of such flexible methods is that they enable 
users to connect variables without knowing if such a connection is meaningful. 
However this argument can be used about any model or simulation integration. 
A limited integration tool has the advantage by only allowing the user to 
connect particular parts together hence reducing the likelihood of erroneous 
connection as well as reducing the number of potential instances where the 
middleware tool would be of use. One of the most significant weaknesses of 
middleware is that when purchasing a tool there is no absolute guarantee that it 
will continue to support all future and past versions of the modelling and 
simulation tools with which it communicates. Many tool vendors release new 
versions of their tools on a regular basis and only continue to support a few 
previous versions. Such factors have to be taken into consideration when 
selecting tools to use throughout the lifecycle of the project, as well as in the long 
term from an organisational perspective, considering that projects can run for 
many years. 

Middleware can take both an active and passive role during the execution of 
the integrated solution. A passive role is considered as purely handling the 
communication between the constituent parts of the integrated solution relying 
on the internal capabilities of the component parts to handle any orchestration 
and analysis. The conversion of data types and the potential to change the 
format for communication is still considered in this classification to be a passive 
role, whereas active middleware can go as far as having its own mathematical 
solvers external to any of the simulation component parts. Some middleware 
tools also offer analytic capabilities to monitor performance of the component 
parts and the communication between them during run time execution.    

In some cases, a limited loose form of integration is possible, even if there is no 
means of integrating the environments which the component parts are 
constructed within. Such loose methods are possible by using intermediate files 
that are written to by one component and read from by another. This allows for 



PAGE 23 

an indirect communication between environments that otherwise share no 
common means of communication. This method works for processes in which the 
models or simulations either run sequentially or have a relationship that allows for 
a relay in passing between environments between time steps. However 
producing middleware for orchestrating such communications is far from simple. 
Instances where such approaches are used produce an output that is brittle, 
meaning any changes to the component parts can have dire consequences to 
the analysis as a whole. 

The second commonly used method for integrating models and simulations is to 
import one model or simulation into another. This can be relatively 
straightforward (from a communication stand point) in the instance where all of 
the components were created using models or simulations from the same 
development environment. However this approach is far from straightforward if 
the models or simulations do not share the same development environment or 
even the same versions of the same environment. Making one model or 
simulation run in a different run time or development environment that it was 
created in is considered to be a model interchange. Some tools have the ability 
to import sections of code from other development environments. It is common 
that the native functions of one tool will only support a specific subset of another 
tool for a very specific version and even down to a specific set up. When issues 
arise with such interchange and exchange issues it can require both tool vendors 
making changes to their code allowing the two environments to exchange code. 
FMI is a standard that is gaining popularity amongst simulation packages for 
specifying model exchange [19], FMI is covered in more detail in section 2.3.3. A 
simple representation of the principle of running one model or simulation in 
another execution environment can be seen in Figure 2.2 below. The purpose of 
the execution environment wrapper is to transform the data that pass through 
and ensure that these data are in a usable form for its destination. This means 
that in Figure 2.2, Data A will have the same information as Data B but it may be 
in a different form, the same goes for Data D and Data C. It is poignant to note 
that despite Model 2 being within the execution environment, it may be running 
in its own environment and the Model 1 environment is calling the Model 2 
environment as and when it is needed. 



PAGE 24 

 

Figure 2.2 One model running in another models execution environment 

Having one environment running code from another does not necessarily negate 
the issues of needing the programs installed on the machine that is running the 
simulation. Many development environments have a ‘runtime engine’ that 
generates the necessary information to run the simulations during execution. 
They handle configurations, schedules, mathematical solvers, data management 
and other operations [20]. The exact functionality of runtime engines of each tool 
is not widely publicised as they often form the majority of the innovation and 
hence competitive advantage that a simulation tool possesses. Simulation code 
may call a specific function that only the environment it was created in has and 
the relevant runtime engine can handle. Hence to run the model or simulation it 
will require the run time engine installed on the machine to run without 
exceptions. This can be the case for compiled code or dll files. Hence it may be 
necessary for multiple run time engines to be installed on a single machine, or for 
the runtime engines to be available over a network for an integrated solution to 
execute. If the simulation is to be distributed across a network, then the task of 
assuring that the machine that is running the code has access to the appropriate 
run time engines has to be taken into consideration. The considerations of run 
time environments and how to get the modelling and simulation tools to 
communicate adds another layer of complexity when considering the 
integration of models developed at different times using different software. 

The issues of model exchange are such that there are active projects such as 
those at NIST (US National Institute of Standards and Technology) where the issue 
of model exchange is investigated and the claims of tool manufacturers tested. 
An example of this is the work being conducted with the leading UML tools 
currently available. A formal model checker with specific inputs has been 
developed [21]. The checker requires the tools from various manufacturers to 
produce standard models. These models are checked against a standard source 
file model which is defined by OMG standards. Issues remain with all of the major 



PAGE 25 

tools tested. With the secrecy of how the tools work it can be difficult for tool 
manufacturers to get their tool to behave exactly the same way as another with 
the same inputs. From talks with engineering practitioners a repeated theme 
became evident;  when an organisation is looking to integrate their models from 
different environments using the approach of importing code from one 
environment into another it can be a somewhat of a ‘suck it and see’ approach 
to see if the integration will be successful or not. Interestingly this is a topic that is 
not widely reported in literature. 

Using either dedicated middleware or importing code from one environment to 
another are both currently labour intensive and have a considerable margin for 
both human and machine based error. This also highlights the issues of finding 
where errors arise during validation. The question becomes one of ‘are the errors 
originating in the component parts, the way they are integrated, or the 
communication between them?’ Without experienced users of the individual 
components it can be difficult to tell if there are any errors in the first place. If an 
error is detected it can be difficult to locate the source and often relies on 
engineering judgement, intuition, luck, or a mixture of all three. The two 
integration methods presented are currently used in both industry and academia, 
which indicates that they are at present the most preferable means of 
conducting model and simulation integration. Both approaches have been 
made to work and produce integrated simulations and have produced useable 
meaningful outputs. 

The custom written middleware approach has the flexibility to be manipulated to 
integrate nearly any possible simulation or model, if the integration is meaningful 
or not is another matter (see section 2.6 for more detail regarding meaningful 
integration). This almost infinite flexibility means that this approach initially seems 
to be an attractive solution to the integration problem. Wrappers can be used to 
make multiple models or simulations all appear to each other as having 
everything in the correct form for communication which is a simplified version of 
how the FMI standard proposes a form of integration [22]. With FMI being 
adopted by many existing tools it allows for engineers to continue to use the tools 
that they are already trained and experienced in using. This reduces the 
disruption to an organisation which increases the likelihood of it being adopted. 
This does not eliminate the need for an integration engineer, however it does 
reduce the need for a specialist tool coder. Having all of the code in one 
environment allows for an ad hoc standard to be enforced due to the nature of 
putting the entire model in one environment. When integrating two or more 
models or simulations it may be necessary to introduce controls as to what 
component parts execute and in what order. Some tools such as Isight [8] have 
this additional functionality. However if custom bespoke middleware is used then, 
significant time and effort has to be invested to create the functions and verify 
that they behave as intended by those who selected them for use. 



PAGE 26 

Irrespective of which of these methods are used, an architecture for the desired 
integrated simulation has to be in place before work is conducted. If an 
architectural pattern is not formulated and rigidly implemented, then the 
combined model can quickly become unmanageable due to the sheer number 
of interactions, not to mention the complexity of specific integrations. Having 
such a disorganised implementation can cause issues with determinism of the 
simulation, resulting in the confidence of the output of the simulation being 
negatively affected. 

The current approaches take considerable time and effort for each individual 
integration task. One of the key areas that integration tool vendors focus upon in 
their marketing is the manual specification of the communication between 
elements, and the specification of the data used is a time consuming task [8], 
[13]. Even if this task is taken care of by a tool, the user still has to manually 
specify the IO connections between the component parts. Due to the current 
nature of the integration approaches the work is unlikely to be re-used for 
another project due to the resultant fragility of the point-to-point custom 
integrations.  

Due to the way in which the development and execution environments are 
produced means that there can be integration problems not only with the 
different development environments in which each part is constructed but also 
with the different versions of the same development environments. The issue of 
versions of the same tool not working in harmony with each other results in further 
issues about using existing code. If existing code from past projects is considered 
for use it can require significant time and effort to bring the old code up to the 
version currently being used by the project. In some cases this is not possible 
without a complete re-write. The issue of versions of software is such that it is 
widely recommended within software-centric projects that specific versions of 
the programs and languages used are held constant throughout the entire 
course of the project. With engineering projects becoming ever more software-
centric, specifying software versions is becoming as applicable to engineering 
projects as it is to software development. Variations in software versions have 
wider implications as it means that if a company wishes to integrate code from 
multiple departments then all developers have to have the same development 
environment with exactly the same version. This is not a trivial business or IT 
support task. On the other hand by using one development environment for full 
unit testing produces a single point of failure. If only one environment is used it 
can become difficult to mitigate any circumstance where the environment 
becomes unusable for any reason, for example if the software company who 
support it goes out of business.  

Using a single environment for all of the code often means that there has to be a 
trade off with the functionality of the model or simulation as currently no one tool 
has all of the functionality that is required for an optimal, single simulation of 
modern complex systems. To increase the usage of their tools, vendors have 



PAGE 27 

attempted to make sections of their tools accessible to other tools through 
Application Programing Interfaces (APIs). However getting two such tools 
working in harmony is not easy and has weaknesses such as ensuring the use of 
specific versions (as above) or when only specific libraries or a subset thereof are 
used. 

There is a current drive in industry to find a means of running simulations over a 
network to take advantage of high performance parallel computing. This task is 
more suited to the use of middleware with a higher level architecture (not 
necessarily HLA) sitting above it. At present efforts are being made to implement 
such an idea using federated systems, see section 2.4.4 for more details. 

With the methods presented so far there is the problem of how to handle a 
situation where there is a change. Often in a complex design there are changes 
in requirements throughout the project life cycle. A change in system design will 
have an impact on the requirements for the simulation and hence to the 
requirements of the component simulation parts. Such change means that the 
supporting integration code may also have to change. The result of a 
requirement change could be something trivial or it could mean that whole 
sections of the simulation have to be re-written. The flexibility of a simulation to 
change is directly affected by the means by which it has been implemented. 
The methods discussed here suffer from the potential to produce a very brittle 
integration, meaning any changes require considerable work to implement. 
Some of these issues can be limited by implementing a strict architecture (see 
section 2.4.5) or a strict standard (see section 2.3.3) to specify the interfaces 
which mean changes do not require the interface to be re-specified each time. 
Even with such methods, implementing both approaches has significant 
challenges such as to keep track of changes in the requirements and which 
model relates to which integration implementation.  

One of the reoccurring features of the tools that engineers currently use for 
integrating models and simulations, such as MATLAB [23], Isight [8], and TestStand 
[24], is that they have a means of communicating internally. They are designed 
to aid communication with other environments though the user has to configure 
any external calls manually. Such manual configuration requires significant 
understanding of the component models or simulations, what each port 
represents, as well as how the data are composed. 

There is a significant gap in the literature regarding these methods that concerns 
the way of ensuring the semantic similarity between the component models and 
simulations that are being integrated. Conveniently the issues of ensuring that the 
integration is meaningful is not mentioned in the supporting literature or it is 
dismissed as being outside of their research concern. For more information 
relating to the semantic issues see section 2.6. 



PAGE 28 

2.3.2 EVALUATION OF THE INTEGRATION APPROACHES 
These approaches to integration are not without their shortcomings. Without 
careful planning such approaches can have significant issues throughout the rest 
of the lifecycle. The high degree of flexibility that comes from the bespoke nature 
of the integration using custom middleware initially looked promising, however 
the further a project develops, both in size and maturity, the more of a challenge 
management of the integration becomes. Putting all of the code into one 
development environment can solve a large proportion of the issues. However 
this approach can become unmaintainable as projects grow due to limitations 
of the possible component capabilities, and long term support of ever changing 
software. These approaches clearly have strengths and weaknesses however 
there is considerable room for improvement. The areas which have been 
identified from the literature for potential improvements are: organisation of 
middleware, long term software usage planning, guidance to those who are 
undertaking the task, any automated assistance to the integration task, and 
semantic assistance for connections. 

2.3.3 THE ROLE OF STANDARDS IN INTEGRATION 
One proposed means by which the complexity of the integration task can be 
reduced is the application of a standard. In essence a standard attempts to 
make aspects of a system adhere to a pre-determined format. The ISO 
organisation defines a standard as 

 “A document that provides requirements, specifications, guidelines or 
characteristics that can be used consistently to ensure that materials, 
products, processes and services are fit for their purpose.”[25]  

When such an idea is applied to the model and simulation integration task they 
often focus on requiring that the interface of the model or simulation is specified 
and the internal workings conform to a set of specified constraints. One of the 
key areas where standards are used is in an attempt to enable models and 
simulations developed in isolation to integrate with each other.  

Within the defined problem space (see section 1.3) there is no single common 
standard that covers it all. In isolated areas of the problem space there are 
standards that are used, for example: FMI, DDS, ISO 15288, ISO 15926-2, and ISO 
42030. The work that proposes the use and benefit of such standards also often 
proposes the use of higher level architectures such as HLA, DDS, SOA, MODAF, or 
DODAF. As such, higher level architectures require uniformity for them to 
successfully operate. From the identified standards only FMI was specifically 
designed for model and simulation integration, more can be found on this in 
section. 

It is not uncommon within large projects for a sub-system team to use a standard 
for their section of work while other standards are used elsewhere in the system 
lifecycle. Producing a single standard that could capture all of the work that 



PAGE 29 

needs to be conducted through a product lifecycle is far from a trivial task. Such 
a single standard would not only have to cross multiple scales and domains while 
still remaining useable, but also be relevant to many possible solutions. There is 
also the challenge of balancing the level of specification, if too much is specified 
it restricts the potential solution space, while too little specification the standard 
loses its effectiveness.   

Due to the established nature of many industries and the economic pressures 
that they face, enforcing a standard retrospectively is not only unreasonable but 
is also in some cases impossible. This is due to the vast number of components, 
the sparse or undetailed nature of any available existing documentation. This 
investment is further increased if the structure of the model has to be changed to 
make it complicit with a standard. Such re-work alterations can be resource 
heavy and hence should be avoided where possible.  

Functional Mock-up Interface 
A standard that is gaining traction within the model and simulation community is 
FMI. This standard is a tool independent standard that supports co-simulation and 
also model exchange [22]. FMI is a relatively new standard and currently there 
are two versions: the first was published in 2010; and the second version in 2014. 
There are currently 80 tools that have some capabilities of FMI version one and 42 
tools that have some capabilities of FMI version two [26]. This indicates that tool 
vendors are taking this standard seriously and are investing in making their tools 
compliant. 

FMI is structured with two purposes in mind, model exchange and co-simulation. 
In this context model exchange is considered to be the generation of code in 
one tool and executing it in another. Whereas co-simulation is when two or more 
simulations are run with their own independent mathematical solvers, but share 
data across communication ports during execution, it is worth noting that FMI 
does not specify any algorithms to orchestrate the co-simulation execution, this is 
for the user to specify. It is also intended that all post processing is conducted in 
the individual component tools. The way that FMI suggests managing the 
variation between specific tools is to use the standardised ‘C’ language 
functions to form a wrapper. The C language was chosen as they consider it to 
be the most portable across all platforms. An XML file accompanies the C file 
and describes the interfaces and accessible variables. Having such a machine 
readable file allows for different tools to handle the data structures as they wish, 
enabling the use of multiple tools. 

The FMI standard uses the concept of FMUs (Functional Mock-up Unit). These are 
functioning parts of models and simulations that comply with the FMI standard 
that may or may not need an external mathematical solver to operate. The 
purpose of FMUs is to have component parts that will interface without 
implementation issues. The C wrapper includes not just the interfaces to the 
model but also any required run-time libraries used in the model as well as any 



PAGE 30 

binaries for Windows or Linux machines. It is intended that the exact tool and 
even operating system that is used to develop the FMU should not affect the 
interface. This is an attempt to take a significant element of variation out of the 
integration. This communication is also intended to extend to ensure that the 
processor that is used to compute the simulation. FMUs can be generated 
manually or automatically using specific modelling environments. Not all tools 
which advertise that they have FMI capabilities are fully complicit which can be 
seen from the FMI organisations own testing [26]. Anecdotally some practitioners 
say that tool compliance is currently the greatest challenge of using FMI in 
practice. 

A key area of the FMI standard that is of interest to this research is the information 
that is captured about the FMUs in regard to the model description. It is a 
detailed description that covers not only the interfaces but also other aspects 
that are required for successful integration. 

The means by which the units of the data which are to be communicated are 
defined is of specific interest. The units are defined based on a unique name, 
how they relate to SI units. There is also functionality for the potential for use of 
conversion factors and offsets. FMI however only allows a set of standard data 
types available in a defined set of C to be used to represent this information. This 
is an instance of a standard being both strict and still having flexibility in a specific 
area. Along with each value available not only is the unit documented but also 
the computation type that is used to capture it in the simulation within FMI. This in 
essence allows for all values of any simulation to be identified and quantified. The 
defined subset of C is the only language available due to the C wrappers that 
are used for the FMUs. Aspects of the model structure are captured including all 
outputs of the model, a list of all exposed state derivatives, and all initial 
unknowns at the start of the simulation. The standard identifies when integrating 
FMUs can be useful to have a default experiment set up for all of the values 
available at the interface, as well as: start time, stop time, tolerances, and 
preferred communication step size. If any of these properties are outside the 
boundaries which the designer specifies, the validity of the FMU’s output could 
be brought into question. There is also a place for the capture of the tool that 
was used to create the FMU as well as vendor annotations. It is worth nothing that 
not all of the FMI model descriptions are mandatory and many of the values are 
indeed optional.  

Model exchange using FMI is enabled by specifying models that use differential 
algebraic discrete time equations. It is intended that FMI for model exchange 
can be used to port models between different modelling environments as well as 
to embedded control systems. Using FMI for model exchange is intended to 
capture models that consist of ordinary differential equations, or discrete time 
equations. This is only a small subset of all of the possible ways in which 
phenomena can be represented, hence this is only suitable for a constrained set 
of problems as part of the FMI standard documentation. The issues of algebraic 



PAGE 31 

loops are discussed, this is where there can be dependences between different 
component parts of simulations that rely on values from another simulation 
component. It can become a self-referential loop where there is no clear starting 
point. Components being dependent on values from other components can be 
a powerful way of calculating complex behaviours, however there are 
additional complications such as algebraic loops. 

For co-simulation, FMI is intended to aid in the coupling of two or more 
simulations. FMI utilises the concept of master and slave for orchestrating 
execution of the simulation. FMI defines the interface routines for the 
communication between the component parts. By specifying the 
communication combined with the way in which FMI for co-simulation is 
structured enables the user to conduct co-simulation within a single execution 
environment, between two or more instances and even distributed across a 
network. FMI for co-simulation relies heavily on complicit development and 
execution environments. By taking this approach it is possible to take advantage 
of the powerful simulation environments that are available for domain specific 
situations. This allows engineers to capitalise on the properties of co-simulation 
without compromising on the mathematical solvers that are tailored to the 
specific phenomenon that they are investigating.  

As a technology for the integration of models and simulations FMI shows real 
promise and has demonstrated there is a real commercial demand for tools to 
seamlessly integrate. However due to the nature of the way in which it has to be 
implemented its success is in the hands of the tool vendors. If the tool vendors 
implement the interfaces and auto code generation then it has the potential to 
become a viable tool for large complex projects. However at present it only 
works with a small subset of the overall potential methods for the modelling and 
simulation of phenomena and even then there are issues that need to be 
overcome. The models that are to be integrated using FMI also have to abide to 
the standard and dependent on the individual model as with making any model 
comply with a standard re-work may be required.  

BS ISO/ICE/IEEE 29148:2011 Systems and software engineering – Life Cycle 
Processes – Requirements Engineering  
This standard specifies processes to guide the engineering of requirements for 
systems through the system lifecycle. It brings together the standards ISO /IE 
12207:2008 and ISO/IEC 15255-2008 and gives guidance on how requirements 
are to be implemented. The standard is intended to be a general purpose guide 
used for physical and virtual systems as well as services. It is also intended to scale 
with the project and be capable of being equally of use for large complex 
systems as it is for smaller ones.  

The standard takes the user from the recognition of there being a need for a 
system through, elicitation, capture, what requirements should contain, and on 
to how to use them for the verification and validation task.  



PAGE 32 

The standard specifies the forms in which a textual requirement is to take. If 
adhered to it reduces the variation and has the potential to simplify the 
requirements statement structure and thus reduce ambiguity. The syntax of 
textual requirements is specified in Figure 2.3 below. 

[Condition][Subject][Action][Object][Constraint] 
Example: when signal x is received [Condition], the system [Subject] shall set 
[Action] the signal x received bit [Object] within 2 seconds [Constraint]. 

Or 
[Condition][Action or Constraint][Value] 

Example: At sea state 1 [Condition], the Radar System shall detect targets at 
ranges out to [Action or Constraint] 100 nautical miles [Value].  

Or 
[Subject][Action][Value] 

Example: The invoice System [Subject], shall display pending customer invoices 
[Action] in ascending order [Value] in which invoices are to be paid. 

Figure 2.3 The ISO/IEC/IEEE example of required syntax of textual requirements[27] 

When considering the automation of requirements manipulation and analysis 
having such a strict standard significantly reduces the complexity of the task.  

Of particular interest to this research is the information that it specifies as 
necessary for functions or programs that are intended to be a component part in 
a larger system. The following topics are identified: communication interface, 
memory constraints, operations, site adaption requirements, product functions, 
limitations, assumptions and dependences, external interfaces, functions, 
performance requirements, and software system attributes. This covers the basis 
of what is needed for a software component part of a larger system, however it is 
not intended specifically for modelling and simulation systems and so does not 
have the specifics that need to be considered for use in that domain. A relevant 
and significant part of the standard is that these requirements are intended for 
new systems that are being designed and not necessarily for attempting to use 
existing component parts. There is the train of thought that there is no difference 
between the use of existing and new components to satisfy requirements, 
however this would depend on how the requirements are to be used in the 
project. If the requirements are to be used for selection purposes then there may 
need to be further specification than this standard details.  

The application of this standard in the problem space, as defined in section 1.3, 
could be of some use as it would ensure homogeneity across all requirements 
that are used. However this standard is only concerned with the structure and 
content of requirements and does not give a usable structure for validation or 
verification testing. 

THE APPLICATION OF STANDARDS IN PRACTICE 
There is an issue with the use of standards that is not frequently discussed in the 
academic literature but does appear more frequently in less formal publications: 
it is whether the use of standards is purposeful in practice. It is clear there are 



PAGE 33 

standards for almost all engineering processes. However how many are actually 
adhered to in practice is a question that is difficult to answer. There are very few 
articles that have anything negative to say about standards and their use in 
engineering. However there is a view that proposes that standards alone are not 
enough to guarantee end-to-end interoperability [28]. Here they step through 
many reasons why standards in their current form are insufficient, such as vendors 
adding extensions to maintain competitive advantage, standards not fitting with 
organisational structure, inappropriate application of standards, conflicting 
standards (if using more than one), over flexible and unwieldy, inflexible to meet 
situation. This indicates that the application of a standard is not always 
straightforward as it first seems and the motives of all concerned with the 
standards used may not be allied with the project that it is being applied to.   

On a non-peer reviewed blog, one author refers to coding standards as unicorns 
[29] as they are mythical beings that people have heard of but never seen in 
reality. This article has been cited in many times as being a realistic 
representation of writing computer code on a large project. Such comments 
would not make it into a high quality publication, however this does not lessen 
the validity of the observation, and due to its un-sanitised representation may 
reflect the situation that many practitioners face but do not feel that they can 
report or publish. Such publications are indications that standards may not be as 
easy to implement in practice as the main stream literature reports. This is an 
example of where main stream literature may be disconnected from real-world 
practice. 

  



PAGE 34 

2.4 IMPLEMENTING INTEGRATION OF MODEL AND 
SIMULATIONS 

The desire to get component parts of a software-based system to be integrated 
is not novel, and in the literature there are numerous ways in which this has been 
achieved. However many of the methods were not specifically designed with 
the application of model and simulation integration in mind. This has resulted in a 
situation where research has been conducted to see what is the most effective 
means of implementing model and simulation integration. There is a distinction 
between the approach that is taken to integration as discussed in section 2.3 
and this section which is concerned with how the method is implemented.  

A consideration that has to be taken into account when assessing integration 
implementation technologies is their suitability to operate over a distributed 
network. Having the ability to distribute the computation of the component 
simulation parts allows for simulations that would otherwise require the use of a 
high performance computer; lower cost; or dummy components (see [30] for 
more information on running dummy components during simulations),HIL or HITL 
experiments. For this problem space five technologies have been identified from 
the literature and show varying amounts of promise for this problem space. All 
have been documented as being used for the purpose of model and simulation 
integration. A specific HLA method DDS has been developed further than the 
basic concept of HLA and is discussed separately from the core HLA concept. 
Hence five technologies and the six methods have been evaluated: 

• Data sharing 
• Variable sharing 
• Middleware 
• Federated simulations 
• High-level architecture  
• Data distributed Service  

2.4.1 DATA SHARING 
The simplest form of integration implementation is the sharing of data between 
two or more models or simulations. This often takes the form of the output of one 
model being the input to another. This can be done as a continuous or post-
process mechanism. A representation of this form of integration can be seen in 
Figure 2.4. This means that integration can become complex and difficult to 
follow especially if the two models are sharing data in a bi-directional form. 



PAGE 35 

 

Figure 2.4 Data share integration between two or more models and simulations. The dotted line 
denotes the potential for further models to be integrated. 

Data sharing requires both models to use the same data type, and for semantic 
information to be the same in both models. This requires a detailed architecture 
and requirements that specify each information exchange. A race condition is a 
situation where code can produce different results if it is run multiple times. Race 
conditions are caused by non-deterministic code executing in different orders. If 
race conditions in simulations are noticed it results in a lack of confidence of any 
results generated by it. Often a strict standard is decided upon and implemented 
before the models are created to ensure that all of the component parts 
produce and have access to the data in the requirements. This integration 
method is at a very low level of abstraction and hence requires a high level of 
understanding of exactly how the component parts interact. As this solution does 
not have any oversight to orchestrate all of the individual component parts, race 
conditions are a real concern. The capabilities that this integration gives a 
simulation are limited and require a linear progression of calculation. Control 
loops and other feedback mechanisms between or across component parts are 
difficult to successfully implement using this method. 

This method is timely to design and implement when the number of models to be 
integrated is low. The time overhead grows with each extra model that is 
implemented. As the interface and the data transferred are different in each 
case the complexity also grows with the variance of components. The specific 
means by which the data are transported from one model to the next can be 
fulfilled by using a variety of existing technologies, be they the simple reading 
and writing the data into a directory, to a complex networking solution. The 
specific network implementations are outside the consideration of this research. 

The resulting integrated solutions which use this method tend to be very brittle 
and any change to any of the component parts results in considerable re-work. 
There is also the potential for a loss of confidence in the simulation as a whole 
due to the potential of unknown interactions. 



PAGE 36 

2.4.2 VARIABLE SHARING   
Models and simulations often have internal values that change during runtime. 
Often these internal values are referred to as variables. There are occasions 
where these values may represent semantically identical variables across 
multiple models or simulations. In such cases it can be hugely powerful if the 
models and simulations share their values during runtime. The information 
exchange can be seen in Figure 2.5 below. 

 

Figure 2.5 Integration using the sharing of variables. Model 1 is producing a variable and Model 2 is 
consuming the data. 

For this type of integration to be possible the run time environment that is being 
used has to allow access to variables during execution. At present not all COTS 
modelling and simulation products have this capability. Setting up an 
environment where values can be manipulated is not a trivial requirement as it 
requires the model to continue to execute despite one or more of its values 
changing while the program is using it, as well as handling when a model is to 
update its own values and the related complications. These issues can be further 
problematic if the model is highly recursive in its architecture. Breaking into 
nested loops mid-iteration can cause inconsistences or errors within calculations. 

To avoid conflicts between models there are recommendations such as those 
found in FMI [22] whereby a master-slave configuration is utilised. A master-slave 
configuration is where one model is the master it and it dictates to the slave what 
specific values are. This concept can go further to timing orchestration, initiation, 
and termination of the simulation. When sharing values there are also issues of 
where data to be communicated is held in memory. Often such memory issues 
are overcome by having a table of data that can be read or written to by the 
component models and simulations. In such cases the table is often external from 
the inner workings of any of the components. The table is written to (updated) 
and read from as and when required by the components. This method of having 
an external data table has been shown to work not only on a single machine but 
also across a distributed network. However to implement this method a means of 
defining which model is to be read and which is to write at any given 
circumstance is required, as otherwise conflicts can arise causing issues with 
simulation validation. 



PAGE 37 

This method of sharing variables can be used for either of the approaches 
discussed in section 2.3.1 It is often the case that the master-slave paradigm fits 
very well with one environment calling the other, the caller being the master and 
the called being the slave.  

If there is a desire to use a distributed solution where parts of the simulation are 
being run on different computers, a network layer is needed. The network layer 
handles which data are going where and when, it also has to handle what is 
needed to facilitate when each component is to start its next cycle of evaluation. 
All of this communication needs to be moderated by a communication layer to 
ensure the quality of service. The communication network layer has its challenges. 
However network communication is a well-established research field with many 
mature technologies that have capabilities that can facilitate this data transfer. 

To implement an integrated situation using variable sharing requires the 
architecture of the overall simulation to be specified before any integration can 
occur. This is due to the level of knowledge that is needed about what 
information needs to be accessible and where it is going, in advance of the 
decisions as to which simulation is in control of writing which variables at which 
point.  

This form of integration has shown to be useful for instances when there are only 
a limited number of component parts. There are commercial tools such as 
Flowmaster [13] where this type of integration has proved to be highly successful. 
This method operates on a single machine and does not offer much of an 
enterprise challenge to an organisation as long as the engineers involved have 
intimate knowledge of the component parts. However once this method is 
expanded to be used for many models and simulations distributed over a 
network the overheads rapidly increase. For large distributed simulations a well-
defined architecture can aid with what needs to be communicated where and 
when. A strict standard can ensure that the interfaces are in a state which keep 
the variation to a minimum. If any changes are made to the component parts 
they can only be internal and minimal to ensure that the variables that are being 
communicated are no compromised.  

2.4.3 MIDDLEWARE 
The concept of middleware is used profusely within the modelling and simulation 
integration literature [31]–[44]. What is referred to as middleware can vary from a 
pre-defined transformation of a number from an eight bit integer to a 24 point 
floating point number, to a system that automatically identifies the available 
data from a set of available models and its type with the required data needed 
by other models, assemble the transformations and handle the network 
communications. A general representation of middleware can be seen in Figure 
2.1. Hence middleware is considered to be anything that sits between two or 
more component models or simulations. Due to the variation as to what 
middleware actually refers to it will not be discussed any further.  



PAGE 38 

2.4.4 FEDERATED SIMULATIONS 
To enable a fully distributed simulation to be formulated and executed there are 
those who have taken the federated systems technology and applied it to 
modelling and simulation. This technology was developed within computer 
science to enable sections of code to be distributed over a network that all work 
together for a common goal. The overall code is broken down into smaller 
component parts or federates. Each federate is available over a network and 
discoverable via use of appropriate program code. The intent is for a mechanism 
to select which federates are needed, and then handle the communication 
between them. In the case of simulation if it can be broken down into constituent 
parts where a simple script may be sufficient to make the selection [20]. Figure 
2.6 below shows a simplistic representation of a federated system. 

 

Figure 2.6 Simple representation of federated system 

Often federated systems use web based technology and use a service registry, a 
broker, a service requester, and a service provide [39]. The service registry stores 
the location and content of all of the available services on the network. A broker 
handles which components can be connected and the means by which the 
communications can be made. A service requester requires a particular set of 
data to operate, whereas the provider produces a set of data. Federate 
technology can be of use to the integration challenge with each modelling 
component being its own federate. The communication layer between them 
acts as the integration implementation. This approach is represented in Figure 2.7 
below. 



PAGE 39 

 

Figure 2.7 Representation of web services often used as part of federated systems. 

At present there is an ever growing body of research as to the best way to 
implement the concept of federated systems. This research however is not 
limited to the implementation of modelling and simulation. Currently the majority 
of the research focuses around the network layer, broker (decisions as to which 
service to use), middleware, and schemas to capture the required information. 
The majority of federated systems use some variation on the ‘publish and 
subscribe’ paradigm. This is where publishing components make information 
available over a network and subscribing components read the published data 
from the network. The concept of the publish-subscribe paradigm is well 
established and hence has been shown to be useful e.g. [45], [46]. Current 
federated systems often use standards such as DDS and HLA to ensure that the 
federates can effectively communicate with each other [47]. There are few 
sources that demonstrate working instances where more than tens of publishers 
and tens subscriber federates are communicating over a network at any one 
time. This may be a limitation of the technology (this is known regarding DDS) or it 
may not be reported. Whatever the reason for the small scale demonstrating for 
a full system integrated test to be possible, many hundreds of models over many 
hundreds of machines all work in unison without fault would be needed. Such 
issues highlight the differences between looking at the theoretical science of the 
technology and the practical engineering application of such a technology. 
However this technology demonstrates potential to make full unit testing possible 
in the future. 

Using a federated approach to produce an integrated system allows for teams 
to work in isolation and at a given time integrate their work together. It has been 
identified in the literature that just because the federates can communicate may 
not give meaningful outputs when connected [47]. This is a prime location for 
systems engineering to aid in the support of such a task, as the principles of 
architecture design and V&V could give confidence to the validity of the overall 
integrated simulation. 



PAGE 40 

2.4.5 HIGH LEVEL ARCHITECTURE 
The concept of High Level Architecture (HLA) with regards to simulation is one of 
general purpose architecture for the integration of distributed simulations. There 
have been various architectures that have been proposed as a meta solution to 
federated simulation. However one dominates the domain landscape: HLA was 
developed by the U.S. Defense Modelling and Simulation Office (DMSO) to 
provide simulation interoperability and re-usability across all types of simulations 
and has been adopted as an IEEE standard.[48]. This method means models and 
simulations can be integrated and has been heralded with many statements 
such as 

 “A promising approach to building and evolving large scale distributed 
simulation” [37].  

The means by which the HLA is able to bring models together is by specifying the 
boundaries and formalising the means of communication.  

A visual representation of an instantiation of the HLA architecture can be seen in 
Figure 2.8. This shows how a federated system is created using individual 
simulations that are formed into federates that operates as one of many 
communicating over a runtime infrastructure. The two ambassadors in this 
example handle the calls to and from the run time infrastructure (RTI). To enable 
the models to have a standard interface allowing for communication with the RTI, 
wrappers are used. To allow for external reference to a library to be used, 
references are stored in a linked list. In the case of the federation that is shown in 
Figure 2.8 below, C has been used to wrap the external references. C is often 
used as it is considered by many to be the most portable language between 
operating systems and environments. 



PAGE 41 

 

Figure 2.8 The organisation of a HLA agent note the simulations being only a part of the federate 

The Operation of HLA 
The underlying principle of HLA is to specify the format the simulations have to 
adhere to. This specification takes the form of rules and templates. HLA specifies 
rules which are intended to ensure a particular means of interactions between 
the component simulations of the federation, as well as describing the federates 
responsibilities. Part of HLA is the object model template which is a formal means 
of specifying the specific simulation data used. The specification is in the form of 
a hierarchy of object class, attributes, and interactions [37]. HLA in essence 
identifies how federates are to interact with the federation as a whole as well as 
each other. 

The Benefits of Using HLA 
The key benefit in using HLA is the potential for simulation re-use and the ability to 
connect the simulations in different combinations [48]. This is desirable when 
engineers are confronted with changing requirements and if the solution they 
are working on is using a platform-centred approach. A possible benefit of using 
HLA is using the descriptions to allow for the properties of the federate to be 
analysed and the information used to optimise which host to run which federate. 
These benefits have led to bold statements being made in the literature such as  

“HLA initiative has become the de-facto standard technical architecture 
for military simulations.” [34]. 

Interestingly within the literature there are fewer non-military examples of the use 
of HLA. Not all are so convinced and as with all technologies constraints have 
been identified.   



PAGE 42 

Constraints of the HLA Architecture 
The critiques of HLA state problems of scalability, as well as the applicability of 
using this technology in a brown field environment. The problems with scalability 
issues are formed from one of the very founding blocks of HLA. The way in which 
communication between the system nodes are orchestrated is based on each 
federate broadcasting each update message to all other federates in the 
simulation [45]. This is not an issue if the network has capacity to take the quantity 
of messages that are pushed across it. However as the number of federates 
increases or if the size of the messages grow, the network can become saturated 
resulting in the quality of service between the federates to become far from 
guaranteed. This raise serious questions about its appropriateness to be used in 
this problem space as for a full system simulation it may require many hundreds of 
models and simulations communicating with each other. 

These concerns are confounded when considering HLAs suitability for application 
where the models are created without the intention of complying with the HLA 
format. Those who question HLA in the literature make comments such as  

“HLA forces developers to provide a particular functionality or to conform 
to specific standards in order to participate in the integration process; the 
rigid assumptions and limitations on participants makes it difficult to 
integrate pre-existing simulations without significant modification 
(especially in non-military domains)”[34]. 

From the problem identified in section 1.3 the models and simulations are existing 
and not necessarily from the defence domain. Make existing models comply with 
HLA and be made into a federate could depending on the model or simulation 
in question take a considerable amount of re-work. 

2.4.6 DATA DISTRIBUTED SERVICE 
DDS (Data Distributed Service) is a specific publish-subscribe architecture that 
aims to improve on HLA and allow for one specification to cover many different 
model intercommunications. This has been further elaborated in the literature as 
“DDS distributes data where you want it, when you want it.”. The publish-
subscribe paradigm handles the where as it allows for communication across a 
distributed network while the data centric enables the when.[49]. This is an 
attempt to make a deterministic publish-subscribe communication possible. 

Definition of DDS 
DDS is an OMG standard concerned with the transfer of data between multiple 
points involving different hardware and software [33], [37], [49]–[51]. The means 
by which DDS is capable of doing this is by using a specification that identifies the 
type of data being published and the requested subscriptions. The specification 
has a platform independent model that can be mapped to various project 
specific models using a variety of programming languages.[51]. By platform 
independent what is meant is a concept rather than a specific instantiation of a 



PAGE 43 

concept. The model can be implemented in many languages even to satisfy the 
requirements for the same system. The OMG DDS specification has two levels of 
integration, the data level or Data-Centric Publish-Subscribe (DCPS) [52], and a 
higher level aimed at the application level the “Data-Local Reconstruction 
Layer(DLRL) level”[52]. For the purpose of this review, this body of work will focus 
on the DCPS level. For reference, the structure of the overall DCPS model and the 
significance of the data communicated as well as the importance of the data 
type that is used, refer to the OMG standard [52]. 

To achieve real time capabilities, the DDS specification has a specific set of 
profiles that target real time communications [37]. They focus on the data, its 
form, and the deterministic nature of the data delivery which is stated using a 
policy of QoS [49]. The defining of topics allow for the harmonisation of what is 
being written and what is being read. The topics are defined from the type of 
data which needs to be transferred, a routing label, which is combined with the 
quality of service that enables not only effective communication but also the 
potential for implementation optimisations [52]. This feature is considered useful 
when dealing with hardware and software that differ from one another. When a 
system is operational the topics also allow for searches to be carried out for what 
data are available on the network and in what form. This capability allows for 
reduced time of implementing a variation of a simulation or of a brand new 
simulation made of existing compliant components. 

DDS in Use 
Some consider that DDS can be more flexible than a strict HLA implementation. 
This is due to DDS having a rich set of QoS policies while leaving out some 
aspects in HLA such as time management and federation management[38], [52]. 
This is due to DDS being much more focused on the distribution of data at the 
application level rather than the architecture of distributed simulations at many 
levels of integration. This gives the system designer a greater flexibility in the 
solutions that they propose, however this comes with a caveat as it means that 
system architecture will need to be designed for each new system rather than 
relying on a pre-determined existing architecture, meaning future re-use may 
become an issue. 

It is possible using DDS to set up communications over networks using existing 
standard communication methods in both hardware and software for example 
Ethernet, Shared memory, TCP/IP, HTTP, and others [49]. Meaning that a DDS 
solution can be implemented alongside or as part of an existing hardware and or 
software solution. A feature of DDS that is compelling to many is that  

“multiple independent communications networks (Domains) each using 
DDS can be used to over the same network transport protocol.” [37]. 

Such a feature further endears it to use by teams of engineers working on a 
distributed project working on the same network. The implication of this for an 



PAGE 44 

organisation is that many simulations could be run over the same network 
potentially sharing models or simulations during execution. 

There are many instances where DDS has been shown to work in many real time 
applications including: safety critical systems, various defence projects, as well as 
conferencing applications [37]. This demonstrated success indicates that this 
technology can work at multiple scales and for very different system level 
application requirements.   

Challenges With Using DDS 
Despite DDS being a relatively new architecture it is not without criticism. 
Problems associated with its scalability, time management and parallel 
execution on the same host, have been reported as indicated below.  

Issues of scalability focus around the way in which one writer can supply to many 
readers. This is due to DDS using IP multicast, which has known issues with 
scalability [10]. However the multicast issue is not the only way DDS can be 
implemented as  

“Using custom meta information DDS can be bound to any transport 
protocol.”[46].   

Hence current research into DDS has shown promising signs using technologies 
other than IP Multicast. 

As previously mentioned the DDS specification is not specifically designed to 
encapsulate all simulation semantics. This allows for greater flexibility of 
implementation however it will require greater effort from the simulation designer 
as they will have to ensure all communication is meaningful. The simulation 
designers will inevitably have to rely on the QoS policies (for communication) and 
the specification of the federates (for semantics). Hence the role of simulation 
architecture is of importance. 

There is an issue of using DDS for access to data through a middleware thread, as 
it may be more complex to pass the data between multiple threads on the same 
host [52]. This could result in greater process overheads and potential issues with 
parallel processing. This problem would affect simulations on case by case bases 
as it not only dependent on the environment they are written in but also the way 
in which they have been written inside said environments. 

  



PAGE 45 

2.4.7 EVALUATION OF THE IMPLEMENTATION OF INTEGRATED MODELS AND 
SIMULATIONS 

The current methods which have been identified all facilitate the communication 
between models and or simulations, however they all have their drawbacks and 
criticisms. At present none of the methods provide an adequate solution to all of 
the issues that are present in the identified problem space.  

Data and variable sharing produces integrations that are brittle and vulnerable 
to any engineering changes that may occur, be these requirements or 
implementation based. These two methods are well established and there are 
tools on the market which capitalise on them. The methods themselves are 
adequate for model and simulation integration however they require a high level 
of understanding of the component parts to make them work. 

Middleware with its almost infinite flexibility has the potential to enable almost all 
models and simulations to communicate, but this flexibility comes with the 
potential of disorganisation, and minimal possible re-use of any parts of a solution. 
If an organisation wishes to use middleware and simulation re-use, standards 
have been shown to be of use. However this approach is best suited for de novo 
projects. Hence if an organisation is wishing to get value from existing models, this 
approach may require considerable re-work. 

High level architectures which are designed with the explicit intention to aid in 
the integration of models and simulations have been shown to be of great value 
to defence projects. There is also potential for such architectures to be 
implemented in non-military projects. These architectures have been shown to 
work well with projects that are creating the component parts from scratch 
rather than re-use. Such architectures aid in what needs to be communicated 
and guides the user however they still require another method to pass the data 
between the component parts.  

The publish-subscribe technology has shown that it is possible to create dynamic 
distributed simulations that will execute over a network. The best current 
architecture to use is very much dependent on the specifics of the situation 
where it is to be implemented. From the literature, case studies of HLA and DDS 
(despite the concerns that have been raised) has increased interest in the idea 
of distributed simulation systems. These distributed systems could potentially be 
used for large sale distributed models and simulation execution. 

Distributed simulations running across a network is a challenging, target-rich 
environment. Research is being invested by both academic and industrial 
organisations, in this topic.  

For the purpose of integrating models in this problem space none of the methods 
do more than allow for models and simulations to pass data between each other 
[15]. This means that none have any means to ascertain if the integration is 



PAGE 46 

meaningful. This puts a high reliance on the individual using the system to 
understand what the models are doing (white box understanding). In this 
problem space it is unlikely that any individual will be able to have such a 
complete understanding. The network layer is possible in principle; however there 
is still room to improve. 

The integration methods which support the integration approaches are at a 
point where the transmission of data between two or more component parts is 
possible. There are ways that have been successfully demonstrated in the 
literature that use different numbers of component parts ranging from less than 
ten to over fifty. The various methods are suited to the various numbers of 
constituent parts. At present there is no one singular method that is suitable for all 
model types or simulation component parts. This is not a significant issue as 
appropriate methods can be selected dependent on the project in question. 
However producing a single product that is suitable for both small and large 
numbers of models would require multiple options for implementation. 

  



PAGE 47 

2.5 THE EFFECTS ON INTEGRATION FROM TYPES OF 
MODELLING AND SIMULATION 

Within science and engineering there are many different types of models and 
simulations. They affect the choice of integration techniques which can be used, 
or in some cases make integration impossible. Each of the major modelling and 
simulation types will be investigated below and include: 

• Linear methods 
• Reduced order models (ROMs) 
• Logic-based simulations 
• Feedback loops 
• Statistical methods 
• Artificial Neural networks (ANN) 
• Computational Fluid Dynamics (CFD) 
• Finite element analysis (FEA) 

2.5.1 LINEAR METHODS 
There have been many mathematical methods developed for the purpose of 
tackling the problem of analysing non-linear data. Many of these methods take 
the data and through various manipulations produce linear equations that 
represent sections of the non-linear data. There are many linear methods 
developed in mathematics and now with the increased computational power 
some of the previously disregarded methods (due to computational overhead) 
are being used in engineering [53]. It is now possible for the simplest local analysis 
of varying one factor of a simulation at a time to find a useable result can be 
used [53] however this can be a time consuming task. There are too many linear 
methods to discuss each one and the specific implications to integration. There 
are many books and papers available on the application of linear methods. A 
review of which would consist of a significant task in itself and falls outside the 
bounds of this research. However there are some generalities that can be 
identified from the literature. Linear methods are only valid over a specific range. 
If values are passed to them which are outside the effective range then the 
validity of the results cannot be assured. These methods are often fitted to 
existing data sets, so a detailed understanding of any candidate data set is 
required. 

2.5.2 REDUCED ORDER MODELS (ROMS) 
Within science but more so engineering there is a current trend to characterise 
complex systems not with a series of high fidelity models but rather with a higher 
level of abstraction that expresses a series of complex interactions with lower 
order polynomial equations. This process takes the behaviours of many aspects 
of the system and either by means of statistical analysis, acquired measurements, 
combined outputs from simulations, or other means, the behaviour of the system 
is characterised. Reduced ordered models are by their very nature 



PAGE 48 

computationally simpler to implement than a high fidelity model concerning the 
same system. The execution resources necessary can be significantly less. ROMs 
can be formulated using one tool, the equations captured, and the equations 
implemented in another tool [54]. The power of ROMs has been demonstrated in 
many instances. However there are criticisms in using ROMs as a method, 
specifically when attempts are made to integrate them as a component part in 
a larger simulation. 

The suitability of ROMs for whole unit or system wide test may not necessarily be 
the most appropriate type of modelling. The suitability of the use of ROMs 
depends on what the scientists or engineers are looking to find from the test. 
Often ROMS are created by taking a series of complex behaviours and fitting a 
low order equation to the resulting trend. This reduced order model is then only 
going to give expected behaviours based on established knowledge. Questions 
have been raised as to if this approach will aid in the identification and 
understanding of unknown interactions be that either their cause or effect. For 
whole unit tests a ROM can give the broad behaviour of the system and this 
should not be undermined as it is a useful tool in an engineer’s tool set. There are 
occasions, such as early in the design processes of an incremental change in a 
product, when such a simulation can be valuable.  

However the effective ranges that the parameters of the ROM can take are 
often limited. Any testing that is conducted with any of the variables outside of 
their intended range (which would have been built into the model), leads to the 
accuracy and even the validity becoming suspect. Dependent on the structure 
of the ROM it may also be difficult to ascertain which factors relate to which 
parameters. This is because often multiple factors are represented in a single 
variable. In the case where a modelling change is required the ROM may have 
to be completely re-designed or a simple value change of one of the 
parameters. Whichever is necessary the process of changing the ROM requires 
intimate knowledge of the ROM in question. The architecture of most ROMS is 
such that any change in the requirements of the ROM will likely requires a 
considerable amount of re-work to make it compliant.  

Integrating ROMs with other ROMs or with other forms of models of differing levels 
of fidelity produces a challenge in itself. As the variables within a ROM may not 
relate to a single physical characteristic but rather a combined behaviour the 
integration cannot just be at the boundary of the model but will have to go 
deeper. The full models semantics have to be taken into consideration. To 
understand the full semantics of the model will require a deep and full 
understanding of the ROM, which usually comes from developing it in the first 
place, and can be difficult to capture all nuances in documentation. Hence 
questions as to the effectiveness and value of such an integration exercise are 
inevitable. 



PAGE 49 

If a series of ROMS were produced with the intention that they were to be 
integrated and there was a usable separation of variables, then integration of 
variables would be possible. However this goes against the way in which ROMs 
are currently being advocated [55]. This is also not the state of the ROMS within 
the problem space as defined in section 1.2.3. 

Integrating ROMS to work in a federated system in a traditional fashion (exposure 
of inputs, variables and outputs) may not be the way forward with this 
technology because of the above mentioned reasons of separation of variables. 
To be usable the testing procedure would need to be fully defined before the 
start of the procedure.  

2.5.3 LOGIC BASED SIMULATIONS  
There are instances where all of the possible outcomes are needed to be 
accounted for. In such cases engineers often turn to formal logic-based systems. 
Logic-based simulations are less common than logic-based control systems, and 
these must not be confused. This work is concerned with the integration of 
models and simulations, not just control systems. To integrate a logical simulation 
the foundations and assumptions must be identical. If there any differences in the 
premises that the logic statements are based upon, the validity of any of the 
result will be undermined. Logic-based simulation was heralded in the mid-1980s 
as the future of simulation and there are sources that paint a hopeful future for 
formal-based logic often with Artificial Intelligence (AI) [56]. However there are 
far fewer instances and case studies in recent times. The instances of it occurring 
as a proposed method purely for a means of simulation have become far less 
common in the current literature. 

2.5.4 FEEDBACK LOOPS 
It may be useful for simulation to have an element of memory from a previous 
iteration. These often feature in control systems. Having an element of memory 
can make integrating existing models or simulations a challenge with respect to 
handling initial conditions. There are also issues of parallelism if two or more loops 
are running in an integrated simulation. Within control systems there are 
established methods for integrating control loops which all involve a high level of 
understanding of the component models and simulations. Caution is to be taken 
when investigating the control literature as the integration of models in this 
domain can refer to the amalgamation of control strategies which is a far 
deeper integration that passing behavioural information between component 
simulation parts. An example of this is found in studies work regarding the 
integration of two controllers [57]. Each controller is not a simulation as it is the 
realisation of a control algorithm rather than a representation of a system or 
phenomena. In this example both controllers had feedback loops. To ‘Integrate’ 
these two controllers a rule-based method was developed. This works for 
handing as to when the various controllers are best suited to operate, however 
this form of integration is not helpful for models and simulations as it is unlikely that 



PAGE 50 

the engineers are only looking for the output of one of the models or simulations 
during run time. This demonstrates that just because there are examples of where 
loops have been integrated does not necessary mean the methods are 
applicable in the modelling and simulation domain.   

An interesting simulation integration implementation issue is that feedback loops 
often do not have a means of extracting these data which can mean that the 
only way of obtaining data is to wait until the loop has reached its termination 
condition.  

2.5.5 STATISTICAL METHODS  
Statistical methods are used for situations where the behaviour is not exactly 
known, such as elements of fluid flow, quality control, product life time, and vision 
systems. Often these simulations are concerned with the likeliness of an event 
occurring or not. In some cases, such as satellite development, there is a lack of 
empirical data and as such statistical models are used [58].  

When statistical methods are present in one or more of the component parts of 
an integrated model or simulation, they can exhibit behaviour that is not found in 
components that use other methods. Statistical predictive methods may give 
different outputs if the same inputs are run multiple times. This gives rise to issues 
of verification and anticipating what is and what is not an expected output 
value. Some simulations have ranges for which the possible values could possibly 
take whereas others do not have this level of expectation.  

2.5.6 ARTIFICIAL NEURAL NETWORKS 
Perceptron – based Artificial Neural Networks (ANNs) were seen as a potential 
solution to many engineering problems. However their limitations have become 
apparent and now within engineering they are commonly used for optimisation 
and surrogate modelling. ANNs are mathematical models consisting of 
interconnected processing units known as neurons. Weights and biases are 
performed at each neuron via the use of a stated transfer function. The values of 
the weights and biases are defined by using training data sets [59]. The training 
data requires solutions to exist which the ANN is to mimic. For this reason ANNs 
have been used for optimisation tasks. The computational overhead for ANNs is 
predominantly used during the training stage. The issues of integrating ANNs 
either with other ANNs or other models in general is ensuring that the inputs to the 
trained ANN are within the bounds of the training data set. Keeping within the 
bounds of the training data is vital to maintain confidence in the output [59]. 
There are many instances within the literature surrounding ANNs where they have 
been used as substitutes or surrogates to more complex models. The ANNs are 
trained to mimic the outputs of the complex simulations with similar inputs. This 
allows for integrations to be run where if the original complex simulations were 
used the time expense would be significantly higher. 

  



PAGE 51 

2.5.7 COMPUTATIONAL FLUID DYNAMICS (CFD) 
There are many applications where there are fluids which are moving in, on, or 
around a system that is being designed. To simulate the effects of fluid flow, 
Computational Fluid Dynamics (CFD) methods are often used [60].  

CFD uses numerical methods and algorithms to give a representation of the 
behaviour of a fluid flow of interest. Due to the very nature of fluid flows to 
achieve greater accuracy the computational burden is high. It is not uncommon 
for engineers to use high performance computing to run CFD simulations and 
they still end up taking many days to execute [61]. 

2.5.8 FINITE ELEMENT ANALYSIS (FEA) 
This method involves breaking down the system under analysis into a number of 
discrete elements that are analysed individually. This method is often used for the 
investigation of stress and strain of physical elements under load. Tool vendors, 
such as Enginsoft, provide FEA case studies across many engineering disciplines 
[18]. This well established method has demonstrated results that have been 
validated against real world test data such as tread block forces for tyres in 
contact with road surfaces [62]. The resolution of the final result is dependent on 
the number of elements that the system is split into. Something that is repeatedly 
mentioned in the literature is the trade-off between accuracy of the solution, the 
number of elements, and the computational burden. With each element there is 
a finite amount of computation that will need to occur this takes time and uses 
resources. The computational burden of FEAs is the most significant challenge to 
their integration. The computational burden often results in these simulations 
taking a significant amount of time per experiment. It is not uncommon for an 
FEA simulation to take days to run.  

  



PAGE 52 

2.6 SEMANTICS AND THEIR EFFECTS ON MODELLING AND 
SIMULATION 

There are factors that make models or simulations identifiably different from one 
another. This is due to the nature of the phenomena being mimicked as well as 
the means by which the model or simulation was implemented. When it comes 
to integrating these existing models or simulations there is a striking difference 
between the academic and professional literature. Within the academic 
literature, individual parts of variation or difference are identified which are often 
the focus of the solution that is being proposed. In contrast the commercial 
literature often ignores any variation other than the implementation platforms 
used. Within this work both viewpoints are taken into consideration. However 
both sides do recognise that there are semantic issues that can and do affect 
the successfulness of model and simulation integration.  

The semantics of a model are how the assumptions are implemented and the 
model or simulation is realised. This includes any and all decisions that are made 
such as but not limited to, mathematical representation, platform 
implementation, data types, and hardware that it is implemented. If there are 
differences between the semantics then they are often the causes of 
insurmountable integration challenges. Semantics are different from assumptions 
though they are often taken together and side lined as issues to be solved by 
those implementing the proposed methods. There are key areas of the semantic 
differences that are common throughout the literature, these include; 
application of standards, data types and forms, dependences, and variations in 
scales. Each of the identified areas is explored below. 

Standards  
Standards can go a long way to reduce the variation present within the selection 
of viable integration candidates. However due to flexibility of most modern 
modelling standards, the practical implementation results in situations where the 
semantic similarity between components is not guaranteed. Neema [63] 
recognises that even with the application of a standard such as FMI, the 
semantic issue is far from solved and still remains a significant challenge. For more 
information regarding standards see section 2.3.3. It is conceived that a standard 
could negate the issues of semantics, however such a standard would need to 
cover all aspects of the potential models and simulations including how they are 
to be implemented. 

Data Types and Forms 
Data and information can be represented in many different types and in various 
forms of each of those types. When a modeller is constructing a model, choices 
are made as to the form in which the information is represented, communicated, 
and stored. There are also a choices as to what form the information is to going 
to be produced and where appropriate consumed by the model or simulation. 
When a modeller is confronted with the challenge of representing the 



PAGE 53 

information that requires manipulation there is a multitude of data 
representations each with their specific merits and weaknesses. With the various 
qualities of the data types means they hold very different specific information.  

There are established methods for converting between data types. However 
issues arise regarding the information that is captured by specific data types. 
Different data types often capture different nuances of information. There may 
be information lost when converting between data types as the type that is 
converted may not be capable of capturing the exact same information in 
every situation. If a conversion is made there will be a loss of information. Hence 
data conversions between models are not a trivial matter and should not be 
undertaken without consideration as to what information will be lost once the 
conversion is made. 

This issue with data types is not often covered in peer-reviewed journal articles as 
it is seen as an environmental issue rather than one worthy of being documented. 
However it is covered in many online help files such as Microsoft developer 
network with titles similar to Type Conversions and Type Safety (Modern C++) [64]. 
This is an example where the academic literature differs from the material aimed 
at practitioners. This indicates that some of the issues that an individual would 
come up against in replicating published work is not covered in the articles. 

Dependencies 
Once a model is implemented in an environment (in silico or otherwise) often it 
will require access to other hardware and software components which are 
considered to be model or simulation dependencies. The dependencies may 
not only be for the particular implementation environment but also for any 
external sources that it calls. The external calls can take the form of look up 
tables, DLLs (Dynamic Link Library), text documents or any other means by which 
information can be stored and recalled. These dependences will also have to be 
integrated or subsumed into any solution as without them the models or 
simulations may not function as intended, or even at all. Considering 
dependencies when integrating may not be as straightforward as it first seems. 
The dependencies may only work in specific environments, and the original 
information contained has to be conserved for repetition while there may be the 
need to manipulate the data, not to mention that the addresses of the 
dependences may have to be changed manually in the models when moving 
between computers. How to manipulate the dependences has many of the 
challenges that are present in the integration of models themselves. It was 
demonstrated in 2005 that an optimal selection of models including their 
dependencies was NP complete [15] and hence requires an inductive step by 
an engineer. This has interesting ramifications for future and the possibility for 
automated model and simulation re-use. 

When models from different environments are brought together they will not only 
bring with them the dependencies they were written calling but also often a 



PAGE 54 

dependency on the very environment they were written within. Some 
environments require that the whole run time engine of the development 
environment be installed on the machine that the model is to be run on, whereas 
others only require a subset of the environment present. Such dependencies on 
the runtime environment are discussed in the FMI standard [26]. The solution to 
this issue in FMI is to capture the dependencies and make them a part of the 
FMU. For more information regarding FMUs see section 2.3.3. Capturing the 
dependencies and keeping in mind the changes of versions of COTS software 
also adds to the difficulty of potential integration of existing models and 
simulations. 

Assumptions are necessary for us to understand and represent the world around 
us. However these assumptions can cause issues when integrating two or more 
models or simulations. The variation in assumptions and the issues that it can 
cause is not a new problem [65]. Researchers in artificial intelligence recognised 
that selecting the most suitable modelling assumptions is an engineering 
challenge in its own right. They also highlight that with large complex projects 
that there is the need to decompose the solutions and by doing this there is 
likelihood of a variation of assumptions across the component models.  

When consulting the literature regarding integration tools, very few actually 
tackle or even recognise the issue of verifying assumptions. One such example is 
the field of Service Orientated Architecture (SOA). Within the SOA research 
community there is the recognition that just handling the communications 
between the component parts does not ensure that the communication and 
hence the integration is meaningful [66] [39]. In both cases the differences in 
assumptions are heralded as a reason to meaningless integration. However that 
is as far as the recognition goes, and in such publications it is often stated that it is 
outside of the interests of SOA research to discuss methods of ensuring the 
aligning of assumptions. 

In other fields such as model re-use [65] assumptions may differ to the extent of 
being contradictory which can result in any integration being of questionable 
validity. Hence assumptions must be explicitly stated as otherwise it can be 
impossible for anyone other than the modeller to know all of the assumptions that 
were encapsulated in the model or simulation. Some standards such as ISO 15288 
System life cycle processes rev 2013 CD [67] recognise that assumptions can 
cause issues when analysing requirements. If there are issues with differences in 
assumptions at the requirements level it has the potential to cascade through the 
implementations resulting in outputs that are spurious at best. This indicates that 
the harmonisation of assumptions may need to go back as far as the 
requirements that are written for the creation of the component models or 
simulations to be integrated. 

When considering how to refer to differing assumptions there have been those 
who try to categorise assumptions. Two categories of assumptions have been 



PAGE 55 

proposed: simplifying and operating [65]. Simplifying assumptions contain the 
underlying approximations of the models and the modellers’ perspective. 
Operating assumptions are made as to how the system being modelled is 
expected to function. This classification highlights the breadth of the effects of 
assumptions on the integration challenge. Assumptions go far further than simply 
what range the initial parameters take. 

Often assumptions refer to models and simulations in their entirety, however this is 
not the only way of looking at the issue of model and simulation integration. The 
communication of the data is also affected by assumptions. ISO 15926-2 [68] 
details the importance of understanding the assumptions of the data which are 
being transferred. This is an interesting idea as it suggests that the data 
encapsulates the effects of any assumptions that were made during the creation 
of said data. In any potential solution this understanding, capture and analysis of 
assumptions needs to be taken into account. 

2.6.1 MULTISCALE MODELLING 
When a phenomenon is modelled scales are set, be they formally stated or 
otherwise. In traditional models and simulations the modeller often chooses to 
stay at one scale (spatial or temporal) throughout the representation. However 
there are those who now believe that this is no longer enough for the level of 
understanding that is needed, and there are statements in the literature such as  

“Most physical phenomena of interest to humankind involve a range of 
temporal and spatial scales.”[69].  

Such bold statements indicate the belief that multi-scale modelling has the 
potential to open up a wealth of previously unknown knowledge. In many 
engineering projects it has been identified that they have the potential to cross 
various scales. In engineering it is often the case where each model or simulation 
has its own modelling technique, assumptions, and critically scales. How to go 
about crossing these scales is a research field in its own right. 

To highlight the issues of scale in an automotive example, consideration is given 
to a high performance luxury vehicle. The effects of the atomic properties of 
materials are known to have effects on the overall performance of the vehicle. 
For high power internal combustion engines there are significant issues of 
producing vibration especially during the starting sequence. Vibration of any 
form is far from desirable for many customers and so it is aimed to be eliminated. 
Often such engines are mounted to the chassis upon solid rubber blocks. Rubber 
is a glass like material whose physical characteristics change over time. The 
physical characteristic changes over time that the rubber goes through, causes it 
to behave differently under cyclical loading over time, even when the same 
forces are applied to it. This transition of characteristics is greatest over the first 
few months, but after moulding, a plateau is reached, and then it tails off years 
later. It would be desirable to know how to tune the engine at production so that 



PAGE 56 

it can be calibrated to reduce the vibration and tuned to be at peak 
performance when the customer receives the vehicle not as it rolls off the 
production line. There are models that represent the changes in the mechanical 
properties of the rubber blocks over time at the micro scale. The engine is 
modelled at a higher scale of the vibration that it produces. The chassis is 
modelled at a yet higher scale in the way in which vibration is passed through it. 
Integrating these models together to enable the design and test of the engine 
mounts. Once the mounts are designed and engine mapping defined, testing 
can be conducted. During the starting procedure of the vehicle it is desirable for 
only a small amount of vibration through the chassis. At present the tuning of the 
engine is achieved as a manual tuning process conducted by a tuning expert by 
ear making the process more of an art than a science. The reason why this is still 
a manual process is due to the difficulties that crossing these scales pose. At 
present there are more variations in modelling techniques as there are means to 
cross scales between them. 

The challenges of multiscale modelling have been discussed in a review [70] 
which details an automotive example when considering the mechanical 
properties of the car body as a whole. Consideration is given to the interactions 
at the atomic level of specific materials and the effects it they have on the 
whole. In this work six scales of modelling are identified and the challenges of 
crossing them discussed. The result of crossing the scales can be considered a 
type of model integration. 

Challenges of Multiscale Modelling 
When the models from different scales are brought together there are many 
issues that face the integrator. These include not only many of the issues already 
highlighted in this chapter but also specific challenges that come from crossing 
scales of modelling. 

Within physics there are different equations that have been formulated to mimic 
the behaviour of different phenomena as viewed at a particular scale. This need 
for different equations at different levels all stems from the current understanding 
of the physics or the lack thereof. The need for different equations shows that 
there are differences in the fundamental behaviour of the equations and hence 
indicates the challenges of combining them. The issue of scale may not only be 
focused on the physical size (or scale) of the phenomena being modelled but 
also in abstraction, scale and others. 

2.6.2 MULTISCALE INTEGRATION METHODS 
There are many methods to cross modelling scales. However many of these 
methods are only suited to the problem for which they have been developed 
and are found to be less applicable in others. One of the reasons that is given as 
to why this is the case is making methods that are applicable in multiple situations 
is the fact that by the very nature of multiscale modelling it is interdisciplinary [70] 
[71]. Hence the methods that are created also need to be interdisciplinary. Some 



PAGE 57 

methods attempt to cross the scales by combining different scaled algorithms in 
an attempt to cover overlapping domain which aides in the crossing of scale 
[70]. Such methods have proved to be a successful approach in limited 
demonstrated cases. 

Often when engineers or scientists consider modelling, be that multiscale or 
otherwise these often start with the methods that they are used to using at a 
single scale. This is often differential equations as they are well established at 
representing rates of change. However the literature indicates that there may be 
more suitable methods to use. It is proposed that a broader view of mathematics 
is taken and methods such as Fourier analysis, matched asymtotics and multipole 
methods be investigated [72].  

The subject of differing time steps has proved to be a common and continuing 
issue. It is often  

“dictated by the dynamics at the smallest scale, which for atomic motion 
is on the order of ×10-15 seconds”[69]. 

It is not feasible to integrate atomic simulations with those that use much larger 
time steps, such as 0.2 second as there are many orders of magnitude between 
them. There are methods to overcome such issues of timescale such as timescale 
extension [69].  

Not all methods that have been proposed are based around the concept of 
linking equations. There are also methods that have been demonstrated that use 
statistical methods, such methods are referred to as equation-free multiscale 
methods. Fine, coarse, and special time scales are linked by using statistical 
means [69]. This indicates that there may be other domains of mathematics that 
could be of use that as of yet have not been fully investigated.  

  



PAGE 58 

2.7 CURRENT METHODS TO OBTAIN A SHARED 
UNDERSTANDING OF MODELS AND SIMULATIONS 

It may seem trivial to point out but in a modern engineering project there is the 
need for individuals to share their understanding regarding particular aspects of 
the overall project they are working on. This is often facilitated by meetings, 
phone calls, emails, or use of a proprietary project management tool intended 
for communication across a project. Many of the project management tools 
have been developed for the intended purpose of ensuring that information is 
not lost throughout the project in an attempt to ensure traceability of all 
communications and decisions that are made as part of the project. Regardless 
of the tool that is used be that an email client, or otherwise at present written text 
and the spoken word are the primary means by which engineers formerly 
communicate with each other, as well as with other stakeholders. Using English as 
the language for verbal and textual means of communication causes many 
issues which could be considered to be one of the root causes of many 
misunderstandings during the integration task. The study of linguistics is one that is 
well established and the English language has been the focus of much scrutiny. 
The issue of ambiguity within the English language is an issue that has been 
stated as strongly as  

“The question of standard English is one of the great, unresolved problems 
that we are carrying into the twenty-first century”[73]. 

This demonstrates that even in the specific field of linguistics there are challenges 
on the informal nature of language used and at present there is no uniformly 
agreed way to resolve it. One of the reasons for this informality is that English is a 
descriptive rather than prescriptive language [74]. Being descriptive means that 
the definition of words is fluid over time as well as its grammatical use and hence 
syntax. Thus, English is an ever changing language which impacts this work as it 
implies that each person will have their own individual idea of what the definition 
of a word is as well as the potential change in meaning which is only gathered 
from the grammatical syntax surrounding it. Therefore when one person 
(engineer or otherwise) attempts to share an understanding there will be an 
inevitable mismatch in definition which results in a situation which can become 
problematic. Now in everyday life when we talk to each other and attempt to 
convey a general idea, the inherent mismatch is not so much of a problem as 
the overall essence of what is being expressed is exchanged. However in a 
complex setting where shared understanding is vital, this dislocation in 
understanding can cause significant issues. 

For the reasons of precision formal and semi-formal languages have been 
created, such as in order of increasing formality Unified Modelling Language 
(UML), Systems Modelling Language (SysML), and Alloy. UML and SysML are an 
attempt to fuse graphical representation with natural language to capture 



PAGE 59 

requirements, architectures and designs, whereas Alloy is a completely formal 
mathematical language. 

There are those who believe that the issue of ambiguity is such an issue that the 
only way in which we can communicate is formally with the use of mathematics. 
The result of this is a means in which mathematical descriptions and models are 
used to describe what is wanted from the system and the system itself. Such an 
approach has been shown to work with safety critical systems however it does 
have limitations as it requires that all concepts used in the project are capable of 
being described with mathematical concepts. For some concepts this may not 
be possible or time effective to do so. Despite the myriad of alternatives due to 
the flexibility and lack of training that is required natural language is still the 
prevailing method of communication and documentation that is used in industry. 
With this in mind it is clear why and how ambiguities can arise and cause issues in 
projects. This is a factor that will also affect the understanding of the textual 
descriptions of any models or simulations that are intended for re-use. 

   



PAGE 60 

2.8 CURRENT TOOLS FOR CREATION OF MODELS AND 
SIMULATIONS 

The review of software available for modelling, simulations and integration, 
contained in this work is a snap shot. The marketplace for such products is fiercely 
competitive with some software developers purposely obsoleting their own 
products to maintain their competitive position in this market [75]. Due to the 
transient nature of these products no single versions are identified however the 
general types and capabilities are discussed. 

There are existing standard integration software packages for industry that 
attempt to provide vehicle manufacturers the means by which they can take 
their existing high fidelity models and integrate them together for whole vehicle 
tests. However, complex product manufacturers are having many challenges 
with such software packages. One significant business challenge is matching the 
organisations process with the process that is dictated by the tools. This can 
affect the order in which aspects of the project are developed and even the 
number of people who can work on a component part at any one time. 

2.8.1 MATHEMATICS-BASED SOFTWARE 
Mathematical simulations are used across all engineering disciplines due to the 
fact that mathematics is the most frequently used means to model physical 
phenomenon. Often this simulation software provides an environment for 
mathematical models to be constructed, executed, the result analysed, and the 
presentation of the findings be they graphical or otherwise. This suits the standard 
engineering design process of; understand requirements, design a system, create 
mathematical model of the system, test the mathematical representation of the 
system, analyse the results and iterate until favourable results are ascertained. 
There are many mathematical-based simulation tools available on the market. 
Some are more effective than others at specific mathematical operations. The 
way in which they are programed and set up is are often very similar however 
the specific operation is dependent on the package. This creates the situation 
where practitioners often gain a preference over time for a specific simulation 
tool or provider. The means by which the majority of the mathematical simulation 
software handles the challenge of integration is to either use the Application 
Programming Interface (API) or inbuilt code integration means. Some such 
software has the facility to input sections of code from different programming 
language and interact with it through a defined means. 

  



PAGE 61 

2.8.2 GENERAL PURPOSE CO-SIMULATION SOFTWARE 
As the potential of co-simulation is being recognised by industry, the drive for 
software to support it has been produced to meet this demand. The new co-
simulation tools are still in their infancy and the capabilities are often limited to 
only being able to execute a few models at any one time. The tools often require 
considerable understanding of all component models and the simulation 
package itself. The software solutions are gathering pace and increasing their 
functionality with each subsequent release. Due to the current limited 
functionality of the integration tools they are hence aimed at specific domains, 
specific modelling processes, or specific tools. Examples of such tools include; 
Flowmaster, TISC Suite, ChiasTek, VLAB Works and CosiMate. A subset of the co-
simulation tools will allow limited integration of models from different 
environments. Such integration between environments tends to be limited to 
specific tools and only specific versions, and even only specific functions. 

2.8.3 OFF-THE-SHELF MODELLING PACKAGES  
There has been a recent trend for domain specific modelling and simulation 
packages to be developed. Many engineering domains now have these specific 
packages that allow for off-the-shelf, low fidelity simulations of whole systems. The 
automotive industry is not different in this regard. There are tools available that 
simulate the entire behaviour of vehicles as well as their major sub-systems. The 
intent of such software is to aid in the design of new vehicles rather than 
incremental improvements of an existing vehicle. These off-the-shelf tools have 
specified system architectures often for a multitude of specific vehicle types (e.g. 
hatch back, 4by4, and saloon). Often these tools are out of the box 
prepopulated with models. In some cases it is possible for the users to tune 
parameters of specific attributes of these models. This allows the automotive 
engineers to quickly ascertain if potential solutions are indeed plausible. Often 
these tools come with a means by which the final simulation can be seen in a 
pseudo real time virtual environment and basic full system characteristics such as 
0 to 60mph can be captured. 

At first inspection such tools appear to be the perfect solution to solve many of 
the problems associated with developing a new product, however using such a 
tool does have its weaknesses. When engineers wish to replace the existing 
models with more representative ones for their potential designs they are faced 
with restrictions. The integration between the component models often use a 
strict, bespoke standard and the way in which the tool is structured implies a 
specific architecture for possible solutions. When models from different 
environments are integrated into the tool they have to apply with the standards 
and architecture. The similarity between the original model and the one which it 
is to replace often has to have many of the same attributes such as time, inputs 
and outputs, and the same data types. Such fundamental modelling aspects 
such at timing and causality have to be identical; any deviation will mean that 



PAGE 62 

the model integration tool will give erroneous and in some cases non-repeatable 
results. 

Often the way in which such full vehicle modelling tools are currently being used 
is for the verification of whole virtual vehicle tests using models that have been 
produced by subject matter experts in isolation from one another. For the 
purpose of modelling individual sub-systems to the required fidelity for innovative 
research and development it is often necessary for the subject matter expert to 
use methods and tools that are only available in specific development 
environments. This indicates a growing problem as organisations push the 
envelope of understanding so to must the boundaries of such integration tools 
also have to be pushed. The tools also have to balance being flexible enough to 
adapt to fast changing modelling culture, while still being reliable for meaningful 
testing.  

  



PAGE 63 

2.9 SUMMARY 
Using the work that was conducted to understand the nature of the problem 
space, this literature review was formulated to ascertain the current state of 
model and simulation integration approaches and techniques. It is clear from the 
overwhelming weight of evidence that modelling and simulation has become an 
integral part of the current engineering process. It is also apparent that there are 
many who have been researching potential ways in which models and 
simulations can be integrated to gain more information. This has led to many 
approaches and methods to have been developed in many different scientific 
and engineering domains. Currently there are many competing approaches to 
the problem. Each of the identified approaches has been evaluated based on 
the demonstrations given in case studies and their suitability for use within this 
problem space. It has been found that there is no single approach that has been 
found to be applicable across all examples from every domain. A distinction 
between the approaches that are taken and the methods by which the 
approaches are implemented has been found. There is a plethora of methods 
that have been developed and each one has its strengths and weaknesses. 
Some have even attempted to gain the strengths of multiple methods by 
amalgamating one or more of them together. However each method is suited to 
a particular domain or even a subdomain.  

As stated above, it is clear that there is currently no one approach with a single 
implementation method that is suitable for all situations. It is recommended that 
each situation is taken on its own merit with the most appropriate approach and 
method selected for each specific situation. When considering how to integrate 
models and simulations the modelling methods that have been used in their 
creation has been shown to have a direct effect on the integration task. This 
highlights the need to understand how the models are created as the internal 
workings have a direct effect on how and if it is even possible to integrate it. The 
semantics and assumptions that make one model and simulation like no other 
has a direct effect on whether the output of integrating two or more models or 
simulations will produce a meaningful output or not. From the literature it is 
evident that for integration to be meaningful moving towards white box 
understanding of the semantics and assumptions made during their 
development need to be understood by those undertaking the integration of 
models and simulations. 

One of the most significant challenges faced with the possibility of full product 
simulation is the issue of modelling scales and the need to cross between them. 
There are existing methods to aid in this task however their effectiveness is limited. 
Hence this area has an active research community. This also highlights there are 
limitations as to what we can mathematically align for meaningful integration. 

An issue that was identified early on was shared understanding between those 
who are involved with the design of the system. All through this initially appears to 



PAGE 64 

be somewhat of a trivial problem there are still issues that have not been 
resolved. Many of the current methods that are in uses revolve around the use of 
written text and the spoken word.  

Throughout the literature there are clear differences between academic journals 
and the less formal literature produced by practitioners. This may be indicative of 
a deeper problem within the reporting of findings. For this reason more trust has 
been placed in approaches, methods, and tools that have working realistic case 
studies to support them.  

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
vehicle which has a combined ABS and steering 
system. 

   

2) The simulation is to capture the behaviour of the 
vehicle with a sinusoidal steering input.    

3) The simulation needs to be run multiple times with 
the speed of the vehicle changing across 
operational speeds from 10KH-1 to 115KH-1 

   

4) The model is to contain; Driver input, ABS System, 
and steering system.    

5) The outputs of the component systems are to be 
recorded.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries. 

   

E) If LabVIEW or Matlab is used, only a single license 
may be used.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

G) All component parts are to be in the public 
domain.    

Table 4.1: Verification RAG assessment of preliminary architecture. 

With the architecture being found to be complicit with the simulation 
requirements the next stage can be moved onto. 

2.9.1 PRELIMINARY SIMULATION DESIGN  
The behaviour of the parts defined by the architecture can now be broadly 
defined.  



PAGE 65 

User Defined Input 
A user interface is to be used whereby the user can input parameters and view 
the results of the simulation. This is to be a single input interface for all of the 
component parts. 

Steering profile  
The inputs steering profile is to be a sinusoidal waveform. 

Steering Control  
Model that represents a steering system, which takes user inputs and assists the 
user alter the angle of the wheels. The user inputs are too represented by inputs 
from the steering profile component. 

ABS System  
Model that represents the behaviour of an existing anti-lock brake system. The 
model is to capture the behaviour of the modulation of the brake pressure to 
stop the wheel from locking completely. 

Control System 
A controller that takes inputs and gives outputs to and from other system 
components as required. 

Results  
A component that takes inputs from other simulation components and saves 
them in a suitable format. 

  



PAGE 66 

2.9.2 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 
The preliminary design can be verified against the simulation requirements. The 
RAG assessment method has been used to analyse whether the preliminary 
design metes the simulation requirements. This RAG assessment can be seen in 
Table 4.26. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
vehicle which has a combined ABS and steering 
system. 

   

2) The simulation is to capture the behaviour of the 
vehicle with a sinusoidal steering input.    

3) The simulation needs to be run multiple times with 
the speed of the vehicle changing across 
operational speeds from 10KH-1 to 115KH-1 

   

4) The model is to contain; Driver input, ABS System, 
and steering system.    

5) The outputs of the component systems are to be 
recorded.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries. 

   

E) If LabVIEW or Matlab is used, only a single license 
may be used.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

G) All component parts are to be in the public 
domain.    

Table 4.2: RAG assessment of the preliminary design. 

The RAG assessment in Table 4.26 shows that the preliminary design meets the 
simulation requirements and so it is possible to proceed to the next stage. 

2.9.3 ARE THERE ANY EXISTING SIMULATIONS AND MODELS 
The elements that are composed as parts of this system are well established. It is 
recognised that in a genuine engineering setting there would be existing models 
and simulations that could be of use in this situation. To emulate this repository a 
literature review was conducted and it is well known that models exist. This will 
impact the SESEM process but that will be explained in due course. 



PAGE 67 

2.9.4 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS SESEMS 
The SESEM is a sub-process that is concerned with aiding in the selection of 
existing models. As the potential for existing models being of use then this process 
can be implemented.  

1 Preliminary Simulation Design 
The overall goal of the system being designed as well as the simulation being 
designed is well understood. There is also an intended architecture and design 
for the simulation being produced. The preliminary requirements for the SESEM 
process can considered satisfied. 

2 Boundary of the Existing Model Selection Process 
A secondary check has been conducted to assure that all of the prerequisites 
have been satisfied. From this point on it is considered that the SESEM process is 
the structure that is being followed. 

3 Assess the Model and Simulation Landscape  
An assessment has been made of the ways in which the interactions that are to 
be investigated have previously been modelled and simulated in the past. 
Information has been gathered as to the mathematical tools and 
representations which may be of use. 

4 Are Potential Models Available? 
From the assessment of the modelling and simulation landscape there are a 
number of potential models that could be of use. 

6 Is this a New Product/ Platform? 
The component sub-systems that forms the bases of the proposed system are 
well established and so too are the platforms. Hence the decision to consider 
that this is not a new product or platform has been made. 

16 Locate Previous Product Models 
An assessment of the various off the shelf models that could be of use have been 
collected. The models that have been located include: 

• Modeling an Anti-Lock Braking System 
• Modified Anti-Lock Braking (ABS) Model 
• Vehicle Body 
• Power-Assisted Steering Mechanism 
• Simple 2D kinematic vehicle steering model 
• Tyre simple 
• Tyre (Magic Formula) 

 
There is more than one tyre and steering models that could potentially be of use. 
However at this stage having more than one model is not a hindrance.  

  



PAGE 68 

17 Available Model Documentation 
For each of the identified model a simple assessment of whether there exists 
sufficient documentation available has been conducted. If the documentation is 
not available or has insufficient detail, is there someone in the team that can 
understand the model explicitly has been ascertained. The results of this 
assessment are captured in Table 4.27 below.  

MODEL NAME DOCUMENTATION 
AVAILABLE 

TEAM 
UNDERSTANDING SUITABLE 

Modeling an Anti-Lock Braking 
System  ▬  

Modified Anti-Lock Braking (ABS) 
Model  ▬  
Vehicle Body  ▬  
Power-Assisted Steering 
Mechanism ▬ ▬ ▬ 

Simple 2D kinematic vehicle 
steering model  ▬  

Tyre simple  ▬  
Tyre (Magic Formula)  ▬  
Table 4.3: Representation of the assessment of the documentation availability. Three symbols are 

used;  full, ▬ partial, and  not at all.  

Any models or simulations which do not have sufficient documentation or 
available understanding are deemed unsuitable. It is worth noting that Power 
Assisted Steering Mechanism only has limited documentation whether what is 
present is sufficient will be discerned later in the process. The team understanding 
is partial for all of the selected models. 

19 Does the Model Match a Section of the Simulation Requirements? 
For Each candidate model it is evaluated against the simulation requirements. A 
RAG assessment of each of the potential models has been captured in the Table 
4.28 below. 

  



PAGE 69 

 

M
od

el
in

g 
a

n 
A

nt
i-L

oc
k 

Br
a

ki
ng

 S
ys

te
m

 

V
eh

ic
le

 B
od

y 

Po
w

er
-A

ss
ist

ed
 

St
ee

rin
g 

M
ec

ha
ni

sm
 

Si
m

p
le

 2
D

 k
in

em
a

tic
 

ve
hi

cl
e 

st
ee

rin
g 

m
od

el
 

Ty
re

 si
m

p
le

 

Ty
re

 (M
a

gi
c 

Fo
rm

ul
a

) 

REQUIREMENT 
1) The simulation is to capture the 
behaviour of a vehicle which has a 
combined ABS and steering system. 

A R A A A A 

2) The simulation is to capture the 
behaviour of the vehicle with a sinusoidal 
steering input. 

R R A A A A 

3) The simulation needs to be run multiple 
times with the speed of the vehicle 
changing across operational speeds from 
10KH-1 to 115KH-1 

G G G R G G 

4) The model is to contain; Driver input, 
ABS System, and steering system. A R G A A A 

5) The outputs of the component systems 
are to be recorded. A A A A A A 

A) The total run time of the simulation 
should take less than five minutes to fully 
execute. 

G G G G A G 

B) The overall simulation and analysis 
should be possible on a mid-range laptop 
with the maximum capability of 8GB of 
Ram, 2.5 GHz quad core Intel Core i7 
processor, 500GB of hard drive space. 

G G G A G G 

C) No specific computational hardware 
or peripherals are to be used. G G G G G G 

D) The modelling software which can be 
used includes; Matlab, LabVIEW, C with 
standard libraries, or Python 2 with 
standard libraries. 

G G G G G G 

E) If LabVIEW or Matlab is used, only a 
single license may be used. G G G G G G 

F) The output results of the simulation are 
to be saved in a file format that can be 
interrogated at a later date. 

A A A A A A 

G) All component parts are to be in the 
public domain. G G G R G G 

Table 4.4: RAG assessment of the selected potential models. Red (R) does not comply, Amber (A) 
partly complicit, and Green (G) fully complicit. 

  



PAGE 70 

20 Assess if Individual Models Can be Modified  
Not all models can be modified for a number of reasons that are detailed in 
section 6.3. Each of the selected models are assessed as to if they can be 
modified. The extent to which the can be modified is not in conjecture at this 
point it is full access modification or nothing. 

MODEL NAME CAN MODEL BE 
MODIFIED 

Modeling an Anti-Lock Braking 
System  

Vehicle Body  
Power-Assisted Steering 
Mechanism  

Simple 2D kinematic vehicle 
steering model  
Tyre simple  
Tyre (Magic Formula)  

Table 4.5: Assessment of whether the potential models can be modified. The assessment is a simple 
yes () or No(). 

14 Selected Models Unusable  
For the issues with the documentation and or the ability to modify the existing 
components the following existing models are considered unusable. 

MODEL NAME MODEL USABILITY 
Modeling an Anti-Lock Braking 
System  
Vehicle Body  
Power-Assisted Steering 
Mechanism  
Simple 2D kinematic vehicle 
steering model  
Tyre simple  
Tyre (Magic Formula)  

Table 4.6: Assessment of whether the potential selected models are usable. The assessment is a 
simple yes () or No(). 

None of the identified models are compatible for the intended simulation. If a 
model cannot be modified it has to meet all of the requirements exactly. For 
‘Vehicle Body’, ‘Simple 2D kinematic vehicle steering model’, ‘Tyre simple’, and 
‘Tyre (Magic Formula)’ require modification to make them complicit with the 
requirements. 

With the understanding of two remaining models that is present in the 
documentation issues became apparent. The ‘Modeling an Anti-Lock Braking 
System’ is an unrealistic and only meant as a demonstration model. The power 
assisting model documentation does not cover the assumptions that were used 
during its creation. As well as many of the components are ideal in nature and 



PAGE 71 

not representative of the systems that would be implemented in the design. The 
SESEM process dictates that in this instance it will then be necessary to locate 
more new models or follow the path of creating new models. 

For this case study the models originally selected were the only freely available 
models of this system that were found during the sweep of available models 
within the constraints of this research. The process dictates that in such a position 
if existing models cannot be located then new models are to be made. This 
changes the task form integrating existing models and simulations to developing 
a new simulation which may not even need to be integrated. Developing a new 
simulation from a blank slate is not the focus of this research as that is a very 
different topic. For this reason this case study will not progress, any further. 

  



PAGE 72 

2.10 EVALUATION OF METHODS  
The two fully worked case studies provide a reference point to which meaningful 
evaluations of the proposed methods can be made. Throughout the work that 
was conducted for the case studies strengths and weaknesses of the proposed 
methods became apparent. These identified strengths and weaknesses are 
discussed below.  

2.10.1 STRENGTHS OF THE PROPOSED METHODS 
From conducting the case studies, clear strengths of the proposed methods 
became apparent when compared with the current identified methods as 
discussed in section 2. Many of the identified strengths of the proposed methods 
originate from the structure that they bring to the integration task. This structure 
breaks down the seemingly chaotic integration task into repeatable stages that 
otherwise rely on the engineering experience and understanding of those taking 
part in the simulation task. 

The way in which the process has been created is such that it does not dictate 
how to conduct each task, but rather it is more of a requirement for the thought 
process of the user. This allows for the user to select the most appropriate tool for 
the job for their domain to conduct the required analysis at that stage. As 
demonstrated in the two case studies, different tools were used for the same 
process element dependent on the information that needed to be processed. In 
different situations some tools will inevitably be more suitable than others and 
having this flexibility increases the potential area where this process remains 
relevant. 

Having stages in the integration task make it possible for more than one engineer 
to work on the task simultaneously. In many cases it is possible for multiple 
engineers to work on the same task element at the same time. For case study 
two, elements one to six were effectively conducted by more than one engineer 
as the premise of the test came from negotiations with industrial engineers and 
academics while the rest of the stages were completed solely in an individual 
academic environment. The decision stages of the processes (traditionally a 
problem for group work) do not necessarily rely on just an individual making the 
decision as they could be conducted in a meeting setting or even using another 
systems engineering tool. At any of the stages it is possible for the process to be 
handed to another engineer as long as they are also familiar with the process 
and all of the previous stages have complete sets of the recommended 
documentation. This also allows for breaks in the work to be possible. While 
conducting case study two there was in fact a three week gap. However it took 
very little time to pick up where it had been left off. Having such a process allows 
for greater flexibility of engineers time. 

By specifying the purpose of the simulation at the start acts as a reference point 
throughout the rest of the process. This reference point is used to formulate the 



PAGE 73 

basis of the verification to which the whole simulation is subjected at various 
points. This static reference point has been of benefit as it allows for the 
simulation to be formulated in layers of complexity and functionality, meaning 
that the sources of the component parts to potentially be widely different, while 
keeping focus on what the simulation is attempting to achieve. In case study two 
there was the real potential for the work to progress and produce a simulation 
regardless, however the defined purpose of the test ensured that the work 
remained focused and hence halted. Without the static reference point this may 
not have been the output. 

The requirements writing guide allows for structure and similarity across the 
requirement sets. This was found to be beneficial across both case studies as it 
improves not only the quality of the requirements but also the effectiveness of 
more simple analytical tools. Having the simulation and constraints separate 
ensures that consideration is not only focused around functionality but also to the 
computational capabilities of the resources available. For the second case study 
the simulation constraints could have coursed a real problem if certain potential 
simulation components were used.  

The integration tables have demonstrated within the case studies as being one 
of the most valuable outputs of the proposed methods. The tables capture of the 
semantic information needed for meaningful integration. They are only 
completed once an understanding has been gained regarding the model which 
will be the subject of the tables, and only if the likelihood of the model being of 
use is high, waiting to this point to complete the tables is due to the resources 
required to conduct the task is considerable. Having such information stored in 
readily readable tables means that any two models with completed tables can 
be assessed to ascertain if they are semantically similar enough for potentially 
meaningfully integration. Critically this makes it possible to assess whether two or 
more models have the potential to be meaningfully integrated without the 
original modellers being involved. This is all before actually investing the time into 
not only the integration task but also the time needed to ascertain if the results of 
the integrated simulation are meaningful. This result is a considerable reduction in 
the resource overhead that it takes to produce a meaningful (with high 
confidence), integrated simulation when compared to current methods if rework 
is required. The integration tables facilitate many models being compared with 
the information stored in them being uniformly structured removing the need for 
integration engineers to hold all of the relevant information in their own working 
memory. Even in the limited example of case study one, the amount of 
information that was required to have available was such that the tables 
became of considerable benefit.  

If the model integration process does not go any further than the generation of 
the integration tables it does not mean that the work is of no use. It was found 
that in both case studies that the integration tables were far more thorough and 
concise when compared against the documentation that was supplied with the 



PAGE 74 

models. Once the integration tables are generated they can be stored for others 
to potentially use at a later date. The semantic information held within them will 
still be relevant for later work.  

The work that was conducted in case study two highlights the processes ability to 
locate the potential integration issues of existing models on a semantic level. This 
is of even more significance as it is capable of this even when the person 
following the process is not a domain expert of the potential simulation 
components. This validates that the engineer does not necessarily need to be 
from the domains of the potential models to be able to assess if integrating them 
could be meaningful or not. This capability was also found in case study two, 
interestingly at the exact same point of the process. This indicates that the 
understanding of the models and the comparison against the simulation 
requirements is the first real sorting stage of whether or not a potential 
component is suitable. 

The work involved with the setting up of the experiment for the first twelve 
elements of the Systems Engineering in Integration of Simulation process took a 
considerable amount of time. However having a designed experiment is of 
significant use when formulating the verification of the simulation. The output of 
the first twelve stages of SEIS give a static reference point which can be used for 
the verification task later on. Having a reference point means that if there is a 
variation from said reference it can be identified and corrected. The reference 
point critically allows for verification to be more than just the validity of the data 
transfer between components being acceptable. Without such a well-
established reference point the validity of the verification testing could be 
brought into serious doubt. 

2.10.2 WEAKNESSES OF THE PROPOSED METHODS 
While conducting the case studies it was not without issue and weaknesses of the 
proposed processes became apparent. Many of the issues stem from the 
increase in time that it takes to get to the point where programming starts to take 
place. This is due to the trade-off between the time that is invested in getting the 
integration correct the first time, rather than the time after the simulation is 
completed and the inevitable rework that has to be done. 

When conducting the proposed methods it became apparent that the amount 
of effort and time that goes into a stage is not represented by the textual output. 
This could be a potential issue when managing engineers using these processes. 
Elements of the SEIS process where this is particularly prevalent are 1, 7, 11, 19 
and 26. For the SESEM process it is elements 3, 8, 10, 11, 18, 23, 24, 25, and 28. 
From the number of tasks that require considerable thought and work with little 
visible output may trouble some managers. 

The task of locating previous models in this process is but one single stage 
however it is a non-trivial one. It would benefit from further research and 



PAGE 75 

guidance as to how the engineer could go about locating these existing models 
and simulations. This stage was one of the reasons why the second case study 
ran into the problems that would later halt the progress of the work. 

When conducting the SESEM process during both the case studies a potential 
issue became apparent regarding stages 12, and 19. At this stage existing 
models are held against the requirements for the simulation being designed. 
There is hence the potential need for requirements for the potential design. As 
the overall requirements of the simulation may not be fully applicable in this 
situation as the potential components are unlikely to be applicable at that stage. 
The user has to make the decision as to whether the potential component is of 
worth to continue using and investing in potentially reworking of the component.  

2.10.3 THE EFFECTIVENESS OF THE PROPOSED METHODS 
The application of the proposed methods provides structure to the integration 
process and produces a situation where there is both a potential solution and a 
means of conducting meaningful verification. This however does come at a cost 
of time and resources. In case study one the methods proved that they could be 
used to produce a simulation form existing models, whereas in case study two 
the processes highlighted that there were real serious semantical difference and 
potential problems with using the identified models. This indicates the 
effectiveness of the proposed methods. 

  



PAGE 76 

2.11 SUMMARY OF CASE STUDY TESTING 
The two case studies demonstrate how the proposed methods in section 3 can 
be implemented. The first case study is a full worked example from product 
concept through to the point where a physical prototype can be made and the 
virtual testing validated. The second case study represents an automotive 
example where the selected component models and simulations were identified 
as having significant semantic differences. The extent to these sematic 
differences resulted in any potential integration being meaningless. 

The critical findings from the two case studies are: the value of having a defined 
reference point that can be used through development for verification and 
validation, the ability to reliably identify semantic differences between the 
potential component models and simulations, and that the methods allow for 
non-domain experts to be able to make an assessment of the suitability of 
potential integrations before the work is put in to integrate and test the full 
simulation. However the greatest weakness of the proposed methods is the time 
it adds to virtual simulation and test. However there is the indication that 
automation technologies such as NLP could vastly reduce the time it takes for 
current repetitive deductive tasks, see section 5.  

 

  



PAGE 77 

 

 

 

3 SYSTEMS ENGINEERING 
FRAMEWORK AND 
PROCESSES 

  



PAGE 78 

  



PAGE 79 

3.1 INTRODUCTION  
From the understanding gained of the problem space identified in section 1.2.2 
combined with the information gathered in the literature review section 2, a 
novel representation of the systems engineering framework is proposed. This 
systems engineering framework forms the basis of a proposed end-to-end 
process that guides the user from customer wants through virtual design and 
testing, and to a point where a system design can enter manufacture. This 
process is expressed using flow charts combined with textual descriptions. Some 
of the elements in the flow charts represent processes in their own right and are 
decomposed further. 

It is proposed that not all integration is meaningful. Just because it is possible to 
pass data between component parts does not mean that the resultant output is 
meaningful. The minimum amount of information required to make an 
assessment of two or more models or simulations that can be meaningfully 
integrated is proposed. A means of how to capture, store and integrate this 
information is detailed. The potential to automate the data capture process is 
discussed. 

Levels of abstraction were recognised in the literature as being a key source of 
difficulty when assessing the meaningful integration of models or simulations. A 
definition is given to the term abstraction, from which a means of ranking and 
recording models and simulations is proposed.  



PAGE 80 

3.2 NOVEL SYSTEMS ENGINEERING FRAMEWORK 
With the development of new methods and thinking, innovative ways of 
representing this knowledge are often produced to support communication. To 
show the interrelation between the different stages of the systems engineering 
life cycle a diagram has been developed to demonstrate how sections build 
upon each other, while also showing the interrelation of the component parts. 
Within systems engineering while conducting one part of the project 
simultaneous consideration is given to another part. The reasoning behind this is 
to identify potential problems before they become too much of an issue. This 
concept can be seen in the Vee model [76] and Spiral Diagram [77]. The core 
systems engineering concepts of verification and validation that are expressed in 
Figure 3.1 through Figure 3.4 are explicitly stated in section 3.5.2 and 3.5.3 
respectively. 

3.2.1 LINEAR SYSTEMS ENGINEERING  
When systems engineering principles are implemented in an organisation, the 
component systems methods are often linearised to fit with existing traditional 
engineering practices. This linearisation results in an implementation where each 
step builds upon the previous one. A representation of this process can be seen 
in Figure 3.1 below.  

 

Figure 3.1 Linearised systems engineering method. This representation shows how the stages starting 
at the problem with each stage building on the previous stage. Note how the understanding 

occupies less area than the problem. 

In Figure 3.1 each stage builds on the previous. The starting point is the problem 
being addressed. Without a problem being present it is unlikely that any 
engineering would take place. Often the problem is expressed in the form of a 
tightly bound space. The ‘Understanding’ section is the first active stage of the 
process. The understanding of the problem being addressed can only be a 



PAGE 81 

perception of the problem due to all understanding only being a representation 
of the real world. The ‘Requirements’ that are formulated are built directly on the 
understanding of the problem space. However they may not utilise all of the 
understanding that was gained of the identified problem. The architecture is 
constrained by the requirements. The design is formulated using the defined 
architecture and the requirements. Once the design is implemented it is verified 
(in sections or as a complete system) using the requirements as a reference point. 
Validation is applied to all previous steps and requires all other stages to be 
completed. It is the last task to be conducted before the design is put into 
production.  

3.2.2 STACKED SYSTEMS ENGINEERING WITH PARTIAL VERIFICATION  
Taking the idea of linearised systems engineering and the representation of how 
some of the potential parallelism can represented using the principles of Figure 
3.1, see Figure 3.2 below. 

 
Figure 3.2 Basic stacked systems engineering. The problem is now an unbounded plane and 

verification happens concurrently with architecture and design. 

Some of the assumptions made in the linear systems engineering are problematic 
and not reflective of what is found in the real world. The problem that is the 
source of the engineering solution is not a nicely bounded entity that can simply 
be plucked up out of the ether and used. It is rather an entity that needs to be 
investigated and explored. Even when the problem is investigated the viewpoint 
of the investigator consists of only what they are looking for rather than what is 
necessarily the real source of the problem. In Figure 3.2 the representation of the 
problem has been altered from a bounded box to a region of a plan that can 
be interrogated, resulting in information being gained. Verification is not 
something that is done at the end of a project but rather as intermediate checks 
throughout to ensure that the system is being built right. Hence verification 
happens throughout the architecture and the design stages of a project. 
Verification and architecture feed off the requirements, however the design 
feeds solely off the architecture. Validation is conducted off the design; it is also 
used to validate that the verification of the architecture and design were correct. 



PAGE 82 

3.2.3 STACKED SYSTEMS ENGINEERING INCLUDING VERIFICATION OF 
REQUIREMENTS  

There is a question as to whether requirements can be meaningfully verified. For 
this study it is considered that in some situations some requirements can be 
verified as long as there is a valid reference point. The standard practice for 
verification in the rest of a project is to use the requirements as the reference 
point. Therefore to verify requirements there needs to be some other reference 
point to use. This new reference point could be traceable to primary or 
secondary knowledge sources. In the case of the proposal for creating an 
integrated co-simulation (see section 3.5.5) the constraint requirements can be 
verified against functionality requirements. However the functionality 
requirements have no other reference points other than the stakeholders and the 
engineer’s understanding of the problem space, both of which would have 
been used in the capture of the requirements in the first instance. Hence any 
verification test using the source of its creation as the verification reference point 
would result in the outputs being of questionable validity. To represent the 
question as to whether the requirements can be verified has been represented in 
Figure 3.3, where the intersection of the requirements box meets the verification 
box , this area has a question mark in it.  

 
Figure 3.3 Stacked systems engineering verification of requirements questioned. Note the box with 

a question mark in denoting the area in question. 

  



PAGE 83 

3.2.4 STACKED SYSTEMS ENGINEERING 
In this representation of systems engineering the issue is how the validation has 
been addressed (see Figure 3.4 below). The understanding is built upon the 
problem. The requirements are built upon the understanding of the problem but 
do not use all of the understanding that has been gained. The requirements 
underpin and directly influence the verification procedure, the architecture, and 
also the validation tests. This representation of systems engineering indicates 
what parts are built upon which sections and how they interrelate.   

 
Figure 3.4 Stacked representation of Systems Engineering. The requirements are partially verified 

and are used to guide architecture, verification, and validation stages. 

It is this representation that is the basis of systems processes for model and 
simulation integration in this work. The concepts of understanding the problem, 
requirements being a reflection of the understanding, verification from the 
requirements stage throughout the architecture and design phases, 
requirements being used as a source of validation test cases. These concepts are 
all used in the overarching systems engineering for model integration that is 
detailed in section 3.5.5. 

  



PAGE 84 

3.3 DESIGN OF EXPERIMENTS 
Before conducting experiments, strict boundaries of what the purpose of the test 
is and what measures are going to be taken need to be defined to ensure that 
only what is intended to be tested gets tested. This is an attempt to make the test 
as likely to succeed and the results be as valid as possible. When investigating 
the Design of Experiment (DOE) literature there appears to be some confusion as 
to what the DOE refers to. This appears to be caused by DOE referring to a loose 
collection of ideas, methods and tools. There are two broad areas of focus: 
statistical methods; and how to set up an experiment to prove or disprove a 
hypothesis. The two differing views of what DOE literature is concerned with is not 
new [78]. For the purpose of this review both views are considered. Within the 
literature concerning the statistical methods of DOEs Sir Ronald A Fisher is 
recognised as being the one to establish the core concepts in the 1920s with his 
work within the field of agricultural research [79]. 

The task of designing an experiment has been recognised as being as applicable 
to analysis conducted in a virtual environment as it is in the physical one [5]. 
Formally stating the concerns of the analysis to be conducted enables a shared 
understanding of the exact purpose of the analysis that is to be conducted. 

The literature concerning DOEs shows that this process is being used across 
science and industry, including but not exclusively to; operational research [80], 
electrical engineering [81], chemical engineering [82], materials engineering [5], 
drug development [83], and general mathematical simulation [4]. Due to DOE 
being a loosely defined approach it is not used in all industries to the same extent. 
There are those who state that 

“The design of experiments methodology is a technique that has been 
applied for many years in industry to improve quality”[5] 

whereas others are of the opinion that DOEs are not used as widely or effective 
as they should or could be which directly indicates that DOEs are not as 
ubiquitous as some may advocate [4]. 

The topic of DOEs is one that causes such confusion that articles are still 
published with full procedures that detail frameworks which scientists and 
engineers can implement for their simulations [4]. Such articles all follow similar 
themes with subtle differences. For the following sections regarding DOE the 
general themes are explored. 

3.3.1 THE PURPOSE OF A DESIGN OF EXPERIMENTS 
A DOE is intended to give assurance that the experiment analyses what is 
intended, and produces the most useful and useable results possible. The result of 
this is that DOEs can increase the transparency of simulation and the value of the 
reported results [4]. DOES can function as a reference point which can be 
referred to at a later date which details how and why a simulation was 



PAGE 85 

developed increases the value of the existing simulation. Having a full DOE 
accompanying a simulation means a greater understanding can be gained by 
third parties. Having such an understanding has been identified in this work as 
being critical for successful and meaningful model and simulation integration 
(section 4.3) 

The DOE documentation is beneficial for component selection. However there 
are those that see the value of DOE from a different perspective. The selection of 
components is further complicated if the objectives of the simulation do not 
remain constant. If there are changes then the engineers will have to throw-out 
the development of the simulations created to that point [15]. Optimal 
component selection is as a problem in itself and has been shown to be NP 
Complete [15]. Therefore to reduce a potential component of the complexity, 
holding the objectives of the simulation static is desirable. To enable the 
objectives to the simulation to be specified with enough assurance that they will 
not need to be changed half way through the selection or even build process, 
having a strictly defined DOE is important. If the DOE is not considered at all the 
likelihood of the objectives of the simulation changing half way through is high.  

3.3.2 THE USE OF DESIGN OF EXPERIMENTS WITHIN MODELLING AND SIMULATION  
Most of the literature concerning DOEs is focused around physical 
experimentation. However for the reasons discussed above there are potential 
benefits that are as applicable in the virtual world as they are in the physical. 
There are indeed highly critical remarks about how simulation is being used 
without considerations of scientific method such as, 

“many articles seem to ignore the basics of experimental design”[4] 

This indicates that there is the potential for DOE to have real impact in the 
modelling and simulation community. 

Where the variation between the physical and the virtual DOE differ is the 
degree of control that the experimenter has over the experiment. In the physical 
world attempts can be made to decouple variables though there can be 
interactions between variables that are either unknown or it is impossible to 
decouple. This is in contrast to a virtual environment where the designer has 
complete control over all of the interactions between variables. This can lead to 
only the known coupled variables being expressed in virtual environments. This 
argument returns to the issue of all models only being an approximation of 
physical phenomena. 

3.3.3 CONSIDERATIONS WHEN CREATING A DESIGN OF EXPERIMENTS 
The question when creating a DOE is focused around how to develop a 
simulation that suitably explores and mimics the behaviour of the phenomenon 
that is being investigated, while identifying biases, and ensuring that only the 
parameters that will make a difference are varied.  



PAGE 86 

Depending on the style of the author the necessary understanding of the 
problem that is being investigated is either explicitly stated or implied, regardless 
understanding is required for the experiment to be meaningful. However the key 
part of the whole DOE process is the identification of a suitable hypothesis based 
on accumulated knowledge [84]. This understanding is often where engineering 
differs from science. Engineers often use experimentation to understand if their 
potential designs fulfil requirements whereas scientists are trying to understand 
unexplained phenomena. This can be inferred [5] and note that engineers often 
have a good understanding of the problem situation to the extent that they can 
reduce the number of factors that need to be explored.  

Across the majority of the DOE literature there are general stages that are 
recommended. These stages are: designing a model, building the model, 
verification, and conducting the test [4]. In this work they identify that the 
difficulty that is often encountered with simulations is that they quickly become 
complex systems in their own right. 

To conduct meaningful testing there are also common recommendations 
regarding the formation of objectives, identification of variables and the way 
that they behave, selecting an appropriate way of changing the values of 
variables in a meaningful way (known as factorial design), and investigating and 
estimating the experimental error. The specifics of how to go about each of 
these stages is outside the bounds of this work. From the literature there is no one 
size fits all choice of which method to use. However some general reoccurring 
points are discussed in the rest of this section which directly relate to DOE using 
simulation rather than physical experimentation. 

Reductionist thinking can be used to break down the simulation into smaller 
simulations for the purpose of verification and validation before completion 
rather than conducting it all at the end. There are issues with this approach as if 
the system is truly complex by definition, the behaviour of the individual 
components may not be representative of the behaviour of the components 
combined.  

An important part of the DOE principle is to ensure that the variables that are 
used are independent of one another. In practice, this level of separation is not 
always possible. When designing a virtual simulation as part of an experiment, as 
the number of coefficients in a simulation increases the chances that they are all 
independent of each other decreases [78]. 

When it comes to selecting the design points that the simulation is going to use 
there are complete research projects (e.g. [85]) which focus purely on how to 
choose such design points to use in the simulation. In such work an attempt is 
made to reduce the number of times that a simulation is needed to execute to 
still give a useable output. When conducting DOEs with simulations, the number 
of variables that can be changed and the number of interactions between them 



PAGE 87 

that can be identified is far greater than traditional sensitivity analyses allows [4]. 
There are common recommended methods for conducting sensitivity analysis on 
simulations. These include: response surface methodology, robust parameter 
design, as well as the traditional changing parameters and observing the effects 
[5]. There are those who believe that the power of modern computers allow 
engineers to generate systematic searches of the domains which are being 
tested [78]. However this is a brute force approach which may mean that the 
simulation has to be run many times. Such an approach can be timely when 
considering the large number of high fidelity models being integrated. Whereas it 
has also been identified that reducing the number of times that a simulation has 
to be run is beneficial in not only the time that the design takes but also the other 
resources that are consumed by such a task. 

In the case where a full integrated simulation may be very costly to run, there are 
cases where lower fidelity models can be used to estimate the behaviour of the 
costly simulation, and hence can be used to select a suitable area for design 
points [82]. This is very much dependent on the situation being simulated as well 
as the understanding of problem space. Using an approach such as this allows 
for techniques that are usually only applied to the final simulation to be used. The 
techniques that were identified as being the most useful to apply to the low 
fidelity integrated models were: sensitivity analysis, identification of scale 
parameters, and identification of possible optimal spaces. 

Overall DOE has been shown as an approach to be beneficial to 
experimentation and specifically simulation. Many academic and practitioner 
examples can be found in the literature that demonstrate the benefits of the 
approach. The similarities between the core systems engineering thinking and 
that which has been demonstrated within the DOE literature has not gone 
unnoticed while performing this review. 

 

  



PAGE 88 

3.4 SIMULATION REQUIREMENTS 
Simulation requirements cannot be considered to be identical to the system 
requirements of the system being emulated. Simulation requirements focus on 
the testing of the behaviour of the system being designed in a virtual 
environment rather than the desired behaviour of an entity being designed in its 
system environment. This is a subtle difference. A fundamental difference 
between simulation of a designed system and the system itself is that the 
simulation emulates not only the intended behaviour of the system being 
designed but also that of the environment that the system being designed is 
intended to operate within.  

If there are any errors in understanding of the problem space, they are inevitably 
translated into the requirements. Due to the methods used, any errors in these 
requirements will propagate into designs that are based upon them. For work 
involving simulations, this understanding of the problem space goes further as 
many simulation types are sensitive to initial conditions. Initial values are 
parameterized using the understanding of the problem space. The accuracy of 
the results of such a test is inherently linked to the level of understanding of the 
problem space. Hence to increase the accuracy of many simulations it is 
necessary to have a detailed understanding of the problem space that the 
system being designed will operate within, before the requirements are written. 
When considering integrated co-simulations the necessary understanding 
includes constraints that will be present for the system being designed as well as 
to the simulation being constructed. Hence the initial understanding of the 
problem space is vital for an accurate simulation be that a co-simulation or 
otherwise. 

When capturing the requirements for a simulation there will be constraints that 
will be related to the simulation rather than the system being designed. This is due 
to the operational environments being different. In specific cases the operational 
environment for a simulation may be the same as that of the system being 
designed, however such cases are not the focus of this work as there are existing 
processes to support such work. 

It is proposed that simulations will have requirements that will state: what 
phenomenon is to be represented, the accuracy of the mimicry, and any 
constraints of computation, as well as any other specific desired functionality of 
the simulation. Each of these identified components of a simulation requirement 
set are explored in detailed below. 

3.4.1 PHENOMENON TO BE MIMICKED 
There is the primary need for a simulation to mimic a system which has been 
designed. Hence parts of the simulation requirements detail what the simulation 
is attempting to mimic. The basis of these requirements in the proposed ‘use case’ 
come from the system design phase of the product development lifecycle, as 



PAGE 89 

well as the requirements of how the system being designed is intended to 
operate. 

3.4.2 ACCURACY OF THE MIMICRY  
Part of the proposed method is to use the results of the simulations to inform 
engineers as to the feasibility of the potential designs so they can make informed 
decisions. To improve the probability that these decisions are within accepted 
bounds of risk, a level of accuracy is required for the simulation. There is not a 
hard and fast level of accuracy for all models and simulations for all occasions as 
different levels are required for different decisions. This is why the purpose of the 
test is to be decided upon and specified before the simulation requirements are 
formulated. As with the purpose known, a suitable selection can be made. 

3.4.3 CONSTRAINTS OF SIMULATION 
When conducting in silico experimentation there are specific constraints that 
manifest during simulation and need to be taken into consideration. Despite the 
increases in computational power nothing in engineering is free and as such 
there are costs related to each computation. Therefore resources need to be 
taken into consideration, such as but not limited to: execution time, available 
memory, processing power, available software, and skillsets of the engineers. 
Companies may also have set conventions as to how simulations are to be 
conducted. Any such conventions need to be explicitly captured in the 
simulation requirements.  

3.4.4 FUNCTIONALITY OF THE SYSTEM 
There are actions of the simulation that are not solely for mimicking the behaviour 
of the system being designed but rather for the analysis, recording, or modifying 
the behaviour of the simulation. An example of such functionality is ‘The system 
should record the speeds of the vehicle at a defined time step in the form of a 
CSV file’. Other aspects come into the functionality such as how the user will 
interact with the simulation being designed e.g. ‘The user interface of the 
simulation being designed is to be operated from the command line of a UNIX 
machine’. Hence how and why the simulation is to be used has to be taken into 
consideration when formulating the requirements. 

3.4.5 THE EFFECTS OF DIFFERING VIEWPOINTS 
To construct a simulation that produces results that are of a suitable accuracy 
and fidelity to allow for meaningful decisions is a non-trivial task. This task is further 
complicated by using existing models and simulations. As the number of 
component models and simulations increases so too does the number of 
viewpoints, the result of this is an increase in the complexity of the integration 
problem. A simple model and simulation task when using existing models can 
quickly transform from being a simple task to a complicated system and even a 
complex system. This transformation occurs with an increase in the variety of the 
component parts and the means by which the parts need to communicate. One 



PAGE 90 

of the foundations of Systems Engineering is to attempt to cope with complexity 
found in engineering tasks. It is proposed that systems engineering - based 
approaches and tools can alleviate some of the problem themes that have 
been identified in section 1.2.4. This is due to systems engineering having 
demonstrated that it can support the development of complex systems. It is 
hence proposed that the principles of systems engineering can be applied with 
the support of specific tools and processes that are specific to model and 
simulation task. 

3.4.6 REQUIREMENTS COMPLIANCE OF EXISTING MODELS AND SIMULATIONS  
Having a set of requirements for the simulation means that when using existing 
simulation components it is possible to establish if they comply with requirements 
of the new simulation being designed. This however raises a fundamental 
question regarding requirements and systems engineering. In mainstream systems 
a requirement is either satisfied or it is not, there is no partial satisfaction. However 
when operating within this problem space it is proposed that for requirements 
there may be a middle grey area between compliance and non-compliance. 
The partial fulfilment is categorised by a model or simulation providing part of a 
requirement but not the whole. When considering if an existing model or 
simulation is of value to the current simulation being designed, an existing model 
or simulation may mimic part of a system being designed which on its own does 
not satisfy the simulation requirements but with additional work or models or 
simulations it may do so. Therefore the idea that an existing simulation or model 
may contribute to fulfilling a requirement is captured in this partial statement. This 
concept has been applied within the processes that have been developed in 
this research. The way that this partial compliance has been implemented in the 
process is discussed later. As the partial compliance is a relative term, it is a 
subjective call from engineers as to the extent to which it is worth considering a 
component. There are however factors to consider which include: how much 
work needs to be done to get the model or simulation to comply, do the 
additional parts exist to allow for two or more models to be connected to 
comply with the requirements, and is it even possible to connect the model or 
simulation with other components. 

  



PAGE 91 

3.5 SYSTEMS ENGINEERING PROCESSES 
The most significant criticism of current systems engineering guides is that they 
are too long and complicated for non-systems engineering experts to follow and 
put into practice. Therefore this work has attempted to capture the essence of 
the systems engineering principles while presenting it in a format that engineers 
from all disciplines can easily absorb and put into practice. In this research 
various methods for communicating this information were experimented with. It 
was found that out of the possible options, the most effective method was flow 
diagrams. This type of diagram is not new in engineering and will be familiar to 
many engineers from many disciplines. Those who have not used these diagrams 
in the past will quickly see the similarity between them and the procedural 
thinking that is used in mathematical representations. Using this representation, 
each stage of the process is represented by a box. There are limited numbers of 
different shapes the boxes can take. The boxes of similar shapes denote that 
they all consist of the same type of operation be that an; action, decision, 
boundary, validation, verification, source, or a sink state. By keeping the variety 
of the types of actions small it reduces the complexity of the process [3]. The 
directional arrows between the boxes direct the user as to the next step. Each 
box in the diagrams has a textual description found in accompanying 
documentation. This allows the engineers to use the flow diagrams as a 
reference point that can be inspected as and when it is needed. By using a 
visual representation of the relations in the process steps combined with a textual 
document increases the understanding for the novice user faster than a self-
referential textual documentation [86]. It also shows the overall process flow in a 
few pages of information which can be absorbed at a glance. If the diagram is 
not self-explanatory then the textual document can be referred to. This will aid in 
them not getting bogged down in reams of text when looking for which step is 
next. 

The overall model integration task has been broken down into the following 
process flow diagrams: 

• Systems Lifecycle - An overview of the modelling and simulation 
process as a whole 

• Systems Engineering in Integration of Simulation - This is a process 
for the creation of an integrated simulation from many constituent 
parts 

• Systems Engineering of Selection of Existing Models - Tackles the 
challenge of selecting the appropriate models and simulations from 
a repository of existing models and simulations 

• Defining the Gaps - For finding where additional work needs to be 
done to get from existing models to final solution 

• Fill Gaps in the Systems Engineering in Integration of Simulations - 
The process of taking the ‘new’ parts and fitting them between the 
existing models and simulations 



PAGE 92 

These processes guide an engineer from the desire to simulate, through the 
integration of existing models and simulation, to the validation of the potential 
simulation.  

3.5.1 SYSTEMS CREATION LIFECYCLE PROCESS 
A representation of systems engineering principles has been discussed earlier in 
section 3.2. This framework has been implemented in the form of a process. The 
process is shown below in Figure 3.5. This process was designed specifically for 
the development of a new product or service using virtual testing before physical 
prototyping. This process takes customer wants and uses them for the 
development of a product all the way through to the manufacture stage. This 
process is intended for an organisation that wishes to gain value from and reuse 
their existing models or simulations for a new product or service. The activities that 
are present in Figure 3.4 can be seen in the following process, there is a direct 
mapping between the systems engineering framework and the proposed 
process. 

This systems creation lifecycle process is only concerned up to the point where 
the product enters manufacture. This is in contrast to other processes in the 
systems engineering literature that consider everything from the first thought of a 
system through to its disposal. This work is focused on the task of integrating 
models and simulations for the purpose of system creation; hence the concern 
ends with factors that directly affect the integration task. However this process 
can fit into a larger life cycle concern.  



PAGE 93 

 
Figure 3.5 Systems lifecycle. This process is an implementation of systems engineering for the 

development of a product using virtual simulation and testing. 



PAGE 94 

For each stage in this process there are sub-processes, some of which are 
detailed in this work. There are however some stages that are recognised to be 
necessary parts of an engineering project, but are strictly are outside the bounds 
of this research. Any stages that are outside the concerns of this research are 
identified as such and are only covered briefly.  

The systems engineering concepts of checking each stage of the project against 
a reference point (verification) has the potential to reduce the likelihood of there 
being a serious error only being found upon completion of the project. Figure 3.5 
highlights where virtual simulation and test fits within the larger engineering 
process. Its position dictates how it is treated. The elements of Figure 3.5 are 
described in Table 9.1.where each element is given a full textual description.  

3.5.2 VERIFICATION REPRESENTATION 
To ensure the work that uses the proposed processes is fully focused on what is in 
the requirements stages, verification testing is recommended. Verification is the 
testing to ascertain if what is being created is what was intended by those who 
specified the system. The basis of verification is comparing what has been 
created against a reference point. The reference point is to be agreed with the 
stakeholders of that system or sub-system. Any change in stakeholder between 
the whole system and the component sub-systems is to be taken into 
consideration. The customer will often not be interested in how the sub-systems 
are supposed to work but rather their concern is the system as a whole operates. 
Figure 3.6 shows the basic process of a verification exercise. 

 
Figure 3.6 Systems engineering verification. This figure shows the basis of all verification that is 

proposed in these processes. It uses the same flow chart semantics as the other proposed methods 
in this work. 



PAGE 95 

In the verification process above there is a stage ‘form verification test’, here the 
requirements being used for the system being designed have to be written in 
such a way as a test can be formulated from them. More information on how to 
write requirements in the proposed method can be found in section 3.4. Using 
the qualifier in a requirement such as ‘simulation must not use more than 1GB of 
RAM during execution’ allows for a precise verification. With this example a test 
could be conducted whereby the simulation is run and observe through a testing 
application to ascertain the amount of memory that the simulation calls 
throughout its runtime. If the simulation uses less that 1GB it has passed, whereas if 
it uses more than 1GB then it has failed. 

If an item under test fails verification it will be necessary for a decision to be 
made as to if it is necessary to go back and rework the solution until it is in a state 
where it can be subjected to verification again and pass. Figure 3.6 elements are 
described in Table 9.2. A full textual description is given for each of the process 
elements.  

3.5.3 VALIDATION REPRESENTATION  
The process of validation is similar to that of verification and often the two get 
confused, even within the literature. The critical difference between verification 
and validation is the environment where the test is conducted. Validation 
happens when the system being produced is tested in its operational 
environment with operational stimulus. This means that the system has to be in a 
state where it can be tested in its operational environment, which often means 
that this type of test is only done near the end of systems developmental process. 
Figure 3.7 below represents the concept of validation testing. Descriptions of 
each of the process elements can be found in Table 9.3. 



PAGE 96 

 

Figure 3.7 Systems engineering validation. Note how the test is conducted within the operational 
environment of the system being validated. 

The definition of the testing procedure comes from the requirements set. Often 
the high level requirements are used to define what the validation tests are to be. 
These tests often focus on the behaviour of the whole system rather than that of 
its component parts.  

If a system fails a validation test it often means that there needs to be 
considerable rework to get it to the stage where it can get retested and pass. 
Individual verification tests are often far cheaper than validation, not only 
because they are conducted in the design environment but also because they 
do not necessarily require the whole system to be present for the test.  

3.5.4 VERIFICATION AND VALIDATION OF SIMULATIONS 
Due to the multiple definitions of verification and validation found throughout 
systems engineering, ambiguity is compounded when considering verification 
and validation in the context of models and simulations. It is proposed in this work 
that it is possible to meaningfully both verify and validate models and simulations. 
The definitions and explanations of each of these terms are shown in detail in this 
chapter, and will be used as a reference for these concepts throughout this work. 

A reference point is needed to conduct either verification or validation for both 
models and simulations. To act as a reference point it is proposed that the 
models and simulations are to have requirements documentation. Having a 
static requirements document ensures that there is a solid reference that the 
modeller, and later the model tester, both have access. 



PAGE 97 

It is proposed that the verification of a model or simulation or part thereof can be 
conducted by comparing its current behaviour and characteristics against the 
requirements set. This means that the stages of the model can be verified as the 
design process progresses rather than conducting a monolithic verification 
towards the end of the work. This has the potential to work well specifically if the 
design of the simulations is modular. By having the capability to test piece parts 
of a system, it enables teams of people to work on the same project without the 
need for all components of the project to be at the same point in development. 
This will only work as long as the requirements are detailed and are adhered to. 
The adherence to requirements is in essence what verification is used to ensure. 

The validation of models and simulations can be more difficult than verification 
and in the ever increasingly competitive market place, is often neglected. The 
proposed method is for the model or simulation to be executed and results 
captured. The extent to which it is possible the same test as is described by the 
model or simulation requirements are to be conducted on the actual system 
phenomena. The results of the system test are to be used as the reference point 
for the validation of the models and simulations. The question then is a relatively 
simple one of ‘does the model or simulation produce results that are within the 
bounds that have been specified in the requirements’. If the product that has 
been defined based off the results of the simulation operates within desired 
bounds there is often the argument of ‘well it works doesn’t it’. This mentality is 
acceptable in a linear lifecycle project when there is no intention of revisiting the 
project work at a later date. If the product is to be evolved (as is often the case 
in many organisations) having models or simulations that produce results that are 
wildly different form the actual results can have catastrophic results if used in 
subsequent products. If a model or simulation that does not behave as expressed 
in the requirements is kept, it is proposed that its actual behaviour is recorded. 
This information could be crucial in other projects that are attempting to reuse 
models and simulations from previous projects.  

3.5.5 THE ROLE OF SYSTEMS ENGINEERING IN INTEGRATED SIMULATIONS (SEIS) 
The SEIS process is in effect a mapping of the core systems engineering principles 
(as discussed in section 3.2.4) onto the modelling and simulation task. This process 
guides the engineer from the desire to test a design through to feedback of 
results into the design process. Figure 3.8a and Figure 3.8b below show the two 
halves of the full systems engineering in integration of simulation process. 



PAGE 98 

 

Figure 3.8a Systems Engineering in Model Integration. The first half of the process including what is 
needed before the simulation tests commence and to the point of the verification of the simulation 

design. The stages that are before the Model and Simulation Boundary are not strictly part of the 
process but rather stages that are prerequisite to the simulation process. 



PAGE 99 

 
Figure 3.8b Systems Engineering in Model Integration. The Second half of the process extends to the 
point where the process feeds back into the design process. The two open ended arrows connect 

with the open arrows of the first half of the process. 



PAGE 100 

The first four stages of this process (understanding the problem space, 
requirements specified of system being designed, architecture specified of 
system being designed, and system design) are all stages that form the 
understanding of the problem space. These parts of the process were found to 
be common across the majority of engineering projects, even if they were not as 
clearly defined as shown in this process. The model and simulation boundary is 
the start of the developed process. Note that in the proposed process (as shown 
in Figure 3.8a and Figure 3.8b) the verification maps to the requirements, 
architecture, and design, in the same way as proposed in section 3.2.4. 

3.5.6 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS AND 
SIMULATIONS (SESEMS) (A SUB-PROCESS) 

To integrate existing models and simulations they have to be located, selected, 
and the viability of their use be ascertained. The selection of models and 
simulations from a pool of existing ones is not always as straightforward as it first 
seems. This process is a single step in the SEIS process detailed in the previous 
section 3.5.5.For this reason the boundaries are defined by the larger process for 
which this is a component. This process aids in the selection of candidate existing 
models and simulations based on the requirements of the simulation being 
designed. The flow diagram for this process can be seen in Figure 3.9a and Figure 
3.9b with the textual representation explaining each step is in Table 9.5. 



PAGE 101 

 
Figure 3.9a Systems Engineering of Selection of Existing Models Part A. Note the darker shaded 

boxes these are the areas where NLP technologies may be off assistance see section 5 for more 
information regarding NLP and its potential use in these tasks. 



PAGE 102 

 

Figure 3.9b Systems Engineering of Selection of Existing Models Part B. Note the darker shaded 
boxes these are the areas where NLP technologies may be off assistance see section 5.2 for more 

information regarding NLP and its potential use in these tasks. 

An explanation and the reasoning of each stage of the process in Figure 3.9a 
and Figure 3.9b can be found in section 9.1. 

  



PAGE 103 

3.5.7 DEFINING GAPS IN SESEMS (A SUB-PROCESS) 
As part of the SESEMS a detailed design is structured from existing models and 
simulations. The situation may arise where the selected existing models and 
simulations do not cover all that is needed to fulfil the simulation requirements. At 
this stage it is necessary to define where the gaps are between the existing 
models and simulations so that they can be filled by another process. The define 
gaps in the ‘systems engineering in integration of simulations’ process is shown in 
the Figure 3.10 below. Each stage of the process is detailed in a textual 
represented see Table 9.6.  



PAGE 104 

 
Figure 3.10 Defining Gaps in the Systems Engineering in Integration of Simulations process. The 

process requires a detailed design and outputs which are used to define the gaps between the 
available models. 

Having a process for defining the gaps gives structure to what can be at first 
confusing and difficult task. The separation of defining what gaps need to be 
filled and filling the gaps reduces the likelihood that work is repeated or 
conducted when not needed. By looking at the gaps it also makes clear the 
data that needs to be communicated between the models and simulations and 
the form that the communications will need to take. This process is a way of 
looking at a constrained problem in a procedural way.  



PAGE 105 

3.5.8 FILL GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 
Once the gaps between the existing models have been identified the said gaps 
can be filled with new material. This new material may mean new models, 
simulations or communications infrastructure. The flow diagram for this process is 
shown in Figure 3.11. This process is very similar to the overall Systems Engineering 
in Integration of Simulation process; this is because it is in essence a micro version 
which is formulated from the same principles.  

 
Figure 3.11 Fill the Gaps is part of the Systems Engineering in Integration of Simulations process. 

These are a design and build process based on the information from the Defining Gaps in Systems 
Engineering integration of Simulations process. 



PAGE 106 

For further details, the stages of the process which is shown in Figure 3.11 are laid 
out in section 9.1. For each stage the activities that are to be carried out at that 
stage are detailed as well as the rationale behind the stated actions. 

This process was not included in the main SEIS as it is a contained process that 
could be executed in many ways. The inputs and outputs are required by the 
larger process for which this example process was constructed. 

  



PAGE 107 

3.6 SIMULATION AND MODELLING REQUIREMENT WRITING 
GUIDE 

The intended use and hence the scope of this requirements writing guide is for 
the production of requirements specifically for tests using models and simulations, 
hence It is not intended to be a general purpose writing guide. This writing guide 
takes the aspects of the writing task and breaks it down into activities and 
characteristics that all of the requirements should have. One of the criticisms of 
many systems engineering guides is often that they are too long. For this reason 
each of the sections of this guide are less than one page of text and in total less 
than 10 pages. The core ideas are expressed with the implementation methods 
left up to the engineer’s best judgment for that situation. For the rest of this 
section the titles are in bold, the text is Italicised and indented whereas the 
reasoning for that characteristic is given below in non-italic text.  

3.6.1 INTRODUCTORY SECTIONS 
At the start of the guide there is a section that indicates what a requirement is 
and how one can be ascertained. This section sets the boundaries of the guide, 
its purpose, and how it is intended to be used. 

Definitions 
One of the leading causes for ambiguity and miscommunication is differing 
definitions of words. For this reason key words that are used in this guide are 
explicitly stated with definitions.  

In the domain of requirements writing the shared consensus of the meaning 
of words is paramount. For this reason key words that commonly cause 
ambiguity are defined below. 

Model: A representation comprising mathematical functions which is static 
in nature. 

Requirement: A statement detailing what a potential solution is to be 
capable of achieving, or constraining the solution space which it is to 
operate within. 

Simulation: A simulation is an experiment which uses a dynamic 
implementation of mathematical models. Simulations produce data sets. 

Co-Simulation: The use of two or more simulations that share or exchange 
values during run time. 

Verification: Provides objective evidence that a system or system element 
fulfils its specified system requirements, architecture, design and behaviour. 



PAGE 108 

Validation: Provides objective evidence that the system, when in use, fulfils 
its stakeholder requirements, achieving its intended use in its intended 
operational environment. 

With these key words defined users can refer back to this section if they require 
greater clarity of what is meant by a phrase or word. 

Means of Communication 
In much of the systems engineering literature the authors spend a 
considerable amount of time getting caught up in the debates as to which 
means of communication is to be used rather than how the information is 
used. To allow for the user to utilise which ever means they feel is the most 
suitable for the project, this guide does not dictate how to communicate 
the generated requirements, but will provide the necessary information and 
characteristics that model requirements should contain. All information 
within this guide is equally applicable to textual processes as it is to Model 
Based Systems Engineering (MBSE). This is achieved by focusing on the 
content of the information that is to be transferred not how this is expressed. 

The means of communicating requirements is a contested topic within the 
systems engineering discipline with strong views held on all sides. This guide was 
constructed with both textual and MBSE modelling methods in mind. At present 
neither the textual or MBSE methods are without limitations.  

Model Requirements are not System Requirements 
The requirements of a system specify the system not the requirements of the 
model or simulation of the system. The full philosophical reasons as to why this is 
the case are not discussed, however an abridged version of this information 
would be a part of any distribution of this guide. A section such as the one below 
that gives a brief overview is intended to be included. 

A simulation of a design is a system in its own right and so requires its own 
design process. The requirements of the system do not specify how to 
simulate the intended design and produce tests to verify it. The 
specification of a simulation system is not a trivial exercise and there are 
many large scale simulations where this was not realised early on, resulting 
in much rework.  

The conceptualisation, design, implementation, verification and validation 
of simulation of a complex design are not trivial exercises. Therefore the very 
systems methods that are being used for the system being designed are as 
applicable to system of models and simulations emulating it. The use of 
systems methods also aide in the verification and validation of the models 
meaning that the models and simulations have potential to hold value after 
the project has ended. 

  



PAGE 109 

Moving From Systems Requirements To Modelling Requirements 
To produce simulation requirements from a blank sheet of paper can be a 
difficult task. As a simulation will be mimicking part of the system being designed 
a logical place to start gaining an understanding of what needs to be done is to 
look at the requirements of the system being designed. However these need to 
be complete, concise, and correct. 

Before attempting to move from systems requirements to modelling 
requirements the systems requirements are to be in a state in which the 
iterations are stable and the complete set have been verified.  

For the results of the simulation to be of use the design process needs to be 
at the detailed design stage and a full potential solution developed.  

For a simulation to have meaning and impact on the design process it must 
test an aspect of the systems behaviour that has been identified as 
requiring greater investigation. This means the test cases for the system 
being designed should have been identified and suitable test formulated. 
These test cases can aid in the development of virtual representations. 

Having the test cases also requires a hypothesis as to how the system will 
function. A hypothesis is needed as this can be used as a first sense check 
of the output of and resultant simulations. 

By having an understanding of the system being designed and the way that it is 
intended to be tested, before any thought of how the simulation of this system is 
to operate, ensures that the virtual testing will be reflective of the physical testing 
that the system will be subjected to during validation. 
 
Verification of Models 
The reason for verifying models is to reduce the time spent trying to integrate 
models that cannot be not verified as being correct. 

To ensure that model outputs are ‘correct’ there is a need to verify the 
models before relying on their results.  

To allow the process of verification and later validation, requirements are 
need to be specified as to allow for meaningful test cases to be formulated. 

If a requirement cannot be tested against in one way or another it is to be 
reformulated so it can be. 

With a robust requirement set and well thought out test cases, meaningful testing 
can be carried out to ascertain if the requirements for a system have been met 
or not. Failing to have either a robust set of requirements or well-conceived test 
case can result in erroneous assertions as to the result of verification testing.  

Having the verification of models and simulations allows engineers to check that 
their work is what it was intended to be.  



PAGE 110 

What is the purpose of the test? 
For meaningful investigation into the suitability of a potential design, what is to be 
tested is to be clearly understood before any attempt to create models or 
simulations is started. 

The purpose of the test is the primary drive for the creation of model or 
simulation. What aspects of the potential design require further investigation 
and virtual testing? 

Once an understanding of what is to be tested is gained, the purpose 
clearly stated, and boundaries of the test to be formulated, the 
requirements can be written. The statement of boundaries will aid not only 
in model selection but also to reduce unintentional feature creep.  

By using understanding to constrain the problem that is being worked on ensures 
that effort is focused on what is absolutely needed, and not exploring areas that 
are not vital for the development of understanding of the system being designed. 

Two Sides of Requirements 
To make explicitly clear to the user of the requirements writing guide, 
requirements are intended to have two distinct uses and both are of value to the 
project as a whole even if individuals are only involved with the one component.  

Requirements have two distinct purposes when creating a system both of 
which are equally as useful and hence important. 

1) To specify what is wanted from the system being commissioned, be that 
functionally or operationally  

2) To function as a reference point so that tests which are formulated to 
ascertain whether what has been produced fulfils the original intent of the 
system being commissioned. 

When requirements are written, the two ways in which it is going to be used 
needs to be considered. If a requirement cannot be used in both of these 
ways then it is incomplete and requires rework. 

The dual use of requirements is a key part of the underlying principle of using 
requirements to guide work on a project. Due to the importance of this singular 
feature a whole section was devoted to it to signify its importance to any 
potential users.  

3.6.2 CHARACTERISTICS OF ACCEPTABLE MODELLING REQUIREMENTS 
There are a number of characteristics that all well written requirements have. 
Each one of the identified characteristics is relied upon in the processes that are 
proposed in this work. If a requirement fails to have all of these characteristics it 
can cause considerable problems later on in the systems lifecycle. 



PAGE 111 

The nature of requirements is such that they fall in to two categories: 
acceptable, in which case they can be implemented successfully; and 
unacceptable, in which case, if used, success is far from guaranteed. 

The characteristics of acceptable requirements are: 
Unambiguous and Clear  
Concise 
Complete 
Correct 
Traceable 
Architectural Compatible 
Documented 
Tolerant 
Realistic. 

 
Attributes of Requirements: Unambiguous & Clear 

All requirements are to be written in such a way to reduce ambiguity. By 
making a requirement unambiguous and clear it ensures that anyone 
reading it will hold the same ideas as to what information is captured by it 
as the person who created it. Any jargon is to be explicitly defined within 
the document. Colloquialisms, contractions, slang, abbreviations and 
unexplained initialism or acronyms are all discouraged. If possible use the 
formal syntax of the language being used. If necessary use multiple means 
to aid in the communication of a concept. It is to be noted that an 
engineer may only see one requirement in isolation and be asked to create 
a means by which this is fulfilled without seeing any other requirements. 

Attributes of Requirements: Concise 
The requirement is short and to the point. Avoid being verbose in 
descriptions, use only as many words as is necessary to convey the intent of 
the information while complying with the rest of the acceptable modelling 
requirements characteristics. However use multiple methods to describe 
aspects of the requirement if and when necessary. 

Attributes of Requirements: Complete 
All parts of the requirement are to be in one location and include all 
information that is needed to understand the specific requirement in 
question, without need for additional information from other 
documentation or source. 

Each requirement should be in a state where it can be understood without 
the need to know any other requirements of the system. It has to 
encapsulate a complete idea be that a function or constraint. 

The requirements are all to be complete logical formats be they sentences, 
models or otherwise. 



PAGE 112 

Before the requirement is implemented it is to be specifically defined as 
being complete, be that in the requirements documents or otherwise. 

Attributes of Requirements: Correct 
Every effort is to be made to ensure that all requirements represent the 
need or constraint in its completeness. Errors in requirements can cause 
significant problems in the solutions later on downstream. If there is any 
doubt that a requirement is correct, time and effort is to be invested to 
ascertain whether it is or not. To increase confidence in those who are using 
the requirements it can be beneficial to references sources of relevant 
information which can be included within the requirement documentation.  

Verification is an important part of ensuring that the requirement can be 
defined as correct and so this is another reason why the requirements need 
to be written in such a way as to allow for verification to be meaningfully 
conducted. 

Attributes of Requirements: Traceability 
Each requirement is to be traceable throughout its life. During many 
requirements capture, manipulation and verification processes it can be all 
too easy for a requirement to be lost, missed, or duplicated. By having full 
traceability of each requirement, it can be ensured what has happened to 
each requirement and which ones have and have not been satisfied by 
any potential solution. 

A means by which requirements can be traced is strongly advised to be 
used. This guide will not specify a tool or method however the value of using 
a strict procedure ensures the integrity of the requirements set is ensured.  

When requirements are decomposed they should be traceable all the way 
back to the highest level requirement. Having full traceability also ensures 
that groups of engineers can talk and work on the same requirements set 
without issues of all of them working form different sets at the same time.  

Attributes of Requirements: Architectural Compatibility 
The requirements of models and simulations are not necessary working on a 
clean sheet but rather piecing together existing models and simulations. If 
this is the case then there can be issues of ensuring that the requirements for 
the simulation being designed are architecturally compatible with other 
requirements. If an architectural standard has been chosen to be used then 
it may be necessary for the requirements to have a particular format or 
structure. If this is the case then the standard is to be complied with. 

  



PAGE 113 

Attributes of Requirements: Documentation 
The requirements of a model or simulation form a key part of the overall 
system documentation. By having a robust set of requirements all other 
documentation will either be exposed by them or will be built upon them. 

Documentation allows not only for verification exercises to be conducted 
without using the modelling environment but also has the potential to make 
the model integration process far quicker at a later date. 

Attributes of Requirements: Tolerance 
Any specific values that are given must have a maximum and minimum. It is 
advised that no absolute values are to be been used. As in the real world, 
no absolute measurement of values can be found, therefore a maximum 
and minimum is to be stated as well as the resolution of the measurement 
(precision). The resolution allows for the accuracy of the measurements to 
be determined. 

Attributes of Requirements: Realism 
All requirements are to be realistic and achievable within the scope of the 
project. The scope of the project will define the technology, time, cost and 
other resources available to the project. This is an engineering judgement 
that will have to take into the consideration the human aspect of the 
engineering project and the skills that are available in the organisation. All 
will constrain the feasibility of any potential requirements. 

Governing bodies will restrict the solution space and affect the realism of a 
potential solution and hence need to be taken into consideration.  

Procedures and their Implementation 
The use of procedures can be somewhat ad hoc which can cause 
increased variance across the system components being designed. At the 
requirements writing stage of the project, the level of understanding that 
should be present in the project team should allow for an informed decision 
as to if a procedure is needed an what the ramifications of implementation 
it will be. 

There are many well established procedures that can assist in the 
development of a new system. If a procedure is to be adopted during a 
project it is advised that it is implemented at the start of the project rather 
than part way through, as this potentially will reduce the amount of re-work 
that may be required. 

If a procedure is to be used it is to be stated in the requirements as well as 
any supporting documentation. 

Some procedures are recommended wherever it is feasible to do so such 
as: ensuring that no one person is the sole author and verifier of a 



PAGE 114 

requirement, and a central method of storing all of the requirements is used, 
and some sort of version tracing implemented. 

The implementation of a project-wide process is not one to be taken lightly or too 
eagerly. If a process is implemented too early in a project it may be done so 
without sufficient knowledge, and has the potential to cause more harm than 
good, whereas if the decision to implement a process is made too late then it 
can be considerable rework to get everything to comply. Incorporating this 
decision into the requirements process not only ensures that any use of a process 
is defined explicitly in documentation but critically also ensures that a suitable 
amount of understanding is captured as to if a process would be of benefit to 
the project or not.   

Model and Simulation Constraints 
When considering the generation of requirements for models and simulations it 
becomes apparent that many constraints need to be captured that are specific 
to the simulation being designed rather than that of the system being designed. 
For this reason if these constraints are not investigated before the simulation is 
designed it can cause significant problems when the simulation being designed 
is implemented. 

When writing model and simulation requirements there are specific 
constraints that need to be investigated and addressed. These constraints 
are not applicable to the system being designed. 

Model and Simulation constraints that require consideration include: 

Simulation Architecture 
Total Run Time 
Time of Iteration or Step 
Hardware Processing 
Hardware Memory  
Hardware Storage 
Specific Use Hardware 
Hardware Peripherals 
Software. 
 

Model and Simulation Constraints: Simulation Architecture 
Using the methods proposed the process of defining an architecture that 
the simulation is to adhere to and hence its component parts leads to a 
restriction in the form that the component parts can take. By specifying 
architecture the complexity of the integration task can be greatly reduced. 

Model and Simulation Constraints: Total Run Time 
All models and simulations require time to execute. Some simulations may 
take days to run whereas others take less than a second. Time costs money 
in the production of a new product. Depending on how vital the 



PAGE 115 

information being modelled or simulated is, it may or may not be worth the 
investment in time. There is often a trade-off within simulations that the 
greater the number of data points or accuracy that is needed, the greater 
the run time. To reduce the chance that models and simulations take a 
long time to complete, it is beneficial to assign a constraint. The total run 
time constraint of the entire simulation being designed can be 
decomposed to all of the component models and simulations. 

The value of a total run time is also a trade off with the hardware and 
software that is available. It may be necessary to readdress the time 
constraint if there are issues with the capabilities of the available hardware. 

Model and Simulation Constraints: Time of Iteration or Step 
When integrating models and simulations the time that a component model or 
simulation requires to complete one iteration or step has a significant impact on 
the sharing of values between component parts. This concept of time is twofold: 
the time being represented by the simulation; and, the time that the simulation 
takes to execute.  

Specifying a time that represents the real world is not an arbitrary value that 
can be plucked at random. If the time value is not the same across all of 
the models and simulations then issues of sampling and bandwidth (Nyquist 
theorem) becomes apparent. Having differing real world time steps may be 
unavoidable if so ensure that ant-aliasing technologies are utilised. 

Having a time constraint for delivery of data from the model or simulation in 
respect to time of computation means that distributed communication may 
be possible. Knowing how long a model of simulation is going to take to 
produce a value is valuable when attempting to integrate them together. 
Defining how long a simulation has to produce a value can be dependent 
on the hardware and software that is available. It may well be necessary to 
re-evaluate an achievable time step once such information becomes 
available. 

Model and Simulation Constraints: Hardware Processing 
In this context all models and simulations require a computer to process the 
mathematical representations of the system being designed. The digital 
processing requires hardware for the model or simulation to run. Different 
hardware, or even the same hardware configured differently, can have 
effects on the way to best utilise it and reduce the time that it takes to run a 
model or simulation. 

The way in which code is written for the different hardware and software 
varies drastically. At the later requirements stage it is advised that the 
available hardware is specified and decisions made as to what type of 
processing is going to be used. This will make the later integration far easier. 



PAGE 116 

It is to be kept in mind that it is possible to produce incompatible structures 
that make model and simulation integration impossible. 

Model and Simulation Constraints: Hardware Memory  
All models and simulations require memory to operate. In any given 
hardware set up there is a finite amount of memory available. When 
specifying an integrated simulation the memory allocation for each 
component part requires careful consideration. 

Model and Simulation Constraints: Hardware Storage 
Simulations and models require storage for their own code, any run time 
engines, as well as the storage for any results. Some simulations produce 
large quantities of data that require huge amounts of storage. As with 
memory, storage is a finite resource. Hence its allocation needs careful 
management. It is advised that maximum limits are set on the amount of 
storage that any component part can access.  

Model and Simulation Constraints: Specific Use Hardware 
Some simulations can use specific hardware, such as a Graphics Processing 
Unit (GPU) or FPGA (Field Programmable Gate Array) to conduct repetitive 
calculations quicker than on a general purpose CPU. The available 
hardware therefore has to be considered. 

Model and Simulation Constraints: Hardware Peripherals 
Some models and simulations use other peripherals to conduct calculations, 
such as dongles or HMI interfaces. If the simulation being designed is 
intended to be used in many situations by many different engineers then 
having required peripherals may not be desirable. If such additional 
peripherals are not desired then it needs to be written into the requirements.  

Model and Simulation Constraints: Software 
When writing model requirements software availability is to be taken into 
consideration. If a new piece of software is needed it should be identified 
as early as possible. However it is to be noted that if a choice of software 
has been made for the project at a higher level, it will affect not only the 
project but also any downstream requirements. 

Verification of Requirements 
Once a set of requirements has been created they can be verified to 
ascertain if they comply with the guidance that has been given. The issue 
of what is to be held as the reference point is dependent if looking to see if 
the requirement has captured the correct information or if the requirement 
has been written correctly. 

To insure that requirements are acceptable and can be implemented a 
process of verification is needed. This should take two forms: one checking 
against the acceptable requirements section; and the second verifying 
that the requirements reflect what is required from the design of 



PAGE 117 

experiments. By verifying both of these aspects, the way in which the 
requirements are written as well as against what the intent of the model 
and simulation is to achieve, reduces the risk of requirements that are 
erroneous or outside of the scope for the task at hand.  

3.6.3 SUMMARY OF THE REQUIREMENTS WRITING GUIDE 
It is intended that the requirements writing guide focuses on what information is 
captured and the validity of the information rather than the means by which it is 
captured and presented. For all means by which the requirements are captured 
and presented, the processes and characteristics that are present in this guide 
will be applicable. This guide is focused around model and simulation 
requirements using existing models and simulations however the general 
principles that are used in this guide are equally applicable to simulations being 
designed from a blank page.  

  



PAGE 118 

3.7 INFORMATION NEEDS FOR MODEL INTEGRATION  
For engineers to be able to integrate models and simulations and ascertain if the 
integration is meaningful there is information that they will require. For an 
engineer tasked with integrating a number of models and simulations, they need 
to have an understanding of the models and simulations as well as an 
understanding of how to go about integrating them. This section is concerned 
with what is the minimum amount of information that an engineer needs to 
ensure that the integration is meaningful, when they have had no previous 
contact with any of the candidate models or simulations.  

From investigation into the types of information that are needed for meaningful 
integration, reoccurring categories became apparent. These categories form 
the foundation of the proposed structure. This is not meant to completely remove 
the engineering judgement in the integration task but rather support it, meaning 
that pure engineering intuition is not the foundation of the decisions as if two 
models or simulations are compatible or not. This increases confidence in the 
resulting integration.  

Existing integration standards were investigated as a starting point as to what 
information has previously been identified as being of use. Out of all standards 
considered, it was found that at present FMI showed the most promise. For a full 
review of modelling standards and the way in which they operate see section 
2.3.3. Many of the standards work best when they are used during the creation of 
models and simulations rather than applying them retrospectively to existing 
models and simulations. FMI is no exception in this case. This is a critical 
identification as at what point a standard is implemented in the projects 
developmental time-line has a direct impact on the successfulness of the 
standards implementation. 

3.7.1 THE SOURCE OF INFORMATION FOR MODEL AND SIMULATION 
INTEGRATION 

Most of the relevant integration information can be extracted from model or 
simulation documentation as well as from the model or simulation itself. This is 
dependent on the level of detail in the documentation as well as access to the 
code used to script it. If the documentation of models and simulations is not 
within the organisational culture then the majority of the relevant information will 
be in the head of the creators and inaccessible to others. It is most likely that 
most organisations fall somewhere between the two extremes of too much or too 
little documentation. This likely means that the relevant information is held in 
existing models and simulations but it is not in a form that can be readily 
captured and compared. If such information could be captured and stored in a 
repository, the repository could be interrogated by various machine learning 
techniques to find which model or simulations have the highest likelihood of 
being integrated successfully. This would have further reaching impacts to a 
business as if an engineer creates a model and it is fed into the repository, checks 



PAGE 119 

could be done to ensure that all of the necessary information is present in the 
repository. This checking would result in a company still retaining the value of a 
model or simulation after those who were involved in their creation have moved 
on. 

3.7.2 THE TWO SIDES OF MODEL AND SIMULATION INTEGRATION  
There are two distinct sides of a model or simulation, the first being the logic and 
equations that represent the phenomena being mimicked, and the second 
being the infrastructure that is needed to execute these models and simulations. 
Both sides are needed to be understood as there are many reasons why either 
side could cause an inherent incompatibility or integration challenge that has to 
be overcome. Hence any potential solution for how to capture the necessary 
information has to reflect both sides of the model or simulation. 

Using this perspective combined with information captured in section 2, with first-
hand experience, a collection of all of the required information was compiled 
and sorted, see the mind map Figure 3.12 below. The level of detail is such that 
an engineer with a working knowledge of modelling and simulation could use 
this information to discern if two or more models or simulations have the potential 
to be integrated successfully and in a meaningful way. 

  



PAGE 120 

 

Figure 3.12 A mind map of the required topics of information for meaningful integration. The 
structure of the required information became apparent once the required information was 

compiled.  



PAGE 121 

The Environment branch covers the necessary infrastructure that the model or 
simulation requires to execute. The Structure of the model covers the 
implementation of the scientific principles. The verification experiments as 
introduced in section 3.5.5 is captured in the Verification Experiment branch. The 
Model information covers the description of what is the phenomenon being 
replicated is and what has been considered and used in its creation. This 
information branch also covers aspects of intellectual property and distribution 
agreements. 

3.7.3 INTEGRATION TABLES 
To capture the information that has been found to be necessary for meaningful 
integration, a means by which this information could be captured and 
integrated is needed. To make comparisons between the integration information, 
the information needs to be in a repeatable form. It is proposed that the 
information is recorded in a tabular format. The four proposed tables below take 
the form of the structure that became apparent during the elicitation of the 
required information; Model Information, Structure, Model Environment, and 
Verification Experiment. The intended layout of the tables is relatively simple see 
the Figure 3.13 below. 

 
Figure 3.13 The intended layout of the integration tables. The category is defined by the information 

in the previous section and the value relates to the model or simulation that is being evaluated. 

It is intended that the values that are entered into these tables will be in form that 
is most suitable for that category. Therefore most of the values will be in natural 
language. By using natural language it allows for flexibility to enable the effective 
capture of the relevant information. However some are in numeric or Boolean 
format dependent on the most appropriate data type to capture that 
information.  

By splitting the necessary information into four tables makes navigation far easier 
than if it was in a single monolithic table containing all of the information. When 



PAGE 122 

filling out the tables having similar groupings of information means that often 
when looking for one piece of information, another piece becomes apparent 
and can be captured at the same time.  

Instantiating all four of the tables for every model or simulation being considered 
is not necessary or an efficient use of time. If it is a first sweep across candidate 
models or simulations it is well worth just filling in the model information table. By 
filling out the model information table the engineer will capture the 
fundamentals of the model which will give the semantic reasons why or why not 
the candidate model or simulation could be used. The structure and modal 
environment tables are proposed to be used when conducting the integration of 
the models and simulations. The integration issues that will occur from the 
differences in the structure and model environment are more likely to be possible 
to overcome using established engineering methods. 

By having the information in a defined structure makes comparisons between the 
information sets of the two or more models easier to compare and contrast. 
Organising information in this way potentially allows for various stages of 
automation. For instance a GUI could be developed that sits at the front end of 
a database that stores all of the information. With such a database the data can 
be queried either manually or automatically. Also patterns trends and potential 
suitability of integration scores could be formulated between the captured 
models and simulations.  

The biggest drawback of using these integration tables is that they can take a 
considerable amount of time for an engineer to complete. If a level of 
automation was involved in the process to mine the necessary data from the 
existing documentation and requirements, the majorly of the information could 
be captured. Once a suitable amount of data had been captured potentially 
decisions could also be automated to inform whether the models or simulations 
are suitable to be integrated.  

Having the data in this form also opens up the potential for machine learning to 
scan over the information and conduct analysis on it. This potential was 
recognised and explored, see section 5 for more information. 

  



PAGE 123 

3.8 LEVELS OF ABSTRACTION  
It was found during the literature review that the level of abstraction of models 
and simulation has been identified as being a critical piece of information when 
assessing the suitability of potential integration. However no way of defining 
abstraction was found. Rather it is a loosely defined concept that many use but 
few define. Hence in this research the levels of abstraction are considered to not 
be a fixed static scale that any model or simulation can be measured against 
but rather a relative term used to compare two or more models or simulations 
against each other. 

One of the most significant problems when attempting to gain an understanding 
of a model or simulation is to understand the relationships between the variables 
and how they relate to other systems and subsystems. When large scale 
interconnected model integration is intended, architecture is necessary to tame 
the ensuing complexity and bring a structured order to it. If a hierarchy of the 
intended system is constructed using decomposition theory a natural order of 
hierarchy of system, sub-system and elemental units occurs. The models will then 
have their respective inputs and outputs which in turn have their own variables. 

To display how the decomposition of a system using sub-systems can result in a 
greater variation see Figure 3.14 below. This Figure 3.14 depicts the resulting 
decomposition situation in its simplest form, each model is considered to only 
have one input and one output. Each variable is describing a concept; each 
decomposition describes this concept in more detail. For example speed can be 
decomposed to starting velocity and end velocity; both relate to movement but 
the latter contains more information. Hence this links the models and their 
variables to a level of abstraction.  

 

Figure 3.14 Hierarchical decomposition displaying variables and relations between levels. There are 
four levels of abstraction that have been identified. Level one is the highest level of abstraction and 
level four is the lowest level of abstraction. The green boxes represent an input or output. The lines 

between the boxes represent the existence of a relationship. 

With this representation it becomes apparent that as the level of abstraction 
increases, so too does the number of inputs and outputs. Hence there is an 
increase in the number of internal variables. The ‘new’ variables have properties 
that are not captured by the higher levels of abstraction. If this process was 
continued the final level would be at the very limit of our understanding of the 



PAGE 124 

phenomenon being mimicked which would render any further modelling or 
simulation futile. 

Identifying the levels and pattern of decomposition behaviour is not useful if 
there is no way of communicating the results. Hence a way to capturingt6 and 
documenting the relations between variables has also resulted in a textural 
representation based on the concept of last shared common relative. Using 
Figure 3.14 as an example the textural representation of the identified 
relationships is shown in numerical representation. 

This textual representation works by mapping the decomposition hierarchical 
tree from left right, the standard case number relates to the number of variables 
that are in that section of the tree; a downward arrow represents the jump to the 
next level. Phi with a numbered subscript, n, indicates that a common ancestor 
exists (Ψ) with the number of levels needed (subscript, n) to reach it.  

 [Numerical representation]: 
1↓2↓2Ψ2 2↓2Ψ22Ψ32Ψ22  
 
This textual representation can be further detailed to capture the names of the 
variables shown in textual representation. 

[Textual representation]:  
1(A)↓2(B,C)↓2(D,E)Ψ2 2(F,G)↓2(H,I)Ψ22(J,K)Ψ32(L,M)Ψ22(N,O) 

 
To further elaborate how the textual and numerical representations map to the 
hierarchical decomposition, Table 3.1 breaks down the numerical and textual 
representations of the system expressed in Figure 3.16. 
 

HIERARCHY 
LEVEL 

NUMERICAL 
REPRESENTATION 

TEXTUAL REPRESENTATION 

1 1↓ 1(A)↓ 
2 2↓ 2(B,C)↓ 
3    2Ψ2 2↓    2(D,E)Ψ2 2(F,G)↓ 
4 2Ψ22Ψ32Ψ22   2(H,I)Ψ22(J,K)Ψ32(L,M)Ψ22(N,O) 

Table 3.1 Hierarchical mapping of numerical and textual representations. 

  



PAGE 125 

To demonstrate this method further, an example of a ball bouncing between two 
surfaces has been used. A representation of this can be seen in Figure 3.15 below. 

 

Figure 3.15: A simple representation of a ball bouncing between two surfaces the arrows show the 
direction that the ball is moving. 

This example shows how the hierarchical decomposition of a series of integrated 
models can be represented using the proposed method. The bouncing ball has 
been broken down into four levels: textual description; a simple equation whose 
product is speed; Newtonian equations of motion; and, the energy transfer 
between ball and each surface. The equations that are used to model this 
representation can be seen in Table 3.1 below. 

ABSTRACTION LEVEL EQUATIONS 
1 Textual description 
2 𝑆𝑆 =

𝐷𝐷
𝑇𝑇

 
3 𝑢𝑢𝑒𝑒(𝑥𝑥) =

1
2

× 𝑘𝑘 × 𝑥𝑥2 
𝑣𝑣2 = 𝑢𝑢2 + 2 × 𝑎𝑎 × 𝑠𝑠 

4 𝐾𝐾𝑒𝑒 =
1
2

× 𝑚𝑚 × 𝑣𝑣2 

𝑢𝑢𝑒𝑒(𝑥𝑥) =
1
2

× 𝑘𝑘 × 𝑥𝑥2 
𝑣𝑣2 = 𝑢𝑢2 + 2 × 𝑎𝑎 × 𝑠𝑠 

𝑆𝑆 = 𝑢𝑢 × 𝑡𝑡 +
1
2

× 𝑎𝑎 × 𝑡𝑡2 
Table 3.2 The Abstraction Level of a ball bouncing between two surfaces and the relevant 

Equations which are appropriate to that level. 

The equations used to model the situation shown in Table 3.1 is also represented 
in levels of abstraction in Figure 3.16 below. 



PAGE 126 

 

Figure 3.16 Hierarchical decompression of levels of fidelity of a bouncing ball. Four levels of 
abstraction, the variables that are considered and the relationships between the variables. 

Developed textual representation:  

[Textural representation 3]: 
1(text)↓3(S,D,T)↓2(U,V)Ψ22(S,d)Ψ22(t,ts)↓1(U)Ψ26(Ue,Ke,m,k,x,v)Ψ31(s)Ψ 2 2(d,a)Ψ 1(1(a))Ψ12(a,tt)Ψ21(ts) 

 

This analysis highlights how the semantics behind the variables increases in 
complexity as the levels of fidelity increase. A result of this is that it shows where 
there is the possibility to pass information between levels of fidelity for example 
using the value of the model used to calculate V on level three and the six 
variables used to calculate the same concept on level four.  

An interesting output of these analyses is that level of abstraction is captured in a 
form that can be of use during the integration task. This concept of abstraction is 
a comparative metric resulting from the produced hierarchy rather than an 
inherent characteristic of the model itself in isolation. This abstraction metric can 
aid in the integration process as it enables models from a repository to be 
compared while still having the flexibility to handle a multitude of modelling 
realisations. The dangers of taking the variables on face value are exposed as it 
shows how variables can be at different levels of abstraction, have the same 
name, data type, units and still represent different information, hence showing 
the dangers of manual integration based on such limited information. The 
decomposition demonstrates how engineers use the increase in variables and 
the interactions between them to model in more detail the same phenomenon 
at lower levels of abstraction. Being able to refer to specific levels of abstraction 
as a comparative measure across an integration problem space has benefits to 
the integration process. This method is of assistance primarily as a means of 
organising variables and reducing the ambiguity of communication for reference 
between models and simulations. 

The decomposition of variables method brings structure to the integration 
process without the rigidity that a strict standard enforces. This method also 
displays all of the variables that are open which facilitates relations to be 
identified enabling lines of communication to be established. However 
potentially the most valuable output of this analysis is that it ensures that all 



PAGE 127 

variables (and what they represent) is explicitly known by those conducting the 
analysis.   

One of the identified flaws with this method of navigating and recording the 
variable space is that it requires an intimate knowledge of the models and 
simulations. However it has been argued previously that this understanding is 
needed regardless of the methods which are applied. In a well-documented 
model or simulation the nature of the variables is defined in the documentation 
within the simulations and in which case an intimate working knowledge may 
gained by an individual who was not present during the creation of the model or 
simulation. This method by is time consuming and would greatly benefit from 
automation. 

  



PAGE 128 

3.9 SUMMARY OF SYSTEMS ENGINEERING FRAMEWORK AND 
PROCESSES 

The systems engineering framework was expressed with a series of diagrams 
showing the progression from a linear implementation of systems engineering 
concepts to a more holistic approach. The resultant Systems Engineering 
Framework forms the basis of the proposed processes. This process is 
decomposed into seven sub-processes all of which are expressed with a flow 
chart each with accompanying textual descriptions of the process elements.  

As part of the proposed process there are integration tables that contain 
information that is needed to be known about the potential model or simulation 
components before meaningful integration can be verified. These tables and the 
tasks involved in completing them is supported by the work conducted in section 
5. 

A means of comparing abstraction layers using decomposition has been 
introduced as well as a means of communicating the relationships between 
assessed models and simulations. 

 

 

  



PAGE 129 

 

 

 

 

4 CASE STUDIES 



PAGE 130 

  



PAGE 131 

4.1 INTRODUCTION AND THE PURPOSE OF CASE STUDIES 
When new processes and methods are proposed, examples of how they are 
used are beneficial to not only demonstrate how they work, but also as a form of 
validation that they work in practice. In this study, two case studies are presented: 
the first being one that was used through the development of the methods and 
formation of the overall process, which is referred to as the developmental case 
study; the second case study comes from the automotive domain, and is 
intended to mimic a situation in industry. 

The developmental case study is focused on the development of a new squash 
ball. The study of the movement of squash balls has been the focus of many 
computer science based case studies. The reason for this is that it is possible to 
align such a subject to a required level of complexity, to demonstrate a given 
specific technology. In this case study the complexity has been set relatively low 
to ensure that the focus of the reader is on the process, not on the intricacies of 
the specific integration task.   

Conducting the case studies is intended as a means of validation as seen in 
Figure 3.7. Critically this involves testing the system in its intended operational 
environment. In this case the process will be used as it is intended in industry, 
hence the second case study is focused around the development of a 
combined steering and braking control system for a sport utility vehicle. It is 
feasible that an automotive company would wish to conduct such analysis, and 
have a repository of existing models and simulations of the individual component 
parts. These component part models and simulations would also have likely been 
made in complete isolation to each other. The first iteration of this automotive 
case study used real world models from an automotive company, as well as in 
depth material from third party COTS manufacturers. However, due to external 
constraints to this research, as well as the commercial sensitivity of the models, 
they could not be published. For this reason publicly available alternatives have 
been used to illustrate the work that was conducted. 

4.1.1 IDENTIFIED BIAS 
Within any test, sources of bias can affect the validity of results. Within these case 
studies there is one identified bias that cannot go unmentioned; the individual 
testing the processes and methods is also the one who created them. This is not 
only a potential conflict of interest that can affect the evaluation of the 
proposed methods but also the manner in which they are conducted. To 
combat the potential for deviation from the proposed processes each stage and 
the work conducted is explicitly stated for later analysis. This transparency will 
allow assessment of deviation from the processes if any occurs. 

4.1.2 DISPLAY OF PROCESS ELEMENTS 
The two case studies development of a squash ball section 4.2 and integration of 
steering and braking 4.3 are implementations of the methods proposed in 



PAGE 132 

section 3. The process elements are represented by numbered headings 4.2.1 to 
4.2.32 for the squash ball, and 4.3.1 to 4.3.21 for the brake and steering 
integration. All sub proses elements have been given unnumbered headings.   



PAGE 133 

4.2 DEVELOPMENTAL CASE STUDY: SQUASH 
The purpose of the development case study is to step through each stage of the 
proposed process. The application that has been chosen is the development of 
a new squash ball. This will involve a simulation of the movement of a ball around 
a squash court. This is a constrained problem that can be as complex as 
necessary to ensure that all facets of the proposed methods are tested, while still 
being relatable to non-domain experts. The purpose of this case study is to verify 
that the proposed methods are suitable to be used in the assistance of model 
and simulation integration of existing component parts. 

The full SEIS process (section 3.5.5) is intended to be used when there are: 
customer wants, system requirements, system architecture, system design, and a 
desire to virtually test an aspect of the design. For this case study the focus is 
primarily on the virtual testing of a design by integrating existing models and 
simulations rather than the design itself. For this reason only the most relevant 
information relating to the architecture and design of the squash ball is given. 

4.2.1 CUSTOMER WANTS 
In this case study a manufacturer of squash balls wishes to develop a ‘training’ 
ball made out of a different rubber compounds. As a consequence it is known 
that the ‘training’ ball will have different behaviour when in play. The parts of 
interest are the energy transfer between the ball and walls, the velocity at which 
the ball travels, and the time it takes for the ball to move across sections of the 
court. This behaviour is expressed in Figure 4.1 below. 

 

Figure 4.1The behavioural states of the squash ball that are of interest for the evaluation of the 
design. 

  



PAGE 134 

4.2.2 SYSTEM REQUIREMENTS 
There are requirements that are specified by the World Squash Federation (WSF) 
for balls and courts which are openly publicised and available [87], [88].  

Requirements for a New Training Ball  
1. The behaviour of the ball at 296.15 kelvin, in the court is to be between 5 

ms-1 and 10 ms-1 faster after rebound from a service speed of 68 ms-1 than 
a regulation competition ball as dictated by WSF. 

2. The external diameter, overall weight, and seam strength (if applicable) 
are to comply with WSF standards. 

3. The production costs for a run of 100,000 balls including packaging is to be 
less than £0.25 per ball. 

4.2.3 SYSTEM ARCHITECTURE  
The architecture of the system that is being designed is that it is a hollow ball 
formed from various compounds of an undisclosed thickness.  

4.2.4 SYSTEM DESIGN 
The design of the ball is of regulation size. The compounds used to construct the 
ball are to be established through virtual and physical testing. 

4.2.5 SYSTEMS ENGINEERING IN MODEL INTEGRATION 
There are prerequisites for the SEIMI process; understanding the problem space, 
requirements specification of system, architecture of system being designed, and 
system design, are covered in sections 4.2.1, 0, and 4.2.4 respectively. The 
transition across the design and simulation boundary which is identified as part of 
the SEIMI process can now be crossed as all prerequisites have been satisfied.  

4.2.6 SEIMI DESIRE TO TEST POTENTIAL DESIGN 
The desire to test a particular aspect has been identified. The desire is to 
ascertain what the effects of different compounds have on the behaviour of the 
ball relative to a squash court. It is intended that the outcomes would have 
direct impact on the material choice for a new test squash ball. 

4.2.7 DESIGN OF EXPERIMENT 
The statistical aspect of the design of experiment is not overly relevant in this 
instance. There are potential compounds that are being concerned for the ball. 
These are to be tested and the suitability decided upon.  

  



PAGE 135 

Purpose of the Test 
The purpose is to ascertain what are the effects on the behaviour of a squash 
ball moving around a court when the compounds that it is constructed from are 
varied. This has been expressed in Figure 4.2 below. The boundaries between the 
states that the ball is in are proposed to be the areas of greatest interest. 

 

Figure 4.2 Visual representation of the purpose of the test 

Hypothesis Which is to be Tested 
That changing the compounds that a squash ball is constructed from affects the 
speed that the ball will return from a wall when hit against it. 

Identified Variables 
The factors that could affect the behaviour of the ball were explored using the 
understanding of the situation, and captured in a structured brain storm as 
shown in Figure 4.3 Brain storm of the potential parts of the behaviour of a squash 
ball and its interactions.  

  



PAGE 136 

 

Figure 4.3 Brain storm of the potential parts of the behaviour of a squash ball and its interactions. 

With the variables identified there are some that can be held constant and 
others that will need to be changed to represent the physical phenomena.  



PAGE 137 

The variables that are considered to be held constant: 

• Humidity of the air in the court 
• Air movement 
• Air temperature  
• The: skill, agility, service speed, and movement speed of the players 
• Diameter of the ball (ball deforms when struck or meets wall) 
• Drag coefficient of the ball 
• The racket that is used including the behaviour of the racket strings 
• Size and lay out of the court 
• Rules of the game including; order of play, boundaries, and points.  

 
The variables that may be changed during the experiment: 

• Service speed of the ball  
• Characteristics of the ball that can change include; stiffness, construction, 

temperature, weight, rebound resilience, life span, design, and molecular 
composition 

• Imparted, potential, and kinetic energy of the ball 
• Velocity, speed, and direction of the ball 
• Surface interaction between the racket and the ball 

4.2.8 DEFINE ASSUMPTIONS OF EXPERIMENTAL SET UP 
There are assumptions that have been made that are to be the same throughout 
the component models that are either selected or created, as follows. 

• The base experiment will hold all elements constant with the only change 
being the material the ball is made from 

• While the ball is moving, it is considered to be a particle 
• There is an energy transfer when the ball interacts with each surface. 

  



PAGE 138 

4.2.9 DEFINE SIMULATION BOUNDARIES  
The boundary of what is to be considered as part of the simulation has been 
captured in Figure 4.4 and throughout below.  

 

Figure 4.4 Simulation boundaries showing what is within and outside of consideration. 

All work is to focus around what is captured within the ellipse in Figure 4.4. All of 
the factors that have been identified as being outside of consideration can be 
disregarded or investigated at a later date in a subsequent simulation. 

4.2.10 SIMULATION REQUIREMENTS  
The simulation and modelling requirement writing guide as defined in section 3.4 
was used to create the requirements for the simulation. Due to the system 
requirements not being sufficient to express the simulation experiment, simulation 
specific requirements were needed.  

Means of Communication 
To not distract from the process itself textual requirements have been used in this 
application as the means by which requirements are captured and 
communicated. 

  



PAGE 139 

Requirements  
1. The simulation is to capture the behaviour of a squash ball in flight. 
2. The simulation is to capture the behaviour of a squash ball bouncing 

off the surface of a wall. 
3. The simulation is to capture the behaviour of a ball interacting with a 

player’s racket. 
4. The simulation needs to be run multiple times with the only change 

being the compound of the ball.  
5. The flight of the ball is constrained by a regulation sized squash court.  

 
Simulation Constraints  

A. The total run time of the simulation should take less than five minutes to 
fully execute. 

B. The overall simulation and analysis should be possible on a mid-range 
laptop with the maximum capability of 8GB of RAM, 2.5 GHz quad core 
Intel Core i7 processor, 500GB of hard drive space.  

C. No specific computational hardware or peripherals are to be used. 

D. The modelling software which can be used includes; Matlab, LabVIEW, C 
with standard libraries, or Python 2 with standard libraries.  

E. The resolution of the time steps across the models is to be at 0.001 seconds. 

F. The output results of the simulation are to be saved in a file format that 
can be interrogated at a later date. 

4.2.11 SET STANDARDS IF THEY ARE TO BE USED 
An assessment has been made as to if there are any standards that would be of 
use in this application. It was decided that due to the simplicity of the 
phenomenon that is to be simulated the use of strict standards would be time 
consuming for the potential gains that the use of a standard would give in this 
situation. 

4.2.12 VERIFICATION 
This is the verification of the requirements as part of the requirements writing 
stage and is not to be confused with a verification stage of the systems 
engineering in ‘Integration of Simulations’ process. 

  



PAGE 140 

Verification of Requirements 
A simple Red Amber Green (RAG) method was selected as the means of 
assessing the requirements against the requirements writing guide. Within the 
analysis red defines that the requirement is in direct contradiction and requires 
logical rework, amber defines that it requires some rework, green defines that it is 
complicit with the requirements writing guide. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.1 Verification RAG assessment of simulation requirements. 

With all of the requirements passing the RAG validation the work can continue 
onto the next stage.  

Verification of Standards 
Due to the lack of application of a standard the verification stage concerned 
with the verification of the choice of a standard can be omitted. 

  



PAGE 141 

4.2.13 PRELIMINARY ARCHITECTURE  
The preliminary architecture for the simulation is depicted in Figure 4.5 below. The 
architecture breaks down the interactions that have been identified as single 
components that all operate within a single development environment. The user 
defined inputs and results are likely to be native functions of the development 
environment. 

 

Figure 4.5 Preliminary architecture for the simulation of squash ball flight 

This architecture is a simple one that reflects a linear perspective of the 
phenomena that is to be mimicked. 

4.2.14 VERIFICATION OF PRELIMINARY ARCHITECTURE 
With a preliminary architecture defined it can be verified against the 
requirements for the simulation.  

A simple Red Amber Green (RAG) method was selected as the means of 
assessing the architecture against the simulation requirements. Within the analysis 
red defines that the architecture is in direct contradiction and requires logical re-
work, amber defines that it requires some rework, green defines that it is complicit 
with the requirements. 

  



PAGE 142 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.2: Verification RAG assessment of the proposed architecture. 

With the architecture being found to be complicit with the simulation 
requirements, a design can be formulated. 

4.2.15 PRELIMINARY SIMULATION DESIGN  
The behaviour of the parts defined by the architecture can now be broadly 
defined.  

User Defined Input 
A GUI (Graphical User Interface) is to be used whereby the user can input 
parameters and view the results of the simulation. This is to be a single input 
interface for all of the component parts. 

Flight  
The flight of the ball through the air and the time that it takes to do so when a 
particular force is imparted upon it.  

Court  
The size and shape of a squash court are to be captured as well as the relative 
position of the ball within the three dimensional shape. 

  



PAGE 143 

Rebound  
The interaction between a ball and a hard surface is to be captured and 
modelled by this component. The resulting force and speed is to be the output of 
this component. 

Results  
From the information received from the flight, court, and rebound components a 
detailed presentation of the results can be captured, analysed and presented 
by using a GUI. 

These simple descriptions give structure as to what sort of models are to be used. 
A full solution is not expected at this point. 

4.2.16 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 
The preliminary design can be verified against the simulation requirements. The 
RAG assessment method has been used to analyse whether the preliminary 
design metes the simulation. This RAG assessment can be seen in Table 4.3 below. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.3: RAG assessment of the Preliminary design. 

The RAG assessment in Table 4.3 shows that the design meets the simulation 
requirements and so it is possible to proceed to the next stage. 



PAGE 144 

4.2.17 ARE THERE ANY EXISTING SIMULATIONS AND MODELS? 
An assessment of the domain was made and it has been identified that there are 
existing models and simulations that could potentially be of use. This means that 
the SESEM process (section 3.5.6) can be used.  

4.2.18 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS 
The SESEM is a sub-process that is concerned with aiding in the selection of 
existing models. 

Preliminary Simulation Design 
This stage can be considered to have been completed. 

Boundary of the Existing Model Selection Process 
A secondary check has been conducted to assure that all of the prerequisites 
have been satisfied.  

Assess the Model and Simulation Landscape 
An assessment has been made of the ways in which the interactions that are to 
be investigated have previously been modelled and simulated in the past. 
Information has been gathered as to the mathematical tools and 
representations which may be of use. 

Are Potential Models Available? 
From assessing the model and simulation landscape there are potential models 
that could be of use. 

Is this a New Product/ Platform? 
It is proposed that in this instance the organisation has never conducted such a 
virtual investigation and testing of such potential designs. Hence there is no pre-
existing simulations that could be modified for this experiment available in the 
organisation. 

Locate Candidate Models and Simulations 
An assessment of many possible physical models that could be of use were 
assessed. The physics models that have been assessed cover: 

• Newtonian equations of motion 
• Simple harmonic motion  
• Equations of inertia  
• Kinetic energy and potential energy  
• Representations of squash courts dimensions. 
 

It is proposed that in this instance that models exist in forms that can be directly 
accessed from open source locations.  



PAGE 145 

Is Previous Model or Simulation Documentation Available? 
There is significant documentation that is available for the potential models that 
have been identified. Models that do not have documentation and could not 
be understood were disregarded. 

Can Someone in the Team Understand the Model or Simulation Explicitly? 
With the documentation that has been assembled, a greater understanding of 
what the identified models are capable of has been gained.  

The models and simulations which have been selected for further analysis are: 

• Documentation of a Particle Moving in Free Space 
• Documentation of Energy Transfer Model 
• Documentation of Squash Court In or Out Model. 

Does the Model or Simulation Match a Section of the Simulation Requirements? 
Each candidate modes is evaluated against the simulation requirements. RAG 
assessments have been used throughout. 

  



PAGE 146 

Particle Moving in Free Space 
Table 4.4 below is the RAG assessment of the Particle Moving in Free Space 
model.  

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.  -  

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.  -  

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

 -  

Table 4.4: RAG Assessment of the particle in flight model. 

As the model in question is concerned with the flight of a particle, it does not 
comply with requirements two and three, hence it has been assigned a red 
value. This does not mean that the model is unsuitable for use; it means that the 
model only covers a section of the behaviour that the overall model is to mimic. 

Requirements five, E, and F have been assigned amber values as the models do 
not at present have the required capabilities, however values could be changed 
or minor modifications made to make them complicit.  

  



PAGE 147 

Energy Transfer Model  
The table below is the RAG assessment of the Energy Transfer Model. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.  -  

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.  -  

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.  -  

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

 -  

Table 4.5: RAG Assessment of the Energy Transfer Model. 

The Energy Transfer Model does not comply with all of the simulation 
requirements in its current state. The model only represents an energy transfer 
hence has the potential to comply with requirement two and would need minor 
alterations to make it applicable. This model however does not comply with 
requirements one and three. For requirements five, E, and F minor modifications 
would need to be made for the model to comply. Requirement E would require 
a parameter change whereas F would require additional code. 

  



PAGE 148 

Squash Court In or Out Model 
The table below is the RAG assessment of the Squash Court In or Out Model. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.  -  

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

 -  

Table 4.6: RAG Assessment of the Squash Court In or Out Model. 

The Squash Court In or Out Model does not comply with requirements one, two, 
or three. However this does not mean that the model may not be of use as it 
critically satisfies requirement five. E and F would require minor alteration to make 
it fully compliant with the other requirements.  

Assess if Individual Models and Simulations can be modified? 
The three selected models can be modified.  

Can the requirements be met by changing parameters? 
Some of the requirements can be met by a change in parameters. However all 
of the models would require alterations of code. 

Rework of Model or Simulation Needed  
For each of the models the changes that would need to be made to get them 
to comply with the requirements has been captured.  

  



PAGE 149 

Particle Moving in Free Space: 
To make the model comply with requirement five the values of the distances 
need to be made available accessible as an input to ensure that the distances 
calculated are within the bounds of a squash court. 

To comply with requirement E the time step of 0.001 seconds needs to be set and 
the model verified as still producing answers that are within expected values. 

The saving of results captured by F may not be best captured in this part of the 
simulation however it could be easily added to the model if needed.  

Energy Transfer Model: 
For the Energy Transfer Model to be valid in this application the parameters 
relating to the specific interaction will need to be altered. This includes the 
characteristics of both the ball and the surfaces specified in a regulation squash 
court. The parameters for time step requires setting to 0.001 seconds and tested 
to ascertain that it remains within acceptable accuracy at this time step. 

The results of the computation need to be captured in a means that can be 
saved for later analysis. 

Squash Court In or Out Model: 
The parameters for time step requires setting to 0.001 seconds and tested to 
ascertain that it remains within acceptable accuracy at this time step. 

The results of the computation need to be captured in a means that can be 
saved for later analysis as well as making the outputs available at the boundaries 
of the model such that values can be passed from it.  

Does an Alternative model with less rework exist? 
From the available models and simulations that have been identified there are 
no existing available models or simulations. This means that the rework of the 
models is needed. 

Rework Model or Simulation 
The necessary changes that have been identified (in Rework of Model Needed) 
were made to the models and simulations. 

Verification of altered models 
With the alterations made the models can be verified against the model 
requirements. The simple RAG method has been implemented again. This allows 
for the direct comparison between the previous assessments. This verification 
allows for assurance that the selected models for fill the requirements of the 
integrated simulation. By having the comparison with the previous verifications 
allows for assessment of the effectiveness of the rework of the models. 

  



PAGE 150 

Particle Moving in Free Space 
The table below is the RAG assessment of the Particle Moving in Free Space 
model.  

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.  -  

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.7:RAG assessment of the modified Particle Moving in Free Space model. 

The red values for requirements two and three are not met due to the 
functionality of the model. However all of the constraints A through F are met.   

 

  



PAGE 151 

Energy Transfer Model  
The table below is the RAG assessment of the Energy Transfer Model. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.  -  

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.8: RAG assessment of the modified Energy Transfer Model. 

The red values for requirements one and three are not met due to the 
functionality of the model. However all of the constraints A through F are met. 

 
  



PAGE 152 

Squash Court In or Out Model 
The table below is the RAG assessment of the Squash Court In or Out Model. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
squash ball in flight.    

2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall.    

3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket.    

4) The simulation needs to be run multiple times with 
the only change being the compound of the ball.    

5) The flight of the ball is constrained by a 
regulation sized squash court.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space.  

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries.  

   

E) The resolution of the time steps across the models 
is to be at 0.001 seconds.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

Table 4.9: RAG assessment of the modified squash court in out model. 

The red values for requirements one, two and three are not met due to the 
functionality of the model. However all of the constraints A through F are met.  

Complete integration tables  
The integration tables have been completed and can be found in section 9.3.2 

Available for Selection 
The models that have progressed to this stage are suitable for selection for 
integration. The models that have been of use can be complied into a list for 
potential selection.  

Models suitable for integration: 

Particle Moving in Free Space 
Energy Transfer Model  
Squash Court In or Out Model. 

  



PAGE 153 

End of Model Selection Process  
This denotes the end of the systems engineering of selection of existing models 
sub-process.  

4.2.19 SET FIRM ARCHITECTURE 
With the understanding of the available models and simulations a firm 
architecture has been set. A representation of this architecture can be seen in 
Figure 4.6. Note how this is significantly different to what was intended in the 
preliminary architecture. The changes were due to the structure of the models 
which were the outputs from the model selection process. 

 

Figure 4.6: A representation of the Firm architecture of the simulation. 

  



PAGE 154 

4.2.20 ASSESS COMPUTATIONAL REQUIREMENTS  
With the selection of models and the architecture of the solution set the 
computational overheads can be assessed. The requirements A, B, and C specify 
the computational requirements that the simulation has to work within. The 
computational overheads are shown in Table 4.10 below.  

MODEL NAME RAM DISK SPACE PROCESSOR 

Particle Moving in Free Space 2 K 25 KB 

Intel® Core™ 
i5-3380M CPU 
@ 2.90GHz (4 

CPUs) 

Energy Transfer Model 4 K 38 KB 

Intel® Core™ 
i5-3380M CPU 
@ 2.90GHz (4 

CPUs) 

Squash Court In or Out Model 3 K 41 KB 

Intel® Core™ 
i5-3380M CPU 
@ 2.90GHz (4 

CPUs) 

TOTAL  9 K 104 KB 

Intel® Core™ 
i5-3380M CPU 
@ 2.90GHz (4 

CPUs) 
Table 4.10: Computational requirements for the component parts of the architected simulation. 

The totals are within the computational constraints specified in requirements.  

4.2.21 VERIFICATION OF COMPUTATIONAL REQUIREMENTS 
The RAG assessment method was used to assess whether if the total demands of 
the component parts is within specified parameters. 

REQUIREMENT RED AMBER GREEN 
Total RAM    
Total Disk Space     
Total Processor     

Table 4.11: RAG assessment of the computational overheads of the proposed integrated simulation. 

With the overheads of the proposed simulation within the acceptable bounds 
the next stage can be conducted. 

4.2.22 DEFINE COMMUNICATIONS  
The types of communication as well as how the communications are to be 
handled can be specified. In this case all of the communication will happen 
within the LabVIEW development environment. 



PAGE 155 

4.2.23 DETAILED DESIGN  
The specifics of the design can now be specified with individual parameters 
being set and each communication that needs to occur. Tables have been used 
to specify the communications between the models this includes the data types 
to be used. An example of this can be seen in Table 4.12 below. The overall 
structure of the design adheres to the firm architecture. Using this approach it is 
clear that there are gaps in both simulation capabilities and integration, these 
are captured in the next stage. There are relations that have been identified 
where the information produced by one model requires transformation to get it 
to a form where the consuming model can utilise it. 

 



PAGE 156 

 

Table 4.12: Relationship table capturing the communication paths and data types of the detailed 
design. 

Fr
on

t H
alf

Le
ft S

erv
ice

 
bo

x
Rig

ht 
Se

rvi
ce

 bo
x

Le
ft Q

ua
rte

r R
igh

t Q
ua

rte
rB

ac
k h

alf
 T

op
 w

all
Fr

on
t w

all
Bo

tto
m 

wa
ll

Tin
Ou

t B
ou

nd
s s

ide
 

wa
ll le

ft
In 

bo
un

ds
 

sid
e w

all 
lef

t
Ou

t b
ou

nd
s s

ide
 

wa
ll r

igh
t 

In 
bo

un
ds

 si
de

 
wa

ll r
igh

t
Ou

t b
ou

nd
 

he
igh

t 
In 

bo
un

d 
he

igh
t

Ba
ck

 w
all 

ou
t b

ou
nd

Ba
ck

 w
all 

in 
bo

un
d 

He
igh

t o
f li

ne
 

at 
po

int
 x

Re
ma

ini
ng

 
en

erg
y

Kin
eti

c e
ne

rgy
 

(Ju
les

)
En

erg
y l

os
t 

(Ju
les

)
Re

tur
nin

g 
ve

loc
ity

 (m
ps

)
Lo

op
 

co
un

ts
Tim

e (
T) 

(S
ec

on
ds

)
Ac

ec
ler

ati
on

 (A
) (

me
ter

s 
pe

r s
ec

on
d p

er 
se

co
nd

)
Tim

e S
am

ple
 (T

s) 
(se

co
nd

s)
Di

sp
lce

me
nt 

ste
p 

St 
(m

ete
rs)

Di
sp

lac
em

en
t s

tep
 

St 
(m

ete
rs)

 A
rra

y
Sta

rtin
g V

elo
cit

y U
 (m

ps
)

FP
SV

Di
sta

nc
e (

S)
 (m

)
R

R
Fin

al 
Va

loc
ity

 (V
) (

mp
s)

Sa
mp

le 
Ra

te 
(N

B 
sa

mp
els

 of
ce

r T
im

e)
Sto

p L
oo

p
Ma

ss
 (K

g)
Ve

loc
ity

 (m
ete

rs 
pe

r s
ec

on
d m

ps
)

R
R

R
R

R
En

erg
y t

ran
sfe

r e
ffic

ien
cy

 (%
)

To
tal

 W
ith

 
To

tal
 H

eig
ht

He
igh

t o
f T

in
Fr

on
t W

all 
Bo

tto
m 

of 
Se

rvi
ce

 Li
ne

Fr
on

t w
all 

top
 of

 S
erv

ice
 Li

ne
Le

ng
th 

to 
sh

ort
 lin

e 
W

ith
 of

 se
rvi

ce
 bo

x
W

ith
 of

 ba
ck

 Q
ua

rte
r

De
pth

 of
 se

rvi
ce

 bo
x

He
igh

t o
f b

ac
k w

all 
lin

e 
X 

Co
ord

ina
te

R
R

Y 
Co

ord
ina

te
R

R
Z C

oo
rdi

na
te 

R
R

Te
rm

Sim
ble

 
flo

tin
g p

oin
t s

ing
le 

va
lue

FP
SV

Flo
at

ing
 p

oin
t a

rra
y 

FP
A

Int
er

ge
r s

ing
le 

va
lue

IS
V

Int
erg

er 
arr

ay
IA

Bo
oli

an
 si

ng
le 

va
lue

BS
V

Bo
oli

an
 ar

ray
BA

Re
lat

ion
 th

at 
ne

ed
s m

od
ific

ati
on

 
R

Ke
y

Inputs

Sq
ua

sh
 C

ou
rt i

n o
r O

ut

Ou
tpu

ts
En

er
gy

 Tr
an

sfe
r m

od
el

Sq
ua

sh
 C

ou
rt i

n o
r O

ut
Pa

rtic
le_

Mo
vin

g_
in_

Fre
e_

Sp
ac

e

Pa
rtic

le_
Mo

vin
g_

in_
Fre

e_
Sp

ac
e

En
er

gy
 Tr

an
sfe

r m
od

el



PAGE 157 

The use of structures as those shown in Table 4.12 is not the only way to capture 
or display this type of information. It has been used in this case for clarity and 
transparency reasons. 

4.2.24 DEFINE GAPS 
This is a sub-process the results of which can be seen below.  

Detailed Design  
The detailed design using existing models and simulations has been formulated. 
However it has been already found that there are gaps and transformations that 
need to be resolved before a fully functioning integrated solution can be made. 
This detailed design is a prerequisite for this sub-process.   

Boundary of the Existing Model Selection Process 
From this point on the work conducted is part of the define gaps in the current 
detailed design. 

Assess where selected models and simulations fulfil simulation Requirements 
Using the RAG assessment method the three selected models against the overall 
requirements of the simulation it confirms there are still gaps that need to be filled. 
The RAG assessment of the three models can be seen in Table 4.13 below. 

  



PAGE 158 

REQUIREMENT RED AMBER GREEN MODEL 
1) The simulation is to capture 
the behaviour of a squash ball 
in flight. 

   Particle Moving in Free Space 
   Energy Transfer Model 

   Squash Court In or Out 

2) The simulation is to capture 
the behaviour of a squash ball 
bouncing off the surface of a 
wall. 

   Particle Moving in Free Space 

 -  Energy Transfer Model 

   Squash Court In or Out 

3) The simulation is to capture 
the behaviour of a ball 
interacting with a player’s 
racket. 

   Particle Moving in Free Space 

   Energy Transfer Model 

   Squash Court In or Out 

4) The simulation needs to be 
run multiple times with the only 
change being the compound 
of the ball. 

   Particle Moving in Free Space 

   Energy Transfer Model 

   Squash Court In or Out 

5) The flight of the ball is 
constrained by a regulation 
sized squash court. 

   Particle Moving in Free Space 
   Energy Transfer Model 
   Squash Court In or Out 

A) The total run time of the 
simulation should take less than 
five minutes to fully execute. 

   Particle Moving in Free Space 
   Energy Transfer Model 
   Squash Court In or Out 

B) The overall simulation and 
analysis should be possible on 
a mid-range laptop with the 
maximum capability of 8GB of 
Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of 
hard drive space.  

   Particle Moving in Free Space 
   Energy Transfer Model 

   Squash Court In or Out 

C) No specific computational 
hardware or peripherals are to 
be used. 

   Particle Moving in Free Space 
   Energy Transfer Model 
   Squash Court In or Out 

D) The Modelling software 
which can be used includes; 
Matlab, LabVIEW, C with 
standard libraries, or Python 2 
with standard libraries.  

   Particle Moving in Free Space 
   Energy Transfer Model 

   Squash Court In or Out 

E) The resolution of the time 
steps across the models is to be 
at 0.001 seconds. 

   Particle Moving in Free Space 
   Energy Transfer Model 
   Squash Court In or Out 

F) The output results of the 
simulation are to be saved in a 
file format that can be 
interrogated at a later date. 

   Particle Moving in Free Space 
   Energy Transfer Model 

   Squash Court In or Out 
Table 4.13: RAG assessment of the three selected models against the overall simulation 

requirements. 



PAGE 159 

The RAG assessment shown in Table 4.13 is different from the previous tables as it 
has all three of the selected models tested against each requirement.  

Are All Requirements Met? 
From the analysis it is clear that there are requirements still to be met 
(requirement three), requirements that have been identified to have been 
partially met (requirement two), and requirements have been completely 
satisfied (four and five).  

Asses Existing Model Boundaries  
Using the understanding that is captured in the relationship tables it is possible to 
assess where the boundaries of the models are and where the overlaps are. 
Currently, in this instance, it is recognised that there is very little overlap between 
the models and as such there are many transforms that need to occur. 

Asses Necessary Transformations to Comply with Requirements 
From the assessment of the model boundaries and the extent to which the 
requirements have been for filled it is clear there are a number of changes that 
need to be made in order to make the overall simulation complicit with the 
requirements. 

There are functional simulation requirements that have been fully met, partially 
met, and not met at all: requirements one, two, and three respectively. However 
it is to be noted that all of the selected component models are complicit with 
the simulation constraints. Therefore any changes that are made to the 
component models must still take the constraints into consideration. 

Transformations that need to occur include: 

• Tracking of the balls position throughout its transit 
• The saving of the important data points 
• The modification of the Energy Transfer Model to make it comply with 

requirement two 
• The creation of a model that captures the interaction between the 

player’s racket and the ball 
• A means of starting and terminating the simulation 
• where the ball starts 
• The output of the Energy Transfer Model is to be taken and used to 

calculate the flight back to the player. 
The transformations identified above take the form of notes rather than 
statements that can be worked from. 

  



PAGE 160 

Define Requirements for work to fill the gaps  
The following requirements have been formulated from the identified translations 
and specify the required works. 

i. All models that concern the balls movement are to track the movement in 
the terms specified in the Squash Court In or Out models coordinate 
system. 

ii. All models concerning the movement of the ball are to output values that 
can be passed to the Squash Court In or Out model. 

iii. A means of capturing the required data points is to be created. The data 
to be captured incudes the 3D position of the ball, whether the ball is in or 
out in the court, the speed of the ball at each time step of the model, and 
the calculated energy transfer that happens during the interactions with 
surfaces. 

iv. The Energy Transfer Model is to be altered to be made fully complicit with 
requirement two. 

v. A model is to be created that captures the interaction between the 
player’s racket and the ball detailing the position of the ball and the 
velocity that was imparted to the ball. 

vi. The integrated model is to have a defined start and end condition that 
allows for the transit of the ball from the player to the wall and back to the 
player.   

vii. A model is to be created that takes the output from the Energy Transfer 
Model and captures the flight back to the player. 

viii. The time step specified at 0.001 seconds is to be used as the refresh rate 
simulation time. E.g. each calculation will represent the change that has 
happened in the last 0.001 seconds of the balls behaviour.  

ix. Only one calculation is to be made during each iteration in a procedural 
manner.  

Assess Data that Require Transfer  
As there are different parts of the overall simulation, it will be necessary for the 
components to communicate and data be passed between them. Using the 
detailed design Table 4.12 as a starting point, the required additions were made. 
Due to the size of the table it has been split into three tables Table 4.14, Table 
4.15, and Table 4.16. 



PAGE 161 

 

Table 4.14: The communications between the outputs of the Squash Court In or Out Model and the 
inputs of all other component parts of the simulation are represented. 



PAGE 162 

 

Table 4.15: The communications between the outputs of the Energy Transfer Model, the Particle 
Moving in Free Space model, and the inputs of all other component parts of the simulation are 

represented. 

 



PAGE 163 

 

Table 4.16: The communications between the outputs of the Energy Transfer Model and particle in 
free space, the Ball on racket model, and the inputs of all other component parts of the simulation 

are represented. 

  



PAGE 164 

Define Requirements for Communication 
The decision was made to use one development and execution environment to 
conduct this simulation. This makes the specification of the communications 
considerably simpler. The requirements regarding the data communications for 
this simulation are as follows. 

• All communications are to be conducted using native LabVIEW 
features and data types.  

• All communications are to be produced at the rate of 0.001 
seconds (simulation time). 

End Of Define Gaps in the SEIS  
This denotes the end of the Fill the Gaps sub-process. The next stage is element 
25 in the SEIS process. 

4.2.25 FILL GAPS  
The work was conducted to make the changes to existing models as well as 
create the new models and component parts. The Fill the Gaps element is a sub-
process each stage of which is detailed below. 

Define Gaps  
The definitions of the gaps process has been completed ensuring that the 
necessary information is present for this process to be conducted without issue. 

Boundary of the Existing Model Selection Process 
This denotes the start of this sub-process. 

Gain understanding of Requirements from Define the Gaps Process 
The requirements from the previous sub-process (Defining Gaps in the SEIS) have 
been inspected and any issues which became apparent were questioned and 
resolved. A complete understanding of the requirements is now considered to 
have been captured. 

  



PAGE 165 

Architect the solution/s 
From the requirements there are three new components that are needed to be 
added. The overall architecture of the solution is to change as shown in the 
Figure 4.7 below. 

 

Figure 4.7: The simulation architecture after the Fill the Gaps alterations. Note the change in 
structure from that in Figure 4.6. 

A ‘new’ component is to capture and save all of the relevant data in a suitable 
format can be seen in Figure 4.7 above. The inputs of Saving Data are specified 
in Table 4.14, Table 4.15, and Table 4.16. The output of this model is a CSV file as 
this allows for multiple software programs to interrogate the file at a later date.  

For the ball on racket model the inputs and outputs are specified in Table 4.14, 
Table 4.15, and Table 4.16. The model itself will also take the role as the starting 
point of the simulation and will define the starting velocity and position of the ball. 

The Energy Transfer Model and Particle Moving in Free Space models inputs and 
outputs have been defined in Table 4.14, Table 4.15, and Table 4.16. The model 
will take the values from the Energy Transfer Model and track the flight path of 
the ball back to the player. This will use the same Newtonian physics that was 
used as part of the Particle Moving in Free Space. 

The Particle Moving in Free Space inputs and outputs will be modified. Each step 
of the calculation will now also output the three dimensional coordinates of 
where the ball is at each time step.  

Design Potential Solutions  
Each of the architected components has been designed in full detail. Using the 
required functionality as a direction as to how to code them. 

  



PAGE 166 

Verification of potential solutions 
The potential designs is verified against the ‘Fill the Gap’ requirements as well as 
the overarching simulation requirements. The overall assessment was conducted 
using the RAG method see Table 4.17 below. 

 

Pa
rti

cl
e 

M
ov

in
g 

in
 F

re
e 

Sp
a

ce
 

En
er

gy
 T

ra
ns

fe
r M

od
el

 

Sq
ua

sh
 C

ou
rt 

In
 o

r O
ut

 

En
er

gy
 T

ra
ns

fe
r M

od
el

 
a

nd
 P

a
rti

cl
e 

M
ov

in
g 

in
 

Fr
ee

 S
p

a
ce

 

Ba
ll 

on
 R

a
ck

et
 

Sa
vi

ng
 D

a
ta

 

REQUIREMENT 

1) The simulation is to capture the behaviour of a 
squash ball in flight. G R R G R R 
2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall. R G R R R R 
3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket. R R R R G R 
4) The simulation needs to be run multiple times with 
the only change being the compound of the ball. G G G G G G 
5) The flight of the ball is constrained by a regulation 
sized squash court. NA NA G NA NA NA 
A) The total run time of the simulation should take 
less than five minutes to fully execute. G G G G G G 
B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

G G G G G G 

C) No specific computational hardware or 
peripherals are to be used. G G G G G G 
D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard libraries, 
or Python 2 with standard libraries. 

G G G G G G 

E) The resolution of the time steps across the models 
is to be at 0.001 seconds. G G G G G G 
F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

NA NA NA NA NA G 

Table 4.17 : RAG assessment of the component parts of the overall simulation after the Fill the Gaps 
in sub-process part one. 

  



PAGE 167 

 

Pa
rti

cl
e 

M
ov

in
g 

in
 F

re
e 

Sp
a

ce
 

En
er

gy
 T

ra
ns

fe
r M

od
el

 

Sq
ua

sh
 C

ou
rt 

In
 o

r O
ut

 

En
er

gy
 T

ra
ns

fe
r M

od
el

 
a

nd
 P

a
rti

cl
e 

M
ov

in
g 

in
 

Fr
ee

 S
p

a
ce

 

Ba
ll 

on
 R

a
ck

et
 

Sa
vi

ng
 D

a
ta

 

REQUIREMENT 

i) All models that concern the balls movement are to 
track the movement in the terms specified in the 
Squash Court In or Out models coordinate system. 

G NA G G G G 

ii) All models concerning the movement of the ball 
are to output values that can be passed to the 
Squash Court In or Out model. 

G G NA G G NA 

iii) A means of capturing the required data points is 
to be created. The data to be captured incudes 
(the 3D position of the ball, whether the ball is in or 
out in the court, the speed of the ball at each time 
step of the model, and the calculated energy 
transfer that happens during the interactions with 
surfaces. 

R R R R R G 

iv) The Energy Transfer Model is to be altered to be 
made fully complicit with requirement two. NA G NA G NA NA 
v) A model is to be created that captures the 
interaction between the player’s racket and the ball 
detailing the position of the ball and the velocity 
that was imparted to the ball. 

NA NA NA NA G NA 

vi ) The integrated model is to have a defined start 
and end condition that allows for the transit of the 
ball from the player to the wall and back to the 
player.   

G G G G G G 

vii) A model is to be created that takes the output 
from the Energy Transfer Model and captures the 
flight back to the player. 

NA NA NA G NA NA 

viii) The time step specified at 0.001 seconds is to be 
used as the refresh rate simulations time. E.g. each 
calculation will represent the change that has 
happened in the last 0.001 seconds of the balls 
behaviour. 

G G G G G G 

ix) Only one calculation is to be made during each 
iteration in a procedural manor. G G G G G G 

Table 4.18 :RAG assessment of the component parts of the overall simulation after the Fill the Gaps 
in sub-process part two. 

The RAG assessment in Table 4.17 indicates that all of the requirements are 
fulfilled. Despite the number of Red indicated for functionality there is at least 
one other model that is capable of for filling the functionality. 

Build Solutions 
The designs were then implemented and the code scripted. 

  



PAGE 168 

Verification of build solutions 
The solutions that were implemented are to be verified against the requirements 
to ensure that they were implemented as was intended. The RAG assessment 
was used to ascertain as to if the requirements were met as intended see Table 
4.18 below. 

 

Pa
rti

cl
e 

M
ov

in
g 

in
 F

re
e 

Sp
a

ce
 

En
er

gy
 T

ra
ns

fe
r M

od
el

 

Sq
ua

sh
 C

ou
rt 

In
 o

r O
ut

 

En
er

gy
 T

ra
ns

fe
r M

od
el

 
a

nd
 P

a
rti

cl
e 

M
ov

in
g 

in
 

Fr
ee

 S
p

a
ce

 

Ba
ll 

on
 R

a
ck

et
 

Sa
vi

ng
 D

a
ta

 

REQUIREMENT 

1) The simulation is to capture the behaviour of a 
squash ball in flight. G R R G R R 
2) The simulation is to capture the behaviour of a 
squash ball bouncing off the surface of a wall. R G R R R R 
3) The simulation is to capture the behaviour of a 
ball interacting with a player’s racket. R R R R G R 
4) The simulation needs to be run multiple times with 
the only change being the compound of the ball. G G G G G G 
5) The flight of the ball is constrained by a regulation 
sized squash court. NA NA G NA NA NA 
A) The total run time of the simulation should take 
less than five minutes to fully execute. G G G G G G 
B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

G G G G G G 

C) No specific computational hardware or 
peripherals are to be used. G G G G G G 
D) The Modelling software which can be used 
includes; Matlab, LabVIEW, C with standard libraries, 
or Python 2 with standard libraries. 

G G G G G G 

E) The resolution of the time steps across the models 
is to be at 0.001 seconds. G G G G G G 
F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

NA NA NA NA NA G 

Table 4.19: RAG assessment of the component parts of the overall simulation after the Fill the Gaps 
in sub-process part one. 

  



PAGE 169 

 

Pa
rti

cl
e 

M
ov

in
g 

in
 F

re
e 

Sp
a

ce
 

En
er

gy
 T

ra
ns

fe
r M

od
el

 

Sq
ua

sh
 C

ou
rt 

In
 o

r O
ut

 

En
er

gy
 T

ra
ns

fe
r M

od
el

 
a

nd
 P

a
rti

cl
e 

M
ov

in
g 

in
 

Fr
ee

 S
p

a
ce

 

Ba
ll 

on
 R

a
ck

et
 

Sa
vi

ng
 D

a
ta

 

REQUIREMENT 

i) All models that concern the balls movement are to 
track the movement in the terms specified in the 
Squash Court In or Out models coordinate system. 

G NA G G G G 

ii) All models concerning the movement of the ball 
are to output values that can be passed to the 
Squash Court In or Out model. 

G G NA G G NA 

iii) A means of capturing the required data points is 
to be created. The data to be captured incudes 
(the 3D position of the ball, whether the ball is in or 
out in the court, the speed of the ball at each time 
step of the model, and the calculated energy 
transfer that happens during the interactions with 
surfaces. 

R R R R R G 

iv) The Energy Transfer Model is to be altered to be 
made fully complicit with requirement two. NA G NA G NA NA 
v) A model is to be created that captures the 
interaction between the player’s racket and the ball 
detailing the position of the ball and the velocity 
that was imparted to the ball. 

NA NA NA NA G NA 

vi ) The integrated model is to have a defined start 
and end condition that allows for the transit of the 
ball from the player to the wall and back to the 
player.   

G G G G G G 

vii) A model is to be created that takes the output 
from the Energy Transfer Model and captures the 
flight back to the player. 

NA NA NA G NA NA 

viii) The time step specified at 0.001 seconds is to be 
used as the refresh rate simulations time. E.g. each 
calculation will represent the change that has 
happened in the last 0.001 seconds of the balls 
behaviour. 

G G G G G G 

ix) Only one calculation is to be made during each 
iteration in a procedural manor. G G G G G G 

Table 4.20 : RAG assessment of the component parts of the overall simulation after the Fill the Gaps 
in sub-process part two. 

This assessment of the produced components indicates that all of the identified 
gaps have been filled and that this sub-process is complete. 

End of fill Gaps sub-process  
This marks the end of the Fill the Gaps sub-process. 

  



PAGE 170 

4.2.26 COMPETE INTEGRATION TABLES  
The integration tables as defined in the section 3.7 are completed for each of 
the component parts to be integrated. The completed integration tables can be 
found in section 9.3.2. An interesting point is that the newly generated 
components do not have an already generated validation experiment. One has 
to be generated and validated as being representative of the behaviour of the 
component. 

4.2.27 VERIFICATION OF DETAILED DESIGN 
The verification of the detailed design takes the form of comparing the design to 
the original DOE. The second aspect of the verification is to ascertain if the 
passing of information between the component parts is meaningful.  

A simple binary yes or no table was created to display if the original purpose has 
been captured by the simulation as it stands. 

  



PAGE 171 

STATEMENT  PASS FAIL 
To ascertain the behaviour of a ball around a standard court 
when the compounds the ball is made from is varied. 

  

Changing the compounds that the ball is made from alters the 
speed that the ball returns off the wall when struck against it. 

  

The variables that may be changed during the experiment: 
Service speed of the ball  
Characteristics of the ball that can change include; stiffness, 
construction, temperature, weight, rebound resilience, life span, 
design, and molecular composition. 
Imparted, potential, and kinetic energy of the ball. 
Velocity, speed, and direction of the ball. 
Surface interaction between the racket and the ball. 

  

The base experiment will hold all elements constant with the 
compound of the ball will change. 
While the ball is moving it is considered to be a particle. 
There is an energy transfer when the ball interacts with each 
surface. 

  

The simulation is to capture the behaviour of a squash ball in 
flight. 

  

The simulation is to capture the behaviour of a squash ball 
bouncing off the surface of a wall. 

  

The simulation is to capture the behaviour of a ball interacting 
with a player’s racket. 

  

The simulation needs to be run multiple times with the only 
change being the compound of the ball. 

  

The flight of the ball is constrained by a regulation sized squash 
court. 

  
Table 4.21: Verification that ascertains if the proposed simulation meets the original purpose of the 

test. 

The results of the overall verification test are shown in Table 4.19. From this test 
there is the assurance that the proposed simulation still addresses the original 
purpose of the test. 

The next validation test is the inspection of data transfer, ensure that the data 
types are suitable, and the logic is sound. To ensure that all communications are 
tested the design tables that were used earlier to specify the communication 
were used. Each communication was located on the table. If the 
communication was not on the table it was added. If the communication was 
meaningful, the data types are either the same, or if conversions are needed the 
relevant information is retained. A colour coded system has been used for the 
tables with green representing acceptable communication and Red 
representing meaningless or questionable communication. The updated tables 
can be found below Table 4.20, Table 4.21, and Table 4.22. 



PAGE 172 

 

Table 4.22: Verification table showing communications between; Squash Court In or Out, Energy 
Transfer Model, Particle Moving in Free Space, and Saving Data. 



PAGE 173 

 

Table 4.23: Verification table showing communications between; Energy Transfer Model, Particle 
Moving in Free Space, Squash Court In or Out, Energy Transfer Model, Particle Moving in Free Space, 

and Saving Data. 



PAGE 174 

 

Table 4.24: Verification table showing communications between Energy Transfer Model; Particle 
Moving in Free Space, Ball on Racket, Particle Moving in Free Space, Squash Court In or Out, 

Energy Transfer Model, Particle Moving in Free Space, and Saving Data. 

The verification tables have not found any issues and so it can be considered 
that the proposed simulation should integrate in a meaningful way and produce 
a usable simulation that will address the intended hypothesis. 



PAGE 175 

4.2.28 INTEGRATE SIMULATIONS  
The component parts of the simulation were integrated as specified. 

4.2.29 VERIFICATION OF SPECIFIC INTEGRATION POINTS 
Each of the communications were tested by using the verification experiment 
that formed part of the integration tables. For each component part of the 
simulation that was passed values within expected output values and the outputs 
were assessed. If all of the output values were within bounds specified in the 
integration tables the integration is considered to pass. If output values are 
outside the specified values the component and hence the integration is 
brought into question. Components that fail are investigated as to why there has 
been a change in the components behaviour once it has been integrated.  

To record the results of the verification test the same style of table as has been 
used for the design process was used combined with a RAG representation. The 
results of this test can be seen in Table 4.23. In this instant there are no integration 
issues and so the next stage can be moved to. 

 

Table 4.25: Record of the results of the verification of the integrations between the component 
parts. Red, Amber, and Green represent, significant issue, minor error which can be easily rectified, 

and no issues, respectively.  

4.2.30 VERIFICATION OF INTEGRATED SIMULATION AS A WHOLE 
Due to the models being developed individually without concern for this specific 
experiment, the verification experiments do not align with each other. Therefore 
an experiment has been formulated to test the integration. The inputs can be 
specifically defined whereas only general terms of output can be predicted. 
Hence if the outputs are outside expected ranges, further investigation will be 
required. The absolute bounds for each model can be found in the integration 
tables. 

Experiment Inputs 
The ball will be launched at 25 ms-1 (Around 55 miles per hour) at a height of 1.5m 
from the centre line on the service line towards the front wall.  

Squash Court 
in or Out

Energy Transfer 
model

Particle Moving in 
Free Space

Energy Transfer model and 
Particle Moving in free space

Ball on 
Racket 

Particle Moving in 
Free Space

Energy Transfer 
model

Squash Court in or 
Out

Energy Transfer 
model and Particle 

Moving in free space

Ball on Racket 
Saving Data

Outputs

In
pu

ts



PAGE 176 

Expected Outputs 
The ball will return to the position where it was launched from. 

The speed of the ball will reduce after it has rebounded of the wall. 

The time it takes to get to the wall will be less than the time it takes to return to 
the starting point. 

Three dimensional position data will be returned for the location of the ball at 
each discrete time step. 

Results of Test 
The inputs were entered into the simulation. The simulation ran and executed. 
The results were as expected and within expected boundaries. A high level of 
confidence has been achieved from this verification experiment that the outputs 
of the simulation are meaningful. 

4.2.31 CONDUCT EXPERIMENT 
The experiment can now be conducted as specified in the early stages of the 
systems engineering in integration of simulations. 

4.2.32 FEEDBACK INTO DESIGN PROCESS  
The results regarding the effects of different materials and the speed the ball 
returns from the front wall after service. This marks the end of the first case study. 
The remaining stages of the proposed process will not be conducted. The 
remaining stages of the proposed processes are outside the bounds of the virtual 
simulation and test, and move into the physical domain. The work so far 
conducted as part of the case study demonstrates the key relations between an 
experiment and the means by which to implement it using existing simulations.  

  



PAGE 177 

4.3 AUTOMOTIVE CASE STUDY: ABS AND STEERING 
This automotive case study reflects the methods that have been developed in 
section 3. This validation test will consist of the systems engineering processes that 
have been developed to improve the problem situation that was identified in 
section 1.2.4.  

The automotive case study uses models from a sponsoring organisation. To 
maintain the nature of commercially sensitive information, some aspects of the 
models chosen are abstractions from those in use. These abstractions have an 
effect on the validation function which is discussed below. 

The first iteration of this case study used real world models from an automotive 
company as well as in depth material from third party COTS manufacturers. The 
test revolved around the selection of a new potential COTS brake system being 
integrated to an existing platform. 

The proposed processes were followed and the following architecture was 
developed. 

 

Figure 4.8: The preliminary architecture of the simulation designed to test the effects of a new 
potential brake system on the longitudinal behaviour of a car. 

When the proposed methods were applied issues arose around elements of the 
SESEM process elements 15, 16,17, and 18 which highlight issues regarding the 
available documentation of third party components. After discussions with two 
groups of practising automotive engineers who had intimate knowledge of the 
respective system models, fundamental issues became apparent which would 
have required complete rework to align assumptions made. This in itself is a 
valuable result of testing the processes, as initially the models appeared 
compatible for integration, but then a non-automotive engineer was able to 



PAGE 178 

identify semantic incompatibilities. These incompatibilities were then validated by 
practising automotive engineers which in turn validates the proposed processes. 

The automotive experiment which is to be conducted in this case study draws 
from experimental work produced by theme one of the JLR EPSRC PSi Project [89]. 
As part of these case studies, existing Matlab Simulink models as well as other 
models found in the literature were used as a platform to test other technologies. 
Critically for this case study, the component models were created independently 
of the PSi project and there is significant documentation that can be 
interrogated with the NLP POC see section 5.4. Model selection, documentation, 
and their use was achieved independently to this integration study. Importantly 
the results of the theme one integration have been validated by automotive 
engineers who specialise in these component systems. The pool of simulation 
components is to be the same, the means by which the suitability for integration 
is to be assessed is significantly different from theme one, and the resultant 
integration may be different. This will allow for a clear validation point. 

4.3.1 THE PURPOSE OF THE TEST 
The validation test of the case study steps through each stage of the proposed 
methods. Once the proposed methods have been competed the entire process 
as a whole is analysed. This enables the suitability of each stage to be analysed 
as well as the process as a whole. 

The test is conducted as if an engineer working in the automotive sector was 
using the proposed methods.  

4.3.2 THE SYSTEM BEING SIMULATED 
The task that will be simulated is one where the engineer has been tasked with 
producing a simulation to assess if it is possible to use an existing controller to link 
the braking and steering systems together. The effects on the vehicles handling 
performance are to be investigated when these two systems are linked by a 
single controller.  

4.3.3 POTENTIAL BIAS 
Testing bias can affect the validity of any results. It is hence vital to identify the 
bias that may affect the testing. There is one bias that cannot go unmentioned: 
the individual testing the process is also the one who developed the process in 
the first place. There is hence the possibility that additional steps not dictated in 
the methods section will be used or they will be modified during the execution of 
the process. All efforts will be made to only conduct the stages that are laid out 
in the method section. All work will be explicitly stated and recorded for later 
analysis. 

  



PAGE 179 

4.3.4 CUSTOMER WANTS 
It is proposed that an automotive company wishes to investigate, through 
simulation, the possibility of linking together the steering and braking systems 
under one controller. With these two sub-systems combined under one controller, 
the effects of road handling are to be investigated. It is required that existing 
component systems are to be used. Hence it is also considered that existing 
models are to be used as the basis for the investigation. The steering and brake 
systems isolated as well integrated using a controller is illustrated in Figure 4.9 
below. 

 

Figure 4.9 The steering and brake systems isolated (left). The steering and brake systems integrated 
using a control system (right). 

4.3.5 SYSTEM REQUIREMENTS 
This work is being viewed as an investigation as to whether linking braking and 
handling is a desirable course of action for future work. However there are still 
system requirements that need to be met.  

  



PAGE 180 

Requirements for a Combined Braking and Steering System  
1. The brakes shall retard the longitudinal motion of the vehicle. 

2. The braking system will prevent the locking of the wheels during braking. 

3. If braking on a surface with a low coefficient of friction, the wheels should 
not lock. 

4. The brake system modulates the brake line pressure independent of the 
user controlled pedal. 

5. The brake system is to bring the wheel to the slip range that is optimal for 
braking performance. 

6. The steering system shall change the angular direction of the vehicle. 

7. The steering system will amplify the inputs form the user. 

4.3.6 SYSTEM ARCHITECTURE 
The architecture of the system being designed is that of a sports utility vehicle. 
The vehicle has four wheels, internal combustion engine, gearbox, a rack and 
pinion steering, and independent suspension for each wheel. It is intended that 
the brake and steering systems are linked under one controller. 

4.3.7 SYSTEM DESIGN 
The implementation of the architecture is intended to use all existing physical 
components. The individual components are tried, tested and well established. 
The new aspect to this design is the way in which they are to be connected and 
controlled. 

4.3.8 SYSTEMS ENGINEERING IN MODEL INTEGRATION (SEIMI) 
This denotes the start of the virtual simulation and testing. The SEIS process stages 
1-4 can be considered as being covered by the systems lifecycle process the 
information of which can be seen in the previous four sections. From this point 
forward the SEIMI process is considered to be within the modelling and simulation 
boundary. The transition across the design and simulation boundary can now be 
crossed as all prerequisites have been satisfied.  

4.3.9 DESIRE TO TEST SOMETHING 
The desire to test a particular aspect has been identified. This was apparent from 
the very start of the project. The desire is to ascertain what the effects are of 
joining the brake system with the steering system on the overall vehicle handling. 

4.3.10 DESIGN OF EXPERIMENT 
This experiment is to be a comparative test between two mutually exclusive 
events. The first being where the steering system is given an input and the brake 
system is not interconnected or even activated. The second case is where the 



PAGE 181 

steering system is given the same input, however the braking system is 
interconnected and capable of being activated to aid with turning. The effects 
of braking while steering is to be investigated by comparing it to steering while 
not braking and any resultant change in trajectory.  

Hypothesis to be Tested  
By linking the steering system and the braking system under a single controller will 
result in a reduction in error between the user input and the vehicle trajectory. 

Error in this case is considered to be the difference between the user input and 
the trajectory that the vehicle takes. 

Factors within the experiment to take into consideration 
As part of the experiment there are factors that need to be taken into 
consideration: 

• The steering inputs are intended to be a single sine input that is often 
used to simulate lane changing manoeuver 

• The characteristics of the vehicle including the size or the body, and  
wheels are to be changeable in the models 

• The experiment is to be able to be repeated at different longitudinal 
speeds of the vehicle 

• All constants and parameters which are not concerned with the 
activation of braking systems are to be the same between tests. 

 
Variables That May Change During Tests 
There are variables that have been identified that may change through the test: 

• The steering input values 
• The speed of the vehicle 
• The retardation force of the brakes (during braking test). 

 
The variables that are considered to be held constant: 
Some identified variables are considered to be held constant across both test 
cases. 

• The size shape and mass of the vehicle  
• The weather  
• The coefficient of friction between the tyre and the road surface  
• The road surface  
• The overall steering input profile 
• The range of braking modulation  
• The range of possible steering angles 
• The initial speed of the vehicle before steering input initiated 
• The incline that the vehicle is traversing. 



PAGE 182 

4.3.11 DEFINE ASSUMPTIONS OF EXPERIMENTAL SET UP 
As part of this experiment there are assumptions that need to be taken into 
consideration across all of the component models. 

• The vehicle is a three dimensional object with a length breadth and 
height. 

• Gravity is to be considered to be 9.81ms-2 
• The tyres can slip on the road surface 
• The vehicle is moving and the surface it is sitting on is static. 

4.3.12 DEFINE SIMULATION BOUNDARIES  
The boundary of what is to be considered as part of the simulation has been 
captured in Figure 4.10 below. 

 

Figure 4.10: Simulation boundary showing what is within and outside of consideration. 

All work is to focus around what is captured within the ellipse in Figure 4.10. Each 
of the factors that have been identified as being outside of consideration can be 
disregarded or investigated at a later date in a subsequent simulation 

4.3.13 SIMULATION REQUIREMENTS  
The simulation and modelling requirement writing guide as defined in section 3.4 
was used to create the requirements for the simulation. Due to the system 



PAGE 183 

requirements not being sufficient to express the simulation experiment, simulation 
specific requirements are needed.  

Means of Communication 
To not distract from the process itself, textual requirements have been used in this 
application. 

Requirements 
1. The simulation is to capture the behaviour of a vehicle which has a 

combined ABS and steering system. 
2. The simulation is to capture the behaviour of the vehicle with a 

sinusoidal steering input. 
3. The simulation needs to be run multiple times with the speed of the 

vehicle changing across operational speeds from 10kH-1 to 115kH-1 
4. The model is to contain; Driver input, ABS System, and steering system. 
5. The outputs of the component systems are to be recorded. 

 

 Simulation Constraints  
A. The total run time of the simulation should take less than five minutes to 

fully execute. 

B. The overall simulation and analysis should be possible on a mid-range 
laptop with the maximum capability of 8GB of Ram, 2.5 GHz quad core 
Intel Core i7 processor, 500GB of hard drive space.  

C. No specific computational hardware or peripherals are to be used. 

D. The modelling software which can be used includes; Matlab, LabVIEW, C 
with standard libraries, or Python 2 with standard libraries.  

E. If LabVIEW or Matlab is used, only a single license may be used. 

F. The output results of the simulation are to be saved in a file format that 
can be interrogated at a later date. 

G. All component parts are to be in the public domain. 

4.3.14 SET STANDARDS IF THEY ARE TO BE USED 
Various standards have been investigated, however a decision was made to not 
implement any of them.  

4.3.15 VERIFICATION OF REQUIREMENTS 
 
Verification of Requirements 
This is the verification of the simulation requirements as part of the requirements 
writing stage and is not to be confused with a verification stage of the Systems 
Engineering in Integration of Simulations process. 



PAGE 184 

A simple Red Amber Green (RAG) method was selected as the means of 
assessing the requirements against the requirements writing guide. Within the 
analysis Red defines that the requirement is in direct contradiction and requires 
logical re-gwork, Amber defines that it requires some rework, Green defines that 
it is complicit with the requirements writing guide. 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
vehicle which has a combined ABS and steering 
system. 

   

2) The simulation is to capture the behaviour of the 
vehicle with a sinusoidal steering input.    

3) The simulation needs to be run multiple times with 
the speed of the vehicle changing across 
operational speeds from 10KH-1 to 115KH-1 

   

4) The model is to contain; Driver input, ABS System, 
and steering system.    

5) The outputs of the component systems are to be 
recorded.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries. 

   

E) If LabVIEW or Matlab is used, only a single license 
may be used.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

G) All component parts are to be in the public 
domain.    

Table 4.26: Verification RAG assessment of simulation requirements. 

With all of the requirements passing the RAG validation the work can continue 
onto the next stage. 

Verification of Standards 
Due to the lack of application of a standard the verification stage concerned 
with the verification of the choice of a standard can be omitted. 

4.3.16 PRELIMINARY ARCHITECTURE  
The preliminary architecture for the simulation is depicted in Figure 4.11 below. 
The architecture captures the components systems that have been identified. 



PAGE 185 

Some indication as to the communications that will be needed have also been 
captured.  

 

Figure 4.11: Preliminary architecture for the simulation. 

The preliminary architecture intends that there will be communication between 
the various component parts. However the steering profile is unlikely to be the 
only input. To record the results of the component parts there will be the need to 
pass the results to a component to do so. 

4.3.17 VERIFICATION OF PRELIMINARY ARCHITECTURE 
With a preliminary architecture defined it can be verified against the 
requirements for the simulation.  

A simple Red Amber Green (RAG) method was selected as the means of 
assessing the preliminary architecture against the simulation requirements. Within 
the analysis Red defines that the requirement is in direct contradiction and 
requires logical re-work, Amber defines that it requires some rework, Green 
defines that it is complicit with the requirements. 

  



PAGE 186 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
vehicle which has a combined ABS and steering 
system. 

   

2) The simulation is to capture the behaviour of the 
vehicle with a sinusoidal steering input.    

3) The simulation needs to be run multiple times with 
the speed of the vehicle changing across 
operational speeds from 10KH-1 to 115KH-1 

   

4) The model is to contain; Driver input, ABS System, 
and steering system.    

5) The outputs of the component systems are to be 
recorded.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries. 

   

E) If LabVIEW or Matlab is used, only a single license 
may be used.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

G) All component parts are to be in the public 
domain.    

Table 4.27: Verification RAG assessment of preliminary architecture. 

With the architecture being found to be complicit with the simulation 
requirements the next stage can be moved onto. 

4.3.18 PRELIMINARY SIMULATION DESIGN  
The behaviour of the parts defined by the architecture can now be broadly 
defined.  

User Defined Input 
A user interface is to be used whereby the user can input parameters and view 
the results of the simulation. This is to be a single input interface for all of the 
component parts. 

Steering profile  
The inputs steering profile is to be a sinusoidal waveform. 

  



PAGE 187 

Steering Control  
Model that represents a steering system, which takes user inputs and assists the 
user alter the angle of the wheels. The user inputs are too represented by inputs 
from the steering profile component. 

ABS System  
Model that represents the behaviour of an existing anti-lock brake system. The 
model is to capture the behaviour of the modulation of the brake pressure to 
stop the wheel from locking completely. 

Control System 
A controller that takes inputs and gives outputs to and from other system 
components as required. 

Results  
A component that takes inputs from other simulation components and saves 
them in a suitable format. 

4.3.19 VERIFICATION OF PRELIMINARY SIMULATION DESIGN 
The preliminary design can be verified against the simulation requirements. The 
RAG assessment method has been used to analyse whether the preliminary 
design metes the simulation requirements. This RAG assessment can be seen in 
Table 4.26. 

 

  



PAGE 188 

REQUIREMENT RED AMBER GREEN 
1) The simulation is to capture the behaviour of a 
vehicle which has a combined ABS and steering 
system. 

   

2) The simulation is to capture the behaviour of the 
vehicle with a sinusoidal steering input.    

3) The simulation needs to be run multiple times with 
the speed of the vehicle changing across 
operational speeds from 10kH-1 to 115kH-1 

   

4) The model is to contain; Driver input, ABS System, 
and steering system.    

5) The outputs of the component systems are to be 
recorded.    

A) The total run time of the simulation should take 
less than five minutes to fully execute.    

B) The overall simulation and analysis should be 
possible on a mid-range laptop with the maximum 
capability of 8GB of Ram, 2.5 GHz quad core Intel 
Core i7 processor, 500GB of hard drive space. 

   

C) No specific computational hardware or 
peripherals are to be used.    

D) The modelling software which can be used 
includes; Matlab, LabVIEW, C with standard 
libraries, or Python 2 with standard libraries. 

   

E) If LabVIEW or Matlab is used, only a single license 
may be used.    

F) The output results of the simulation are to be 
saved in a file format that can be interrogated at a 
later date. 

   

G) All component parts are to be in the public 
domain.    

Table 4.28: RAG assessment of the preliminary design. 

The RAG assessment in Table 4.26 shows that the preliminary design meets the 
simulation requirements and so it is possible to proceed to the next stage. 

4.3.20 ARE THERE ANY EXISTING SIMULATIONS AND MODELS 
The elements that are composed as parts of this system are well established. It is 
recognised that in a genuine engineering setting there would be existing models 
and simulations that could be of use in this situation. To emulate this repository a 
literature review was conducted and it is well known that models exist. This will 
impact the SESEM process but that will be explained in due course. 

4.3.21 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS 

SESEMS 
The SESEM is a sub-process that is concerned with aiding in the selection of 
existing models. As the potential for existing models being of use then this process 
can be implemented.  



PAGE 189 

1 Preliminary Simulation Design 
The overall goal of the system being designed as well as the simulation being 
designed is well understood. There is also an intended architecture and design 
for the simulation being produced. The preliminary requirements for the SESEM 
process can considered satisfied. 

2 Boundary of the Existing Model Selection Process 
A secondary check has been conducted to assure that all of the prerequisites 
have been satisfied. From this point on it is considered that the SESEM process is 
the structure that is being followed. 

3 Assess the Model and Simulation Landscape  
An assessment has been made of the ways in which the interactions that are to 
be investigated have previously been modelled and simulated in the past. 
Information has been gathered as to the mathematical tools and 
representations which may be of use. 

4 Are Potential Models Available? 
From the assessment of the modelling and simulation landscape there are a 
number of potential models that could be of use. 

6 Is this a New Product/ Platform? 
The component sub-systems that forms the bases of the proposed system are 
well established and so too are the platforms. Hence the decision to consider 
that this is not a new product or platform has been made. 

16 Locate Previous Product Models 
An assessment of the various off the shelf models that could be of use have been 
collected. The models that have been located include: 

• Modeling an Anti-Lock Braking System 
• Modified Anti-Lock Braking (ABS) Model 
• Vehicle Body 
• Power-Assisted Steering Mechanism 
• Simple 2D kinematic vehicle steering model 
• Tyre simple 
• Tyre (Magic Formula) 

 
There is more than one tyre and steering models that could potentially be of use. 
However at this stage having more than one model is not a hindrance.  

17 Available Model Documentation 
For each of the identified model a simple assessment of whether there exists 
sufficient documentation available has been conducted. If the documentation is 
not available or has insufficient detail, is there someone in the team that can 
understand the model explicitly has been ascertained. The results of this 
assessment are captured in Table 4.27 below.  



PAGE 190 

MODEL NAME DOCUMENTATION 
AVAILABLE 

TEAM 
UNDERSTANDING SUITABLE 

Modeling an Anti-Lock Braking 
System  ▬  

Modified Anti-Lock Braking (ABS) 
Model  ▬  
Vehicle Body  ▬  
Power-Assisted Steering 
Mechanism ▬ ▬ ▬ 

Simple 2D kinematic vehicle 
steering model  ▬  

Tyre simple  ▬  
Tyre (Magic Formula)  ▬  

Table 4.29: Representation of the assessment of the documentation availability. Three symbols are 
used;  full, ▬ partial, and  not at all.  

Any models or simulations which do not have sufficient documentation or 
available understanding are deemed unsuitable. It is worth noting that Power 
Assisted Steering Mechanism only has limited documentation whether what is 
present is sufficient will be discerned later in the process. The team understanding 
is partial for all of the selected models. 

19 Does the Model Match a Section of the Simulation Requirements? 
For Each candidate model it is evaluated against the simulation requirements. A 
RAG assessment of each of the potential models has been captured in the Table 
4.28 below. 

  



PAGE 191 

 

M
od

el
in

g 
a

n 
A

nt
i-L

oc
k 

Br
a

ki
ng

 S
ys

te
m

 

V
eh

ic
le

 B
od

y 

Po
w

er
-A

ss
ist

ed
 

St
ee

rin
g 

M
ec

ha
ni

sm
 

Si
m

p
le

 2
D

 k
in

em
a

tic
 

ve
hi

cl
e 

st
ee

rin
g 

m
od

el
 

Ty
re

 si
m

p
le

 

Ty
re

 (M
a

gi
c 

Fo
rm

ul
a

) 

REQUIREMENT 
1) The simulation is to capture the 
behaviour of a vehicle which has a 
combined ABS and steering system. 

A R A A A A 

2) The simulation is to capture the 
behaviour of the vehicle with a sinusoidal 
steering input. 

R R A A A A 

3) The simulation needs to be run multiple 
times with the speed of the vehicle 
changing across operational speeds from 
10kH-1 to 115kH-1 

G G G R G G 

4) The model is to contain; Driver input, 
ABS System, and steering system. A R G A A A 

5) The outputs of the component systems 
are to be recorded. A A A A A A 

A) The total run time of the simulation 
should take less than five minutes to fully 
execute. 

G G G G A G 

B) The overall simulation and analysis 
should be possible on a mid-range laptop 
with the maximum capability of 8GB of 
Ram, 2.5 GHz quad core Intel Core i7 
processor, 500GB of hard drive space. 

G G G A G G 

C) No specific computational hardware 
or peripherals are to be used. G G G G G G 

D) The modelling software which can be 
used includes; Matlab, LabVIEW, C with 
standard libraries, or Python 2 with 
standard libraries. 

G G G G G G 

E) If LabVIEW or Matlab is used, only a 
single license may be used. G G G G G G 

F) The output results of the simulation are 
to be saved in a file format that can be 
interrogated at a later date. 

A A A A A A 

G) All component parts are to be in the 
public domain. G G G R G G 

Table 4.30: RAG assessment of the selected potential models. Red (R) does not comply, Amber (A) 
partly complicit, and Green (G) fully complicit. 

  



PAGE 192 

20 Assess if Individual Models Can be Modified  
Not all models can be modified for a number of reasons that are detailed in 
section 6.3. Each of the selected models are assessed as to if they can be 
modified. The extent to which the can be modified is not in conjecture at this 
point it is full access modification or nothing. 

MODEL NAME CAN MODEL BE 
MODIFIED 

Modeling an Anti-Lock Braking 
System  

Vehicle Body  
Power-Assisted Steering 
Mechanism  

Simple 2D kinematic vehicle 
steering model  
Tyre simple  
Tyre (Magic Formula)  

Table 4.31: Assessment of whether the potential models can be modified. The assessment is a 
simple yes () or No(). 

14 Selected Models Unusable  
For the issues with the documentation and or the ability to modify the existing 
components the following existing models are considered unusable. 

MODEL NAME MODEL USABILITY 
Modeling an Anti-Lock Braking 
System  
Vehicle Body  
Power-Assisted Steering 
Mechanism  
Simple 2D kinematic vehicle 
steering model  
Tyre simple  
Tyre (Magic Formula)  

Table 4.32: Assessment of whether the potential selected models are usable. The assessment is a 
simple yes () or No(). 

None of the identified models are compatible for the intended simulation. If a 
model cannot be modified it has to meet all of the requirements exactly. For 
‘Vehicle Body’, ‘Simple 2D kinematic vehicle steering model’, ‘Tyre simple’, and 
‘Tyre (Magic Formula)’ require modification to make them complicit with the 
requirements. 

With the understanding of two remaining models that is present in the 
documentation issues became apparent. The ‘Modeling an Anti-Lock Braking 
System’ is unrealistic and only meant as a demonstration model. The power 
assisting model documentation does not cover the assumptions that were used 
during its creation. As well as many of the components are ideal in nature and 



PAGE 193 

not representative of the systems that would be implemented in the design. The 
SESEM process dictates that in this instance it will then be necessary to locate 
more new models or follow the path of creating new models. 

This case study was initiated as being a facsimile of the work that was conducted 
with industrial models and simulations. In the industrial situation there were only a 
finite number of models and simulations within the repository that was available 
for this work. The result of the analysis that was conducted in the industrial case 
study reached the same point in the process as the selected models and 
simulations did in the academic automotive example. It is recognised that in the 
academic automotive example it is conceivable that other model or simulations 
could be found, however this was not the case in the industrial situation. The 
process dictates that in such a position if existing models cannot be located then 
new models are to be made. To produce such models and simulations subject 
matter experts would be needed to create the models and simulations, which 
would comply with the simulation requirements. This changes the task from 
integrating existing models and simulations, to developing a new simulation 
which may not even need to be integrated. Developing a new simulation from a 
blank slate is not the focus of this research, as that is a different topic. For this 
reason this case study did not progress any further.   



PAGE 194 

4.4 EVALUATION OF METHODS  
The two fully worked case studies provide a reference point to which meaningful 
evaluations of the proposed methods can be made. Throughout the work that 
was conducted for the case studies strengths and weaknesses of the proposed 
methods became apparent. These identified strengths and weaknesses are 
discussed below.  

4.4.1 STRENGTHS OF THE PROPOSED METHODS 
From conducting the case studies, clear strengths of the proposed methods 
became apparent when compared with the current identified methods as 
discussed in section 2. Many of the identified strengths of the proposed methods 
originate from the structure that they bring to the integration task. This structure 
breaks down the seemingly chaotic integration task into repeatable stages that 
otherwise rely on the engineering experience and understanding of those taking 
part in the simulation task. 

The way in which the process has been created is such that it does not dictate 
how to conduct each task, but rather it is more of a requirement for the thought 
process of the user. This allows for the user to select the most appropriate tool for 
the job for their domain to conduct the required analysis at that stage. As 
demonstrated in the two case studies, different tools were used for the same 
process element dependent on the information that needed to be processed. In 
different situations some tools will inevitably be more suitable than others and 
having this flexibility increases the potential area where this process remains 
relevant. 

Having stages in the integration task make it possible for more than one engineer 
to work on the task simultaneously. In many cases it is possible for multiple 
engineers to work on the same task element at the same time. For case study 
two, elements one to six were effectively conducted by more than one engineer 
as the premise of the test came from negotiations with industrial engineers and 
academics while the rest of the stages were completed solely in an individual 
academic environment. The decision stages of the processes (traditionally a 
problem for group work) do not necessarily rely on just an individual making the 
decision as they could be conducted in a meeting setting or even using another 
systems engineering tool. At any of the stages it is possible for the process to be 
handed to another engineer as long as they are also familiar with the process 
and all of the previous stages have complete sets of the recommended 
documentation. This also allows for breaks in the work to be possible. While 
conducting case study two there was in fact a three week gap. However it took 
very little time to pick up where it had been left off. Having such a process allows 
for greater flexibility of engineers time. 

Specifying the purpose of the simulation at the start acts as a reference point 
throughout the rest of the process. This reference point is used to formulate the 



PAGE 195 

basis of the verification to which the whole simulation is subjected at various 
points. This static reference point has been of benefit as it allows for the 
simulation to be formulated in layers of complexity and functionality, meaning 
that the sources of the component parts to potentially be widely different, while 
keeping focus on what the simulation is attempting to achieve. In case study two 
there was the real potential for the work to progress and produce a simulation 
regardless, however the defined purpose of the test ensured that the work 
remained focused and hence halted. Without the static reference point this may 
not have been the output. 

The requirements writing guide allows for structure and similarity across the 
requirement sets. This was found to be beneficial across both case studies as it 
improves not only the quality of the requirements but also the effectiveness of 
more simple analytical tools. Having the simulation and constraints separate 
ensures that consideration is not only focused around functionality but also to the 
computational capabilities of the resources available. For the second case study 
the simulation constraints could have caused a real problem if certain potential 
simulation components were used.  

The integration tables have demonstrated within the case studies to be one of 
the most valuable outputs of the proposed methods. The tables capture of the 
semantic information needed for meaningful integration. They are only 
completed once an understanding has been gained regarding the model which 
will be the subject of the tables, and only if the likelihood of the model being of 
use is high, waiting to this point to complete the tables is due to the resources 
required to conduct the task is considerable. Having such information stored in 
readily readable tables means that any two models with completed tables can 
be assessed to ascertain if they are semantically similar enough for potentially 
meaningfully integration. Critically this makes it possible to assess whether two or 
more models have the potential to be meaningfully integrated without the 
original modellers being involved. This is all before actually investing the time into 
not only the integration task but also the time needed to ascertain if the results of 
the integrated simulation are meaningful. This result is a considerable reduction in 
the resource overhead that it takes to produce a meaningful (with high 
confidence), integrated simulation when compared to current methods if rework 
is required. The integration tables facilitate many models being compared with 
the information stored in them being uniformly structured removing the need for 
integration engineers to hold all of the relevant information in their own working 
memory. Even in the limited example of case study one, the amount of 
information that was required to have available was such that the tables 
became of considerable benefit.  

If the model integration process does not go any further than the generation of 
the integration tables it does not mean that the work is of no use. It was found 
that in both case studies that the integration tables were far more thorough and 
concise when compared against the documentation that was supplied with the 



PAGE 196 

models. Once the integration tables are generated they can be stored for others 
to potentially use at a later date. The semantic information held within them will 
still be relevant for later work.  

The work that was conducted in case study two highlights the processes ability to 
locate the potential integration issues of existing models on a semantic level. This 
is of even more significance as it is capable of this even when the person 
following the process is not a domain expert of the potential simulation 
components. This validates that the engineer does not necessarily need to be 
from the domains of the potential models to be able to assess if integrating them 
could be meaningful or not. This capability was also found in case study two, 
interestingly at the exact same point of the process. This indicates that the 
understanding of the models and the comparison against the simulation 
requirements is the first real sorting stage of whether or not a potential 
component is suitable. 

The work involved with the setting up of the experiment for the first twelve 
elements of the Systems Engineering in Integration of Simulation process took a 
considerable amount of time. However having a designed experiment is of 
significant use when formulating the verification of the simulation. The output of 
the first twelve stages of SEIS give a static reference point which can be used for 
the verification task later on. Having a reference point means that if there is a 
variation from said reference it can be identified and corrected. The reference 
point critically allows for verification to be more than just the validity of the data 
transfer between components being acceptable. Without such a well-
established reference point the validity of the verification testing could be 
brought into serious doubt. 

4.4.2 WEAKNESSES OF THE PROPOSED METHODS 
While conducting the case studies it was not without issue and weaknesses of the 
proposed processes became apparent. Many of the issues stem from the 
increase in time that it takes to get to the point where programming starts to take 
place. This is due to the trade-off between the time that is invested in getting the 
integration correct the first time, rather than the time after the simulation is 
completed and the inevitable rework that has to be done. 

When conducting the proposed methods it became apparent that the amount 
of effort and time that goes into a stage is not represented by the textual output. 
This could be a potential issue when managing engineers using these processes. 
Elements of the SEIS process where this is particularly prevalent are 1, 7, 11, 19 
and 26. For the SESEM process it is elements 3, 8, 10, 11, 18, 23, 24, 25, and 28. 
From the number of tasks that require considerable thought and work with little 
visible output may trouble some managers. 

The task of locating previous models in this process is but one single stage 
however it is a non-trivial one. It would benefit from further research and 



PAGE 197 

guidance as to how the engineer could go about locating these existing models 
and simulations. This stage was one of the reasons why the second case study 
ran into the problems that would later halt the progress of the work. 

When conducting the SESEM process during both the case studies a potential 
issue became apparent regarding stages 12, and 19. At this stage existing 
models are held against the requirements for the simulation being designed. 
There is hence the potential need for requirements for the potential design. As 
the overall requirements of the simulation may not be fully applicable in this 
situation as the potential components are unlikely to be applicable at that stage. 
The user has to make the decision as to whether the potential component is of 
worth to continue using and investing in potentially reworking of the component.  

4.4.3 THE EFFECTIVENESS OF THE PROPOSED METHODS 
The application of the proposed methods provides structure to the integration 
process and produces a situation where there is both a potential solution and a 
means of conducting meaningful verification. This however does come at a cost 
of time and resources. In case study one the methods proved that they could be 
used to produce a simulation form existing models, whereas in case study two 
the processes highlighted that there were real serious semantical differences and 
potential problems with using the identified models. This indicates the 
effectiveness of the proposed methods. 

  



PAGE 198 

4.5 SUMMARY OF CASE STUDY TESTING 
The two case studies demonstrate how the proposed methods in section 3 can 
be implemented. The first case study is a fully worked example from product 
concept through to the point where a physical prototype can be made and the 
virtual testing validated. The second case study represents an automotive 
example where the selected component models and simulations were identified 
as having significant semantic differences. The extent of these sematic 
differences resulted in any potential integration being meaningless. 

The critical findings from the two case studies are: the value of having a defined 
reference point that can be used through development for verification and 
validation, the ability to reliably identify semantic differences between the 
potential component models and simulations, and that the methods allow for 
non-domain experts to be able to make an assessment of the suitability of 
potential integrations before the work is put in to integrate and test the full 
simulation. However the greatest weakness of the proposed methods is the time 
it adds to virtual simulation and test. However there is the indication that 
automation technologies such as NLP could vastly reduce the time it takes for 
current repetitive deductive tasks, see section 5.  

  



PAGE 199 

 

 

 

 

5 NATURAL LANGUAGE 
PROCESSING 



PAGE 200 

  



PAGE 201 

5.1 NATURAL LANGUAGE PROCESSING 
In this work the language that we speak, read and write to convey meaning is 
defined as natural language. It is to be noted however that not all language can 
be considered to be written using natural, more on this topic later. Hence this 
paragraph is considered to be natural language. This research focuses on the 
written rather than spoken word. Written words are the primary method used to 
convey ideas within the identified problem space. Reading natural language 
into a computer, conducting analysis, and gaining additional information is the 
basis of Natural Language Processing (NLP). This is not as straightforward as it may 
first seem. Though there are many PhD studies that research solely NLP, it is used 
as one of many methods in this study.  

The general stages of an implemented NLP application, when machine readable 
files are available, are shown in Figure 5.1 below. However to get to a functional 
NLP application, it will require training or knowledge encapsulated in code to 
ensure the output of the analysis stage is meaningful. Using a computer to 
perform the activities shown in Figure 5.1 is not a trivial exercise. 

 

Figure 5.1 The basic stages of NLP when machine readable files are available. The arrows denote 
the progression of the stages. There are some applications of NLP that only present the results to the 
user whereas other applications save the results for further analysis this is denoted by a dotted line. 

Within the NLP literature there are two distinct trains of thought that become 
apparent. The first is in academic research that looks to further the capabilities of 
NLP, though they may not have an immediate application. In contrast the 
second comprise the more application-based studies and as such tend to use 
well established technologies that have a clear application focus. In this review 
both perspectives will be investigated. 

The challenge of NLP originates in the way in which computers work. The inputs 
to a computer are analysed and set operations are conducted dependent on 
the inputs that it receives. When considering natural language as an input to a 
computer, the range of possible inputs is vast and the meanings inconsistent (as 
discussed later). Although natural language is currently recorded using 
computers this does not mean that the meaning of the words are understood 
and the overall text comprehended. One of the more familiar examples of NLP is 
in the grammar checking that word processors conduct. The purpose of such 



PAGE 202 

grammar checkers is to highlight to the author sentences that are not compliant 
to a particular set of grammar rules. Such functions in word processors take the 
natural language, analyse it, and display to the user potential errors. In some of 
the more advanced programs, it takes the identified error and offers potential 
corrections.  

5.1.1 CURRENT CAPABILITIES OF NATURAL LANGUAGE PROCESSING 
TECHNOLOGY 

To assess the current capabilities of NLP is a difficult task, as in pockets it has 
become very successful and accepted as the method of choice such as 
language translators, whereas in other domains there are still research 
challenges halting potential applications. 

Current Strengths  
If large training sets are available the similarity between texts can be identified. 
The development of general purpose taggers has reached a stage where the 
results have a high degree of accuracy, meaning that each word and piece of 
punctuation can be identified. The speed by which NLP tasks can currently be 
performed is such that thousands of documents can be analysed in seconds. 

Current Caveats 
Often NLP applications are limited to only being effective in a selected domain. 
Whenever the domain changes the methods require retuning or rewriting. This 
results in some applications getting a bad reputation as they are being used in 
situations for which they were not designed. Dependent on the analysis, they 
may appear to be much slower than other computation processes. This is due to 
the sheer number operations that some NLP applications compute. Expectations 
of users as to the capabilities of NLP applications is an interesting topic in itself but 
due to the perceived simplicity of the tasks many people believe that NLP must 
be far more developed than it actually is. This can result in disappointment or 
undervaluing the achievements of NLP projects and their applications.  

5.1.2 UNDERSTANDING AND COMPREHENSION 
One of the key challenges that still faces NLP is the comprehension of what the 
individual words mean and then what is meant when these words are assembled 
in a specific order with specific punctuation. This stems from computers being 
deductive rather than inductive machines. Logical descriptions of language 
always fall short of the complexity that is possible when using it. Hence any 
machine that uses such a purely logical progression will eventually fail to capture 
a particular nuance or combination that was not considered when the system 
was implemented. For such an understanding of what words mean would require 
a level of general artificial intelligence (AI). There are issues with creating AI as 
well, specifically such general purpose AI that would needed to handle the 
multitude of possible words and phrases that would not be captured by any 
training program or by through direct programming. There is the deeper issue of 



PAGE 203 

conceptually knowing or defining how (or if) a computer understands the text 
[90]. This then raises an interesting problem as how is it possible to conduct 
analysis if there is currently no way of getting a computer to comprehend what is 
meant by the words. The issue then becomes how to analyse the semantic 
meaning of the text without understanding what the semantics are in the first 
place. 

There is something that is surprisingly uncommon in the linguistic field, namely a 
clear definition as to what is meant by natural language semantics, which is, 

“the meaning expressed within Natural Language at the morphological, 
lexical, syntactic, and discourse levels.”[91]. 

As a definition this may not appear that clear due to the vocabulary that is used. 
Morphology is considered to be the structure of the words, as morphemes are 
the smallest meaningful parts of language. Therefore morphology is the way in 
which the morphemes are combined and structured. Lexical level refers to a 
language’s vocabulary. Syntactic levels are the rules which are used to assemble 
words in a meaningful way. This definition is clear and concise and is one that will 
be applied in this work when considering natural language. It is to be noted that 
this is not the same definition of ‘semantics’ when considering models and 
simulations.  

With the definition of semantics defined for language there are issues with 
semantics that can be discussed without confusion as to what the issues are. The 
capture of the semantics of a language is one of the more difficult aspects of 
NLP. The English language has significant semantic content. Individual semantics 
will not be discussed in this study; however the effects and issues caused by the 
differences will be covered. 

5.1.3 NATURAL LANGUAGE PROCESSING TECHNOLOGIES 
Over the last ten years there has been something of an explosion in NLP research 
that has resulted in a mix of technologies that have been applied to conduct 
different forms of analysis on different linguistic domains. There are those who use 
set theory and pattern analysis to analyse [90]. For the words to be sorted into 
sets, the words first need to be categorised into pre-defined categories. This task 
of categorisation is often completed by using a tagger. Across the literature 
many different taggers have been designed and tested. However, often the 
inner workings of the tagger are not fully disclosed. When a sentence is tagged 
each individual word and piece of punctuation is analysed and given a tag 
which represents a pre-determined category for example ‘jump’ may be tagged 
as ‘VB’ meaning that it has been categorised as a verb. Many methods then 
analyse the types, frequency, and relative positions that the tags appear in the 
text. 



PAGE 204 

One method to develop taggers that have flexibility is to use fitness based 
mathematic constructs trained using suitably large domain specific data sets. 
There have been some studies where there has been limited success such as 
when a trained tagger from one domain is retrained in another without rule re-
scripting and the output results remain valuable [92]. This is a purposeful finding 
as it shows that as long as significantly large corpora are available a core set of 
algorithms could be successfully deployed across multiple domains. From a 
business context this would mean that any tools (implementation of algorithms) 
would be purchased once and then trained on their data sets allowing for the 
tool to be used in more than one department or subject area. From the literature 
the magnitude of the training sets have many thousands of entries. The cost of 
producing such corpora is sizable and hence many are in a general format. 
Some specific corpora that are open to public use are few and far between. 
There are even fewer engineering specific corpora and none could be found 
that were applied to the topics of this thesis. 

Some research projects such as those from the Stanford Natural Language 
Processing group use a mixture of rule-based, statistical, and deep learning 
methods. This is an example of a group using different tools to suit the different 
applications that they are researching. They have demonstrated that the 
different NLP technologies all have their strengths and weaknesses as such they 
apply what they see to be the most appropriate tool for the job [93].  

There have been attempts made to capture natural language in ontologies. 
However capturing all of the semantics of the natural langue causes somewhat 
of a challenge as these semantics need to be accurately mapped onto the strict 
semantics of the ontology. This results in what some refer to as an unnatural 
language that does not necessarily capture all of the semantics that the natural 
language has [91]. They go further to discuss how these semantic gaps are 
currently one of the most significant obstacles for meeting their customers and 
users’ expectations of the NLP capabilities. As English is an ever changing and 
evolving language the semantics that have been captured will need to change 
and evolve the language to remain ‘correct’. This further complicates the 
capture of the semantics. As the creation of the mappings is also a timely task 
such changes would also be a significant time investment for any organisations 
looking to maintain a system which uses this technology. There are issues 
surrounding the extent to which ontologies can capture the meaning of text [91] 
as there are limitations to what information can be held in current ontologies. It is 
still a challenge as to how to capture the semantics of the effects of connectives. 
Due to these difficulties in mapping semantic information into ontologies there 
are still many research projects that are concerned with attempting to capture 
natural language. 

There is an area of NLP that is concerned with ascertaining if the extent to which 
text is semantically similar [94]. Comparison studies often require large manually 
constructed data sets to allow for a meaningful validation of any proposed 



PAGE 205 

method. Such data sets are not often readily available. Due to the resources that 
need to be invested into the creation of such data sets they are often not 
released into the public domain. However within the literature there are 
examples where data sets are made available for other researchers to test their 
algorithms against. In one such example they used 2000 sentence pairs which 
were manually rated for similarity. They then set up an open call for other 
researchers to test their methods against the data set. The data set was split into 
two sections 50% train and 50% test. Out of the 35 teams that took part 

“The best results scored a Pearson correlation of over 80%, well beyond a 
simple lexical baseline with 31% of correlation.”[94]  

This demonstrates that there are methods available which can give a relatively 
reliable metric as to the semantic similarity between texts.  

When there are new large data sets there are those who propose the use of 
logical rules and tagger as a means of NLP. These have the advantage of not 
needing additional data sets to train statistical methods. Success has been 
achieved in a study where a tagger was used in conjunction with 79 logical rules 
[95]. This application was focused around extracting requirements information 
from project documentation. This indicates that when there is only a limited 
source of data this approach can be of use. It also demonstrates how the 
applicability of NLP can be tested on a domain before the investment is made 
for statistical methods and the required data sets.  

This short review provides a snapshot of the applications for which a variety of 
NLP technologies have been applied. However there are certain themes that 
have become apparent. Statistical methods that use elements of learning often 
prove to give the most reliable results. However such statistical methods often 
require vast amounts of manually constructed data that is a resource heavy 
exercise in terms of cost and time.  

5.1.4 LANGUAGE AND THE CHALLENGES IT BRINGS TO NATURAL LANGUAGE 

PROCESSING 
The study of linguistics is a rich and well established field in its own right. Some of 
the analysis and research has a real impact on attempting to formulate NLP 
algorithms. One of the key areas is the discussion as to if English is descriptive or 
prescriptive in nature. A detailed discussion of descriptive and prescriptive terms 
can be found in Section 5.2.1. There is a seminal text that is referred to throughout 
the linguistic community “Halliday’s Introduction to Functional Grammar” [96] In 
this work the English language is represented in a formal logic with particular 
focus on the way in which clauses are constructed and the behaviour of 
classifications of words behave within them. Such work indicates that even with 
the descriptive nature of the language there are still logical constructs that 
reflect the underlying structure of the language. This work has been cited as 
being an example where formal logic rather than statistical methods can be 



PAGE 206 

used to analyse the English language. It is however a logical progression, as if the 
language changes over time some of these rules and logical statements may 
become less applicable or even irrelevant as the language develops. 

One of the identified problems within engineering text be that from requirements, 
specifications, documentation, or otherwise, is the ambiguities that result from 
natural language. For applications of NLP in engineering the most common 
example is requirements analysis. 

The types of ambiguity that are the cause of the issues have been identified as 
‘lexical’ (words can be more than one type e.g. noun and verb),’structural’ 
(knowing which words relate to which concept previously mentioned), ‘semantic’ 
(words having more than one meaning), ‘pragmatic’ (the possibility of a 
collection of words meaning two or more different concepts), and ‘referential 
ambiguity’ (knowing what is the subject) [90]. These types of ambiguity are 
present in natural language and even with the best efforts of requirements 
engineers, it is difficult to eradicate all ambiguities. This also highlights a significant 
challenge that any analysis tool has to overcome. 

The issue of domains is an interesting one, as each domain has its own definitions 
and grammatical structures. Within the literature the adaption of existing NLP 
tools to new domains has been identified as being a costly and time consuming 
activity [92]. This shows both the lack of flexibility of current methods as well as 
the scale of differences between the language used between domains. When 
reviewing the literature it became apparent that many researchers focus on a 
specific domain or sub-domain to reduce the variation, and hence complexity of 
the task that the NLP has to contend with. Some sources (e.g [92]) state that it is 
well known that by reducing the size of domain that an NLP application is 
designed to work within is a means of improving the accuracy of the analysis 
and hence results produced.  

5.1.5 FORMAL LANGUAGES AND NATURAL LANGUAGE PROCESSING 
There are examples of formal languages that have been developed that lend 
themselves more favourably to language processing, an example of this can be 
seen in the OMGs Semantics of Business Vocabulary and Business Rules [97]. 
However as soon as a formal language is used it is no longer natural language 
and so loses the flexibility and richness of natural language. This can be 
problematic at the early stage of a project and requires all involved to be fluent 
with the formal language. From a practical point of view even if formal 
languages are used, translation at some point needs to be made between 
natural language and formal language [95]. This shifts the burden of ambiguity 
from across a project to those who implement the formal language. Suitable 
verification needs to be implemented to ensure that the semantics of both the 
natural language and its formal representation is representative. Formal 
languages are not significantly referenced in this research as they were not 
identified to be part of the issues that were defined in the initial problem space 



PAGE 207 

(See Section1.2.3). There is a field of research that looks at mapping natural 
language into formal languages as well as expressing complex designs with 
formal languages, however they are outside the scope of this work. 

5.1.6 USE OF LANGUAGE IN ENGINEERING DOCUMENTS 
As has previously been identified, language is not used uniformly across all 
domains or even the same way in the same domain. It has been proposed in 
standards such as ISO/IEC/IEEE 29148 [27] that there is a structure which 
requirements take. The standard states that there are three forms that 
requirements are to take: 

1) [Condition][Subject][Action][Object][Constraint] 

2) [Condition][Action or Constraint][Value] 

3) [Subject][Action][Value] 

In the domain of language analysis, these three forms all contain a noun and a 
verb in the same phrase. The noun-verb phrase is also referenced throughout the 
systems engineering literature. It is proposed that NLP may be capable of 
identifying requirements by searching for noun-verb phrases. It is however 
recognised that not all phrases that have a noun and a verb in are going to be 
requirements but it is one potential way to identify a set of noun-verb phrases a 
subset of which may be requirements.  

Within each engineering domain there is a sub-set of language that is used by 
those within the domain. To enable any NLP process to be effective across all 
domains it may necessary to map what the words that that domain use and the 
definitions that are used. The ways in which the domain languages overlap are 
shown in Figure 5.2 below. 

 

Figure 5.2: The overlap of engineering discipline languages. 



PAGE 208 

The mapping of the engineering domains may be potentially more of a 
challenge than it first seems. It is relatively straightforward for terms that do not 
overlap between domains as in this case could be considered to have a 
relatively stable definition however the issues arise when the word falls in any of 
positions found in Figure 5.2 denoted by letters A,B,C and D. Position D represents 
the words that have three distinct meanings that each engineering domain has 
assigned to it. Part of the challenge is assessing where words fall within multiple 
definitions and then how to use surrounding semantics to ascertain what the 
author intended the definition to be. 

5.1.7 CURRENT USES OF NATURAL LANGUAGE PROCESSING IN ENGINEERING 
PROJECTS 

NLP technology has reached a maturity where it is being used in many aspects 
of engineering. Due to the way in which engineering is domain-based, some of 
the applications are more wide spread than others. Often the applications of 
NLP are for information extraction from a repository [92].  

The extraction of data from natural language has shown itself to be a valuable 
tool for the creation of databases [90]. Such applications take natural language 
and enter the appropriate information to the fields of the database. This is a 
useful tool when there are many thousands of fields that need instantiating and 
there are is a significantly large amount of natural language that needs 
processing. There is also a link between the automated input of information to 
ontologies. 

There has been many research projects that have focused around the use of NLP 
technologies and system requirements engineering [98]. This has reached the 
extent where there are COTS requirements tools that contain NLP tools such as 
being able to help with the identification of duplicate requirements. However this 
still provides a research challenge where they are actively researching new ways 
of improving the identification equivalent requirements [99]. It is now at the stage 
where the semantics of the requirements is the subject of the similarity scoring 
rather than just looking at the occurrence of the same words. 

5.1.8 CURRENT AVAILABLE NATURAL LANGUAGE PROCESSING TOOL LIBRARIES  
Due to the rapid expansion of NLP research over the past 10 years there have 
been a number of tools that have been made available for others to use. There 
are many small libraries that exist as the output of specific projects; however 
there are two that dominate the NLP literature: the Stanford Core NLP; and the 
Python Natural Language Took Kit. These are the two libraries that have been 
researched in depth for this work. 

Stanford Core Natural Language Processing 
The majority of the information regarding the Stanford Core NLP tool set is from 
their detailed website [93]. However there are papers that have been published 
about its history and development [100]. The Stanford Core NLP is a suite of NLP 



PAGE 209 

tools that has been developed to be accessible to multiple programing 
platforms, and as such has been implemented in Java. The toolkit was designed 
specifically with the intention of being easy to use, without the need to learn 
large amounts of proprietary commands and language [100]. It has later been 
translated for Python, Ruby, Perl, F# and .NET. It was first released to the public in 
2010 since which the functionality has periodically increased. 

The Stanford Core NLP currently has the capabilities of: tokenizing text, 
identification and removal of any XML tags if any are present in the text, 
determining the true likely case of text, part of speech tagging, gender 
identification of names, various tools for analysing tags, syntactic and semantic 
analysis tools.  

This toolkit has been gaining popularity in both the academic and commercial 
sectors for NLP [100] over the last few years. However it does not have a large 
online community which shares information and problem solving advice. This 
may come in time if the popularity of the tool continues to develop. 

Python Natural Language Toolkit 
The Python Natural Language Toolkit (NLTK) has become somewhat of a ‘go to’ 
tool for first exposure to NLP. When downloaded for free it, comes with over 50 
corpora and lexical resources such as wordnet, as well a suite of text processing 
tools such as taggers, tokenisation, and semantic reasoning. The toolkit is 
compatible with windows, Mac, and linux operating systems [101].  

The first public release of the toolkit was in 2001 [102] and there have been 
regular updates since there is a thriving online community that supports the NLTK. 
This community has produced numerous tutorials and exercises for novices to 
work through. The online community also offer helpful support to each other 
when problems arise.  

There is extensive documentation for each of the functions which can be 
modified by the user. The documentation extends to a book [103] which has 
been made available free online. The book has been written to not only explain 
how the NLTK can be used but also NLP and linguistic concepts. This book 
contains step by step examples of how to use the various functions with 
explanations as to what is happening. 

Throughout the time that the NLTK has been available for public use there has 
been a steady stream of academic papers that have been published. These 
cover many different domains as researchers apply the tool kit to many different 
situations.  

  



PAGE 210 

5.2 THE APPLICATION OF NATURAL LANGUAGE PROCESSING 
The methods discussed have identified automated tools for NLP, the proposed 
methods would entail a computer to be able to process natural language. 
Getting a computer to process natural language is not as simple as it first seems. 
Despite computers being used to harness words by typing them into a document, 
this does not mean that the computer understands what is meant by the words 
or phrases composed. Despite word processors having spell and grammar 
checkers which give the illusion of understanding, it is actually programmed to 
look for key words and uses either statistical probability or logic to suggest what 
may be more correct options. Translation programmes are a realm of interesting 
research in which the goal is to get a computer program to understand what is 
the sentiment behind what is being said and use this as the basis for a translation. 
This understanding of sentiment is needed for effective translation as there is not 
always a one to one mapping of the meaning of a word into another language. 

5.2.1 DESCRIPTIVE VS PRESCRIPTIVE LANGUAGES  
Within languages there are two broad classifications that most languages fit into, 
descriptive and prescriptive. A descriptive language has the property of the 
definitions and grammatical syntax of words changing over time as well as 
between users. In a prescriptive language all of the definitions and grammatical 
syntax of the words are strictly prescribed and adhered to by those using it, 
improper use is defined to be erroneous. Both forms of language have their 
strengths and weaknesses. The strengths of a clearly defined prescriptive 
language are that all parties know exactly what is meant by what is being 
communicated with a low level of ambiguity. However a rigid structure makes 
describing new concepts difficult or even impossible as there is no way to 
capture them. The contrast of this is that with a descriptive language the 
definitions of words are not held the same and those who use it all have their 
own idea as to exactly what each word means. This flexibility allows for new 
concepts to be conveyed however it comes at the price of ambiguity between 
individuals. With a descriptive language two people can receive a sentence of 
the same words in the same order and have a completely different 
understanding as to what was meant by the words and hence the sentence a 
whole. The result of this is an ambiguity between the author of sentence and the 
person interpreting it. The English language is considered to be largely descriptive 
in nature. To demonstrate how much the language has changed texts from as 
little as 50 years ago have distinct differences in syntax and definitions of words, 
which are evident even to the lay reader.  

Within the problem space that this project is looking at it is understood that there 
are multiple languages present however the decision has been made to focus 
on the use of English as the primary language used within the defined problem 
space. 



PAGE 211 

Whether English is a descriptive or prescriptive language is contentious in the 
literature. This discussion is a reoccurring theme in a series of papers that discusses 
the use, teaching, and understanding of the English language within Europe 
[104]. It is interesting to note that the Oxford English Dictionary, which has 
become the de facto for definitions of English words, does not have a single 
definition of words but rather is a historic dictionary whereby the etymology of 
each word is given rather than a single static definition [105]. Such evidence that 
English as a language is evolving and is continuing to do so indicates that despite 
the wishes of those who want it to be prescriptive, in practice it is not. Which 
leads to an interesting situation, with descriptive languages if everything is 
changing then any algorithms that are used to analyse it will need to be able to 
cope with this.  

5.2.2 IMPLICATIONS OF DESCRIPTIVE LANGUAGE ON ENGINEERING PROJECTS 
English is interesting in that there are many different genres, disciplines, and 
regional uses that use the same words in very different ways. This can result in two 
people both considering that they themselves to be speaking English to not be 
able to communicate effectively as both use words and grammar that the other 
does not know or understand. This is not even taking into consideration idioms 
and cultural references. It has been recognised that even within engineering the 
different disciplines can have significant communication issues even when 
specifying requirements [106]. A leading cause of ambiguity in communication 
between engineering disciplines is their use of the same words with differing 
definitions. This can lead to the situation were two engineers believe that they 
are in agreement with one another when in fact they can have very different 
ideas as to what they are discussing in the first place. It can get far worse as at 
least in this instance both parties are involved in the project from a technical 
perspective and their core understanding of the physics of the problem is likely to 
be similar. Whereas when engineers talk with other disciplines or customers their 
viewpoints may be suitably different and so they are effectively talking different 
languages. This is the reason why requirements’ engineering is such a specialist 
role and one that does not translate well between different market sectors. 

5.2.3 IMPLICATIONS OF DESCRIPTIVE LANGUAGE FOR NATURAL LANGUAGE 
PROCESSING 

Having a descriptive language to process using a computer raises issues as to 
how to deal with the same words in the same order can mean many different 
things depending on context and the nature of the communication. The way 
that many projects and the applications that they produce handle this issue is to 
reduce the variation and focus on a particular area or sub-set of the language 
as a whole. Such an approach is also taken in the work conducted in section 
5.2.5 where the focus is on the language uses in the automotive modelling and 
simulation domain. 



PAGE 212 

Having a descriptive language often means that rules, if present and accepted 
by the majority of those who use the language, will not be adhered to by all users 
in every sentence. This makes any form of logical construct prone to missing 
some of the occurrences of what it is intended to detect. Hence using 
computers which can be considered as logic machines to analyse such 
ambiguity raises many issues. 

The feature of a descriptive language that the definitions change over time also 
means that any logical construct must also either be able to change over time or 
be recognised that the effectiveness of the program will diminish the further from 
the intended date of the documents being analysed.  

5.2.4 RULE AND SENTIMENT BASED NATURAL LANGUAGE PROCESSING 
Within the field of NLP there are two categories that most methods can be sorted 
by, rule-based, and sentiment-based. 

Rule-based NLP uses a logical construct to analyse the text looking for specific 
occurrences of words, phrases and the order in which they are used. The 
strengths of this approach are: speed of development, comparatively fast 
execution for simple algorithms, Intuitive in construction, and the results can be 
verified manually. However there is the caveat that if a set of rules is applied to 
descriptive language there will inevitably be exceptions to the rules and 
information will be missed. To increase the accuracy, logical methods are often 
tailored to a specific writing style or domain. 

Sentiment-based NLP attempts to gain an understanding of what the text being 
analysed is attempting to convey. These methods use statistical analyses and or 
machine learning techniques. The strengths of this approach are that sentences 
with different words and structure which have the same meaning can be 
analysed, compared, and indicate a relation to the same objects and or actions. 
These methods however require large initial data sets which need to be manually 
constructed, constantly verified, and outputs corrections are needed to ensure 
continued accuracy. Simple tasks can be much more computationally heavy 
when compared to rule-based methods.  

There has been research into using a combination of rule-based and sentiment-
based analyses which have shown some success. This uses rule-based algorithms 
to feed the sentiment-based NLP or uses rule-based NLP to verify the sentiment-
based results. It is recognised that sentiment-based NLP is the direction that the 
majority of research is going and it has the flexibility to be implemented within an 
organisation and for it to automatically grow with the said organisation keeping 
its analysis accurate over time. 

For this research a Proof of Concept (POC) is needed to show that the methods 
proposed in section 3 can be automated or assisted by the use of NLP. For the 
decision as when to use rule or sentiment-based analyses, there are a number of 



PAGE 213 

project constraints that have to be taken into account. These constraints are not 
strictly part of the problem space as was defined in section 1.3. These constraints 
include the following. 

• There is a limited pool of available existing industrial textual model and 
simulation documentation which is suitable for NLP analysis.  

• Access to development tools and environments which are available to 
use is limited. This is due to the nature of the research as well as the 
organisation being used as a case study. 

• Time is limited for the development and testing of whether NLP can be 
used and is of benefit in this use case. 

• The POC is only intended to identify if this technology is of potential use in 
this use case, and not an industrial tool.  

• Due to the systems engineering aspect of this work, all outputs must be in 
a form where verification can be conducted; the technological POC is no 
different.  

With the five constraints identified above the decision was made to use rule-
based rather than using sentiment-based NLP for the development of a POC. 

5.2.5 NATURAL LANGUAGE PROCESSING PROOF OF CONCEPT  
To ascertain if the NLP has the potential to aid in the methods proposed in this 
work a POC was constructed. The purpose of this POC is to investigate if the 
capabilities of this technology can in some way aid in the capture and analysis 
of the textual information that form parts of the proposed processes.  

The tasks where NLP has been identified as being of potential benefit are as 
follows. 

• Ascertaining if the documentation of a potential model indicates if 
there is a match between the capabilities of the model and a section 
for the simulation requirement.  

• Compilation of the information needed for the completion of the 
proposed integration tables from the model documentation. 

• The comparison of completed integration tables, to ascertain if the 
models are semantically similar and hence suitable to integrate. 
 

To produce this POC the Stacked Systems Engendering method was 
implemented coupled with a modified spiral approach for iterative progression 
of the software. The ‘understanding’ of the problem phase of the Stacked 
Systems Engineering is covered in section 3.2. However time and effort still need 
to be invested into investigating languages and scripting tools. 



PAGE 214 

5.2.6 NATURAL LANGUAGE PROCESSING PROOF OF CONCEPT REQUIREMENTS 
The task of producing a NLP POC is an investigation into the capabilities of the 
technology in a new domain. As this is a new application the exact capabilities 
of the technology are unknown. For this reason the requirements were organised 
such that each was the staging for its successor. It was intended that the 
requirements would start with simple tasks and work up to being challenging. 
Hence it was never envisaged that all of the requirements would be fully satisfied. 

Operational Requirement of the Application  
To ascertain if NLP technologies can aid in analysing the suitability of integrating 
existing models and simulations from their documentation. 

Functional Requirements 
Functional requirements are considered to be the capabilities of the system 
being developed, and what they will be capable of when complete. What this 
means for the POC is that the functional requirements are the reference points as 
to if this NLP technology can provide the functionality that is needed to be of use 
in this problem space. Examples of functional requirements include the following. 

• The application is to read in text files. 

• The application is to identify the word types (Noun, Verb, Connective, etc.) 
of all words in the document being analysed. 

• The application is to identify sentences with Nouns present in text. 

• The application is to identify sentences with Verbs present in text. 

• The application is to identify any Noun-verb phrases present in text. 

• The application is to Identified Nouns, Verbs, and Noun-verb phrases. 

• Noun-verb phrases are to be saved to a file that can be read back into 
the application. 

• The application is to have user-defined repository of key words and 
phrases. 

• The application is to identify key user-defined words or phrases. 

• The application is to identify the sentences that the identified keywords 
are part of. 

• The application is to be capable of counting the frequency that types of 
words are present in the text. 

• The application is to compare if two or more documents have the same 
words in and report the frequency across the documents. 



PAGE 215 

• The application is to compare two or more documents to ascertain if they 
contain the same keywords and the number of times that they occur in 
each document. 

• The application is to identify sentences with Nouns with predeterminers. 

• The application is to compare two or more documents to ascertain if they 
contain Noun, predeterminer phrases. 

Non-Functional Constraints 
The requirements specified below are concerned with matters that are not the 
functionality of the application but rather state the environmental constraints 
that bound the potential solution space. In this case the constraints are 
predominantly concerned with what it needs to be developed in and executed 
on. Many of these constraints are due to the project that this work is a part of 
and the resources available. Examples of non-functional constraints include the 
following.  

• The application is to read in ‘.txt’ files where the text has no formatting 
other than space, tab, and carriage returns. [No bold underlined italicised 
etc]. 

• The application must operate on a mid-range engineering laptop with 
8GB RAM, 250 GB memory, 500 GB hard drive, and a 2.9GHz quad core 
processor. 

• The application should not take any longer than one hour to analyse two 
documents for all of the required algorithms. 

• The development environment used must not require any more 
computational power than that available for execution of the developed 
application. 

• The development environment and application is to operate on a 
windows 7, 64-bit operating system. 

• All uses of any software are to be fully legal for academic research use. 

Languages and Development Environments  
The POC has to be created in a development environment using a computer 
language. An investigation was conducted as to how current and past NLP 
applications were developed and how the researchers reported their 
experience using different combinations. Consideration was given to the fact 
that allowances would have to be made to the differences in use case.  

The decision as to which language and development environment to use was 
made by first assessing the strengths and weaknesses of the languages. Once a 
language was chosen a decision as to which development environment to be 
used was made. 



PAGE 216 

The languages that were considered to be used for the development of the POC 
where; C, C#, Math script, G, and Python. These languages were chosen for 
consideration because of their use within the literature, the basic properties that 
they have, and that there is a range of different types of language which can be 
considered. 

C is a procedural language that has been the foundation of many of the 
computational developments since 1972 [107]. The result of this heritage is well 
established coding practices with many sources of free help and advice. There 
are only a limited number of libraries that are freely available for NLP using C. This 
means that almost all intended functionality of the POC would require coding 
from basic string manipulation functions. This would be a time consuming 
endeavour. 

C# is a development of C but whereas C is procedural C# is object-oriented. This 
makes parallel processing possible and requires different programming patterns 
to be used [108]. There has been some NLP work produced using C#, however 
the libraries that are freely available are somewhat limited.  

Math script is a form of language that is used by development environments 
such as MATLAB [109]. Math script is not a language as such but rather a name 
for a collection of similar inputs to various mathematical tools. This language has 
common features and syntax between tools. However functions can be tool and 
version dependent. Often basic function calls are the same across environments 
with changes required for tool specific functionality. These languages can be 
optimised for mathematical operations rather than string based manipulations. 
There are some string functions or ways to manipulate strings with some effort 
being put into conducting NLP using math script however due to the tools that 
interpret it not being optimised for text execution can be slow and algorithms 
cumbersome to implement. 

G is the graphical language that National Instruments use in their products [110]. 
It is a graphical based language that uses the concept of data flow. This 
language is quick to pick up and many find intuitive to use. It has string operators 
and some NLP functions however this is far from its intended use as a data 
acquisition tool. 

Python is an open source language that dynamically defines its variables on the 
fly. This language has been found by far to be the most commonly used 
language for NLP applications. There are numerous open source toolkits 
available which have high quality help files available for guidance on design 
patterns for textual analysis. Due to the means by which Python has been 
developed there are some libraries that will only work with some versions of 
Python. The two main variants have been developed side by side, Python version 
2 and Python version 3. The differences between them are such that some 
functions will behave differently in the two versions. As the leading tool kit for NLP 



PAGE 217 

in Python uses version 3 from this point in this work when referring to Python it is 
considered to refer to Python 3. More information on the differences between 
Python 2 and 3 can be found at the Python official web page [111] 

To compare the possible programming languages a Pugh matrix [112] was used, 
this can be seen below in Figure 5.3 below. The categories that have been used 
to evaluate the different languages are: number and quality of existing NLP 
functions and libraries, quality of native string (or text) manipulation functions, 
documentation for language available online, availability of online help, memory 
allocation usage and control, user familiarity, availability of free online training, 
quality of documentation available for existing NLP functions and libraries, and 
quality of documentation of base functions.  

All categories are scored between 0 and 5; this means that there is no middle 
value and there is a minimum possible total score of 0 and a maximum of 45. 

CATEGORIES C C# MATH SCRIPT G  PYTHON 
Number and quality of existing NLP 
functions and libraries 

1 2 1 2 5 

Quality of native string (or text) 
manipulation functions 

2 2 1 1 3 

Documentation for language 
available online 4 4 3 3 4 

Availability of online help 4 4 3 4 4 
Memory allocation usage and 
control 5 5 2 3 3 

User familiarity 2 1 3 5 2 
Availability of free online training 4 4 2 2 4 
Quality of documentation 
available for existing NLP functions 
and libraries 

2 2 1 1 5 

Quality of documentation of base 
functions 4 4 2 2 4 

TOTAL 28 28 18 23 34 
Figure 5.3 Pugh matrix for the selection of the language to conduct the NLP POC. Each score is 

between 0 and 5 representing least and greatest desirability respectively. 

Python received the highest score from the Pugh matrix analysis of the identified 
languages that could be used for the POC. This decision was sanity checked and 
it was decided that Python was to be the language used.  

With the language having been selected there are a number of different 
development environments that could have been used to script the POC 
application. 

An investigation was undertaken as to the different development environments 
that could be used with the Python3 language, the environments that were 
found were, Notepad, Visual studio, IPython and Spyder. These are all readily 



PAGE 218 

available Python scripting tools and are all capable of producing scripts that a 
compiler can read and use. 

A Pugh matrix was used to aid the selection of a possible development 
environment to use. The categories that each environment was scored against 
were; availability, functionality, quality of documentation, IT support (from the 
organisation that this research is being conducted within), computational 
overheads, available guidance and tutorials, user assisting functions, and 
debugging tools. 

CATEGORIES NOTEPAD VISUAL STUDIO IPYTHON SPYDER 
Availability 5 5 5 5 
Functionality 2 4 3 5 
Quality of 
documentation 3 4 3 3 

IT support 5 5 2 2 
Computational 
overheads 4 2 2 1 

Available guidance and 
tutorials 2 4 4 2 

User assisting functions 1 5 3 5 
Debugging tools 1 4 3 4 
User familiarity 4 4 2 1 
TOTAL 27 37 27 28 

Figure 5.4 A Pugh matrix to aid in the selection of scripting tools for POC development. Each score is 
between 0 and 5 representing least and greatest desirability respectively. 

Using the outcome of the analysis of the Pugh matrix, Microsoft Visual Studio was 
chosen for the development environment to produce the NLP POC. Other 
environments were used for troubleshooting issues with Microsoft Visual Studio. 
When installing Python, packages can be installed that increase functionality of 
the development environment as well as giving access to function libraries. The 
packages that were installed were bundled in the Anaconda installer [113]. This 
contains over 150 pre-built and tested Python packages [114]. 

By using such an installer it can be guaranteed that all of the packages that are 
needed are installed in the correct order and all of the paths are set to the right 
addresses. Having these packages installed gives the option to use functions that 
have been developed such as graphs, charts, as well as a whole host of NLP 
capabilities. Having these capabilities to hand vastly reduces the development 
time of programming, which will be of benefit for the POC. 

One of the key packages that was used was the Natural Language Toolkit (NLTK). 
This is a series of Python functions and corpora that were created in 2001 by 
Steven Bird and Edward Loper from the University of Pennsylvania. Since 2001 it 
has been developed by many and is now one of the leading toolkits for NLP 
using Python [101].  



PAGE 219 

To use some of the functionality of the NLTK package additional installs of 
corpora, taggers, and dictionaries are required [115]. A Python script is installed 
with the NLTK when run it will produce a GUI where the additional information 
can be selected and downloaded from an online repository. It is advised that if 
this work is being replicated that all of the environment and additional 
information is downloaded before attempting to run any of the code that has 
been developed. 

5.2.7 PROCESS FOR THE DEVELOPMENT OF PROOF OF CONCEPT CODE 
With the understanding of the problem and the requirements having been 
captured, the next two stages of the Stacked Systems Engineering method are 
architecture and design. An approach which merges these two components 
was decided upon. The architecture would predominantly be defined as a 
central calling block that calls functions and passes data. This allows for functions 
to be written in isolation and brought into the main program. A diagram of the 
architecture as it was intended can be seen in Figure 5.5 below. 

 
Figure 5.5 The planned architecture for the NLP POC. A top level script orchestrates the calling of 

functions which are formed from other component functions. The solid lines denote a data 
exchange. The dashed lines denote the expandable nature where additional functions can be 

added. 

With the incremental increase in functionality that was intended for the POC, 
and with base functions building upon one another to give increasingly 
complicated behaviour, a spiral process was used. This spiral process was 
developed using the work in [77] as inspiration. The developed spiral process can 
be seen in the diagram below. The diagram uses the idea of an iterative process 
winding around the same actions however the nature of the tasks has changed 
significantly from the process proposed in the literature [77]. 



PAGE 220 

 
Figure 5.6 This is a new take on the traditional spiral. It has an Investigate, Architect, Implement, and 
test, as the constituent parts of the process. At the end of each circumnavigation a new behaviour 

is available to use. 

The constituent parts of the spiral process shown in Figure 5.6 above require 
explanation as to what actions and decisions are carried out.  

Spiral Process: Investigate  
To investigate current technologies and tools to ascertain what is currently 
possible with given constraints. This understanding is used with the desired 
capabilities of the overall application to assess what is possible. Consideration is 
given to what has gone before (capabilities wise) and how a new capability 
could be built upon. At the end of this stage an idea as to what the function is 
going to be capable of and the way in which it is to be implemented is known. 
By the end of this stage tests are specified as to ascertain if the intended function 
behaved as desired. 

Spiral Process: Architect  
With a new capability and technology selected, consideration is given to the 
how the function will be put together. This includes how it will use core functions 
and previously developed functionality. The interfaces are also set at this stage of 
the process. By setting the interfaces at this point it allows for considerations as to 
how the application will handle the data that it will receive, produce, and the 



PAGE 221 

means by which it will be represented. By the end of this stage a full plan of what 
is going to be produced and the form that it will take will be in place. By the end 
of this stage, once the architecture has been set, a full design is to be created. 

Spiral Process: Implement 
With the architecture and design of the intended functionality known it can now 
be scripted and complied. This is the stage where the code for the application is 
written and built. The implement stage ends when the function is a point where it 
can be integrated into the existing application ready for testing. 

Spiral Process: Test 
This stage is essentially the verification of the new functionality that has been 
produced in this iteration as well as how this new code interacts with any existing 
code. The verification point comes from the decisions and specification which is 
set in the investigation stage of the spiral. Modifications can be made to the 
code at this stage to bring the behaviour into line with what is desired, expected, 
and specified. Modifications are only made to the implementation not the 
architecture at this stage. The results of testing can be used in the investigation 
stage of the next iteration. At the end of the test phase a new version of the 
code will have been developed. 

Evaluation of the New Spiral Process 
The new spiral model has been found to be useful when coding software when 
the capabilities of the technology are not known before commencing the task. 
This process requires functions to be used whereby the functionality can be 
added in a modular or consecutive way. Limitations of this process are decisions 
which are made early on with a function can require rework to make it fit with 
desired behaviour later. Applying such a flexible approach to the task of 
investigating the potential of a technology has demonstrated the possibility for 
such a method to demonstrate promise for a technology without the full 
capabilities of said technology being known. However it is recognised that such 
a flexible approach would not be the most suitable for many other situations, 
and cannot be used as an excuse for haphazard system development. It is far 
from optimal for developing a complex program using established technology in 
the field. As the lack of structure of the whole does not guarantee that the final 
solution will achieve the overall intended intent to solve the given problem. The 
application would also most likely not be the most optimal possible use of the 
technology. Whereas in this application there is no single intended outcome for 
the final solution to have other than an investigation of the technology. If the 
knowledge that has been gained from this POC was known at the start of the 
software task the decisions on implementing the same capabilities would be 
different. 

  



PAGE 222 

5.2.8 CAPABILITIES OF THE PROOF OF CONCEPT 
From the start this POC was only intended to demonstrate the possibility of using 
this NLP technology to assist in the collection and comparison of information 
necessary for meaningful model and simulation integration. Table 5.1 is a simple 
Red, Amber, and Green method of assessing if the requirement has been met or 
not has been used. Red not met at all, Amber some work has been done 
towards this and it shows promise, and Green fully capable. 

REQUIREMENT PASS PROMISE NOT AT ALL 
The application is to read in text files.    
The application is to identify the word types 
(Noun, Verb, Connective, etc.) of all words 
in the document being analysed. 

   

The application is to identify sentences with 
Nouns present in text. 

   

The application is to identify sentences with 
Verbs present in text. 

   

The application is to identify any Noun-verb 
phrases present in text. 

   

Identified Nouns, Verbs and Noun-verb 
phrases are to be saved to a file that can 
be read back into the application. 

   

The application is to have user defined 
repository of key words. 

   

The application is to identify key user 
defined words or phrases.    

The application is to identify the sentences 
that the identified keywords are part of.    

The application is to be capable of 
counting the frequency that types of words 
are present in the text. 

   

The application is to compare if two or 
more documents have the same words in 
and report the number of times that it does. 

   

The application is to compare two or more 
documents to ascertain if they contain the 
same keywords and the number of times 
that they occur in each document. 

   

The application is to identify sentences with 
Nouns with pre determiners.    

The application is to compare two or more 
documents to ascertain if they contain the 
say Noun, pre determiner phrases. 

   

Table 5.1 Functional requirements RAG test. This figure shows for each of the requirements if it has 
been fulfilled or not. Green pass, Amber shows promise, and Red not capable at all with no sight of 

being able to do so. 

From this analysis it shows that the majority of the functionality that was initially 
required has been achieved with this NLP technology. Work towards the last two 
requirements has been started and the progress was good. With additional time 
it is believed that this capability could be achieved. To ensure that the 
constraints that were placed upon the POC have been adhered to a RAG 



PAGE 223 

assessment of the of the functional constraint requirements was conducted the 
results of which can be seen below in Table 5.2. 

REQUIREMENT PASS PROMISE NOT AT ALL 
The application is to read in txt files 
where the text has no formatting other 
than space, tab, and carriage returns. 
No bold underlined italicized etc. 

   

The application must operate on a mid-
range engineering laptop with 8GB 
RAM, 250 GB memory and a 2.9GHz 
quad core processor. 

   

The application should not take any 
longer than one hour to analyse two 
documents for all of the required 
algorithms. 

   

The development environment used 
must not require any more 
computational power than that 
available for execution of the 
developed application. 

   

The development environment and 
application is to operate on a windows 
7, 64-bit operating system. 

   

All uses of any software are to be fully 
legal for academic research use.    

Table 5.2 RAG analysis of the Functional Constraints of the POC. 

The RAG analysis shown in Table 5.2 Figure shows that the POC operates within all 
of the constraints that were set during the requirements stage. 

  



PAGE 224 

5.2.9 ALGORITHMS IMPLEMENTED IN THE PROOF OF CONCEPT  
To achieve the desired functionality there were a number of logic based 
algorithms that were developed, implemented and tested. To describe the 
behaviour of the NLP application, set theory is used in conjunction with formal 
logic. Within the formal logic literature there are discrepancies as to what the 
operators represent. For this reason Table 5.3 below details the operators used 
and a description of what they represent given. 

LOGIC 
SYMBOL DESCRIPTION 

{ } Set. Items within a set are between the two parentheses 

Xy 
Set. Capital denotes a type of set with the subscript being a 
label to denote the origin of the elements within the set. 

∈ Is an element of. q ∈ X means q is an element of the set X. 
= Equals. Contains the same values. 

| Containing. {X | P(X)}, is used to denote the set containing all 
objects for which the condition P has. 

∩ Intersect. X ∩ Y means the set that contains all those elements 
that Y and X have in common 

⊆ Subset. {X ∈ Q : P(X)} denotes the set of all x that are already 
members of Q such that the condition P holds for X. 

⋀ Logical And. The statement A⋀𝐵𝐵 is true if both A and B are true; 
if both (or one) is false, the statement is false. 

∨ Logical OR. The statement A ∨ B is true if A or B (or both) are 
true; if both are false, the statement is false. 

Table 5.3 : Definition of the logical symbols used in mathematical descriptions. 

Each term is defined before use and all will be in the type face as shown below. 

𝐷𝐷 = {𝑇𝑇ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑡𝑡 𝑐𝑐𝑜𝑜 𝑎𝑎 𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡𝑢𝑢𝑎𝑎𝑡𝑡 𝑑𝑑𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡}  Equation 5-1 
 

𝑊𝑊 = 𝑊𝑊𝑐𝑐𝑒𝑒𝑑𝑑𝑠𝑠 Equation 5-2 
 

𝑃𝑃 = 𝑃𝑃𝑢𝑢𝑒𝑒𝑐𝑐𝑡𝑡𝑢𝑢𝑎𝑎𝑡𝑡𝑒𝑒𝑐𝑐𝑒𝑒 Equation 5-3 
 

All documents are formed of words and punctuation. Words include natural 
words as well as numbers. Punctuation is considered to include everything else 
that is not captured by the words term in a document. The text documents are 
only considered to be comprised of ASCII text.  

𝐷𝐷 = {𝑊𝑊,𝑃𝑃} Equation 5-4 
 

For the description of the following algorithms consider that two documents are 
being analysed to ascertain if there is a possibility that the models or simulations 
that they represent could be successfully integrated. To distinguish the two sets 
the subscript A and B superscript are used throughout the logical representations. 



PAGE 225 

Therefore  

𝐷𝐷𝐴𝐴 = {𝑊𝑊𝐴𝐴,𝑃𝑃𝐴𝐴} Equation 5-5 
 

And  

𝐷𝐷𝐵𝐵 = {𝑊𝑊𝐵𝐵,𝑃𝑃𝐴𝐴} Equation 5-6 
 

There are means by which a document can be broken down into lines. A line is a 
complete sentence or part of list that has been separated by the author by a 
carriage return. When DA and DB are converted to lines each line is a set and all 
of the line sets are part of a larger document lines set. 

𝐿𝐿 = 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 Equation 5-7 
 

𝐿𝐿 = 𝐷𝐷 = {𝑊𝑊,𝑃𝑃} Equation 5-8 
 

 
Considering the two documents  

𝐿𝐿𝐴𝐴 = 𝐷𝐷𝐴𝐴 = {𝑊𝑊𝐴𝐴,𝑃𝑃𝐴𝐴} Equation 5-9 
 

𝐿𝐿𝐵𝐵 = 𝐷𝐷𝐵𝐵 = {𝑊𝑊𝐵𝐵,𝑃𝑃𝐵𝐵} Equation 5-10 
 

Methods exist for assessing and categorising each word or punctuation point in a 
document. This method has been used with each element of the lines sets being 
categorised and assigned a relevant tag. 

𝑇𝑇𝐿𝐿 = {𝑇𝑇|𝑇𝑇 = 𝑇𝑇𝑊𝑊𝐿𝐿 ∨  𝑇𝑇𝑃𝑃𝐿𝐿} Equation 5-11 
 

The subscript for the two documents is added to the TL, TLA, TLB, Respectively. 

With the tags identified for all of the elements in the documents, the tags can be 
further decomposed. The tagged words contain the tags which are displayed in 
Table 5.4 below. The content of this table has been taken from the NLTK help 
function. 

  



PAGE 226 

Type Tag Example words 
noun, common, singular or mass ‘NN’ common-carrier, cabbage, 

shed, thermostat 
noun, proper, singular ‘NNP’ Ranzer, Conchita, Christos, 

Cougar, Yvette, Ervin, Liverpool 
noun, proper, plural ‘NNPS’ Americans, Amusements, 

 Animals, Antiques, Apache 
noun, common, plural ‘NNS’ Undergraduates, products, 

bodyguards, coasts 
verb, base form ‘VB’ Ask, assemble, bake, balkanize, 

bank, benefit, boil, build 
verb, past tense ‘VBD’ Dipped, pleaded, swiped, 

tidied, registered, cushioned, 
aimed  

verb, present participle or gerund ‘VBG’ Stirring, focusing, judging, 
stalling, lactating, veering 

verb, past participle ‘VBN’ Dilapidated, aerosolized, 
chaired languished, 
experimented  

verb, present tense, not 3rd person 
singular 

‘VBP’ Predominate, wrap, resort, 
twist, spill, cure, lengthen, brush  

verb, present tense, 3rd person 
singular 

‘VBZ’ Bases, reconstructs, marks, 
mixes, displeases, seals, carps  

conjunction, coordinating ‘CC’ And, both, but, either, for, less, 
minus, neither, nor, or, plus, so 

numeral, cardinal ‘CD’ Seven, 1987, twenty, 78-
degrees, IX ,'60s, 271, dozen 

Determiner ‘DT’ All, an, another, any, both, 
each either, half, many, 
neither, no 

existential there ‘EX’ There 
foreign word ‘FW’ Gemeinschaft, hund, ich, jeux, 

habeas, Haementeria, Herr  
preposition or conjunction, 
subordinating 

‘IN’ Astride, among, upon, whether, 
out, inside, pro, despite, on, by 

adjective or numeral, ordinal ‘JJ’ Third, ill-mannered, pre-war, 
regrettable, oiled, calamitous 

adjective, comparative ‘JJR’ Bleaker, braver, breezier, 
briefer,  calmer, cheaper, 
choosier 

adjective, superlative ‘JJS’ Cheapest, classiest, cleanest, 
darkest, deadliest, dearest 

list item marker ‘LS’ A A. B B. C C., G H I J K, SP-
44001 SP-44002 SP-44005 

modal auxiliary ‘MD’ Can, cannot, could, couldn't, 
dare, may, might, ought, shall  

pre-determiner ‘PDT’ All, both, half, many, quite, 
such, sure, this 

genitive marker ‘POS’  ', 's 



PAGE 227 

pronoun, personal ‘PRP’ Hers, herself, him, himself, it, 
itself, me, myself, one, oneself 

pronoun, possessive ‘PRP$’ Her, his, mine, my, our, ours, 
their, thy, your 

Adverb ‘RB’ Occasionally, unabatingly, 
maddeningly, adventurously  

adverb, comparative ‘RBR’ Further, gloomier, grander, 
harder, harsher, leaner, 
lengthier  

adverb, superlative ‘RBS’ Best, biggest, bluntest, earliest, 
farthest, hardest, largest, least 

Particle ‘RP’ Aboard, about, across, along, 
at,  
Crop, down, ever, fast, for, forth 

‘to’ as preposition or infinitive marker ‘TO’ To 
Interjection ‘UH’ Goodbye, Gosh, Wow, 

Jeepers, Oops, huh, dammit, 
shucks  

WH-determiner ‘WDT’ That, what, whatever, which, 
whichever 

WH-pronoun ‘WP’ That, what, whatever, 
whatsoever, which, who, whom 

WH-pronoun, possessive ‘WP$’ Whose 
Wh-adverb ‘WRB’ How, however, whence, 

whenever, where, whereby 
sentence terminator ‘.’ . , ! , ? 
colon or ellipsis ‘:’ : , ; , ... 
opening quotation mark ‘``’ ` , `` 

Table 5.4 This table shows all the possible tags that can be assigned by the NLTK POS tagger. The 
content of this table was compiled from the NLTK help files. [116] 

Identification of, Noun, Verb, Noun-verb Phrases and Comparison between 
Documents  
Within systems engineering there is the concept of noun-verb phrases. The idea is 
that an object is defined by the noun and the action that it does or has done to 
it is captured by a verb. Using the tagged text sentence noun-verb sentences 
can be identified. 

The words that are identified as nouns are captured by the following tags; noun, 
common, singular or mass; noun, proper, singular; noun, proper, plural; noun, 
common, plural. 

𝐼𝐼𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑑𝑑 𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒𝑠𝑠 =  𝑁𝑁𝑇𝑇 = {‘𝑁𝑁𝑁𝑁’, ‘𝑁𝑁𝑁𝑁𝑃𝑃’, ‘𝑁𝑁𝑁𝑁𝑃𝑃𝑆𝑆’, ‘𝑁𝑁𝑁𝑁𝑆𝑆’} Equation 5-12 
 

The nouns are a sub-set of the words in a document. 

𝑁𝑁𝑐𝑐𝑢𝑢𝑒𝑒𝑠𝑠 𝑒𝑒𝑒𝑒 𝑎𝑎 𝑑𝑑𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑁𝑁𝑇𝑇 ⊆ 𝑊𝑊 Equation 5-13 
 

The nouns in the two documents are denoted by. 



PAGE 228 

𝑁𝑁𝐴𝐴 = 𝑁𝑁𝑇𝑇 ⊆ 𝑊𝑊𝐴𝐴 Equation 5-14 
 

𝑁𝑁𝐵𝐵 = 𝑁𝑁𝑇𝑇 ⊆  𝑊𝑊𝐵𝐵 Equation 5-15 
 

Nouns that are common in both document A and Documents B can be defined 
as 

𝐶𝐶𝑁𝑁𝐴𝐴𝑁𝑁𝐵𝐵 = 𝑁𝑁𝐴𝐴 ∩ 𝑁𝑁𝐵𝐵 Equation 5-16 
 

All of the verbs present in the text that are of interest to analyses of capabilities of 
models and simulations are captured in the tags: verb, base form; verb, past 
tense; verb, present participle or gerund; verb, past participle; verb, present 
tense, not 3rd person singular; verb, present tense, 3rd person singular.  

𝐼𝐼𝑑𝑑𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑑𝑑 𝑉𝑉𝑒𝑒𝑒𝑒𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑇𝑇 
𝑉𝑉𝑇𝑇 = {′𝑉𝑉𝐵𝐵′,′ 𝑉𝑉𝐵𝐵𝐷𝐷′,′ 𝑉𝑉𝐵𝐵𝐺𝐺′,′ 𝑉𝑉𝐵𝐵𝑁𝑁′,′ 𝑉𝑉𝐵𝐵𝑃𝑃′, ′𝑉𝑉𝐵𝐵𝑉𝑉′} 
 

Equation 5-17 

The Verbs are a subset of the whole text such that  

𝑉𝑉𝑒𝑒𝑒𝑒𝑉𝑉𝑠𝑠 𝑒𝑒𝑒𝑒 𝐷𝐷𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑉𝑉𝑇𝑇 ⊆ 𝑊𝑊 Equation 5-18 
 

This is applicable to both documents hence 

𝑉𝑉𝐴𝐴 = 𝑉𝑉𝑇𝑇 ⊆ 𝑊𝑊𝐴𝐴 Equation 5-19 
 

𝑉𝑉𝐵𝐵 = 𝑉𝑉𝑇𝑇 ⊆ 𝑊𝑊𝐵𝐵 Equation 5-20 
 

The verbs that appear in both document A and document B  

𝐶𝐶𝑉𝑉𝐴𝐴𝑉𝑉𝐵𝐵 =  𝑉𝑉𝐴𝐴 ∩ 𝑉𝑉𝐵𝐵 Equation 5-21 
 

The first algorithm that was implemented was the implementation of equations 
Equation 5-19, Equation 5-20, and Equation 5-21. This is the simplest comparison 
that can be made between two documents. By extracting the nouns, the 
objects involved are located by examining the verbs, limited indication as to the 
actions involved can be gleaned. This first algorithm proved that the nouns and 
verbs can be identified by the POC. The application can be made to be of more 
use if noun-verb phrases are identified and compared. 

With Noun-verb phrases if the same nouns and verbs are in sentences in two 
documents there is the strong possibility that they are referring to the same or 
similar things. Hence an algorithm for finding such similar sentences was 
developed.  



PAGE 229 

A line that has at least one noun in is denoted by  

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠 𝑎𝑎𝑡𝑡 𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑐𝑐𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒 =  𝐿𝐿𝑁𝑁 Equation 5-22 
 

A line that has at least one verb is denoted by  

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑐𝑐𝑐𝑐𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠 𝑎𝑎𝑡𝑡 𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑐𝑐𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑉𝑉 =  𝐿𝐿𝑉𝑉 Equation 5-23 
 

To implement the noun-verb search, lines that have at least one noun and one 
verb need to be captured. Hence lines that have at least one noun and at least 
one verb are subsets of lines. A line that has both a noun and a verb in will be a 
subset of the lines that have at least one noun and are also a member of lines 
that have at least one verb. 

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑒𝑒𝑡𝑡ℎ 𝑎𝑎𝑡𝑡 𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑐𝑐𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒 𝑎𝑎𝑒𝑒𝑑𝑑 𝑐𝑐𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑉𝑉 = 𝐿𝐿𝑁𝑁𝑉𝑉 Equation 5-24 
 

𝐿𝐿𝑁𝑁𝑉𝑉 =  𝐿𝐿𝑁𝑁𝑉𝑉 ∈ 𝐿𝐿 =  𝐿𝐿𝑁𝑁𝑉𝑉  ∈ 𝐿𝐿𝑁𝑁⋀𝐿𝐿𝑉𝑉 Equation 5-25 
 

For the purpose of implementation the consideration as to if there are multiple 
noun-verb phrases present has not been addressed as long as there is at least 
one noun and one verb, it is selected. 

For the two documents the subscripts are added see below. 

𝐷𝐷𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 𝐴𝐴 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑒𝑒𝑡𝑡ℎ 𝑎𝑎𝑡𝑡 𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑐𝑐𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒 𝑎𝑎𝑒𝑒𝑑𝑑 𝑐𝑐𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑉𝑉 = 𝐿𝐿𝑁𝑁𝑉𝑉𝐴𝐴  Equation 5-26 
 

𝐿𝐿𝑁𝑁𝑉𝑉𝐴𝐴 = 𝐿𝐿𝑁𝑁𝑉𝑉𝐴𝐴  ∈ 𝐿𝐿𝐴𝐴 =  𝐿𝐿𝑁𝑁𝑉𝑉𝐴𝐴  ∈  𝐿𝐿𝑁𝑁𝐴𝐴  ⋀ 𝐿𝐿𝑉𝑉𝐴𝐴 Equation 5-27 
 

𝐷𝐷𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 𝐵𝐵 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑒𝑒𝑡𝑡ℎ 𝑎𝑎𝑡𝑡 𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑐𝑐𝑒𝑒𝑒𝑒 𝑒𝑒𝑐𝑐𝑢𝑢𝑒𝑒 𝑎𝑎𝑒𝑒𝑑𝑑 𝑐𝑐𝑒𝑒𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑉𝑉 =  𝐿𝐿𝑁𝑁𝑉𝑉𝐵𝐵  Equation 5-28 
 

𝐿𝐿𝑁𝑁𝑉𝑉𝐵𝐵 =  𝐿𝐿𝑁𝑁𝑉𝑉𝐵𝐵  ∈  𝐿𝐿𝐵𝐵 =  𝐿𝐿𝑁𝑁𝑉𝑉𝐵𝐵  ∈ 𝐿𝐿𝑁𝑁𝐴𝐴⋀ 𝐿𝐿𝑉𝑉𝐴𝐴 Equation 5-29 
 

The sentences in both documents that have the same nouns and verbs in are 
expressed by the following equations. 

𝑁𝑁𝑉𝑉𝐶𝐶 = 𝐿𝐿𝑁𝑁𝑉𝑉𝐴𝐴 ∩ 𝐿𝐿𝑁𝑁𝑉𝑉𝐵𝐵  Equation 5-30 
 

The equation above may not always have elements in. 𝑁𝑁𝑉𝑉𝐶𝐶 is allowed to be 
empty. 

Direct and percentage comparisons between documents 
When comparing two documents using tags the direct numerical comparison of 
the number of times a particular tag is present may not be the most 



PAGE 230 

representative metric of the similarity. If two documents are of differing lengths 
then a percentage comparison of the number of times a tag appears in the 
document is not affected by the difference in document length. 

The equation used for such analysis is shown below.  

𝑝𝑝𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑎𝑝𝑝𝑒𝑒 𝑐𝑐𝑜𝑜 𝑡𝑡𝑎𝑎𝑝𝑝 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑁𝑁𝑒𝑒𝑡𝑡 𝑎𝑎 𝑡𝑡𝑎𝑎𝑡𝑡 ℎ𝑎𝑎𝑡𝑡 𝑁𝑁𝑒𝑒𝑒𝑒𝑏𝑏 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑒𝑒𝑎𝑎 𝑡𝑡𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑜𝑜𝑑𝑑𝑁𝑁𝑁𝑁𝑒𝑒𝑏𝑏𝑡𝑡 
𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑇𝑇 𝑏𝑏𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑇𝑇𝑇𝑇 𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑒𝑒𝑎𝑎 𝑡𝑡𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑜𝑜𝑑𝑑𝑁𝑁𝑁𝑁𝑒𝑒𝑏𝑏𝑡𝑡

 × 100  Equation 5-31 

 

This percentage calculation was used to produce a tag percentage set for the 
two documents. The tag percentages were then displayed comparatively on a 
bar chart. 

The percentage of times a tag is used for different words can also be used as a 
metric to compare documents as it is a means of assessing how many different 
words the tag is being used for. 

𝑃𝑃𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑡𝑡𝑎𝑎𝑝𝑝𝑒𝑒 𝑐𝑐𝑜𝑜 𝑡𝑡𝑎𝑎𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 𝑤𝑤𝑐𝑐𝑒𝑒𝑑𝑑 =  
𝑁𝑁𝑢𝑢𝑚𝑚𝑉𝑉𝑒𝑒𝑒𝑒 𝑐𝑐𝑜𝑜 𝑡𝑡𝑒𝑒𝑚𝑚𝑒𝑒𝑠𝑠 𝑡𝑡𝑎𝑎𝑝𝑝 ℎ𝑎𝑎𝑠𝑠 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑑𝑑

𝑁𝑁𝑢𝑢𝑚𝑚𝑉𝑉𝑒𝑒𝑒𝑒 𝑐𝑐𝑜𝑜 𝑑𝑑𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑤𝑤𝑐𝑐𝑒𝑒𝑑𝑑𝑠𝑠
× 100 Equation 5-32 

 

The percentage of tagged words gives an interesting metric and it has 
substantially different values for each tag name that that of the percentage of 
tag. 

Finding Company words and Phrases  
To locate the words and phrases that have been identified as being important, 
sets of data were used so that the words within the document could be 
searched. The words and phrases that are of interest were sorted into sets of lists.  

Category of words Examples of words in category  Symbol used 
in description 

Development Environments ‘LabVIEW’, ‘Matlab’, 
‘SIMPACK’ 

𝐷𝐷𝑒𝑒 

Modelling Terms ‘input’, ‘output’ ,‘interface’. 𝑀𝑀𝑡𝑡 
Project Terms ‘Kick Off’, ‘validated’, ’verified’ 𝑃𝑃𝑡𝑡 
Programing Languages ‘C’, ’C#’, ’Java’ 𝑃𝑃𝑡𝑡 
File Types ‘mdl’, ’txt’, ’jpg’ 𝐹𝐹𝑡𝑡 
Table 5.5 Categories of words with example words and their respective symbols used in logical 

descriptions. 

Searches are conducted to find if any of the following sets have elements 

𝑊𝑊𝐷𝐷𝑒𝑒 = 𝑊𝑊 ∩ 𝐷𝐷𝑒𝑒 Equation 5-33 
 

𝑊𝑊𝑀𝑀𝑡𝑡 = 𝑊𝑊 ∩𝑀𝑀𝑡𝑡 Equation 5-34 
 

𝑊𝑊𝑃𝑃𝑡𝑡 = 𝑊𝑊∩ 𝑃𝑃𝑡𝑡 Equation 5-35 
 



PAGE 231 

𝑊𝑊𝑃𝑃𝑡𝑡 = 𝑊𝑊∩ 𝑃𝑃𝑡𝑡 Equation 5-36 
 

𝑊𝑊𝐹𝐹𝑡𝑡 = 𝑊𝑊 ∩ 𝐹𝐹𝑡𝑡 Equation 5-37 
 

A file is then produced and stored which contains all identified company words 
and phrases. 

𝐷𝐷𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡𝑠𝑠 𝐶𝐶𝑐𝑐𝑚𝑚𝑝𝑝𝑎𝑎𝑒𝑒𝐶𝐶 𝑊𝑊𝑐𝑐𝑒𝑒𝑑𝑑𝑠𝑠 𝑎𝑎𝑒𝑒𝑑𝑑 𝑃𝑃ℎ𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠 = 𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝 
𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝 = {𝑊𝑊𝐷𝐷𝑒𝑒 ,𝑊𝑊𝑀𝑀𝑡𝑡 ,𝑊𝑊𝑃𝑃𝑡𝑡 ,𝑊𝑊𝑃𝑃𝑇𝑇 ,𝑊𝑊𝐹𝐹𝑡𝑡}  Equation 5-38 

 

To use the company words and phrases as a means to compare two sets of 
documents (or integration tables) a comparison needs to be made and the 
resultant compare list found. The set description of this can be seen below. 

𝑇𝑇ℎ𝑒𝑒 𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝 𝑜𝑜𝑐𝑐𝑒𝑒 𝑑𝑑𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 𝐴𝐴 =  𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐴𝐴 Equation 5-39 
 

𝑇𝑇ℎ𝑒𝑒 𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝 𝑜𝑜𝑐𝑐𝑒𝑒 𝑑𝑑𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 𝐵𝐵 = 𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐵𝐵 Equation 5-40 
 

The final list of company specific words and phrases that are in both documents 
is shown below. 

𝐶𝐶𝑐𝑐𝑚𝑚𝑝𝑝𝑎𝑎𝑒𝑒𝐶𝐶 𝑤𝑤𝑐𝑐𝑒𝑒𝑑𝑑𝑠𝑠 𝑎𝑎𝑒𝑒𝑑𝑑 𝑝𝑝ℎ𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑒𝑒 𝑒𝑒𝑒𝑒 𝑉𝑉𝑐𝑐𝑡𝑡ℎ 𝑑𝑑𝑐𝑐𝑐𝑐𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡𝑠𝑠
=  𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐴𝐴𝐵𝐵 Equation 5-41 

 

𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐴𝐴𝐵𝐵 =  𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐴𝐴 ∩ 𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐵𝐵 Equation 5-42 
 

This is calculated by implementing 

𝐼𝐼𝑑𝑑𝑤𝑤𝑝𝑝𝐴𝐴𝐵𝐵 = {𝑊𝑊𝐷𝐷𝑒𝑒
𝐴𝐴 ∩𝑊𝑊𝐷𝐷𝑒𝑒

𝐵𝐵 ,𝑊𝑊𝑀𝑀𝑡𝑡
𝐴𝐴 ∩𝑊𝑊𝑀𝑀𝑡𝑡

𝐵𝐵 ,𝑊𝑊𝑃𝑃𝑡𝑡
𝐴𝐴 ∩𝑊𝑊𝑃𝑃𝑡𝑡

𝐵𝐵 ,𝑊𝑊𝑃𝑃𝑇𝑇
𝐴𝐴 ∩𝑊𝑊𝑃𝑃𝑇𝑇

𝐵𝐵 ,𝑊𝑊𝐹𝐹𝑡𝑡
𝐴𝐴 ∩𝑊𝑊𝐹𝐹𝑡𝑡

𝐵𝐵 }  Equation 5-43 
 

These algorithms were implemented for a number of functions. To achieve some 
of the steps other supporting functions had to be produced.  

5.2.10 STRUCTURE OF THE PROOF OF CONCEPT 
The structure of the final iteration of the POC was as initially intended by the 
architecture shown in Figure 5.5. This architecture was found to work well with the 
successive iterations of increased factuality, however it is to be noted that this 
structure would not scale well for a large project. If this POC was to be taken 
further a redesign would be recommended, however it served its purpose as a 
test base. The final structure of the program can be seen in the Figure 5.6 below.  



PAGE 232 

 

Figure 5.7 Final architecture of the POC. White boxes denote functions that were created for this 
project. Boxes shaded in grey are functions from existing libraries. 

5.2.11 FUNCTIONALITY OF PROOF OF CONCEPT FUNCTIONS  
The functions shown in Figure 5.6 implement the algorithms presented earlier in 
section 5.2.9 each function will be described and the functionality discussed. 

Top Level Script 
This is the section of code that calls the functions in a defined order. Each 
successive function can not only call on the raw text files but also the values from 
previous functions. This architecture has allowed for each additional function to 
tack on to its predecessors. This means however that removing any single 
function may cause other to cease to work as intended.   

Same_tag_identifyer_fn 
This function identifies words that are identical in two documents and gives the 
frequency of use of that word from both documents. 

This function conducts the following steps: 

1. Reads in two text files 
2. Calls the Text_characaristics_fn which gives tagged files 
3. The two sets of tagged words are searched to see if there are any words 

that are the same in both documents 
4. If any words are found to be present in both documents the frequency of 

their occurrence is found in both documents using 
Number_of_words_in_one_doc_in_both. 

 
This function allows for a very simple comparison of the text found in two 
documents. 

Number_of_words_in_one_doc_in_both 
To enable the number of times that a word appears in two documents this 
function was created. This function outputs the words that appear in both 
documents and the frequency that it occurs in both documents.  



PAGE 233 

Text_charactaristics 
There are characteristics that all textual documents have. This function returns a 
list of all of the words tagged, the number of times each tag has been assigned, 
the number of lines the document has, the number of words that the document 
has, the total number of tags that have been assigned, the percentage of the 
total that each tag has been assigned and the percentage of the whole that 
each word has been used. To accomplish this Tag_count_Read_textfile_andtag, 
percentage_of_tag, and standard Python functions were used. 

Read_Textfile_andtag 
Within NLP technologies there is the technique of tagging words (more on this 
can be found in section 5.2.9). This function uses the NLTK pos tag to tag all of the 
content of a text file. This function returns a list of words and their assigned tags, 
as well as a list of the content of the text file.  

Tag_count 
The frequency of the different possible tags is calculated by this function. The 
output of this function is a list of the words and tags, a list of each tag and how 
many times it is present in the list of words and tags. 

percentage_of_tag 
From a given list of tagged words this function calculates from the tags present 
the percentage that a designated tag appears in the list as well as if a word type 
tag is called the percentage of word tags. This function requires; the number of 
times a tag is present in a list, the total number of tags in the list, the key of the 
tag in question and the number of words in the text. 

Actual_mod_Dif 
A simple function that calculates the actual (modula) difference between two 
numbers, the numbers can be any numerical data type. The output is a floating 
point number. 

Bar_chart_compair_two_dics 
This function produces a bar chart of the percentage distribution of each 
possible tag present in two documents, on the same axis. This function uses 
numpy a Python tool for more advanced numerical analyses, part of which is 
graphing tools. The output of this function is a bar chart on a GUI that can be 
manipulated for closer visual inspection. For the program to continue this GUI has 
to be closed. 

Noun_verb_search_and_record 
This function calls two text files and identifies any sentences that have the same 
noun-verb pair in. The function used A1_Verb_Noun_sentence_pair_fn to locate 
the noun-verb sentences and compares the identified sentences to ascertain if 
they have or have not got the same noun-verb sentence pairs in. The function 
returns the pair of sentences that have the same noun and verb pair in, as a 
numerical value as to the number of identified noun-verb sentence pairs. Any 



PAGE 234 

identified noun-verb sentence pairs are saved in a text file that can be 
interrogated at a later date. 

A1_Verb_Noun_sentence_pair_fn 
A function that extracts any noun-verb sentences from a tagged document. The 
outputs of this function are pairs of identified sentence which have the same 
noun and verb in as well as a list of just the pair of nouns and verbs. The only input 
required is the file path of the text file to be analysed. This is so that this function 
can operate without running the text_charactaristics function.  

Comparing_docs_for_company_words 
This function orchestrates the searching for specific words from two documents. 
The function searches for words that are captured in Company_dictionary which 
include development environments, common modelling terms, common project 
terms, common project language, and common file types. The function then 
compares two documents to ascertain if they contain any of the same identified 
company words.  

Companey_dict 
This function holds the key words that are relevant to the environment for which 
the documents are emanating from. The categories that the words are stored in 
are; development environments, common modelling terms, common project 
terms, common project language, and common file types. From a given file path 
this function tags the file using read_textfile_and_tag and searches for the 
company words. The outputs of this function are lists of the identified words for 
the text file. 

common_words_from_lists 
The comparison of the two lists is conducted in this function. The two lists of 
identified words (which were present in the documents under test) are 
compared. The output is a list of any words that appear in both lists.  

5.2.12 WHERE NATURAL LANGUAGE PROCESSING FITS INTO THE 
PROPOSED PROCESSES 

Within the proposed methods there are a number of the process elements that 
have been identified as possibly being automated through use of NLP 
technologies. These process elements were highlighted in section 3 Figure 3.9. 
Although all of the identified processes elements involve natural language there 
are subtle differences between them. 

Complete integration tables 
This task involves the identification of types of words and their capture. There are 
specific pieces of information that have been identified as being critical for 
meaningful model and simulation integration all of which are captured in the 
integration tables(see section3.7.3). The information that is required for the tables 
can often be found in the model documentation. The perceived application of 
NLP technology in this case is for an application to pass over the model 



PAGE 235 

documentation and extract the relevant information. At present the manual 
completion of integration tables takes a considerable time.  

Compare integration tables 
Once the integration tables have been completed for the component simulation 
elements, comparisons are made between them to ascertain if the models are 
both semantically and syntactically compatible. This task involves inspection of 
the relevant integration tables and ascertaining if integration is meaningful and 
even possible. If there is more than a handful of integration tables this task can 
take a considerable amount of time and effort. The content of the integration 
tables is almost wholly natural language.  

There is the potential to have many possible models that are stored in a 
repository which all have their integration information captures in integration 
tables. If such a repository existed then being able to automate the process to 
ascertain which stored models are capable of being integrated has clear 
commercial benefit. Such a capability would allow for non-domain experts to 
select models either compatible with the models from their domain, or for those 
investigating the system form a high level of abstraction, to quickly assemble 
candidate simulation element for all areas of a potential design.  

Does the model documentation match a section of simulation requirements?  
Assessing if a potential model complies with a set of requirements would be of 
clear potential benefit. If the model and requirements are clearly documented 
using natural language there is the potential for NLP to aid in the comparison. 
There are examples of off-the-shelf tools that can search for semantically similar 
requirements within a requirements set. This capability could also then be used to 
asses for similarities between a requirements set and the documentation of a 
simulation. If there were to be a repository of models with supporting 
documentation it would be possible with such an NLP application to pass over 
the library and recommend potential existing models as solutions to the design 
being investigated. 

 
  



PAGE 236 

TESTING THE PROOF OF CONCEPT 
The NLP POC is to be tested using the work that was conducted for the case 
studies (See section 4 for more information regarding the case studies). The POC 
is to be compared to the manual processes that were conducted. These tests 
form the bases of a verification of the POC and hence a reference point is 
required (as presented in section 3.5.2). In this case the reference point is to be 
against the manual work that has been conducted in the case studies. To 
remove as much bias as possible within the confines of this project, a number of 
steps have been taken, as indicated below. 

• The code for the POC was written before any of the manual work was 
conducted. 

• All parameters and dictionaries that form part of the application were set 
up with the simulation domain in mind but they were not tailored 
specifically for any singular document. The subject of the case studies was 
not finalised until after the POC was finished. 

• Once the manual work was completed it remained unchanged 
regardless of the results of the NLP POC. 

• The textual documentation that was used for the manual process and 
POC are exactly the same including words layout and formatting. 

• The results of the POC are reported as they are outputted from the 
application in their raw form. 

Due to this only being a POC it is not expected that the output will be 
comparable to the manual operations. However it is expected that an indication 
of suitability will be found. The output of these tests will then be used to make 
recommendations regarding the use of NLP technologies within this problem 
domain. 

The raw results of all of the testing can be found in the section 9.5 as the program 
is a Python application that outputs to the command line, produces graphs, and 
writes to file, all of which have been copied and placed in this document.  



PAGE 237 

5.3 PROOF OF CONCEPT TESTING AND CASE STUDY ONE  
The squash court case study that was used as part of the case study chapter 
section 4.2 is a fully worked example and has all of the information that is 
required by not only the proposed processes but also for the NLP POC Testing. 
Each of the models has a ‘.txt’ file that has all of the relevant information 
regarding many aspects of the component models. There is also a ‘.txt’ file that 
contains all of the textual requirements for the intended simulation. 

There are two parts of the proposed NLP POC case study one test. The first stage 
is the comparison between the model documentation and the simulation 
requirements. This is to ascertain if NLP could be used to select potential 
components from a repository. The second stage of the test is to compare the 
model documentation of each of the models with the documentation of every 
other selected model. This is to assess if NLP could detect if models and 
simulations are semantically similar enough for meaningful integration to be 
possible.  

From the investigation into NLP technology and through the development of the 
NLP POC the direct comparison of two texts looking for specific words that 
appear in both texts, which have been written in a set format such as the 
integration tables, could easily be achieved and hence it has not been 
investigated further by this research. 

5.3.1 FINDINGS FROM TEST ONE  
This test is the comparison between the requirements document and the various 
potential model documentation. This test takes the form of three test cases. Input 
A is the requirements document and input B is the specific potential model 
documentation for that test case. The structure of the testing inputs is captured in 
Table 5.7 below.  

Analysis 
NB INPUT A INPUT B 

1 Requirements_For_Case_Study_One_Sq
uash_Ball_Moving_Around_A_Court.txt 

Documentation_of_a_Particle_Moving_in
_Free_Space.txt 

2 Requirements_For_Case_Study_One_Sq
uash_Ball_Moving_Around_A_Court.txt 

Documentation_of_Energy_transfer_mod
el.txt 

3 Requirements_For_Case_Study_One_Sq
uash_Ball_Moving_Around_A_Court.txt 

Documentation_of_Squash_Court_in_or_
Out_Model.txt 

Table 5.6: The inputs for case study one analysis test cases one to three. 

Across the three test cases there were similarities regarding the percentages of 
tags and their distribution. Across the first three analyses Noun Common was the 
highest percentage tag, followed by determiner and preposition. Interestingly 
the common noun tag is a higher percentage in the in the model 
documentation than the requirements document despite this being the most 
common tag in both the requirements documents and model documentation, 
all other tags vary with either the model documentation taking a higher 
percentage. It is possible that the percentages of the tags in documentation 



PAGE 238 

may be a way of identifying the general style, hence suitability for analysis for 
potential model integration. However the tag percentage alone is not a 
meaningful way of assessing the potential for meaningful model integration or 
even requirements compliance. 

The company specific modelling term section of the application did not extract 
a significant amount of usable data. This may be due to the dictionary used not 
matching the vocabulary used in the documentation. This potential for using this 
as a method for capturing the information necessary for the integration tables 
would have to be altered to not look at the common company specific words 
but rather just the company specific words for that document. 

The words that appear in both documents have proved to be an interesting part 
of the experiment. It was originally thought that the company specific word 
search would generate a significant amount of useful information, whereas a 
search of words that appear in both documents proved to provide more 
indication as to whether the documents pertain to the same information. 
However the meaning of the words that appear in both documents still requires 
an inductive step to ascertain if they are meaningful or not. For example, the 
noun common list in analysis one contains [ ‘space’ , ’date’ , ’time’ , ’file’ , ’ball’] 
to establish if the documents relate to similar information the ‘ball’, and ‘space’ 
could be of potential interest whereas ‘date’, ‘time’, and ‘file’ may be of less 
interest. This pattern of some identified commonly occurring words being of more 
use than others is repeated across the analysis. 

Across the first three analyses the number of identified noun-verb sentences 
varies. Each of the identified noun-verb phrase pairs was then manually assessed 
to verify if the phrase pair exists and is meaningful. An identification that is 
deemed meaningful is a pair that ether shares the same semantic information or 
the identified pair would benefit engineers attempting to understand if the 
integration would be meaningful. It became apparent that although two 
sentences contain the same noun-verb combination it does not necessarily 
mean that they relate to the same semantic information. This information was 
captures in Table 5.8 below. 

Analysis 
NB 

NB Noun-
verb 

Sentences 

NB Meaningful 
Noun-verb 

Pairs 

NB Non 
Meaningful 

Noun-verb Pairs 

Percentage of 
Meaningful 
Noun-verb 

Pairs 
1 10 6 4 60% 
2 8 4 4 50% 
3 9 2 7 22.22% 

Table 5.7: Number of identified noun-verb phrases with a breakdown as to if the match is 
meaningful for analysis one to three. 

From the inspection of Table 5.8 it is clear to see that not all of the identified 
noun-verb phrases were meaningful in some case, such as analysis three; there 
were in fact more non meaningful noun-verb pairs than meaningful pairs. From 



PAGE 239 

these results it is worth noting that the length of the documents is relatively short. 
For comparison see Table 5.8 for percentages and Table 5.9 for the length of the 
documents. 

 Document Name NB of 
words 

NB OF 
LINES 

Requirements_For_Case_Study_One_Squash_Ball_Moving_Around_A_Court.txt 217 20 
Documentation_of_a_Particle_Moving_in_Free_Space.txt 264 53 

Documentation_of_Energy_transfer_model.txt 204 42 
Documentation_of_Squash_Court_in_or_Out_Model.txt 409 96 

Table 5.8: Documentation basic characteristics including number of words and the number of lines. 

It is of interest that not all of the documents are the same length. The first three 
documents are around a similar number of words and lines whereas the fourth 
document is significantly longer in both words and number of lines. The tables 
above show that comparing the requirements document to longer documents 
does not necessarily mean that the number of sentences with the same noun 
and verbs in will increase at the same rate.  

5.3.2 FINDINGS FROM TEST TWO  
The second stage of this test involves comparing the three potential model 
documentation documents with each other directly. The tests were conducted 
in the order shown in Table 5.10. With the analysis conducted in this way it insures 
that the documentation for each model is compared with all other models 
documentation. 

Analysis 
NB INPUT A INPUT B 

4 Documentation_of_a_Particle_Moving
_in_Free_Space.txt 

Documentation_of_Energy_transfer_mo
del.txt 

5 Documentation_of_a_Particle_Moving
_in_Free_Space.txt 

Documentation_of_Squash_Court_in_or_
Out_Model.txt 

6 Documentation_of_Energy_transfer_m
odel.txt 

Documentation_of_Squash_Court_in_or_
Out_Model.txt 

Table 5.9: Analysis inputs to the NLP POC. 

The outputs of the second stage of the testing produced some interesting results 
regarding the tag percentages when observations are made between the 
documents. With a change in the types of documents that are being analysed 
there would presumably be a noticeable difference in the comparison 
percentages. However the bar charts that are produced follow the similar 
distribution of percentages to the first three analyses, this may be an indication as 
to the similarity of the style and overall content of the documents being analysed. 
However on closer inspection the noun common percentages are far closer 
together across tests 4,5, and 6 than in 1,2 and 3. This is to be expected as the 
models are of similar phenomena and all of the documentation name explicit 
objects and actions rather than in the requirements document where abstract 
concepts are discussed. 



PAGE 240 

The company specific common words searching function was no more 
successful in the second set of three tests than in the first three tests. The words 
‘inputs’, ’outputs’ and ‘LabVIEW’ were captured. This is not a useable or 
meaningful output from the analysis that would not be captured from a cursory 
glance at the documentation or the files that form the model and its 
documentation. 

The numbers and quality of the identified noun-verb phrases has been assessed. 
The results of the assessment can be seen in Table 5.11 below. 

Analysis 
NB 

NB Noun-
verb 

Sentences 

NB Meaningful 
Noun-verb 

Pairs 

NB Non 
Meaningful 

Noun-verb Pairs 

Percentage of 
Meaningful 
Noun-verb 

Pairs 
4 17  11 5 65% 
5 18 10                                                         8 55.56% 
6 15  9 6 60% 

Table 5.10: Number of identified noun-verb phrases with a breakdown as to if the match is 
meaningful or not for analysis four to six. 

The number of identified similar noun-verb phrases is higher across the second set 
of analyses when compared to the first, as to is the percentage of meaningful 
noun-verb pairs. This may be due not only to the documents being semantically 
similar due to the information held within them but also the writing style being 
similar as all of the documents being model documentation, rather than 
comparing documentation to requirements. However there are more meaningful 
noun-verb pairs that were identified. This alludes to the fact that it may be more 
of a semantically similar rather than just being similar in style. The identifications 
that were made in the second test would be of genuine use to an engineer 
wanting to know if there is a potential for meaningful integration. 

 

 

  



PAGE 241 

5.4 PROOF OF CONCEPT TESTING AND CASE STUDY TWO 
For the second NLP case study the automotive example that was used in the 
case study section 4.3 will be used. Although this automotive case study was not 
a full example of the end to end proposed process, it does have sufficient 
documentation for the stage of the proposed methods that would most benefit 
from the use of NLP technologies, that of searching for models that comply with 
specified requirements.  

The six tests that will form the bases of NLP testing in this case study are 
comparisons between the simulation requirements and the documentation that 
accompanied the potential models. The inputs to the POC application can be 
seen in Table 5.12 below. 

Analysis 
NB INPUT A INPUT B 

1 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt 

Modeling_an_Anti_Lock_Braking_System_
Matlab_Documentation.txt 

2 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt  Vehicle_Body.txt 

3 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt Power_Assisted_Steering_Mechanism.txt 

4 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt 

Simple_2D_kinematic_vehicle_steering_mo
del_and_animation.txt 

5 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt Tyre_Simple.txt 

6 Requirements_for_a_Combined_Braki
ng_and_Steering_System.txt Tyre_Magic_Formula.txt 

Table 5.11: Inputs to the NLP POC for the NLP testing case study two. 

The tag percentages graphs that were produced from analyses one to six 
produced some interesting results. The tag with the highest percentage across all 
of the documents is noun common. However the next two highest tag 
percentages vary. However the noun common and determiner tags are often in 
the top three. This may be an indicator as to all of the documentation that is 
produced relating to the model documentation is of a similar style.  

The identified company words proved to be largely ineffectual at extracting 
substantial amounts of meaningful information from the documentation. The one 
reoccurring word that it was capable of locating was the development 
environment. Whereas it repeatedly recorded ‘C’ as a language in use as it was 
present as a single letter used as part of an alphabetic list to denote the third 
entry. This highlights one of the issues with using rule-based analysis.  

The words that appear in both documents gave an interesting insight into the 
documents under test. The common nouns that were extracted often gave an 
indication as to whether the two documents pertained to similar systems. These 
on their own could not be used to categorically say if the models were 
compliant to the requirements, however it could be used as part of an 
assessment. 



PAGE 242 

The number of noun-verb sentence pairs that were identified across the six test 
cases varies as does the quality and relevance of the sentence pairs captured. 
The percentage of meaningful noun-verb pairs was calculated to enable 
meaningful comparisons relating to the quality of the identified noun-verb pairs 
to be made between the six sets of analyses. 

Analysis 
NB 

NB Noun-
verb 

Sentences 

NB Meaningful 
Noun-verb 

Pairs 

NB Non 
Meaningful 

Noun-verb Pairs 

Percentage of 
Meaningful 
Noun-verb 

Pairs 
1 12 8 3 67% 
2 5 1 4 20% 
3 3 1 2 33.33% 
4 9 3 6 33.33% 
5 7 2 5 28.57% 
6 9 2 7 22.22% 

Table 5.12: NLP case study two test results the number of identified noun-verb phrases with a 
breakdown as to if the match is meaningful or not. 

The highest number of noun-verb sentences captured with the highest 
proportional number of meaningful noun-verb pair sets was analysis one. It is of 
interest to compare this to the manual assessment of the model documentation 
against the requirements that was conducted in section 4.3.21.  

The ‘modeling an Anti-Lock Braking System’ model scored as one of the more 
compliant models on the RAG assessment but not the most however on closer 
inspection, it is in fact the model that is closest to intended subject of the 
simulation. Thence the results for analysis one in Table 5.13 shows promises for NLP 
in this domain. The results of the ‘vehicle_body’ are of interest as this model 
scored the lowest in the manual RAG assessment in Table 4.28 with the highest 
number of Red flags, and it also scored the lowest in the Table 5.13. This is a 
constructive result for the POC.  

A point of interest is the performance of the tyre (magic Formula) model in this 
test as it was identified in the proposed process as being of potential use. 
However it was more of a secondary component system rather than one of the 
identified sub-systems, hence it scored relatively well on the RAG assessment 
Table 5.13 with only amber and green. However it scored the second lowest 
percentage of meaningful noun-verb pairs. This may be due to the inductive 
step that was taken in the manual process by which the engineer recognised a 
need in the requirements that was not explicitly stated. The NLP POC was only 
comparing what was in the requirements document with the models’ 
documentation meaning that there would have not been the language as it was 
implied rather than explicitly stated. This issue of finding useful components that 
were implied rather than explicitly stated is unlikely to be solved with rule-based 
NLP technologies.  



PAGE 243 

5.4.1 RESULTS FROM PROOF OF CONCEPT TESTING  
The testing of the NLP POC included two case studies from different domains, 
regarding different systems, and the documents used for testing were written by 
different authors. The NLP POC functioned and generated some interesting 
results. 

Looking at the distribution of tags of the documents gave an insight into the 
differences between requirements documents and model documentation. It also 
demonstrated the effectiveness of off the shelf taggers. The tagging technology 
is such that some of the tags can be correctly identified even if the word is 
unknown to the tagger. It is capable of this by using the position of the word in 
the sentence and its surrounding tags. The results were that the distribution of the 
tags gave an insight into the percentages of nouns and verbs that were used. 
The high use of common nouns throughout the testing indicates the general 
nature of the documents. However the use of tag percentages is not sufficient to 
ascertain if the models that the documents refer to are compatible.  

The identification of common company specific words and phrases requires 
significant work to be of any real value. What were thought to be general 
modelling terms were not general or extensive enough to capture the modelling 
terms that were used in the model or requirements documents. However the 
capability of being able to identify specific words and phrases from text has 
been established. It is proposed that this could still be a viable method if the 
dictionaries that are used to set the words to be found were tuned further to the 
application and organisation to which it is operating within. This could be of real 
use in the comparison of integration tables as it contains a restricted vocabulary 
and sentence structure which could be of potential issue to tagging 
technologies. 

By comparing common words that appeared in the two documents insights 
were gained as to how using such a method can indicate if the document 
pertains to the same or similar information. In the two case studies it was the 
proper and common nouns that were the primary sources of this information. It 
also became apparent that not all of the tags were of use at this stage. For 
instance the parenthesis tag set contained a number of parentheses without any 
other information; the same is the case for the punctuation that was captured. It 
is proposed that this would be a useable tool for comparing strict sets of data 
such as the integration tables. 

The noun-verb sentence pair testing produced some interesting results. It 
revealed that applying the systems engineering concept of noun-verb sentence 
pair matching is not as effective as it may well first seem. This may be due to the 
fact that the documents fully comply with standardised methods, but it is also 
recognised that the majority of existing model and simulation documentation do 
not comply, making this result more relevant for this problem space. By 
automating the capture of sentences with noun-verb pairs does not guarantee 



PAGE 244 

that they are referring to nouns and verbs that are of interest or relevant to the 
task at hand. However the results do indicate that it is possible to at least use it as 
a means of ascertaining if the documents pertain to the same system, and to 
some extent how compliant the model is with a set of requirements. A semantic 
test of the results of the logical test could potentially mitigate this issue to some 
extent however this would require further research.  

When comparing the results of these two case study tests with the initial remit of 
the application of NLP technology, there are significant indications that this POC 
demonstrates potential. With further development it could be of real use in the 
problem space as expressed in section 1.3. It is foreseen that NLP technology with 
further development could be capable of not only assessing if the 
documentation of a model could be of use when comparing it to a requirements 
document, but then also handle the task of mining the data necessary to 
complete the integration tables. It is also perceived that it could be made to 
ascertain if there is potential to meaningfully integrate two models based of the 
completed integration tables. The results of which could be fed back to an 
engineer who could evaluate if it is worth time to investigate further and 
complete the necessary integration. Such a tool would go a long way to simplify 
the integration of existing models and simulations to produce a full system test. 

  



PAGE 245 

5.5 SUMMARY  
In the work that has been conducted on the systems processes it was proposed 
that NLP could be of potential benefit in reducing the time it takes to complete 
particular process elements. This chapter documents the investigation and 
eventual POC test of NLP technology.  

The seemingly simple task of getting a computer to understand text has been 
shown to be far from simple and indeed a well-established research field in its 
own right. With the current limited capabilities of NLP it has still been successfully 
implemented across multiple domains. Specific effort was directed at finding 
instances where it has been used within engineering industries and found to be 
of benefit.  

The underlying methods that the current NLP tools adopt are discussed. The 
strengths and weaknesses of logical and statistical methods are highlighted. It 
was found that within the most recent NLP literature advocates of both methods 
still remain. There are those within the literature who promote the use of formal, 
prescriptive, or even limited diction languages as a means of reducing ambiguity 
and simplifying the NLP task. This has its obvious advantages but due to the 
defined problem space is unfortunately not a viable solution in this instance. From 
research that has been conducted regarding different domains and their use of 
the English language it has been proposed that each domain has its own 
interpretation of words, grammar, and syntax. The effects of these differing 
interpretations have resulted in situation that makes the NLP task significantly 
more challenging. 

Currently available tools and packages for the purpose of developing NLP tools 
are identified and their capabilities assessed. The capabilities of the available 
tools and libraries indicated that there is the real possibility for individuals to 
develop their own NLP tools and applications. 

From the information gathered regarding the current state of NLP a POC was 
developed to test the possibility and potential benefits of using NLP tools within 
the identified problem space. 

The proposed systems framework (see section 3.2.4) was used and a customised 
spiral framework approach implemented. Requirements were captured and 
used as the basis for architecture and a design. This design was verified and 
implemented. After each new function was created the output behaviour was 
verified manually using developmental test files. The completed application was 
tested using the text files that were used as part of the case studies used in 
section 4.  

The current limitations of computer science and the lack of a general purpose 
artificial intelligence, means that current NLP applications, when tasked with 
finding similar meaning phrases, do not have the same ability as people. With this 



PAGE 246 

application of NLP technology, the result is that the application may be much 
quicker than engineers are at finding the majority of models and simulations that 
comply with a given set of requirements. However, the application is unlikely to 
capture them all. This then becomes a trade-off that an organisation would have 
to evaluate as to what will be cheaper in the long run. Engineers spending time 
looking through existing models and simulations documentation, for the chance 
that some will be useable; or running a NLP application, in the knowledge that 
some work that duplicates an existing model or simulation may have to be 
carried out. 

The results of this testing indicate a strong potential for this technology to be of 
use to reduce the time it takes to conduct the proposed processes in section 3. 

 

  



PAGE 247 

 

 

 

 

6 DISCUSSION 
  



PAGE 248 

  



PAGE 249 

6.1 INTRODUCTION  
When a model or simulation is created it contains particular aspects of 
knowledge from those who create it. The effects of this knowledge encapsulated 
by models are discussed as well as the challenges it brings to the integration task. 
A further issue discussed includes data storage of potential models. Ontologies 
were often given as the technological means by which an information repository 
could be implemented. Taking into consideration the deeper philosophical issues 
regarding model and simulation integration the suitability and practicality of 
using ontologies for the identified problem space is discussed. 

With any new technology for engineering, consideration has to be given to the 
ways in which the current business practice works in that domain. When 
investigating engineering companies involved in modelling and simulation 
integration there are in fact deeper reasons why integration is currently being 
conducted. Some of these key challenges are discussed specifically with how 
they affect the integration task. 

Automation has been attempted in many aspects of human endeavour, so it 
follows that the possibilities and current technological barriers to the automation 
of engineering tasks are discussed.  

The potential paradigm shift necessary to capitalise on the potential 
implementation of model and simulation integration has been theorised. This is 
due to current standard engineering practices may not be in a position to 
accept virtual full system testing with current processes. The reason for this and 
possible ways to overcome it are discussed.  

    



PAGE 250 

6.2 PHILOSOPHICAL ASPECTS  
The integration of models and simulations raise many issues, only some of which 
have been captured in this work (see section 2). An issue so far not discussed, yet 
important for meaningful integration, is the decision-making of the modellers 
themselves.  

6.2.1 PHILOSOPHICAL ARGUMENT OF HIGH FIDELITY SIMULATION INTEGRATION 
Recent increases in computational power as well as improvements in 
computational methods, led to the possibility of the concept of high fidelity 
modelling and simulation to test complete complex engineering designs virtually. 
This has led to some optimistic statements in the literature such as “High-fidelity 
simulations of real-world systems, are truly transforming computational science 
into a fully predictive science.” [69]. If this is the case then the future of 
engineering design will consist of an ever greater number of high fidelity models 
and simulations. In the next ten to fifteen years it is foreseen that high fidelity 
models with a suitable human interface will allow the virtual testing of a new 
product with stakeholders before physical prototyping is used. This testing will also 
be for unknown design characteristics where there are no existing experimental 
data [69]. This promises even more to engineers, for such a simulator would allow 
for unknown interactions to become known and analysed, further reducing the 
need for costly iterations of the physical prototype. This approach in essence 
allows for much more information to be gained from using simulations when 
compared to using low fidelity simulations in isolation. 

6.2.2 REDUCTIONISM  
The premise of reductionist thinking is that any difficult or complex system can be 
broken down into simpler less complex sub-systems or constituent parts. The 
behaviour of these sub-systems and elemental parts are considered to be 
understandable to the extent that they can be modelled. Often the reductionist 
approach has been explained in terms of divide and conquer, with the 
assumptions that decomposing a problem down enough times will lead to a 
point where the behaviour of the smaller parts is known and can be traced [9]. In 
theory this approach can be iterated in a recursive manner to the extent where 
the result is a model which only contains elements which cannot be broken 
down any further (referred to as an atomic model).  

If the reductionist approach is correct then it would be possible to integrate the 
elemental models into sub-system models, and in turn work up through the 
model-based hierarchy until such a point where a full system model is created. 
Such a model could potentially be of a high fidelity to a pre-determined 
accuracy and mimic many levels of understanding. 

  



PAGE 251 

However the reductionism concept makes many assumptions which include: 

• It is possible to break down the complex situation into more simple 
parts 

• The properties of the whole can be explained in terms of the 
properties of the component parts [117] 

• When a system is decomposed into sub-systems none of the 
behaviours of the system are lost 

• Each level can be understood by those involved with the modelling 
and simulation 

• The behaviour at each of the levels can be modelled at a required 
accuracy and fidelity  

• There are methods by which the component models can be 
meaningfully integrated together into one model or simulation 

• A decomposed set of component parts can be composed 
together to form a representation of the whole. 

Some of these assumptions may not be valid in all situations and this poses a 
problem which has been known for some time. In the early 1990s, papers with 
bold statements such as “…the whole being different from the sum of all the 
parts (failure of reductionism)…” [118] can be found. Such comments are not 
uncommon and continue to appear from time to time. Hence it is probable that 
some of these assumptions may not be valid in the problem space defined in 
section 1.3. For instance, the models to be integrated have been composed 
from a bottom up approach based on understanding of elements rather than 
decomposed from the desired (or existing) behaviour of the system. The impact 
of this means that the integration of the existing models will not be as 
straightforward as the reductionist approach dictates when working down from a 
complex system. For this reason there is likely to be obstacles as a result of the 
assumptions that will only become apparent when they are reached by those 
who are integrating the models.  

6.2.3 THE NEED FOR MODEL AND SIMULATION VALIDATION  
Models and simulations are created based on conceptual understanding of the 
phenomena that are being represented. This process often involves the use of 
the modeller’s own mental models of the phenomena, and how it is expected to 
behave when exposed to specific environmental conditions. As our collective 
understanding of the way in which the world works around us grows, so to in turn 
have our abilities to represent it in the forms of models and simulations. In the 
well-known words of Sir Isaac Newton “We are standing on the shoulders of 
giants”. With the information explosion that has happened we now have access 
to information like never before. One consequence of this is that models and 
simulations that are currently being used in industry can represent systems with a 
level of accuracy that have never been achieved before. However despite all of 
this knowledge and understanding there is still a disparity between the real world 
phenomena and the models and simulations that are being used to represent it. 
There is a common consensus across the more philosophical literature that 



PAGE 252 

although we think we know a lot about the way the world works around us, we 
do at present not know how everything works and interacts. 

There is the argument that if a system is modelled with absolute accuracy the 
model will become the intended system being developed rather than a 
representation of that system. This argument is somewhat flippantly referred to in 
some documents, however this makes the assumption that it is impossible for us 
to model or simulate a phenomena and its environment close enough to 
actually predict the behaviour with an incontestable accuracy. This is an enticing 
idea, however it does have the potential to hinder those who may otherwise 
strive to produce ever more accurate modelling and simulation techniques. In 
practice however this argument can be considered academic as we just do not 
have such an intimate understanding of phenomena to allow for this level of 
modelling to be achieved. A quote that is often given when discussing such 
matters is one by G.E.P. Box which states “All models are wrong but some are 
useful” [119]. This is where there is a notable difference between scientific and 
engineering literature. The scientific literature is focused around furthering 
knowledge and being ever more correct, accurate, and precise; whereas the 
engineering literature is far more focused on getting a product out faster and in 
a more cost effective manner irrespective of how correct the modelling may or 
may not have been during the development. For this reason many engineers 
know that the models and simulations are technically wrong, or will not be a 
complete picture of what will happen in practice, however they are good 
enough to get the job done. 

Due to this lack of complete understanding (whether this is recognised or 
otherwise) there are common tactics that are employed within engineering to 
model a potential design before physical prototyping takes place.  

Such methods include: 

• Assuming that a large number of identifiable factors are considered 
negligible (idealisation) 

• Using abstraction to take complex situations and make them easier to 
comprehend 

• Physical prototypes are built and measurements are taken. 

The resultant effect of the uses of any or all of these approaches means that 
there will be an inevitable disconnect between the model or simulation and the 
behaviour of the phenomena being represented. Assumptions and implications 
will be present in the perception of the modeller and hence their work is a 
manifestation directly affected by their assumptions. This raises the issues of how 
different from the phenomena can the model or simulation be and still be of use. 
How to understand the differences between the model and reality caused by 
the modellers assumptions also becomes a challenge. This is where the validation 



PAGE 253 

of modelling fits into the modelling and simulation process. Validation of the 
model or simulation which can be described as “process of determining the 
degree to which a calculation method is an accurate representation of the real 
world from the perspective of the intended uses of the calculation method” [120]. 
This often takes the form of a physical prototype for final verification and 
validation in the system environment.  

6.2.4 CHALLENGES WITH KNOWNS AND UNKNOWNS 
If the accepted principles of systems engineering are used during a project one 
of the first stages is to produce a set of requirements. Requirements often contain 
a spectrum with fully understandable known parts at one end to completely 
unknown aspects that will only become apparent in the final products behaviour 
in its intended environment. Within the literature there are those who see 
requirements engineering as somewhat of an art form, as it is concerned with the 
discovery of the previously unknown in context of a design, despite abstraction, 
uncertainty and ambiguity [121]. This shows that there is an acceptance of the 
complexity of the system being designed and the impact on requirements. The 
result of which is that complete understanding is a significant challenge and is 
often considered impossible and indeed in many cases not needed. This can 
lead to aspects of a design being in the requirements without knowledge of 
whether it is possible or not. 

A system and its components will have attributes, operations and interactions. 
Many of these are known to the modeller and are quantifiable; these are 
referred in this work as ‘known knowns’. Though this is not the case for all 
attributes, operations and interactions, as there are occasions when there are 
unknowns that are not derivable from the model or simulation. In this case they 
are considered to be ‘known unknowns’. There are ways that modellers have to 
find out ‘known unknowns’. They use computation, or many require obtaining the 
data from elsewhere (physical testing), making an educated estimate of the 
appropriate value, or essentially bypassing the unknown aspect by developing 
the model to account for the known uncertainty. In some cases it may also just 
be preferable to state the unknown as a limitation of the model or simulation. 

There can also be a situation where the modeller is unaware of attributes, 
operations or interactions; however there is information available to quantify it. 
This is considered to be an ‘unknown known’. These can be identified if a rigorous 
verification process is undertaken, then it becomes a case of restructuring the 
model to account for the overlooked ‘unknown known’. 

The most significant challenge to the uncovering of unexpected behaviour of a 
whole system is that of the ‘unknown unknowns’. This is where the modeller is 
unaware of the attributes, operations, or interactions. This means that the 
resultant model may not accurately represent the behaviour of the system as a 
whole [18]. This represents a significant challenge for any modeller. It is a 
requirement for modellers to become well versed in the domain they are 



PAGE 254 

modelling and understand it to a high extent. This highlights the need for specific 
domain experts with modelling capabilities. 

Attempts have been made as to how to represent this spectrum of knowing. One 
such attempt uses a graphical representation with axis for the types of knowns 
and points plotted [122]. This representation also takes into consideration the 
aspect of the number of actors involved in the process. Each actor’s perception 
is captured in a single frame. These representations may not in themselves be of 
practical use, but they do illustrate the problem of what is known and by whom. 

As systems are becoming ever more complex, it quickly becomes difficult for one 
person to grasp an understanding of the whole system – this is especially so when 
the concept is as a result of a vast number of integrated models that are based 
on the work of many people. With many modellers involved there may be 
attributes, operations and interactions that are outside the individual model 
components. If the models are developed in isolation without the intention of 
ever running in an integrated fashion, the likelihood of there being unknown 
unknowns in the resultant model is high.  

6.2.5 IMPACTS OF HARDWARE AND HUMAN IN THE LOOP TESTING 
There are those who have incorporated partial physical prototyping with 
modelling and simulation. By bringing in the physical components and subjecting 
them to suitable testing allows for sections of the final system to be tested before 
full system assembly. There are sometimes difficulties with predicting the 
behaviour of particular interactions from first principles and as such physical 
prototypes are made to test how they react with their intended environment. By 
using Hardware In the Loop (HIL) testing these unknown or difficult component 
behaviours can be integrated into a simulation to ascertain how they will react 
with the rest of the system. In essence increasing the fidelity of the model and 
increasing the resultant accuracy of the outputs. Figure 6.1 is a simplification of 
the general component parts of a HIL test. The figure represents software 
simulations that produce inputs to the hardware by way of a software-hardware 
interface. Dependent on the hardware and test in question, signals may be 
returned by the hardware itself and or by way of sensors to the software 
components. Often the software part of the HIL test represents more than one 
single component and may also have a models or simulation integration aspect. 
The HIL approach allows for portions of the system to be implemented and 
simulations to bridge the gaps between and around the physical components. 



PAGE 255 

 

Figure 6.1: Hardware in the Loop Simulation parts 

Within the automotive industry HIL testing has developed beyond the point 
where single components are tested, and now include networks of components 
that can be tested [123]. By testing the networks of components before they are 
assembled as part of a full prototype allows for the interactions between them to 
be tested earlier on in the product life cycle. There are instances within the 
literature where HIL testing and model-based design have been combined into a 
single process [30]. 

Human In The Loop (HITL) is similar to HIL testing but where in HIL there are 
physical components, HITL also has a person or persons as part of the test. The 
Figure 6.2 below shows a simplified representation of the component parts of a 
HITL test. HITL comprises physical components as well as a people. This is shown in 
the Figure 6.2 below with the interactions between the human-machine 
interface, the human, and sensors. Human in the loop is where a potential user 
interacts with a simulation of the system being developed. Often the intent is for 
the simulation to run at the same rate as the real system it is designed to mimic. 

 

Figure 6.2: Human in the Loop component parts 

The purpose of such HITL tests are to ascertain if the human-machine interface is 
acceptable as well as if the system reacts in the intended way. From a 
philosophical perspective the involvement of a person in the simulation brings the 



PAGE 256 

simulation environment closer to the systems operational environment. By 
bringing the environments closer together allows for more unknowns to be 
incorporated into the testing of the potential design. HITL has been adopted as a 
method of testing in the field of ergonomics and is considered to be an effect 
way of asserting the suitability of a design when considering the human interface 
[124]. 

HITL is a current hot topic within the engineering academic literature with it 
making the editorial of IEEE transactions on automation and engineering [125] 
where HITL is identified as being a key tool to be used for the investigation of 
automation. This is a good indication that HITL will gain more popularity in the 
future as a means of testing the design of systems, as well as how people behave 
under new operating conditions. 

HIL and HITL are both attempts at making simulations closer to the system being 
emulated by bringing actual components of the system into the simulation. This is 
a method that has been demonstrated to give valuable results and looks to 
continue to be used in industry. 

6.2.6 SYSTEM CREATORS, END USERS, AND SYSTEM CUSTOMERS 
In an engineering application it is rare for a system to be requested, created, 
and used by the same group of individuals. In many engineering projects these 
are three different groups that are involved throughout the system lifecycle. 
There are also many other categories of people who interact with the life cycle 
of a system. However for the purpose of discussing the philosophical aspects of 
the problem space, these three categories will suffice and are shown in Figure 6.3 
below. In this context the ‘System Creator’ refers to those who design and build 
the system, the ‘End Users‘ refer to those who will be interacting with the system, 
and ‘System Customers’ are those who are buying or paying for the system to be 
created.  



PAGE 257 

 

Figure 6.3 The intersections between the three groups involved with the development of a system; 
customers, creator, and end users. 

In Figure 6.3 above the letters A,B,C, and D reflect the overlapping areas of 
concern between the groups of individuals. General themes that appear across 
the literature will be discussed using the three categories and the four identified 
overlapping areas. The most common challenge that is discussed is that of the 
communication necessary between ‘system creators’ and ‘system customers’. 
This is represented by the letter B. The HITL testing demonstrates that the overlap 
A is of concern in many engineering projects. The interaction C represents 
situations where those commissioning the system may only be a sub-set of those 
who will be using the system. As long as the ‘systems creators’ have the 
opportunity to interact with the ‘system users’ importance of C is reduced. Ideally 
the area D is where at least one closely working team in the project would sit 
ensuring that the concerns of all involved are considered. Which all points 
towards the underlying issue which does not generally get mentioned in the 
literature which is that the people building the system are often not the ones who 
will be using or financing the creation of the system. For all of the parties to be 
happy with the end design the viewpoints of the three groups also need to align. 
Many of the systems engineering tools and approaches are concerned with 
positioning the project (or at least some of the engineers) in the area that is 
shown in D.  

6.2.7 VIRTUAL SIMULATION VS PHYSICAL PROTOTYPE  
There are those who are pushing towards simulation and prototyping to be fully 
virtual. This is a process that would model and simulate the system designed, and 
the first instantiated instance of the design will be the first product off the 
production line. This is an interesting idea and one that is obviously enticing for 
higher level management, as if this became successful it could reduce not only 
the financial cost of a project but also reduce the development time. However 



PAGE 258 

this idea has some potential issues. If the statement in section 6.2.2, 6.2.3, and 
6.2.4 are correct, at present we do not understand the world around us in 
significant detail to allow for all phenomena to be modelled with suitably high 
fidelity. Significantly, even using a series of validated models that are integrated 
may not collectively mimic all of the behaviours that will be present in the final 
solution. This is due to models only representing what is known. Some of the 
interactions are unknown until the design is physically implemented. Not all forms 
for prototyping are appropriate for all situations as it depends on the system 
being designed. Some forms of prototyping are better at producing the 
necessary information than others at various stages of the product life cycle [126]. 
Hence at present virtual prototyping is not at a stage where it can fully replace 
physical prototypes. However there may come a time when it becomes possible. 

6.2.8 THE NEED AND PLACE OF PHYSICAL PROTOTYPES 
It should not be neglected that physical prototypes are prevalent within industry, 
be they for sub-systems or the system as a whole. Prototypes are used not only to 
validate designs as described in section 6.2.5, but also acquire the values that 
may otherwise be too complex or timely to calculate to the accuracy necessary 
[127]. In essence a full system prototype has all of the interactions that the full 
system will have when implemented. Any ‘unknown unknown’ (as defined in 
section 6.2.4) become apparent. This is the crux for the need of prototypes. For a 
physical product, if the first full system to be assembled is the first one off the 
production line, and if there are any interactions that the modellers and 
designers were not aware of, the behaviour of the system as a whole may be 
significantly different from what was expected. 

A key area within the automotive industry where physical prototypes are needed 
is that of safety ratings. Crash testing is difficult to simulate and the preferred way 
to ascertain how the vehicle will behave is to subject it to the forces that it is likely 
to experience in a crash. The Euro NCAP is a non-profit, non-governmental 
organisation which requires physical prototypes to be supplied for its destructive 
tests [128].  

By moving to full unit tests there may be interactions that affect the behaviour 
which would not be identified without the interconnection of the component 
models and simulations. However prototypes will still demonstrate behaviour, be 
that subtle or otherwise, that do not appear in models due to the lack of 
understanding of the system by the modeller. The move towards full unit 
simulation test will not completely remove the need for physical prototypes. 
However it should reduce the number of iterations of the prototypes having to be 
made. 

6.2.9 TIME SPENT ON A PROJECT 
There is a question as to where best to use engineers’ time when conducting a 
project. A somewhat simplified version of how systems engineering principles are 
implemented is that a significant amount of time is spent on understanding the 



PAGE 259 

problem space, ensuring that effective means of communication and decision 
making is established, while ensuring traceability throughout the process. The 
intent is that spending time on these tasks will reduce the overall time that the 
project takes by ensuring that the project goes right first time, thus reducing 
rework. This approach has been adopted across many industries and has shown 
to be of benefit.  

There is a trade-off between the time that it takes to conduct the additional 
systems tasks and the time that rework is needed using prototypes. This concept 
of the trade off in time and effort can be seen in Figure 6.4 below.  

 

Figure 6.4: The trade-off between the systems engineering approach and the traditional use of 
prototypes. 

In the example in Figure 6.4 more time effort and other resources has been 
invested in the systems engineering than in the prototypes. However it is 
recognised that this may not always be the most effective use of resources for all 
projects, or even across all areas of the same project. There may be instances 
when systems engineering methods may not be of significant use to engineers 
who are better of spending time working on short term goals using traditional 
engineering approaches. This decision is finely balanced and difficult to optimise. 

6.2.10 IMPACT OF INCREASED COMPUTATIONAL POWER ON MODELLING 
AND SIMULATION 

The ever increasing amount of computational power that is becoming available 
to engineers at cost effective rates has the potential to change many aspects of 
existing engineering processes, as well as making new processes possible. 
Computational power continues to increase, which leads to questions as how to 
best use this resource. Not only does this mean that ever more complex 
algorithms can be executed, but also previously disregarded methods due to 
computational overhead or sub-optimal use of processors can be considered for 
use again. Some of the previously disregarded methods are brute force in nature 
meaning that they work through every possible combination of problem, or are 
methods that are quick to set up but take a comparatively long time to execute. 



PAGE 260 

The latter option is where HPC are perceived to make a big difference. The time 
is fast approaching where the engineers’ time is worth more than the 
computational time that the computers take to execute a simulation. 

  



PAGE 261 

6.3 SIMULATION AND MODEL INTEGRATION ISSUES 
There are identified issues that surround the integration between the 
implementation of candidate models and simulations. Some of the issues are 
related to the way in which the modelling and simulation types are implemented 
and others are due to the viewpoint of the modeller who made the model or 
simulation in the first place. Such philosophical issues are discussed below. 

6.3.1 IMPLEMENTATION PLATFORMS 
To implement a model or simulation a platform to support it is used. This could be, 
software, hardware, or even pen and paper. Hence the means by which the 
concepts for the model or simulation have been captured play a significant role 
during the integrating task. It may be desirable for simplifying the integration task 
that models and simulations all use the same platform. However this is a 
challenge in its own right as the changes must retain all of the same information 
but capture it in a different way.  

There is a difference which needs to be identified. The term platform is not only 
used to refer to developmental tools used for simulation [63] but can also be 
used to describe the engineering solution that is being implemented if it uses a 
platform approach [75]. The term ‘platform approach’ in solutions often refers to 
a single general base solution that can be modified for a specific solution when 
conducting model and simulation integration. 

The difficulty of integrating multiple simulations from different implementation 
platforms is by no mean a trivial task and has been the subject of many research 
projects [63]. This is the task of taking a model or simulation produced on one 
platform and either getting it to run on another or enabling communication 
between platforms. To combat the different simulation platforms there have 
been attempts to make umbrella solutions that allow for the integration between 
multiple platforms [63]. However they often have significant limitations as to what 
they can communicate between. Standards have also been used in an attempt 
to harmonise the communication between simulation platforms. The FMI 
standard recognises that different platforms exist and are used for simulation. This 
is one of the key reasons for the creation of FMI [22] as previously discussed in 
section 2.3.3. 

6.3.2 ABSTRACTION 
Many engineering projects have too many individual components and are too 
complex for a single person to have a complete detailed understanding of the 
complete system. Therefore abstraction of the system to reduce detail to gain an 
understanding of the whole is often used. Abstraction within modelling and 
simulations domains is discussed as being a means of coping with the complexity 
as well as being a potential source of contention within integration tasks. 



PAGE 262 

The importance of the concept of abstraction is by no means overstated as in 
the literature such statements are made “Abstractions are essential in handling 
computational and modelling requirements of complex systems.” [129]. This is the 
means by which behaviour can be conceived and judgements made without 
the need to fully understand all of the exact workings of the system. The higher 
the level of abstraction, the more of the overall system it is possible to understand 
with the trade-off of not expressing the detailed finite working of the system in 
question. This should not be confused with fidelity. The trade-off between system-
wide understanding and detailed finite understanding is a constant balance that 
the modeller has to work with. Too much abstraction it is possible for important 
details to be lost whereas if too little abstraction is used too many detailed 
workings will be expressed leading to confusion. 

Due to the way in which we perceive the world around us, as soon as we create 
a model it will inherently have a level of abstraction built within it. This means that 
when considering abstraction it is not as simple as there being only two levels (a 
low level and high level) but rather abstraction is a shifting scale with models at 
many different levels within it. 

The level of abstraction is based on the assumptions and understanding of the 
modeller as well as what is seen as relevant to include within the model. Due to 
the very nature of the concept of abstraction it could be considered to be the 
encapsulation of the specific viewpoint and hence the catch all of the 
differences between models. Within the literature there are concerns raised 
regarding model re-use and the inherent contradictions that arise in identifying 
the appropriate level of abstraction to implement [14]. Therefore the brining 
together of models of differing levels of abstraction poses many challenges, 
which need to be overcome for meaningful integration to occur.  

Abstraction is not purely held by the modeller alone but it is also inherent in the 
tools that are used as most tools allow for different abstractions to be captured 
[20]. With this in mind it is not unreasonable to see that there can be conflicts 
between the abstractions of the modeller and the modelling tool. Therefore two 
models made in the same environment cannot necessarily be considered to be 
at the same level of abstraction. Within the literature such challenges of brining 
models of differing abstraction together are recognised and even identified as a 
problem with model re-use [129]. Whereas other sources go further and state that 
“the major technical pitfall might lie with the abstraction challenge” [14]. This 
then makes the need to find a means of harmonising multiple levels to allow for 
meaningful integration more pressing [130]. 

6.3.3 FIDELITY 
As with abstraction, fidelity is not a term that has a unified definition throughout 
the literature and in many instances a definition is not supplied. The standard ISO 
15288 states “The necessary level of fidelity is a factor in determining the 
appropriate level of rigour.” [67] It is stated without real definition to explain what 



PAGE 263 

is meant by the term fidelity. Often fidelity is linked with accuracy as in [61] where 
the accuracy is referred to as how close the results of the simulation matches 
that of the physical phenomena being simulated. This is the definition that is 
going to be used in this work.  

This raises the issue of why would engineers use anything other than the highest 
level of fidelity possible in any given situation. The concept of modelling at 
differing levels of fidelity allows for engineers to walk the line between the 
accuracy of the model and resources needed. The higher the fidelity, generally 
the more effort is needed to produce the model as well as any simulations based 
on it. The use of low fidelity models and simulations still have their place in 
engineering and there are examples where low fidelity modelling has been of 
benefit [14].  

Issues arise when models at different fidelities are brought together. If the outputs 
of a low fidelity model were fed in as input parameters into a high fidelity model 
(rather than measured or estimated parameters) there is the logical argument 
that the accuracy of the outputs of the high fidelity model is compromised. Due 
to the sensitive nature of some high fidelity models, the starting values have a 
significant impact on the final results. This means that the integration of two 
models, one of high fidelity and one of low fidelity, can be of less use than using 
two low fidelity models. The converse of this gives a very different outcome. With 
a high fidelity model feeds into a low fidelity model it does not affect the 
accuracy of the outcome of the low fidelity model. However there is still little 
benefit in this configuration over the integration of two low fidelity models. So this 
raises the overall question of how different the fidelity of the models can be 
before the results of integration become meaningless. 

As with abstraction, some tools have different capabilities of modelling or 
simulating different phenomena at different fidelities. There are concerns that 
using a single vendor, with the current tools on the market, that for a complex 
system a unified level of fidelity could not be possible as no one tool can 
adequately model or simulate the whole system at a high fidelity [123]. This 
indicates the potential value of integration methods between different tool 
vendors. 

6.3.4 TIME 
When bringing models and simulations which were created in isolation together, 
it is unlikely that they will use the exact same time base. This becomes even less 
likely when models and simulations are created using different fidelities and 
scales.  

When it comes to combining time bases “conventional approaches to sampling 
signals or images follow Shannon’s celebrated theorem: the sampling rate must 
be at least twice the maximum frequency present in the signal (the so-called 
Nyquist rate).” [131].An example: if a model is based on time T and the second 



PAGE 264 

model ran at 0.0001T then the second model would be calling for data that were 
not there. A common means by which this situation is handled is by using 
interpolation. This works by using a straight line approximation between the points 
of the first model. Such a method can cause significant issues when simulations 
are executed in parallel. 

There are issues surrounding co-simulation and the time that the various parts 
execute. If the mathematical solvers do not start at exactly the same time then 
there can be a difference in the clock times between the models. Any 
differences between the solvers can lead to irregularities. These irregularities can 
result in inaccuracies in the results. As a consequence some solvers allow their 
clock rates to be shared outside their execution, or even set externally. 

If the simulations are executed across a network, there are also considerations 
with communications and model execution. The latency in networks is a 
common topic in computer science. The literature that is concerned with 
federated simulations often discuss issues and express that simulation time and 
parallelism poses a considerable challenge [48]. Methods have been developed 
to mitigate some of these issues, however all add to the time it takes for the 
simulations to run. 

6.3.5 LOCAL AND DISTRIBUTED INTEGRATION 
The challenges to integration increase when models and simulations are 
integrated across a network when compared to the same integration on a 
standalone machine. 

When running integrated simulations on a single machine the issues of resources 
and their allocation become paramount. It is possible to produce a simulation 
that exceeds the capabilities of a single commercially available machine. For 
this reason there have been efforts to distribute the processing across a network. 
This is to negate the need to use a single high performance computer to 
conduct computationally intensive simulations. However there are other 
challenges which result from distributing the processing across a network. 

By taking the processing and splitting it up there are issues of orchestrating what 
is to happen and when. This orchestration is mentioned in literature such as in the 
FMI standard [26]. However this orchestration is not often discussed in detail as to 
how to accurately implement it. Often tools such as Isight [8] state they have 
orchestration capabilities which is used as a competitive advantage and as such 
the way that it is implemented is not published in available literature. Within the 
orchestration there is the potential to compute sections in parallel as well as 
sequentially, which makes the access to shared values an even greater 
challenge. The access to memory and how values are stored or distributed 
across all of the component parts is another challenge. Some methods such as 
Data Distribution Service (DDS) broadcast all of the calculated information to all 
other components after each stimulation step. This is acceptable as long as all of 



PAGE 265 

the components iterate at a similar rate, and as such this too is still an area of 
research. Keeping track of where all of the intermediate files are stored as well as 
the component parts can be an issue when a system is distributed across a 
network. There are manual ways of keeping track of such information however 
this quickly scales up to the extent where this method is not sustainable. Hence 
there have been many research projects [129] which consider resource 
management of a distributed simulation. 

Delay or latency across a network can be an issue for many distributed systems. 
This is also the case with distributed simulation [132]. Due to the way in which 
many integrated simulations function, network latency does not just mean that 
the simulation will take longer to complete the desired test, but also may affect 
the integrity of the results. One such issue caused by network latency can be 
expressed if a producer and consumer architecture is considered (such as that 
discussed in section 2.4.2). If such a distributed simulation is implemented where 
each component uses the most recent data value available on the network, 
without consideration to simulation time stamps, the integrity of the results can be 
questionable. This is due to there being no guarantee that the consumers are 
using data from the same simulation time step as the producer, due to 
differences in latency across the network. 

Maintaining the distributed system which utilises services is a research field in its 
own right and there are many researchers who specifically focuses on how to 
formalise the switching in and out of various services based on their performance 
[133]. As a task this has been shown to be non-trivial. This indicates that 
distributed computing is still developing and there are challenges that would 
need to be addressed by any engineering company looking to utilise distributed 
simulation as part of their design process. 

  



PAGE 266 

6.4 CURRENT METHODS OF STORING AND INTERROGATING 
MODELS FROM A REPOSITORY 

The storage of models and simulations and the data that they produce is not the 
focus of this research, however it needs to be addressed. It is recognised that 
processing power and data storage are not infinite and have costs associated 
with them. This brief overview of data storage, cloud computing, and big data 
covers the key areas when contemplating a large scale integration project.  

Throughout the literature there are many technologies and methodologies that 
demonstrate having a centrally stored repository of models and simulations within 
a organisation. However few discuss these methods or means of implementing 
such a repository. An overarching issue that many comment on is the seemingly 
simple issue of storing data. To put the data storage issue in perspective “…2007 
marked the cross over year in which more digital data was created than there is 
data storage to host it.” [134]. This does not mean that engineering projects (that 
this study is considering) are going to produce more data than could possibly be 
stored in the entire world, however it does put our current data producing 
capabilities in perspective compared with our ability to store the data we are 
producing. Some have gone as far as to say that the management, organisation, 
access, and preservation of data is a grand challenge of the information age 
[134]. 

There is a general consensus that the cost of storage of digital data is going 
down both in a local and service sense. However there are those [134] that have 
noticed this trend as well as the cost of maintaining data centres (where project 
data are stored) for the required amount of time, is taking an increasing 
percentage out of project data budgets. To have the data stored alone is not 
enough, it also has to be secure. Indeed the loss of large amounts of data or 
otherwise still makes national news from time to time [135]. The cynical approach 
to such news is these are just the cases that are publicised; the likelihood is that 
far more data are lost and not reported. All domains that are currently holding 
large amounts of data now have to consider stewardship plans for the data, how 
it is to be stored, and still be accessible when needed. 

One potential solution to the vulnerability of storing all of the data in one physical 
location is to take advantage of the growing field of cloud computing. At first 
glance this appears to fit well with model and simulation integration. It is a logical 
step to ascertain if it is possible to take advantage of this technology. An enticing 
aspect of cloud computing servers is that on the most part provide a 
computation or storage service while shielding the customers from the hardware 
and software infrastructure that is required to provide the service [136]. This could 
a significant advantage for some engineering companies as they could focus on 
the engineering of the solution rather than the infrastructure that is needed to 
implement the modelling and simulations that they require. Due to the way in 



PAGE 267 

which many of the cloud computing services are set up “using 1,000 servers for 
one hour costs no more than using one server for 1,000 hours.” [135], allowing for 
many more architectures of solutions to be utilised without some of the issues of 
hardware resource availability found in Local Area Network (LAN). 

There are issues with cloud computing which are often found within the literature 
such as security and the proprietary APIs that are currently used [135]. It is 
surprising to some however that organisations object to cloud computing due to 
the data not staying local to them, whereas they use ‘secure’ email servers that 
are provided by an external organisation. For some cases it may be more 
appropriate to use a desktop grid (harnessing the unused power of organisation 
computers not running at full capacity) rather than a public cloud. Research 
investigated the cost benefit analysis of cloud computing and desktop grids [136]. 
They found that depending on the number of flops that are needed and the 
number of available nodes, both approaches can be financially viable. It is not 
as simple as one is cheaper to implement than the other. 

The use of could computing may not be as applicable to as many situations as 
proposed, as Larry Ellison the CEO of Oracle indicates,  

The interesting thing about cloud computing is that we’ve redefined cloud 
computing to include everything that we already do…. I don’t understand 
what we would do differently in the light of cloud computing other than 
change the wording of some of our ads.” [135]. 

As the number of component models and simulations that are integrated 
together in a single simulation increases, so too does the total size of all the data 
that are created. If large scale high fidelity simulations of full systems are to 
become commonplace consideration as to how the resultant data sets are to 
be integrated has to be considered. Many of the popular data base protocols 
such as eSQL when it comes to integrating data sets rapidly start increasing in run 
time as the set grows past one million lines of data, and so the realisation is that it 
is easier to get the data into a database than out [137]. This is where the research 
field of big data comes into play and the new experimental methods of handling 
large data sets become directly applicable to current data mining problems.  

  



PAGE 268 

6.5  ONTOLOGIES AND THEIR USES FOR INTEGRATION 
Ontologies are a means by which information can be stored in a structured 
repository in a form that allows for not only queries to be made about the stored 
entities but also regarding the relationships between them. There is evidence that 
the application of ontology technology to the problem of model integration has 
been investigated. Key areas have been identifed where the storage of models 
and or simulation or even the component parts there of could aid organisaitons 
in the development of complex systems [138]. Having the component models in 
a form that can be integrated and the relationships between the possible 
variations captured has obvious potential to reduce the effort needed to find 
usable components in future projects. There are many other research teams that 
have also recognised the potential and have been working to exploit this 
potential. 

It has been shown that ontologies can help to alleviate specific aspects of the 
integration problem [129], [130], [139]–[142]. It is to be noted however that none 
of the identified literature is concerned with identical problem space to this work 
though they do share some similarities. One of the common themes identified 
throughout the ontological literature is that this technology gives greater value to 
an existing repository of data when compared to a simple indexed repository. 
This increase value is due to the relationships between entities being recorded 
and in a way which can be integrated. Hence ontologies can be used within 
modelling and simulation to construct code libraries that contain revisable 
knowledge bases of structure domain specific information that does not need to 
be captured for each application but is held at a more general level [138]. One 
of the most significant issues with creating a usefull onltology is the capturing and 
reprentation of the identified relations that proves to be one of the greatest 
challenges [138]. Algorithams can be developed to significantly improve the 
semantic search of heterogenous information sources, meaning that the intial 
structure and form of the ontology is less of an issue compared to the traditional 
search process [143]. This work shows promise for being capable of handling a 
variety of data sources and types. This is something that would need to handled, 
as in the model and simulaiton domain there are many different domains that all 
work in unision, and any data storage means would have to handle the variety 
of domains.  

There are those who have been working with ontologies for the purpose of 
model and simulation integration [144]. A common theme across the ontological 
model simulation literature is the concept that a practical application would be 
to have a repository of models and simulations that could be queried to 
ascertain which model could be integrated as well as how to go about 
connecting them. 



PAGE 269 

6.5.1 ONTOLOGIES APPLIED TO SIMULATION INTEGRATION 
In the literature there have been many attempts to use ontologies for the 
integration of models and simulations with varying levels of success. A common 
area of the integration problem research are attempts to automate the 
mediation, organisation, and exchange of semantic information between the 
component models or simulations [130]. Different ontologies use different means 
of describing the entities and the relations between them. These descriptions can 
be customised to the project such as “Discrete-event Modelling Ontology 
(DeMO)” [143] and “Framework for Adaptive Modelling and Ontology-driven 
Simulation (FAMOS).” [129]. While others have experimented with using existing 
well established descriptions such as “Web Ontology Language (OWL), OWL Lite, 
OWL DL (Description Logic) and OWL Full” [143]. There are both strengths and 
weaknesses in using custom and well established ontologies. Having a custom 
ontology allows for greater flexibility to capture all the relevant information but 
makes integrating ontologies together a significant issue and often requires 
custom tools for their creation. Whereas using a standard ontology makes the 
integration between ontologies less of a challenge as well as there being off-the-
shelf tools for their creation, however not all information may fit the schemas. 

The goal of using ontologies for modelling is to answer the question of “How do 
the components of different types of models relate?” [143]. Identified taxonomies 
exist in other fields in computing and the proposition is that a taxonomy must exist 
and hence it must be possible to be captured in an ontology. The major 
challenge in capturing the information is that of ‘inter-process mismatches.’ [130]. 
This term describes where the models and simulations are created based on 
different concepts and are executed in different environments.  

A way in which semantic mismatches have been limited throughout the literature 
is by using a standardised schema such as XML [28], [63], [66], [142], [145]–[147], 
however this does not eliminate the issue completely. Incidentally, it is for the 
same reason that there is a common method used in SOA applications see 
section 2.6. When storing information in ontologies the concept of depth and 
breadth has to be taken into consideration. 

“If an ontology is too broad and deep, it will be very hard to develop and 
maintain as well as having implications for automation.” [144].  

If the ontology is too narrow or shallow it will not be capable of capturing the 
diverse range of information. There is not a great deal of practical guidance on 
depth and breadth but rather there are statements such as 

“One may argue that ultimately a good ontology should seamlessly 
capture all (or most) of the naturally existing hierarchies within itself.”[143]. 

For practical engineering terms this is not helpful and may point toward a 
subjective measure rather than an empirical boundary. For the application in this 



PAGE 270 

problem space there are serious problems with this as the models are disparate 
and the environments are heterogeneous, meaning that a single schema would 
be a significant challenge in itself. Even an existing flexible standard, such as ISO 
10303-239 (defining information exchange throughout product life cycle) has 
been found wanting in problem spaces similar to the one in this study. Once a 
schema has been decided upon it is then possible to build a database to 
implement the ontology. Data entry is another issue and in most of the literature 
this is not considered. For a solution such as this to be used in an organisation the 
entry of all of their existing models and simulations may take many thousands of 
work hours just to capture the necessary information defined by the schema. This 
work would need to be carried out by skilled workers with a detailed 
understanding of the models in question and how to use the schema to capture 
it. This time resource factor cannot be ignored as a potential factor for the 
adoption of this technology. 

6.5.2 HOW ONTOLOGIES CAN AID IN INTEGRATION 
A method that has demonstrated real promise is the use of a number of 
ontologies which are domain specific (using domain specific language) with an 
overarching meta ontology that consists of Neutral Simulation Language (NSL). 
This method of linking ontologies together is demonstrated in the linking of the 
DeMO ontology to the SUMO and SUO ontologies. [145] 

Mapping of concepts between the domain specific ontologies and the meta 
ontologies can be used to integrate models together as the mapping is present 
both in the ontologies and the models themselves allowing for model translation. 
“The idea of ontology-driven translation uses ontologies as the foundation for 
translating information from one simulation application to another.” [145]. The 
method of using three ontologies to translate models is shown in Figure 6.5 below. 



PAGE 271 

 

Figure 6.5 Two models from different domains using ontologies to capture the semantics of the 
models. A meta language is used to produce a meta ontology. The information from the meta 

ontology is used to perform the syntactic part of the model integration. 

This method of translating between ontologies does however mean that all of the 
component ontologies would need to be produced for each model type, 
environment, and the mappings captured. This capturing of the information in an 
ontology would be a considerable increase in resources and investment for any 
organisation designing a system. This also raises issues with scaling and the effects 
of many hundreds of thousands of relationships having to be mapped to give a 
high fidelity, full, system simulation. 

6.5.3 EVALUATION OF ONTOLOGIES FOR THIS PROBLEM SPACE 
The literature suggests that the prime use of ontologies for model and simulation 
integration is for the capture of the relations between components that have 
been identified. It is only relatively recently that this approach has been shown to 
be at an implementable possibility. 

Despite the promise however there are issues with scalability and the resultant 
computational burden. Many researchers make statements such as “The 
modelling and simulation community has not taken advantage of the benefits of 
ontology management technology.” [130]. This technology is not currently able 
to conduct the complete integration process form end to end. Therefore 
ontology-based technology would be a component part of the integration 
process. There is the potential to combine ontological descriptions of the 



PAGE 272 

compoent parts of the simulaiton with service orented architectures [31]. This 
combination takes one technology that is syntactically strong and another that is 
semantically strong, combining them to produce a potential solution to the 
integration problem. This technology hence shows promise if the scalability, and 
time constraint issues are overcome in the future. 

The ontologies are there, the algorithms to integrate them are available, the 
computational power issues (if trends continue) will become less of an issue as 
technology progresses, however the issue of getting the data into the ontologies 
is still a significant issue for any organisation looking to implement them. 

  



PAGE 273 

6.6 BUSINESS CHALLENGES WITH MODEL AND SIMULATION 
INTEGRATION 

The operation of modelling and simulation within the production of a product or 
service will only be conducted if the organisation deems that is the most cost 
effective means of conducting the necessary analysis. This is the one factor that 
drives all of this modelling and simulation, and as such is to be considered above 
all else when the organisation is operating within a competitive market 
environment. 

6.6.1 ADOPTION OF NEW TECHNOLOGIES 
In the current economic climate it is important for organisations to get new 
products and services into the market in the shortest possible time. Hence 
anything that takes time in a project must have intrinsic value to the project. This 
is a consideration that needs to be made not only relating to any new 
technologies but also any potential organisational disruptions implementing it 
may cause. The concept of Integration Readiness Levels (IRL) has been 
introduced [148] which is an attempt to quantify how ready a sub-system is to be 
integrated into the wider system. At present such assessment methods are still 
subjective and often require the judgement of a domain expert. This method of 
using the scale of IRL is not specifically set up to handle the integration of models 
and simulations, however the concepts that it encapsulates may be. At present 
there are limited examples of such metrics being used specifically for models and 
simulations. It is recognised that the adoption of new technologies is a wide 
business research area and is not the focus of this research. However the 
recognition of these issues is necessary for any potential solution to be useable by 
any organisation.  

6.6.2 VENDOR LOCK IN AND RISKS OF ONE SUPPLIER 
There are many software companies that can supply a whole suite of tools for 
many different aspects of the modelling and simulation task. In some instances 
this can commence from requirements capture all the way through the design, 
V&V, and even on to deployment. For some organisations this gives advantages, 
as all of the tools at all the various stages work together. However it does come 
at considerable risk. If an organisation was to fully buy into a single tool vendor’s 
ecosystem, they face the possibility of: software vendors increasing the cost of 
their tool above the line of inflation, problems if the software company ceases to 
exist, and functionality of tools changes between versions. Therefore it is not 
desirable for any organisation to use tools from only one company. For a 
discussion of using a range of tools from a multitude of simulation tasks see 
Section 6.6.4. 

For the identified reasons it is common for large organisations to use whole suites 
of tools from a host of suppliers. This too comes with issues, as there is then no 



PAGE 274 

guarantee that any of the tools will work with each other if any integration or co-
simulation is required.  

6.6.3 THE POSSIBILITY TO DO MORE WITH THE SAME  
From a business standpoint, having invested resources into models it is desirable 
to re-use them continually. In the literature it is identified that having some means 
of reusing the models and simulations for future projects has the prospect of 
reducing the amount of resources that would have to be invested in the new 
project [14]. However sources which are concerned with the use of such an 
approach within an organisation rather than a novel approach to model re-use 
are often cautious with statements such as “… re-use of a sub-system model 
could be more costly than developing it from scratch.” [14] This shows that there 
are identified issues with model re-use when it comes to using it within an 
organisation. It is recognised that re-use is as much a cultural concern as it is a 
technological one [14]. For the re-use of models and simulations to become a 
reality a decision from the organisation leaders would need to not only move the 
culture of the organisation but also invest sufficient resources to support such a 
change.  

6.6.4 COMMERCIAL-OFF-THE SHELF 
The concept of Commercial-Off-The-Shelf (COTS) was popularised in the 1980s 
[149]. The basic premise is for product manufacturers to buy parts from 
commercial vendors. This would allow companies to access skills that they may 
not have in house or they require a part that uses specialist skills for only a specific 
part that it would not be financially viable to employ full time engineers to 
develop. There is also an element of risk that is passed from the customer to the 
supplier of the COTS component. The effects of using COTS within an organisation 
are far reaching and largely outside the consideration of this research. However 
there are aspects of using COTS that directly affect the potential success of 
model and simulation integration which are discussed. A generalised procedure 
for a COTS customer to a supplier can be seen below in Figure 6.6. 

When utilising COTS as part of a system design the parts that are purchased need 
to be specified in such a way as to ensure that it behaves as exactly as is 
intended by the system designers. Once the vendors have produced the 
specified sub-system many customers then use rigorous testing to ensure that the 
delivered sub-system operates as is required. If the COTS product is physical, the 
use of HIL testing is often used in this activity. If the product passes all of the 
desired tests it is then integrated into the rest of the solution.  

 



PAGE 275 

 

Figure 6.6: A representation of the COTS process time represented top down. 

The issue of how to go about obtaining COTS products is a research area in itself. 
The key steps are; Define, Search, Filter, Evaluate, Analyse, Customise and 
Implement [150]. They explored many variations on these themes for means of 
effective COTS selection. It is recognised that in most of the literature COTS is only 
considered from the perspective of using the products for the first time, not 
having the components as a result of a previous project. This means that a similar 
selection process could be applied to the components that an organisation has 
available internally. This approach shows promise of being applicable to a wider 
selection processes than just for COTS components.  

To enable a COTS sub-system to be usable in the system being designed there 
requires a detailed understanding of exactly what the COTS sub-system is to be 
and how it is to operate. This shared understanding is often achieved by using 
detailed requirements documents combined with dialogue between involved 
parties. This requirements capture, analysis and inevitable clarification dialogue 
produces a considerable amount of paperwork.  

  



PAGE 276 

“the degree of subtlety involved in even describing the COTS simulation 
package interoperability problem can lead to long, lengthy discussions 
where the parties involved typically finish with no definitive understanding 
of the problems that must be solved”[151]. 

This quote illustrates the extent to which the communication issues between 
parties can be a timely exercise. 

Buying in components in such a manner does mean the full white box 
understanding of the components and hence the system as a whole may not be 
possible. This has been identified as a potential integration issue, see section 6.2.9. 
To mitigate the lack of white box understanding, requirements documents and 
contracts may state that details as to how the sub-system works in practice have 
to be supplied. There has been effort invested into finding way to mitigate some 
of the integration issues between COTS simulations such [151] where they 
propose the use of Interoperability reference models which rely on the 
integration problem to fit one of the proposed patterns. To implement such an 
approach, organisations would need to formulate their own reference models 
and stick to patterns. 

With the need to accurately specify a sub-system and have enough 
documentation to use it can result in a situation where depending on the 
organisation the documentation for a COTS sub-system may be far more 
detailed than components that are made in house. 

When using COTS the time and other resources of the organisation buying the 
items are diverted away from the development of the sub-systems in house. It is 
intended that only a fraction of what would have been spent in house on 
development and manufacture is spent on negotiating and purchasing the 
COTS sub-system. In the literature this potential issue with using COTS within an 
engineering organisation is not widely discussed. 

The re-use of model and simulation COTS products is a topic that has been 
considered predominately in the defence domain due to lengthy development 
and life-time of the products. Software obsolescence is less well understood and 
considerably less mitigated against than hardware obsolescence and is starting 
to have a real impact on projects [75]. There are a multitude of reasons why 
software can become obsolete and there is the business decision as when to 
update to a newer or competitive vendor. The issue of when it is an appropriate 
time to upgrade software has been discussed [149]. This work is conducted from 
an IT perspective for tools such as word processors, however it is worth noting that 
the same sort of issues will be apparent between general office tools and 
specialist engineering tools. The output of this research revolves around only 
updating when the tool either cannot, or does not, fulfil the objectives that the 
tool is being used for, which includes aspects such as vendor support. The benefit 
of looking at sources such as this is they are combatting similar issues in more 



PAGE 277 

mature fields though in different domains. Obsolescence is often cast aside by 
many model and simulation researchers as the issues of general model and 
simulation re-use is still considered to be a considerable challenge without the 
potential issues that the use of COTS products bring. However due to the 
prevalence of COTS in industry it cannot be cast aside in this research. The 
general issues to the re-use of models and simulations are covered in sections 2, 
and 6.2.9, however there are specific issues to meaningful integration that have 
to be overcome before obsolescence becomes an issue. 

Due to the very nature of COTS the organisation purchasing the models and 
simulations does not necessarily have a complete white box understanding of 
how it works. This issue is further complicated if there is no long-term support for 
the model or simulation after completion of the initial contract. It is also common 
for any models or simulations to be distributed in a protected format to maintain 
the intellectual property of the COTS vendor. As shown in section 3.7 information 
is critical for meaningful integration. If COTS products are to be re-used within 
integrated modelling and simulation there will need to be guarantees of long 
term support or greater transparency of solutions. 

Applied Dynamics International is a company that formulated a method for 
using simulation and model specified requirements to build a system up from 
parts made by various manufacturers [30]. This method involves simulated sub-
systems where the individual sub-system simulations could be replaced for 
hardware with sensors mounted. From Applied Dynamics Internationals 
marketing material they promote working with large defence and aerospace 
manufacturers including: Northrop Grumman, BAE Systems, Raytheon, and 
General Dynamics. These companies are all concerned with the design of highly 
complex systems. This type of approach has the potential to revolutionise how 
projects use COTS and also large projects that have many teams working on 
complex highly electronic-centric projects. Such an approach requires 
considerable effort in architecture of the solution before the simulation 
commences. However it is a means by which COTS has been shown to be a 
viable resource for the development of complex systems.  

The use of COTS products in the automotive industry is widespread. It has 
become so widespread that there have been efforts, such as Autosar [152], to 
set standards so that automotive and COTS manufacturers have a common 
means of communicating with OEMS and each other. The core partners involved 
in this venture include; Bayeischye Motorn Werke AG (BMW Group), Robert Bosch 
GMbh, Ford Motor Company, Toyota Motor Corporation, General Motors Holding 
LLC, Continentals AG, Daimler AG, Peugot Citroen Automobiles S.A. and 
Volkseagen AG. Some consider that these are some of the largest players in the 
automotive business. As such market leaders are investing in such a joint venture, 
it demonstrates the extent to which the COTS challenge is causing issues within 
their organisations. By projecting a unified want the member organisations have 
a higher bargaining power with the COTS producers. It is worth noting that 



PAGE 278 

modelling and simulation venders are also members of the Autosar organisation. 
These vendors include but are not limited to: Dassault Systemes, dSPACE GmbH, 
and MathWorks. This indicates that the simulation tool vendors also recognise 
that for their products to be used by the automotive companies involved in 
Autosar, their products need to be compatible.  

It is worth commenting that the engineering modelling and simulation tools can 
in themselves be considered as COTS products. There are companies that will 
produce model or simulation tools for the study of a specific phenomenon. The 
process that is used for the purchase of such a tool is much the same as that 
which has been discussed for the acquisition of a component to a system. The 
larger tool vendors that sell generic modelling or simulation tools such as Math 
works and Dassault Systemes can still be considered COTS suppliers, however 
there products may not be adapted to individual customer’s wants or needs.  



PAGE 279 

6.7 AUTOMATION OF ENGINEERING TASKS 
With the ever increasing computational power there is the potential to automate 
some of the engineering tasks that are conducted as part of any engineering 
project. The technologies that are being explored include: machine learning, 
Natural Language Processing, automated code generation, and automated 
documentation. The tasks that have been shown to be possible to automate are 
deductive in nature. They do not require any imagination or additional 
information to make the required decisions. Only deductive tasks have been 
automated due to a limitation of the computational systems that are currently 
used.  

It has been observed that an area of engineering that could be automated is 
that of requirements handling. There are COTS tools available that can aid in the 
capture and management of requirements, but as of yet little attention has been 
given specifically to model and simulation requirements analysis. The technology 
is available and the problem space is understood significantly well to allow for 
such a tool to be developed, the potential for which was demonstrated in 
section 5. 

There are current limitations such as computational power and company 
structure that restrict the full capability of current methods to allow for the level of 
potential automation. There is also the ethical question of whether we should 
look to automate the engineering process at all or whether we should keep 
humans in the loop to ensure that there is accountability for actions. This ethical 
question also extends further to the issues surrounding 100% virtual prototyping 
discussed in section 6.2.7.  



PAGE 280 

6.8 POTENTIAL PARADIGM SHIFT BROUGHT ABOUT BY MODEL 
INTEGRATION 

With the introduction of a way to identify meaningful integration from a sea of 
potentially erroneous, meaningless, integration possibilities comes a strategy that 
could change the very way in which engineers design systems. By having a 
reliable means of assuring integration, is the possibility to not only model one sub-
system or part thereof but rather simulate the system as a whole allowing for 
previously unconceived interactions to be identified. Such interactions and 
behaviours could be harnessed and used to better achieve the desired 
behaviour of the system being designed. This approach has the potential to 
change engineering tests from being verification that a design has the potential 
to work, to an investigation into the phenomena that engineers are harnessing to 
produce a desired output. This is essentially using the integrated simulation as a 
research tool as well as a design tool. If such observations were then validated 
through the model validation processes proposed in section 3.5.3 the 
organisation conducting the test could accrue more information and indeed 
further their own understanding about the domain that they are working within, 
potentially increasing the companies’ competitive advantage. 

For such a change in the paradigm there would need to be consideration as to 
not only how the knowledge that is gained through the testing is to be captured 
and stored, but also how the findings feed back into the design process. If an 
organisation distributes work in teams based on sub-systems then the knowledge 
gained about how these sub-systems interact could be lost or ignored. It would 
require a process and organisation with a holistic nature to be capable of 
making use of the system wide observations, which is far from a trivial task. The 
additional information that can be gained from integrating sub-systems can be 
seen in Figure 6.7 below. 

 

Figure 6.7: Outputs of an integrated simulation are more than the output of the individual 
components as the behaviour of the system as whole is also captured. 



PAGE 281 

The issue of how to best use an integrated simulation is further complicated when 
variation of design is considered. If a design is formulated, models are generated 
for the sub-systems; the sub-system models are integrated for a full system test, 
and the output of the integrated test requires a change in design. If the change 
in design is then to be evaluated using some of the existing simulation 
components there can be issues with ensuring that the semantics of the models 
remain suitably similar for the outputs to remain meaningful. Hence the process 
surrounding the use of integrated simulations requires as much thought and 
planning before the project starts as the way in which the integration of the 
models is to be conducted.  

The impact of full system testing using many integrated mathematical models is 
still a new concept that has the potential to change the way in which large 
engineering project are currently conducted. 

  



PAGE 282 

6.9 SUMMARY 
The deeper philosophical challenges to model and simulation integration have 
been discussed in this chapter. The challenges to integration have been found to 
stem from the very way in which the engineer’s traditional reductionist approach 
to engineering problems can cause issues. Even when the models and 
simulations have been created, if they have not been validated against the 
phenomenon that they are mimicking, there is a question as to how useful the 
model or simulation can be. In an effort to move the final design closer to the 
simulation, HIL and HITL are used. The effects and unique challenges of using 
such methods in modelling and simulation are discussed.  

When a system is created there are situations where those who are creating and 
financing its creation are different. These differences can result in the focus and 
hence the product not being that of those who are going to be using it. This is a 
deeper reason for models and simulations to focus on specific issues resulting in 
testing that may not be appropriate for what is needed for a successful product. 

With modelling and simulation improving to the extent that virtual prototyping 
can now be of real use to an engineering team, questions are being asked as to 
whether we will soon be at a stage of 100% virtual testing, meaning no use of 
prototypes. There are fundamental issues with the differences between a model 
or simulation and the real world phenomena. These issues are discussed and 
found to bring into question the possibility of 100% virtual testing for physical 
products being a real prospect. This means there may well be the need for 
prototypes for testing before the product is put into production for many years to 
come. 

There are questions as to where time is spent on a project as all time comes at a 
cost. The impact of spending time on systems engineering approaches rather 
than traditional engineering methods has been discussed. The result from this 
questioning has resulted in the opinion that it is dependent on the problem that 
they are being applied to. If the problem situation and solution are simple then it 
may be cheaper to use traditional methods, however in the inverse situation 
where the situation and solution is complex the converse is advised and systems 
engineering principles used.  

The effects of computational technology have a real impact on the types of 
modelling techniques that can be reasonably implemented. The increase in 
computational power has resulted in previously discarded methods now being 
used. The computational technology is not limited to processing power on one 
machine. With the current research into computer networks and cloud 
computing there is the real prospect of having more computational power 
available for engineering project than ever before. How to utilise this 
computational power is an ongoing research question. With this computational 
power also come more data than ever before. How to best store this information 



PAGE 283 

was discussed and ontologies have been repeatedly identified in the literature as 
being the best way of capturing such information. The suitability and feasibility of 
this technology use in the identified problem space was seen as being a real 
challenge without significant investment. 

When implementing model and simulation integration there are business 
challenges that have been identified that need to be overcome for it to make a 
positive impact in practice. To reduce costs, automation is often used. However 
within engineering; there are aspects that require inductive rather than 
deductive reasoning, a capability currently outside the computational science 
discipline. It has been identified that to make best use of model and simulation 
integration as part of the engineering processes it may require a fundamental 
paradigm shift within engineering organisations.  

 

 

  



PAGE 284 

  



PAGE 285 

 

 

 

7 CONCLUSION 
  



PAGE 286 

  



PAGE 287 

7.1 CONCLUSION  
The conclusions drawn from the work reported are far from what was envisaged 
at the start of this research project. The intended direction of the work was to 
develop new systems methods that incorporated modelling and simulation and 
apply these to real world automotive case studies where existing methods were 
found wanting. However due to the real world nature of the work the lack of 
available documented models and simulations led to the choice of two very 
different case studies. The first a materials behavioural product design (training 
squash ball), and the second was an open source automotive example that 
emulated issues with commercially sensitive material. However it is proposed that 
the case studies are still suitable to test the proposed methods, serve as a 
reference point to demonstrate how the processes can aid in the identification 
of issues before the execution of the final integration, are suitably complex, and 
satisfy the study aim and objectives (section 4). 

The aim was formulated from the understanding of the problem and was verified 
(section 1.5). In order to provide evidence in support of the general aim, a set of 
testable objectives were formed. By satisfying the objectives the aim was also 
satisfied, hence to review this research the objectives are to be used as a 
reference point for verification of this work as a whole.  

Objective A: Determine the potential of automatic identification of model and 
simulation dependencies, and the respective assumptions encapsulated. 

Before the identification of dependencies and assumptions can be 
automated the information that is required has to be known. Section 3.7 
highlighted the information needed for integration of two or more models 
or simulations. This information covers their dependencies and assumptions. 
A means of capturing this information was proposed in the form of 
machine readable tables. The automation of mining and comparison of 
the identified required data (in section 3.7) was investigated using NLP in 
section 5. It was found that the NLP technology shows real potential for 
aiding the automation of the integration of existing model and simulation 
components.  

Objective B: Discern the means by which levels of abstraction can be identified 
and the impact on the task of integration established. 

The effects on the integration task of having candidate models and 
simulations with differing levels of abstraction were documented in the 
literature as representing a significant challenge (section 2.4). There are 
currently many different methods for modelling and simulation which 
operate at different levels of abstraction. These methods each bring 
variation to the integration task (section 2.5). 



PAGE 288 

A novel method was developed to capture the levels of abstraction 
(section 3.8). The method uses the term abstraction as a concept by 
which two or more models can be compared against each other and an 
assessment of level of abstraction made. It was found that this method 
could be of use when models or simulations are representing the same 
phenomena. However the question of comparing abstraction across 
models and simulations of differing phenomena remains an open research 
question.  

Whenever a model or simulation is implemented a level of abstraction is 
used consciously or otherwise by the modeller. Conceptually, this affects 
the integration task by rendering it either meaningful or meaningless 
(section 6.3.2). This goes deeper as model abstraction is the result of what 
is known about the subject of the model or simulation. Knowns and 
unknowns have been shown to directly affect the validation of any 
integration (section 6.2.4).   

Objective C: Develop a means by which the generation and creation of 
middleware can be automated. 

The use of middleware is established for integrating existing models and 
simulations, however there are only limited examples of where automation 
is used - largely due to the complexity of the problem (section 2.3.1). Due 
to the flexibility of middleware and its ability to overcome the challenges 
of data exchange and conversion, it was deemed to be of potential use 
in this problem space (section 2.3.2). The wide range of middleware was 
discussed to allow meaningful discussion (section 2.4.3). The concept of 
middleware has been extended to situations where models and 
simulations can be distributed and run across a network. A method that 
has been shown to work in such situations is that of federated systems, 
which takes middleware and incorporates orchestration functionality with 
web services to enable distributed computation (section 2.4.4). 

To automate a process it first needs to be assessed to see if it can be 
developed as a solution for the task. A process for assisting in the 
integration of models and simulations was proposed in section 3.5. The 
generation of middleware was directly expressed as part of the SEIS 
process section in the SESEMS and defining the gaps sub process sections 
3.5.5 through 3.5.8. 

Part of the proposed process entails the capture of the minimum required 
information needed for an informed decision regarding whether a specific 
integration is meaningful or not (section 3.7.3). Consideration was given to 
machine readability of the captured information, allowing for the 
possibility of automation. However it may not be possible to automate 
some processes due to the nature of the decision making task (section 



PAGE 289 

5.1.2). This was found to be the case for the proposed method for defining 
levels of abstraction, as it required inductive thinking section 3.8. The 
potential to automate the selection of existing models using requirements 
for a desired simulation as well as the mining of data for the proposed 
integration tables was investigated using a POC NLP application. It was 
found that there is potential for this technology to be of assistance in this 
problem space (section 5). 

Objective D: Validate the designed process with a case study using real world 
models. 

The proposed methods were validated using two case studies. The first 
case study took the form of a full end-to-end example of the proposed 
methods. This example used the development of a squash ball as a 
platform (section 4.2) and demonstrated the feasibility of using the 
proposed methods and illustrated the verification process. The second 
case study takes the form of an open source version of an automotive 
domain application (section 4.3). This case study mimicked that which was 
found with industrial examples. Using the proposed methods a non-
domain expert is capable of finding inconsistences that would have 
rendered the integration meaningless.  

As has been shown, each of the objectives has evidence to support the 
conclusions drawn and hence the aim has also been met.  

From the work that has been conducted throughout this project it has been 
demonstrated that the methods of systems engineering are as applicable to the 
formulation of virtual testing of a system as they are to the creation of a systems 
being designed. 

If virtual experimentation exceeds the size and complexity that a small team can 
manage, then application of the systems engineering principles are of significant 
benefit. Crucially, with the investment in time that systems engineering methods 
require, they give a solid reference point that allows for meaningful verification 
and later validation to take place. This also allows for models and simulation to 
be compared in a meaningful way at a later date. 

With the current modelling and simulation practices such as they are, the design 
of a virtual test of a designed product requires considerable work. It has been 
argued that the resultant simulation can be a complicated or even complex 
system in its own right. The recognition that the simulations used are systems in 
their own right also then leads onto the fact the simulations themselves can also 
require designing, hence similar systems engineering methods are applicable. 

The integration of models and simulations is far easier and the results potentially 
more valid if the component models are constructed with the specific test and 
integration from their initial specification. Attempting to integrate existing models 



PAGE 290 

and simulations into a single test may be more time consuming and the results 
less valid than creating the whole experiment in a bespoke manner.  

The documentation of models and simulations is critical if the models are to be 
used at a later date. If there is no documentation to accompany a model then it 
becomes next to worthless once those who were involved in in its creation are no 
longer available. Without documentation much of the automated integration 
that could otherwise be conducted is made far more difficult or even impossible. 
The information required for meaningful integration at a later date is captured in 
section 3.7. It is hence recommended that even if the tables are not used that 
the documentation includes as a minimum the information identified in these 
tables. 

It has been shown that for any integration to be meaningful the semantics of the 
component models must be aligned not only with each other but also the 
experiment that is to be conducted. It is not sufficient to just handle the 
communication between the component parts for an integration to be 
meaningful.  

To capitalise on the value intrinsically held by existing models and simulations 
they need to be in a location where engineers can readily access them. It is 
hence recommended that existing models and simulations are stored in a 
repository alongside their documentation. With the repository being such that 
engineers form across the organisation can at least know of the existence of the 
available models and simulations even if there access is limited. 

  



PAGE 291 

7.2 CONTRIBUTION TO KNOWLEDGE  
The application and refinement of systems engineering principles to the 
integration of existing models and simulations has resulted in contributions having 
been made in both process and methodology. 

A new methodological representation of systems thinking has been created to 
depict the way in which it can be implemented in practice within an 
organisation. This representation can be found in section 3.2 and the application 
of it in section 3.5. This representation is innovative as it attempts to map the 
linear processes found in industry with concurrent parallelism that is often found 
within systems thinking. This representation, unlike many others, prioritises the 
understanding of the problem before attempts are made to specify 
requirements. It also clearly depicts how each stage builds on the work before. It 
is, in effect, a way of applying systems thinking without over-specifying each 
aspect of the project, allowing for the most appropriate method to be applied 
as and when needed. This is an attempt to work with the existing industrial 
methods rather than replacing them. 

The information that is required for meaningful integration of existing models and 
simulations has been developed (see section 3.7). The specified information 
allows for individuals that were not involved with the creation of specific models 
or simulations to still make a valid judgment as to whether two or more potential 
components can be meaningfully integrated. This builds on work conducted with 
standards, however critically it also focuses around the semantics rather than just 
the inputs and outputs. 

From the literature it was identified that levels of abstraction were repeatedly 
used as reason for not having a meaningful model or simulation integration 
(section 2). However there are few examples of where a means of specifying 
levels of abstraction has been found and used. The method proposed in section 
3.8 used a means of looking at what is conceptually represented by the variables 
and parameters used in the mathematical representations.  

The issue of verifying if the integration of two or more models or simulations and 
assessing if it is meaningful or not is one that has little coverage in the literature. 
The factors that cause the issue as to verifying whether a specific model and 
simulation integration is meaningful or not is what to use as a reference point. It is 
proposed in section 3.2 that the verification is not just a monolithic task to be 
conducted at the end once all integration work has been conducted, but rather 
can be broken down into smaller tasks, with different references dependent on 
the specific situation. A means of validating the integration is presented (section 
3.5) and its use discussed (section 6.2.3). 

It was identified that there is currently a dislocation between the virtual modelling 
simulation and testing with the rest of the classical engineering process (section 
6.8). A process in section 3.5 proposed a means of aligning this incongruence. 



PAGE 292 

However it is acknowledged that more work needs to be conducted to find 
methods to investigate this difference further.  

The identification of requirements for a model and simulation being different from 
the requirements of the system being emulated is a crucial one. Not only do the 
requirements act as a reference point for verification but also the operational 
environment is different and hence requires altered attributes. This resulted in a 
model or simulation requirements writing guide, it details factors that have to be 
taken into consideration when implementing a virtual test of a potential design 
(section 3.6). 

Using the contributions in methodology a complete end-to-end process is 
proposed in section 3.5 for virtual simulation and testing of a potential design. The 
process encapsulates: the linearised systems engineering approach, the 
simulation requirements guide, integration tables, and NLP, to produce an end-
to-end guide for engineers who are tasked with the virtual simulation and test of 
a potential design using existing components. The process was verified in section 
4 with a product development study (section 4.2) as well as an emulated 
industrial automotive example (section 4.3). The process was found to be of use 
and especially so for non-domain experts tasked with the integration of existing 
models and simulations. A key finding from this NLP based work is that simple 
noun-verb phrases are not sufficient to identify requirements or the description of 
capabilities that fulfil said requirements. 

  



PAGE 293 

7.3 FUTURE WORK  
This work has brought to light many opportunities for future investigation and 
study. The case studies (section 4) demonstrated that the proposed processes 
work and show promise. However it would be beneficial to widen the usage and 
develop the processes further with examples from other domains. The processes, 
once demonstrated in multiple instances, could then have a phased in adoption 
by an organisation and a cultural review of its acceptance studied. Such work 
would strengthen the processes and potentially reduce the time to market of 
complex engineering projects. 

The processes proposed in section 3 could be developed into a piece of 
software in its own right, guiding the user through the integration process and 
operating as a backbone that other forms of automation could be bound to. This 
has the potential to bridge the gaps that were identified in the literature (section 
2) and provide an end-to-end service for virtual testing. 

The requirements writing guide for modelling and simulation could have a 
greater impact if it was developed into a standard. Converting the guide into a 
standard would enable undisputable analysis as to whether a model or 
simulation abides by the concepts set forth in the guide. This would then allow for 
more meaningful discussion to be had by groups of individuals using the standard 
regarding how to proceed with virtual testing. Converting this guide to a 
standard would also allow for the semantic side of integration to be captured 
without significant additional effort being invested into the initial modelling phase 
of virtual testing. 

Once a significant number of successful validated integrations have been 
conducted using the proposed methods it would be an ideal opportunity to 
investigate technologies to support a repository that could be interrogated. Use 
of ontologies would be useful here (section 6.5). Such a repository of existing 
models and simulations has the potential to reduce the time that it takes for 
similar integrations at a later date to be set up and tested. With such a network 
of known integrations, analysis regarding their relationships could be drawn out 
and potential patterns identified, further reducing the time taken to conduct 
meaningful model and simulation integration and thus time to market. 

A novel method of defining abstraction has been proposed and tested in section 
3.8. The findings of the testing were promising, showing that such a concept can 
be implemented in a meaningfully way. It is therefore a logical progression to 
postulate if other similar methods could be investigated to capture terms such as 
model or simulation ‘fidelity’. Such methods could potentially be used to capture 
further information regarding the semantic similarity between existing models and 
simulations.  

The work that was conducted regarding the use of NLP for process support of the 
selection of existing models to produce an integrated simulation is just the tip of 



PAGE 294 

the iceberg (section 5). The POC demonstrated the potential for this technology 
to be of use in this domain and it warrants further development, and the 
formulation into a commercially usable industrial standard tool. The development 
of this, it is perceived, would entail the capture of multiple domain specific words 
and phrases that could be used to better identify the information needed for the 
integration tables (section 3.7), as well as the development of statistical style NLP 
techniques to ascertain the critical assumptions that are used during the creation 
of models and simulations. There is also no reason why these methods could not 
be expanded to the analysis of model based systems engineering tools such as 
UML and SysML as the requirements reference point, allowing for such a tool to 
be applicable across a greater variety of engineering projects. 

The systems lifecycle discussed in section 3.5.1 and how to make use of the ever 
expanding capabilities of computation modelling and simulation is an ever 
changing research question. The possibility of virtual prototyping is now real, 
though how to best use these capabilities is still a matter of contention. There are 
still questions of how to best implement modelling and simulation as part of the 
overall systems lifecycle. Such questions are; when to start, what to model, what 
to simulate, and the extent to which to virtually prototype, are all issues that are 
not widely discussed in the literature. Hence it is proposed that it would be 
worthwhile specifically investigating such questions using real world applications 
to find more effective ways of using this new technology as part of the product 
development lifecycle.  

There is the issue of how to structure an organisation, such that when a complete 
complex design is simulated, there can be ownership of the behaviours that were 
not apparent in the individual sub-systems testing. As such, oversight would need 
to exhibit influence over all sub-systems behaviour, as well as demonstrating a 
working understanding all interactions between the components. This gives rise to 
the concern that our abilities for simulation are verging on exceeding our ability 
to fully make use of them within an organisational setting.  

 

 

 

 

  



PAGE 295 

 

 

 

 

8 REFERENCES  



PAGE 296 

  



PAGE 297 

[1] J. Mossinger, “Software in automotive systems,” IEEE Software, vol. 27, no. 2, 
pp. 92–94, 2010. 

[2] P. Checkland, “Soft systems methodology: a thirty year retrospective,” 
Systems Research and Behavioral Science, vol. 17, no. S1, pp. S11–S58, 2000. 

[3] S. Beer, The viable system model: interpretations and applications of 
Stafford Beer’s VSM. Chichester: John Wiley & Sons, 1989. 

[4] I. Lorscheid, B.-O. Heine, and M. Meyer, “Opening the ‘Black Box’ of 
simulations: increased transparency and effective communication through 
the systematic design of experiments,” Computational and Mathematical 
Organization Theory, vol. 18, no. 1, pp. 22–62, 2012. 

[5] L. Ilzarbe, M. J. Alvarez, E. Viles, and M. Tanco, “Practical applications of 
design of experiments in the field of engineering: a bibliographical review,” 
Quality and Reliability Engineering International, vol. 24, no. 19th Febuary, 
pp. 417–428, 2008. 

[6] J. Asprion, O. Chinellato, and L. Guzzella, “A fast and accurate physics-
based model for the NOx emissions of diesel engines,” Applied Energy, vol. 
103, pp. 221–233, Mar. 2013. 

[7] A. Mouzakitis, D. Copp, R. Parker, and K. Burnham, “Hardware-in-the-loop 
system for testing automotive ECU diagnostic software,” Measurement and 
control, vol. 42, no. 8, pp. 238–245, 2009. 

[8] D. Di Ruscio, “Isight automate design exploration and optimization.” 
Dassault Systemems, pp. 1–6, 2014. 

[9] A. C. Ahn, M. Tewari, C.-S. Poon, and R. S. Phillips, “The limits of reductionism 
in medicine: could systems biology offer an alternative?,” PLoS medicine, 
vol. 3, no. 6, pp. 709–713, 2006. 

[10] F. el Khaldi, C. Ahouangonou, M. Niess, and O. David, “Cloud based HPC 
for innovative virtual prototyping methodology: automotive applications,” 
Transportation Research Procedia, vol. 14, no. Transport Research Arena 
TRA2016, pp. 993–1002, 2016. 

[11] “ANSYS,” ANSYS website, 2016. [Online]. Available: 
http://www.ansys.com/en-
GB/?gclid=Cj0KEQjwwry8BRDjsbjMpPSDvagBEiQA5oW0nIWgvGZfXJB0TAG9
xgj9nJfljtr5QWbnckxGVBLpPFIaAvd28P8HAQ. [Accessed: 15-Mar-2017]. 

[12] B. Hutchinson, “Pump simulation advances with ANSYS 17.0,” ANSYS Blog, 
2016. [Online]. Available: http://www.ansys-blog.com/pump-simulation-
advances-ansys-17-0/. [Accessed: 15-Mar-2017]. 

[13] Flowmaster Ltd, “Flowmaster case study automotive,” Mentor Graphics 
publication material. Flowmaster Ltd, pp. 1–5, Apr-2007. 

[14] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, and S. J. E. Taylor, “Simulation 
model reuse: definitions, benefits and obstacles,” Simulation Modelling 
Practice and Theory, vol. 12, pp. 479–494, 2004. 



PAGE 298 

[15] R. G. Bartholet, D. C. Brogan, and P. F. Reynolds, “The computational 
complexity of component selection in simulation reuse,” 2005 Winter 
Simulation Conference, Buena Vista, USA, 2005, pp. 2472–2481. 

[16] D. McKenzie, S. M. O’Neill, N. K. Larkin, and R. A. Norheim, “Integrating 
models to predict regional haze from wildland fire,” Ecological Modelling, 
vol. 199, no. 3, pp. 278–288, Dec. 2006. 

[17] H. A. H. Handley, “Incorporating the NATO human view in the DoDAF 2 . 0 
meta model,” Systems Engineering, vol. 15, no. 1, pp. 108–117, 2012. 

[18] S. B. Engineering, “Enginsoft newsletter simulation based engineering & 
sciences,” Enginsoft Newsletter. Enginsoft, pp. 1–72, Jan-2014. 

[19] M. U. Awais, P. Palensky, W. Mueller, E. Widl, and A. Elsheikh, “Distributed 
hybrid simulation using the HLA and the functional mock-up interface,” in 
Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the 
IEEE, Vienna, Austria, 2013, pp. 7564–7569. 

[20] A. Ledeczi, J. Davis, S. Neema, and A. Agrawal, “Modeling methodology 
for integrated simulation of embedded systems,” ACM Transactions on 
Modeling and Computer Simulation, vol. 13, no. 1, pp. 82–103, Jan. 2003. 

[21] “The NIST validator,” NIST Website, 2015. [Online]. Available: 
http://validator.omg.org/se-interop/changelog?hunchentoot-
session=9%3AC224B632FA49F33EA800D6B342B99A54. [Accessed: 15-Mar-
2017]. 

[22] Modelica Association Project “FMI,” “Functional mock-up interface for 
model exchange and co-simulation.” Modelica Association Project “FMI” 
Functional, pp. 1–120, 2014. 

[23] “What is an S-function,” MathWorks help file, 2016. [Online]. Available: 
http://uk.mathworks.com/help/simulink/sfg/what-is-an-s-
function.html?s_tid=gn_loc_drop. [Accessed: 15-Mar-2017]. 

[24] “National Instruments TestStand,” National Instruments, 2016. [Online]. 
Available: http://www.ni.com/teststand/. [Accessed: 15-Mar-2017]. 

[25] ISO, “ISO standards,” ISO website, 2016. [Online]. Available: 
http://www.iso.org/iso/home/standards.htm. [Accessed: 15-Mar-2017]. 

[26] “FMI support in tools,” FMI Standard organisation, 2016. [Online]. Available: 
https://www.fmi-standard.org/tools. [Accessed: 15-Mar-2016]. 

[27] I. Standard, “Systems and software engineering - life cycle processes - 
requirments engineering.” ISO/IEC/IEE, pp. 1–83, 2011. 

[28] G. A. Lewis, E. Morris, S. Simanta, and L. Wrage, “Why standards are not 
enough to guarantee end-to-end interoperability,” in 7th International 
Conference on Composition-Based Software Systems, Madrid, Spain, 2008, 
pp. 164–173. 

[29] P. Welch, “Programming Sucks,” Still Drinking (Web blog), 2014. [Online]. 
Available: http://www.stilldrinking.org/programming-sucks. [Accessed: 15-



PAGE 299 

Mar-2017]. 

[30] A. Dynamics, “Understanding advanced system integration labs: 
simulation-centric system integration.” Applied Synamics International, pp. 
1–12, 2007. 

[31] J. Touzi, F. Benaben, H. Pingaud, and J. P. Lorré, “A model-driven approach 
for collaborative service-oriented architecture design,” International 
Journal of Production Economics, vol. 121, no. 1, pp. 5–20, Sep. 2009. 

[32] M. a. Jaeger, H. Parzyjegla, G. Mühl, and K. Herrmann, “Self-organizing 
broker topologies for publish/subscribe systems,” in Proceedings of the 2007 
ACM symposium on Applied computing - SAC New York, New York, USA, 
2007, pp. 543–550. 

[33] J. M. Lopez-Vega, J. Povedano-Molina, G. Pardo-Castellote, and J. M. 
Lopez-Soler, “A content-aware bridging service for publish/subscribe 
environments,” Journal of Systems and Software, vol. 86, no. 1, pp. 108–124, 
Jan. 2013. 

[34] L. Jalali, S. Mehrotra, and N. Venkatasubramanian, “Formal Modeling: 
Actors; Open Systems, Biological Systems,” in Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), G. Agha, O. Danvy, and J. Meseguer, Eds. 
Berlin: Springer Berlin Heidelberg, 2011, pp. 352–367. 

[35] W. Kang, K. Kapitanova, and S. H. Son, “RDDS: A real-time data distribution 
service for cyber-physical systems,” IEEE Transactions on Industrial 
Informatics, vol. 8, no. 2, pp. 393–405, 2012. 

[36] H. -a. Jacobsen, “Tutorial: OMG data distribution service,” in 23rd 
International Conference on Distributed Computing Systems Workshops, 
Québec, Canada, 2003. Proceedings., 2003, pp. 198–198. 

[37] A. Hakiri, P. Berthou, and T. Gayraud, “Addressing the challenge of 
distributed interactive simulation with data distribution service,” CoRR, vol. 
abs/1008.3, pp. 1–9, 2010. 

[38] F. Safi Esfahani, M. A. Azmi Murad, M. N. B. Sulaiman, and N. I. Udzir, 
“Adaptable decentralized service oriented architecture,” Journal of 
Systems and Software, vol. 84, no. 10, pp. 1591–1617, Oct. 2011. 

[39] M. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and 
principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75–81, 2005. 

[40] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson, T. V 
Russo, and L. J. Waters, “Integrating multiple parallel simulation engines for 
mixed-technology parallel simulation,” in Simulation Symposium, 35th 
Annual, San Deigo, USA, 2002, no. 7888, pp. 45–52. 

[41] Y. Huang, R. McMurran, G. Dhadyalla, R. P. Jones, and A. Mouzakitis, 
“Model-based testing of a vehicle instrument cluster for design validation 
using machine vision,” Measurement Science and Technology, vol. 20, no. 
6, pp. 1–11, Jun. 2009. 



PAGE 300 

[42] M. López-Sanz, C. J. Acuña, C. E. Cuesta, and E. Marcos, “Modelling of 
service-oriented architectures with UML,” Electronic Notes in Theoretical 
Computer Science, vol. 194, no. 4, pp. 23–37, Apr. 2008. 

[43] M. W. Beall, “An object-oriented framework for the reliable automated 
solution of problems in mathematical physics,” Rensselaer Polytechnic 
Institute, 1999. 

[44] J. Mihm, C. Loch, and A. Huchzermeier, “Problem-solving oscillations in 
complex engineering projects,” Management Science, vol. 49, no. 6, pp. 
733–750, 2003. 

[45] A. Bharambe, S. Rao, and S. Seshan, “Mercury: a scalable publish-subscribe 
system for internet games,” in 1st Workshop on Network and Systems 
Support for Games (NetGames ’02), 2002, pp. 3–9. 

[46] D. Gregorczyk, “WS-Eventing SOAP-over-UDP multicast extension,” in 2011 
IEEE International Conference on Web Services, Washington, USA, 2011, pp. 
660–665. 

[47] R. Kewley, J. Cook, N. Goerger, D. Henderson, and E. Teague, “Federated 
simulations for systems of systems integration,” in 2008 Winter Simulation 
Conference, Miami, USA, 2008, pp. 1121–1129. 

[48] W. Cai, Z. Yuan, M. Y. H. Low, and S. J. Turner, “Federate migration in HLA-
based simulation,” Future Generation Computer Systems, vol. 21, no. 1, pp. 
87–95, Jan. 2005. 

[49] J. M. Schlesselman, G. Pardo-Castellote, and B. Farabaugh, “OMG Data-
Distribution Service (DDS): architectural update,” in IEEE MILCOM 2004. 
Military Communications Conference, Orlando, USA, 2004, vol. 2, pp. 961–
967. 

[50] A. Hakiri, P. Berthou, A. Gokhale, D. C. Schmidt, and T. Gayraud, 
“Supporting end-to-end quality of service properties in OMG data 
distribution service publish/subscribe middleware over wide area networks,” 
Journal of Systems and Software, vol. 86, no. 10, pp. 2574–2593, Oct. 2013. 

[51] R. Joshi and G. Castellote, “A comparison and mapping of data 
distribution service and high-level architecture,” RTI Self-publication. Real-
Time Innovations, pp. 1–9, 2006. 

[52] G. Pardo-Castellote, “OMG data-distribution service: architectural 
overview,” in 23rd International Conference on Distributed Computing 
Systems Workshops, Rhode Island, USA, 2003, pp. 200–206. 

[53] F. Campolongo, J. Cariboni, and A. Saltelli, “An effective screening design 
for sensitivity analysis of large models,” Environmental Modelling and 
Software, vol. 22, no. 10, pp. 1509–1518, 2007. 

[54] P. Bauer and P. J. Van Duijsen, “Challenges and advances in simulation,” in 
Power Electronics Specialists Conference, Recife, Brazil, 2005. PESC ’05. IEEE 
36th, 2005, pp. 1030–1036. 

[55] A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman, “Reduced-order 



PAGE 301 

models for MEMS applications,” Nonlinear Dynamics, vol. 41, no. 1–3, pp. 
211–236, 2005. 

[56] R. E. Shannon, R. Mayer, and H. H. Adelsberger, “Expert systems and 
simulation,” Simulation, vol. 44:6, pp. 275–284, 1985. 

[57] J. He, D. a Crolla, M. C. Levesley, and W. J. Manning, “Coordination of 
active steering, driveline, and braking for integrated vehicle dynamics 
control,” Proceedings of the Institution of Mechanical Engineers Part D 
Journal of Automobile Engineering, vol. 220, no. 10, pp. 1401–1420, 2006. 

[58] J.-F. Castet and J. H. Saleh, “Satellite reliability: statistical data analysis and 
modeling,” Journal of Spacecraft and Rockets, vol. 46, no. 5, pp. 1065–1076, 
2009. 

[59] J. Eason and S. Cremaschi, “Adaptive sequential sampling for surrogate 
model generation with artificial neural networks,” Computers and 
Chemical Engineering, vol. 68, pp. 220–232, 2014. 

[60] B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo, and B. 
van Wachem, Computational fluid dynamics for engineers. Cambridge, 
New York: Cambridge University Press, 2012. 

[61] P. Sutton, “The application of multi-attribute optimisation as a systems 
engineering tool in an automotive CAE environment,” Unversity of Bath, 
2012. 

[62] F. Liu, M. P. F. Sutcliffe, and W. R. Graham, “Prediction of tread block forces 
for a free-rolling tyre in contact with a rough road,” Wear, vol. 282–283, pp. 
1–11, Apr. 2012. 

[63] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema, T. 
Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar, “Model-based 
integration platform for FMI co-simulation and heterogeneous simulations 
of cyber-physical systems,” in Proceedings of the 10th International 
Modelica Conference, Lund, Sweden, 2014, pp. 235–245. 

[64] “Type conversions and type safety (modern C++),” Microsoft Developer 
Network, 2016. [Online]. Available: https://msdn.microsoft.com/en-
us/library/hh279667.aspx. [Accessed: 07-Jul-2016]. 

[65] B. Falkenhainer and K. D. Forbus, “Cmpositional modeling: finding the right 
model for the job,” Artificial Intelligence, vol. 51, no. 1–3, pp. 95–143, 1991. 

[66] O. El-Gayar and A. Deokar, “A semantic service-oriented architecture for 
distributed model management systems,” Decision Support Systems, vol. 55, 
no. 1, pp. 374–384, Apr. 2013. 

[67] “ISO 15288 System life cycle processes rev 2013 CD.” ISO/IEC/IEE, 2013. 

[68] International Standard, “International standard ISO 15926-2 insustrial 
automation systems and integration - integration of life-cycle data for 
process plants including oil and gas production facilities,” vol. 2003. ISO, pp. 
1–241, 2003. 



PAGE 302 

[69] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. 
Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. 
Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. 
Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein, 
R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski,  a. P. Randles, D. Reynolds, 
B. Riviere, U. Rude, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel, 
B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, “Multiphysics simulations: 
challenges and opportunities,” International Journal of High Performance 
Computing Applications, vol. 27, no. 1, pp. 4–83, Feb. 2013. 

[70] M. Horstemeyer, “Multiscale Modeling : A Review,” in Practical Aspects of 
Computational Chemistry, First., J. Leszczynski and M. K. Shukla, Eds. 
Springer Netherlands, 2009, pp. 87–135. 

[71] J. W. Fenner, B. Brook, G. Clapworthy, P. V Coveney, V. Feipel, H. 
Gregersen, D. R. Hose, P. Kohl, P. Lawford, K. M. McCormack, D. Pinney, S. R. 
Thomas, S. Van Sint Jan, S. Waters, and M. Viceconti, “The EuroPhysiome, 
STEP and a roadmap for the virtual physiological human.,” Philosophical 
transactions. Series A, Mathematical, physical, and engineering sciences, 
vol. 366, no. 1878, pp. 2979–99, Sep. 2008. 

[72] E. Weinan, Principles of Multiscale Modeling. Cambridge University Press, 
2011. 

[73] A. Pennycook, “English language and linguistics language and linguistics : 
disinventing standard English disinventing standard English,” English 
Language and Linguistics, vol. 4, no. 1, pp. 115–124, 2014. 

[74] P. de Haan, “Review article: The Cambridge grammar of the English 
language,” English Studies, vol. 86, no. 4, pp. 335–341, May 2005. 

[75] L. Merola, “The COTS software obsolescence threat,” Proceedings - Fifth 
International Conference on Commercial-off-the-Shelf (COTS)-Based 
Software Systems, Orlando, USA, 2006, pp. 127–133, 2006. 

[76] INCOSE, “INCOSE Systems Engineering Handbook: A Guide for System Life 
Cycle Processes and Acticities,” in Systems engineering handbook a guide 
for system life cycle processes and acticities, 4th Ed., D. D. Walden, G. J. 
Roedler, K. J. Forsberg, D. R. Hamelin, and T. M. Shortell, Eds. Hoboken: John 
Wiley & Sons, 2015, pp. 33–36. 

[77] M. W. Maier and E. Rechtin, “The Art Of Systems Architecting,” in The Art of 
Systems Architecting, 2nd Ed., CRC Press LLC, Ed. Florida: CRC Press LLC, 
2000, pp. 21–24. 

[78] J. A. Jacquez, “Design of Experiments,” The Franklin Institute, vol. 335B, no. 2, 
pp. 259–279, 1998. 

[79] R. A. Fisher, “The Influence of Rainfall on the Yield of Wheat at Rothamsted,” 
Philosophical Transactions of the Royal Society of London. Series B, 
Containing Papers of a Biological Character, vol. 213, pp. 89–142, 1925. 

[80] M. R. Galankashi, E. Fallahiarezoudar, A. Moazzami, N. M. Yusof, and S. A. 
Helmi, “Performance evaluation of a petrol station queuing system: a 



PAGE 303 

simulation-based design of experiments study,” Advances in Engineering 
Software, vol. 92, pp. 15–26, 2016. 

[81] A. Azadeh and S. Tarverdian, “Integration of genetic algorithm, computer 
simulation and design of experiments for forecasting electrical energy 
consumption,” Energy Policy, vol. 35, no. 10, pp. 5229–5241, 2007. 

[82] V. Prasad, A. M. Karim, Z. Ulissi, M. Zagrobelny, and D. G. Vlachos, “High 
throughput multiscale modeling for design of experiments, catalysts, and 
reactors: application to hydrogen production from ammonia,” Chemical 
Engineering Science, vol. 65, no. 1, pp. 240–246, 2010. 

[83] T. Gul, R. Bischoff, and H. P. Permentier, “Optimization of reaction 
parameters for the electrochemical oxidation of lidocaine with a design of 
experiments approach,” Electrochimica Acta, vol. 171, pp. 23–28, 2015. 

[84] I. Skrjanc, “Evolving fuzzy-model-based design of experiments with 
supervised hierarchical clustering,” IEEE Transactions on Fuzzy Systems, vol. 
23, no. 4, pp. 861–871, 2015. 

[85] E. Jack Chen and M. Li, “Design of experiments for interpolation-based 
metamodels,” Simulation Modelling Practice and Theory, vol. 44, pp. 14–25, 
2014. 

[86] M. Hegarty and M. A. Just, “Constructing mental models of machines from 
text and diagrams,” Journal of Memory and Language, vol. 32, no. 6, pp. 
717–742, 1993. 

[87] World Squash Federation, “Specifications For Squash Balls.” World Squash 
Federation, p. 2, 2015. 

[88] World Squash Federation, “Specifications For Squash Courts.” World Squash 
Federation, pp. 1–21, 2013. 

[89] C. Dickerson and D. Battersby, “PSi Theme one analysis of the vehicle as a 
complex system,” Jaguar Land Rover, 2016. [Online]. Available: 
http://www.psiprog.net/theme-1/. [Accessed: 29-Sep-2016]. 

[90] S. T. Saini, P. Lokhande, R. Deshmukh, and D. Baviskar, “Natural language 
processing on ambiguous sentence using NLP tools: core NLP, apertium 
and PRAAT,” International Journal of Innovative Research & Development, 
vol. 5, no. 7, pp. 158–164, 2016. 

[91] K. D. Bimson and R. D. Hull, “Unnatural Language Processing: 
Characterizing The Challenges In Translating Natural Language Semantics 
Into Ontology Semantics,” in Semantic Web, M. Workman, Ed. London: 
Springer International Publishing, 2016, pp. 119–135. 

[92] M. Schreiber, B. Kraft, and A. Zündorf, “Cost-efficient Quality Assurance of 
Natural Language Processing Tools Through Continuous Monitoring With 
Continuous Integration,” in Proceedings of the 3rd International Workshop 
on Software Engineering Research and Industrial Practice, Austin, USA, 2016, 
pp. 46–52. 

[93] “Stanford core NLP – a suite of core NLP tools,” Stanford University website, 



PAGE 304 

2016. [Online]. Available: http://stanfordnlp.github.io/CoreNLP/. [Accessed: 
01-Jan-2017]. 

[94] E. Agirre, D. Cer, M. Diab, and A. Gonzalez-Agirre, “SemEval-2012 task 6: A 
pilot on semantic textual similarity,” in Proceedings of the 6th International 
Workshop on Semantic Evaluation (SemEval 2012), in conjunction with the 
First Joint Conference on Lexical and Computational Semantics, Montréal, 
Canada, 2012, pp. 385–393. 

[95] S. . MacDonell, K. Min, and A. M. Connor, “Autonomous requirements 
specification processing using natural language processing,” in 
Proceedings of the ISCA 14th International Conference on Intelligent and 
Adaptive Systems and Software Engineering, Toronto, Canada, 2005, pp. 
266–270. 

[96] M. A. K. Halliday and C. M. I. M. Matthiessen, Halliday’s introduction to 
functional grammar, Fourth. New York: Routledge, 2014. 

[97] OMG, “Semantics of Business Vocabulary and Business Rules,” 2013. 
[Online]. Available: http://www.omg.org/spec/SBVR/1.0/PDF. [Accessed: 
16-Mar-2017]. 

[98] G. Fliedl, C. Kop, H. C. Mayr, A. Salbrechter, J. Vöhringer, G. Weber, and C. 
Winkler, “Deriving static and dynamic concepts from software 
requirements using sophisticated tagging,” Data and Knowledge 
Engineering, vol. 61, no. 3, pp. 433–448, 2006. 

[99] D. Falessi, I. C. Society, and G. Cantone, “Empirical principles and an 
industrial case study in retrieving equivalent requirements via natural 
language processing techniques,” IEEE Transactions on Software 
Engineering, vol. 39, no. 1, pp. 18–44, 2013. 

[100] C. D. Manning, J. Bauer, J. Finkel, S. J. Bethard, M. Surdeanu, and D. 
McClosky, “The stanford core NLP natural language processing toolkit,” in 
Proceedings of 52nd Annual Meeting of the Association for Computational 
Linguistics: System Demonstrations, Baltimore, USA, 2014, pp. 55–60. 

[101] “Natural language toolkit,” NLTK 3.0 documentation, 2016. [Online]. 
Available: http://www.nltk.org/. [Accessed: 16-Mar-2017]. 

[102] “NLTK FAQ,” NLTK GitHub, 2016. [Online]. Available: 
https://github.com/nltk/nltk/wiki/FAQ. [Accessed: 26-Nov-2016]. 

[103] S. Bird, E. Klein, and E. Loper, “Natural Language Processing with Python - 
Analyzing Text With The Natural Language Toolkit,” 2009. [Online]. Available: 
http://www.nltk.org/book/. [Accessed: 16-Mar-2017]. 

[104] A. Wilton, A. De Houwer, J. Cenoz, S. M. Gass, D. Reed, A. Knapp, K. Kohn, L. 
Wei, J. Nortier, B. Seidlhofer, M. H. Verspoor, K. de Bot, and E. van Rein, 
English in Europe Today, vol. 8. Amsterdam: John Benjamins B.V, 2011. 

[105] “About the OED,” Oxford English Dictionary, 2016. [Online]. Available: 
http://public.oed.com/about/. [Accessed: 16-Mar-2017]. 

[106] F. J. Chantree, A. De Roeck, B. Nuseibeh, and A. Willis, “Identifying nocuous 



PAGE 305 

ambiguity in natural language requirements,” in 14th IEEE International 
Requirements Engineering Conference, Minneapolis, USA, 2006, p. 203. 

[107] M. K. Mathai, R. Venugopal, and J. T. Abraham, “Hybrid model for software 
development processes,” International Journal of Research in Engineering 
and Technology, vol. 5, no. 1, pp. 198–202, 2016. 

[108] S. Das, G. Singh, and B. Kumar, “Windows based graphical objective C IDE,” 
International Journal of Advancements in Technology, vol. 7, no. 1, pp. 1–5, 
2016. 

[109] MathWorks, “The Language of Technical Computing,” 2016. [Online]. 
Available: http://uk.mathworks.com/products/matlab/. [Accessed: 17-
Mar-2017]. 

[110] National Instruments, “Benefits of programming graphically in NI LabVIEW,” 
National Instruments. National Instruments, pp. 1–7, 2013. 

[111] Nick Coghlan, “Should I use Python 2 or Python 3 for my development 
activity?,” 2015. [Online]. Available: 
https://wiki.python.org/moin/Python2orPython3. [Accessed: 11-Apr-2016]. 

[112] H. F. Cervone, “Using Pugh matrix analysis in complex decision-making 
situations,” OCLC Systems & Services, vol. 25, no. 2, pp. 76–81, 2009. 

[113] C. Analytics, “Download anaconda now!,” 2016. [Online]. Available: 
https://www.continuum.io/downloads. [Accessed: 16-Mar-2017]. 

[114] “Anaconda 4.0.0 package list,” Anaconda Documentaiton, 2016. [Online]. 
Available: https://docs.continuum.io/anaconda/pkg-docs. [Accessed: 16-
Mar-2017]. 

[115] “Installing NLTK data,” NLTK 3.0 documentation, 2016. [Online]. Available: 
http://www.nltk.org/data.html. [Accessed: 16-Mar-2017]. 

[116] “NLTK 3.0 docmentation,” NLTK.org, 2016. [Online]. Available: 
http://www.nltk.org/_modules/nltk/help.html. [Accessed: 16-Mar-2017]. 

[117] S. Sarkar, “Models of reduction and categories of reductionism,” Synthese, 
vol. 91, no. 1949, pp. 167–194, 1992. 

[118] T. Gordon and D. Greenspan, “The management of chaotic systems,” 
Technological Forecasting and Social Change, vol. 47, no. 1, pp. 49–62, 
Sep. 1994. 

[119] G. E. P. Box, “Science and statistics,” Journal of the American Statistical 
Association, vol. 71, no. 356, pp. 791–799, 1976. 

[120] E. Ronchi, E. D. Kuligowski, P. A. Reneke, and D. Nilsson, “NIST Technical 
Note 1822 the process of verification and validation of building fire 
evacuation models.” pp. 1–85, 1822. 

[121] R. J. Barnes, D. C. Gause, and E. C. Way, “Teaching the unknown and the 
unknowable in requirements engineering education,” 2008 Requirements 
Engineering Education and Training, REET’08, pp. 30–37, 2008. 



PAGE 306 

[122] F. Boschetti, “A graphical representation of uncertainty in complex 
decision making,” Emergence: Complexity & Organization, vol. 13, pp. 146–
166, 2011. 

[123] C. Brückner and B. Swynnerton, “A new architecture for automotive 
hardware-in-the-loop test,” ATZelektronik worldwide, vol. 9, no. 3, pp. 40–43, 
2014. 

[124] E. Suhir, “Human-in-the-loop: probabilistic predictive modelling, its role, 
attributes, challenges and applications,” Theoretical Issues in Ergonomics 
Science, vol. 16, no. 2, pp. 99–123, 2014. 

[125] M. M. K. Oishi, D. Tilbury, and C. J. Tomlin, “Guest editorial: special section 
on human-centered automation,” IEEE Transactions on Automation 
Science and Engineering, vol. 13, no. 1, pp. 997–998, 2016. 

[126] G. Canuto da Silva and P. C. Kaminski, “Selection of virtual and physical 
prototypes in the product development process,” International Journal of 
Advanced Manufacturing Technology, vol. 84, pp. 1513–1530, 2016. 

[127] A. Mouzakitis, J. Wei, and J. Wang, “Vehicle windscreen wiper 
mathematical model development and optimisation for model based 
hardware-in-the-loop simulation and control,” in The 17th International 
Conference on Automation and Computing, Huddersfield, UK, 2011, pp. 
207–212. 

[128] M. van Ratingen and A. Williams, “An update on the euro NCAP safety 
ratings program,” Airbag. Euro NCAP, Brussels, Belgium, pp. 1–39, 2014. 

[129] P. Benjamin and M. Graul, “A Framework for adaptive modeling and 
ontology driven simulation (FAMOS),” vol. 6227, pp. 622705-622705–11, May 
2006. 

[130] A. Verma, K. Akella, and B. Perakath, “Using Ontologies For Simulation 
Integration,” in 2007 Winter Simulation Conference, Washington, USA, 2007, 
pp. 1081–1089. 

[131] E. J. Candes and M. Wakin, “An introduction to compressive sampling,” 
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008. 

[132] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2, 
pp. 25–31, 2006. 

[133] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou, “On the Evolution 
of Services,” IEEE Transactions on Software Engineering, vol. 38, no. 3, pp. 
609–628, 2012. 

[134] F. Berman, “Got data?: a guide to data preservation in the information 
age,” Communications of the ACM, vol. 51, no. 12, pp. 50–56, 2008. 

[135] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. 
Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud 
computing,” Communications of the ACM, vol. 53, no. 4, p. 50, 2010. 

[136] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, “Cost-



PAGE 307 

benefit analysis of cloud codlputing versus desktop grids,” in IPDPS 2009 - 
Proceedings of the 2009 IEEE International Parallel and Distributed 
Processing Symposium, Rome, Italy, 2009, pp. 1–12. 

[137] A. Jacobs, “The pathologies of big data,” Communications of the ACM, 
vol. 7, no. 6, p. 10, 2009. 

[138] P. Benjamin, P. Mukul, and R. Mayer, “Using Ontologies For Simulation 
Modeling,” in Proceedings of the 2006 Winter Simulation Conference, 
Monterey, USA, 2006, pp. 1151–1159. 

[139] E. Honour and R. Valerdi, “Advancing an Ontology for Systems Engineering 
to Allow Consistent Measurement,” in Conference on Systems Engineering 
Research, Los Angeles, USA, 2006, pp. 1–12. 

[140] I. Niles and A. Pease, “Towards a standard upper ontology,” Proceedings 
of the international conference on Formal Ontology in Information Systems 
- FOIS’, New York, USA, 2001, pp. 2–9. 

[141] J. S. Liang, “Generation of automotive troubleshooting configuration 
system using an ontology-based approach,” Computers in Industry, vol. 63, 
no. 5, pp. 405–422, Jun. 2012. 

[142] T. Karhela, A. Villberg, and H. Niemistö, “Open ontology-based integration 
platform for modeling and simulation in engineering,” International Journal 
of Modeling, Simulation, and Scientific Computing (IJMSSC), vol. 3, no. 2, 
pp. 1–36, Jun. 2012. 

[143] J. Miller and G. Baramidze, “Ontologies for modeling and simulation: An 
initial framework,” ACM Journal, vol. V, pp. 1–47, 2004. 

[144] J. A. Miller and P. A. Fishwick, “Ontologies for modeling and simulation: 
issues and approaches,” in Proceedings of the 2004 Winter Simulaiton 
Conference, Washington, USA, 2004, p. 264. 

[145] P. Benjamin and K. Akella, “Towards ontology-driven interoperability for 
simulation-based applications,” in Proceedings of the 2009 Winter 
Simulation Conference Austin, USA, 2009, pp. 1375–1386. 

[146] M. Jamshidi, “System of systems engineering - new challenges for the 21st 
century,” Aerospace and Electronic Systems Magazine, IEEE, vol. 23, no. 5, 
pp. 4–19, 2008. 

[147] J. Westbrook, N. Ito, H. Nakamura, K. Henrick, and H. M. Berman, “PDBML: 
the representation of archival macromolecular structure data in XML.,” 
Bioinformatics (Oxford, England), vol. 21, no. 7, pp. 988–92, Apr. 2005. 

[148] B. Sauser, D. Verma, J. Ramirez-Marquez, and R. Gove, “From TRL to SRL: 
The concept of systems readiness levels,” in Conference on Systems 
Engineering Research, Los Angeles, USA, 2006, pp. 1–10. 

[149] J. S. Seibel, T. A. Mazzuchi, and S. Sarkani, “Same vendor, version-to-version 
upgrage decision support model for commercial off-the-shelf productivity 
applications,” Systems Engineering, vol. 9, no. 4, pp. 296–312, 2006. 



PAGE 308 

[150] A. Mohamed, G. Ruhe, and A. Eberlein, “COTS selection: past, present, and 
future,” in Proceedings of the International Symposium and Workshop on 
Engineering of Computer Based Systems, Tucson, USA, 2007, pp. 103–112. 

[151] S. J. E. Taylor and S. J. Turner, “Guidelines for commercial off-the-shelf 
simulation package interoperability,” in 2008 Winter Simulation Conference, 
Miami, USA, 2008, pp. 193–204. 

[152] “Autosar,” 2046. [Online]. Available: http://www.autosar.org/. [Accessed: 
16-Mar-2017]. 



PAGE 309 

  



PAGE 310 

 

 

 

9 APPENDIX  
  



PAGE 311 



PAGE 312 

9.1 APPENDIX PROCESS ELEMENTS  
For each of the proposed process and sub processes a description of the 
elements has been express in the following tables. 

9.1.1 SYSTEM CREATION LIFECYCLE 
 

PROCESS ELEMENT DESCRIPTION 
1) Customer Want 
 

For a system to be created there has to be a want or 
a need for it. In the manufacture of goods and 
services this manifests as a customer want. The 
organisation that is looking to create something to 
fulfil the customer wants first has to recognise that 
there is a want and capture an understanding of it. 

2) Requirements 
 

The capturing of system requirements is the task of 
understanding the customer want, distilling what is 
necessary to fulfil the wants as well as the needs of 
the customer, synthesising the information, and 
recording the statements. There are many methods 
and approaches that can be used to elicit 
requirements and ensure that they are; correct, 
concise and clear. It is considered outside the bounds 
of this research to specify how the requirements for 
the system are to be elicited and verified. However 
this process requires there to be a full set of 
requirements for the system being designed. 

3) Architecture 
 

From the requirements architecture for potential 
solutions can be formulated. Having an architecture 
specified can be of benefit to the simulation and 
modelling tasks later on in the process. The means by 
which the architecture is formed and represented is 
outside of the bounds of this research, however it is 
strongly recommended for architecture to be in place 
before simulation work is started is. Having a complete 
architecture of a potential solution is a prerequisite for 
other proposed methods. 

4) Design 
 

The design uses the requirements and architecture to 
produce a potential design that satisfies what the 
customers’ wants and needs are. The design of a 
potential solution is what is tested using virtual 
simulation and testing. The means by which the 
engineers produce there potential designs is outside 
of the bounds of this research. The fact that designs 
are fully formulated and reflect the requirements 
which have been captured is what is needed for the 
processes that have been developed. A fully 
specified potential design is required for the following 
process to operate. 



PAGE 313 

5 & 6) Virtual Simulation 
and Testing 
 

To verify if a potential design is worth taking to the 
physical prototype stage virtual simulation and testing 
can be used. The concept is that the virtual testing will 
be quicker and cheaper than building physical 
prototypes and testing them. For testing to start a 
clear and complete design is needed along with 
architecture and a full requirement set.  
 
The potential design is tested in a virtual environment. 
This is a non-trivial task and is the primary focus of this 
body of research. 
 
The process by which the simulations are selected 
integrated and verified is the main focus of this body 
of work see the aims and objectives found in section 
1.5. The SEIS process and its sub processes are 
detailed below. The models or simulations if 
functioning correctly will produce a data set that can 
be used to inform design decisions.  

7) Do the Results of the 
Tests Support the Design 
 

The results of the models and simulations will either 
serve to support the case for a specific design or will 
show flaws that were not investigated before testing 
took place. This decision is to be tempered by the 
confidence that engineers have in the results of the 
virtual testing. If the results of the virtual testing support 
the design physical prototyping is the next stage. If the 
results show the design to be found wanting, a 
redesign may be needed. 

8) Build Prototype 
 

The design that has been specified is to be realised 
with a physical prototype. Physical prototypes are 
often expensive due to the tooling and highly skilled 
labour that is needed. It is advised that this stage 
should only be entered into if the virtual testing shows 
promise or there is no known way to simulate it. 



PAGE 314 

9) Test Prototype with 
Same Tests as 
Conducted Virtually 
 

By conducting the same physical tests as what were 
conducted virtually previously ensures validation of 
the models, simulations and the integration of them. 
Using the same tests that are conducted physically as 
were conducted virtually gives a solid reference point. 
This reference point can not only be used for 
validation of the models and simulations but also for 
any future work concerning this platform.  
 
It is recognised that not all virtual tests can be 
reproduced in the real world as this can be the reason 
for testing some systems virtually in the first instance. 
Time is a critical factor in any product development 
and there may not be the time to conduct all of the 
virtual tests physically. However if the reuse of models 
and simulation is going to be more of a focus of 
organisations the validation of models is going to 
have to become more of a priority. For model 
verification to be conducted physical reference 
points are needed. In this instance reference points 
can only be captured by conducting physical testing. 
This issue is one that the organisations need to make 
on a strategic organisational level. 

10) Does the Behaviour 
of Prototype Match that 
shown in Simulations? 
 

By comparing the outputs of the physical testing with 
the output of the virtual testing the validation of the 
virtual models and simulations can take place. If 
within the organisation value is attributed to the virtual 
models and simulations being correct for use later the 
results feed back into the SEIS process and alterations 
can be made. 

11) Does the Prototype 
fulfil Customer and 
stakeholders 
Requirements? 

A comparison is to be conducted between the 
behaviour of the physical prototype and the 
requirements that were captured earlier in the 
process.  
An engineering decision is to be made at this point. If 
enough of the requirements are met by the physical 
prototype then the manufacture of the product can 
start. If it is decided that the physical prototype does 
not meet enough of the requirements then it is back 
to the design to see if changes can be made so that 
the potential design comply with the requirements. 

12) Enter Manufacture 
 
 
 

The design can be taken to the manufacturing phase. 
This involves taking the potential design and what was 
learnt and producing a means by which the product 
can be manufactured. The means by which this is 
done is outside of the bound of this research. 

Table 9.1: Textual description of Systems creation Lifecycle stages. 

  



PAGE 315 

9.1.2 VERIFICATION REPRESENTATION 
 

PROCESS ELEMENT DESCRIPTION 
1) Item/s Being Verified The section of work that is to be tested. 
2) Requirement 
(Reference Point) 

To ascertain if the item under test is satisfactory or not 
a known correct reference point is required. This can 
be requirements but could very easily be golden unit 
that is known to be correct. 

3) Form Verification Test An experiment is to be created for the purpose of 
which is to ascertain if the item under test has the 
attributes or operates in a way that is within tolerances 
of the reference point. 

4) Using Formed Test 
Does Item Being Verified 
Meet Requirement 
Reference Point? 

Conduct the test that was specified in stage 3. The 
outputs of the test are then to be compared to the 
reference point fixed in stage 2. The outputs of the test 
may need to be processed and put through various 
analytical tools before a meaningful comparison can 
be made. 

5) Passed Verification 
Test 

The item being testing is acceptable and falls within 
tolerances specified in the stage two. 

6) Failed Verification Test The item being tested has been defined as being 
outside of the boundaries specified in the verification 
test. 

Table 9.2: Textual descriptions of the stages of the verification testing process. 

  



PAGE 316 

9.1.3 VALIDATION REPRESENTATION 
 

PROCESS ELEMENT DESCRIPTION 
1) Requirement Set 
(Reference Points) 

To ascertain if the item under test is satisfactory or not 
a known correct reference point is required. For 
Validation this can be the requirements set or the 
opinions of the stakeholders of the system.  

2) Defined Testing 
Procedure 

An experiment is to be created for the purpose of 
which is to ascertain if the item under test has the 
attributes or operates in a way that is within tolerances 
of the reference point. 

3) System Being 
Validated 

The complete functional system that is to be tested. 

4) Conduct Tests  The formulated test is to be conducted and the results 
stored. 

5) Analyse Results The results of the testing are to be analysed using the 
appropriate means for the data that is produced. 

6) Does Item Being 
Validated Meet 
Reference Points? 

Use appropriate methods to ascertain if the result of 
the analysis indicates whether the system being tested 
operates within the tolerances of the attributes or 
operations specified in the reference point. 

7) Passed Validation Test The system falls within the specified tolerances. 
8) Failed Validation Test  The system falls outside of the specified tolerances. 

Table 9.3: Textual descriptions of the stages of the Validation testing process. 

  



PAGE 317 

9.1.4 SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 
 

PROCESS ELEMENT DESCRIPTION 
1) Understanding the 
Problem Space 

The understanding of a problem space is the 
foundation for the information needed for decisions 
that are made throughout the rest of this process. If 
the understanding of the problem space is not 
present then the decisions that are made may be 
incongruent with the problem space. This 
understanding can be gained in many ways the 
specifics of which are outside of the bounds of this 
research however many methods exist in literature.  

2) Requirements 
Specification of System  

A detailed set of requirements are necessary for the 
rest of this process. Requirements are used as a 
reference point for not only what is going to be 
created and hence needs to be mimicked but also 
how the simulation representing the system being 
designed is to be tested. 
There are many ways to capture requirements and 
analyse them to get them to such a state whereby 
they can be relied upon to be correct, complete and 
concise. This process does not dictate the method by 
which the system requirements are to be elicited, 
refined or organised. The requirements are to be 
written in such a way as they can be tested against 
for the purpose of verification and validation.  

3) Architecture of 
System Being Designed  

To produce a simulation it requires an understanding 
of the nature of the system being simulated. Having 
the architecture of the system being designed gives a 
reference point as to what is to be mimicked as well 
as an indication of how the architecture of the 
simulation being designed may function. The 
architecture will show what the constituent sub-
systems are and how they are intended to 
communicate. This division of the whole system into 
constituent parts may be of use when defining which 
available existing models could be selected. 

4) System Design of 
System being Designed 
 

A full candidate system design is needed as the exact 
nature of what needs to be simulated needs to be 
known by the modeller. The design does not need to 
be final and ideally it is to be in a state that allows for 
engineers to make changes depending on the results 
of the virtual tests. This complete design is needed as 
this is the basis of the underpinning ideas as to why 
simulations are used in the engineering design 
process. Without a concrete design at this stage 
decisions will be made by individual modellers which 
may course variations across the simulation potentially 
coursing issues with accuracy. 



PAGE 318 

5) Design and Simulation 
Boundary 
 

This is the point where the focus of work changes from 
the system being designed and moves to the 
simulation being designed. All of the knowledge 
regarding the simulation to be modelled is known and 
in a form that can be used later on in the process. All 
external factors to the design of the simulation are 
considered to be held constant from this point 
onwards. The work at this point does not need to be 
fully virtual in nature as physical test data; hardware in 
the loop and human in the loop testing can be used 
within this process.     

6) Desire to Test Potential 
Design 
 

There needs to be the desire in the first instance to 
learn more about the suitability of the potential 
design. The purpose of simulation needs to be 
understood and known by all those involved with the 
integration task. To maximise the value of the testing 
procedure the engineering project needs to be 
structured in such a way as to harness the results of 
the simulation and use them to have a positive effect 
on the thinking regarding the system design.  

7) Design of Experiment 
 

To ensure that the experiment that is being 
conducted with the simulation task actually tests what 
the designers need it to test the experiment itself 
needs to be designed. It is not simply enough to have 
the desire to test a system and crack on and start 
coding a simulation. A complex system with grate 
variability in its construction will require careful testing 
to ensure that all of the aspects of the system are 
tested in an appropriate way to ensure that time and 
effort are not wasted testing parts of the system in an 
incorrect or none representative way. The grater the 
variation present in a system, the grater the effort 
needs to be to exhaustively test all of the possible 
interactions that can occur during operation. The 
design of the experiment is to be conducted to 
ensure that only what is needed to be tested is tested 
as experimentation can be expensive and time 
consuming. The system designers need to have 
formulated clear ideas as to what parts or behaviours 
of the system being designed need testing, and what 
they are to be tested for. Ensure that all parameters 
are classified as being either independent or coupled 
with other parameters. Parameters which are coupled 
need to be known as this is a source of potential issue 
when sharing values between models and simulations 
during execution. Any biases are to be identified and 
reduced to a minimum wherever possible within the 
constraints of the project. If it is impossible to reduce 
the identified biases (to an extent that is acceptable) 
of the test then they are to be identified and taken 
into consideration when later looking at the results of 



PAGE 319 

the simulation. 
 
Potential sources of unintended variation that will be 
present in testing are to be identified and reduced 
wherever it is possible. Unintentional variation is often 
the source of unexplained variation that is present in 
results of tests.  
 
The way in which the test is conducted is to reflect the 
factors that will be present in the operational 
environment of the system being designed. The 
inclusion or emission of erroneous external factors may 
result in the behaviour of the models being very 
different to that of the final system in its operational 
environment. The identification of what factors in the 
experiment will be held constant and which will be 
changed at what point and in what order. The 
behaviour of the system may be dependent on the 
actions that have happened previously, if this is the 
case then it has to be taken into consideration in the 
testing that is conducted. If factors are to change 
during run time be that individual factors or a 
combination there of, consideration needs to be 
given as to what is going to be the trigger for the 
change and when it is going to happen. The 
simulation may not run at the same rate as it will do in 
its operational environment and as such trigger events 
may need to be expressed in other ways than in 
seconds of operation. 
 
At the end of this stage a clear understanding as to 
what the experiment is looking to achieve is to have 
been formed and the factors that can affect the 
results being taken into consideration as well as a 
clear testing plan. 



PAGE 320 

8) Define Assumptions of 
Experiment 

The assumptions that an experiment is based upon 
not only affect the results of the experiment but also 
what existing models can be selected for use as part 
of it. If there is an assumption mismatch between 
component models then the integration between 
them can be meaningless. By explicitly stating the 
assumptions that are being made it makes it possible 
to share the understanding between engineers 
working on the project, as well as functioning as a 
reference point as to compare existing models and 
simulations to during the selection process. If the 
assumptions of the individual component models and 
simulations align with each other the complete 
integrated simulation is closer to being semantically 
coherent. This stage should be relatively 
straightforward taking the work conducted regarding 
the DOE in the previous step. 

9) Define Boundaries of 
Experiment 
 

Each system has its bounds and an experiment is no 
different. By defining the bounds of the experiment it 
ensures that the effort of the engineers is focused on 
work that is concerned with achieving the intended 
experiment. Defining the bounds of the experiment 
and hence the content of the simulations can also 
help with reducing feature creep. By reducing feature 
creep considerable rework is reduced and the 
confidence in the simulation can be kept at a high 
level. By explicitly stating the boundaries of the 
experiment then the inputs and outputs will also be 
defined. The definition as to what the inputs and 
outputs of the experiment are to be also acts as a 
check as to if the DOE is being adhered to. For 
management this stage is useful as it will explicitly 
show what is and what is not being considered to be 
part of the experiment.  

10) Simulation 
Requirements 
 

Requirements act as a reference point for the 
creation of a system, a means of defining the 
capabilities of what is to be created and how the 
system is to be tested once it is created. A simulation 
can be considered a system in its own right and so is 
no different in these regards. As the simulation 
requirements will be used throughout the rest of this 
process considerable effort has been invested into 
how simulation requirements are to be written. For 
more information and specific guidance on this see 
the simulation requirements writing guide in section 
3.6. 



PAGE 321 

11) Set Standards If They 
Are To Be Used 
 

Standards as shown in the section 2.3.3 have proven 
to be of use in particular situations and it is at this 
stage that it is worth investing time to ascertain if a 
standard would be of use and if so which one/s. There 
may be more than one standard that could be 
implemented at any one time, this is due to the there 
being standards for almost all potential engineering 
tasks. If standards are to be implemented across the 
simulation this decision needs to be conceded before 
models and simulations are selected for use.  

12) Verification of 
Simulation Requirements 
and Standard Selection 
 

Once a set of Simulation requirements have been 
elicited it is necessary to verify them against the 
design of experiment statements. If it has been 
decided to implement a standard it also requires 
verification against the DOE. If there are any 
discrepancies it will be necessary to rework the 
requirement set or chose a new standard. If the 
requirements set is changed at any point the 
standard choice will need to be reassessed. 

13) Preliminary 
Simulation Architecture 
 

To aid in the selection of existing models process a 
preliminary architectural design is required. The 
architecture at this point is to server as a means of 
structure as to what is expected to be built in the 
simulation being designed. This architecture is not 
intended to be the final one but rather serve as a stop 
gap to give an idea as to the parts of the system 
being designed that need to be simulated. The 
architecture will also dictate the way in which the 
constituent parts may communicate and how the 
simulation system will respond to specific stimulus. This 
architecture itself will only be loosely defined as it will 
change as more information about the available 
models and simulations becomes apparent. To aid in 
the design of the architecture the available 
infrastructure for combined simulation execution is to 
be assessed, as this will aid in the decisions as to which 
simulations are suitable for integration. Integration 
infrastructures have limitations be that; amount of 
data that can be transfer, types of data that can be 
transferred, number of models, type of model that 
can be executed, etc. 
 
This loosely defined architecture will follow that of the 
system being designed be that the components of 
the system or the way that it will respond to specific 
stimulus. 



PAGE 322 

14) Verification of 
Preliminary Architecture 
 

By verifying that the architecture matches the 
simulation requirements further work can be 
conducted in confidence reducing the likelihood for 
rework. The loosely defined nature of the preliminary 
architecture should not be used as an excuse for 
deviation from requirements. If the architecture does 
not comply with the simulation requirements it will 
require rectification. 

15) Preliminary 
Simulation Design 
 

The preliminary architecture can be taken further at 
this point and a preliminary simulation design can be 
formulated. This design will take the architecture and 
embellish the component parts and describe the 
intended behaviour. This preliminary design can be 
used as a reference point for later decisions as to 
weather a model or a simulation is suitable for 
integration selection. 

16) Verification of 
Preliminary Simulation 
Design 
 

With the preliminary design being built upon the 
preliminary architecture verification against the 
requirements can highlight deviations from initial 
intent of the experiment. 

17) Are There Any 
Existing Simulations and 
Models? 
 

Investigating as to if there are any existing models or 
simulations that could be of use for the experiment 
that could vastly reduce the cost and time it takes to 
implement the final simulation. The full question is ‘Are 
there any existing models and simulations within or 
external to the organisation that the simulation 
designers have access to?’. Having existing models 
and simulations can decrease the production time of 
the overall simulation however it does come at a cost. 
The search for existing models and simulations may 
not be as straightforward as it first seams. 
 
The engineers undertaking this task have to have an 
overview of various modelling methods, the 
organisation that they are operating within, and the 
system being designed. This requires a very particular 
set of skills that only comes with experience of 
operating within an organisation on multiple projects. 
This is as much a human issue as it is a technical one. 
If an organisation has a central repository of all their 
models and simulations which could be interrogated it 
makes this step significantly quicker than if individuals 
had to manually ask departments or teams if they 
have any models or simulations they can uses. 

18) Systems Engineering 
of Selection of Existing 
Models Process 
 

This stage of the process aids in the selection of 
existing models for the purpose of integration into a 
larger simulation. This is a considerable task in itself 
and hence is a process defined in section 3.5.6. 



PAGE 323 

19) Set Firm Architecture 
 

The setting of the firm architecture is the decision of 
which models are going to be used, the way they are 
going to be organised and the means by which they 
are to communicate. With the knowledge and 
understanding that has been gained through the 
SESEM process an informed choice can be made as 
to which models and simulations to use in the 
integrated solution. With this newfound understanding 
the potential existing component parts in 
combination with the preliminary simulation 
architecture, preliminary design, and simulation 
requirements can now be used to formulate the firm 
architecture. If it has been decided that a standard or 
standards are to be used this decision is to be 
reassessed. If the standard is still deemed acceptable 
then it is to be complied with. If the decided upon 
standard is not found to be usable in this situation it 
may be worth readdressing the choice. If a new 
standard is to be used then it requires verification 
against the simulation requirements. 

20) Assess 
Computational 
Requirements 
 

All simulations have a computational overhead and a 
simulation made from existing models and or 
simulations is not different. Now that the models and 
simulations that are going to be used have been 
decided upon the overall computational burden can 
be calculated. Each component simulation is to be 
characterised to ascertain how much memory, 
processing power, storage, and time that it used to 
give a set amount of output be that a single iteration 
or full simulation run. The culmination of the 
computational overhead of all of the models is the 
result of the addition of the piece parts. Once the 
overhead is calculated the computer system that the 
simulation is intended to execute on can be specified 
(if it has not been specified in the requirements). The 
computers that an integrated solution executions on if 
more than one is needed then the way in which they 
communicate is as much a part of the integration 
problem as the mathematical functions in software. 
Therefore consideration as to the structure of the 
computational hardware is to be researched and 
constructed.  

21) Verification of Set 
Architecture 
 

Using the simulation requirements the Set architecture 
is to be verified. This verification is to ensure that the 
DOE is adhered to. Verification at this stage also 
critically covers the way in which the constituent parts 
will communicate. If there are issues with either the 
selected models or intended means by which they 
are to communicate the architecture is to be 
reworked. 



PAGE 324 

22) Define 
Communication 

With the architecture set and the component models 
selected the means by which they are to 
communicate can be explicitly defined. This may be 
using one specific development environment or using 
a specific communication infrastructure.  

23) Detailed Simulation 
Design 
 

Using the set architecture the detailed simulation 
design can be created. This involves looking at the 
individual models and simulations and assessing how 
they specifically are going to fit into the simulation 
being designed. With the knowledge of what is 
currently available and the means by which the parts 
are intended to communicate, engineers can specify 
the complete simulation being designed. This design 
also details and works to make the existing models fit 
with the defined architecture. 

24) Define Gaps By using existing simulations and models there will 
inevitably be gaps between the existing components 
which require filling to achieve the desired behaviour 
of the simulation being designed. For more 
information on how to conduct this task another 
process diagram has been developed see section 
3.5.7 Figure 3.10. 
Depending on the size of the gap it may be necessary 
to conduct a full requirement set for the missing 
capabilities. In other cases the gap may be small and 
the solution simple. 

25) Fill Gaps Using the understanding and the definitions from the 
previous step work is to be conducted to create the 
new necessary simulation content.  

26) Complete 
Integration Tables 

Find and record the information required by the 
integration tables. Further information regarding these 
tables can be found in section 3.7. 

27) Verification of 
Detailed Design 
 

The full detailed design is to be verified against the 
simulation requirements. This ensures that the full 
detailed design complies with the simulation 
requirements and hence test the hypothesis within the 
decided upon constraints. This verification includes 
the new content from filling the gaps stage. This is the 
last time the individual piece parts are tested 
independently.  
Each of the inputs and outputs of the integrations is to 
be checked to ascertain if they are suitable. The 
assumptions of the components are to be checked to 
ensure that they are suitably similar. 



PAGE 325 

28) Integrate Simulations 
 

Up until this point the work has focused around 
ensuring that there is a suitable understanding of the 
purpose of the simulation, and that the component 
parts are suitable for the imitation of the phenomenon 
that is the focus of the test. It is at this stage that the 
simulations are integrated using whatever means has 
been decided to be used (integration environment 
etc). This process does not dictate what specific 
integration method is to be used, that decision is to 
be made by those who are undertaking the specific 
integration. This is due to there currently not be any 
one single solution to integrating all types of models 
and simulations. 

29) Verification of 
Integrations 

To verify as to weather a model or simulation 
integration is both successful and meaningful is a non-
trivial exercise. This task is made difficult due to not 
necessarily having a reference point to compare the 
result to. To overcome this problem this process 
involves using a verification experiment for each of 
the models or simulations. The verification experiment 
is combined with the values that are held within the 
integration tables which define the bounds of the 
model and simulation operating range. Using the 
Verification experiment involves passing known values 
into one or more of the models or simulations and 
comparing known values out of the integrated 
models or simulations against the excepted values. 
This process is daisy chained across all of the 
component parts. The interfaces and 
communications between the component parts are 
compared to the set architecture.  
With the use of the verification experiment and the 
information in the integration tables reference points 
have been created. This allows for a meaningful 
verification to be conducted. 
If the integration does not comply with the simulation 
requirements then the integration step requires 
rework. 



PAGE 326 

30) Verification of 
Simulation 
 

Once the individual integrations have been verified 
similar principles can be applied to the whole 
simulation being designed. Using the method of 
verification experiments known values can be tracked 
through the integrated simulations ensuring that the 
exchanges between the simulations and models are 
accurate. This requires the verification experiments to 
align. To ensure that the verification experiments align 
it may be necessary to use the simulation design as a 
reference and produce verification experiments 
tailored for the simulation verification task. Each 
verification experiment would have to be created 
before the integration has been made. If the 
integration experiments of the individual component 
part experiments do not align with each other, an 
overall verification experiment is to be formulated 
which stays within the operational boundaries of the 
models is to be formulated.  

31 – 35)Verification 
Chain when a Stage 
Fails 
 

By using the stages of verification rather than relying 
on a single monolithic verification task, it breaks the 
task down into smaller more manageable tasks. By 
braking it down into smaller tasks allows for smaller 
more specialist teams of verification engineers to work 
on the sections that they are most knowledgeable 
about. One of the key technological advantages in 
using this process is that it has the potential to catch 
any exceptions earlier on in the simulation design 
process, while allowing for multiple engineers to work 
on the same project at the same time. 

36) Conduct Experiment 
 

With confidence in the integration of the models to an 
extent where it can pass the verification procedure 
the experiments can take place. The design of 
experiments will dictate nature of the simulations that 
are to be run and how they are to be run. Any results 
that are to be used are to be recorded for later 
analysis. 

37) Feedback into 
Design Process 
 

Once the results have been analysed and the 
answers to the questions that were posed in the 
design of experiments have been answered it is time 
to feed this knowledge back into the design process 
as shown in section 3.5.1. The feedback mechanism is 
not explicitly stated in this work however if the 
information is not fed back in a useable way to the 
larger project then the entire point of the process of 
simulation is null and void. 

Table 9.4 Textual description of Systems Engineering in Integration of Simulations process elements. 

  



PAGE 327 

9.1.5 SYSTEMS ENGINEERING OF SELECTION OF EXISTING MODELS AND 
SIMULATIONS 

 

PROCESS ELEMENT DESCRIPTION 
1) Preliminary Simulation 
Design 
 

For this process to successfully operate the simulation 
engineer needs to know the following information 
about the larger simulation being designed; what is 
the overall goal, the intended architecture, and 
critically the simulation requirements. This stage is not 
strictly part of the SESEM process but rather 
prerequisite. The simulation must be at the preliminary 
design phase otherwise decisions that will be made in 
this process may lead to the simulation being 
designed away from the intended DOE. 

2) Boundary of the 
Existing Model Selection 
Process 
 

This point in the diagram denotes where the boundary 
of this process lies. All of that which has come before 
this point are outside of this process (SESM) and the 
boundary where by information leaves this process is 
detailed later. The required inputs to this process are 
the preliminary system design, a full simulation 
requirements set, and the awareness that there may 
be existing candidate models and simulations which 
could be used as part of the simulation being 
designed. 

3) Asses the Model and 
Simulation Landscape 
 

To ensure that those who are undertaking the 
selection task are in a position to not only find the 
models and simulations but also know the value of 
what they are looking at. They must also be well 
versed in the current model and simulation landscape 
both internal and externally to their organisation. It is 
therefore well worth those who are conducting this 
stage to take some time to understand what 
modelling and simulation practices are used within 
the domains that the simulation being designed is to 
operate within. The assessment of the landscape also 
includes investigating what is available within the 
organisation that is conducting the simulation being 
designed. If this is not the first time that this modelling 
domain has been utilised by an organisation there is 
also likely to be a wealth of tacit knowledge held by 
individuals within said organisation. This knowledge 
may have the potential to vastly reduce the amount 
of work that needs to be undertaken, increase the 
accuracy of the resultant simulation, or hold key 
information about the models that could be used. The 
information and experience of individuals in an 
organisation is not to be ignored or underestimated. 



PAGE 328 

4) Are Potential Models 
Available? 

From the assessment of the simulation landscape 
there may or may not be models available which 
results in a straightforward question. 

5) End of Process Feed 
Back to Main Process 

As there are no potential models available this 
process is terminated. The feedback to the main 
process is that there are no usable existing models or 
simulations.  

6) Is This a New Product / 
Platform? 
 

Within organisations it is common for iterations of 
products to be made based on a common platform. 
This single platform with multiple variants is a concept 
that has been shown to reduce time to market of a 
range of different products. This decision is to focus 
where candidate models and simulations can be 
located. If the project that the simulation being 
designed for is a part of or is an incremental 
improvement of an existing product platform then 
existing models and simulation potentially contain 
usable content, that will require minimal modification 
may exist. If this is a completely new product or 
platform for the organisation then the engineers will 
have to look elsewhere for existing candidate models 
and simulations. 

7) Locate Previous 
Product Models and 
Simulations 
 

As it has been decided that this project is iterating on 
an existing work the models and simulations from the 
previous project is an ideal place to start. Finding the 
models, simulations, data sets and critically there 
documentation that was used in the development of 
the previous product as this has the potential to give a 
solid base to start working from. As these models are 
of a similar system they may vastly reduce the 
necessary work as the existing model or components 
may be used with little to no modification to model 
the new system. This is due to potentially very similar 
overall behaviour of the product. 

8) Evaluate Candidate 
Models or Simulation 
Functions 

Evaluate what the capabilities of the located models 
are and what they calculate. A basic understanding 
of what the model are looking to achieve is to be 
gained.  



PAGE 329 

9) Is Model or Simulation 
Documentation 
Available? 

The documentation of a model is often the only 
insight into the modellers’ viewpoint when they 
created the model. The viewpoint of the modeller is 
critical when models are integrated. The viewpoint 
captures all of the assumptions, experience and 
reasoning that went into creating a model or 
simulation. If the modeller themselves is not available 
to give this information in person for whatever reason 
the only insight is going to be the model itself and any 
accompanying supporting documentation. In some 
instance it may not be possible to even interrogate 
the model directly, so the documentation may be the 
only source of information as to what the model does 
and how it does it. The information that is required for 
successful meaningful integration can be found in 
section 3.7 Information Needs for Model Integration. 

10) Can Someone in the 
Team Understand the 
Models or Simulations 
Explicitly 
 

As there is not sufficient documentation the necessary 
information must be found in an alternative way. As 
this model or simulation is one that has been utilised in 
a previous project it is possible that tacit knowledge is 
held by an member of the organisation. If this person 
or persons is still within the organisation the necessary 
information may be captured by asking them directly 
about the model or simulation. The other possibility is 
that the model or simulation is relatively simple and an 
individual in the integration team may be able to fully 
understand the model or simulation and capture the 
required information. Whichever method is used if 
there are one or more persons who have the 
necessary knowledge the integration documentation 
can be created. All sections of the integration tables 
do not need to be completed at this stage however 
the model information and structure do see section 
3.7 regarding integration tables. 

11) Evaluate Candidate 
Models Functions with 
new understanding 

Using the documentation or understanding of what 
the model tests and how it goes about doing so. The 
capabilities are to be evaluated. 



PAGE 330 

12) Do Models and 
Simulations Match 
Section of the Simulation 
Requirements exactly or 
in part? 
 

Using the documentation gathered in the necessary 
integration information tables it is now possible to 
ascertain if the current simulation fulfils the 
requirements of the simulation being designed. As the 
simulation being designed may have many sub 
models or simulations it is possible that an existing 
simulation fully or partially fulfils one or more 
requirements. If the model does not fulfil any of the 
new simulation requirements then the selected model 
is not useful for this new simulation being designed 
and is to be discarded. As this simulation is based on 
an existing platform or product it is likely that the 
model or simulation is only partly applicable to the 
new requirements of the simulation being designed. If 
this is the case then model or simulation will require 
rework or modification to make it fully compliant to 
the new simulation requirements. There is the possibility 
that a model fulfils a section of the requirements 
without exception. In this case it is a possible 
candidate for selection. 

13) Assess if Individual 
Models or Simulations 
can be Modified 
 

From the previous step it has been found that the 
models or simulations require modification or rework to 
make it comply with the simulation being designed 
requirements. Some models and simulations can be 
modified others cannot. An example where a 
simulation may not be modified is if it was purchased 
using COTS and the model or simulation is a compiled 
piece of code that cannot be deconstructed. If a 
model or simulation does not comply with 
requirements and cannot be modified then it is 
unusable for this project and is to be discarded. 

14) Selected Models and 
Simulations Unusable 
 

If a model or simulation is not fully understood or does 
not fit the Simulation requirements, and cannot be 
made to comply then it is to be discarded. If this is the 
case it will then be necessary to locate another 
simulations or models. A record of which models has 
been assessed and found wanting is recommended 
to be kept as this can reduce rework of different 
people assessing the same models or simulations for 
suitability time and time again. 

15) Can Requirements 
be Met by Changing 
Parameters? 
 

Often the quickest and easiest change to make a 
model or simulation to make it comply with the 
simulation being designed requirements is to change 
its parameters and variable values. This can bring a 
general simulation into line with a specific solution 
space. For a candidate model or simulation to 
comply by having parameters changed it must 
operate across the solution space in the first place for 
a simple change in parameters to align it with the 
specific requirements of the simulation being 
designed. 



PAGE 331 

16) Locate Candidate 
Models and Simulations 
 

Most engineering models and simulations are based 
around physical principles and as such existing 
models and simulations exist in one form or another. 
These existing models have the potential to reduce 
the development time of the Simulation being 
designed. The task is to locate any existing models 
and simulations that have the potential to mimic the 
phenomenon that the simulation being developed is 
focused around.  

17) Is Model or 
Simulation 
Documentation 
Available? 
 

The documentation of a model is often the only 
insight into the modellers’ viewpoint when they 
created the model. The viewpoint of the modeller is 
critical when models are integrated. The viewpoint 
captures all of the assumptions, experience and 
reasoning that the modeller uses when creating a 
model or simulation. If the modeller is not available to 
give this information in person for whatever reason the 
only insight are going to be the model itself and the 
supporting documentation. In some instance it may 
not be possible to even interrogate the model directly 
so the documentation may be the only source of 
information as to what the model does and how it 
does it. The information that is required for successful 
meaningful integration can be found in in section 3.7. 

18) Can Someone in the 
Team Understand the 
Model Explicitly? 

With the lack of documentation complete explicit 
understanding is necessary for successful meaningful 
integration. Therefor as these models or simulations 
has no documentation it may be possible for an 
individual to capture the complete understanding 
necessary. This activity is made possible if the model or 
simulation is formulated from basic physics models 
then the simulations can be easier to understand. A 
decision needs to be made as part of this step ‘Will it 
take more effort to understand an existing model or 
just make a new one?’. This is an engineering 
judgement that needs to be made by those involved. 

19) Do The Models or 
Simulations Match a 
Section of the simulation 
requirements? 

Using the understanding gained from the previous 
step it will dictate the decision as to if the model or 
simulation is suitable to use, if the simulation needs 
modification, or if it is of no use to the simulation being 
designed at all. 



PAGE 332 

20) Asses if located 
models and simulations 
can be modified 

From the previous step it has been found that the 
model or simulation requires modification or rework to 
make it comply with the simulation being designed 
requirements. Some models and simulations can be 
modified others cannot. An example where a 
simulation may not be modified is if it was purchased 
using COTS and the simulation is a compiled piece of 
code that cannot be deconstructed. If models have 
been found outside of the organisation the engineers 
may have found open source models and simulations. 
Just because they are open source does not mean 
that they are free to modify and use freely. 
If a model or simulation does not comply with 
requirements and cannot be modified then it is 
unusable for this project. 

21) Is it Possible to 
Access Variables and 
Parameters? 
 

As changing variables and parameters is often 
required to align models and Simulations with what is 
required for the simulation being designed the 
question as to if this is possible has to be addressed. 
Not all models and simulations are created to have 
the capability for a user to change the variables or 
parameters. Some models and simulations are hard 
coded to only mimic one specific situation and 
cannot be changed without reworking the entre 
code and mathematical model from the ground up. 
The parameters also have finite ranges that they are 
valid over. 

22) Change Parameters 
to Comply with 
Requirements 

Change model or simulation variables or parameters 
so that the model or simulation complies with the 
Simulation being designed requirements. 

23) Rework of Models 
and Simulations Needed 
 

It has been established that the models or simulations 
currently being assessed requires rework. Define what 
work is needed to bring the model or simulation into 
line with the Simulation being Designed requirements. 
This stage does not require the action of making 
changes just assessing how much work is needed to 
make the necessary changes and specifying said 
works. 

24) Does an Alternative 
With Less Rework Exist? 
 

The rework of models and simulations can be a costly 
resource heavy exercise. Any possibility to reduce the 
amount of rework is preferable, so if there is an 
alternative that is believed to require less rework then 
that is that one which is select for the next stage. It is 
to be noted that a balance is to be made between 
looking for alternatives which require less work and 
conducting the rework of the existing model or 
simulation. This is an engineering judgement call that 
has to be made. 



PAGE 333 

25) Rework Model or 
Simulation 

Using the identified changes that need to be made 
from a previous step and conduct the necessary work 
to align the existing model or simulation with the 
simulation being designed requirements. 

26) Use other model/s or 
Simulation/s 

Leave the identified models and use the alternative 
model that requires less rework. 

27) Verification 
 

At this point it is intended that the model is at that 
stage where it is suitable for selection to be used in 
the simulation being designed. Therefore it is also 
intended that the model fully complies with the 
requirements of the simulation being designed. The 
item under test is the model or simulation that has 
been reworked and the reference point is the 
requirements of the simulation being designed. If the 
model or simulation passes this test it is to be 
considered for selection in the integrated simulation. 
Whereas if the model or simulation fails the verification 
then further rework will be needed. 

28) Complete 
Integration Tables 

Fill in the integration tables with the knowledge 
gained from previous elements of the SESEM process. 
See 3.7 for more information regarding integration 
tables. 

29) Available for 
Selection 

If a model or simulation passes the final verification it is 
suitable for use in the simulation being designed. 

30) End of Systems 
Engineering of Selection 
of Existing Models 

This step marks the end boundary of the SESEM 
process. The outputs of this process feed directly into 
the Systems Engineering in Integration of Simulations 
process. 

Table 9.5 Textual description of the stages of the Systems Engineering of Selection of Existing Models 
process. 

  



PAGE 334 

9.1.6 DEFINING GAPS IN SEIES (A SUB PROCESS) 
 

PROCESS ELEMENT DESCRIPTION 
1) Detailed Design 
 

The detailed design is not strictly a component of this 
process but it is necessary for the process to operate. 
For a full explanation of this step see textual 
description in SEIS process section 9.1.4. 

2) Boundary of the 
Existing Model Selection 
Process 

This boundary defines the start of the defining gaps in 
the systems engineering in integration of simulations 
process. 

3) Assess Where 
Selected Models and 
Simulations Fulfil 
Simulation Requirements 

The differences between the requirements of the 
simulation being designed and the capabilities of the 
simulations that have been selected are in essence 
the gaps which need to be identified. In this step the 
task is to assess the capabilities of the selected models 
and it is ascertained which requirements they fulfil. The 
assessment is to also cover the models 
communication to ascertain if the component will be 
able to communicate as specified in the simulation 
being designed architecture. 

4) Are All Requirements 
Met? 

Use the analysis conducted in the previous step with 
the requirements of the simulation being designed to 
answer the question ‘Are all of the requirements of the 
simulation being designed met?’ If the answer to this 
question is yes then the gaps between the models 
and simulations will only be of a communication issue. 
If not all of the requirements are met then there needs 
to be work done to meet them. 

5) Asses Existing Model 
Boundaries 

All models and simulations have boundaries. The 
boundaries of the models and simulations are made 
up of what the modeller intended to capture. The 
boundaries of the model or simulation can be 
modified in one respect by the inputs and outputs 
that are accessible. The inputs and outputs that a 
model or simulation has reflects an aspect of the 
phenomenon being mimicked or is related to the 
operation of the model or simulation itself. The 
manipulation of the inputs gives control (the extent to 
which was defined by the original modeller) of the 
range of situations that the model or simulation can 
represent. It is therefore necessary for a detailed 
understanding of what all of the inputs and outputs 
represent within each model or simulation. 



PAGE 335 

6) Assess Necessary 
Transformations to 
Comply With 
Requirements 

It has been defined that the collection of existing 
models and simulations do not satisfy all of the 
requirements of the simulation being designed. It is 
therefore necessary for a transformation to make the 
selected models and simulations complicit. The task is 
to assess what transformations are required of the 
models and simulations to make them comply with 
the requirements. If the communications are defined 
(in the systems being designed requirements) then at 
this stage it will be necessary to ascertain the 
transformation (if required) of the way the models or 
simulations communicate.  

7) Define Requirements 
for works to fill the gaps 

For all of the identified transformations the work that 
needs to be done is to be specified. A requirements 
document for the work that needs to be done is 
recommended as this facilitates keeping track of and 
ensures that any modifications only bring the model or 
simulation into compliance with the requirements of 
the simulation being designed. Having this step 
discourages the urge to just get on with it the 
necessary transformations, while allowing for more 
than just the individual who is assessing the models 
and simulations being able to make the necessary 
changes. This will help to ensure that unnecessary 
transformational work is not conducted. 

8) Assess Data That 
Requires Transfer 

Part of the task of integrating existing models and 
simulations requires the establishment of the 
communications between component parts. For use 
later on in the SESEM process the information that is 
needed about the data is, the rate that the data is 
produced, the means by which it is transferred, and 
how it is to be assessed and recorded. 

9) Define Requirements 
for Implementation of 
Set Communication 

Using the assessment from the previous step define 
the requirements for the communication between the 
specific models and Simulations. The communication 
methods are to be documented so they can be 
inspected later. 

10) End of Define Gaps This is the boundary of this sub process. The output 
feeds back into the SEIS. The outputs of this process 
are requirements documents for the work to be done 
to fill the gaps between the selected models and 
simulations. 

Table 9.6 Textual description of the Defining Gaps in the Systems Engineering in Integration of 
Simulations process. 

  



PAGE 336 

9.1.7 FILL GAPS IN THE SYSTEMS ENGINEERING IN INTEGRATION OF SIMULATIONS 
PROCESS ELEMENT DESCRIPTION 
1) Define Gaps 
 

Defining the gaps between the available existing 
models and simulations is covered in another process 
see section 3.5.6. The output of the defining gaps 
process feeds directly into this process. 

2) Boundary of the 
Existing Model Selection 
Process 

This denotes the bounds of this process all before are 
prerequisite inputs.  

3) Gain Understanding 
of Requirements from 
Define the Gaps Process 
 

It is important that the gaps that are going to be filled 
are fully understood. If what is needed to fill the gap is 
not fully understood any efforts to rectify it will be 
misguided and unlikely not be what is needed. If there 
is any uncertainty with the requirements then those 
who compiled them are to be contacted and any 
ambiguities resolved. If that is not possible investigate 
the issues by going back to the Define Gaps process. 
Do not continue with this process if there is not a 
detailed understanding of what needs to be 
produced. 

4) Architect the 
solution/s 
 

With the understanding of the previous step construct 
architecture for a potential solution. There are many 
ways in which architecture can be formed however it 
is not within the remit of this process to denote how to 
construct the architecture of the solution/s. Having 
the basis of architecture gives structure for the rest of 
the potential solution to be based. It will also ensure 
that suitable consideration has been made that any 
work will fit into the larger simulation being designed. 

5) Design Potential 
Solutions 
 

The potential solution is to be designed using the basis 
of the architecture that has been produced in the 
previous step. The design of the potential solution is to 
specify exactly what is going to be produced. 

6) Verification 
 

Once a potential design has been formulated it is 
poignant to verify it against the requirements that 
were specified in the defining the gaps process. This 
verifications purpose is ensure that before 
considerable effort is spent implementing the design 
complies with the requirements. If the design passes 
the verification then the work can progress onto the 
building of the solution. If the design does not pass the 
verification then rework of the potential solution is 
required. If rework is needed go back to the 
‘Architect the solution’ stage of the process.  

7) Build Solution 
 

The task of building the potential solution starts in 
earnest at this point. The potential solution is to be 
implemented. 



PAGE 337 

8) Verification 
 

To ensure that what has been produced is going to fit 
into the simulation being designed, and produced 
values that are meaningful, it is to be verified against 
the filling the gaps requirements. To verify the 
potential solution at this stage could potentiality save 
significant amount of time when compared to it being 
a problem and it manifesting as part of a 
complicated system of simulations in an integrated 
solution later on.  

9) End of Fill Gaps in the 
SEIS 

This is the end of the Fill the gaps process. The output 
of this process feeds directly into the SEIS process. 

Table 9.7 Textual explanation of the stages of the Sill the Gaps in Part of Systems Engineering in 
Integration of Simulations process. 

  



PAGE 338 

9.2 APPENDIX IDENTIFIED TOPICS FOR MODEL AND 
SIMULATION INTEGRATION AND REASONING 

For each of the topics of information that has been identified in Figure 3.12 
details and reasoning are given for each of the elements in the mind map. 

  



PAGE 339 

9.2.1 IDENTIFIED TOPICS FOR MODEL AND SIMULATION STRUCTURE 
To gain enough of an understanding if two model or simulations are suitable for 
integration there requires an understanding about the structure of the models 
and simulations in question. 

IDENTIFIED TOPIC DESCRIPTION AND REASONING 
Structure 
 

The structure of a model or simulation covers the way 
it is put together. Depending on the methods used to 
create it has an impact on the way in which it will 
behave when run. This is a critical area for integration. 
Structure is a broad topic that has been decomposed 
to identify individual aspects which require specific 
consideration.  

Architecture By understanding the architecture of the model or 
simulation, an idea of how it communicates and what 
is indeed available to be communicated, becomes 
apparent. This understanding includes the interfaces, 
the way in which the interfaces send and receive 
information, and if there is any loops or feedback 
present. As these are three large topics they have be 
decomposed further. 

Feedback loops Having feedback loops in a simulation means that the 
simulation has an element memory associated with it. 
Meaning each output is affected by actions of the 
previous iteration. Having such feedback loops 
present can cause issues with integration. This is due to 
the first number of outputs or iterations having to be 
disregarded as erroneous, as well as causing issues of 
having to have the same instance of the model or 
simulation running for the full duration. Models that 
have feedback loops in can be a challenge when it 
comes to updating what were initial conditions during 
run time or ‘on the fly’. If feedback loops are present 
and such values are intended to be changed during 
run time, an investigation of the validity of the results 
of the model or simulation has to be found.  
The way in which results are pulled out of such a 
model or simulation that has one or more loops can 
be interesting as some instantiations will only output a 
data sets upon completion of a simulation run, not 
during individual iterations. 

Blocking 
 

The way that the simulation passes out data from a 
queue can have a significant effect the way in which 
data is handled. If blocking is used in the memory 
queue, if the queue is full it will block any attempts to 
add to it. If a queue is empty and an attempt is made 
to read form it the attempt will be blocked. This can 
hamper multithreading capabilities if used. This is an 
implementation architectural concern that affects the 
implementation environmental concerns.  



PAGE 340 

Response time 
 

When discussing time with regard to models and 
simulations great care has to be observed. This is due 
to time being the basis of many of the simulations and 
also referring to how long a simulation takes to 
conduct an action. Both of these times are needed to 
be understood when integrating models and 
simulations. In this work response time refers to the time 
it takes for the simulation to conduct an intended 
action. Response time can vary from less than a 
second to well over a week. It is recognised that the 
hardware that the model or simulation is being run on 
has a part to play in this. For this reason there is a 
section that defines which hardware the model or 
simulation has been bench marked using. When 
conducting large scale co-simulations with many 
models and simulations, the individual response times 
can be critical to a meaningful output from the whole.  

Time 
 

Time in this respect refers to the time that a model or 
simulation represents in the real world. A single second 
in a simulation may take days or even weeks in the 
real world to compute. The representation of time can 
take may different forms and can be described in 
terms of unit, base, and step. 

Time - Unit The unit that is used to describe the amount of time 
be that seconds, hours, days or otherwise. It is all too 
easy to make the assumption that a model or 
simulation used one unit when in fact it uses another, 
hence they are to be explicitly stated. 

Time - Base 
 

The base unit is the smallest increment that the modal 
or simulation is capable of. This information can be 
used to ascertain if a common time base can be 
found across two or more models or simulations.  

Time - Step 
 

This is the step that the model or simulation makes 
after each calculation. This may be fixed or a 
parameter that can be user defined on execution. 
The Step is a multiple of the base in the units defined. 
The length of the step has to be wholly divisible by the 
base. 

Interface The inputs, outputs, and the means by which 
communication can occur are considered 
encapsulated by the umbrella term of ‘interface’.  
The identified necessary information about possible 
interface types are: Inputs and Outputs, Source, 
Description, Default Value, Format, Expected Sample, 
Rate, Accuracy, Range, Unit, Type, Base, Step, and 
Name 



PAGE 341 

Inputs and Outputs 
 

Information and data flows into an input whereas 
information and data flows from an output. 
Understanding the nature of an interface is the 
understanding of the information that needs to go into 
a model or simulation and understanding what is 
represented by the output. To capture an 
understanding of the inputs or outputs the following 
need to be known; source, description, default value, 
format, expected sample rate, accuracy, range, unit, 
type, base and step. 

Inputs and Outputs: 
Source 
 

This is a description of where the input or output 
comes from. This may seem straightforward but when 
there is the situation where there are many hundreds 
of inputs and outputs having a description of where 
the input comes from or output goes to can reduce 
development time.  

Inputs and Outputs: 
Description  
 

The inputs or outputs represent some part of the 
phenomena being mimicked. An understanding of 
what this represents can ensure that two interfaces 
with the same name that represent two different 
aspects of the phenomena being erroneously 
connected together. The description only has to be as 
long as necessary to accurately capture what the 
input or output represents. 

Inputs and Outputs: 
Default Value 
 

Some models and simulations have default values that 
operate if there is not a value passed to it. If an input 
does not have a default value and is left floating it 
can have a negative effect on the accuracy of the 
outputs if the simulation functions at all.  

Inputs and Outputs: 
Format 
 

All information captured on a computer takes a 
format, be that an array of floating point numbers or 
otherwise. Not all of the information captured by one 
data type can be completely represented in another. 
It is important if passing data to or receiving data from 
a model or simulation to know what format the date is 
or needs to be. There are well known and 
documented methods for converting between data 
types however it also comes with an overhead and 
often a loss of information.  

Inputs and Outputs: 
Expected Sample Rate 
 

Each port will have an expected sample rate 
irrespective if it is an input or an output. If the port is 
not sampled at the rate which it was intended, issues 
of aliasing can occur. The Nyquist limit will apply if 
using different sample rates. This can be a significant 
problem with connecting models or simulations over a 
distributed network. 



PAGE 342 

Inputs and Outputs: 
Accuracy 
 

The accuracy of the model or simulation relates to 
how close the results of the calculations are to the 
phenomena that is being mimicked. At the start of a 
project or within an organisation a decision needs to 
be made as to how the accuracy is going to be 
measured as there are many different methods for 
assessing and recording accuracy levels. This is further 
complicated if the model or simulation has not been 
compared to the real world yet and as such the 
accuracy is not a definable amount but rather an 
estimated value. 

Inputs and Outputs: 
Range 
 

The range is defined as the difference between the 
minimum possible value and the maximum possible 
value. Models and simulations that are implemented 
digitally have finite possible ranges. The limiting factor 
of the range of the model or simulation may be a 
design decision that has been made (eg data types 
used) or it could be the range for which the physics 
equations are valid (scale issue). 
 
If the range of a model or simulation is exceeded the 
accuracy of the model or simulation is adversely 
affected in some cases drastically so. 

Inputs and Outputs: Unit 
 

All values handed two or taken from a model or 
simulation represent an aspect of understanding. 
Each input and output will have a unit (even unit less 
values have a conceptual name). Defining what the 
units are will ensure that even if the output of one is 
the same concept as the input of another the same 
units are used. For instance temperature, one model 
could be in Kelvin and the other in Celsius.  

Inputs and Outputs: 
Required 

If an input is it required for the model or simulation to 
run. 

Inputs and Outputs: Base 
 

The base unit is the smallest increment that the model 
or simulation is capable of for the specific input or 
output that is in question. This information can be used 
to ascertain if a common base for a unit can be 
found across two or more models or simulations.  

Inputs and Outputs: Step 
 

This is the step that the model or simulation uses or 
makes after each calculation of a specific input or 
output respectively. This may be fixed or a perimeter 
that can be user defined however it is often strongly 
linked to the time step. The Step is a multiple of the 
base in the units defined. The length of the step has to 
be wholly devisable by the base. 



PAGE 343 

Inputs and Outputs: 
Name 
 
 

All inputs and outputs are to have a unique name or 
identifier. This does not necessarily need to be words it 
can easily be an alphameric code. However if an 
alphameric code is used a document of what each 
code represents needs to be kept for reference. There 
are instances where single models and simulations 
have hundreds of inputs and outputs so when it 
comes to integrating them with another model or 
simulation all of the inputs and outputs need to 
indefinable. 

Stop command 
 

For each modal or simulation it is preferable if a 
means of stopping it mid execution is available. 
Having such a stop command can save engineers a 
great deal of time when setting up co-simulation as 
testing does not necessarily require the full simulation 
run as well if an error is identified during execution all 
component models or simulations can be terminated. 
Documentation of how to stop the model or 
simulation mid execution is recommended. This may 
be programmatically possible or it may require a 
direct user input.  

Start command 
 

To execute a model or simulation there will be a 
procedure that needs to be followed. This may be 
possible programmatically or it could require some 
user defined steps. This information is needed so that a 
means of stating the co-simulation can be designed. 

User Interface Type 
 

Define how the user interacts with the model or 
simulation. Is it command line, GUI , or another type. 

Constant  
 

A constant is considered to be a static value that is 
defined at the start of a model or simulation. Some 
models and simulations have constants that can be 
altered within a set range.  
To define such a constant the following information is 
required; description, default value, format, range, 
unit, type, base, and name. These have the same 
definition and require the same information as 
detailed above. 

Constant: Unit The SI unit that the value represents. 
Constant: Value The numerical value that the constant is to take. 
Constant: Format  All information captured on a computer takes a 

format, be that an array of floating point numbers or 
otherwise. Not all of the information captured by one 
data type can be completely represented in another. 
It is important if passing data to or receiving data from 
a model or simulation to know what format the date is 
or needs to be. There are well known and 
documented methods for converting between data 
types however it also comes with an overhead and 
often a loss of information. 



PAGE 344 

Constant: Name  All constants are to have a unique name or identifier. 
This does not necessarily need to be words it can 
easily be an alphameric code. However if an 
alphameric code is used a document of what each 
code represents needs to be kept for reference. There 
are instances where single models and simulations 
have hundreds constants so when it comes to 
integrating them with another model or simulation all 
of the constants need to indefinable. 

Table 9.8 Identified topics for model and simulation integration and reasoning. 

  



PAGE 345 

9.2.2 VERIFICATION EXPERIMENT 
The purpose of this information is to provide the foundation for a verification 
experiment to allow for known outputs from none inputs to be checked. This 
allows for an engineer who has had no dealings with the model or simulation, to 
check if it is set up correctly and is operating as it was originally intended. This 
verification experiment can be what was used to test the model or simulation 
before it was considered to be good enough to use. Having verification 
experiments it is possible to set up an experiment where the variation comes from 
the integration alone rather than the data entering the models manually. The 
recorded characteristics of the verification experiment cover how to set up the 
model or simulation, how the models or simulation behaves while running, and 
the expected results when it is conducted. 

IDENTIFIED TOPIC DESCRIPTION 
Total Run time 
 

Models and simulations take time to execute. The 
total run time is the length of time it takes for the 
model or simulation to complete the defined 
experiment. It is to be noted that the total run time will 
change dependent on the hardware that it is run on. 
However this metric will indicate if there is an issue if it 
is run at a later date and found to operate far quicker 
or slower than the recorded metric when run on 
comparable hardware.  

Output Frequency 
 

All outputs of a model or simulation have an update 
frequency, even if the output frequency is at the end 
of the run. Having an expected output frequency 
allows for the potential of assessing if the output of the 
model or simulation in question can feed into the 
input of another model or simulation. 

Inputs and Outputs 
 

All inputs are to have the structure and content as 
defined in interfaces including: source, description, 
default value, format, expected sample rate, 
accuracy, range, unit, type, base, step, and name. 

Parameters 
 

A parameter is considered to be an input value that is 
not necessarily directly accessible to the user and was 
intended by its creator to not change during run time. 
All of the parameters that do not have default values 
are to be specified. The internal parameters that 
cannot be user defined or accessed at all do not 
need to be specified. 

Environment 
 

The Environment covers all of the supporting software 
and hardware that is required to enable the 
simulation to operate. See section 2.62.8 for more 
information. 

Table 9.9 Identified topics for Verification Experiment. 

  



PAGE 346 

9.2.3 MODEL INFORMATION 
To gain enough of an understanding if two model or simulations are suitable for 
integration there requires an understanding about the models or simulations in 
question.  

IDENTIFIED TOPIC DESCRIPTION 
Documentation 
 

Specific information that is required to be in the 
documentation and will not be found elsewhere this 
covers; assumptions, language, file type, location, 
basis of the model, generation tool, and requirements 
documentation. 

Documentation: 
Assumptions 
 

The assumptions that the creator of the model or 
simulation uses to capture the behaviour of the 
phenomena being mimicked is a key part of assessing 
if two models or simulations can be integrated and 
the extent to which the result is meaningful. Identifying 
the assumptions may be relatively obvious and 
straightforward whereas others will require a greater 
understanding of what is going on in the model or 
simulation. A select few of the possible many 
examples include; the body is a dimensionless 
particle, the object is in two dimensional space, or 
friction is negligible. 

Documentation: 
Language 
 

The language that the model or simulation is 
documented in rather than the computer language 
that is used to create it. In multinational organisations 
the language that is used to document works is not 
necessarily unilaterally homogeneous. Despite 
translation programs becoming ever more accurate 
the subtleties of understanding that are necessary to 
make an informed decision of if and how two models 
or simulations can be integrated cannot be relied to 
be captured at present. Hence the language that is 
used to document a model may dictate who in the 
engineering team investigates which models and 
simulations, or if there is even the necessary linguistic 
skills to do so are available. Examples of languages 
that are used for documentation include but at not 
limited to, English, French, Mandarin etc. 

Documentation: 
File type 
 

All files on a computer have a file extension that the 
computer uses to know what format to open it in. 
Knowing the file extension can aid in the decision of 
which if any integration environments could 
potentially be used. There are many bespoke file 
types from the different development environments 
however some typical file types for models and 
simulations are .exe, .xml and .m 



PAGE 347 

Documentation: 
Location 
 

Once a potential model for integration is found 
documenting the location of where it is stored can 
save considerable time later on. Digital locations can 
change over time. If there are multiple locations for 
the model or simulation it is worth documenting the 
most likely to remain viable or even detail multiple 
locations. 

Documentation: 
Basis of model 
 

There are many starting points for producing a model 
or simulation. Knowing what the modeller used as the 
basis of understanding can give an insight into if other 
models are constructed from a similar base 
behaviour. Common basses for models and 
simulations to be built from are but not limited to; HIL 
data, physics principles, ROM, and transient data. 

Documentation: 
Generation tool 
 

For a model or simulation to be created a tool or 
development environment must be used. Having an 
understanding of which tool was used in the 
generation gives the integration engineer an insight 
into the type of support side integration that is 
required. If using an integration environment knowing 
which tool was used in the creation of a model or 
simulation can instantly rule weather the model or 
simulation can be used or not. Examples of common 
tools for model or simulation creation include, Matlab, 
LabVIEW, Ansys, COMSOL Multiphysics, however there 
are many more with new specific model and 
simulation packages being released every month. 

Documentation: 
Requirements Document 

The location and name of the requirements 
document that specified the work to produce the 
model or simulation.  

Version 
 

Having a record of the versions that are created of a 
model or simulation allows a group of people to 
ensure that they are all using the exact same model 
or simulation and not two or more different versions. 
Having both the name and version number gives two 
reference points to reduce potential ambiguity. 

Date of Publication 
 

Having a date as well as a name or number allows for 
an understanding of the time between each iteration 
as well as if any rework of a model or simulation has 
been done without a new version being created. 
Publication refers to when the model or simulation 
was made available to those who were not a part of 
the development of it. 

Name or Number 
 

A common and effective way of keeping track of 
versions is by using a unique name and time stamp. 
There are multiple tools that allow for this activity to be 
automated within an organisation. There is often a 
logical progression of the naming convention to make 
it obvious which older the versions were created in. 



PAGE 348 

Type of model 
 

There are many types of models and simulations that 
can be used to mimic or represent different 
behaviours knowing which type has been used gives 
those who are integrating them an understanding of 
what information to expect, look for and what they 
can indeed gain from using it. Examples of different 
types of model in this case are but not limited to, free 
body, fluid flow, chemical, CFD, Finite Element 
Analysis. 

Description 
 

The description of the model or simulation is intended 
for the capture an overview of the subject, behaviour, 
and reasoning behind the implementation of the 
model or simulation while giving the opportunity to 
capture information that does not fit into the other 
sections of model information without the need to 
create a new section for each new model. 

Author 
 

Having information as to who created the model or 
simulation can aid in the integration. If the engineer 
who has been tasked with the integration of the 
models or simulations has no specific understanding 
and cannot find any information about the model or 
simulation, then having the possibility of 
communication with the author could be beneficial. It 
is recognised that if COTS is use by the organisation 
then having at least a company name can aid in the 
tracking down of who made the model or simulation 
in the first place, as well as tracking any lost 
documentation. 

Standard compliance 
 

If the model or simulation complies to a standard and 
those integrating it are aware it can reduce the 
amount of time that needs to be investigated trying 
to understand the model or simulation in question. 

Source Files 
 

Having access to the source files potentially allows for 
the integration engineer to make modifications to 
change aspects of the behaviour of the model or 
simulation. If modification is required then having the 
location for any such files and if they can be edited 
could drastically save time in the long run. 

Source Filed: Editable 
 

Not all source files to models and simulations are in a 
form that an integration engineer can edited. If a 
source file cannot be edited then the behaviour that 
is the result of the file is also fixed. If the file cannot be 
edited it may be necessary to produce replacement 
source files, however this may affect the confidence 
level of the validity of the model or simulation. In some 
circumstances the source file may be completely 
unavailable or restricted. 



PAGE 349 

Source Files: Location 
 

If the model and simulation source files are available 
then the location of them is to be captured. When it 
comes to integrating the models and simulations 
having the location of the source files without having 
to search for them can reduce the integration time.  

Source Files: Name 
 

The name of the source files of the model or the 
simulation source files reduces ambiguity when 
looking for and potentially modifying the files. 

Intellectual Property  
 

Who owns the intellectual property of the model or 
simulation can change where, when, and how, the 
model or simulation can be used. When COTS is 
involved there can be stipulations placed on the 
model or simulation limiting how it can be used.  

Intellectual Property: 
Owner 
 

The owner of the model or simulation has ultimate say 
on how it can be used. With this identified they can 
be contacted if there are any issues or questions as to 
use be they licencing or otherwise. 

Licence 
 

Some models and simulations are available to use but 
only in accordance with a licence. There are many 
different licences that all have their own terms and 
conditions. If a usage licence is in pace on a model or 
simulation the details of how it can be used are to be 
located and agreed. 

Table 9.10 Identified topics for Model Information. 

 
  



PAGE 350 

9.2.4 MODEL ENVIRONMENT 
To gain enough of an understanding if two model or simulations are suitable for 
integration there requires an understanding about the environment that the 
models or simulations in question operate within.  

IDENTIFIED TOPIC DESCRIPTION 
Hardware Requirements  The model or simulation requires a minimum amount 

of hardware to operate. The hardware that the 
verification experiment is run on affects the 
characteristics of run time as well as inputs and output 
frequency. The information regarding the hardware 
the verification test includes, Graphics cards (if used), 
Network requirements, Peripherals (if any are 
needed), Storage, Memory, and processor. 

Hardware Requirements: 
Graphics 
 

If the model or simulation uses any specific graphics 
cards or even just the on board graphics card this is to 
be specified. If the model or simulation does not 
require any graphics capability this is to be noted. 

Hardware Requirements: 
Graphics: GPU Clock 
Speed (MHz) 

The clock rate of the GPU used when to run the model 
or simulation. 

Hardware Requirements: 
Graphics: Size of the 
memory bus (bits) 

The transfer rate of the memory buss used for the GPU. 

Hardware Requirements: 
Graphics: Amount of 
available memory (MB) 

The size of the GPU on-board memory that is 
accessible during programming.  

Hardware Requirements: 
Graphics: memory clock 
rate 

The clock rate of the GPU on-board memory. 

Hardware Requirements: 
Network 
 

Some models and Simulations require network access 
to execute. If the model needs access to a network or 
the internet this is to be captured. This can be 
because of licences used by some software 
packages. 

Hardware Requirements: 
Peripherals  
 

If the model or simulation requires any peripherals to 
operate then the exact name, make and model are 
to be recorded. This could include any required 
peripherals such as but not limited to, data cards, 
instrumentation, dongles, or any special user 
interfaces. 

Hardware Requirements: 
Peripherals: Interface 

The interface by which the hardware connects e.g. 
USB, parallel port, etc  

Hardware Requirements: 
Peripherals: Name 

The official manufacture and vendor name (if 
different) given to the peripheral. 

Hardware Requirements: 
Peripherals: Driver 

Details of any drivers that are necessary for the 
peripheral to function. All relevant information is to be 
captured. This information is often found in the 
peripherals supplied documentation. 



PAGE 351 

Hardware Requirements: 
Peripherals: Vendor 

The vendor used to purchase the peripheral for the 
project. 

Hardware Requirements: 
Storage 
 

The consideration of storage for the model or 
simulation is not limited to the size of the file that the 
model or simulation is captured by but also any files 
that it produces. The output files of some models and 
simulations can be many terabytes where as the 
model or simulation may only be a few megabytes.  

Hardware Requirements: 
Memory 
 

To operate the model or simulation needs to be 
loaded into working memory. Different models and 
simulations have differing memory requirements. The 
amount of memory that the model or simulation 
needs to run smoothly without issues are to be 
recorded. 

Hardware Requirements: 
Processor 
 

The model or simulation will require processing power 
and time to run. The speed and architecture of the 
processor used it to be recorded e.g. quad core 
6.3GHz. If the model or simulation is run on a cluster or 
other such high performance machine (rather than a 
general purpose computer) more detail is needed so 
a similar specked machine that would be suitable 
could be found or emulated at a later date. 

Environment software 
 

To run a model or simulation may require other 
programs to be running or installed on the computer 
that it is executing on. This includes but not limited to 
operating systems (OS), runtime engines and 
dependences which will be explained in more detail 
below.  

Environment software: 
Operating system 
 

Many models and simulations only function correctly 
when run on a machine which has a specific 
operating system installed. The full name and version 
number of the operating system is to be recorded 
including any major service packs or updates. 

Environment software: 
Runtime Engine 
 

Some models and simulations that were constructed 
in a development environment may need that 
development environments runtime engine to 
operate. Often these runtime engines are free or 
come at a reduced cost and will require installation 
separately to the model or simulation. The full name 
and version and vendor are to be recorded. 

Environment software: 
Dependencies  
 

The model or simulation may call for other files or 
programs to be installed on the same machine and 
be able to access them. Dependencies can cause a 
lot of trouble when reusing a model or simulation as 
they often get missed out of documentation and are 
not stored in the same location across different 
machines. To capture the necessary information the 
name, location, how it is called, and the version are 
all required information. 



PAGE 352 

Name 
 

However the dependency is named it is to be 
recorded. This is not a description of the file but rather 
what it is actually referred to as in the modal or 
simulation. This may not be a unique identify if so this is 
to be noted and an additional reference appended 
to the description for later use.  

Environment software: 
Dependencies: Version 
 

Whichever method or means by which the producer 
of the dependency uses to identify which version the 
file is, is to be recorded. This may be but not limited to, 
a name, a library that it is part of, or an alphameric 
code.  

Environment software: 
Dependencies: Static or 
Dynamics 
 

The way in which a dependency is referenced in the 
model or simulation will define where the 
dependency will need to be on a different machine 
to the one the model or simulation was originally 
developed on. This is due to the way in which the 
model or simulation looks for the dependency in 
memory. If it uses a static reference then it will only 
look in the defined path location, whereas if it is a 
dynamic reference it will follow the directory that the 
modal or simulation is placed in and search for the 
dependency. There are strengths and caveats for 
both of the methods. The developer of the model or 
simulation will have made a decision for a reason. 
Whether the dependency is statically or dynamically 
defined is to be captured. 

Environment software: 
Dependencies:  
Location 
 

Regardless of whether the dependency is statically or 
dynamically defined a location is to be recorded of 
where a copy of the dependency can be found, be 
that a location on a network drive or even a website 
where it can be downloaded. The former is preferable 
to the latter due to the likelihood of it being 
accessible at a later date. 

Environment software: 
Dependencies: Version 

The version of the dependency that is called. 

Environment software: 
Dependencies: Static or 
Dynamic 

Is the path to the dependencies statically or 
dynamically defined in the model or simulation?  

 

  



PAGE 353 

9.3 INTEGRATION TABLES  
The integration tables that form part of the proposed process.  

  



PAGE 354 

9.3.1 BLANK INTEGRATION TABLES 

 

Figure 9.1Model Information 

N
am

e:
Ve

rs
io

n:
D

at
e 

of
 p

ub
lic

at
io

n
Ve

rs
io

n 
Nu

m
be

r
Ty

pe
:

D
es

cr
io

tio
n:

Au
th

or
:

IP
:

O
wn

er
:

Li
ce

nc
e:

St
an

da
rd

 c
om

pl
ie

nc
e:

D
oc

um
en

ta
tio

n:
As

su
m

pt
io

ns
:

La
ng

ua
ge

:
Fi

le
 ty

pe
:

Lo
ca

tio
n:

Ba
si

s 
of

 m
od

el
:

G
en

er
at

io
n 

to
ol

:
So

ur
ce

 F
ile

s
So

ur
ce

 fi
le

 n
am

e
Lo

ca
tio

n
Ed

ita
bl

e
Ye

s
No NA



PAGE 355 

 

Figure 9.2 Model Structure 

Us
er

 in
te

rfa
ce

 ty
pe

Ti
m

e
Ba

se
St

ep
Re

sp
on

se
 ti

m
e

Ar
ch

ite
ct

ur
e

Fe
ed

ba
ck

 lo
op

s
Bl

oc
ki

ng
C

on
st

an
ts

Na
m

e
Fo

rm
at

Un
it

Va
lu

e
NA St

op
 C

om
m

an
d

St
ar

t c
om

m
an

d
In

pu
ts

 a
nd

 O
ut

pu
ts

N
am

e
In

pu
t o

r 
O

ut
pu

t
B

as
e

St
ep

 
U

ni
t

R
an

ge
 m

in
R

an
ge

 
m

ax
Ac

cu
ra

cy
Ex

pe
ct

ed
 

sa
m

pl
e 

ra
te

Fo
rm

at
D

ef
au

lt 
Va

lu
e

D
es

cr
ip

tio
n

So
ur

ce
R

eq
ui

re
d



PAGE 356 

 

Figure 9.3 Model Environment 

O
pe

ra
tin

g 
sy

te
m

:
R

un
tim

e 
En

gi
ne

:
H

ar
dw

ar
e 

R
eq

ui
re

m
en

ts
G

ra
ph

ic
s

G
PU

 C
lo

ck
 s

pe
ed

Si
ze

 o
f m

em
or

y 
bu

s
Am

ou
nt

 o
f a

va
lib

le
 m

em
or

y
M

em
or

y 
cl

oc
k 

ra
te

Ne
tw

or
k

D
is

k 
sp

ac
e

RA
M

C
PU

Pe
rip

he
ra

ls
N

am
e

Ve
nd

er
D

riv
er

In
te

rf
ac

e
NA D

ep
en

de
nc

ey
 

N
am

e
Lo

ca
tio

n
St

at
ic

 o
r 

dy
na

m
ic

Ve
rs

io
n 

NA



PAGE 357 

 

Figure 9.4 Verification Experiment  

En
vi

ro
m

en
t

Ti
m

e
to

ta
l r

un
 ti

m
e

ou
tp

ut
 fr

eq
ue

nc
y

Pa
ra

m
et

er
s

Na
m

e
Fo

rm
at

Un
it

Va
lu

e
NA In

pu
ts

 a
nd

 O
ut

pu
ts

N
am

e
In

pu
t o

r 
O

ut
pu

t
B

as
e

St
ep

 
U

ni
t

Fo
rm

at
In

pu
t V

al
ue

 
or

 e
xp

ec
te

d 
ou

tp
ut

 v
al

ue

D
es

cr
ip

tio
n

R
eq

ui
re

d



PAGE 358 

9.3.2 DEVELOPMENTAL CASE STUDY COMPLETED INTEGRATION TABLES 
The tables that were used as part of the developmental case study concerning 
the virtual testing of the effects of differing compounds on the behaviour of a 
squash court.  

  



PAGE 359 

Particle Moving in Free Space Integration Tables  

 

Figure 9.5Particle moving in free space model information. 

N
am

e:
Pa

rti
cl

e 
M

ov
in

g 
in

 F
re

e 
Sp

ac
e

Ve
rs

io
n:

D
at

e 
of

 p
ub

lic
at

io
n

01
/0

3/
20

15
Ve

rs
io

n 
Nu

m
be

r
V1

Ty
pe

:
Ne

wt
on

ia
n 

eq
ua

tio
ns

 o
f m

ot
io

n
D

es
cr

io
tio

n:
M

od
el

 re
qu

ire
s 

fin
al

 v
el

oc
ity

, s
ta

rti
ng

 v
el

oc
ity

, d
is

ta
nc

e 
an

d 
sa

m
pl

e 
ra

te
 to

 
be

 k
no

wn
 a

nd
 it

 c
al

cu
la

te
s 

ac
ce

le
ra

tio
n,

 ti
m

e 
th

at
 it

 ta
ke

s 
fo

r t
he

 b
al

l t
o 

ge
t 

fro
m

 o
ne

 e
nd

 to
 th

e 
ot

he
r, 

tim
e 

sa
m

pl
e,

 d
is

pl
ac

em
en

t s
te

ps
 in

 th
e 

tim
e 

sa
m

pl
e 

an
d 

th
e 

di
st

an
ce

 th
at

 b
al

l t
ra

ve
ls 

in
 a

 s
in

gl
e 

tim
e 

sa
m

pl
e.

Fi
rs

t t
he

 
ac

ce
le

ra
tio

n 
of

 th
e 

pa
rti

cl
e 

is
 c

al
cu

la
te

d.
Se

co
nd

 th
e 

tim
e 

fo
r t

he
 p

ar
tic

le
 to

 c
om

pl
et

e 
th

e 
di

st
an

ce
 is

 c
al

cu
la

te
d.

Th
ird

 th
e 

tim
e 

sa
m

pl
e 

st
ep

 is
 c

al
cu

la
te

d.
Fo

rth
 th

e 
di

sp
la

ce
m

en
t s

te
ps

 in
 m

et
er

s
Au

th
or

:
Ro

be
rt 

Lu
ff

IP
:

O
wn

er
:

Lo
ug

hb
or

ou
gh

 U
ni

ve
rs

ity
 

Li
ce

nc
e:

Ac
ad

em
ic

St
an

da
rd

 c
om

pl
ie

nc
e:

No
ne

 
D

oc
um

en
ta

tio
n:

As
su

m
pt

io
ns

:
Si

m
ul

at
io

n 
us

es
 N

ew
to

ni
an

 e
qu

at
io

ns
 o

f m
ot

io
n.

Th
e 

ba
ll i

s 
co

ns
id

er
ed

 to
 b

e 
a 

pa
rti

cl
e.

Al
l o

f t
he

 in
pu

ts
 a

re
 k

no
wn

 v
al

ue
s.

Th
er

e 
is

 n
o 

wi
nd

 re
si

st
an

ce
.

Th
e 

ba
ll i

s 
on

ly
 m

ov
in

g 
in

 o
ne

 p
la

ne
.

No
 o

bs
ta

cl
es

 in
 th

e 
pa

th
 o

f m
ov

em
en

t.
SI

 u
ni

ts
 a

re
 u

se
d 

th
ro

ug
ho

ut
 m

et
er

s,
 s

ec
on

ds
, m

et
er

s 
pe

r s
ec

on
d,

 a
nd

 
m

et
er

s 
pe

r s
ec

on
d 

pe
r s

ec
on

d
La

ng
ua

ge
:

En
gl

is
h

Fi
le

 ty
pe

:
.v

i
Lo

ca
tio

n:
C

:\U
se

rs
\e

lrl
2\

G
oo

gl
e 

D
riv

e\
PH

D
\M

y 
W

or
k\

La
bV

IE
W

_F
ile

s\
NL

P_
m

od
el

s
Ba

si
s 

of
 m

od
el

:
Ph

ys
ic

s 
G

en
er

at
io

n 
to

ol
:

La
bV

IE
W

So
ur

ce
 F

ile
s

So
ur

ce
 fi

le
 n

am
e

Lo
ca

tio
n

Ed
ita

bl
e

M
od

el
_o

f_
Ba

ll_
m

ov
in

g
C

:\U
se

rs
\e

lrl
2\

G
oo

gl
e 

D
riv

e\
PH

D
\M

y 
W

or
k\

La
bV

IE
W

_F
ile

s\
NL

P_
m

od
el

s
Ye

s
NA



PAGE 360 

 

Figure 9.6 Particle moving in free space Structure. 

Us
er

 in
te

rfa
ce

 ty
pe

G
UI

Ti
m

e
Ba

se
1 

se
co

nd
 

St
ep

0.
00

01
01

81
2

Re
sp

on
se

 ti
m

e
2 

se
co

nd
s

Ar
ch

ite
ct

ur
e

1 
si

ng
le

 lo
op

 p
ub

lis
he

s 
ou

tp
ut

 o
n 

co
m

pe
tio

n 
of

 
pr

og
ra

m
Fe

ed
ba

ck
 lo

op
s

O
ne

 lo
op

Bl
oc

ki
ng

NA
C

on
st

an
ts

Na
m

e
Fo

rm
at

Un
it

Va
lu

e
NA St

op
 C

om
m

an
d

St
op

 L
oo

p 
(in

pu
t)

Bo
ol

ea
n 

Tr
ue

 F
al

se
 

St
ar

t c
om

m
an

d
In

pu
ts

 a
nd

 O
ut

pu
ts

N
am

e
In

pu
t o

r 
O

ut
pu

t
B

as
e

St
ep

 
U

ni
t

R
an

ge
 m

in
R

an
ge

 
m

ax
Ac

cu
ra

cy
Ex

pe
ct

ed
 

sa
m

pl
e 

ra
te

Fo
rm

at
D

ef
au

lt 
Va

lu
e

D
es

cr
ip

tio
n

So
ur

ce
R

eq
ui

re
d

St
ar

tin
g 

Ve
lo

ci
ty

 U
 (m

ps
)

In
pu

t
10

0.
00

00
01

M
et

er
s 

pe
r s

ec
on

d
0.

00
00

01
99

99
99

0.
5 

Hz
flo

at
in

g-
po

in
t 

0
Th

e 
st

ar
tin

g 
ve

lo
ci

ty
 o

f t
he

 
pa

rti
cl

e 
Fr

on
t p

an
el

 
Ye

s

D
is

ta
nc

e 
(S

) (
m

)
In

pu
t

10
0.

00
00

01
M

et
er

s
0.

00
00

01
99

99
99

0.
5 

Hz
flo

at
in

g-
po

in
t 

0
Th

e 
di

st
an

ce
 th

e 
pa

rti
cl

e 
ha

s 
to

 tr
av

el
Fr

on
t p

an
el

 
Ye

s
Fi

na
l V

al
oc

ity
 (V

) (
m

ps
)

In
pu

t
10

0.
00

00
01

M
et

er
s 

pe
r s

ec
on

d
0.

00
00

01
99

99
99

0.
5 

Hz
flo

at
in

g-
po

in
t 

0
Fi

na
l v

el
oc

ity
 o

f t
he

 p
ar

tic
le

 
Fr

on
t p

an
el

 
Ye

s
Sa

m
pl

e 
Ra

te
 (N

B 
sa

m
pe

ls 
of

ce
r T

im
e)

In
pu

t
10

1
In

te
rg

er
1

99
99

9
0.

5 
Hz

flo
at

in
g-

po
in

t 
0

Nu
m

be
r o

f s
am

pl
es

 to
 ta

ke
 

du
rin

g 
th

e 
fli

gh
t t

im
e 

of
 th

e 
pa

rti
cl

e

Fr
on

t p
an

el
 

Ye
s

St
op

 L
oo

p
In

pu
t

1
1

Bo
ol

ea
n

0
1

0.
5 

Hz
Bo

ol
ea

n
0

C
om

m
an

d 
to

 s
to

p 
th

e 
si

m
ul

at
io

n 
pr

em
at

ur
el

y 
Fr

on
t p

an
el

 
No

Lo
op

 c
ou

nt
s

O
ut

pu
t

10
1

In
te

rg
er

1
99

99
99

0.
5 

Hz
In

te
rg

er
 

0
D

is
pl

ay
s 

th
e 

nu
m

be
r o

f 
ite

ra
tio

ns
 o

f c
al

cu
la

tio
n 

lo
op

Fr
on

t p
an

el
 

NA
Ti

m
e 

(T
) (

Se
co

nd
s)

O
ut

pu
t

10
0.

00
00

01
Se

co
nd

s
0.

00
00

01
99

9
0.

5 
Hz

flo
at

in
g-

po
in

t 
0

Ti
m

e 
ta

ke
n 

fo
r p

ar
tic

le
 to

 
co

ve
r d

is
ta

nc
e

Fr
on

t p
an

el
 

NA
Ac

ec
le

ra
tio

n 
(A

) (
m

et
er

s 
pe

r s
ec

on
d 

pe
r s

ec
on

d)
O

ut
pu

t
10

0.
00

00
01

M
et

er
s 

pe
r s

ec
on

d 
pe

r s
ec

on
d

0.
00

00
01

30
0

0.
5 

Hz
flo

at
in

g-
po

in
t 

0
Ac

ce
le

ra
tio

n 
of

 th
e 

ba
ll f

ro
m

 
st

ar
t o

f f
lig

ht
 to

 th
e 

en
d

Fr
on

t p
an

el
 

NA
Ti

m
e 

Sa
m

pl
e 

(T
s)

 (s
ec

on
ds

)
O

ut
pu

t
10

0.
00

00
00

00
1

Se
co

nd
s

0.
00

00
00

00
1

1
0.

5 
Hz

flo
at

in
g-

po
in

t 
0

C
al

cu
la

te
d 

tim
e 

sa
m

pl
e 

ra
te

Fr
on

t p
an

el
 

NA
D

is
pl

ce
m

en
t s

te
p 

St
 (m

et
er

s)
O

ut
pu

t
10

0.
00

00
01

M
et

er
s

0.
00

00
01

5
0.

5 
Hz

flo
at

in
g-

po
in

t 
0

C
al

cu
la

te
d 

di
sp

la
ce

m
en

t s
te

p 
Fr

on
t p

an
el

 
NA

D
is

pl
ac

em
en

t s
te

p 
St

 (m
et

er
s)

 A
rr

ay
O

ut
pu

t
10

0.
00

00
01

M
et

er
s

0.
00

00
01

5
0.

5 
Hz

Ar
ra

y 
of

 
flo

at
in

g 
pi

nt
 

nu
m

be
rs

0
D

is
pl

ac
em

en
t s

te
ps

 fr
om

 
ea

ch
 it

er
at

io
n 

of
 a

 c
al

cu
la

tio
n 

lo
op

Fr
on

t p
an

el
 

NA



PAGE 361 

 

Figure 9.7 Particle moving in free space Environment 

O
pe

ra
tin

g 
sy

te
m

:
W

in
do

ws
 7

R
un

tim
e 

En
gi

ne
:

La
bV

IE
W

 2
01

3 
(3

2b
it)

H
ar

dw
ar

e 
R

eq
ui

re
m

en
ts

G
ra

ph
ic

s
G

PU
 C

lo
ck

 s
pe

ed
40

0M
Hz

Si
ze

 o
f m

em
or

y 
bu

s
64

 B
it

Am
ou

nt
 o

f a
va

lib
le

 m
em

or
y

1 
G

B
M

em
or

y 
cl

oc
k 

ra
te

45
0 

M
Hz

Ne
tw

or
k

NA
D

is
k 

sp
ac

e
38

 K
B

RA
M

16
2,

35
2 

K
C

PU
In

te
l®

 C
or

e™
 i5

-3
38

0M
 C

PU
 @

 2
.9

0G
Hz

 (4
 C

PU
s)

Pe
rip

he
ra

ls
N

am
e

Ve
nd

er
D

riv
er

In
te

rf
ac

e
NA D

ep
en

de
nc

ey
 

N
am

e
Lo

ca
tio

n
St

at
ic

 o
r 

dy
na

m
ic

Ve
rs

io
n 

NA



PAGE 362 

 

Figure 9.8 Particle Moving in Free Space verification Experiment 

En
vi

ro
m

en
t

La
bV

IE
W

Ti
m

e
to

ta
l r

un
 ti

m
e

4s
ou

tp
ut

 fr
eq

ue
nc

y
0.

25
 H

z
Pa

ra
m

et
er

s
Na

m
e

Fo
rm

at
Un

it
Va

lu
e

NA In
pu

ts
 a

nd
 O

ut
pu

ts
N

am
e

In
pu

t o
r 

O
ut

pu
t

B
as

e
St

ep
 

U
ni

t
Fo

rm
at

In
pu

t V
al

ue
 

or
 e

xp
ec

te
d 

ou
tp

ut
 v

al
ue

D
es

cr
ip

tio
n

R
eq

ui
re

d

St
ar

tin
g 

Ve
lo

ci
ty

 U
 (m

ps
)

In
pu

t
10

0.
00

00
01

M
et

er
s 

pe
r s

ec
on

d
0.

00
00

01
flo

at
in

g-
po

in
t 

50
Th

e 
st

ar
tin

g 
ve

lo
ci

ty
 o

f t
he

 p
ar

tic
le

 
Ye

s
D

is
ta

nc
e 

(S
) (

m
)

In
pu

t
10

0.
00

00
01

M
et

er
s

0.
00

00
01

flo
at

in
g-

po
in

t 
4

Th
e 

di
st

an
ce

 th
e 

pa
rti

cl
e 

ha
s 

to
 tr

av
el

Ye
s

Fi
na

l V
al

oc
ity

 (V
) (

m
ps

)
In

pu
t

10
0.

00
00

01
M

et
er

s 
pe

r s
ec

on
d

0.
00

00
01

flo
at

in
g-

po
in

t 
48

.2
2

Fi
na

l v
el

oc
ity

 o
f t

he
 p

ar
tic

le
 

Ye
s

Sa
m

pl
e 

Ra
te

 (N
B 

sa
m

pe
ls 

of
ce

r T
im

e)
In

pu
t

10
1

In
te

rg
er

1
flo

at
in

g-
po

in
t 

10
00

Nu
m

be
r o

f s
am

pl
es

 to
 ta

ke
 d

ur
in

g 
th

e 
fli

gh
t t

im
e 

of
 th

e 
pa

rti
cl

e
Ye

s

St
op

 L
oo

p
In

pu
t

1
1

Bo
ol

ea
n

0
Bo

ol
ea

n
0

C
om

m
an

d 
to

 s
to

p 
th

e 
si

m
ul

at
io

n 
pr

em
at

ur
el

y 
Ye

s

Lo
op

 c
ou

nt
s

O
ut

pu
t

10
1

In
te

rg
er

1
In

te
rg

er
 

98
2

D
is

pl
ay

s 
th

e 
nu

m
be

r o
f i

te
ra

tio
ns

 o
f 

ca
lc

ul
at

io
n 

lo
op

Ye
s

Ti
m

e 
(T

) (
Se

co
nd

s)
O

ut
pu

t
10

0.
00

00
01

Se
co

nd
s

0.
00

00
01

flo
at

in
g-

po
in

t 
0.

08
14

49
8

Ti
m

e 
ta

ke
n 

fo
r p

ar
tic

le
 to

 c
ov

er
 d

is
ta

nc
e

Ye
s

Ac
ec

le
ra

tio
n 

(A
) (

m
et

er
s 

pe
r s

ec
on

d 
pe

r s
ec

on
d)

O
ut

pu
t

10
0.

00
00

01
M

et
er

s 
pe

r s
ec

on
d 

pe
r s

ec
on

d
0.

00
00

01
flo

at
in

g-
po

in
t 

-2
1.

85
39

Ac
ce

le
ra

tio
n 

of
 th

e 
ba

ll f
ro

m
 s

ta
rt 

of
 

fli
gh

t t
o 

th
e 

en
d

Ye
s

Ti
m

e 
Sa

m
pl

e 
(T

s)
 (s

ec
on

ds
)

O
ut

pu
t

10
1E

-0
9

Se
co

nd
s

1E
-0

9
flo

at
in

g-
po

in
t 

8.
14

E-
05

C
al

cu
la

te
d 

tim
e 

sa
m

pl
e 

ra
te

Ye
s

D
is

pl
ce

m
en

t s
te

p 
St

 (m
et

er
s)

O
ut

pu
t

10
0.

00
00

01
M

et
er

s
0.

00
00

01
flo

at
in

g-
po

in
t 

4.
00

31
9

C
al

cu
la

te
d 

di
sp

la
ce

m
en

t s
te

p 
Ye

s
D

is
pl

ac
em

en
t s

te
p 

St
 (m

et
er

s)
 A

rr
ay

O
ut

pu
t

10
0.

00
00

01
M

et
er

s
0.

00
00

01
Ar

ra
y 

of
 fl

oa
tin

g 
pi

nt
 n

um
be

rs
E1

  0
.0

04
07

24
2 

 
D

is
pl

ac
em

en
t s

te
ps

 fr
om

 e
ac

h 
ite

ra
tio

n 
of

 a
 c

al
cu

la
tio

n 
lo

op
Ye

s



PAGE 363 

Energy Transfer Model Integration Tables 

 

Figure 9.9 Energy Transfer Model, Model Information 

N
am

e:
En

er
gy

 T
ra

ns
fe

r m
od

el
Ve

rs
io

n:
D

at
e 

of
 p

ub
lic

at
io

n
01

/0
3/

20
15

Ve
rs

io
n 

Nu
m

be
r

V1
Ty

pe
:

En
er

gy
 tr

an
sf

er
 m

od
el

 N
ew

to
ne

an
D

es
cr

io
tio

n:
En

er
gy

 tr
an

sf
er

 m
od

el
 o

f a
 b

al
l h

itt
in

g 
a 

su
rfa

ce
 a

nd
 lo

si
ng

 e
ne

rg
y 

on
 

im
pa

ct
 a

nd
 re

bo
un

d
Au

th
or

:
Ro

be
rt 

Lu
ff

IP
:

O
wn

er
:

Lo
ug

hb
or

ou
gh

 U
ni

ve
rs

ity
 

Li
ce

nc
e:

Ac
ad

em
ic

St
an

da
rd

 c
om

pl
ie

nc
e:

No
ne

 
D

oc
um

en
ta

tio
n:

As
su

m
pt

io
ns

:
Th

e 
en

er
gy

 lo
ss

 fr
om

 th
e 

im
pa

ct
 is

 s
pe

ci
fie

d 
by

 th
e 

us
er

 a
s 

a 
pe

rc
en

ta
ge

No
 lo

ss
 o

f e
ne

rg
y 

fro
m

 a
ir 

re
si

st
an

ce
 

Th
e 

su
rfa

ce
s 

ar
e 

co
m

pl
et

el
y 

sm
oo

th
 w

ith
 n

o 
pr

ot
ru

si
on

s
Th

e 
ba

ll i
s 

a 
pa

rti
cl

e
Th

e 
ba

ll c
an

 m
ov

e 
fre

el
y 

wi
th

in
 th

e 
th

re
e 

di
m

en
si

on
al

 s
pa

ce

La
ng

ua
ge

:
En

gl
is

h
Fi

le
 ty

pe
:

.v
i

Lo
ca

tio
n:

C
:\U

se
rs

\e
lrl

2\
G

oo
gl

e 
D

riv
e\

PH
D

\M
y 

W
or

k\
La

bV
IE

W
_F

ile
s\

NL
P_

m
od

el
s

Ba
si

s 
of

 m
od

el
:

Ph
ys

ic
s 

G
en

er
at

io
n 

to
ol

:
La

bV
IE

W
So

ur
ce

 F
ile

s
So

ur
ce

 fi
le

 n
am

e
Lo

ca
tio

n
Ed

ita
bl

e
En

er
gy

_t
ra

ns
fe

r_
m

od
el

.v
i

C
:\U

se
rs

\e
lrl

2\
G

oo
gl

e 
D

riv
e\

PH
D

\M
y 

W
or

k\
La

bV
IE

W
_F

ile
s\

NL
P_

m
od

el
s

NA NA NA NA NA NA NA NA



PAGE 364 

 

Figure 9.10 Energy Transfer Model, Structure 

Us
er

 in
te

rfa
ce

 ty
pe

G
UI

Ti
m

e
NA

Ba
se

NA
St

ep
NA

Re
sp

on
se

 ti
m

e
0.

5 
se

co
nd

s
Ar

ch
ite

ct
ur

e
Fe

ed
ba

ck
 lo

op
s

No
ne

Bl
oc

ki
ng

NA
C

on
st

an
ts

Na
m

e
Fo

rm
at

Un
it

Va
lu

e

St
op

 C
om

m
an

d
St

ar
t c

om
m

an
d

In
pu

ts
 a

nd
 O

ut
pu

ts
Na

m
e

In
pu

t o
r 

O
ut

pu
t

Ba
se

St
ep

 
Un

it
Ra

ng
e 

m
in

Ra
ng

e 
m

ax
Ac

cu
ra

cy
Ex

pe
ct

ed
 

sa
m

pl
e 

ra
te

Fo
rm

at
D

ef
au

lt 
Va

lu
e

D
es

cr
ip

tio
n

So
ur

ce
Re

qu
ire

d

M
as

s 
(K

g)
In

pu
t

10
0.

00
01

Ki
lo

gr
am

 
0.

00
1

99
99

99
0.

00
1

50
flo

at
in

g-
po

in
t 

0
M

as
s 

of
 th

e 
ba

ll
Fr

on
t p

an
el

 
Ye

s
Ve

lo
ci

ty
 (m

et
er

s 
pe

r s
ec

on
d 

m
ps

)
In

pu
t

10
0.

00
01

M
ps

0.
00

1
99

99
99

0.
00

1
50

flo
at

in
g-

po
in

t 
0

Ve
lo

ci
ty

 o
f t

he
 b

al
l

Fr
on

t p
an

el
 

Ye
s

En
er

gy
 tr

an
sf

er
 e

ffi
ci

en
cy

 (%
)

In
pu

t
10

0.
00

01
M

et
er

s 
pe

r S
ec

on
d

0.
00

1
99

99
99

0.
00

1
50

flo
at

in
g-

po
in

t 
0

Pe
rc

en
ta

ge
 o

f e
ne

rg
y 

ou
t 

Fr
on

t p
an

el
 

Ye
s

Re
m

ai
ni

ng
 e

ne
rg

y
O

ut
pu

t
10

0.
00

01
Ju

le
s

0.
00

1
99

99
99

0.
00

1
50

flo
at

in
g-

po
in

t 
0

En
er

gy
 re

m
ai

ni
ng

 h
el

d 
by

 th
e 

ba
ll

Fr
on

t p
an

el
 

NA
Ki

ne
tic

 e
ne

rg
y 

(J
ul

es
)

O
ut

pu
t

10
0.

00
01

Ju
le

s
0.

00
1

99
99

99
0.

00
1

50
flo

at
in

g-
po

in
t 

0
Ki

ne
tic

 e
ne

rg
y 

of
 th

e 
ba

ll a
fte

r r
eb

ou
nd

 
Fr

on
t p

an
el

 
NA

En
er

gy
 lo

st
 (J

ul
es

)
O

ut
pu

t
10

0.
00

01
Ju

le
s

0.
00

1
99

99
99

0.
00

1
50

flo
at

in
g-

po
in

t 
0

En
er

gy
 lo

st
 b

y 
re

bo
un

d 
Fr

on
t p

an
el

 
NA

Re
tu

rn
in

g 
ve

lo
ci

ty
 (m

ps
)

O
ut

pu
t

10
0.

00
01

M
et

er
s 

pe
r S

ec
on

d
0.

00
1

99
99

99
0.

00
1

50
flo

at
in

g-
po

in
t 

0
Ve

lo
ci

ty
 o

f b
al

l a
fte

r r
eb

ou
nd

Fr
on

t p
an

el
 

NA



PAGE 365 

 

Figure 9.11 Energy Transfer Model, Environment 

O
pe

ra
tin

g 
sy

te
m

:
W

in
do

ws
 7

R
un

tim
e 

En
gi

ne
:

La
bV

IE
W

 2
01

3 
(3

2b
it)

H
ar

dw
ar

e 
R

eq
ui

re
m

en
ts

G
ra

ph
ic

s
G

PU
 C

lo
ck

 s
pe

ed
40

0M
Hz

Si
ze

 o
f m

em
or

y 
bu

s
64

 B
it

Am
ou

nt
 o

f a
va

lib
le

 m
em

or
y

1 
G

B
M

em
or

y 
cl

oc
k 

ra
te

45
0 

M
Hz

Ne
tw

or
k

NA
D

is
k 

sp
ac

e
38

 K
B

RA
M

16
2,

35
2 

K
C

PU
In

te
l®

 C
or

e™
 i5

-3
38

0M
 C

PU
 @

 2
.9

0G
Hz

 (4
 C

PU
s)

Pe
rip

he
ra

ls
N

am
e

Ve
nd

er
D

riv
er

In
te

rf
ac

e
NA D

ep
en

de
nc

ey
 

N
am

e
Lo

ca
tio

n
St

at
ic

 o
r 

dy
na

m
ic

Ve
rs

io
n 

NA



PAGE 366 

 

Figure 9.12 Energy Transfer Model, Verification 

En
vi

ro
m

en
t

La
bV

IE
W

Ti
m

e
to

ta
l r

un
 ti

m
e

0.
5 

se
co

nd
s

ou
tp

ut
 fr

eq
ue

nc
y

si
ng

le
 p

oi
nt

Pa
ra

m
et

er
s

Na
m

e
Fo

rm
at

Un
it

Va
lu

e
NA In

pu
ts

 a
nd

 O
ut

pu
ts

N
am

e
In

pu
t o

r 
O

ut
pu

t
B

as
e

St
ep

 
U

ni
t

Fo
rm

at
In

pu
t V

al
ue

 
or

 e
xp

ec
te

d 
ou

tp
ut

 v
al

ue

D
es

cr
ip

tio
n

R
eq

ui
re

d

M
as

s 
(K

g)
In

pu
t

10
0.

00
01

Ki
lo

gr
am

 
flo

at
in

g-
po

in
t 

0.
3

Th
e 

m
as

s 
of

 th
e 

pa
rti

cl
e

Ye
s

Ve
lo

ci
ty

 (m
et

er
s 

pe
r s

ec
on

d 
m

ps
)

In
pu

t
10

0.
00

01
M

ps
flo

at
in

g-
po

in
t 

50
Th

e 
ve

lo
ci

ty
 o

f t
he

 p
ar

tic
le

 
Ye

s

En
er

gy
 tr

an
sf

er
 e

ffi
ci

en
cy

 (%
)

In
pu

t
10

0.
00

01
M

et
er

s 
pe

r S
ec

on
d

flo
at

in
g-

po
in

t 
5

Th
e 

en
er

gy
 lo

ss
 a

s 
a 

pe
rc

en
ta

ge
 o

f a
 

re
bo

un
d 

fro
m

 a
 s

ur
fa

ce
Ye

s
Re

m
ai

ni
ng

 e
ne

rg
y

O
ut

pu
t

10
0.

00
01

Ju
le

s
flo

at
in

g-
po

in
t 

35
6.

25
Th

e 
en

er
gy

 re
m

ai
ni

ng
 a

fte
r a

 re
bo

un
d 

 
NA

Ki
ne

tic
 e

ne
rg

y 
(J

ul
es

)
O

ut
pu

t
10

0.
00

01
Ju

le
s

flo
at

in
g-

po
in

t 
37

5
Th

e 
ki

ne
tic

 e
ne

rg
y 

be
fo

re
 in

te
ra

ct
io

n 
wi

th
 

su
rfa

ce
 

NA

En
er

gy
 lo

st
 (J

ul
es

)
O

ut
pu

t
10

0.
00

01
Ju

le
s

flo
at

in
g-

po
in

t 
18

.7
5

Th
e 

en
er

gy
 lo

st
 fr

om
 th

e 
in

te
ra

ct
io

n 
wi

th
 th

e 
su

rfa
ce

  
NA

Re
tu

rn
in

g 
ve

lo
ci

ty
 (m

ps
)

O
ut

pu
t

10
0.

00
01

M
et

er
s 

pe
r S

ec
on

d
flo

at
in

g-
po

in
t 

48
.7

34
Th

e 
ve

lo
ci

ty
 o

f t
he

 p
ar

tic
le

 a
fte

r r
eb

ou
nd

in
g 

of
f t

he
 s

ur
fa

ce
  

NA



PAGE 367 

Squash Court in or Out Model Integration Tables 

 

Figure 9.13 Squash Court in or Out Model, Model Information 

N
am

e:
Sq

ua
sh

 C
ou

rt 
in

 o
r O

ut
 M

od
el

Ve
rs

io
n:

D
at

e 
of

 p
ub

lic
at

io
n

01
/0

3/
20

15
Ve

rs
io

n 
Nu

m
be

r
V1

Ty
pe

:
C

ar
te

si
an

 re
pr

es
en

ta
io

n 
of

 a
 s

qu
as

h 
co

ur
t

D
es

cr
io

tio
n:

Ph
ys

ic
al

 b
od

y 
be

in
g 

m
od

el
le

d 
is

 b
as

ed
 o

f t
he

 s
pe

ci
fic

at
io

ns
 la

id
 o

ut
 in

 th
e 

do
cu

m
en

t W
or

ld
 

Sq
ua

sh
 F

ed
er

at
io

n 
(W

SF
) R

ec
om

m
en

de
d 

St
an

da
rd

s 
Ap

pr
ov

ed
 b

y 
th

e 
W

SF
 J

an
ua

ry
 2

01
3.

Th
e 

si
m

ul
at

io
n 

us
ed

 th
e 

(X
,Y

,Z
) C

ar
te

si
an

 n
ot

at
io

n 
of

 th
re

e 
di

m
en

si
on

al
 s

pa
ce

. (
0,

0,
0)

 is
 

ta
ke

n 
to

 b
e 

th
e 

bo
tto

m
 le

ft 
co

rn
er

 a
s 

if 
a 

pl
ay

er
 h

ad
 ju

st
 w

al
ke

d 
th

ro
ug

h 
th

e 
do

or
.

Au
th

or
:

Ro
be

rt 
Lu

ff
R

eq
ui

re
m

et
 d

oc
um

en
t n

am
e

NA
R

eq
ui

re
m

et
 d

oc
um

en
t l

oc
ai

to
n

NA
IP O

wn
er

:
Lo

ug
hb

or
ou

gh
 U

ni
ve

rs
ity

Li
ce

nc
e:

Ac
ed

em
ic

St
an

da
rd

 c
om

pl
ie

nc
e:

No
ne

D
oc

um
en

ta
tio

n:
As

su
m

pt
io

ns
:

An
y 

ba
ll h

itt
in

g 
an

y 
of

 th
e 

lin
es

 is
 c

on
si

de
re

d 
“in

”
Th

e 
di

m
en

si
on

s 
of

 th
e 

ba
ll a

re
 n

ot
 c

on
si

de
re

d
Th

e 
ba

ll i
s 

a 
pa

rti
cl

e
Th

e 
Ti

n 
do

es
 n

ot
 s

ta
nd

 o
ut

 o
f t

he
 w

al
l

Th
e 

ba
ll c

an
 m

ov
e 

fre
el

y 
wi

th
in

 th
e 

th
re

e 
di

m
en

si
on

al
 s

pa
ce

Th
e 

su
rfa

ce
s 

ar
e 

co
m

pl
et

el
y 

sm
oo

th
 w

ith
 n

o 
pr

ot
ru

si
on

s
Th

e 
pl

ay
er

s 
ar

e 
no

t c
on

si
de

re
d 

 
La

ng
ua

ge
:

En
gl

is
h

Fi
le

 ty
pe

:
.V

I
Lo

ca
tio

n:
C

:\U
se

rs
\e

lrl
2\

G
oo

gl
e 

D
riv

e\
PH

D
\M

y 
W

or
k\

La
bV

IE
W

_F
ile

s\
NL

P_
m

od
el

s
Ba

si
s 

of
 m

od
el

:
Ph

ys
ic

s
G

en
er

at
io

n 
to

ol
:

La
bV

IE
W

So
ur

ce
 F

ile
s

So
ur

ce
 fi

le
 n

am
e

Lo
ca

tio
n

Ed
ita

bl
e

Sq
ua

sh
_C

ou
rt_

m
od

el
C

:\U
se

rs
\e

lrl
2\

G
oo

gl
e 

D
riv

e\
PH

D
\M

y 
W

or
k\

La
bV

IE
W

_F
ile

s\
NL

P_
m

od
el

s
Ye

s
NA



PAGE 368 

 

Figure 9.14 Squash Court in or Out Model, Model Structure 

Us
er

 in
te

rfa
ce

 ty
pe

G
UI

Ti
m

e
NA

Ba
se

NA
St

ep
NA

Re
sp

on
se

 ti
m

e
0.

5 
se

co
nd

s
Ar

ch
ite

ct
ur

e
Fe

ed
ba

ck
 lo

op
s

No
ne

Bl
oc

ki
ng

NA
C

on
st

an
ts

Na
m

e
Fo

rm
at

Un
it

Va
lu

e

St
op

 C
om

m
an

d
St

ar
t c

om
m

an
d

In
pu

ts
 a

nd
 O

ut
pu

ts
Na

m
e

In
pu

t o
r 

O
ut

pu
t

Ba
se

St
ep

 
Un

it
Ra

ng
e 

m
in

Ra
ng

e 
M

ax
Ac

cu
ra

cy
Ex

pe
ct

ed
 

sa
m

pl
e 

ra
te

Fo
rm

at
D

ef
au

lt 
Va

lu
e

D
es

cr
ip

tio
n

So
ur

ce
Re

qu
ire

d

To
ta

l L
en

gt
h 

NA
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
97

50
C

ou
rt 

to
ta

l le
ng

th
 

Fr
on

t p
an

el
 

Ye
s

To
ta

l W
ith

 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
1

50
flo

at
in

g-
po

in
t 

64
00

C
ou

rt 
to

ta
l w

ith
 

Fr
on

t p
an

el
 

Ye
s

To
ta

l H
ei

gh
t

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
56

40
C

ou
rt 

to
ta

l h
ei

gh
t 

Fr
on

t p
an

el
 

Ye
s

He
ig

ht
 o

f T
in

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
53

0
Th

e 
he

ig
ht

 o
f t

he
 ti

n 
fro

m
 th

e 
flo

or
Fr

on
t p

an
el

 
Ye

s
Fr

on
t W

al
l B

ot
to

m
 o

f S
er

vic
e 

Li
ne

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
18

30
he

ig
ht

 fr
om

 th
e 

flo
or

 to
 b

ot
to

m
 s

er
ci

ce
 li

ne
 

Fr
on

t p
an

el
 

Ye
s

Fr
on

t w
al

l t
op

 o
f S

er
vic

e 
Li

ne
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
1

50
flo

at
in

g-
po

in
t 

46
20

he
ig

ht
 fr

om
 th

e 
flo

or
 to

 th
e 

to
p 

se
rv

ic
e 

lin
e

Fr
on

t p
an

el
 

Ye
s

Le
ng

th
 to

 s
ho

rt 
lin

e 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
1

50
flo

at
in

g-
po

in
t 

54
90

le
ng

th
 fr

om
 fr

on
t w

al
l t

o 
dh

or
t l

in
e

Fr
on

t p
an

el
 

Ye
s

W
ith

 o
f s

er
vic

e 
bo

x
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
1

50
flo

at
in

g-
po

in
t 

16
50

wi
th

 o
f s

er
vic

e 
bo

x 
fro

m
 s

id
e 

wa
ll

Fr
on

t p
an

el
 

Ye
s

W
ith

 o
f b

ac
k 

Q
ua

rte
r

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
32

00
wi

th
 o

f b
ac

k 
qu

ar
te

r f
ro

m
 s

id
e 

wa
ll

Fr
on

t p
an

el
 

Ye
s

D
ep

th
 o

f s
er

vic
e 

bo
x

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
16

50
de

pt
h 

of
 s

er
ci

ce
 b

ox
 fr

om
 s

ho
rt 

lin
e

Fr
on

t p
an

el
 

Ye
s

He
ig

ht
 o

f b
ac

k 
wa

ll l
in

e 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
1

50
flo

at
in

g-
po

in
t 

21
80

hi
gh

t f
ro

m
 th

e 
flo

or
 to

 b
ac

k 
wa

ll l
in

e
Fr

on
t p

an
el

 
Ye

s
X 

C
oo

rd
in

at
e

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
0

th
e 

x 
co

or
di

na
te

 p
os

iti
on

 w
ith

in
 th

e 
co

ur
t

Fr
on

t p
an

el
 

No
Y 

C
oo

rd
in

at
e

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
0

th
e 

y 
co

or
di

na
te

 p
os

iti
on

 w
ith

in
 th

e 
co

ur
t

Fr
on

t p
an

el
 

No
Z 

C
oo

rd
in

at
e 

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
0

10
0

0.
00

1
50

flo
at

in
g-

po
in

t 
0

th
e 

z 
co

or
di

na
te

 p
os

iti
on

 w
ith

in
 th

e 
co

ur
t

Fr
on

t p
an

el
 

No
Fr

on
t H

al
f

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

n 
th

e 
fro

nt
 h

al
f 

Fr
on

t p
an

el
 

NA
Le

ft 
Se

rv
ic

e 
bo

x
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
n 

th
e 

le
ft 

se
rv

ic
e 

bo
x

Fr
on

t p
an

el
 

NA
Ri

gh
t S

er
vic

e 
bo

x
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
n 

th
e 

rig
ht

 s
er

vic
e 

bo
x

Fr
on

t p
an

el
 

NA
Le

ft 
Q

ua
rte

r 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 th

e 
le

ft 
qu

ar
te

r
Fr

on
t p

an
el

 
NA

Ri
gh

t Q
ua

rte
r

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 th
e 

rig
ht

 q
ua

rte
r

Fr
on

t p
an

el
 

NA
Ba

ck
 h

al
f 

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 th
e 

ba
ck

 h
al

f
Fr

on
t p

an
el

 
NA

To
p 

wa
ll

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 c
on

ta
ct

 w
ith

 th
e 

to
p 

wa
ll

Fr
on

t p
an

el
 

NA
Fr

on
t w

al
l

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 c
on

ta
ct

 w
ith

  f
ro

nt
 w

al
l

Fr
on

t p
an

el
 

NA
Bo

tto
m

 w
al

l
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ot
to

m
 w

al
l

Fr
on

t p
an

el
 

NA
Ti

n
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 th

e 
tin

Fr
on

t p
an

el
 

NA
O

ut
 B

ou
nd

s 
si

de
 w

al
l le

ft
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 w

al
l le

ft 
ou

t o
f b

ou
nd

s
Fr

on
t p

an
el

 
NA

In
 b

ou
nd

s 
si

de
 w

al
l le

ft
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 w

al
l le

ft 
in

 b
ou

nd
s

Fr
on

t p
an

el
 

NA
O

ut
 b

ou
nd

s 
si

de
 w

al
l r

ig
ht

 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 ri

gh
t w

al
l i

n 
bo

un
ds

Fr
on

t p
an

el
 

NA
In

 b
ou

nd
s 

si
de

 w
al

l r
ig

ht
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 le

ft 
wa

ll i
n 

bo
un

ds
 

Fr
on

t p
an

el
 

NA
O

ut
 b

ou
nd

 h
ei

gh
t 

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

in
de

ca
te

s 
if 

ba
ll i

s 
ou

t b
ou

nd
s 

in
 h

ei
gh

t 
Fr

on
t p

an
el

 
NA

In
 b

ou
nd

 h
ei

gh
t

O
ut

pu
t

1
1

Tr
ue

 F
al

se
0

1
1

50
Bo

ol
ea

n
0

in
de

ca
te

s 
if 

ba
ll i

s 
in

 b
ou

nd
s 

in
 h

ei
gh

t
Fr

on
t p

an
el

 
NA

Ba
ck

 w
al

l o
ut

 b
ou

nd
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
in

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ac
k 

wa
ll o

ut
 b

ou
nd

s
Fr

on
t p

an
el

 
NA

Ba
ck

 w
al

l i
n 

bo
un

d 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

0
1

1
50

Bo
ol

ea
n

0
in

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ac
k 

wa
ll i

n 
bo

un
ds

 
Fr

on
t p

an
el

 
NA

He
ig

ht
 o

f l
in

e 
at

 p
oi

nt
 x

O
ut

pu
t

10
0.

00
1

m
illi

m
et

er
s

0
10

0
0.

00
01

50
flo

at
in

g-
po

in
t 

0
hi

gh
t o

f s
id

e 
wa

ll b
ou

nd
 li

ne
 a

t p
oi

nt
 x

Fr
on

t p
an

el
 

NA



PAGE 369 

 

Figure 9.15Squash Court in or Out Model, Environment 

O
pe

ra
tin

g 
sy

te
m

:
W

in
do

ws
 7

R
un

tim
e 

En
gi

ne
:

La
bV

IE
W

 2
01

3 
(3

2b
it)

H
ar

dw
ar

e 
R

eq
ui

re
m

en
ts

G
ra

ph
ic

s
G

PU
 C

lo
ck

 s
pe

ed
40

0M
Hz

Si
ze

 o
f m

em
or

y 
bu

s
64

 B
it

Am
ou

nt
 o

f a
va

lib
le

 m
em

or
y

1 
G

B
M

em
or

y 
cl

oc
k 

ra
te

45
0 

M
Hz

Ne
tw

or
k

NA
D

is
k 

sp
ac

e
38

 K
B

RA
M

16
2,

35
2 

K
C

PU
In

te
l®

 C
or

e™
 i5

-3
38

0M
 C

PU
 @

 2
.9

0G
Hz

 (4
 C

PU
s)

Pe
rip

he
ra

ls
N

am
e

Ve
nd

er
D

riv
er

In
te

rf
ac

e
No

ne

D
ep

en
de

nc
ey

 
N

am
e

Lo
ca

tio
n

St
at

ic
 o

r 
dy

na
m

ic
Ve

rs
io

n 
No

ne



PAGE 370 

 

Figure 9.16 Squash Court in or Out Model, Verification Experiment  

En
vi

ro
m

en
t

La
bV

IE
W

Ti
m

e
to

ta
l r

un
 ti

m
e

0.
5 

se
co

nd
s

ou
tp

ut
 fr

eq
ue

nc
y

si
ng

le
 o

ut
pu

t
Pa

ra
m

et
er

s
Na

m
e

Fo
rm

at
Un

it
Va

lu
e

NA In
pu

ts
 a

nd
 O

ut
pu

ts
N

am
e

In
pu

t o
r 

O
ut

pu
t

B
as

e
St

ep
 

U
ni

t
Fo

rm
at

In
pu

t V
al

ue
 o

r 
ex

pe
ct

ed
 o

ut
pu

t 
va

lu
e

D
es

cr
ip

tio
n

R
eq

ui
re

d

To
ta

l L
en

gt
h 

NA
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

97
50

C
ou

rt 
to

ta
l le

ng
th

 
Ye

s
To

ta
l W

ith
 

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

64
00

C
ou

rt 
to

ta
l w

ith
 

Ye
s

To
ta

l H
ei

gh
t

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

56
40

C
ou

rt 
to

ta
l h

ei
gh

t 
Ye

s
He

ig
ht

 o
f T

in
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
53

0
Th

e 
he

ig
ht

 o
f t

he
 ti

n 
fro

m
 th

e 
flo

or
Ye

s
Fr

on
t W

al
l B

ot
to

m
 o

f S
er

vic
e 

Li
ne

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

18
30

he
ig

ht
 fr

om
 th

e 
flo

or
 to

 b
ot

to
m

 s
er

ci
ce

 li
ne

 
Ye

s
Fr

on
t w

al
l t

op
 o

f S
er

vic
e 

Li
ne

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

46
20

he
ig

ht
 fr

om
 th

e 
flo

or
 to

 th
e 

to
p 

se
rv

ic
e 

lin
e

Ye
s

Le
ng

th
 to

 s
ho

rt 
lin

e 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
54

90
le

ng
th

 fr
om

 fr
on

t w
al

l t
o 

dh
or

t l
in

e
Ye

s
W

ith
 o

f s
er

vic
e 

bo
x

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

16
50

wi
th

 o
f s

er
vic

e 
bo

x 
fro

m
 s

id
e 

wa
ll

Ye
s

W
ith

 o
f b

ac
k 

Q
ua

rte
r

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

32
00

wi
th

 o
f b

ac
k 

qu
ar

te
r f

ro
m

 s
id

e 
wa

ll
Ye

s
D

ep
th

 o
f s

er
vic

e 
bo

x
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
16

50
de

pt
h 

of
 s

er
ci

ce
 b

ox
 fr

om
 s

ho
rt 

lin
e

Ye
s

He
ig

ht
 o

f b
ac

k 
wa

ll l
in

e 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
21

80
hi

gh
t f

ro
m

 th
e 

flo
or

 to
 b

ac
k 

wa
ll l

in
e

Ye
s

X 
C

oo
rd

in
at

e
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
0

th
e 

x 
co

or
di

na
te

 p
os

iti
on

 w
ith

in
 th

e 
co

ur
t

No
Y 

C
oo

rd
in

at
e

In
pu

t
10

0.
00

1
m

illi
m

et
er

s
flo

at
in

g-
po

in
t 

0
th

e 
y 

co
or

di
na

te
 p

os
iti

on
 w

ith
in

 th
e 

co
ur

t
No

Z 
C

oo
rd

in
at

e 
In

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
0

th
e 

z 
co

or
di

na
te

 p
os

iti
on

 w
ith

in
 th

e 
co

ur
t

No
Fr

on
t H

al
f

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

n 
th

e 
fro

nt
 h

al
f 

NA
Le

ft 
Se

rv
ic

e 
bo

x
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
n 

th
e 

le
ft 

se
rv

ic
e 

bo
x

NA
Ri

gh
t S

er
vic

e 
bo

x
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
n 

th
e 

rig
ht

 s
er

vic
e 

bo
x

NA
Le

ft 
Q

ua
rte

r 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 th

e 
le

ft 
qu

ar
te

r
NA

Ri
gh

t Q
ua

rte
r

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 th
e 

rig
ht

 q
ua

rte
r

NA
Ba

ck
 h

al
f 

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 th
e 

ba
ck

 h
al

f
NA

To
p 

wa
ll

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 c
on

ta
ct

 w
ith

 th
e 

to
p 

wa
ll

NA
Fr

on
t w

al
l

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

In
de

ca
te

s 
if 

ba
ll i

s 
in

 c
on

ta
ct

 w
ith

  f
ro

nt
 w

al
l

NA
Bo

tto
m

 w
al

l
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ot
to

m
 w

al
l

NA
Ti

n
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 th

e 
tin

NA
O

ut
 B

ou
nd

s 
si

de
 w

al
l le

ft
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 w

al
l le

ft 
ou

t o
f b

ou
nd

s
NA

In
 b

ou
nd

s 
si

de
 w

al
l le

ft
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 w

al
l le

ft 
in

 b
ou

nd
s

NA
O

ut
 b

ou
nd

s 
si

de
 w

al
l r

ig
ht

 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 ri

gh
t w

al
l i

n 
bo

un
ds

NA
In

 b
ou

nd
s 

si
de

 w
al

l r
ig

ht
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
In

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 le

ft 
wa

ll i
n 

bo
un

ds
 

NA
O

ut
 b

ou
nd

 h
ei

gh
t 

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

in
de

ca
te

s 
if 

ba
ll i

s 
ou

t b
ou

nd
s 

in
 h

ei
gh

t 
NA

In
 b

ou
nd

 h
ei

gh
t

O
ut

pu
t

1
1

Tr
ue

 F
al

se
Bo

ol
ea

n
0

in
de

ca
te

s 
if 

ba
ll i

s 
in

 b
ou

nd
s 

in
 h

ei
gh

t
NA

Ba
ck

 w
al

l o
ut

 b
ou

nd
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
in

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ac
k 

wa
ll o

ut
 b

ou
nd

s
NA

Ba
ck

 w
al

l i
n 

bo
un

d 
O

ut
pu

t
1

1
Tr

ue
 F

al
se

Bo
ol

ea
n

0
in

de
ca

te
s 

if 
ba

ll i
s 

in
 c

on
ta

ct
 w

ith
 b

ac
k 

wa
ll i

n 
bo

un
ds

 
NA

He
ig

ht
 o

f l
in

e 
at

 p
oi

nt
 x

O
ut

pu
t

10
0.

00
1

m
illi

m
et

er
s

flo
at

in
g-

po
in

t 
0

hi
gh

t o
f s

id
e 

wa
ll b

ou
nd

 li
ne

 a
t p

oi
nt

 x
NA



PAGE 371 

9.4 NLP APPLICATION POC CODE 
Each of the functions of the NLP POC is detailed in sections9.4.1through 9.4.14. 

9.4.1 SETTING_UP_FILES_TO_COMPAIR.PY  
#Set up two files to be compared 
#Read in file 1 and classify 
#Read in file 2 and classify 
#Name all of the constants with the prefix of 1 or 2 respectively 
 
Doc_A_path='C:\\Anaconda3\\Text_files\\Documentation_of_a_Particle_Moving_in_Free_
Space.txt' 
Doc_B_path='C:\\Anaconda3\\Text_files\\Documentation_of_Squash_Court_in_or_Out_Mod
el.txt' 
 
from Text_charactaristics_fn import Text_charactaristics 
Doc_A_token_words_full,Doc_A_word_list,Doc_A_tagcount,Doc_A_taglists,Doc_A_number_
of_lines,Doc_A_NB_tags,Doc_A_NB_words,Doc_A_percent_of_tag,Doc_A_percent_of_words=
Text_charactaristics(Doc_A_path) 
Doc_B_token_words_full,Doc_B_word_list,Doc_B_tagcount,Doc_B_taglists,Doc_B_number_
of_lines,Doc_B_NB_tags,Doc_B_NB_words,Doc_B_percent_of_tag,Doc_B_percent_of_words=
Text_charactaristics(Doc_B_path) 
 
#print("Doc_A_percent_of_tag",Doc_A_percent_of_tag,'\n') 
#print("Doc_B_percent_of_tag",Doc_B_percent_of_tag,'\n') 
 
from Actual_Dif import Actual_mod_Dif 
 
#To produce a bar chart form the two dictionaries of the documents being tested 
from Bar_Chart_compair_two_dics_fn import Barchart_compair_two_dics 
Barchart_compair_two_dics(Doc_A_percent_of_tag,Doc_B_percent_of_tag) 
 
#Sentence with the same Noun Verb combination in 
from Noun_Verb_search_and_record_fn import Noun_verb_search_and_record 
Saved_Noun_Verb_sentence_path= 
"C:\\Anaconda3\\Text_files\\recording_noun_verb_sentence_pairs.txt" 
Noun_verb_pair_sentences_pairs, number_of_noun_verb_sentences = 
Noun_verb_search_and_record(Doc_A_path,Doc_B_path,Saved_Noun_Verb_sentence_path) 
print("Noun Verb Sentences analysis completed and results saved to file") 
print("Number of sentences that contain the same Nouns and Verbs 
=",number_of_noun_verb_sentences) 
 
from Comparing_identifiec_company_words_fn import Comparing_docs_for_company_words 
Identified_common_company_words = 
Comparing_docs_for_company_words(Doc_A_path,Doc_B_path) 
print("Identified_common_company_words =",Identified_common_company_words,'\n') 
 
from Same_tag_identifyer_fn import Same_tags_in_two_docs 
dict_of_words_in_both_docs,Doc_A_word_frequency,Doc_B_word_frequency = 
Same_tags_in_two_docs(Doc_A_path,Doc_B_path) 
print("dict_of_words_in_both_docs =",dict_of_words_in_both_docs,'\n') 
 
print("Program End") 

  



PAGE 372 

9.4.2 A1_VERB_NOUN_SENTENCE_PAIR_FN 
# function that extracts the sentence that have at least one noun and one verb in  
#inputs are a text file of tagged 
#Outputs A list of sentences with at least one Noun and one Verb  
    # A list of noun verb sentences with nouns and verbs behind them 
 
def A1_VB_NN(file_path): 
    #print("Importing needed packages") 
    import nltk 
    from nltk.tokenize import word_tokenize 
    from nltk.tag import pos_tag 
    from Reading_and_tagging_files  import Read_Textfile_andtag 
 
    #print("Import completed") 
 
    token_words_full, word_list = Read_Textfile_andtag(file_path,'r') 
 
    #print('token_words_full =', token_words_full) 
 
    length_token_words_full=len(token_words_full) 
    #print('length of word list', length_token_words_full) 
 
    #Noun verb pair list to put the lines with noun verb pairs in 
    noun_verb_pair_line=[] 
    noun_verb_pair_line_noun_and_verb=[] 
    #Constent defornintion 
    nouncount=0 
    verbcount=0 
 
    #tag type list declarations 
    Noun_common_list=[] 
    Noun_propper_singular_list=[] 
    Noun_proper_plural_list=[]   
    Noun_common_plural_list=[] 
    noun_list=[] 
    Verb_base_list=[] 
    Verb_past_tense_list=[] 
    Verb_present_participle_list=[] 
    Verb_past_participle_list=[] 
    Verb_present_tense_not_3rd_person_list=[] 
    Verb_present_tense_person_singular_list=[] 
    not_counted_word=0 
    Noun_list=[] 
    Verb_list=[] 
 
    WLWL=0 
    while WLWL<length_token_words_full: 
        #print("length of line",WLWL,"=",len(token_words_full[WLWL])) 
        line_under_test_length=len(token_words_full[WLWL]) 
        line_under_test =token_words_full[WLWL] 
        #print("sentence",WLWL,"is",line_under_test) 
        IWLWL=0 
        while IWLWL<line_under_test_length: 
            #print("word number",IWLWL,"word",line_under_test[IWLWL]) 
 
            if (line_under_test[IWLWL][1])=="NN": 
                        Noun_common_list.append(line_under_test[IWLWL][0]) 
                        #print("Noun,common,singular list=",Noun_common_list) 
                        Noun_list.append(line_under_test[IWLWL][0]) 
                        nouncount+=1 
            elif  (line_under_test[IWLWL][1])=="NNP": 



PAGE 373 

                        
Noun_propper_singular_list.append(line_under_test[IWLWL][0]) 
                        #print("Noun,proper,singular 
list=",Noun_propper_singular_list) 
                        Noun_list.append(line_under_test[IWLWL][0]) 
                        nouncount+=1 
            elif  (line_under_test[IWLWL][1])=="NNPS": 
                        Noun_proper_plural_list.append(line_under_test[IWLWL][0]) 
                        #print("Noun,proper,plural list=",Noun_proper_plural_list) 
                        Noun_list.append(line_under_test[IWLWL][0]) 
                        nouncount+=1 
            elif  (line_under_test[IWLWL][1])=="NNS": 
                        Noun_common_plural_list.append(line_under_test[IWLWL][0]) 
                        #print("Noun, common, plural, 
list=",Noun_common_plural_list) 
                        Noun_list.append(line_under_test[IWLWL][0]) 
                        nouncount+=1 
            elif  (line_under_test[IWLWL][1])=="VB": 
                        Verb_base_list.append(line_under_test[IWLWL][0]) 
                        #print("Verb_base_list=",Verb_base_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            elif  (line_under_test[IWLWL][1])=="VBD": 
                        Verb_past_tense_list.append(line_under_test[IWLWL][0]) 
                        #print("Verb_past_tense_list=",Verb_past_tense_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            elif  (line_under_test[IWLWL][1])=="VBG": 
                        
Verb_present_participle_list.append(line_under_test[IWLWL][0]) 
                        
#print("Verb_present_participle_list=",Verb_present_participle_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            elif  (line_under_test[IWLWL][1])=="VBN": 
                        Verb_past_participle_list.append(line_under_test[IWLWL][0]) 
                        
#print("Verb_past_participle_list=",Verb_past_participle_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            elif  (line_under_test[IWLWL][1])=="VBP": 
                        
Verb_present_tense_not_3rd_person_list.append(line_under_test[IWLWL][0]) 
                        
#print("Verb_present_tense_not_3rd_person_list=",Verb_present_tense_not_3rd_person
_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            elif  (line_under_test[IWLWL][1])=="VBZ": 
                        
Verb_present_tense_person_singular_list.append(line_under_test[IWLWL][0]) 
                        
#print("Verb_present_tense_person_singular_list=",Verb_present_tense_person_singul
ar_list) 
                        Verb_list.append(line_under_test[IWLWL][0]) 
                        verbcount+=1 
            else:not_counted_word+=1  
                        #print('Not interesting in the word in question','\n') 
            IWLWL+=1 
 
        if nouncount>=1 and verbcount>=1: 
            #print('\n'"Noun verb lines",line_under_test) 



PAGE 374 

            noun_verb_pair_line.append(line_under_test) 
            #print('noun_verb_pair_line', noun_verb_pair_line) 
            noun_verb_pair_line_noun_and_verb.append(line_under_test) 
            noun_verb_pair_line_noun_and_verb.append(Noun_list) 
            noun_verb_pair_line_noun_and_verb.append(Verb_list) 
     
        #Constant definition 
        nouncount=0 
        verbcount=0 
        Noun_common_list=[] 
        Noun_propper_singular_list=[] 
        Noun_proper_plural_list=[]   
        Noun_common_plural_list=[] 
        noun_list=[] 
        Verb_base_list=[] 
        Verb_past_tense_list=[] 
        Verb_present_participle_list=[] 
        Verb_past_participle_list=[] 
        Verb_present_tense_not_3rd_person_list=[] 
        Verb_present_tense_person_singular_list=[] 
        not_counted_word=0 
        Noun_list=[] 
        Verb_list=[]     
 
        WLWL+=1 
 
    #print('\n','\n','noun_verb_pair_line =', noun_verb_pair_line) 
    #print('\n','noun_verb_pair_line_noun_and_verb 
=',noun_verb_pair_line_noun_and_verb) 
 
    
#length_noun_verb_pair_line_noun_and_verb=len(noun_verb_pair_line_noun_and_verb) 
    #print('length of noun_verb_pair_line_noun_and_verb 
list',length_noun_verb_pair_line_noun_and_verb) 
 
    ''' 
    LNVPLZ=len(noun_verb_pair_line_noun_and_verb[0]) 
    print('line zero',noun_verb_pair_line_noun_and_verb[0]) 
    print('length of line zero',LNVPLZ) 
    LNVPLO=len(noun_verb_pair_line_noun_and_verb[1]) 
    print('line zero',noun_verb_pair_line_noun_and_verb[1]) 
    print('length of line one',LNVPLO) 
    LNVPLT=len(noun_verb_pair_line_noun_and_verb[2]) 
    print('line zero',noun_verb_pair_line_noun_and_verb[2]) 
    print('length of line two',LNVPLT) 
    LNVPLTH=len(noun_verb_pair_line_noun_and_verb[3]) 
    print('line zero',noun_verb_pair_line_noun_and_verb[3]) 
    print('length of line two',LNVPLTH) 
    ''' 
    return (noun_verb_pair_line, noun_verb_pair_line_noun_and_verb) 
 

9.4.3 ACTUAL_DIF 
#Function for calculating actual (modular) difference between two data sets 
#This function may not give the actual difference but rather a number very close 
# Inputs    a = 0.5 
#           b = 0.6 
# Output    dif = 0.09999999999999998 
#The output is close to 0.1 this is due to floating point arithmetic 
 
def Actual_mod_Dif(Data_A, Data_B): 



PAGE 375 

    Diff=Data_A - Data_B 
    Diff=abs(Diff) 
    return(Diff) 

9.4.4 BAR_CHART_COMPAIR_TWO_DICS 
#To produce a bar chart form the two dictionaries of the documents being tested 
import numpy as np 
import matplotlib.pyplot as pyplot #note that the pyplot is name for plotting 
#For loop that pulls the values from Doc_A_percent_of_tag and Doc_B_percent_of_tag 
and combines into one dict 
 
def Barchart_compair_two_dics(Doc_A_percent_of_tag,Doc_B_percent_of_tag): 
    actual_dif_dict={} 
    for key in Doc_A_percent_of_tag and Doc_B_percent_of_tag: 
        #print("Doc A key =",key,"doc A percent of tag 
=",Doc_A_percent_of_tag[key]) 
        #print("Doc B key =",key,"doc B percent of tag 
=",Doc_B_percent_of_tag[key]) 
        actual_dif_dict[key]=[Doc_A_percent_of_tag[key], Doc_B_percent_of_tag[key]] 
        #print("actual_dif_dict =",actual_dif_dict,'\n') 
 
    #Declare variables and their types needed for the plot 
    Dictkey=[] 
    Doc_A_percent_of_tags=[] 
    Doc_B_percent_of_tags=[] 
    number_of_keys=0 
    xtick=[] 
    xtick2=[] 
 
    #Loop to create a list of the keys used in the actual_dif_dict 
    for keys in actual_dif_dict: 
        #print("dict key =", keys) 
        Dictkey.append(keys) 
        Doc_A_percent_of_tags.append(Doc_A_percent_of_tag[keys]) 
        #print("Doc_A_percent_of_tags key",Doc_A_percent_of_tag[keys],'\n') 
        Doc_B_percent_of_tags.append(Doc_B_percent_of_tag[keys]) 
 
    #Find the number of tags in the dict 
    length_of_tags=len(Doc_B_percent_of_tag) 
    #Produce an array called index which starts at 0 and ends and the number of 
dict keys 
    index= np.arange(length_of_tags) 
    #Set the with of the bar in the barchart 
    bar_width = 0.35 
    #Set the opacity of the bar colour 
    opacity = 0.4 
 
    #Define the y values for the bar chart 
    rectsA = pyplot.bar(index, Doc_A_percent_of_tag.values(), bar_width, 
                     alpha=opacity, 
                     color='b', 
                     label='Doc_A') 
 
    rectsB = pyplot.bar(index + bar_width, Doc_B_percent_of_tag.values(), 
bar_width, 
                     alpha=opacity, 
                     color='r', 
                     label='Doc_B') 
 
    #Lables and tiltels 
    pyplot.xlabel('Tags') 



PAGE 376 

    pyplot.ylabel('Tag percentages') 
    pyplot.title('Comparison of tag percentages') 
    
pyplot.xticks(range(len(Doc_A_percent_of_tag)),list(Doc_A_percent_of_tag.keys()),r
otation=90) 
    pyplot.legend(loc=0,title='Data files under test') 
    pyplot.tight_layout() 
    pyplot.show() 
    return() 
  



PAGE 377 

9.4.5 COMMON_IDENTIFIED_WORDS 
#Function to identify identical words from two lists 
#Inputs two lists of identified words 
#Output a list of words that appear in both input lists 
 
def common_words_from_lists(identified_list_A,identified_list_B): 
 
    length_identified_list_A = len(identified_list_A) 
    length_identified_list_B = len(identified_list_B) 
    common_identified_words=[] 
 
    identified_list_WLA=0 
    while identified_list_WLA<length_identified_list_A: 
        identified_list_WLB=0 
        while identified_list_WLB<length_identified_list_B: 
            if 
identified_list_A[identified_list_WLA]==identified_list_B[identified_list_WLB]: 
                
common_identified_words.append(identified_list_B[identified_list_WLB]) 
            identified_list_WLB+=1 
        identified_list_WLA+=1 
 
    #print("common identified words",common_identified_words) 
    return(common_identified_words) 

9.4.6 COMPANEY_DICTONARY  
#Company specific terms to search for 
#A function that returns key integration related words 
#Input is the file path of the text file to be analysed 
 
def Companey_dict(file_path): 
 
    #print("company specific terms",'\n') 
    from Reading_and_tagging_files import Read_Textfile_andtag 
    #print("Imported functions") 
 
    #tag first then data 
 
    #Development environment dictionary 
    
dev_environment_list=["labview","Labview","LabVIEW",["lab","view"],["Lab","View"],
["Lab","VIEW"], 
                          "matlab","Matlab",["Mat","lab"],["Mat","Lab"],"CarMaker", 
                          
"carmaker","Carmaker",["Car","Maker"],["car","maker"],"Abaqus","abaqus", 
                          
"ABAQUS","axisuite","Axisuite",["axi","suite"],"Simulink","simulink", 
                          "IPG 
CarMaker",["IPG","Car","Maker"],["IPG","car","maker"],["IPG","carmaker"], 
                          
["ipg","carmaker"],"Dymola","dymola","AMESim","amesim",["Simulation","X"], 
                          
["simulaiton","x"],["simulaiton","X"],"SimulationX","simulationx" 
                          
"GT","gt","SIMPACK","simpack","AVL","avl",["Python","2"],"Python"] 
    #print("dev environment list",dev_environment_list,'\n') 
 
    #model terms 
    
modeling_term_list=["input","inputs","output","outputs","interface","architecture"
,"modelled","GB","Gb", 



PAGE 378 

                        
"libary","libraries","saved","behaviour","Behaviour","format","Format",["time","st
eps"], 
                        "GHz","ghz",["quad", "core"],"Intel","Arm",["Core", 
"i7"],["Core","i5"], "processor"] 
    #print("modeling_term_list",modeling_term_list,'\n') 
 
    #project terms 
    project_term_list=["kick off","KO",["start","date"],"validated","verified"] 
    #print("project term list",project_term_list,'\n') 
 
    #langagues 
    prog_language_list=["C","C++","C#","G","g","java","M"] 
    #print("prog language list",prog_language_list,'\n') 
 
    #file type 
    
file_types_list=[["M","file"],["m","file"],"mat","mdl","txt","csv","jpg","prj","xl
s","doc","docx","htm", 
                     "pdf","m50",["m","50"],"c","C","ppt","pptx","exe","dll","py"] 
    #print("file types list",file_types_list,'\n') 
 
    #Calling file to be analised 
    token_words_full, word_list = Read_Textfile_andtag(file_path,'r') 
 
    #Lenghts of company specific turms 
    lenth_word_list=len(word_list) 
    lenth_dev_environment_list=len(dev_environment_list) 
    lenth_modeling_term_list=len(modeling_term_list) 
    lenth_project_term_list=len(project_term_list) 
    lenth_prog_language_list=len(prog_language_list) 
    lenth_file_types_list=len(file_types_list) 
 
    #blank lists for identified words 
    identified_dev_enviroments=[] 
    identified_modeling_tuerms=[] 
    identified_project_tuerms=[] 
    identified_prog_languages=[] 
    identified_file_types=[] 
 
    word_list_WLC=0 
    while word_list_WLC<lenth_word_list: 
 
        line_under_test=word_list[word_list_WLC] 
        lenth_of_line=len(line_under_test) 
        #print('length of line under test =',lenth_of_line) 
        #print("line_under_test =", line_under_test) 
 
        word_in_line_WLC=0 
        while word_in_line_WLC<lenth_of_line: 
            word_under_test=line_under_test[word_in_line_WLC] 
            #print("word under test =",word_under_test) 
            word_in_line_WLC+=1 
 
            dev_enviroment_list_WLC=0 
            while dev_enviroment_list_WLC<lenth_dev_environment_list: 
                #print("word under test =",word_under_test) 
                #print("dev_enviromen word =",dev_environment_list[dict_list_WLC]) 
                if word_under_test == 
dev_environment_list[dev_enviroment_list_WLC]: 
                    identified_dev_enviroments.append(word_under_test) 



PAGE 379 

                    #print("Same words identified.","\n" "word under test 
=",word_under_test, 
                          #"dev environment word 
=",dev_environment_list[dev_enviroment_list_WLC], 
                          #"\n","\n") 
                dev_enviroment_list_WLC+=1 
 
            modeling_term_list_WLC=0 
            while modeling_term_list_WLC<lenth_modeling_term_list: 
                #print("modeling term word 
=",modeling_term_list[modeling_term_list_WLC]) 
                if word_under_test == modeling_term_list[modeling_term_list_WLC]: 
                    identified_modeling_tuerms.append(word_under_test) 
                modeling_term_list_WLC+=1 
        
            project_term_list_WLC=0 
            while project_term_list_WLC<lenth_project_term_list: 
                #print("project_term_list 
=",project_term_list[project_term_list_WLC]) 
                if word_under_test == project_term_list[project_term_list_WLC]: 
                    identified_project_tuerms.append(word_under_test) 
                project_term_list_WLC+=1 
 
            prog_language_list_WLC=0 
            while prog_language_list_WLC<lenth_prog_language_list: 
                #print("prog_language_list 
=",prog_language_list[prog_language_list_WLC]) 
                if word_under_test == prog_language_list[prog_language_list_WLC]: 
                    identified_prog_languages.append(word_under_test) 
                prog_language_list_WLC+=1 
 
            file_types_list_WLC=0 
            while file_types_list_WLC<lenth_file_types_list: 
                #print("file_types_list =", file_types_list[file_types_list_WLC]) 
                if word_under_test == file_types_list[file_types_list_WLC]: 
                    identified_file_types.append(word_under_test) 
                file_types_list_WLC+=1 
             
                    
        word_list_WLC+=1 
    
    #print("Identified_dev_enviroments =", identified_dev_enviroments) 
    #print("identified_modeling_tuerms =", identified_modeling_tuerms) 
    #print("identified_project_tuerms =", identified_project_tuerms) 
    #print("identified_prog_languages =", identified_prog_languages) 
    #print("identified_file_types =", identified_file_types) 
 
    return 
(identified_dev_enviroments,identified_modeling_tuerms,identified_project_tuerms, 
            identified_prog_languages,identified_file_types) 
 

9.4.7 COMPARING_IDENTIFIEC_COMPANY_WORDS 
#Comparing_identifiec_company_words_fn 
#The purpose of this function is to compare if two text files have the same words 
identified words 
#in them and what the words are. 
 
def Comparing_docs_for_company_words(Doc_A_path,Doc_B_path): 
    Identified_common_company_words ={} 
 
    from Companey_dictonary_fn import Companey_dict 



PAGE 380 

    identified_dev_enviroments_A, identified_modeling_tuerms_A, 
identified_project_tuerms_A, identified_prog_languages_A, identified_file_types_A 
= Companey_dict(Doc_A_path) 
    
identified_dev_enviroments_B,identified_modeling_tuerms_B,identified_project_tuerm
s_B, identified_prog_languages_B,identified_file_types_B= Companey_dict(Doc_B_path) 
    #print("DEBUGGING     Identified development 
enviroments",'\n',"identified_dev_enviroments_A",identified_dev_enviroments_A) 
          #,'\n',"identified_dev_enviroments_B",identified_dev_enviroments_B) 
 
    from common_identified_words_fn import common_words_from_lists 
    common_dev_enviroments = 
common_words_from_lists(identified_dev_enviroments_A,identified_dev_enviroments_B) 
    number_of_common_dev_enviroments=len(common_dev_enviroments) 
    print("common_dev_enviroments =",common_dev_enviroments,'\n','number of words 
=',number_of_common_dev_enviroments) 
    
Identified_common_company_words['common_dev_enviroments']=common_dev_enviroments 
    
Identified_common_company_words['number_of_common_dev_enviroments']=number_of_comm
on_dev_enviroments 
 
    common_identified_modeling_tuerms = 
common_words_from_lists(identified_modeling_tuerms_A,identified_modeling_tuerms_B) 
    number_of_common_identified_modeling_tuerms = 
len(common_identified_modeling_tuerms) 
    print("common_identified_modeling_tuerms 
=",common_identified_modeling_tuerms,'\n','number of 
common_identified_modeling_tuerms =',number_of_common_identified_modeling_tuerms) 
    
Identified_common_company_words['common_identified_modeling_tuerms']=common_identi
fied_modeling_tuerms 
    
Identified_common_company_words['number_of_common_identified_modeling_tuerms']=num
ber_of_common_identified_modeling_tuerms 
 
    common_identified_project_tuerms = 
common_words_from_lists(identified_project_tuerms_A,identified_project_tuerms_B) 
    number_of_common_identified_project_tuerms = 
len(common_identified_project_tuerms) 
    print("common_identified_project_tuerms =", 
common_identified_project_tuerms,'\n','number of common_identified_project_tuerms 
=',number_of_common_identified_modeling_tuerms) 
    
Identified_common_company_words['common_identified_project_tuerms']=common_identif
ied_project_tuerms 
    
Identified_common_company_words['number_of_common_identified_project_tuerms']=numb
er_of_common_identified_project_tuerms 
 
    common_identified_prog_languages = 
common_words_from_lists(identified_prog_languages_A,identified_prog_languages_B) 
    number_of_identified_prog_languages = len(common_identified_prog_languages) 
    print("common_identified_prog_languages 
=",common_identified_prog_languages,'\n','number of 
common_identified_prog_languages =',number_of_identified_prog_languages) 
    
Identified_common_company_words['common_identified_prog_languages']=common_identif
ied_prog_languages 
    
Identified_common_company_words['number_of_identified_prog_languages']=number_of_i
dentified_prog_languages 



PAGE 381 

 
    common_identified_file_types = 
common_words_from_lists(identified_file_types_A,identified_file_types_B) 
    number_of_identified_file_types = len(common_identified_file_types) 
    print("common_identified_file_types 
=",common_identified_file_types,'\n','number of common_identified_file_types 
=',number_of_identified_file_types) 
    
Identified_common_company_words['common_identified_file_types']=common_identified_
file_types 
    
Identified_common_company_words['number_of_identified_file_types']=number_of_ident
ified_file_types 
 
    return (Identified_common_company_words) 
 

9.4.8 NOUN_VERB_SEARCH_AND_RECORD 
#A function to compare the sentences in two files for similarities 
#Function searches for sentences with both nouns and verbs in. 
#If both documents have the a sentence with the same nouns and verbs in they are 
recorded in a text file 
 
def Noun_verb_search_and_record( file_path_Doc_A, 
file_path_Doc_B,Noun_verb_sentence_pair_textfile ): 
    #print('\n','\n'," Starting Noun Verb Search and record function") 
 
    #Loading the functions needed for A1 algorithm 
    from A1_Verb_Noun_sentence_pair_fn import A1_VB_NN 
    #print("calling A1") 
    #print("functions loaded") 
 
    #Use A1_VB_NN algorithm and set up the output variables for file A input file 
location for file A 
    FA_line , FA_line_VB_NN = A1_VB_NN(file_path_Doc_A) 
    #print("FA_Line", FA_line,'\n',"FA_line_VB_NN", FA_line_VB_NN) 
    #print('File A Verb Noun lines =',FA_line_VB_NN,'\n') 
 
    #C:\Python34\Documentation_of_modelling_the_movement_of_a_ball.txt 
    #Use A1_VB_NN algorithm and set up the output variables for file B input file 
location for file B 
    FB_line, FB_line_VB_NN = A1_VB_NN(file_path_Doc_B) 
    #print("FB_Line", FB_line,'\n',"FB_line_VB_NN", FB_line_VB_NN) 
    #print('File B Verb Noun lines =',FB_line_VB_NN,'\n') 
 
    #Verification section of code collapsed 
     
    #verification exercise takes the file A tagged data set and saves to a text 
file 
    FA_save_textfile = open("C:\\Anaconda3\\Text_files\\Document_A_tagged.txt","w") 
    FA_save_textfile.write(str(FA_line)) 
    #FA_save_textfile.write(str(FA_line_VB_NN)) 
    FA_save_textfile.flush 
    FA_save_textfile.close() 
    #print("File A Noun Verb Sentences successfully saved to text file") 
 
    #verification exercise takes the file B tagged data set and saves to a text 
file 
    FB_textfile=open("C:\Anaconda3\\Text_files\\Document_B_tagged.txt","w") 
    FB_textfile.write(str(FB_line)) 
    #FB_textfile.write(str(FB_line_VB_NN)) 



PAGE 382 

    FB_textfile.flush 
    FB_textfile.close() 
    #print("File B Noun Verb Sentences successfully saved to text file") 
    
 
    #File A verb list 
    FA_VB=[] 
    #File A Noun list 
    FA_NN=[] 
    #File B verb list 
    FB_VB=[] 
    #File B Noun list 
    FB_NN=[] 
    #Noun verb pair sentences pairs 
    Noun_verb_pair_sentences_pairs=[] 
 
    #Define the length of File A Verb noun line 
    length_FA_VB = len(FA_line_VB_NN) 
    FAWL=1 
    while FAWL<length_FA_VB: 
        FA_NN.append(FA_line_VB_NN[FAWL]) 
        FA_VB.append(FA_line_VB_NN[FAWL+1]) 
        FAWL+=3 
 
    #Define the length of File B Verb noun line 
    length_FB_VB= len(FB_line_VB_NN) 
    FBWL=1 
    while FBWL<length_FB_VB: 
        FB_NN.append(FB_line_VB_NN[FBWL]) 
        FB_VB.append(FB_line_VB_NN[FBWL+1]) 
        FBWL+=3 
 
    length_FA_VB= len(FA_VB) 
    #print("length FA_VB=", length_FA_VB) 
    FAVB=0 
    while FAVB< length_FA_VB: 
        #print('\n','\n',"line number =",FAVB) 
        length_Verb_set=len(FA_VB[FAVB]) 
        #print("length of Verb set =",length_Verb_set) 
        length_Noun_set=len(FA_NN[FAVB]) 
        #print("length of Noun set=",length_Noun_set) 
        FAVB+=1 
     
    #print('FA_NN =',FA_NN,'\n') 
    #print('FA_VB =',FA_VB,'\n') 
    #print('FB_NN =',FB_NN,'\n') 
    #print('FB_VB =',FB_VB,'\n') 
 
    #variables for comparison section of code 
    same_verbs=[] 
    same_nouns=[] 
    noun_verb_pair=[] 
 
    #While loop iterates through the two tagged text lines 
        #loops are in the following structure with nested loops  
            #File A Noun loop for length of file A noun set 
            #File B Noun loop length of file B noun set 
            #if file A noun is the same as file B noun move to the next loop 
            #File A Verb loop for the length of file A Verb set 
            #File B Verb loop for the length of file B Verb set 
            #if the file A verb matches the file B verb then it is a noun verb 
phrase match  



PAGE 383 

            #the matching noun verb phrases are then written to file 
     
             
            #Temporary line to see if the while loop will work  
    curent_noun_verb_sentences=[0]  
    #while loop for file A Noun 
    wlfaN=0 
    identified_lines=0 
    length_File_A_noun= len(FA_NN) 
    #print("length of file a noun list =",length_File_A_noun) 
    while wlfaN<length_File_A_noun: 
        identified_lines=0 
        wlfaN+=1 
        file_A_nouns_under_test=FA_NN[wlfaN-1] 
        length_FA_NN_wlfaN=len(FA_NN[wlfaN-1]) 
        #print('Length of file A noun under test FA_NN[wlfaN] 
=',length_FA_NN_wlfaN) 
        #print("file A noun",wlfaN,"under test =",file_A_nouns_under_test) 
        #print("while loop file a Noun count =",wlfaN-1) 
 
        #while loop for if there is more than one Noun in a sentence 
        #while loop file a noun multiple nouns set to zero 
        wlfaNmN=0 
        while wlfaNmN<length_FA_NN_wlfaN: 
            wlfaNmN+=1 
            file_A_noun_under_test=file_A_nouns_under_test[wlfaNmN-1] 
            #print("file_A_noun_under_test",file_A_noun_under_test,'\n') 
             
            #While loop for file B Noun sets 
            wlfbN=0 
            length_File_B_Noun= len(FB_NN) 
            #print("length file b noun =",length_File_B_Noun) 
            noun_same_count=0 
 
            while wlfbN < length_File_B_Noun: 
                wlfbN+=1 
                file_B_nouns_under_test=FB_NN[wlfbN-1] 
                #print("while loop file b nouns =",wlfbN-1) 
                length_FB_NN_wlfbN=len(FB_NN[wlfbN-1]) 
                #print('Length of file B noun under test FB_NN[wlfbN] 
=',length_FB_NN_wlfbN) 
                #print("file B noun",wlfbN-1, "under test 
=",file_B_nouns_under_test) 
                wlfbNmN=0 
                 
                #While loop for if there are more than one Nouns in a sentence 
                while wlfbNmN < length_FB_NN_wlfbN: 
                    wlfbNmN+=1 
                    file_B_noun_under_test=file_B_nouns_under_test[wlfbNmN-1] 
                    #print("file_B_noun_under_test",file_B_noun_under_test,'\n') 
 
                    #If statement to act if the file A identified noun is the same 
and the Identified B noun 
                    if file_A_noun_under_test==file_B_noun_under_test: 
                        #print("same noun detected now searching verb searching 
commencing") 
                        same_nouns.append(file_A_noun_under_test) 
                        noun_same_count+=1 
                 
                        #While loop for file A Verb 
                        wlfaV=0 
                        length_File_A_Verb=len(FA_VB)   



PAGE 384 

                        #print("lenfth file A verb list =",length_File_A_Verb)       
                        while wlfaV<length_File_A_Verb: 
                            file_A_verbs_under_test=FA_VB[wlfaV] 
                            wlfaV+=1 
                            #print("file a verbs under 
test",file_A_verbs_under_test) 
                            #print("while loop file a verb =",wlfaV) 
                            length_FA_VB_wlfaV=len(FA_VB[wlfaV-1]) 
                            #print('Length file A wlfaV verb =',length_FA_VB_wlfaV) 
 
                            #while loop for if there are more than one Verb in the 
file A sentence 
                            wlfaVbN=0 
                            while wlfaVbN <length_FA_VB_wlfaV: 
                                wlfaVbN+=1 
                                
file_A_verb_under_test=file_A_verbs_under_test[wlfaVbN-1] 
                                #print('file A Verb under test 
=',file_A_verb_under_test) 
 
                                #while loop for file B Verb 
                                length_File_B_Verb=len(FB_VB) 
                                #print("length file B verb list 
=",length_File_B_Verb) 
                                wlfbV=0 
                                while wlfbV<length_File_B_Verb: 
                                    file_B_verbs_under_test=FB_VB[wlfbV] 
                                    wlfbV+=1 
                                    #print("while loop file b verb=", wlfbV) 
                                    #print("file b verb under 
test",file_B_verbs_under_test) 
                                    length_FB_VB_wlfbV=len(FB_VB[wlfbV-1]) 
                                    #while loop for if there are more than on Verb 
in the file B sentence 
                                    wlfbVbN=0 
                                    while wlfbVbN < length_FB_VB_wlfbV: 
                                        wlfbVbN+=1 
                                        
file_B_verb_under_test=file_B_verbs_under_test[wlfbVbN-1] 
                                        #print('File B Verb under test 
=',file_B_verb_under_test) 
 
                                        if identified_lines == 0: 
                                            if 
file_A_verb_under_test==file_B_verb_under_test: 
                                                #print("Noun and Verb the same in 
both sentences detected!") 
                                                
same_verbs.append(file_A_verb_under_test) 
                                                
noun_verb_pair.append([file_A_noun_under_test,file_B_verb_under_test]) 
                                                #print("noun verb pair 
detected",[file_A_noun_under_test,file_B_verb_under_test]) 
                                                #print("line from file A 
=",FA_line[wlfaN-1]) 
                                                #print("line from file B 
=",FB_line[wlfbN-1]) 
                                                curent_noun_verb_sentences=[] 
                                                
#print('\n','\n',"curent_noun_verb_sentences",curent_noun_verb_sentences) 
                                                
curent_noun_verb_sentences.append(FA_line[wlfaN-1]) 



PAGE 385 

                                                
#print('\n',"curent_noun_verb_sentences FA_line[wlfaN-
1]",curent_noun_verb_sentences) 
                                                
curent_noun_verb_sentences.append(FB_line[wlfbN-1]) 
                                                
#print('\n',"curent_noun_verb_sentences FB_line[wlfbN-
1]",curent_noun_verb_sentences) 
                                                
Noun_verb_pair_sentences_pairs.append(curent_noun_verb_sentences) 
                                                #print 
("Noun_verb_pair_sentences_pairs",Noun_verb_pair_sentences_pairs) 
                                                identified_lines=1 
 
                   
    #Interrogation of identified Noun_verb_pair_sentences_pairs set 
    #Length of Noun_verb_pair_sentences_pairs 
    #print('Noun_verb_pair_sentences_pairs =',Noun_verb_pair_sentences_pairs) 
    length_noun_verb_pair_sentences_pairs=len(Noun_verb_pair_sentences_pairs) 
    #print("Number of Noun_verb_pair_sentences_pairs 
=",length_noun_verb_pair_sentences_pairs) 
    #print("noun verb sentence pairs",Noun_verb_pair_sentences_pairs,'\n','\n') 
 
    #Interrogation of curent_noun_verb_sentences set 
    #curent_noun_verb_sentences 
    #print('curent_noun_verb_sentences',curent_noun_verb_sentences) 
    length_curent_noun_verb_sentences=len(curent_noun_verb_sentences) 
    #print("length or curent_noun_verb_sentences set 
=",length_curent_noun_verb_sentences) 
    #print("curent noun verb sentences =",curent_noun_verb_sentences) 
 
    #Create file and wright context of identified noun_verb_pair_sentences_pairs 
    #print("writing to recording_noun_verb_sentence_pairs text file") 
    save_textfile=open(Noun_verb_sentence_pair_textfile,"w") 
    save_textfile.write(str(Noun_verb_pair_sentences_pairs)) 
    save_textfile.flush 
    save_textfile.close() 
    #print("noun Verb Sentences sucsesfully saved to text file") 
 
    #print('\n','\n',"End of noun verb search and record function",'\n','\n') 
    return (Noun_verb_pair_sentences_pairs,length_noun_verb_pair_sentences_pairs) 
 

9.4.9 NUMBER_OF_TIMES_A_WORD_APPEARS 
#This function is for the purpose of asserting how many times the identical words 
#appear in two documents 
#Inputs: 
    #dict_of_words_in_both_docs, A dictionary of words that appear in two 
documents 
    #Doc_A_taglists, A dictionary of all identified words that appear in one 
document 
 
#outputs: 
    #word_frequency, A dictionary of words, A dictionary that has a word and the 
number of times that word appears 
 
word_frequency={} 
def Number_of_words_in_one_doc_in_both(dict_of_words_in_both_docs,Doc_A_taglists): 
 
    for word_tags,Identical_words in dict_of_words_in_both_docs.items(): 
        #print("dict_of_words_in_both_docs word_tags",word_tags) 



PAGE 386 

        #print("dict_of_words_in_both_docs Identical_words",Identical_words,'\n') 
        #Create an empty list for the current word_tags 
        tag_under_test=[] 
        #Right word tags to the empty list 
        tag_under_test = word_tags 
        #Create an empty list for the common_words 
        Identified_common_words=[] 
        #Current words associated with the current word tag written to 
Identified_common_words 
        Identified_common_words = Identical_words 
        #Find the number of words in Identified_common_words 
        length_Identified_common_words=len(Identified_common_words) 
        #Raw taglist words for current tags brought in 
        Doc_A_taged_list=Doc_A_taglists[word_tags] 
        #Find the number of words in Dpc_A_taged_list 
        length_Doc_A_taged_list=len(Doc_A_taged_list) 
        word_frequency[word_tags]=[] 
        #Set up a while loop counter for the number of same words 
        WLC_number_of_same_words=0 
        #while the loop counter is less than the number of identified common words 
iterate 
        while WLC_number_of_same_words < length_Identified_common_words: 
            #count the number of times the specific word appears in the word list 
under test 
            
number_of_word=Doc_A_taged_list.count(Identified_common_words[WLC_number_of_same_w
ords]) 
            #if there is more than one instance of a word then do the thing 
            if number_of_word >1: 
                #for the current tag and word rite number of times the word 
appears 
                
word_frequency[word_tags].append([number_of_word,Identified_common_words[WLC_numbe
r_of_same_words]]) 
            #If the number of times that the word appears is only once then  
            elif number_of_word==1: 
                #for the current tag and word rite number of times the word 
appears 
                
word_frequency[word_tags].append([1,Identified_common_words[WLC_number_of_same_wor
ds]]) 
 
            #Increment the while loop       
            WLC_number_of_same_words+=1 
 
    return(word_frequency) 
 

9.4.10 SAME_TAG_IDENTIFYER 
#A function to identify same words in two tag sets 
#Take file paths 
#Tag the files with Text_charactaristics_fn 
#Return the two tag lists  
#Compare the two lists and search the tag sets to see if there are the same words 
#Return numbers of same words 
######Return percentages of similar words###### still need to do this 
 
def Same_tags_in_two_docs(Doc_A_path,Doc_B_path): 
 
    #import the text characteristics function 
    from Text_charactaristics_fn import Text_charactaristics 



PAGE 387 

    Doc_A_token_words_full, Doc_A_word_list, Doc_A_tagcount, Doc_A_taglists, 
Doc_A_number_of_lines, Doc_A_NB_tags, Doc_A_NB_words, Doc_A_percent_of_tag, 
Doc_A_percent_of_words = Text_charactaristics(Doc_A_path) 
    Doc_B_token_words_full, Doc_B_word_list, Doc_B_tagcount, Doc_B_taglists, 
Doc_B_number_of_lines, Doc_B_NB_tags, Doc_B_NB_words, Doc_B_percent_of_tag, 
Doc_B_percent_of_words = Text_charactaristics(Doc_B_path) 
 
    #print("Doc_A_taglists",Doc_A_taglists,'\n',"Doc_B_taglists",Doc_B_taglists) 
 
    length_Doc_A_taglists = len(Doc_A_taglists) 
    length_Doc_B_taglists = len(Doc_B_taglists) 
    #print("length_Doc_A_taglists =",length_Doc_A_taglists) 
    #print("length_Doc_B_taglists =",length_Doc_B_taglists) 
 
    Same_identified_words={} 
    #print("type of Doc_A_taglists =", type(Doc_A_taglists)) 
    #taglist is a type Dict so need to call the keys and then treat as lists 
 
    for key, value in Doc_A_taglists.items(): 
        #print("dict keys =",key, '\n',"Doc_A_taglists[key] =", 
Doc_A_taglists[key],'\n',"Doc_B_taglists[key]",Doc_B_taglists[key],'\n','\n') 
        A_list=Doc_A_taglists[key] 
        B_list=Doc_B_taglists[key] 
        length_A_list = len(A_list) 
        length_B_list = len(B_list) 
        same_words_list=[] 
        WLC_step_through_Doc_A_taglists=0 
        while WLC_step_through_Doc_A_taglists < length_A_list: 
            WLC_step_through_Doc_B_taglists=0 
            while WLC_step_through_Doc_B_taglists < length_B_list: 
                if 
A_list[WLC_step_through_Doc_A_taglists]==B_list[WLC_step_through_Doc_B_taglists]: 
                    same_words_list.append(A_list[WLC_step_through_Doc_A_taglists]) 
                    #print("same word 
identified",A_list[WLC_step_through_Doc_A_taglists]) 
                #print("WLC_step_through_Doc_B_taglists 
=",WLC_step_through_Doc_B_taglists) 
                WLC_step_through_Doc_B_taglists+=1 
            #print("WLC_step_through_Doc_A_taglists 
=",WLC_step_through_Doc_A_taglists,'\n','\n') 
            WLC_step_through_Doc_A_taglists+=1 
        Same_identified_words[key]=same_words_list 
        #print("same_words_list", same_words_list) 
 
    #print("Same_identified_words =",Same_identified_words,'\n','\n') 
    #print("first section completed") 
 
 
    #This section creates a dictionary of all of only one instance of each of the 
similar words 
    #The tags of the words are preserved 
    dict_of_words_in_both_docs={} 
    #For loop to step through the tags in the dictionary "Same_identified_words" 
    for tags, values in Same_identified_words.items(): 
        #print("tags",tags) 
        #print("values",values) 
        #tempary empty list 
        Same_identified_words_list=[] 
        #copy in vlaues from current tags into temporary list 
        Same_identified_words_list=values 
        #print("Same_identified_words_list",Same_identified_words_list)   
        #Sort the order of the list alphabetically 



PAGE 388 

        Same_identified_words_list.sort() 
        #convert the list to a set which only takes one instance of each item in 
the list 
        Set_of_words_in_both_docs=set(Same_identified_words_list) 
        #convert the content of the set back to a list 
        Same_identified_words_list_single_instance=list(Set_of_words_in_both_docs) 
        #print("Same_identified_words_list_single_instance 
=",Same_identified_words_list_single_instance) 
        #wright the contents of the list to a dictionary     
        
dict_of_words_in_both_docs[tags]=Same_identified_words_list_single_instance 
    #print("dict_of_words_in_both_docs",dict_of_words_in_both_docs,'\n','\n') 
    #print("type of dict_of_words_in_both_docs",type(dict_of_words_in_both_docs)) 
 
 
    #The next section of the code is for the purpose of asserting how many times 
the identical words 
    #appear in both documents 
    #Call the function Number_of_words_in_one_doc_in_both 
    from Number_of_times_a_word_Appears_fn import 
Number_of_words_in_one_doc_in_both 
    Doc_A_word_frequency= 
Number_of_words_in_one_doc_in_both(dict_of_words_in_both_docs,Doc_A_taglists) 
    Doc_B_word_frequency= 
Number_of_words_in_one_doc_in_both(dict_of_words_in_both_docs,Doc_B_taglists) 
 
    #print("word_frequency dict Doc_A =",Doc_A_word_frequency) 
    #print("word_frequency dict Doc_B =",Doc_A_word_frequency) 
    return(dict_of_words_in_both_docs,Doc_A_word_frequency,Doc_B_word_frequency) 
 

9.4.11 TAG_COUNT 
# Function which returns the number of different taggs of a peace of text 
 
def Tag_count(file_path): 
    #Loading reading and tagging files 
    from Reading_and_tagging_files import Read_Textfile_andtag 
 
    #call the read textfile and tag funciton 
    token_words_full , word_list = Read_Textfile_andtag(file_path,'r') 
    #print("token_words_full =", token_words_full) 
    #print('\n','\n',"word_list =", word_list) 
 
    #Tag lists set to zero tags are those that used in the pos tag function 
    noun_common_list=[] 
    noun_propper_singular_list=[] 
    noun_propper_list=[] 
    noun_proper_plural_list=[] 
    noun_common_plural_list=[] 
    verb_base_list=[] 
    verb_past_tense_list=[] 
    verb_present_participle_list=[] 
    verb_past_participle_list=[] 
    verb_present_tense_not_3rd_person_list=[] 
    verb_present_tense_person_singular_list=[] 
    coordinating_conjunction_list=[] 
    cardinal_number_list=[] 
    determiner_list=[] 
    existential_there_list=[] 
    foreign_word_list=[] 
    preposition_subordinating_list=[] 



PAGE 389 

    adjective_list=[] 
    adjective_comparative_list=[] 
    adjective_superlative_list=[] 
    list_marker_list=[] 
    modal_list=[] 
    predeterminer_list=[] 
    possessive_ending_list=[] 
    personal_pronoun_list=[] 
    possessive_pronoun_list=[] 
    adverb_list=[] 
    adverb_comparative_list=[] 
    adverb_superlative_list=[] 
    particle_list=[] 
    to_list=[] 
    interjection_list=[] 
    wh_determiner_list=[] 
    wh_pronoun_list=[] 
    possessive_wh_pronoun_list=[] 
    wh_adverb_list=[] 
    not_tagged_word_list=[] 
    punctuation_list=[] 
    parenthesis_list=[] 
    unbalenced_parenthesis_list=[] 
 
    #Tag counters set to zero 
    #For purposes of counting the different taggs each tag has a counter 
    noun_common_count=0 
    noun_propper_count=0 
    noun_propper_singular_count=0 
    noun_proper_plural_count=0 
    noun_common_plural_count=0 
    verb_base_count=0 
    verb_past_tense_count=0 
    verb_present_participle_count=0 
    verb_past_participle_count=0 
    verb_present_tense_not_3rd_person_count=0 
    verb_present_tense_person_singular_count=0 
    coordinating_conjunction_count=0 
    cardinal_number_count=0 
    determiner_count=0 
    existential_there_count=0 
    foreign_word_count=0 
    preposition_subordinating_count=0 
    adjective_count=0 
    adjective_comparative_count=0 
    adjective_superlative_count=0 
    list_marker_count=0 
    modal_count=0 
    predeterminer_count=0 
    possessive_ending_count=0 
    personal_pronoun_count=0 
    possessive_pronoun_count=0 
    adverb_count=0 
    adverb_comparative_count=0 
    adverb_superlative_count=0 
    particle_count=0 
    to_count=0 
    interjection_count=0 
    wh_determiner_count=0 
    wh_pronoun_count=0 
    possessive_wh_pronoun_count=0 
    wh_adverb_count=0 



PAGE 390 

    not_tagged_word=0 
    punctuation_count=0 
    parenthesis_count=0 
    unbalenced_parenthesis_count=0 
 
    #the number of lines in the text file that is read in is equal to the length 
of the list that is read in 
    lenth_token_word_list=len(token_words_full) 
    #read down line while loop 
    rdlwl=0 
    while rdlwl<lenth_token_word_list: 
        #print("line", rdlwl, token_words_full [rdlwl],'\n') 
        line_under_test= token_words_full [rdlwl] 
        length_line_under_test=len(line_under_test) 
 
        #read line word while loop one word at a time 
        rdlwlil=0 
        while rdlwlil<length_line_under_test: 
        #If else chain for all of the tags present in the postag tags 
                    if (line_under_test[rdlwlil][1])=="NN": 
                        noun_common_list.append(line_under_test[rdlwlil][0]) 
                        #print("Noun,common,singular list=",Noun_common_list) 
                        noun_common_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="NNP": 
                        
noun_propper_singular_list.append(line_under_test[rdlwlil][0]) 
                        #print("Noun,proper,singular 
list=",Noun_propper_singular_list) 
                        noun_propper_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="NNPS": 
                        noun_proper_plural_list.append(line_under_test[rdlwlil][0]) 
                        #print("Noun,proper,plural list=",Noun_proper_plural_list) 
                        noun_proper_plural_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="NNS": 
                        noun_common_plural_list.append(line_under_test[rdlwlil][0]) 
                        #print("Noun, common, plural, 
list=",Noun_common_plural_list) 
                        noun_common_plural_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VB": 
                        verb_base_list.append(line_under_test[rdlwlil][0]) 
                        #print("Verb_base_list=",Verb_base_list) 
                        verb_base_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VBD": 
                        verb_past_tense_list.append(line_under_test[rdlwlil][0]) 
                        #print("Verb_past_tense_list=",Verb_past_tense_list) 
                        verb_past_tense_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VBG": 
                        
verb_present_participle_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Verb_present_participle_list=",Verb_present_participle_list) 
                        verb_present_participle_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VBN": 
                        
verb_past_participle_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Verb_past_participle_list=",Verb_past_participle_list) 
                        verb_past_participle_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VBP": 
                        
verb_present_tense_not_3rd_person_list.append(line_under_test[rdlwlil][0]) 



PAGE 391 

                        
#print("Verb_present_tense_not_3rd_person_list=",Verb_present_tense_not_3rd_person
_list) 
                        verb_present_tense_not_3rd_person_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="VBZ": 
                        
verb_present_tense_person_singular_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Verb_present_tense_person_singular_list=",Verb_present_tense_person_singul
ar_list) 
                        verb_present_tense_person_singular_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="CC": 
                        
coordinating_conjunction_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Coordinating_conjunction_list=",Coordinating_conjunction_list) 
                        coordinating_conjunction_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="CD": 
                        cardinal_number_list.append(line_under_test[rdlwlil][0]) 
                        #print("Cardinal_number_list=",Cardinal_number_list) 
                        cardinal_number_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="DT": 
                        determiner_list.append(line_under_test[rdlwlil][0]) 
                        #print("Determiner_list=",Determiner_list) 
                        determiner_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="EX": 
                        existential_there_list.append(line_under_test[rdlwlil][0]) 
                        #print("Existential_there=",Existential_there) 
                        existential_there_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="FW": 
                        foreign_word_list.append(line_under_test[rdlwlil][0]) 
                        #print("Foreign_word_list=",Foreign_word_list) 
                        foreign_word_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="IN": 
                        
preposition_subordinating_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Preposition_subordinating_list=",Preposition_subordinating_list) 
                        preposition_subordinating_count+=1     
                    elif  (line_under_test[rdlwlil][1])=="JJ": 
                        adjective_list.append(line_under_test[rdlwlil][0]) 
                        #print("Adjective_list=",Adjective_list) 
                        adjective_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="JJR": 
                        
adjective_comparative_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Adjective_comparative_list=",Adjective_comparative_list) 
                        adjective_comparative_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="JJS": 
                        
adjective_superlative_list.append(line_under_test[rdlwlil][0]) 
                        
#print("Adjective_superlative_list=",Adjective_superlative_list) 
                        adjective_superlative_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="LS": 
                        list_marker_list.append(line_under_test[rdlwlil][0]) 
                        #print("list_marker_list=",list_marker_list) 
                        list_marker_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="MD": 
                        modal_list.append(line_under_test[rdlwlil][0]) 
                        #print("modal_list=",modal_list) 



PAGE 392 

                        modal_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="PDT": 
                        predeterminer_list.append(line_under_test[rdlwlil][0]) 
                        #print("predeterminer_list=",predeterminer_list) 
                        predeterminer_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="POS": 
                        possessive_ending_list.append(line_under_test[rdlwlil][0]) 
                        #print("possessive_ending_list=",possessive_ending_list) 
                        possessive_ending_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="PRP": 
                        personal_pronoun_list.append(line_under_test[rdlwlil][0]) 
                        #print("personal_pronoun_list=",personal_pronoun_list) 
                        personal_pronoun_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="PRP$": 
                        possessive_pronoun_list.append(line_under_test[rdlwlil][0]) 
                        #print("possessive_pronoun_list=",possessive_pronoun_list) 
                        possessive_pronoun_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="RB": 
                        adverb_list.append(line_under_test[rdlwlil][0]) 
                        #print("adverb_list=",adverb_list) 
                        adverb_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="RBR": 
                        adverb_comparative_list.append(line_under_test[rdlwlil][0]) 
                        #print("adverb_comparative_list=",adverb_comparative_list) 
                        adverb_comparative_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="RBS": 
                        adverb_superlative_list.append(line_under_test[rdlwlil][0]) 
                        #print("adverb_superlative_list=",adverb_superlative_list) 
                        adverb_superlative_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="RP": 
                        particle_list.append(line_under_test[rdlwlil][0]) 
                        #print("particle_list=",particle_list) 
                        particle_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="TO": 
                        to_list.append(line_under_test[rdlwlil][0]) 
                        #print("to_list=",to_list) 
                        to_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="UH": 
                        interjection_list.append(line_under_test[rdlwlil][0]) 
                        #print("interjection_list=",interjection_list) 
                        interjection_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="WDT": 
                        wh_determiner_list.append(line_under_test[rdlwlil][0]) 
                        #print("wh_determiner_list=",wh_determiner_list) 
                        wh_determiner_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="WP": 
                        wh_pronoun_list.append(line_under_test[rdlwlil][0]) 
                        #print("wh_pronoun_list=",wh_pronoun_list) 
                        wh_pronoun_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="WP$": 
                        
possessive_wh_pronoun_list.append(line_under_test[rdlwlil][0]) 
                        
#print("possessive_wh_pronoun_list=",possessive_wh_pronoun_list) 
                        possessive_wh_pronoun_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="WRB": 
                        wh_adverb_list.append(line_under_test[rdlwlil][0]) 
                        #print("wh_adverb_list=",wh_adverb_list) 
                        wh_adverb_count+=1 
                    elif  (line_under_test[rdlwlil][1])==".": 
                        punctuation_list.append(line_under_test[rdlwlil][0]) 
                        #print("wh_adverb_list=",wh_adverb_list) 



PAGE 393 

                        punctuation_count+=1 
                    elif  (line_under_test[rdlwlil][1])==":": 
                        parenthesis_list.append(line_under_test[rdlwlil][0]) 
                        #print("parenthesis_list=",parenthesis_list) 
                        parenthesis_count+=1 
                    elif  (line_under_test[rdlwlil][1])=="``": 
                        
unbalenced_parenthesis_list.append(line_under_test[rdlwlil][0]) 
                        
#print("unbalenced_parenthesis_list=",unbalenced_parenthesis_list) 
                        unbalenced_parenthesis_count+=1                     
                    
elif(line_under_test[rdlwlil][1])!=":"or"``"or"."or"WRB"or"WP$"or"WP"or"WDT"or"VBZ
"or"VBP"or"VBN"or"VBG"or"VBD"or"VB"or"UH"or"TO"or"RP"or"RBS"or"RBR"or"RB"or"PRP$"o
r"PRP"or"POS"or"PDT"or"NNPS"or"NNP"or"NNS"or"NN"or"MD"or"LS"or"JJS"or"JJR"or"JJ"or
"IN"or"FW"or"EX"or"DT"or"CD"or"CC": 
                        not_tagged_word+=1 
                        not_tagged_word_list.append(line_under_test[rdlwlil][0])  
                        #print('Not interesting in the word in question','\n') 
 
 
                    rdlwlil+=1 
 
        rdlwl+=1 
 
    #Input the tag name and number of times that tag is in the file into a 
dictionary 
    tagcount={} 
    
tagcount.update({"noun_common":noun_common_count,"noun_propper":noun_propper_count, 
"noun_proper_plural":noun_proper_plural_count, 
                     
"verb_base":verb_base_count,"noun_common_plural":noun_common_plural_count, 
          
"verb_past_tense":verb_past_tense_count,"verb_present_participle":verb_present_par
ticiple_count, 
          
"verb_past_participle":verb_past_participle_count,"verb_present_tense_not_3rd_pers
on":verb_present_tense_not_3rd_person_count, 
          
"verb_present_tense_person_singular":verb_present_tense_person_singular_count,"coo
rdinating_conjunction":coordinating_conjunction_count, 
          
"cardinal_number":cardinal_number_count,"determiner":determiner_count,"existential
_there":existential_there_count, 
          
"foreign_word":foreign_word_count,"preposition_subordinating":preposition_subordin
ating_count,"adjective":adjective_count, 
          
"adjective_comparative":adjective_comparative_count,"adjective_superlative":adject
ive_superlative_count, 
          
"list_marker":list_marker_count,"modal":modal_count,"predeterminer":predeterminer_
count,"possessive_ending":possessive_ending_count, 
          
"personal_pronoun":personal_pronoun_count,"possessive_pronoun":possessive_pronoun_
count,"adverb_count":adverb_count, 
          
"adverb_comparative":adverb_comparative_count,"adverb_superlative":adverb_superlat
ive_count,"particle_count":particle_count, 



PAGE 394 

          
"to_count":to_count,"interjection":interjection_count,"wh_determiner":wh_determine
r_count,"wh_pronoun":wh_pronoun_count, 
          
"possessive_wh_pronoun":possessive_wh_pronoun_count,"punctuation":punctuation_coun
t,"parenthesis":parenthesis_count,"wh_adverb":wh_adverb_count, 
          
"unbalenced_parenthesis":unbalenced_parenthesis_count,"not_tagged_word":not_tagged
_word}) 
 
    #print(tagcount) 
 
    #Input the tag name and the words that have that tag input into a dictonary 
    taglists={} 
    
taglists.update({"noun_common_list":noun_common_list,"noun_propper_singular_list":
noun_propper_singular_list, 
                     
"noun_propper_list":noun_propper_list,"noun_proper_plural_list":noun_proper_plural
_list, 
                     
"noun_common_plural_list":noun_common_plural_list,"verb_base_list":verb_base_list, 
                     
"verb_past_tense_list":verb_past_tense_list,"verb_present_participle_list":verb_pr
esent_participle_list, 
                     "verb_past_participle_list":verb_past_participle_list, 
                     
"verb_present_tense_not_3rd_person_list":verb_present_tense_not_3rd_person_list, 
                     
"verb_present_tense_person_singular_list":verb_present_tense_person_singular_list, 
                     
"coordinating_conjunction_list":coordinating_conjunction_list,"cardinal_number_lis
t":cardinal_number_list, 
                     
"determiner_list":determiner_list,"existential_there_list":existential_there_list, 
                     
"foreign_word_list":foreign_word_list,"preposition_subordinating_list":preposition
_subordinating_list, 
                     
"adjective_list":adjective_list,"adjective_comparative_list":adjective_comparative
_list, 
                     
"adjective_superlative_list":adjective_superlative_list,"list_marker_list":list_ma
rker_list, 
                     
"modal_list":modal_list,"predeterminer_list":predeterminer_list,"possessive_ending
_list":possessive_ending_list, 
                     
"personal_pronoun_list":personal_pronoun_list,"possessive_pronoun_list":possessive
_pronoun_list, 
                     
"adverb_list":adverb_list,"adverb_comparative_list":adverb_comparative_list, 
                     
"adverb_superlative_list":adverb_superlative_list,"particle_list":particle_list,"t
o_list":to_list, 
                     
"interjection_list":interjection_list,"wh_determiner_list":wh_determiner_list, 
                     
"wh_pronoun_list":wh_pronoun_list,"possessive_wh_pronoun_list":possessive_wh_prono
un_list, 
                     
"wh_adverb_list":wh_adverb_list,"not_tagged_word_list":not_tagged_word_list, 



PAGE 395 

                     
"punctuation_list":punctuation_list,"parenthesis_list":parenthesis_list, 
                     "unbalenced_parenthesis_list":unbalenced_parenthesis_list}) 
     
    #Function returns the two dictionaries 
    return (tagcount, taglists) 
 
    #print("taglists",taglists) 
 

9.4.12 TAG_PERCENTAGE 
#Function to calculate the percentage of a tag in a dictionary 
#inputs: 
#       tagcount = integer number of the number of times a tag is present in a 
peace of text 
#       NB_tags = number of total tags  
#       Key= tag in question 
#       NB_words= total number of words in text 
 
def percentage_of_tag(tagcount,NB_tags,NB_words,key): 
 
    nb_key_tag =int(tagcount[key]) 
    #print("nb_key_tag",nb_key_tag) 
    #print("type of nb_key_tag", type(nb_key_tag)) 
    #print("type of NB_tags", type(NB_tags)) 
    NB_tags_int=int(NB_tags[0]) 
    NB_words_int=int(NB_words[0]) 
    #print("NB_tags_int =",NB_tags_int,"type of NB_tags_int =", type(NB_tags_int)) 
    percent_key_tag = (nb_key_tag / NB_tags_int)*100 
    percent_word_tag = (nb_key_tag / NB_words_int)*100 
    #print("percent of key", percent_key_tag) 
 
    return(percent_key_tag,percent_word_tag) 

9.4.13 TEXT_CHARACTARISTICS 
# A function that is used to characterise text 
#Requires functions:    Tag_count 
#                       Read_Textfile_andtag 
#                       percentage_of_tag  
#Inputs: file path (of the file being analysed) 
#Outputs:  token_words_full 
#          word_list 
#          tagcount 
#          taglists 
#          number_of_lines 
#          NB_tags 
#          NB_words 
#          percent_of_tag 
#          percent_of_words 
  
 
def Text_charactaristics(file_path): 
    #Algorithm that calculates the characteristics of a text file 
    #print("Starting program and loading functions") 
    #Loading the functions needed for A1 algorithm 
    from Tag_count_fn import Tag_count 
    from Reading_and_tagging_files import Read_Textfile_andtag 
    #Import function to calculate the percentage of a tag or word compared to that 
of the whole document 
    from tag_percentage_fn import percentage_of_tag 



PAGE 396 

 
    #feed the text file into read_textfile_andtag function 
    token_words_full, word_list = Read_Textfile_andtag(file_path,'r') 
    tagcount, taglists = Tag_count(file_path) 
 
    #print("token words full=",token_words_full,'\n') 
    #print("word list=",word_list,'\n') 
    #print("tagcount =",tagcount,'\n') 
    #print("taglists =",taglists) 
 
    #number of lines in text file under test 
    number_of_lines=len(word_list) 
    #print("number_of_lines =",number_of_lines) 
 
    #Number on tags counted  
    
NB_tags=[tagcount["noun_common"]+tagcount["noun_propper"]+tagcount["noun_proper_pl
ural"] 
             
+tagcount["noun_common_plural"]+tagcount["verb_base"]+tagcount["verb_past_tense"] 
             +tagcount["verb_present_participle"]+tagcount["verb_past_participle"] 
             +tagcount["verb_present_tense_not_3rd_person"]+ 
tagcount["verb_present_tense_person_singular"] 
             
+tagcount["coordinating_conjunction"]+tagcount["cardinal_number"]+tagcount["determ
iner"] 
             
+tagcount["existential_there"]+tagcount["foreign_word"]+tagcount["preposition_subo
rdinating"] 
             
+tagcount["adjective"]+tagcount["adjective_comparative"]+tagcount["adjective_super
lative"] 
             +tagcount["list_marker"]+tagcount["modal"]+tagcount["predeterminer"] 
             
+tagcount["possessive_ending"]+tagcount["personal_pronoun"]+tagcount["possessive_p
ronoun"] 
             
+tagcount["adverb_count"]+tagcount["adverb_comparative"]+tagcount["adverb_superlat
ive"] 
             
+tagcount["particle_count"]+tagcount["to_count"]+tagcount["interjection"] 
             
+tagcount["wh_determiner"]+tagcount["wh_pronoun"]+tagcount["possessive_wh_pronoun"] 
             +tagcount["wh_adverb"]+tagcount["punctuation"]] 
 
    #Number of tags of just words 
    
NB_words=[tagcount["noun_common"]+tagcount["noun_propper"]+tagcount["noun_proper_p
lural"] 
              
+tagcount["noun_common_plural"]+tagcount["verb_base"]+tagcount["verb_past_tense"] 
              +tagcount["verb_present_participle"]+tagcount["verb_past_participle"] 
              +tagcount["verb_present_tense_not_3rd_person"]+ 
tagcount["verb_present_tense_person_singular"] 
              +tagcount["coordinating_conjunction"]+tagcount["determiner"] 
              
+tagcount["existential_there"]+tagcount["foreign_word"]+tagcount["preposition_subo
rdinating"] 
              
+tagcount["adjective"]+tagcount["adjective_comparative"]+tagcount["adjective_super
lative"] 
              +tagcount["list_marker"]+tagcount["modal"]+tagcount["predeterminer"] 



PAGE 397 

              
+tagcount["possessive_ending"]+tagcount["personal_pronoun"]+tagcount["possessive_p
ronoun"] 
              
+tagcount["adverb_count"]+tagcount["adverb_comparative"]+tagcount["adverb_superlat
ive"] 
              
+tagcount["particle_count"]+tagcount["to_count"]+tagcount["interjection"] 
              
+tagcount["wh_determiner"]+tagcount["wh_pronoun"]+tagcount["possessive_wh_pronoun"] 
              +tagcount["wh_adverb"]] 
 
    #print("number of tags NB_tags =",NB_tags) 
    #print("number of words NB_words =",NB_words) 
 
    # %of each tag as part of the text dictionaries 
    percent_of_tag={} 
    percent_of_words={} 
 
    #print("testing iterating over a dictionary") 
    #A for loop that steps through the dictionary of tags and calculated the 
percentages 
    for key in tagcount: 
        #call function and feed in tag "key" 
        function_percent_key_tag,funciton_percent_word_tag 
=percentage_of_tag(tagcount,NB_tags,NB_words,key) 
        #right calculated percentages to the appropriate dictionaries 
        percent_of_tag.update({key:function_percent_key_tag}) 
        percent_of_words.update({key:funciton_percent_word_tag}) 
   
    #print ("percent_of_tag dictionary",percent_of_tag) 
    #print ("percent_of_word dictionary",percent_of_words) 
 
    #calculate the average words per line  
    average_words_per_line= ((NB_words[0])/number_of_lines) 
    #print("Average words per line",average_words_per_line) 
 
    return(token_words_full, word_list, tagcount, taglists, number_of_lines, 
NB_tags, NB_words, percent_of_tag, percent_of_words) 
 

  



PAGE 398 

9.4.14 READ_TEXTFILE_ANDTAG 
#A function for the reading in of a text file and producing a tagged version of 
the file 
#inputs (file to be tagged file path and the open type for the file read, wright 
or both) 
#outputs(the read words and a tagged version of the lines of text)  
 
def Read_Textfile_andtag(file_path, type): 
    #print("Importing needed packages") 
    import nltk 
    from nltk.tokenize import word_tokenize 
    from nltk.tag import pos_tag 
    #print("Import completed") 
 
    #Read in data from specified file  
    #print("Reading in text file") 
    with open (file_path,type) as f: 
        data = f.readlines() 
        #print("data read in from text file") 
        
    #splits the text document into a list of lines 
    #Takes lines and places them in a list 
        word_list=[] 
        for line in data: 
            words = line.split() 
            word_list.append(words) 
         #print(word_list,'\n') 
    #print("text file read in and word list created",'\n') 
    #defines lenth_word_list as the size of word_list 
    lenth_word_list= len(word_list) 
    #empty list token_words_full 
    token_words_full=[] 
 
    #define loop counter 
    ilwl=0 
    while ilwl<(lenth_word_list): 
        Read_lines_string=' '.join(word_list[ilwl]) 
        #print(Read_lines_string,'\n') 
        #Tokens the string from the list 
        tokens=nltk.word_tokenize(Read_lines_string) 
        token_words=nltk.pos_tag(tokens) 
        token_words_full.append(token_words) 
        ilwl+=1 
 
    #print the contents of all of tokenised words list 
    #print("The tokenized word list") 
    #print(token_words_full,'\n''\n''\n') 
    #print("word_list veriable from function =", word_list,'\n') 
    #print("token_words_full from function =", token_words_full) 
    return (token_words_full, word_list) 
 

  



PAGE 399 

9.5 TEST FILES FOR PROOF OF CONCEPT VERIFICATION 
Test files were generated to use for the verification of the NLP POC they contain 
words and phrases that are likely to appear in the simulation integration domain. 

9.5.1 TEST FILE ONE 
 
The development environments were Matlab and LabVIEW. 
FFTS were used as part of the analysis 
Time for a spurious word contrafibularities. 
Longitudinal model of a vehicle. 
S functions were used as part of the integration. 
Part of these models were produced by Bosh and DSpace. 
Testing the tagging uhhuhhuhh 
1) List marker 
2) List marker 
S Fuction 
sFunction 
dSPACE 
RADAR 
 
fuifius dsuifhdskjfh skdfsduifsd sodufsd skfhsk djfhkdsj  sdkfjhsdkjf wetert 
 
how can_WE_confuse the tagger? 
 
What if there were some eroneosley spellt wordss and some jibberish sldkfjd 
dkfjk dkfjd akdfjd all in one line! 
 
ok so that worked so lets put some others stuff in: 
sdlkfj_Adfsdf 
this and thatt 
some part_hyphonated Wor_ds 
 
body specifications docuemtn world squash Federation (WSF) 
 
labview and matlab were used. 
 
inputs inculde all of the  
input one 10 herts floating point 
Language C 
start date  
start 
KO 
 
This file holds many words. 



PAGE 400 

The dog jumps over the wall. 
  



PAGE 401 

9.5.2 TEST FILE TWO  
 

LabVIEW is a modelling language. 

FFTS were used. 

 

  



PAGE 402 

9.5.3 TEST FILE THREE 
 

The development environments is LabVIEW. 

FFTS were used as part of the analysis 

Time for a spurious word contrafibularities. 

Longitudinal model of a vehicle. 

S functions were used as part of the integration. 

Part of these models were produced by Bosh and DSpace. 

Testing the tagging uhhuhhuhh 

1) List marker 

2) List marker 

S Fuction 

sFunction 

dSPACE 

RADAR  



PAGE 403 

9.5.4 RESULT OF THE PROOF OF CONCEPT TEST FILE 
The NLP test files were used throughout the development of the NLP POC to verify 
that the outputs are correct. 

File inputs: 

A. NLP_Test_File.txt 

B. NLP_Test_File.txt 

Outputs from the NLP application: 

 

Figure 9.17: Output from the NLP POC when the test file is both document A and B. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 15 
common_dev_enviroments = ['Matlab', 'labview', 'matlab'] 
number of words = 3 
common_identified_modeling_tuerms = ['inputs', 'input'] 
number of common_identified_modeling_tuerms = 2 
common_identified_project_tuerms = ['KO'] 
number of common_identified_project_tuerms = 2 
common_identified_prog_languages = ['C'] 



PAGE 404 

number of common_identified_prog_languages = 1 
common_identified_file_types = ['C'] 
number of common_identified_file_types = 1 
Identified_common_company_words = 
'number_of_common_identified_modeling_tuerms': 2, 
'number_of_common_identified_project_tuerms': 1, 
'common_identified_project_tuerms': ['KO'], 
'number_of_common_dev_enviroments': 3, 
'number_of_identified_prog_languages': 1, 
'number_of_identified_file_types': 1, 
'common_identified_prog_languages': ['C'], 
'common_dev_enviroments': ['Matlab', 'labview', 'matlab'], 
'common_identified_modeling_tuerms': ['inputs', 'input'], 
'common_identified_file_types': ['C']} 
 
dict_of_words_in_both_docs = {'wh_pronoun_list': ['What'], 'to_list': [], 'adjec 
tive_list': ['Longitudinal', 'many', 'eroneosley', 'spurious', 'lets', 'S', 'jib 
berish'], 'coordinating_conjunction_list': ['and'], 'existential_there_list': [' 
there'], 'verb_past_tense_list': ['put', 'worked', 'part_hyphonated', 'were'], ' 
adverb_superlative_list': [], 'verb_present_tense_person_singular_list': ['holds 
', 'jumps'], 'cardinal_number_list': ['one', '10', '1', '2'], 'preposition_subor 
dinating_list': ['that', 'in', 'of', 'akdfjd', 'if', 'as', 'for', 'by', 'over'], 
 'list_marker_list': [], 'adverb_comparative_list': [], 'interjection_list': [], 
 'noun_proper_plural_list': [], 'parenthesis_list': [':'], 'noun_common_plural_l 
ist': ['words', 'functions', 'contrafibularities', 'models', 'others', 'specific 
ations', 'inputs', 'environments', 'herts', 'ok'], 'foreign_word_list': [], 'per 
sonal_pronoun_list': [], 'noun_propper_list': [], 'noun_common_list': ['developm 
ent', 'dkfjk', 'labview', 'sFunction', 'djfhkdsj', 'line', 'skdfsduifsd', 'start 
', 'matlab', 'part', 'wordss', 'dSPACE', 'world', 'wetert', 'fuifius', 'tagging' 
, 'sodufsd', 'tagger', 'List', 'integration', 'squash', 'sdlkfj_Adfsdf', 'dsuifh 
dskjfh', 'analysis', 'marker', 'dog', 'sdkfjhsdkjf', 'body', 'wall', 'date', 've 
hicle', 'RADAR', 'Part', 'file', 'sldkfjd', 'uhhuhhuhh', 'spellt', 'point', 'dkf 
jd', 'word', 'model', 'skfhsk'], 'verb_past_participle_list': ['used', 'produced 
'], 'punctuation_list': ['.', '!', '?'], 'verb_present_tense_not_3rd_person_list 
': ['docuemtn', 'inculde', 'stuff'], 'verb_present_participle_list': ['Testing', 
 'floating'], 'particle_list': [], 'not_tagged_word_list': [')', '('], 'noun_pro 
pper_singular_list': ['DSpace', 'C', 'KO', 'Time', 'Matlab', 'Fuction', 'Languag 
e', 'FFTS', 'Bosh', 'Federation', 'S', 'LabVIEW', 'WSF', 'Wor_ds'], 'adjective_c 
omparative_list': [], 'predeterminer_list': [], 'adjective_superlative_list': [] 
, 'verb_base_list': ['input', 'can_WE_confuse', 'thatt'], 'possessive_pronoun_li 
st': [], 'possessive_ending_list': [], 'wh_determiner_list': [], 'unbalenced_par 
enthesis_list': [], 'adverb_list': ['so'], 'possessive_wh_pronoun_list': [], 'wh 
_adverb_list': ['how'], 'modal_list': [], 'determiner_list': ['a', 'the', 'The', 
 'this', 'This', 'these', 'some', 'all']} 
 



PAGE 405 

Program End 
Press any key to continue . . . 

 
Data captured in text file: 

[[[('The', 'DT'), ('development', 'NN'), ('environments', 'NNS'), ('were', 'VBD'), 
('Matlab', 'NNP'), ('and', 'CC'), ('LabVIEW', 'NNP'), ('.', '.')], [('The', 'DT'), 
('development', 'NN'), ('environments', 'NNS'), ('were', 'VBD'), ('Matlab', 'NNP'), 
('and', 'CC'), ('LabVIEW', 'NNP'), ('.', '.')]], [[('FFTS', 'NNP'), ('were', 'VBD'), ('used', 
'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), ('analysis', 'NN')], [('FFTS', 
'NNP'), ('were', 'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), 
('analysis', 'NN')]], [[('S', 'JJ'), ('functions', 'NNS'), ('were', 'VBD'), ('used', 'VBN'), 
('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), ('integration', 'NN'), ('.', '.')], [('S', 'JJ'), 
('functions', 'NNS'), ('were', 'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), 
('the', 'DT'), ('integration', 'NN'), ('.', '.')]], [[('Part', 'NN'), ('of', 'IN'), ('these', 'DT'), 
('models', 'NNS'), ('were', 'VBD'), ('produced', 'VBN'), ('by', 'IN'), ('Bosh', 'NNP'), 
('and', 'CC'), ('DSpace', 'NNP'), ('.', '.')], [('Part', 'NN'), ('of', 'IN'), ('these', 'DT'), 
('models', 'NNS'), ('were', 'VBD'), ('produced', 'VBN'), ('by', 'IN'), ('Bosh', 'NNP'), 
('and', 'CC'), ('DSpace', 'NNP'), ('.', '.')]], [[('Testing', 'VBG'), ('the', 'DT'), ('tagging', 
'NN'), ('uhhuhhuhh', 'NN')], [('Testing', 'VBG'), ('the', 'DT'), ('tagging', 'NN'), 
('uhhuhhuhh', 'NN')]], [[('how', 'WRB'), ('can_WE_confuse', 'VB'), ('the', 'DT'), 
('tagger', 'NN'), ('?', '.')], [('how', 'WRB'), ('can_WE_confuse', 'VB'), ('the', 'DT'), 
('tagger', 'NN'), ('?', '.')]], [[('What', 'WP'), ('if', 'IN'), ('there', 'EX'), ('were', 'VBD'), 
('some', 'DT'), ('eroneosley', 'JJ'), ('spellt', 'NN'), ('wordss', 'NN'), ('and', 'CC'), 
('some', 'DT'), ('jibberish', 'JJ'), ('sldkfjd', 'NN'), ('dkfjk', 'NN'), ('dkfjd', 'NN'), ('akdfjd', 
'IN'), ('all', 'DT'), ('in', 'IN'), ('one', 'CD'), ('line', 'NN'), ('!', '.')], [('What', 'WP'), ('if', 'IN'), 
('there', 'EX'), ('were', 'VBD'), ('some', 'DT'), ('eroneosley', 'JJ'), ('spellt', 'NN'), 
('wordss', 'NN'), ('and', 'CC'), ('some', 'DT'), ('jibberish', 'JJ'), ('sldkfjd', 'NN'), ('dkfjk', 
'NN'), ('dkfjd', 'NN'), ('akdfjd', 'IN'), ('all', 'DT'), ('in', 'IN'), ('one', 'CD'), ('line', 'NN'), 
('!', '.')]], [[('ok', 'NNS'), ('so', 'RB'), ('that', 'IN'), ('worked', 'VBD'), ('so', 'RB'), ('lets', 
'JJ'), ('put', 'VBD'), ('some', 'DT'), ('others', 'NNS'), ('stuff', 'VBP'), ('in', 'IN'), (':', ':')], 
[('ok', 'NNS'), ('so', 'RB'), ('that', 'IN'), ('worked', 'VBD'), ('so', 'RB'), ('lets', 'JJ'), ('put', 
'VBD'), ('some', 'DT'), ('others', 'NNS'), ('stuff', 'VBP'), ('in', 'IN'), (':', ':')]], [[('some', 
'DT'), ('part_hyphonated', 'VBD'), ('Wor_ds', 'NNP')], [('some', 'DT'), 
('part_hyphonated', 'VBD'), ('Wor_ds', 'NNP')]], [[('body', 'NN'), ('specifications', 
'NNS'), ('docuemtn', 'VBP'), ('world', 'NN'), ('squash', 'NN'), ('Federation', 'NNP'), 
('(', '('), ('WSF', 'NNP'), (')', ')')], [('body', 'NN'), ('specifications', 'NNS'), ('docuemtn', 
'VBP'), ('world', 'NN'), ('squash', 'NN'), ('Federation', 'NNP'), ('(', '('), ('WSF', 'NNP'), 
(')', ')')]], [[('labview', 'NN'), ('and', 'CC'), ('matlab', 'NN'), ('were', 'VBD'), ('used', 
'VBN'), ('.', '.')], [('labview', 'NN'), ('and', 'CC'), ('matlab', 'NN'), ('were', 'VBD'), 
('used', 'VBN'), ('.', '.')]], [[('inputs', 'NNS'), ('inculde', 'VBP'), ('all', 'DT'), ('of', 'IN'), 
('the', 'DT')], [('inputs', 'NNS'), ('inculde', 'VBP'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT')]], 
[[('input', 'VB'), ('one', 'CD'), ('10', 'CD'), ('herts', 'NNS'), ('floating', 'VBG'), ('point', 
'NN')], [('input', 'VB'), ('one', 'CD'), ('10', 'CD'), ('herts', 'NNS'), ('floating', 'VBG'), 
('point', 'NN')]], [[('This', 'DT'), ('file', 'NN'), ('holds', 'VBZ'), ('many', 'JJ'), ('words', 
'NNS'), ('.', '.')], [('This', 'DT'), ('file', 'NN'), ('holds', 'VBZ'), ('many', 'JJ'), ('words', 



PAGE 406 

'NNS'), ('.', '.')]], [[('The', 'DT'), ('dog', 'NN'), ('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), 
('wall', 'NN'), ('.', '.')], [('The', 'DT'), ('dog', 'NN'), ('jumps', 'VBZ'), ('over', 'IN'), ('the', 
'DT'), ('wall', 'NN'), ('.', '.')]]] 
  



PAGE 407 

9.5.5 VERIFICATION ANALYSIS TWO  
The NLP test files were used throughout the development of the NLP POC to verify 
that the outputs are correct. 

File inputs: 

NLP_Test_File.txt 

NLP_Test_File_1.txt 

Outputs from the NLP application: 

 
Figure 9.18 : Output from the NLP POC when the NLP_Test_File is both document A and B. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 2 
common_dev_enviroments = [] 
 number of words = 0 
common_identified_modeling_tuerms = [] 
 number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
 number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 



PAGE 408 

 number of common_identified_prog_languages = 0 
common_identified_file_types = [] 
 number of common_identified_file_types = 0 
Identified_common_company_words = { 
'common_dev_enviroments': [], 
'number_of_identified_file_types': 0, 
'number_of_common_dev_enviroments': 0, 
'common_identified_modeling_tuerms': [], 
'common_identified_project_tuerms': [], 
'common_identified_file_types': [], 
'common_identified_prog_languages': [], 
'number_of_identified_prog_languages': 0, 
'number_of_common_identified_modeling_tuerms': 0, 
'number_of_common_identified_project_tuerms': 0} 
 
dict_of_words_in_both_docs = { 
'adverb_comparative_list': [], 
'particle_list': [], 
'punctuation_list': ['.'], 
'modal_list': [], 
'noun_propper_singular_list': ['LabVIEW', 'FFTS'], 
'interjection_list': [], 
'predeterminer_list': [], 
'wh_determiner_list': [], 
'adjective_comparative_list': [], 
'coordinating_conjunction_list': [], 
'verb_present_tense_person_singular_list': [], 
'wh_pronoun_list': [], 
'verb_past_tense_list': ['were'], 
'existential_there_list': [], 
'foreign_word_list': [], 
'determiner_list': ['a'], 
'unbalenced_parenthesis_list': [], 
'noun_proper_plural_list': [], 
'adverb_superlative_list': [], 
'to_list': [], 
'verb_past_participle_list': ['used'], 
'adjective_superlative_list': [], 
'possessive_wh_pronoun_list': [], 
'noun_common_plural_list': [], 
'possessive_ending_list': [], 
'parenthesis_list': [], 
'wh_adverb_list': [], 
'personal_pronoun_list': [], 
'noun_propper_list': [], 



PAGE 409 

'verb_base_list': [], 
'verb_present_tense_not_3rd_person_list': [], 
'list_marker_list': [], 
'preposition_subordinating_list': [], 
'adjective_list': [], 
'not_tagged_word_list': [], 
'verb_present_participle_list': [], 
'possessive_pronoun_list': [], 
'adverb_list': [], 
'noun_common_list': [], 
'cardinal_number_list': []} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('The', 'DT'), ('development', 'NN'), ('environments', 'NNS'), ('were', 'VBD'), 
('Matlab', 'NNP'), ('and', 'CC'), ('LabVIEW', 'NNP'), ('.', '.')], [('LabVIEW', 'NNP'), ('is', 
'VBZ'), ('a', 'DT'), ('modelling', 'JJ'), ('language', 'NN'), ('.', '.')]], [[('FFTS', 'NNP'), 
('were', 'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), 
('analysis', 'NN')], [('FFTS', 'NNP'), ('were', 'VBD'), ('used', 'VBN'), ('.', '.')]]] 
 
 



PAGE 410 

9.5.6 VERIFICATION ANALYSIS THREE 
The NLP test files were used throughout the development of the NLP POC to verify 
that the outputs are correct. 

File inputs 

NLPTestFile 

NLPTestFile_2 

Outputs from the NLP application: 

 

Figure 9.19 : Output from the NLP POC when document A is NLPTestFile and NLPTestFile_2 is input B. 

 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 5 
common_dev_enviroments = [] 
number of words = 0 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 



PAGE 411 

common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 
number of common_identified_file_types = 0 
Identified_common_company_words = { 
'common_identified_prog_languages': [], 
'common_identified_project_tuerms': [], 
'number_of_common_identified_project_tuerms': 0,  
'number_of_identified_file_types': 0, 
'number_of_identified_prog_languages': 0, 
'common_identified_file_types': [], 
'common_identified_modeling_tuerms': [], 
'common_dev_enviroments': [], 
'number_of_common_identified_modeling_tuerms': 0, 
'number_of_common_dev_enviroments': 0} 
 
dict_of_words_in_both_docs = { 
'noun_common_plural_list': ['environments', 'functions', 'models', 
'contrafibularities'], 
unbalenced_parenthesis_list': [], 
'adverb_list': [], 
'punctuation_list': ['.'], 
'possessive_ending_list': [], 
'adjective_list': ['spurious', 'S', 'Longitudinal'], 
'modal_list': [], 
'verb_present_tense_person_singular_list': [], 
'possessive_wh_pronoun_list': [], 
'list_marker_list': [], 
'adverb_superlative_list': [], 
'verb_present_tense_not_3rd_person_list':[],  
'verb_past_participle_list': ['used', 'produced'], 
'coordinating_conjunction_list': ['and'], 
'preposition_subordinating_list': ['as', 'by', 'for', 'of'], 
'wh_pronoun_list': [], 
'adjective_comparative_list': [], 
'to_list': [], 
'determiner_list': ['The', 'these', 'the', 'a'], 
'adjective_superlative_list': [], 
'noun_proper_plural_list': [], 
'adverb_comparative_list': [], 
'interjection_list': [], 
'noun_propper_list': [], 
'cardinal_number_list': ['1', '2'], 



PAGE 412 

'existential_there_list': [], 
'parenthesis_list': [], 
'wh_determiner_list': [], 
'personal_pronoun_list': [], 
'wh_adverb_list': [], 
'predeterminer_list': [], 
'noun_common_list': ['part', 'sFunction', 'development', 'word', 'tagging', 
'vehicle', 'uhhuhhuhh', 'analysis', 'RADAR', 'integration', 'List', 'dSPACE', 'model', 
'Part', 'marker'], 
'not_tagged_word_list': [')'], 
'verb_base_list': [], 
'particle_list': [], 
'verb_past_tense_list': ['were'], 
'noun_propper_singular_list': ['Bosh', 'Fuction', 'FFTS', 'LabVIEW', 'S', 'Time', 
'DSpace'], 
'verb_present_participle_list': ['Testing'], 
'foreign_word_list': [], 
'possessive_pronoun_list': []} 
 
Program End 
Press any key to continue . . . 

 

Data captured in text file: 

[[[('The', 'DT'), ('development', 'NN'), ('environments', 'NNS'), ('were', 'VBD'), 
('Matlab', 'NNP'), ('and', 'CC'), ('LabVIEW', 'NNP'), ('.', '.')], [('The', 'DT'), 
('development', 'NN'), ('environments', 'NNS'), ('is', 'VBZ'), ('LabVIEW', 'NNP'), ('.', 
'.')]], [[('FFTS', 'NNP'), ('were', 'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 
'IN'), ('the', 'DT'), ('analysis', 'NN')], [('FFTS', 'NNP'), ('were', 'VBD'), ('used', 'VBN'), 
('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), ('analysis', 'NN')]], [[('S', 'JJ'), 
('functions', 'NNS'), ('were', 'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), 
('the', 'DT'), ('integration', 'NN'), ('.', '.')], [('S', 'JJ'), ('functions', 'NNS'), ('were', 
'VBD'), ('used', 'VBN'), ('as', 'IN'), ('part', 'NN'), ('of', 'IN'), ('the', 'DT'), ('integration', 
'NN'), ('.', '.')]], [[('Part', 'NN'), ('of', 'IN'), ('these', 'DT'), ('models', 'NNS'), ('were', 
'VBD'), ('produced', 'VBN'), ('by', 'IN'), ('Bosh', 'NNP'), ('and', 'CC'), ('DSpace', 
'NNP'), ('.', '.')], [('Part', 'NN'), ('of', 'IN'), ('these', 'DT'), ('models', 'NNS'), ('were', 
'VBD'), ('produced', 'VBN'), ('by', 'IN'), ('Bosh', 'NNP'), ('and', 'CC'), ('DSpace', 
'NNP'), ('.', '.')]], [[('Testing', 'VBG'), ('the', 'DT'), ('tagging', 'NN'), ('uhhuhhuhh', 
'NN')], [('Testing', 'VBG'), ('the', 'DT'), ('tagging', 'NN'), ('uhhuhhuhh', 'NN')]]] 

  



PAGE 413 

9.6 OUTPUTS FROM THE PROOF OF CONCEPT APPLICATION 
The NLP application reads in two text files and outputs information regarding the 
text files and the similarities between them. In the tests that are conducted the 
file inputs A and B relate to the two file inputs to the application. The output of 
the application include a bar chart of the percentages of the identified word 
types, common identified words, common words which exist in both documents, 
and a text file of phrases that contain the same noun and verb phrases that exist 
in both documents. 

Both of the case studies that were conducted to test the proposed methods 
have been used to test these NLP methods as well. 

  



PAGE 414 

9.6.1 CASE STUDY ONE SQUASH COURT  
The first analysis is the comparison between the model documentation and the 
simulation requirements. There are three potential simulation components 
therefore there are three sets of data. The subsequent three tasks were 
comparing each potential component with every other component to ascertain 
if there is the potential for meaningful integration.  

9.6.2 ANALYSIS ONE 
File inputs: 

A. Requirements_For_Case_Study_One_Squash_Ball_Moving_Around_A_Court.tx
t 

B. Documentation_of_a_Particle_Moving_in_Free_Space.txt  

Outputs From NLP application: 

 

Figure 9.20: The percentage distribution of tags within the two compared documents from case 
study one analysis one. 

  



PAGE 415 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 10 
 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 
number of common_identified_file_types = 0 
 
Identified_common_company_words ={ 
number_of_common_identified_modeling_tuerms': 0, 
number_of_identified_file_types': 0, 
'common_identified_project_tuerms': [], 
'common_identified_prog_languages': [], 
'common_dev_enviroments': ['LabVIEW'],  
'common_identified_modeling_tuerms': [], 
'number_of_identified_prog_languages': 0, 
'number_of_common_dev_enviroments': 1, 
'number_of_common_identified_project_tuerms': 0, 
'common_identified_file_types': [] 
} 
 
dict_of_words_in_both_docs = { 
'adverb_superlative_list': [], 
'possessive_ending_list': [], 
'adverb_list': [], 
'wh_pronoun_list': [], 
'verb_base_list': ['be'], 
 'cardinal_number_list': ['7'], 
 'possessive_pronoun_list': [], 
'verb_past_tense_list': [], 
'wh_adverb_list': [], 
'foreign_word_list': [], 
'noun_common_list': ['space', 'date', 'time', 'file', 'ball'], 
'noun_propper_singular_list': ['LabVIEW', 'A'], 
'interjection_list': [], 
'noun_proper_plural_list': [], 
'noun_propper_list': [], 



PAGE 416 

'personal_pronoun_list': [], 
'adjective_superlative_list': [], 
'adverb_comparative_list': [], 
'modal_list': [], 
'not_tagged_word_list': [')', ','], 
'verb_present_participle_list': [], 
'verb_past_participle_list': ['used'],  
'unbalenced_parenthesis_list': [], 
'existential_there_list': [], 
'preposition_subordinating_list': ['in', 'of'], 
'particle_list': [], 
'adjective_list': [], 
'list_marker_list': [], 
'noun_common_plural_list': ['steps', 'seconds'], 
'to_list': ['to'], ' 
coordinating_conjunction_list': ['and'], 
'adjective_comparative_list': [], 
'possessive_wh_pronoun_list': [], 
'verb_present_tense_person_singular_list': ['is'], 
'punctuation_list': ['.'], 
'predeterminer_list': [], 
'verb_present_tense_not_3rd_person_list': ['are'], 
'parenthesis_list': [], 
'wh_determiner_list': [], 
'determiner_list': ['the', 'a', 'The']} 
 
Program End 
Press any key to continue . . . 

 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('squash', 
'NN'), ('ball', 'NN'), ('in', 'IN'), ('flight', 'NN'), ('.', '.')], [('Model', 'NNP'), ('requires', 
'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', ','), ('starting', 'VBG'), ('velocity', 'NN'), (',', 
','), ('distance', 'NN'), ('and', 'CC'), ('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 
'VB'), ('known', 'VBN'), ('and', 'CC'), ('it', 'PRP'), ('calculates', 'VBZ'), 
('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 'IN'), ('it', 'PRP'), ('takes', 'VBZ'), 
('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 'VB'), ('from', 'IN'), ('one', 'CD'), 
('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), (',', ','), ('time', 'NN'), ('sample', 
'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), ('in', 'IN'), ('the', 'DT'), ('time', 
'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), ('distance', 'NN'), ('that', 'IN'), 
('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), ('single', 'JJ'), ('time', 'NN'), 
('sample', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 



PAGE 417 

'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 
'DT'), ('squash', 'NN'), ('ball', 'NN'), ('bouncing', 'VBG'), ('off', 'RP'), ('the', 'DT'), 
('surface', 'NN'), ('of', 'IN'), ('a', 'DT'), ('wall', 'NN'), ('.', '.')], [('Model', 'NNP'), 
('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', ','), ('starting', 'VBG'), ('velocity', 
'NN'), (',', ','), ('distance', 'NN'), ('and', 'CC'), ('sample', 'NN'), ('rate', 'NN'), ('to', 
'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 'CC'), ('it', 'PRP'), ('calculates', 'VBZ'), 
('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 'IN'), ('it', 'PRP'), ('takes', 'VBZ'), 
('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 'VB'), ('from', 'IN'), ('one', 'CD'), 
('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), (',', ','), ('time', 'NN'), ('sample', 
'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), ('in', 'IN'), ('the', 'DT'), ('time', 
'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), ('distance', 'NN'), ('that', 'IN'), 
('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), ('single', 'JJ'), ('time', 'NN'), 
('sample', 'NN'), ('.', '.')]], [[('3', 'LS'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 
'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 
'DT'), ('ball', 'NN'), ('interacting', 'VBG'), ('with', 'IN'), ('a', 'DT'), ('player’s', 'NN'), 
('racket', 'NN'), ('.', '.')], [('Model', 'NNP'), ('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 
'NN'), (',', ','), ('starting', 'VBG'), ('velocity', 'NN'), (',', ','), ('distance', 'NN'), ('and', 
'CC'), ('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 
'CC'), ('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 'NN'), (',', ','), ('time', 'NN'), 
('that', 'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), 
('get', 'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 
'JJ'), (',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 
'NNS'), ('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 
'DT'), ('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 
'DT'), ('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 
'DT'), ('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), 
('multiple', 'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('only', 'JJ'), ('change', 
'NN'), ('being', 'VBG'), ('the', 'DT'), ('compound', 'NN'), ('of', 'IN'), ('the', 'DT'), ('ball', 
'NN'), ('.', '.')], [('Model', 'NNP'), ('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', 
','), ('starting', 'VBG'), ('velocity', 'NN'), (',', ','), ('distance', 'NN'), ('and', 'CC'), 
('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 'CC'), 
('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 
'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 
'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), 
(',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), 
('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), 
('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), 
('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')]], [[('5', 'CD'), (')', ')'), ('The', 'DT'), 
('flight', 'NN'), ('of', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('constrained', 'VBN'), 
('by', 'IN'), ('a', 'DT'), ('regulation', 'NN'), ('sized', 'VBN'), ('squash', 'JJ'), ('court', 
'NN'), ('.', '.')], [('Model', 'NNP'), ('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', 
','), ('starting', 'VBG'), ('velocity', 'NN'), (',', ','), ('distance', 'NN'), ('and', 'CC'), 
('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 'CC'), 
('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 
'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 



PAGE 418 

'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), 
(',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), 
('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), 
('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), 
('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')]], [[('A', 'DT'), (')', ')'), ('The', 'DT'), 
('total', 'JJ'), ('run', 'NN'), ('time', 'NN'), ('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), 
('should', 'MD'), ('take', 'VB'), ('less', 'JJR'), ('than', 'IN'), ('five', 'CD'), ('minutes', 
'NNS'), ('to', 'TO'), ('fully', 'RB'), ('execute', 'VB'), ('.', '.')], [('Model', 'NNP'), ('requires', 
'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', ','), ('starting', 'VBG'), ('velocity', 'NN'), (',', 
','), ('distance', 'NN'), ('and', 'CC'), ('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 
'VB'), ('known', 'VBN'), ('and', 'CC'), ('it', 'PRP'), ('calculates', 'VBZ'), 
('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 'IN'), ('it', 'PRP'), ('takes', 'VBZ'), 
('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 'VB'), ('from', 'IN'), ('one', 'CD'), 
('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), (',', ','), ('time', 'NN'), ('sample', 
'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), ('in', 'IN'), ('the', 'DT'), ('time', 
'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), ('distance', 'NN'), ('that', 'IN'), 
('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), ('single', 'JJ'), ('time', 'NN'), 
('sample', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), ('overall', 'JJ'), 
('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), ('be', 'VB'), 
('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 'CD'), ('of', 'IN'), 
('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), ('core', 'NN'), 
('Intel', 'NNP'), ('Core', 'NNP'), ('i', 'NN'), ('7', 'CD'), ('processor', 'NN'), (',', ','), 
('500GB', 'CD'), ('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], 
[('Documentation', 'NN'), ('of', 'IN'), ('a', 'DT'), ('particle', 'NN'), ('moving', 'VBG'), 
('in', 'IN'), ('free', 'JJ'), ('space', 'NN')]], [[('D', 'NNP'), (')', ')'), ('The', 'DT'), 
('Modelling', 'NNP'), ('software', 'NN'), ('which', 'WDT'), ('can', 'MD'), ('be', 'VB'), 
('used', 'VBN'), ('includes', 'VBZ'), (';', ':'), ('Matlab', 'NNP'), (',', ','), ('LabVIEW', 
'NNP'), (',', ','), ('C', 'NNP'), ('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), (',', ','), 
('or', 'CC'), ('Python', 'NNP'), ('2', 'CD'), ('with', 'IN'), ('standard', 'JJ'), ('libraries', 
'NNS'), ('.', '.')], [('This', 'DT'), ('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), ('in', 
'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), ('32bit', 'CD'), ('.', '.')]], [[('E', 'NN'), (')', ')'), 
('The', 'DT'), ('resolution', 'NN'), ('of', 'IN'), ('the', 'DT'), ('time', 'NN'), ('steps', 'NNS'), 
('across', 'IN'), ('the', 'DT'), ('models', 'NNS'), ('is', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('at', 
'IN'), ('0.001', 'CD'), ('seconds', 'NNS'), ('.', '.')], [('Model', 'NNP'), ('requires', 'VBZ'), 
('final', 'JJ'), ('velocity', 'NN'), (',', ','), ('starting', 'VBG'), ('velocity', 'NN'), (',', ','), 
('distance', 'NN'), ('and', 'CC'), ('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), 
('known', 'VBN'), ('and', 'CC'), ('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 
'NN'), (',', ','), ('time', 'NN'), ('that', 'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 
'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), 
('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), (',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), 
('displacement', 'JJ'), ('steps', 'NNS'), ('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 
'NN'), ('and', 'CC'), ('the', 'DT'), ('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 
'NNS'), ('in', 'IN'), ('a', 'DT'), ('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')]], 
[[('F', 'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), ('results', 'NNS'), ('of', 'IN'), ('the', 



PAGE 419 

'DT'), ('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('saved', 'VBN'), ('in', 
'IN'), ('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 'WDT'), ('can', 'MD'), ('be', 'VB'), 
('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 'JJ'), ('date', 'NN'), ('.', '.')], [('All', 
'DT'), ('of', 'IN'), ('the', 'DT'), ('subVIs', 'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 
'IN'), ('a', 'DT'), ('common', 'JJ'), ('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 
'NNS')]]]  



PAGE 420 

9.6.3 ANALYSIS TWO 
File inputs: 

A. Requirements_For_Case_Study_One_Squash_Ball_Moving_Around_A_Cour
t.txt 

B. Documentation_of_Energy_transfer_model.txt 

Outputs From NLP application: 

 

Figure 9.21: The percentage distribution of tags within the two compared documents from case 
study one analysis two. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 8 
 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
 number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 



PAGE 421 

 number of common_identified_prog_languages = 0 
common_identified_file_types = [] 
 number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'common_identified_modeling_tuerms': [],  
'number_of_identified_prog_languages': 0, 
'common_identified_prog_languages': [],  
'common_dev_enviroments': ['LabVIEW'], 
'number_of_common_dev_enviroments': 1, 
'number_of_identified_file_types': 0,  
'common_identified_file_types': [],  
'common_identified_project_tuerms': [], 
'number_of_common_identified_modeling_tuerms': 0, 
'number_of_common_identified_project_tuerms': 0 
} 
 
dict_of_words_in_both_docs = { 
'verb_present_tense_person_singular_list': ['is'], 
'verb_past_participle_list': [],  
'list_marker_list': [],  
'adverb_list': [],  
'noun_propper_list': [],  
'cardinal_number_list': ['7'],  
'adjective_list': [],  
'noun_propper_singular_list': ['LabVIEW'],  
'noun_proper_plural_list': [],  
'personal_pronoun_list': [],  
'preposition_subordinating_list': ['in', 'with', 'of', 'by', 'on'],  
'predeterminer_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'wh_pronoun_list': [],  
'parenthesis_list': [],  
'particle_list': [],  
'to_list': ['to'],  
'adjective_comparative_list': [],  
'possessive_pronoun_list': [],  
'verb_past_tense_list': [],  
'punctuation_list': ['.'],  
'modal_list': ['can'],  
'determiner_list': ['the', 'A', 'The', 'a'],  
'adverb_comparative_list': [],  
'foreign_word_list': [], 
'possessive_wh_pronoun_list': [], 
'existential_there_list': [], 



PAGE 422 

'verb_base_list': [], 
'adjective_superlative_list': [], 
'adverb_superlative_list': [],  
'possessive_ending_list': [],  
'interjection_list': [],  
'not_tagged_word_list': [')', ','],  
'coordinating_conjunction_list': ['and'],  
'noun_common_list': ['surface', 'space', 'date', 'file', 'ball', 'simulation'], 
'unbalenced_parenthesis_list': [],  
'wh_determiner_list': ['which'],  
'wh_adverb_list': [],  
'noun_common_plural_list': [], 
'verb_present_participle_list': [] 
} 
 
Program End 
Press any key to continue . . . 

 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('squash', 
'NN'), ('ball', 'NN'), ('in', 'IN'), ('flight', 'NN'), ('.', '.')], [('Energy', 'NNP'), ('transfer', 
'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('a', 'DT'), 
('surface', 'NN'), ('and', 'CC'), ('losing', 'VBG'), ('energy', 'NN'), ('on', 'IN'), 
('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 
'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), 
('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('squash', 'NN'), ('ball', 'NN'), ('bouncing', 
'VBG'), ('off', 'RP'), ('the', 'DT'), ('surface', 'NN'), ('of', 'IN'), ('a', 'DT'), ('wall', 'NN'), ('.', 
'.')], [('Energy', 'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 
'NN'), ('hitting', 'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 'CC'), ('losing', 'VBG'), 
('energy', 'NN'), ('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), ('.', '.')]], 
[[('3', 'LS'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 
'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), ('interacting', 
'VBG'), ('with', 'IN'), ('a', 'DT'), ('player’s', 'NN'), ('racket', 'NN'), ('.', '.')], [('Energy', 
'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), ('hitting', 
'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 'CC'), ('losing', 'VBG'), ('energy', 'NN'), 
('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', 
')'), ('The', 'DT'), ('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 
'VBN'), ('multiple', 'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('only', 'JJ'), 
('change', 'NN'), ('being', 'VBG'), ('the', 'DT'), ('compound', 'NN'), ('of', 'IN'), ('the', 
'DT'), ('ball', 'NN'), ('.', '.')], [('Energy', 'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 
'IN'), ('a', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 
'CC'), ('losing', 'VBG'), ('energy', 'NN'), ('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), 



PAGE 423 

('rebound', 'NN'), ('.', '.')]], [[('5', 'CD'), (')', ')'), ('The', 'DT'), ('flight', 'NN'), ('of', 'IN'), 
('the', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('constrained', 'VBN'), ('by', 'IN'), ('a', 'DT'), 
('regulation', 'NN'), ('sized', 'VBN'), ('squash', 'JJ'), ('court', 'NN'), ('.', '.')], [('Energy', 
'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), ('hitting', 
'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 'CC'), ('losing', 'VBG'), ('energy', 'NN'), 
('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', 
')'), ('The', 'DT'), ('overall', 'JJ'), ('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), 
('should', 'MD'), ('be', 'VB'), ('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), 
('laptop', 'NN'), ('with', 'IN'), ('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 
'IN'), ('8GB', 'CD'), ('of', 'IN'), ('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), 
('quad', 'NN'), ('core', 'NN'), ('Intel', 'NNP'), ('Core', 'NNP'), ('i', 'NN'), ('7', 'CD'), 
('processor', 'NN'), (',', ','), ('500GB', 'CD'), ('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), 
('space', 'NN'), ('.', '.')], [('The', 'DT'), ('ball', 'NN'), ('can', 'MD'), ('move', 'VB'), 
('freely', 'RB'), ('within', 'IN'), ('the', 'DT'), ('three', 'CD'), ('dimensional', 'JJ'), 
('space', 'NN')]], [[('D', 'NNP'), (')', ')'), ('The', 'DT'), ('Modelling', 'NNP'), ('software', 
'NN'), ('which', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('used', 'VBN'), ('includes', 'VBZ'), 
(';', ':'), ('Matlab', 'NNP'), (',', ','), ('LabVIEW', 'NNP'), (',', ','), ('C', 'NNP'), ('with', 'IN'), 
('standard', 'JJ'), ('libraries', 'NNS'), (',', ','), ('or', 'CC'), ('Python', 'NNP'), ('2', 'CD'), 
('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), ('.', '.')], [('This', 'DT'), ('code', 'NN'), 
('was', 'VBD'), ('developed', 'VBN'), ('in', 'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), 
('32bit', 'CD')]], [[('F', 'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), ('results', 'NNS'), 
('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), 
('saved', 'VBN'), ('in', 'IN'), ('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 'WDT'), 
('can', 'MD'), ('be', 'VB'), ('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 'JJ'), 
('date', 'NN'), ('.', '.')], [('All', 'DT'), ('of', 'IN'), ('the', 'DT'), ('subVIs', 'NN'), ('are', 'VBP'), 
('held', 'VBN'), ('within', 'IN'), ('a', 'DT'), ('common', 'JJ'), ('project', 'NN'), ('file', 
'NN'), ('NLP_test_cases', 'NNS')]]] 

  



PAGE 424 

9.6.4 ANALYSIS THREE 
File inputs: 

A. Requirements_For_Case_Study_One_Squash_Ball_Moving_Around_A_Cour
t.txt 

B. Documentation_of_Squash_Court_in_or_Out_Model.txt 

Outputs From NLP application: 

 

Figure 9.22: The percentage distribution of tags within the two compared documents from case 
study one analysis three. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 9 
 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 



PAGE 425 

number of common_identified_prog_languages = 0 
common_identified_file_types = [] 
number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'common_identified_prog_languages': [],  
'number_of_common_dev_enviroments': 1,  
'number_of_identified_file_types': 0, 
'common_identified_project_tuerms': [], 
'common_identified_modeling_tuerms': [],  
'number_of_common_identified_modeling_tuerms': 0, 
'number_of_identified_prog_languages': 0,  
'common_dev_enviroments': ['LabVIEW'],  
'number_of_common_identified_project_tuerms': 0, 
'common_identified_file_types': [] 
} 
 
dict_of_words_in_both_docs = { 
'cardinal_number_list': ['7'],  
'noun_common_list': ['court', 'date', 'space', 'squash', 'wall', 'file', 'simulation', 
'ball'], 
'list_marker_list': [],  
'unbalenced_parenthesis_list': [],  
'noun_propper_singular_list': ['LabVIEW', 'Squash'],  
'interjection_list': [],  
'parenthesis_list': [],  
'wh_adverb_list': [],  
'existential_there_list': [], 
'personal_pronoun_list': [],  
'particle_list': [],  
'preposition_subordinating_list': ['with', 'of', 'at', 'in', 'by'],  
'to_list': ['to'],  
'verb_present_tense_person_singular_list': ['is'],  
'wh_pronoun_list': [],  
'verb_present_participle_list': ['being'],  
'adverb_superlative_list': [],  
'adverb_comparative_list': [],  
'foreign_word_list': [],  
'adverb_list': [],  
'not_tagged_word_list': [')', ','],  
'punctuation_list': ['.'],  
'possessive_pronoun_list': [],  
'possessive_wh_pronoun_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'adjective_comparative_list': [],  



PAGE 426 

'determiner_list': ['the', 'The', 'A', 'a'],  
'predeterminer_list': [],  
'noun_proper_plural_list': [],  
'modal_list': ['can'],  
'noun_propper_list': [],  
'adjective_superlative_list': [],  
'verb_past_tense_list': [],  
'wh_determiner_list': ['which'],  
'verb_past_participle_list': [],  
'verb_base_list': ['be'],  
'coordinating_conjunction_list':['or', 'and'],  
'noun_common_plural_list': [],  
'possessive_ending_list': [],  
'adjective_list': ['squash'] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('squash', 
'NN'), ('ball', 'NN'), ('in', 'IN'), ('flight', 'NN'), ('.', '.')], [('The', 'DT'), ('simulation', 'NN'), 
('used', 'VBD'), ('the', 'DT'), ('(', '('), ('X', 'NNP'), (',', ','), ('Y', 'NNP'), (',', ','), ('Z', 'NNP'), 
(')', ')'), ('Cartesian', 'JJ'), ('notation', 'NN'), ('of', 'IN'), ('three', 'CD'), ('dimensional', 
'JJ'), ('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 'CD'), (')', ')'), ('is', 'VBZ'), ('taken', 'VBN'), 
('to', 'TO'), ('be', 'VB'), ('the', 'DT'), ('bottom', 'JJ'), ('left', 'JJ'), ('corner', 'NN'), ('as', 
'IN'), ('if', 'IN'), ('a', 'DT'), ('player', 'NN'), ('had', 'VBD'), ('just', 'RB'), ('walked', 'VBN'), 
('through', 'IN'), ('the', 'DT'), ('door', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), 
('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 
'NN'), ('of', 'IN'), ('a', 'DT'), ('squash', 'NN'), ('ball', 'NN'), ('bouncing', 'VBG'), ('off', 
'RP'), ('the', 'DT'), ('surface', 'NN'), ('of', 'IN'), ('a', 'DT'), ('wall', 'NN'), ('.', '.')], [('The', 
'DT'), ('simulation', 'NN'), ('used', 'VBD'), ('the', 'DT'), ('(', '('), ('X', 'NNP'), (',', ','), ('Y', 
'NNP'), (',', ','), ('Z', 'NNP'), (')', ')'), ('Cartesian', 'JJ'), ('notation', 'NN'), ('of', 'IN'), 
('three', 'CD'), ('dimensional', 'JJ'), ('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 'CD'), (')', 
')'), ('is', 'VBZ'), ('taken', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('the', 'DT'), ('bottom', 'JJ'), 
('left', 'JJ'), ('corner', 'NN'), ('as', 'IN'), ('if', 'IN'), ('a', 'DT'), ('player', 'NN'), ('had', 
'VBD'), ('just', 'RB'), ('walked', 'VBN'), ('through', 'IN'), ('the', 'DT'), ('door', 'NN'), ('.', 
'.')]], [[('3', 'LS'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), 
('interacting', 'VBG'), ('with', 'IN'), ('a', 'DT'), ('player’s', 'NN'), ('racket', 'NN'), ('.', 
'.')], [('The', 'DT'), ('simulation', 'NN'), ('used', 'VBD'), ('the', 'DT'), ('(', '('), ('X', 'NNP'), 
(',', ','), ('Y', 'NNP'), (',', ','), ('Z', 'NNP'), (')', ')'), ('Cartesian', 'JJ'), ('notation', 'NN'), 
('of', 'IN'), ('three', 'CD'), ('dimensional', 'JJ'), ('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 



PAGE 427 

'CD'), (')', ')'), ('is', 'VBZ'), ('taken', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('the', 'DT'), 
('bottom', 'JJ'), ('left', 'JJ'), ('corner', 'NN'), ('as', 'IN'), ('if', 'IN'), ('a', 'DT'), ('player', 
'NN'), ('had', 'VBD'), ('just', 'RB'), ('walked', 'VBN'), ('through', 'IN'), ('the', 'DT'), 
('door', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('needs', 
'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), ('multiple', 'JJ'), ('times', 'NNS'), ('with', 
'IN'), ('the', 'DT'), ('only', 'JJ'), ('change', 'NN'), ('being', 'VBG'), ('the', 'DT'), 
('compound', 'NN'), ('of', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('.', '.')], [('The', 'DT'), 
('simulation', 'NN'), ('used', 'VBD'), ('the', 'DT'), ('(', '('), ('X', 'NNP'), (',', ','), ('Y', 'NNP'), 
(',', ','), ('Z', 'NNP'), (')', ')'), ('Cartesian', 'JJ'), ('notation', 'NN'), ('of', 'IN'), ('three', 
'CD'), ('dimensional', 'JJ'), ('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 'CD'), (')', ')'), ('is', 
'VBZ'), ('taken', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('the', 'DT'), ('bottom', 'JJ'), ('left', 'JJ'), 
('corner', 'NN'), ('as', 'IN'), ('if', 'IN'), ('a', 'DT'), ('player', 'NN'), ('had', 'VBD'), ('just', 
'RB'), ('walked', 'VBN'), ('through', 'IN'), ('the', 'DT'), ('door', 'NN'), ('.', '.')]], [[('5', 
'CD'), (')', ')'), ('The', 'DT'), ('flight', 'NN'), ('of', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('is', 
'VBZ'), ('constrained', 'VBN'), ('by', 'IN'), ('a', 'DT'), ('regulation', 'NN'), ('sized', 
'VBN'), ('squash', 'JJ'), ('court', 'NN'), ('.', '.')], [('Any', 'DT'), ('ball', 'NN'), ('hitting', 
'VBG'), ('any', 'DT'), ('of', 'IN'), ('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), ('considered', 
'VBN'), ('“in”', 'NNS')]], [[('A', 'DT'), (')', ')'), ('The', 'DT'), ('total', 'JJ'), ('run', 'NN'), 
('time', 'NN'), ('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), ('should', 'MD'), ('take', 
'VB'), ('less', 'JJR'), ('than', 'IN'), ('five', 'CD'), ('minutes', 'NNS'), ('to', 'TO'), ('fully', 
'RB'), ('execute', 'VB'), ('.', '.')], [('The', 'DT'), ('simulation', 'NN'), ('used', 'VBD'), 
('the', 'DT'), ('(', '('), ('X', 'NNP'), (',', ','), ('Y', 'NNP'), (',', ','), ('Z', 'NNP'), (')', ')'), 
('Cartesian', 'JJ'), ('notation', 'NN'), ('of', 'IN'), ('three', 'CD'), ('dimensional', 'JJ'), 
('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 'CD'), (')', ')'), ('is', 'VBZ'), ('taken', 'VBN'), ('to', 
'TO'), ('be', 'VB'), ('the', 'DT'), ('bottom', 'JJ'), ('left', 'JJ'), ('corner', 'NN'), ('as', 'IN'), 
('if', 'IN'), ('a', 'DT'), ('player', 'NN'), ('had', 'VBD'), ('just', 'RB'), ('walked', 'VBN'), 
('through', 'IN'), ('the', 'DT'), ('door', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), 
('overall', 'JJ'), ('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), 
('be', 'VB'), ('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), 
('with', 'IN'), ('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 
'CD'), ('of', 'IN'), ('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), 
('core', 'NN'), ('Intel', 'NNP'), ('Core', 'NNP'), ('i', 'NN'), ('7', 'CD'), ('processor', 'NN'), 
(',', ','), ('500GB', 'CD'), ('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], 
[('The', 'DT'), ('simulation', 'NN'), ('used', 'VBD'), ('the', 'DT'), ('(', '('), ('X', 'NNP'), (',', 
','), ('Y', 'NNP'), (',', ','), ('Z', 'NNP'), (')', ')'), ('Cartesian', 'JJ'), ('notation', 'NN'), ('of', 
'IN'), ('three', 'CD'), ('dimensional', 'JJ'), ('space', 'NN'), ('.', '.'), ('(', '('), ('0,0,0', 'CD'), 
(')', ')'), ('is', 'VBZ'), ('taken', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('the', 'DT'), ('bottom', 'JJ'), 
('left', 'JJ'), ('corner', 'NN'), ('as', 'IN'), ('if', 'IN'), ('a', 'DT'), ('player', 'NN'), ('had', 
'VBD'), ('just', 'RB'), ('walked', 'VBN'), ('through', 'IN'), ('the', 'DT'), ('door', 'NN'), ('.', 
'.')]], [[('D', 'NNP'), (')', ')'), ('The', 'DT'), ('Modelling', 'NNP'), ('software', 'NN'), 
('which', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('used', 'VBN'), ('includes', 'VBZ'), (';', ':'), 
('Matlab', 'NNP'), (',', ','), ('LabVIEW', 'NNP'), (',', ','), ('C', 'NNP'), ('with', 'IN'), 
('standard', 'JJ'), ('libraries', 'NNS'), (',', ','), ('or', 'CC'), ('Python', 'NNP'), ('2', 'CD'), 
('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), ('.', '.')], [('This', 'DT'), ('code', 'NN'), 
('was', 'VBD'), ('developed', 'VBN'), ('in', 'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), 



PAGE 428 

('32bit', 'CD')]], [[('F', 'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), ('results', 'NNS'), 
('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), 
('saved', 'VBN'), ('in', 'IN'), ('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 'WDT'), 
('can', 'MD'), ('be', 'VB'), ('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 'JJ'), 
('date', 'NN'), ('.', '.')], [('The', 'DT'), ('simulation', 'NN'), ('used', 'VBD'), ('the', 'DT'), 
('(', '('), ('X', 'NNP'), (',', ','), ('Y', 'NNP'), (',', ','), ('Z', 'NNP'), (')', ')'), ('Cartesian', 'JJ'), 
('notation', 'NN'), ('of', 'IN'), ('three', 'CD'), ('dimensional', 'JJ'), ('space', 'NN'), ('.', 
'.'), ('(', '('), ('0,0,0', 'CD'), (')', ')'), ('is', 'VBZ'), ('taken', 'VBN'), ('to', 'TO'), ('be', 'VB'), 
('the', 'DT'), ('bottom', 'JJ'), ('left', 'JJ'), ('corner', 'NN'), ('as', 'IN'), ('if', 'IN'), ('a', 'DT'), 
('player', 'NN'), ('had', 'VBD'), ('just', 'RB'), ('walked', 'VBN'), ('through', 'IN'), ('the', 
'DT'), ('door', 'NN'), ('.', '.')]]] 

  



PAGE 429 

9.6.5 ANALYSIS FOUR 
 File inputs: 

A. Documentation_of_a_Particle_Moving_in_Free_Space.txt 

B. Documentation_of_Energy_transfer_model.txt 

Outputs From NLP application: 

 

Figure 9.23: The percentage distribution of tags within the two compared documents from case 
study one analysis four. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 17 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = ['inputs', 'inputs', 'outputs'] 
number of common_identified_modeling_tuerms = 3 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 3 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 430 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'common_identified_file_types': [], 'number_of_identified_prog_languages': 0, 
'number_of_common_identified_project_tuerms': 0, 
'number_of_common_dev_enviroments': 1,  
'common_identified_prog_languages': [], 
'common_identified_modeling_tuerms': ['inputs', 'inputs', 'outputs'],  
'common_dev_enviroments': ['LabVIEW'],  
'number_of_identified_file_types': 0,  
'common_identified_project_tuerms': [], 
'number_of_common_identified_modeling_tuerms': 3} 
 
dict_of_words_in_both_docs = { 
'adjective_superlative_list': [],  
'adverb_comparative_list': [],  
'preposition_subordinating_list': ['of', 'throughout', 'from', 'per', 'within', 'in'],  
'to_list': ['to'],  
'predeterminer_list': [],  
'verb_present_tense_person_singular_list': ['is'],  
'determiner_list': ['No', 'the', 'all', 'This', 'a', 'The', 'no', 'All'], 
'noun_propper_singular_list': ['Written', 'March', 'SI', 'LabVIEW', 'Velocity'], 
'wh_adverb_list': [], 
'existential_there_list': [],  
'interjection_list': [],  
'adjective_list': ['common', 'second'],  
'adjective_comparative_list': [],  
'list_marker_list': [],  
'noun_proper_plural_list': [],  
'adverb_superlative_list': [],  
'personal_pronoun_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'verb_base_list': [],  
'verb_present_participle_list': [],  
'possessive_ending_list': [],  
'verb_past_participle_list': ['developed', 'made', 'held'],  
'noun_common_list': ['particle', 'Structure', 'space', 'resistance', 'model', 
'Creation', 'ball', 'Documentation', 'date', 'project', 'velocity', 'file', 'subVIs', 
'code'],  
'adverb_list': ['only'],  
'unbalenced_parenthesis_list': [],  
'noun_propper_list': [],  
'foreign_word_list': [],  
'punctuation_list': ['.'],  
'wh_pronoun_list': [],  



PAGE 431 

'parenthesis_list': [':'],  
'cardinal_number_list': ['2015', '7', '32bit', '2013'],  
'wh_determiner_list': [],  
'noun_common_plural_list': ['Assumptions', 'mps', 'toolkits', 'NLP_test_cases', 
'modules', 'Outputs', 'meters', 'inputs', 'outputs', 'units', 'numbers', 'windows'],  
'possessive_wh_pronoun_list': [],  
'verb_past_tense_list': ['was'],  
'coordinating_conjunction_list': ['and'],  
'modal_list': [],  
'possessive_pronoun_list': [],  
'not_tagged_word_list': [',', ')', '('],  
'particle_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('Documentation', 'NN'), ('of', 'IN'), ('a', 'DT'), ('particle', 'NN'), ('moving', 'VBG'), 
('in', 'IN'), ('free', 'JJ'), ('space', 'NN')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), 
('particle', 'NN')]], [[('This', 'DT'), ('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), 
('in', 'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), ('32bit', 'CD'), ('.', '.')], [('This', 'DT'), 
('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), ('in', 'IN'), ('LabVIEW', 'NNP'), 
('2013', 'CD'), ('32bit', 'CD')]], [[('No', 'DT'), ('toolkits', 'NNS'), ('needed', 'VBN'), ('.', 
'.')], [('No', 'DT'), ('toolkits', 'NNS'), ('needed', 'VBD')]], [[('No', 'DT'), ('modules', 
'NNS'), ('needed', 'VBN'), ('.', '.')], [('No', 'DT'), ('modules', 'NNS'), ('needed', 
'VBD')]], [[('Model', 'NNP'), ('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', ','), 
('starting', 'VBG'), ('velocity', 'NN'), (',', ','), ('distance', 'NN'), ('and', 'CC'), 
('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 'CC'), 
('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 
'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 
'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), 
(',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), 
('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), 
('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), 
('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')], [('Returning', 'VBG'), ('velocity', 
'NN'), ('(', '('), ('mps', 'NNS'), (')', ')')]], [[('First', 'RB'), ('the', 'DT'), ('acceleration', 
'NN'), ('of', 'IN'), ('the', 'DT'), ('particle', 'NN'), ('is', 'VBZ'), ('calculated', 'VBN'), ('.', 
'.')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('particle', 'NN')]], [[('Second', 
'IN'), ('the', 'DT'), ('time', 'NN'), ('for', 'IN'), ('the', 'DT'), ('particle', 'NN'), ('to', 'TO'), 
('complete', 'VB'), ('the', 'DT'), ('distance', 'NN'), ('is', 'VBZ'), ('calculated', 'VBN'), 
('.', '.')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('particle', 'NN')]], 
[[('Assumptions', 'NNS'), ('made', 'VBN'), (':', ':')], [('Assumptions', 'NNS'), ('made', 
'VBN'), (':', ':')]], [[('Simulation', 'NN'), ('uses', 'VBZ'), ('Newtonian', 'JJ'), ('equations', 



PAGE 432 

'NNS'), ('of', 'IN'), ('motion', 'NN'), ('.', '.')], [('Simulation', 'NNP'), ('only', 'RB'), ('runs', 
'VBZ'), ('once', 'RB'), (',', ','), ('no', 'DT'), ('loops', 'NNS'), ('.', '.')]], [[('The', 'DT'), ('ball', 
'NN'), ('is', 'VBZ'), ('considered', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('a', 'DT'), ('particle', 
'NN'), ('.', '.')], [('Energy', 'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 
'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 'CC'), ('losing', 
'VBG'), ('energy', 'NN'), ('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), 
('.', '.')]], [[('All', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('known', 
'VBN'), ('values', 'NNS'), ('.', '.')], [('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 
'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('double-
precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), ('Input', 
'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.')]], [[('The', 'DT'), ('ball', 
'NN'), ('is', 'VBZ'), ('only', 'RB'), ('moving', 'VBG'), ('in', 'IN'), ('one', 'CD'), ('plane', 
'NN'), ('.', '.')], [('Energy', 'NNP'), ('transfer', 'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 
'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('a', 'DT'), ('surface', 'NN'), ('and', 'CC'), ('losing', 
'VBG'), ('energy', 'NN'), ('on', 'IN'), ('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), 
('.', '.')]], [[('SI', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('used', 'VBN'), ('throughout', 
'IN'), ('meters', 'NNS'), (',', ','), ('seconds', 'NNS'), (',', ','), ('meters', 'NNS'), ('per', 'IN'), 
('second', 'NN'), (',', ','), ('and', 'CC'), ('meters', 'NNS'), ('per', 'IN'), ('second', 'JJ'), 
('per', 'IN'), ('second', 'NN')], [('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), 
('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('double-precision', 
'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), ('Input', 'NNP'), ('units', 
'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.')]], [[('The', 'DT'), ('following', 'JJ'), ('inputs', 
'NNS'), ('are', 'VBP'), ('all', 'DT'), ('floating', 'VBG'), ('points', 'NNS')], [('The', 'DT'), 
('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 
'NNS'), ('are', 'VBP'), ('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), 
('numbers', 'NNS'), ('.', '.'), ('Input', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 
'JJ'), ('.', '.')]], [[('Starting', 'VBG'), ('Velocity', 'NNP'), ('U', 'NNP'), ('(', '('), ('mps', 
'NNS'), (')', ')')], [('Returning', 'VBG'), ('velocity', 'NN'), ('(', '('), ('mps', 'NNS'), (')', 
')')]], [[('The', 'DT'), ('following', 'JJ'), ('outputs', 'NNS'), ('are', 'VBP'), ('single', 'JJ'), 
('floating', 'VBG'), ('point', 'NN'), ('numbers', 'NNS'), ('.', '.')], [('The', 'DT'), ('data', 
'NN'), ('types', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('outputs', 'NNS'), ('are', 'VBP'), 
('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS')]], [[('All', 
'DT'), ('of', 'IN'), ('the', 'DT'), ('subVIs', 'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 
'IN'), ('a', 'DT'), ('common', 'JJ'), ('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 
'NNS')], [('All', 'DT'), ('of', 'IN'), ('the', 'DT'), ('subVIs', 'NN'), ('are', 'VBP'), ('held', 
'VBN'), ('within', 'IN'), ('a', 'DT'), ('common', 'JJ'), ('project', 'NN'), ('file', 'NN'), 
('NLP_test_cases', 'NNS')]]]  



PAGE 433 

9.6.6 ANALYSIS FIVE 
 File inputs: 

A. Documentation_of_a_Particle_Moving_in_Free_Space.txt 

B. Documentation_of_Squash_Court_in_or_Out_Model.txt 

Outputs From NLP application: 

 

Figure 9.24: The percentage distribution of tags within the two compared documents from case 
study one analysis five. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 18 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = ['inputs', 'inputs', 'outputs'] 
number of common_identified_modeling_tuerms = 3 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 3 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 434 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'number_of_common_dev_enviroments': 1,  
'common_identified_project_tuerms': [],  
'common_identified_prog_languages': [],  
'number_of_identified_prog_languages': 0,  
'common_dev_enviroments': ['LabVIEW'],  
'common_identified_file_types': [],  
'number_of_identified_file_types': 0,  
'number_of_common_identified_project_tuerms': 0, 
'common_identified_modeling_tuerms': ['inputs', 'inputs', 'outputs'], 
'number_of_common_identified_modeling_tuerms': 3 
} 
 
dict_of_words_in_both_docs = { 
'possessive_ending_list': [],  
'foreign_word_list': [],  
'wh_pronoun_list': [],  
'verb_past_tense_list': ['was'],  
'interjection_list': [],  
'particle_list': [],  
'parenthesis_list': [':'],  
'wh_adverb_list': [],  
'existential_there_list': [],  
'determiner_list': ['No', 'no', 'The', 'a', 'the', 'This', 'all', 'All'], 
'preposition_subordinating_list': ['for', 'in', 'of', 'from', 'throughout', 'within'], 
'noun_proper_plural_list': [],  
'noun_common_list': ['code', 'model', 'Creation', 'ball', 'space', 'project', 'file', 
'subVIs', 'particle', 'Structure', 'point', 'Documentation', 'date'],  
'wh_determiner_list': [], 
'modal_list': [],  
'adjective_list': ['common'],  
'adjective_comparative_list': [],  
'verb_base_list': ['be'],  
'adverb_superlative_list': [],  
'possessive_wh_pronoun_list': [],  
'punctuation_list': ['.'],  
'adjective_superlative_list': [],  
'unbalenced_parenthesis_list': [],  
'adverb_list': ['only'],  
'adverb_comparative_list': [],  
'noun_common_plural_list': ['NLP_test_cases', 'Assumptions', 'modules', 'to 
olkits', 'windows', 'units', 'numbers', 'meters', 'outputs', 'inputs', 'Outputs', 'Inputs'], 
'not_tagged_word_list': [',', '(', ')'],  



PAGE 435 

'to_list': ['to'],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'cardinal_number_list': ['2015', '32bit', '2013', '7'],  
'predeterminer_list': [],  
'possessive_pronoun_list': [],  
'verb_present_tense_person_singular_list': ['is'], 
'personal_pronoun_list': [], 
 list_marker_list': [], 
'coordinating_conjunction_list': ['and'], 
'noun_propper_list': [], 
'verb_past_participle_list': ['developed', 'held', 'considered', 'made'], 
'noun_propper_singular_list': ['Boolean', 'Written', 'LabVIEW', 'March'], 
'verb_present_participle_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('Documentation', 'NN'), ('of', 'IN'), ('a', 'DT'), ('particle', 'NN'), ('moving', 'VBG'), 
('in', 'IN'), ('free', 'JJ'), ('space', 'NN')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), 
('particle', 'NN')]], [[('This', 'DT'), ('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), 
('in', 'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), ('32bit', 'CD'), ('.', '.')], [('This', 'DT'), 
('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), ('in', 'IN'), ('LabVIEW', 'NNP'), 
('2013', 'CD'), ('32bit', 'CD')]], [[('No', 'DT'), ('toolkits', 'NNS'), ('needed', 'VBN'), ('.', 
'.')], [('No', 'DT'), ('toolkits', 'NNS'), ('needed', 'VBD')]], [[('No', 'DT'), ('modules', 
'NNS'), ('needed', 'VBN'), ('.', '.')], [('No', 'DT'), ('modules', 'NNS'), ('needed', 
'VBD')]], [[('Model', 'NNP'), ('requires', 'VBZ'), ('final', 'JJ'), ('velocity', 'NN'), (',', ','), 
('starting', 'VBG'), ('velocity', 'NN'), (',', ','), ('distance', 'NN'), ('and', 'CC'), 
('sample', 'NN'), ('rate', 'NN'), ('to', 'TO'), ('be', 'VB'), ('known', 'VBN'), ('and', 'CC'), 
('it', 'PRP'), ('calculates', 'VBZ'), ('acceleration', 'NN'), (',', ','), ('time', 'NN'), ('that', 
'IN'), ('it', 'PRP'), ('takes', 'VBZ'), ('for', 'IN'), ('the', 'DT'), ('ball', 'NN'), ('to', 'TO'), ('get', 
'VB'), ('from', 'IN'), ('one', 'CD'), ('end', 'NN'), ('to', 'TO'), ('the', 'DT'), ('other', 'JJ'), 
(',', ','), ('time', 'NN'), ('sample', 'NN'), (',', ','), ('displacement', 'JJ'), ('steps', 'NNS'), 
('in', 'IN'), ('the', 'DT'), ('time', 'NN'), ('sample', 'NN'), ('and', 'CC'), ('the', 'DT'), 
('distance', 'NN'), ('that', 'IN'), ('ball', 'NN'), ('travels', 'NNS'), ('in', 'IN'), ('a', 'DT'), 
('single', 'JJ'), ('time', 'NN'), ('sample', 'NN'), ('.', '.')], [('Any', 'DT'), ('ball', 'NN'), 
('hitting', 'VBG'), ('any', 'DT'), ('of', 'IN'), ('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), 
('considered', 'VBN'), ('“in”', 'NNS')]], [[('First', 'RB'), ('the', 'DT'), ('acceleration', 
'NN'), ('of', 'IN'), ('the', 'DT'), ('particle', 'NN'), ('is', 'VBZ'), ('calculated', 'VBN'), ('.', 
'.')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('particle', 'NN')]], [[('Second', 
'IN'), ('the', 'DT'), ('time', 'NN'), ('for', 'IN'), ('the', 'DT'), ('particle', 'NN'), ('to', 'TO'), 
('complete', 'VB'), ('the', 'DT'), ('distance', 'NN'), ('is', 'VBZ'), ('calculated', 'VBN'), 
('.', '.')], [('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('particle', 'NN')]], 



PAGE 436 

[[('Assumptions', 'NNS'), ('made', 'VBN'), (':', ':')], [('Assumptions', 'NNS'), ('made', 
'VBN'), (':', ':')]], [[('Simulation', 'NN'), ('uses', 'VBZ'), ('Newtonian', 'JJ'), ('equations', 
'NNS'), ('of', 'IN'), ('motion', 'NN'), ('.', '.')], [('Simulation', 'NNP'), ('only', 'RB'), ('runs', 
'VBZ'), ('once', 'RB'), (',', ','), ('no', 'DT'), ('loops', 'NNS'), ('.', '.')]], [[('The', 'DT'), ('ball', 
'NN'), ('is', 'VBZ'), ('considered', 'VBN'), ('to', 'TO'), ('be', 'VB'), ('a', 'DT'), ('particle', 
'NN'), ('.', '.')], [('Any', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('any', 'DT'), ('of', 'IN'), 
('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), ('considered', 'VBN'), ('“in”', 'NNS')]], [[('All', 
'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('known', 'VBN'), ('values', 
'NNS'), ('.', '.')], [('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 
'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('double-precision', 'JJ'), (',', ','), 
('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), ('Input', 'NNP'), ('units', 'NNS'), 
('are', 'VBP'), ('metric', 'JJ'), ('.', '.'), ('Inputs', 'NNS'), ('can', 'MD'), ('be', 'VB'), ('in', 
'IN'), ('meters', 'NNS'), ('or', 'CC'), ('centimetres', 'NNS'), ('as', 'RB'), ('long', 'RB'), 
('as', 'IN'), ('they', 'PRP'), ('are', 'VBP'), ('consistent', 'JJ'), ('throughout', 'IN'), ('.', 
'.')]], [[('The', 'DT'), ('ball', 'NN'), ('is', 'VBZ'), ('only', 'RB'), ('moving', 'VBG'), ('in', 'IN'), 
('one', 'CD'), ('plane', 'NN'), ('.', '.')], [('Any', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), 
('any', 'DT'), ('of', 'IN'), ('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), ('considered', 'VBN'), 
('“in”', 'NNS')]], [[('SI', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('used', 'VBN'), 
('throughout', 'IN'), ('meters', 'NNS'), (',', ','), ('seconds', 'NNS'), (',', ','), ('meters', 
'NNS'), ('per', 'IN'), ('second', 'NN'), (',', ','), ('and', 'CC'), ('meters', 'NNS'), ('per', 
'IN'), ('second', 'JJ'), ('per', 'IN'), ('second', 'NN')], [('The', 'DT'), ('data', 'NN'), 
('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 
'VBP'), ('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', 
'.'), ('Input', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.'), ('Inputs', 
'NNS'), ('can', 'MD'), ('be', 'VB'), ('in', 'IN'), ('meters', 'NNS'), ('or', 'CC'), 
('centimetres', 'NNS'), ('as', 'RB'), ('long', 'RB'), ('as', 'IN'), ('they', 'PRP'), ('are', 'VBP'), 
('consistent', 'JJ'), ('throughout', 'IN'), ('.', '.')]], [[('The', 'DT'), ('following', 'JJ'), 
('inputs', 'NNS'), ('are', 'VBP'), ('all', 'DT'), ('floating', 'VBG'), ('points', 'NNS')], [('The', 
'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), 
('inputs', 'NNS'), ('are', 'VBP'), ('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), 
('numbers', 'NNS'), ('.', '.'), ('Input', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 
'JJ'), ('.', '.'), ('Inputs', 'NNS'), ('can', 'MD'), ('be', 'VB'), ('in', 'IN'), ('meters', 'NNS'), 
('or', 'CC'), ('centimetres', 'NNS'), ('as', 'RB'), ('long', 'RB'), ('as', 'IN'), ('they', 'PRP'), 
('are', 'VBP'), ('consistent', 'JJ'), ('throughout', 'IN'), ('.', '.')]], [[('The', 'DT'), ('stop', 
'NN'), ('loop', 'NN'), ('input', 'NN'), ('is', 'VBZ'), ('type', 'JJ'), ('Boolean', 'NNP')], 
[('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('outputs', 'NNS'), 
('are', 'VBP'), ('both', 'DT'), ('Boolean', 'NNP'), ('and', 'CC'), ('double-precision', 
'NN'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS')]], [[('The', 'DT'), ('following', 
'JJ'), ('outputs', 'NNS'), ('are', 'VBP'), ('single', 'JJ'), ('floating', 'VBG'), ('point', 'NN'), 
('numbers', 'NNS'), ('.', '.')], [('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), 
('the', 'DT'), ('outputs', 'NNS'), ('are', 'VBP'), ('both', 'DT'), ('Boolean', 'NNP'), ('and', 
'CC'), ('double-precision', 'NN'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS')]], 
[[('The', 'DT'), ('displacement', 'JJ'), ('step', 'NN'), ('St', 'NNP'), ('(', '('), ('meters', 
'NNS'), (')', ')'), ('is', 'VBZ'), ('an', 'DT'), ('Array', 'NN')], [('The', 'DT'), ('data', 'NN'), 
('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 



PAGE 437 

'VBP'), ('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', 
'.'), ('Input', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.'), ('Inputs', 
'NNS'), ('can', 'MD'), ('be', 'VB'), ('in', 'IN'), ('meters', 'NNS'), ('or', 'CC'), 
('centimetres', 'NNS'), ('as', 'RB'), ('long', 'RB'), ('as', 'IN'), ('they', 'PRP'), ('are', 'VBP'), 
('consistent', 'JJ'), ('throughout', 'IN'), ('.', '.')]], [[('All', 'DT'), ('of', 'IN'), ('the', 'DT'), 
('subVIs', 'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 'IN'), ('a', 'DT'), ('common', 
'JJ'), ('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 'NNS')], [('All', 'DT'), ('of', 'IN'), 
('the', 'DT'), ('subVIs', 'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 'IN'), ('a', 'DT'), 
('common', 'JJ'), ('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 'NNS')]]] 

  



PAGE 438 

9.6.7 ANALYSIS SIX 
 File inputs: 

A. Documentation_of_Energy_transfer_model.txt 

B. Documentation_of_Squash_Court_in_or_Out_Model.txt 

Outputs From NLP application: 

 

Figure 9.25: The percentage distribution of tags within the two compared documents from case 
study one analysis six. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 15 
common_dev_enviroments = ['LabVIEW'] 
number of words = 1 
common_identified_modeling_tuerms = ['inputs', 'outputs'] 
number of common_identified_modeling_tuerms = 2 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 2 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 439 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'number_of_identified_prog_languages': 0,  
'common_identified_file_types': [],  
'common_identified_project_tuerms': [],  
'common_identified_prog_languages': [],  
'number_of_identified_file_types': 0,  
'common_identified_modeling_tuerms': ['inputs', 'outputs'], 
'number_of_common_identified_modeling_tuerms': 2, 
'number_of_common_dev_enviroments': 1,  
'common_dev_enviroments': ['LabVIEW'], 
'number_of_common_identified_project_tuerms': 0 
} 
 
dict_of_words_in_both_docs = { 
'adjective_comparative_list': [],  
'adjective_superlative_list': [],  
'adverb_comparative_list': [],  
'possessive_ending_list': [],  
'modal_list': ['can'], 
'to_list': ['to'],  
'parenthesis_list': [':'],  
'verb_past_tense_list': ['needed', 'was'],  
'list_marker_list': [],  
'possessive_pronoun_list': [],  
'wh_pronoun_list': [],  
'adjective_list': ['metric', 'common', 'dimensional', 'smooth', 'floating-point', 
'double-precision', 'main'], 
'foreign_word_list': [],  
'possessive_wh_pronoun_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'verb_base_list': ['move'],  
'noun_propper_singular_list': ['Written','VI', 'Input', 'March', 'LabVIEW', 'VIs', 
'Simulation'],  
'noun_common_list': ['ball', 'simulation', 'project', 'particle', 'file', 'model', 'data', 
'space', 'subVIs', 'list', 'Structure', 'code', 'Creation', 'sub', 'date', 
'Documentation'], 
'particle_list': [], 
'noun_common_plural_list': ['outputs', 'protrusions', 'numbers', 'meters', 'surfaces', 
'Assumptions', 'units', 'inputs', 'loops', 'toolkits', 'windows', 'NLP_test_cases', 
'modules', 'Outputs', 'types'],  
'punctuation_list': ['.'],  
'existential_there_list': [],  
'adverb_list': ['only', 'completely','once', 'freely'],  



PAGE 440 

'personal_pronoun_list': [],  
'preposition_subordinating_list': ['from', 'with', 'by', 'within', 'of', 'throughout', 'as', 
'in'], 
'interjection_list': [],  
'unbalenced_parenthesis_list': [],  
'verb_present_participle_list':['hitting', 'following'],  
'verb_past_participle_list': ['called', 'developed', 'held', 'made'], 
'coordinating_conjunction_list': ['and'],  
'verb_present_tense_person_singular_list': ['has', 'runs', 'is'],  
'noun_proper_plural_list': [],  
'wh_determiner_list': ['which'],  
'determiner_list': ['the', 'All', 'This', 'all', 'no', 'No', 'a', 'The', 'A'],  
'predeterminer_list': [],  
'cardinal_number_list': ['7', '32bit', 'three', '2015', '2013'],  
'adverb_superlative_list': [],  
'wh_adverb_list': [],  
'noun_propper_list': [],  
'not_tagged_word_list': ['(', ')', ','] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('This', 'DT'), ('code', 'NN'), ('was', 'VBD'), ('developed', 'VBN'), ('in', 'IN'), 
('LabVIEW', 'NNP'), ('2013', 'CD'), ('32bit', 'CD')], [('This', 'DT'), ('code', 'NN'), ('was', 
'VBD'), ('developed', 'VBN'), ('in', 'IN'), ('LabVIEW', 'NNP'), ('2013', 'CD'), ('32bit', 
'CD')]], [[('No', 'DT'), ('toolkits', 'NNS'), ('needed', 'VBD')], [('No', 'DT'), ('toolkits', 
'NNS'), ('needed', 'VBD')]], [[('No', 'DT'), ('modules', 'NNS'), ('needed', 'VBD')], 
[('No', 'DT'), ('modules', 'NNS'), ('needed', 'VBD')]], [[('Energy', 'NNP'), ('transfer', 
'NN'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), ('a', 'DT'), 
('surface', 'NN'), ('and', 'CC'), ('losing', 'VBG'), ('energy', 'NN'), ('on', 'IN'), 
('impact', 'NN'), ('and', 'CC'), ('rebound', 'NN'), ('.', '.')], [('Outputs', 'NNS'), ('to', 
'TO'), ('the', 'DT'), ('model', 'NN'), ('are', 'VBP'), (':', ':')]], [[('Simulation', 'NNP'), 
('only', 'RB'), ('runs', 'VBZ'), ('once', 'RB'), (',', ','), ('no', 'DT'), ('loops', 'NNS'), ('.', '.')], 
[('Simulation', 'NNP'), ('only', 'RB'), ('runs', 'VBZ'), ('once', 'RB'), (',', ','), ('no', 'DT'), 
('loops', 'NNS'), ('.', '.')]], [[('Assumptions', 'NNS'), ('made', 'VBN'), (':', ':')], 
[('Assumptions', 'NNS'), ('made', 'VBN'), (':', ':')]], [[('The', 'DT'), ('surfaces', 'NNS'), 
('are', 'VBP'), ('completely', 'RB'), ('smooth', 'JJ'), ('with', 'IN'), ('no', 'DT'), 
('protrusions', 'NNS')], [('The', 'DT'), ('surfaces', 'NNS'), ('are', 'VBP'), ('completely', 
'RB'), ('smooth', 'JJ'), ('with', 'IN'), ('no', 'DT'), ('protrusions', 'NNS')]], [[('The', 'DT'), 
('ball', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('particle', 'NN')], [('Any', 'DT'), ('ball', 'NN'), 
('hitting', 'VBG'), ('any', 'DT'), ('of', 'IN'), ('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), 
('considered', 'VBN'), ('“in”', 'NNS')]], [[('The', 'DT'), ('ball', 'NN'), ('can', 'MD'), 



PAGE 441 

('move', 'VB'), ('freely', 'RB'), ('within', 'IN'), ('the', 'DT'), ('three', 'CD'), 
('dimensional', 'JJ'), ('space', 'NN')], [('Any', 'DT'), ('ball', 'NN'), ('hitting', 'VBG'), 
('any', 'DT'), ('of', 'IN'), ('the', 'DT'), ('lines', 'NNS'), ('is', 'VBZ'), ('considered', 'VBN'), 
('“in”', 'NNS')]], [[('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), ('all', 'DT'), 
('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('double-precision', 'JJ'), (',', ','), 
('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), ('Input', 'NNP'), ('units', 'NNS'), 
('are', 'VBP'), ('metric', 'JJ'), ('.', '.')], [('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 
'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), ('double-
precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), ('Input', 
'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.'), ('Inputs', 'NNS'), ('can', 
'MD'), ('be', 'VB'), ('in', 'IN'), ('meters', 'NNS'), ('or', 'CC'), ('centimetres', 'NNS'), ('as', 
'RB'), ('long', 'RB'), ('as', 'IN'), ('they', 'PRP'), ('are', 'VBP'), ('consistent', 'JJ'), 
('throughout', 'IN'), ('.', '.')]], [[('The', 'DT'), ('data', 'NN'), ('types', 'NNS'), ('of', 'IN'), 
('the', 'DT'), ('outputs', 'NNS'), ('are', 'VBP'), ('double-precision', 'JJ'), (',', ','), 
('floating-point', 'JJ'), ('numbers', 'NNS')], [('The', 'DT'), ('data', 'NN'), ('types', 
'NNS'), ('of', 'IN'), ('all', 'DT'), ('of', 'IN'), ('the', 'DT'), ('inputs', 'NNS'), ('are', 'VBP'), 
('double-precision', 'JJ'), (',', ','), ('floating-point', 'JJ'), ('numbers', 'NNS'), ('.', '.'), 
('Input', 'NNP'), ('units', 'NNS'), ('are', 'VBP'), ('metric', 'JJ'), ('.', '.'), ('Inputs', 'NNS'), 
('can', 'MD'), ('be', 'VB'), ('in', 'IN'), ('meters', 'NNS'), ('or', 'CC'), ('centimetres', 
'NNS'), ('as', 'RB'), ('long', 'RB'), ('as', 'IN'), ('they', 'PRP'), ('are', 'VBP'), ('consistent', 
'JJ'), ('throughout', 'IN'), ('.', '.')]], [[('Outputs', 'NNS'), ('to', 'TO'), ('the', 'DT'), 
('model', 'NN'), ('are', 'VBP'), (':', ':')], [('Outputs', 'NNS'), ('to', 'TO'), ('the', 'DT'), 
('model', 'NN'), ('are', 'VBP'), (':', ':')]], [[('All', 'DT'), ('of', 'IN'), ('the', 'DT'), ('subVIs', 
'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 'IN'), ('a', 'DT'), ('common', 'JJ'), 
('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 'NNS')], [('All', 'DT'), ('of', 'IN'), ('the', 
'DT'), ('subVIs', 'NN'), ('are', 'VBP'), ('held', 'VBN'), ('within', 'IN'), ('a', 'DT'), 
('common', 'JJ'), ('project', 'NN'), ('file', 'NN'), ('NLP_test_cases', 'NNS')]], [[('The', 
'DT'), ('model', 'NN'), ('has', 'VBZ'), ('3', 'CD'), ('sub', 'NN'), ('VIs', 'NNP'), ('which', 
'WDT'), ('are', 'VBP'), ('called', 'VBN'), ('within', 'IN'), ('the', 'DT'), ('main', 'JJ'), ('VI', 
'NNP'), ('.', '.')], [('Outputs', 'NNS'), ('to', 'TO'), ('the', 'DT'), ('model', 'NN'), ('are', 
'VBP'), (':', ':')]], [[('The', 'DT'), ('following', 'VBG'), ('3', 'CD'), ('sub', 'JJ'), ('VIs', 'NNP'), 
('use', 'NN'), ('linear', 'JJ'), ('mathematics', 'NNS'), ('.', '.')], [('The', 'DT'), ('model', 
'NN'), ('has', 'VBZ'), ('15', 'CD'), ('sub', 'NN'), ('VIs', 'NNP'), ('which', 'WDT'), ('are', 
'VBP'), ('called', 'VBN'), ('within', 'IN'), ('the', 'DT'), ('main', 'JJ'), ('VI', 'NNP'), ('.', '.')]]]  



PAGE 442 

9.7 DOCUMENTS USED FOR CASE STUDY ONE  
The text documents that were used for testing as part of case study one are 
detailed in this section. The documents were read into the application as .txt files. 

   



PAGE 443 

9.7.1 REQUIREMENTS FOR CASE STUDY ONE SQUASH BALL MOVING AROUND 
A COURT 

 

1) The simulation is to capture the behaviour of a squash ball in flight. 

2) The simulation is to capture the behaviour of a squash ball bouncing off 
the surface of a wall. 

3) The simulation is to capture the behaviour of a ball interacting with a 
player’s racket. 

4) The simulation needs to be run multiple times with the only change 
being the compound of the ball. 

5) The flight of the ball is constrained by a regulation sized squash court. 

A) The total run time of the simulation should take less than five minutes to 
fully execute. 

B) The overall simulation and analysis should be possible on a mid-range 
laptop with the maximum capability of 8GB of Ram, 2.5 GHz quad core 
Intel Core i7 processor, 500GB of hard drive space.  

C) No specific computational hardware or peripherals are to be used. 

D) The Modelling software which can be used includes; Matlab, LabVIEW, 
C with standard libraries, or Python 2 with standard libraries.  

E) The resolution of the time steps across the models is to be at 0.001 
seconds. 

F) The output results of the simulation are to be saved in a file format that 
can be interrogated at a later date. 

  



PAGE 444 

9.7.2 DOCUMENTATION OF A PARTICLE MOVING IN FREE SPACE 
 

This code was developed in LabVIEW 2013 32bit. 

No toolkits needed. 

No modules needed. 

Written in windows 7 

Creation date March 2015 

 

Model requires final velocity, starting velocity, distance and sample rate to 
be known and it calculates acceleration, time that it takes for the ball to 
get from one end to the other, time sample, displacement steps in the 
time sample and the distance that ball travels in a single time sample. 

First the acceleration of the particle is calculated. 

Second the time for the particle to complete the distance is calculated. 

Third the time sample step is calculated. 

Forth the displacement steps in meters. 

 

Assumptions made: 

Simulation uses Newtonian equations of motion. 

The ball is considered to be a particle. 

All of the inputs are known values. 

There is no wind resistance. 

The ball is only moving in one plane. 

No obstacles in the path of movement. 

SI units are used throughout meters, seconds, meters per second, and 
meters per second per second 

 

Inputs  

The following inputs are all floating points 

Starting Velocity U (mps)  



PAGE 445 

Distance (S) (m) 

Final Velocity (V) (mps) 

Sample Rate (NB samples officer Time) 

 

The stop loop input is type Boolean  

Stop Loop  

 

Outputs 

The following outputs are single floating point numbers. 

Loop counts 

Time (T) (Seconds) 

Acceleration (A) (meters per second per second) 

Time Sample (Ts) (seconds) 

Displacement step St (meters) 

The displacement step St (meters) is an Array  

 

Structure of the model 

All of the subVIs are held within a common project file NLP_test_cases 

 

UTA_to_find_S_of_a_particle 

UVA_to_find_T_of_a_particle 

UVST_to_find_A_of_a_particle 

Set_Ts_from_T 

 

   

  



PAGE 446 

9.7.3 DOCUMENTATION OF ENERGY TRANSFER MODEL 
 

This code was developed in LabVIEW 2013 32bit 

No toolkits needed 

No modules needed 

Written in windows 7 

Creation date March 2015 

 

Energy transfer model of a ball hitting a surface and losing energy on 
impact and rebound. 

All of the units throughout the simulation use SI units throughout.  

 

Simulation only runs once, no loops. 

 

Assumptions made: 

The energy loss from the impact is specified by the user as a percentage 

No loss of energy from air resistance  

The surfaces are completely smooth with no protrusions 

The ball is a particle 

The ball can move freely within the three dimensional space 

 

The data types of all of the inputs are double-precision, floating-point 
numbers. Input units are metric.  

A list of all inputs: 

Mass (Kg) 

Velocity (meters per second mps) 

Energy transfer efficiency (%) 

 

The data types of the outputs are double-precision, floating-point numbers 



PAGE 447 

Outputs to the model are: 

Remaining energy 

Kinetic energy (Jules) 

Energy lost (Jules) 

Returning velocity (mps) 

 

Structure of the model 

All of the subVIs are held within a common project file NLP_test_cases 

The model has 3 sub VIs which are called within the main VI. 

The following 3 sub VIs use linear mathematics. 

Calculating_Velocity_from_Ke.vi 

Energy_transfer_losses_model.vi 

Kenetic_energy.vi 

 

 
  



PAGE 448 

9.7.4 DOCUMENTATION OF SQUASH COURT IN OR OUT MODEL 
 

This code was developed in LabVIEW 2013 32bit 

No toolkits needed 

No modules needed 

Written in windows 7 

Creation date March 2015 

 

Physical body being modelled is based of the specifications laid out in the 
document World Squash Federation (WSF) Recommended Standards 
Approved by the WSF January 2013. 

All physical dimensions of the squash are taken from WSF document.  

 

The simulation used the (X,Y,Z) Cartesian notation of three dimensional 
space. (0,0,0) is taken to be the bottom left corner as if a player had just 
walked through the door. 

All calculations are done using numerical representation, double-precision, 
floating-point number 

 

Simulation only runs once, no loops.  

 

Assumptions made: 

Any ball hitting any of the lines is considered “in” 

The dimensions of the ball are not considered 

The ball is a particle 

The Tin does not stand out of the wall 

The ball can move freely within the three dimensional space 

The surfaces are completely smooth with no protrusions 

The players are not considered   

 



PAGE 449 

The data types of all of the inputs are double-precision, floating-point 
numbers. Input units are metric. Inputs can be in meters or centimetres as 
long as they are consistent throughout.  

A list of all inputs: 

Total Length  

Total With  

Total Height 

Height of Tin 

Front Wall Bottom of Service Line 

Front wall top of Service Line 

Length to short line  

With of service box 

With of back Quarter 

Depth of service box 

Height of back wall line  

X Coordinate 

Y Coordinate 

Z Coordinate  

 

The data types of the outputs are both Boolean and double-precision, 
floating-point numbers 

Outputs to the model are: 

Boolean outputs: 

Front Half 

Left Service box 

Right Service box 

Left Quarter  

Right Quarter 

Back half  



PAGE 450 

Top wall 

Front wall 

Bottom wall 

Tin 

Out Bounds side wall left 

In bounds side wall left 

Out bounds side wall right  

In bounds side wall right 

Out bound height  

In bound height 

Back wall out bound 

Back wall in bound  

Double-precision, floating-point numbers Outputs: 

Height of line at point x 

 

Structure of the model 

All of the subVIs are held within a common project file NLP_test_cases 

The model has 15 sub VIs which are called within the main VI. 

The following 14 use comparative logic.  

Above_top_survice_line   

Below_Tin_Line 

Compair_Above_or_below_Bound_Line 

Compair_Above_or_below_Bound_Line_Left_Wall 

Compair_Above_or_below_Bound_Line_Right_Wall 

Compair_Ball_Above_or_Below_Back_Wall_Line 

Compair_Ball_After_Short_Line_Left_Quarter 

Compair_Ball_After_Short_Line_Left_Quarter_Survice_box 



PAGE 451 

Compair_Ball_After_Short_Line_Right_Quarter 

Compair_Ball_After_Short_Line_Right_Quarter_Survice_box 

Compair_Ball_befrore_Short_Line 

Compair_Between_Survice_Lines_of_Front_wall 

Compair_Between_Survice_Lines_of_Front_wall_back half 

Compair_Between_Tin_and_Survice_Line_Front_wall 

 

The VI below used the y=mx+c formula for calculating the gradient of the 
line a the side of the court. 

Gradent_of_the_side_wall_line 

 

  



PAGE 452 

9.8  CASE STUDY TWO AUTOMOTIVE CASE STUDY 
The first analysis is the comparison between the potential model documentation 
and the simulation requirements. There are six potential simulation components 
that were identified therefore there are six sets of data. Unlike the first case study 
there is not a reference point to compare the output of the application to assess 
the validity of the output. 

  



PAGE 453 

9.8.1 ANALYSIS ONE 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Modeling_an_Anti_Lock_Braking_System_Matlab_Documentation.txt 

Outputs From NLP application: 

 

Figure 9.26: The percentage distribution of tags within the two compared documents from case 
study two analysis one. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 12 
common_dev_enviroments = ['Matlab'] 
 number of words = 1 
common_identified_modeling_tuerms = [] 
 number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
 number of common_identified_project_tuerms = 0 
common_identified_prog_languages = ['C', 'C'] 
 number of common_identified_prog_languages = 2 
common_identified_file_types = ['C', 'C'] 



PAGE 454 

 number of common_identified_file_types = 2 
 
Identified_common_company_words = { 
'common_identified_prog_languages': ['C', 'C'],  
'common_dev_enviroments': ['Matlab'],  
'common_identified_file_types': ['C', 'C'],  
'common_identified_project_tuerms': [],  
'number_of_common_identified_project_tuerms': 0, 
'common_identified_modeling_tuerms': [],  
'number_of_identified_prog_languages': 2,  
'number_of_identified_file_types': 2,  
'number_of_common_dev_enviroments': 1, 
'number_of_common_identified_modeling_tuerms': 0 
} 
 
dict_of_words_in_both_docs = { 
'verb_present_participle_list': [], 
'adverb_comparative_list': [],  
'noun_proper_plural_list': [],  
'possessive_wh_pronoun_list': [],  
'adverb_list': [],  
'interjection_list': [],  
'not_tagged_word_list': [',', ')'],  
'personal_pronoun_list': [],  
'noun_common_plural_list': ['speeds', 'times', 'results'], 
'preposition_subordinating_list': ['on', 'from', 'than', 'of', 'If', 'in', 'at', 'for', 'with'], 
'possessive_pronoun_list': [],  
'adjective_superlative_list': [],  
'particle_list': [], 
'determiner_list': ['a', 'The', 'A', 'the'], 
'existential_there_list': [],  
'verb_base_list': ['be'],  
'modal_list': ['can', 'may'],  
'list_marker_list': [],  
'coordinating_conjunction_list': ['and', 'or'],  
'verb_present_tense_person_singular_list': ['has', 'is'],  
'verb_past_tense_list': [],  
'possessive_ending_list': [],  
'unbalenced_parenthesis_list': [],  
'verb_past_participle_list': ['used'],  
'noun_propper_singular_list': ['C', 'Braking', 'System', 'Matlab', 'ABS'], 
'foreign_word_list': [],  
'punctuation_list': ['.'],  
'to_list': ['to'], 
'adverb_superlative_list': [], 



PAGE 455 

'parenthesis_list': [';'], 
'verb_present_tense_not_3rd_person_list': ['are'], 
'noun_propper_list': [], 
'cardinal_number_list': ['4', '5', '1', '2'], 
'predeterminer_list': [], 
'wh_adverb_list': [], 
'noun_common_list': ['component', 'simulation', 'hardware', 'model', 'system', 
'vehicle', 'speed', 'time'],  
'wh_determiner_list': ['that', 'which'],  
'wh_pronoun_list': [],  
'adjective_comparative_list': ['less'],  
'adjective_list': ['specific', 'single', 'hard', 'maximum'] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('which', 'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('It', 'PRP'), ('is', 'VBZ'), 
('used', 'VBN'), ('in', 'IN'), ('this', 'DT'), ('example', 'NN'), ('to', 'TO'), ('illustrate', 'VB'), 
('the', 'DT'), ('conceptual', 'JJ'), ('construction', 'NN'), ('of', 'IN'), ('such', 'PDT'), ('a', 
'DT'), ('simulation', 'NN'), ('model', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), 
('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 
'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('with', 'IN'), ('a', 'DT'), ('sinusoidal', 
'JJ'), ('steering', 'NN'), ('input', 'NN'), ('.', '.')], [('It', 'PRP'), ('is', 'VBZ'), ('used', 'VBN'), 
('in', 'IN'), ('this', 'DT'), ('example', 'NN'), ('to', 'TO'), ('illustrate', 'VB'), ('the', 'DT'), 
('conceptual', 'JJ'), ('construction', 'NN'), ('of', 'IN'), ('such', 'PDT'), ('a', 'DT'), 
('simulation', 'NN'), ('model', 'NN'), ('.', '.')]], [[('3', 'LS'), (')', ')'), ('The', 'DT'), 
('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), ('multiple', 
'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('speed', 'NN'), ('of', 'IN'), ('the', 'DT'), 
('vehicle', 'NN'), ('changing', 'VBG'), ('across', 'IN'), ('operational', 'JJ'), ('speeds', 
'NNS'), ('from', 'IN'), ('10KH-1', 'JJ'), ('to', 'TO'), ('115KH-1', 'JJ')], [('It', 'PRP'), ('is', 
'VBZ'), ('used', 'VBN'), ('in', 'IN'), ('this', 'DT'), ('example', 'NN'), ('to', 'TO'), ('illustrate', 
'VB'), ('the', 'DT'), ('conceptual', 'JJ'), ('construction', 'NN'), ('of', 'IN'), ('such', 
'PDT'), ('a', 'DT'), ('simulation', 'NN'), ('model', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), 
('The', 'DT'), ('model', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 'NNS'), 
(';', ':'), ('Driver', 'NNP'), ('input', 'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), (',', ','), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('This', 'DT'), ('example', 
'NN'), ('shows', 'VBZ'), ('how', 'WRB'), ('to', 'TO'), ('model', 'VB'), ('a', 'DT'), ('simple', 
'JJ'), ('model', 'NN'), ('for', 'IN'), ('an', 'DT'), ('Anti-Lock', 'NNP'), ('Braking', 'NNP'), 
('System', 'NNP'), ('(', '('), ('ABS', 'NNP'), (')', ')'), ('.', '.')]], [[('5', 'CD'), (')', ')'), ('The', 



PAGE 456 

'DT'), ('outputs', 'NNS'), ('off', 'IN'), ('the', 'DT'), ('component', 'NN'), ('systems', 
'NNS'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('recorded', 'VBN'), ('.', '.')], [('This', 'DT'), 
('component', 'NN'), ('is', 'VBZ'), ('then', 'RB'), ('referenced', 'VBN'), ('using', 'VBG'), 
('a', 'DT'), ("'Model", 'NN'), ("'", 'POS'), ('block', 'NN'), ('.', '.')]], [[('A', 'DT'), (')', ')'), 
('The', 'DT'), ('total', 'JJ'), ('run', 'NN'), ('time', 'NN'), ('of', 'IN'), ('the', 'DT'), 
('simulation', 'NN'), ('should', 'MD'), ('take', 'VB'), ('less', 'JJR'), ('than', 'IN'), ('five', 
'CD'), ('minutes', 'NNS'), ('to', 'TO'), ('fully', 'RB'), ('execute', 'VB'), ('.', '.')], [('This', 
'DT'), ('significantly', 'RB'), ('reduces', 'VBZ'), ('the', 'DT'), ('time', 'NN'), ('needed', 
'VBN'), ('to', 'TO'), ('prove', 'VB'), ('new', 'JJ'), ('ideas', 'NNS'), ('by', 'IN'), ('enabling', 
'VBG'), ('actual', 'JJ'), ('testing', 'VBG'), ('early', 'JJ'), ('in', 'IN'), ('the', 'DT'), 
('development', 'NN'), ('cycle', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), 
('overall', 'JJ'), ('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), 
('be', 'VB'), ('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), 
('with', 'IN'), ('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 
'CD'), ('of', 'IN'), ('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), 
('core', 'NN'), ('Intel', 'NNP'), ('Core', 'NNP'), ('i7', 'NN'), ('processor', 'NN'), (',', ','), 
('500GB', 'CD'), ('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], [('It', 
'PRP'), ('is', 'VBZ'), ('used', 'VBN'), ('in', 'IN'), ('this', 'DT'), ('example', 'NN'), ('to', 'TO'), 
('illustrate', 'VB'), ('the', 'DT'), ('conceptual', 'JJ'), ('construction', 'NN'), ('of', 'IN'), 
('such', 'PDT'), ('a', 'DT'), ('simulation', 'NN'), ('model', 'NN'), ('.', '.')]], [[('C', 'NNP'), 
(')', ')'), ('No', 'NNP'), ('specific', 'JJ'), ('computational', 'JJ'), ('hardware', 'NN'), 
('or', 'CC'), ('peripherals', 'NNS'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('used', 'VBN'), 
('.', '.')], [('C', 'NNP'), ('code', 'NN'), ('is', 'VBZ'), ('generated', 'VBN'), ('and', 'CC'), 
('compiled', 'VBN'), ('for', 'IN'), ('the', 'DT'), ('controller', 'NN'), ('hardware', 'NN'), 
('to', 'TO'), ('test', 'VB'), ('the', 'DT'), ('concept', 'NN'), ('in', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('.', '.')]], [[('D', 'NNP'), (')', ')'), ('The', 'DT'), ('Modelling', 'NNP'), ('software', 
'NN'), ('which', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('used', 'VBN'), ('includes', 'VBZ'), 
(';', ':'), ('Matlab', 'NNP'), (',', ','), ('LabVIEW', 'NNP'), (',', ','), ('C', 'NNP'), ('with', 'IN'), 
('standard', 'JJ'), ('libraries', 'NNS'), (',', ','), ('or', 'CC'), ('Python', 'NNP'), ('2', 'CD'), 
('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), ('.', '.')], [('Modeling', 'VBG'), ('an', 
'DT'), ('Anti-Lock', 'NNP'), ('Braking', 'NNP'), ('System', 'NNP'), ('Matlab', 'NNP'), 
('Documentation', 'NNP')]], [[('E', 'NN'), (')', ')'), ('If', 'IN'), ('LabVIEW', 'NNP'), ('or', 
'CC'), ('Matlab', 'NNP'), ('is', 'VBZ'), ('used', 'VBN'), ('only', 'RB'), ('a', 'DT'), ('single', 
'JJ'), ('license', 'NN'), ('may', 'MD'), ('be', 'VB'), ('used', 'VBN'), ('.', '.')], [('Modeling', 
'VBG'), ('an', 'DT'), ('Anti-Lock', 'NNP'), ('Braking', 'NNP'), ('System', 'NNP'), 
('Matlab', 'NNP'), ('Documentation', 'NNP')]], [[('F', 'NNP'), (')', ')'), ('The', 'DT'), 
('output', 'NN'), ('results', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), ('are', 
'VBP'), ('to', 'TO'), ('be', 'VB'), ('saved', 'VBN'), ('in', 'IN'), ('a', 'DT'), ('file', 'NN'), 
('format', 'NN'), ('that', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('interrogated', 'VBN'), ('at', 
'IN'), ('a', 'DT'), ('later', 'JJ'), ('date', 'NN'), ('.', '.')], [('Figure', 'NN'), ('3', 'CD'), 
('visualizes', 'VBZ'), ('the', 'DT'), ('ABS', 'NNP'), ('simulation', 'NN'), ('results', 'NNS'), 
('(', '('), ('for', 'IN'), ('default', 'NN'), ('parameters', 'NNS'), (')', ')'), ('.', '.')]], [[('G', 
'NNP'), (')', ')'), ('All', 'DT'), ('component', 'NN'), ('parts', 'NNS'), ('are', 'VBP'), ('to', 
'TO'), ('be', 'VB'), ('in', 'IN'), ('the', 'DT'), ('public', 'JJ'), ('domain', 'NN'), ('.', '.')], 



PAGE 457 

[('This', 'DT'), ('component', 'NN'), ('is', 'VBZ'), ('then', 'RB'), ('referenced', 'VBN'), 
('using', 'VBG'), ('a', 'DT'), ("'Model", 'NN'), ("'", 'POS'), ('block', 'NN'), ('.', '.')]]]  



PAGE 458 

9.8.2 ANALYSIS TWO 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Vehicle_Body.txt 

Outputs From NLP application: 

 

Figure 9.27: The percentage distribution of tags within the two compared documents from case 
study two analysis two. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 5 
common_dev_enviroments = [] 
number of words = 0 
common_identified_modeling_tuerms = ['output', 'output', 'output', 'output'] 
number of common_identified_modeling_tuerms = 4 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 4 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 459 

number of common_identified_file_types = 0 
Identified_common_company_words = { 
'common_identified_project_tuerms': [],  
'number_of_common_identified_project_tuerms': 0, 
'common_identified_modeling_tuerms': ['output', 'output', 'output', 'output'], 
'number_of_common_dev_enviroments': 0, 
'number_of_common_identified_modeling_tuerms': 4, 
'common_identified_prog_languages': [], 
'common_identified_file_types': [],  
'number_of_identified_prog_languages': 0,  
'number_of_identified_file_types': 0,  
'common_dev_enviroments': [] 
} 
 
dict_of_words_in_both_docs = { 
'punctuation_list': ['.'],  
'possessive_pronoun_list': [],  
'adverb_superlative_list': [],  
'adverb_list': ['only'],  
'modal_list': ['can'],  
'possessive_wh_pronoun_list': [],  
'noun_proper_plural_list': [],  
'foreign_word_list': [],  
'predeterminer_list': [],  
'unbalenced_parenthesis_list': [],  
'particle_list': [],  
'personal_pronoun_list': [],  
'wh_determiner_list': [],  
'wh_pronoun_list': [],  
'determiner_list': ['The', 'A', 'the', 'a'],  
'preposition_subordinating_list': ['from', 'in', 'for', 'If', 'with', 'at', 'on', 'of'],  
'noun_common_list': ['output', 'model', 'vehicle', 'input', 'speed'], 
'noun_common_plural_list': ['models'],  
'verb_present_tense_person_singular_list': ['is'],  
'adjective_list': [],  
'cardinal_number_list': ['2'],  
'existential_there_list': [],  
'verb_past_participle_list': [],  
'not_tagged_word_list': [')', ','],  
'noun_propper_singular_list': [],  
'verb_past_tense_list': [],  
'verb_base_list': ['be'],  
'wh_adverb_list': [],  
'coordinating_conjunction_list': ['and', 'or'],  
'list_marker_list': [],  



PAGE 460 

'adjective_comparative_list': [],  
'possessive_ending_list': [],  
'interjection_list': [],  
'to_list': ['to'],  
'noun_propper_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'parenthesis_list': [],  
'verb_present_participle_list': [],  
'adjective_superlative_list': [],  
'adverb_comparative_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 
'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 'NN'), ('which', 
'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), ('and', 'CC'), 
('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('The', 'DT'), ('vehicle', 'NN'), ('wheels', 
'NNS'), ('are', 'VBP'), ('assumed', 'JJ'), ('identical', 'JJ'), ('in', 'IN'), ('size', 'NN'), ('.', '.')]], 
[[('2', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 
'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('with', 
'IN'), ('a', 'DT'), ('sinusoidal', 'JJ'), ('steering', 'NN'), ('input', 'NN'), ('.', '.')], [('The', 'DT'), 
('vehicle', 'NN'), ('wheels', 'NNS'), ('are', 'VBP'), ('assumed', 'JJ'), ('identical', 'JJ'), ('in', 
'IN'), ('size', 'NN'), ('.', '.')]], [[('3', 'LS'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('needs', 
'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), ('multiple', 'JJ'), ('times', 'NNS'), ('with', 'IN'), 
('the', 'DT'), ('speed', 'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('changing', 'VBG'), 
('across', 'IN'), ('operational', 'JJ'), ('speeds', 'NNS'), ('from', 'IN'), ('10KH-1', 'JJ'), ('to', 
'TO'), ('115KH-1', 'JJ')], [('Physical', 'JJ'), ('signal', 'NN'), ('input', 'NN'), ('ports', 'NNS'), 
('W', 'NNP'), ('and', 'CC'), ('beta', 'VB'), ('provide', 'VBP'), ('the', 'DT'), ('means', 'NNS'), 
('to', 'TO'), ('specify', 'VB'), ('the', 'DT'), ('headwind', 'NN'), ('speed', 'NN'), ('and', 
'CC'), ('road', 'NN'), ('incline', 'NN'), ('angle', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 
'DT'), ('model', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 'NNS'), (';', ':'), 
('Driver', 'NNP'), ('input', 'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), (',', ','), ('and', 
'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('Physical', 'JJ'), ('signal', 'NN'), 
('input', 'NN'), ('ports', 'NNS'), ('W', 'NNP'), ('and', 'CC'), ('beta', 'VB'), ('provide', 'VBP'), 
('the', 'DT'), ('means', 'NNS'), ('to', 'TO'), ('specify', 'VB'), ('the', 'DT'), ('headwind', 
'NN'), ('speed', 'NN'), ('and', 'CC'), ('road', 'NN'), ('incline', 'NN'), ('angle', 'NN'), ('.', 
'.')]], [[('F', 'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), ('results', 'NNS'), ('of', 'IN'), ('the', 
'DT'), ('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('saved', 'VBN'), ('in', 'IN'), 
('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 'WDT'), ('can', 'MD'), ('be', 'VB'), 
('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 'JJ'), ('date', 'NN'), ('.', '.')], 
[('Physical', 'JJ'), ('signal', 'NN'), ('output', 'NN'), ('ports', 'NNS'), ('V', 'NNP'), (',', ','), 



PAGE 461 

('NF', 'NNP'), (',', ','), ('and', 'CC'), ('NR', 'NNP'), ('provide', 'VBP'), ('the', 'DT'), 
('measurements', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('longitudinal', 'JJ'), 
('velocity', 'NN'), (',', ','), ('front-axle', 'JJ'), ('normal', 'JJ'), ('force', 'NN'), (',', ','), ('and', 
'CC'), ('rear-axle', 'JJ'), ('normal', 'JJ'), ('force', 'NN'), ('.', '.')]]] 

  



PAGE 462 

9.8.3 ANALYSIS THREE 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Power_Assisted_Steering_Mechanism.txt 

Outputs From NLP application: 

 

Figure 9.28: The percentage distribution of tags within the two compared documents from case 
study two analysis three. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 3 
common_dev_enviroments = [] 
number of words = 0 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 463 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'number_of_identified_prog_languages': 0, 
'number_of_common_identified_project_tuerms': 0,  
'common_dev_enviroments': [],  
'number_of_common_dev_enviroments': 0, 
'number_of_common_identified_modeling_tuerms': 0, 
'common_identified_modeling_tuerms': [],  
'common_identified_file_types': [],  
'common_identified_prog_languages': [],  
'number_of_identified_file_types': 0, 
'common_identified_project_tuerms': [] 
} 
 
dict_of_words_in_both_docs = { 
'possessive_ending_list': [],  
'coordinating_conjunction_list': ['and', 'or'],  
'wh_determiner_list': ['which', 'that'],  
'noun_propper_list': [],  
'noun_propper_singular_list': ['Steering'],  
'cardinal_number_list': ['4'],  
'verb_present_participle_list': ['steering'],  
'foreign_word_list': [], 
'list_marker_list': [],  
'noun_proper_plural_list': [],  
'adjective_comparative_list': [],  
'wh_pronoun_list': [],  
'to_list': ['to'],  
'interjection_list': [],  
'verb_present_tense_person_singular_list': ['is', 'includes'],  
'possessive_pronoun_list': [],  
'personal_pronoun_list': [],  
'adverb_list': [],  
'adverb_comparative_list': [],  
'verb_present_tense_not_3rd_person_list': [],  
'preposition_subordinating_list': ['from', 'If', 'on', 'in', 'for', 'with', 'of'],  
'adjective_list': ['hard'],  
'punctuation_list': ['.'],  
'not_tagged_word_list': [','],  
'parenthesis_list': [],  
'noun_common_plural_list': [],  
'particle_list': [],  
'determiner_list': ['the', 'a', 'The'],  
'verb_past_participle_list': [],  



PAGE 464 

'adjective_superlative_list': [],  
'unbalenced_parenthesis_list': [],  
'verb_past_tense_list': [],  
'verb_base_list': [],  
'adverb_superlative_list': [],  
'modal_list': [],  
'existential_there_list': [],  
'possessive_wh_pronoun_list': [],  
'predeterminer_list': [],  
'wh_adverb_list': [],  
'noun_common_list': ['system', 'steering'] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('which', 'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('The', 'DT'), ('hydraulic', 
'JJ'), ('actuation', 'NN'), ('system', 'NN'), ('includes', 'VBZ'), ('a', 'DT'), ('double-
acting', 'JJ'), ('hydraulic', 'JJ'), ('cylinder', 'NN'), (',', ','), ('4-way', 'JJ'), ('valve', 
'NN'), (',', ','), ('fixed-displacement', 'JJ'), ('pump', 'NN'), (',', ','), ('and', 'CC'), ('a', 
'DT'), ('pressure-relief', 'JJ'), ('valve', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), 
('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 
'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('with', 'IN'), ('a', 'DT'), ('sinusoidal', 
'JJ'), ('steering', 'NN'), ('input', 'NN'), ('.', '.')], [('This', 'DT'), ('example', 'NN'), 
('shows', 'VBZ'), ('a', 'DT'), ('simplified', 'JJ'), ('version', 'NN'), ('of', 'IN'), ('a', 'DT'), 
('power-assisted', 'JJ'), ('steering', 'NN'), ('mechanism', 'NN'), ('.', '.')]], [[('4', 'CD'), 
(')', ')'), ('The', 'DT'), ('model', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 
'NNS'), (';', ':'), ('Driver', 'NNP'), ('input', 'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), 
(',', ','), ('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('The', 'DT'), 
('hydraulic', 'JJ'), ('actuation', 'NN'), ('system', 'NN'), ('includes', 'VBZ'), ('a', 'DT'), 
('double-acting', 'JJ'), ('hydraulic', 'JJ'), ('cylinder', 'NN'), (',', ','), ('4-way', 'JJ'), 
('valve', 'NN'), (',', ','), ('fixed-displacement', 'JJ'), ('pump', 'NN'), (',', ','), ('and', 
'CC'), ('a', 'DT'), ('pressure-relief', 'JJ'), ('valve', 'NN'), ('.', '.')]]] 

 

  



PAGE 465 

9.8.4 ANALYSIS FOUR 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Simple_2D_kinematic_vehicle_steering_model_and_animation.txt 

Outputs From NLP application: 

 

Figure 9.29: The percentage distribution of tags within the two compared documents from case 
study two analysis four. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 9 
common_dev_enviroments = ['Matlab', 'Matlab', 'Matlab', 'Matlab', 'Matlab'] 
number of words = 5 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 466 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'number_of_identified_prog_languages': 0,  
'common_identified_file_types': [], 
'number_of_common_identified_modeling_tuerms':0, 
'common_identified_modeling_tuerms': [],  
'common_identified_project_tuerms':[], 
'number_of_common_identified_project_tuerms': 0,  
'number_of_identified_file_types': 0,  
'common_dev_enviroments': ['Matlab', 'Matlab', 'Matlab', 'Matlab', 'Matlab'], 
'number_of_common_dev_enviroments': 5,  
'common_identified_prog_languages': [] 
} 
 
dict_of_words_in_both_docs = { 
'verb_present_tense_person_singular_list': ['is'],  
'particle_list': [],  
'possessive_wh_pronoun_list': [],  
'preposition_subordinating_list': ['for', 'in', 'with', 'from', 'of', 'on', 'at'],  
'to_list': ['to'],  
'adjective_list': [],  
'interjection_list': [],  
'verb_past_tense_list': [],  
'adverb_list': [],  
'personal_pronoun_list': [],  
'determiner_list': ['The', 'a', 'the'],  
'noun_propper_singular_list': ['Matlab', 'Steering'],  
'noun_common_list': ['simulation', 'vehicle', 'steering', 'file', 'speed', 'time', 'run', 
'model'],  
'modal_list': ['can', 'should'],  
'existential_there_list': [],  
'noun_propper_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'adverb_comparative_list': [],  
'parenthesis_list': [';'],  
'wh_adverb_list': [],  
'wh_determiner_list': ['that'],  
'noun_proper_plural_list': [],  
'predeterminer_list': [],  
'coordinating_conjunction_list': ['and', 'or'],  
'noun_common_plural_list': ['libraries', 'results'],  
'possessive_ending_list': [],  
'cardinal_number_list': ['1', '2'],  
'foreign_word_list': [],  



PAGE 467 

'not_tagged_word_list': [',', ')'],  
'unbalenced_parenthesis_list': [],  
'wh_pronoun_list': [],  
'verb_present_participle_list': ['steering', 'changing'],  
'possessive_pronoun_list': [],  
'punctuation_list': ['.'],  
'adjective_comparative_list': [],  
'adjective_superlative_list': [],  
'list_marker_list': [],  
'adverb_superlative_list': [],  
'verb_base_list': ['execute'],  
'verb_past_participle_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('which', 'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('The', 'DT'), ('Simulink', 
'NNP'), ('model', 'NN'), ("'s", 'POS'), ('base', 'NN'), ('simulation', 'NN'), ('timestep', 
'NN'), ('is', 'VBZ'), ('h_fixed=0.05', 'JJ'), ('(', '('), ('s', 'NN'), (')', ')'), (',', ','), ('or', 'CC'), 
('50ms', 'CD'), ('.', '.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 
'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('the', 
'DT'), ('vehicle', 'NN'), ('with', 'IN'), ('a', 'DT'), ('sinusoidal', 'JJ'), ('steering', 'NN'), 
('input', 'NN'), ('.', '.')], [('The', 'DT'), ('Simulink', 'NNP'), ('model', 'NN'), ("'s", 'POS'), 
('base', 'NN'), ('simulation', 'NN'), ('timestep', 'NN'), ('is', 'VBZ'), ('h_fixed=0.05', 'JJ'), 
('(', '('), ('s', 'NN'), (')', ')'), (',', ','), ('or', 'CC'), ('50ms', 'CD'), ('.', '.')]], [[('3', 'LS'), (')', ')'), 
('The', 'DT'), ('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), 
('multiple', 'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('speed', 'NN'), ('of', 'IN'), 
('the', 'DT'), ('vehicle', 'NN'), ('changing', 'VBG'), ('across', 'IN'), ('operational', 'JJ'), 
('speeds', 'NNS'), ('from', 'IN'), ('10KH-1', 'JJ'), ('to', 'TO'), ('115KH-1', 'JJ')], [('The', 
'DT'), ('Simulink', 'NNP'), ('model', 'NN'), ("'s", 'POS'), ('base', 'NN'), ('simulation', 
'NN'), ('timestep', 'NN'), ('is', 'VBZ'), ('h_fixed=0.05', 'JJ'), ('(', '('), ('s', 'NN'), (')', ')'), (',', 
','), ('or', 'CC'), ('50ms', 'CD'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 'DT'), ('model', 
'NN'), ('is', 'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 'NNS'), (';', ':'), ('Driver', 
'NNP'), ('input', 'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), (',', ','), ('and', 'CC'), 
('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('Simple', 'JJ'), ('2D', 'CD'), ('kinematic', 
'JJ'), ('vehicle', 'NN'), ('steering', 'VBG'), ('model', 'NN'), ('and', 'CC'), ('animation', 
'NN')]], [[('A', 'DT'), (')', ')'), ('The', 'DT'), ('total', 'JJ'), ('run', 'NN'), ('time', 'NN'), ('of', 
'IN'), ('the', 'DT'), ('simulation', 'NN'), ('should', 'MD'), ('take', 'VB'), ('less', 'JJR'), 
('than', 'IN'), ('five', 'CD'), ('minutes', 'NNS'), ('to', 'TO'), ('fully', 'RB'), ('execute', 'VB'), 



PAGE 468 

('.', '.')], [('[', 'JJ'), ('setup.m', 'NN'), (']', 'NNP'), ('-', ':'), ('run', 'NN'), ('this', 'DT'), ('first', 
'JJ'), (',', ','), ('it', 'PRP'), ('will', 'MD'), ('bring', 'VB'), ('up', 'RP'), ('the', 'DT'), ('Simulink', 
'NNP'), (',', ','), ('then', 'RB'), ('press', 'NN'), ('play', 'NN'), ('to', 'TO'), ('simulate', 'VB'), 
('the', 'DT'), ('vehicle', 'NN')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), ('overall', 'JJ'), 
('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), ('be', 'VB'), 
('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 'CD'), ('of', 'IN'), 
('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), ('core', 'NN'), 
('Intel', 'NNP'), ('Core', 'NNP'), ('i7', 'NN'), ('processor', 'NN'), (',', ','), ('500GB', 'CD'), 
('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], [('The', 'DT'), ('Simulink', 
'NNP'), ('model', 'NN'), ("'s", 'POS'), ('base', 'NN'), ('simulation', 'NN'), ('timestep', 
'NN'), ('is', 'VBZ'), ('h_fixed=0.05', 'JJ'), ('(', '('), ('s', 'NN'), (')', ')'), (',', ','), ('or', 'CC'), 
('50ms', 'CD'), ('.', '.')]], [[('D', 'NNP'), (')', ')'), ('The', 'DT'), ('Modelling', 'NNP'), 
('software', 'NN'), ('which', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('used', 'VBN'), 
('includes', 'VBZ'), (';', ':'), ('Matlab', 'NNP'), (',', ','), ('LabVIEW', 'NNP'), (',', ','), ('C', 
'NNP'), ('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), (',', ','), ('or', 'CC'), ('Python', 
'NNP'), ('2', 'CD'), ('with', 'IN'), ('standard', 'JJ'), ('libraries', 'NNS'), ('.', '.')], [('This', 
'DT'), ('is', 'VBZ'), ('the', 'DT'), ('Readme', 'NNP'), ('file', 'NN'), ('for', 'IN'), ('a', 'DT'), 
('simple', 'JJ'), ('2D', 'CD'), ('kinematic', 'JJ'), ('vehicle', 'NN'), ("'s", 'POS'), 
('steering', 'VBG'), ('motion', 'NN'), ('and', 'CC'), ('visualzation', 'NN'), 
('implemented', 'VBN'), ('in', 'IN'), ('Matlab', 'NNP'), ("'s", 'POS'), ('Simulink', 'NNP'), 
('.', '.')]], [[('E', 'NN'), (')', ')'), ('If', 'IN'), ('LabVIEW', 'NNP'), ('or', 'CC'), ('Matlab', 
'NNP'), ('is', 'VBZ'), ('used', 'VBN'), ('only', 'RB'), ('a', 'DT'), ('single', 'JJ'), ('license', 
'NN'), ('may', 'MD'), ('be', 'VB'), ('used', 'VBN'), ('.', '.')], [('This', 'DT'), ('is', 'VBZ'), 
('the', 'DT'), ('Readme', 'NNP'), ('file', 'NN'), ('for', 'IN'), ('a', 'DT'), ('simple', 'JJ'), ('2D', 
'CD'), ('kinematic', 'JJ'), ('vehicle', 'NN'), ("'s", 'POS'), ('steering', 'VBG'), ('motion', 
'NN'), ('and', 'CC'), ('visualzation', 'NN'), ('implemented', 'VBN'), ('in', 'IN'), 
('Matlab', 'NNP'), ("'s", 'POS'), ('Simulink', 'NNP'), ('.', '.')]], [[('F', 'NNP'), (')', ')'), ('The', 
'DT'), ('output', 'NN'), ('results', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), 
('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('saved', 'VBN'), ('in', 'IN'), ('a', 'DT'), ('file', 'NN'), 
('format', 'NN'), ('that', 'WDT'), ('can', 'MD'), ('be', 'VB'), ('interrogated', 'VBN'), ('at', 
'IN'), ('a', 'DT'), ('later', 'JJ'), ('date', 'NN'), ('.', '.')], [('The', 'DT'), ('Simulink', 'NNP'), 
('model', 'NN'), ("'s", 'POS'), ('base', 'NN'), ('simulation', 'NN'), ('timestep', 'NN'), ('is', 
'VBZ'), ('h_fixed=0.05', 'JJ'), ('(', '('), ('s', 'NN'), (')', ')'), (',', ','), ('or', 'CC'), ('50ms', 
'CD'), ('.', '.')]]] 

  



PAGE 469 

9.8.5 ANALYSIS FIVE 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Tyre_Simple.txt 

Outputs From NLP application: 

 

Figure 9.30: The percentage distribution of tags within the two compared documents from case 
study two analysis five. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 7 
common_dev_enviroments = [] 
number of words = 0 
common_identified_modeling_tuerms = [] 
number of common_identified_modeling_tuerms = 0 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 0 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 470 

number of common_identified_file_types = 0 
 
Identified_common_company_words ={ 
'number_of_common_identified_modeling_tuerms': 0, 
'common_identified_project_tuerms': [],  
'common_identified_modeling_tuerms': [],  
'number_of_identified_prog_languages': 0,  
'common_identified_file_types':[],  
'number_of_common_identified_project_tuerms': 0,  
'number_of_identified_file_types': 0,  
'common_dev_enviroments': [],  
'common_identified_prog_languages': [],  
'number_of_common_dev_enviroments': 0 
} 
 
dict_of_words_in_both_docs = { 
'cardinal_number_list': ['1'], 
'adjective_list': [],  
'adverb_comparative_list': [],  
'modal_list': ['can'],  
'personal_pronoun_list': [],  
'possessive_ending_list': [],  
'not_tagged_word_list': [',', ')'],  
'noun_propper_singular_list': [],  
'coordinating_conjunction_list': ['and', 'or'],  
'possessive_wh_pronoun_list': [],  
'predeterminer_list': [],  
'adverb_list': [],  
'noun_common_plural_list': [],  
'existential_there_list': [],  
'noun_propper_list': [],  
'possessive_pronoun_list': [],  
'parenthesis_list': [],  
'wh_pronoun_list': [],  
'interjection_list': [],  
'adjective_superlative_list': [],  
'verb_past_participle_list': [],  
'wh_adverb_list': [],  
'to_list': [],  
'adjective_comparative_list': [], 
'determiner_list': ['the', 'a', 'The', 'A'],  
'foreign_word_list': [],  
'particle_list': [],  
'verb_present_tense_person_singular_list': ['is', 'includes'],  
'adverb_superlative_list': [],  



PAGE 471 

'wh_determiner_list': [],  
'noun_common_list': ['capability', 'model', 'simulation'],  
'punctuation_list': ['.'],  
'verb_base_list': ['be'],  
'verb_past_tense_list': [],  
'list_marker_list': [],  
'noun_proper_plural_list': [],  
'unbalenced_parenthesis_list': [],  
'verb_present_participle_list': [],  
'preposition_subordinating_list': ['of', 'with', 'for', 'than'],  
'verb_present_tense_not_3rd_person_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('which', 'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('These', 'DT'), ('dynamics', 
'NNS'), ('require', 'VBP'), ('additional', 'JJ'), ('computation', 'NN'), ('and', 'CC'), 
('might', 'MD'), ('make', 'VB'), ('the', 'DT'), ('model', 'NN'), ('less', 'RBR'), ('suitable', 
'JJ'), ('for', 'IN'), ('real-time', 'JJ'), ('simulation', 'NN'), ('.', '.')]], [[('2', 'CD'), (')', ')'), 
('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), ('capture', 'VB'), ('the', 'DT'), 
('behaviour', 'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('with', 'IN'), ('a', 'DT'), 
('sinusoidal', 'JJ'), ('steering', 'NN'), ('input', 'NN'), ('.', '.')], [('These', 'DT'), 
('dynamics', 'NNS'), ('require', 'VBP'), ('additional', 'JJ'), ('computation', 'NN'), 
('and', 'CC'), ('might', 'MD'), ('make', 'VB'), ('the', 'DT'), ('model', 'NN'), ('less', 
'RBR'), ('suitable', 'JJ'), ('for', 'IN'), ('real-time', 'JJ'), ('simulation', 'NN'), ('.', '.')]], [[('3', 
'LS'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), 
('run', 'VBN'), ('multiple', 'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('speed', 
'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 'NN'), ('changing', 'VBG'), ('across', 'IN'), 
('operational', 'JJ'), ('speeds', 'NNS'), ('from', 'IN'), ('10KH-1', 'JJ'), ('to', 'TO'), 
('115KH-1', 'JJ')], [('These', 'DT'), ('dynamics', 'NNS'), ('require', 'VBP'), ('additional', 
'JJ'), ('computation', 'NN'), ('and', 'CC'), ('might', 'MD'), ('make', 'VB'), ('the', 'DT'), 
('model', 'NN'), ('less', 'RBR'), ('suitable', 'JJ'), ('for', 'IN'), ('real-time', 'JJ'), 
('simulation', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 'DT'), ('model', 'NN'), ('is', 
'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 'NNS'), (';', ':'), ('Driver', 'NNP'), ('input', 
'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), (',', ','), ('and', 'CC'), ('steering', 'VBG'), 
('system', 'NN'), ('.', '.')], [('The', 'DT'), ('block', 'NN'), ('represents', 'VBZ'), ('a', 'DT'), 
('simple', 'JJ'), (',', ','), ('no-slip', 'JJ'), ('model', 'NN'), ('of', 'IN'), ('a', 'DT'), ('tyre', 
'NN'), ('parameterized', 'VBN'), ('by', 'IN'), ('its', 'PRP$'), ('radius', 'NN'), ('.', '.')]], 
[[('A', 'DT'), (')', ')'), ('The', 'DT'), ('total', 'JJ'), ('run', 'NN'), ('time', 'NN'), ('of', 'IN'), 



PAGE 472 

('the', 'DT'), ('simulation', 'NN'), ('should', 'MD'), ('take', 'VB'), ('less', 'JJR'), ('than', 
'IN'), ('five', 'CD'), ('minutes', 'NNS'), ('to', 'TO'), ('fully', 'RB'), ('execute', 'VB'), ('.', '.')], 
[('These', 'DT'), ('dynamics', 'NNS'), ('require', 'VBP'), ('additional', 'JJ'), 
('computation', 'NN'), ('and', 'CC'), ('might', 'MD'), ('make', 'VB'), ('the', 'DT'), 
('model', 'NN'), ('less', 'RBR'), ('suitable', 'JJ'), ('for', 'IN'), ('real-time', 'JJ'), 
('simulation', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), ('overall', 'JJ'), 
('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), ('be', 'VB'), 
('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 'CD'), ('of', 'IN'), 
('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), ('core', 'NN'), 
('Intel', 'NNP'), ('Core', 'NNP'), ('i7', 'NN'), ('processor', 'NN'), (',', ','), ('500GB', 'CD'), 
('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], [('These', 'DT'), 
('dynamics', 'NNS'), ('require', 'VBP'), ('additional', 'JJ'), ('computation', 'NN'), 
('and', 'CC'), ('might', 'MD'), ('make', 'VB'), ('the', 'DT'), ('model', 'NN'), ('less', 
'RBR'), ('suitable', 'JJ'), ('for', 'IN'), ('real-time', 'JJ'), ('simulation', 'NN'), ('.', '.')]], [[('F', 
'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), ('results', 'NNS'), ('of', 'IN'), ('the', 'DT'), 
('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('saved', 'VBN'), ('in', 'IN'), 
('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 'WDT'), ('can', 'MD'), ('be', 'VB'), 
('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 'JJ'), ('date', 'NN'), ('.', '.')], 
[('These', 'DT'), ('dynamics', 'NNS'), ('require', 'VBP'), ('additional', 'JJ'), 
('computation', 'NN'), ('and', 'CC'), ('might', 'MD'), ('make', 'VB'), ('the', 'DT'), 
('model', 'NN'), ('less', 'RBR'), ('suitable', 'JJ'), ('for', 'IN'), ('real-time', 'JJ'), 
('simulation', 'NN'), ('.', '.')]]] 
  



PAGE 473 

9.8.6 ANALYSIS SIX 
File inputs: 

A. Requirements_for_a_Combined_Braking_and_Steering_System.txt 

B. Tyre_Magic_Formula.txt 

Outputs From NLP application: 

 

Figure 9.31: The percentage distribution of tags within the two compared documents from case 
study two analysis six. 

Python Console output: 

Noun-verb Sentences analysis completed and results saved to file 
Number of sentences that contain the same Nouns and Verbs = 9 
common_dev_enviroments = [] 
number of words = 0 
common_identified_modeling_tuerms = ['outputs', 'output'] 
number of common_identified_modeling_tuerms = 2 
common_identified_project_tuerms = [] 
number of common_identified_project_tuerms = 2 
common_identified_prog_languages = [] 
number of common_identified_prog_languages = 0 
common_identified_file_types = [] 



PAGE 474 

number of common_identified_file_types = 0 
 
Identified_common_company_words = { 
'common_identified_file_types': [],  
'common_identified_prog_languages': [],  
'number_of_identified_prog_languages': 0,  
'common_identified_modeling_tuerms': ['outputs', 'output'], 
'common_identified_project_tuerms': [],  
'number_of_identified_file_types': 0,  
'common_dev_enviroments': [],  
'number_of_common_identified_modeling_tuerms': 2, 
'number_of_common_identified_project_tuerms': 0, 
'number_of_common_dev_enviroments': 0 
} 
 
dict_of_words_in_both_docs = { 
'noun_proper_plural_list': [],  
'wh_pronoun_list':[],  
'foreign_word_list': [],  
'adverb_list': ['only'], 
'coordinating_conjunction_list': ['and', 'or'],  
'noun_propper_singular_list': [],  
'verb_past_tense_list':[], 
'wh_adverb_list': [],  
'unbalenced_parenthesis_list': [],  
'particle_list': [],  
'adjective_superlative_list': [],  
'to_list': ['to'],  
'verb_base_list': ['be'], 
'noun_propper_list': [],  
'verb_past_participle_list': [],  
'verb_present_participle_list': [],  
'noun_common_plural_list': ['speeds', 'models'],  
'wh_determiner_list': ['which', 'that'],  
'verb_present_tense_person_singular_list': ['includes', 'has', 'is'],  
'existential_there_list': [],  
'modal_list': ['can'],  
'not_tagged_word_list': [')', ','],  
'adverb_comparative_list': [], 
'punctuation_list': ['.'],  
'noun_common_list': ['input', 'vehicle', 'simulation', 'model', 'time', 'component', 
'output'],  
'cardinal_number_list': ['1'],  
'adverb_superlative_list': [], 
'possessive_pronoun_list': [],  



PAGE 475 

'adjective_list': [],  
'preposition_subordinating_list': ['from', 'of', 'in', 'on', 'If', 'with', 'for', 'at'], 
'personal_pronoun_list': [],  
'list_marker_list': [],  
'parenthesis_list': [';'],  
'determiner_list': ['the', 'A', 'The', 'a'],  
'possessive_ending_list': [],  
'adjective_comparative_list': [],  
'predeterminer_list': [],  
'verb_present_tense_not_3rd_person_list': ['are'],  
'interjection_list': [],  
'possessive_wh_pronoun_list': [] 
} 
 
Program End 
Press any key to continue . . . 
 

Data captured in text file: 

[[[('1', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('a', 'DT'), ('vehicle', 
'NN'), ('which', 'WDT'), ('has', 'VBZ'), ('a', 'DT'), ('combined', 'VBN'), ('ABS', 'NNP'), 
('and', 'CC'), ('steering', 'VBG'), ('system', 'NN'), ('.', '.')], [('Port', 'NNP'), ('S', 'NNP'), 
('outputs', 'VBZ'), ('a', 'DT'), ('physical', 'JJ'), ('signal', 'NN'), ('with', 'IN'), ('the', 'DT'), 
('tyre', 'NN'), ('slip', 'NN'), ('measured', 'VBD'), ('during', 'IN'), ('simulation', 'NN'), ('.', 
'.')]], [[('2', 'CD'), (')', ')'), ('The', 'DT'), ('simulation', 'NN'), ('is', 'VBZ'), ('to', 'TO'), 
('capture', 'VB'), ('the', 'DT'), ('behaviour', 'NN'), ('of', 'IN'), ('the', 'DT'), ('vehicle', 
'NN'), ('with', 'IN'), ('a', 'DT'), ('sinusoidal', 'JJ'), ('steering', 'NN'), ('input', 'NN'), ('.', 
'.')], [('Port', 'NNP'), ('S', 'NNP'), ('outputs', 'VBZ'), ('a', 'DT'), ('physical', 'JJ'), ('signal', 
'NN'), ('with', 'IN'), ('the', 'DT'), ('tyre', 'NN'), ('slip', 'NN'), ('measured', 'VBD'), 
('during', 'IN'), ('simulation', 'NN'), ('.', '.')]], [[('3', 'LS'), (')', ')'), ('The', 'DT'), 
('simulation', 'NN'), ('needs', 'VBZ'), ('to', 'TO'), ('be', 'VB'), ('run', 'VBN'), ('multiple', 
'JJ'), ('times', 'NNS'), ('with', 'IN'), ('the', 'DT'), ('speed', 'NN'), ('of', 'IN'), ('the', 'DT'), 
('vehicle', 'NN'), ('changing', 'VBG'), ('across', 'IN'), ('operational', 'JJ'), ('speeds', 
'NNS'), ('from', 'IN'), ('10KH-1', 'JJ'), ('to', 'TO'), ('115KH-1', 'JJ')], [('Port', 'NNP'), ('S', 
'NNP'), ('outputs', 'VBZ'), ('a', 'DT'), ('physical', 'JJ'), ('signal', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('tyre', 'NN'), ('slip', 'NN'), ('measured', 'VBD'), ('during', 'IN'), 
('simulation', 'NN'), ('.', '.')]], [[('4', 'CD'), (')', ')'), ('The', 'DT'), ('model', 'NN'), ('is', 
'VBZ'), ('to', 'TO'), ('contain', 'VB'), ('models', 'NNS'), (';', ':'), ('Driver', 'NNP'), ('input', 
'NN'), (',', ','), ('ABS', 'NNP'), ('System', 'NNP'), (',', ','), ('and', 'CC'), ('steering', 'VBG'), 
('system', 'NN'), ('.', '.')], [('To', 'TO'), ('increase', 'VB'), ('the', 'DT'), ('fidelity', 'NN'), 
('of', 'IN'), ('the', 'DT'), ('tyre', 'NN'), ('model', 'NN'), (',', ','), ('the', 'DT'), ('block', 'NN'), 
('enables', 'VBZ'), ('you', 'PRP'), ('to', 'TO'), ('specify', 'VB'), ('properties', 'NNS'), 
('such', 'JJ'), ('as', 'IN'), ('tyre', 'NN'), ('compliance', 'NN'), (',', ','), ('inertia', 'NN'), (',', 
','), ('and', 'CC'), ('rolling', 'VBG'), ('resistance', 'NN'), ('.', '.')]], [[('5', 'CD'), (')', ')'), 



PAGE 476 

('The', 'DT'), ('outputs', 'NNS'), ('off', 'IN'), ('the', 'DT'), ('component', 'NN'), 
('systems', 'NNS'), ('are', 'VBP'), ('to', 'TO'), ('be', 'VB'), ('recorded', 'VBN'), ('.', '.')], 
[('This', 'DT'), ('block', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('structural', 'JJ'), ('component', 
'NN'), ('based', 'VBN'), ('on', 'IN'), ('the', 'DT'), ('Tyre-Road', 'JJ'), ('Interaction', 
'NNP'), ('(', '('), ('Magic', 'NNP'), ('Formula', 'NNP'), (')', ')'), ('block', 'NN'), ('.', '.')]], 
[[('A', 'DT'), (')', ')'), ('The', 'DT'), ('total', 'JJ'), ('run', 'NN'), ('time', 'NN'), ('of', 'IN'), 
('the', 'DT'), ('simulation', 'NN'), ('should', 'MD'), ('take', 'VB'), ('less', 'JJR'), ('than', 
'IN'), ('five', 'CD'), ('minutes', 'NNS'), ('to', 'TO'), ('fully', 'RB'), ('execute', 'VB'), ('.', '.')], 
[('Consider', 'VB'), ('ignoring', 'VBG'), ('tyre', 'NN'), ('compliance', 'NN'), ('and', 
'CC'), ('inertia', 'NN'), ('if', 'IN'), ('simulating', 'VBG'), ('the', 'DT'), ('model', 'NN'), ('in', 
'IN'), ('real', 'JJ'), ('time', 'NN'), ('or', 'CC'), ('if', 'IN'), ('preparing', 'VBG'), ('the', 'DT'), 
('model', 'NN'), ('for', 'IN'), ('Hardware-in-Loop', 'NNP'), ('(', '('), ('HIL', 'NNP'), (')', ')'), 
('simulation', 'NN'), ('.', '.')]], [[('B', 'NNP'), (')', ')'), ('The', 'DT'), ('overall', 'JJ'), 
('simulation', 'NN'), ('and', 'CC'), ('analysis', 'NN'), ('should', 'MD'), ('be', 'VB'), 
('possible', 'JJ'), ('on', 'IN'), ('a', 'DT'), ('mid-range', 'JJ'), ('laptop', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('maximum', 'JJ'), ('capability', 'NN'), ('of', 'IN'), ('8GB', 'CD'), ('of', 'IN'), 
('Ram', 'NNP'), (',', ','), ('2.5', 'CD'), ('GHz', 'NNP'), ('quad', 'NN'), ('core', 'NN'), 
('Intel', 'NNP'), ('Core', 'NNP'), ('i7', 'NN'), ('processor', 'NN'), (',', ','), ('500GB', 'CD'), 
('of', 'IN'), ('hard', 'JJ'), ('drive', 'NN'), ('space', 'NN'), ('.', '.')], [('Port', 'NNP'), ('S', 
'NNP'), ('outputs', 'VBZ'), ('a', 'DT'), ('physical', 'JJ'), ('signal', 'NN'), ('with', 'IN'), 
('the', 'DT'), ('tyre', 'NN'), ('slip', 'NN'), ('measured', 'VBD'), ('during', 'IN'), 
('simulation', 'NN'), ('.', '.')]], [[('F', 'NNP'), (')', ')'), ('The', 'DT'), ('output', 'NN'), 
('results', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('simulation', 'NN'), ('are', 'VBP'), ('to', 'TO'), 
('be', 'VB'), ('saved', 'VBN'), ('in', 'IN'), ('a', 'DT'), ('file', 'NN'), ('format', 'NN'), ('that', 
'WDT'), ('can', 'MD'), ('be', 'VB'), ('interrogated', 'VBN'), ('at', 'IN'), ('a', 'DT'), ('later', 
'JJ'), ('date', 'NN'), ('.', '.')], [('S', 'NNP'), ('Physical', 'NNP'), ('signal', 'NN'), ('output', 
'NN'), ('port', 'NN'), ('associated', 'VBN'), ('with', 'IN'), ('the', 'DT'), ('relative', 'JJ'), 
('slip', 'NN'), ('between', 'IN'), ('the', 'DT'), ('tyre', 'NN'), ('and', 'CC'), ('road', 'NN')]], 
[[('G', 'NNP'), (')', ')'), ('All', 'DT'), ('component', 'NN'), ('parts', 'NNS'), ('are', 'VBP'), 
('to', 'TO'), ('be', 'VB'), ('in', 'IN'), ('the', 'DT'), ('public', 'JJ'), ('domain', 'NN'), ('.', '.')], 
[('This', 'DT'), ('block', 'NN'), ('is', 'VBZ'), ('a', 'DT'), ('structural', 'JJ'), ('component', 
'NN'), ('based', 'VBN'), ('on', 'IN'), ('the', 'DT'), ('Tyre-Road', 'JJ'), ('Interaction', 
'NNP'), ('(', '('), ('Magic', 'NNP'), ('Formula', 'NNP'), (')', ')'), ('block', 'NN'), ('.', '.')]]] 

  



PAGE 477 

9.9 DOCUMENTS USED FOR CASE STUDY TWO 
The text documents that were used for testing as part of case study two are 
detailed in this section. The documents were read into the application as .txt files. 

Due to copy write issues the text files in their raw forms have not been duplicated 
in this work. The text files can be found in Matlab 2016a help files by searching 
the name of the model.  

  



PAGE 478 

9.9.1 REQUIREMENTS FOR A COMBINED BRAKING AND STEERING SYSTEM 
 

1) The simulation is to capture the behaviour of a vehicle which has a 
combined ABS and steering system. 

2) The simulation is to capture the behaviour of the vehicle with a 
sinusoidal steering input. 

3) The simulation needs to be run multiple times with the speed of the 
vehicle changing across operational speeds from 10KH-1 to 115KH-1 

4) The model is to contain models; Driver input, ABS System, and steering 
system. 

5) The outputs off the component systems are to be recorded. 

A) The total run time of the simulation should take less than five minutes to 
fully execute. 

B) The overall simulation and analysis should be possible on a mid-range 
laptop with the maximum capability of 8GB of Ram, 2.5 GHz quad core 
Intel Core i7 processor, 500GB of hard drive space. 

C) No specific computational hardware or peripherals are to be used. 

D) The Modelling software which can be used includes; Matlab, LabVIEW, 
C with standard libraries, or Python 2 with standard libraries. 

E) If LabVIEW or Matlab is used only a single license may be used. 

F) The output results of the simulation are to be saved in a file format that 
can be interrogated at a later date. 

G) All component parts are to be in the public domain. 

 

 

 

 

 


	1 Introduction
	1.1 Context
	1.2 Systems Engineering and the Problem Space
	1.2.1 Understanding of The Problem Space
	1.2.2 Soft Systems Methodology
	1.2.3 Rich Pictures
	1.2.4 Problem Themes

	1.3 The Bounds Of The Problem Space
	1.4 Scope of the thesis
	1.5 Aims and Objectives
	1.5.1 Aim
	1.5.2 Objectives

	1.6 Structure of the Thesis
	1.7 Overview of Contributions to knowledge

	2 Literature Review of Models, Simulations and Their Integration
	2.1 Introduction
	2.2 The Use of Simulation
	2.2.1 High Fidelity Simulation
	2.2.2 The Parts Being Integrated

	2.3 Current Approaches to the Integration of Models and Simulations
	2.3.1 Current Integration Methods
	2.3.2 Evaluation of The Integration Approaches
	2.3.3 The Role of Standards in Integration
	The Application of Standards in Practice

	2.4 Implementing Integration of Model and Simulations
	2.4.1 Data Sharing
	2.4.2 Variable Sharing
	2.4.3 Middleware
	2.4.4 Federated Simulations
	2.4.5 High Level Architecture
	2.4.6 Data Distributed Service
	2.4.7 Evaluation of the Implementation of Integrated Models and Simulations

	2.5 The Effects on Integration from Types of Modelling and Simulation
	2.5.1 Linear Methods
	2.5.2 Reduced Order Models (ROMs)
	2.5.3 Logic Based Simulations
	2.5.4 Feedback Loops
	2.5.5 Statistical Methods
	2.5.6 Artificial Neural Networks
	2.5.7 Computational Fluid Dynamics (CFD)
	2.5.8 Finite Element Analysis (FEA)

	2.6 Semantics and their Effects on Modelling and Simulation
	2.6.1 Multiscale Modelling
	2.6.2 Multiscale Integration Methods

	2.7 Current Methods to obtain a Shared Understanding of Models and Simulations
	2.8 Current Tools for Creation of Models and Simulations
	2.8.1 Mathematics-Based Software
	2.8.2 General Purpose Co-Simulation Software
	2.8.3 Off-The-Shelf Modelling Packages

	2.9 Summary
	2.9.1 Preliminary Simulation Design
	2.9.2 Verification of Preliminary Simulation Design
	2.9.3 Are There Any Existing Simulations And Models
	2.9.4 Systems Engineering of Selection of Existing Models SESEMS

	2.10 Evaluation of Methods
	2.10.1 Strengths of the Proposed Methods
	2.10.2 Weaknesses of the Proposed Methods
	2.10.3 The Effectiveness of the Proposed Methods

	2.11 Summary of Case study Testing

	3 Systems Engineering Framework and Processes
	3.1 Introduction
	3.2 Novel Systems Engineering Framework
	3.2.1 Linear Systems Engineering
	3.2.2 Stacked Systems Engineering with Partial Verification
	3.2.3 Stacked Systems Engineering Including Verification of Requirements
	3.2.4 Stacked Systems Engineering

	3.3 Design Of Experiments
	3.3.1 The Purpose of a Design of Experiments
	3.3.2 The use of Design of Experiments within modelling and simulation
	3.3.3 Considerations When Creating a Design of Experiments

	3.4 Simulation Requirements
	3.4.1 Phenomenon to be Mimicked
	3.4.2 Accuracy of the Mimicry
	3.4.3 Constraints of Simulation
	3.4.4 Functionality of the System
	3.4.5 The Effects of Differing Viewpoints
	3.4.6 Requirements Compliance of Existing Models and Simulations

	3.5 Systems Engineering Processes
	3.5.1 Systems Creation Lifecycle Process
	3.5.2 Verification Representation
	3.5.3 Validation Representation
	3.5.4 Verification and Validation of Simulations
	3.5.5 The Role of Systems Engineering In Integrated Simulations (SEIS)
	3.5.6 Systems Engineering of Selection of Existing Models and Simulations (SESEMS) (A Sub-Process)
	3.5.7 Defining gaps in SESEMS (A Sub-Process)
	3.5.8 Fill Gaps in the Systems Engineering in Integration of Simulations

	3.6 Simulation and Modelling Requirement Writing Guide
	3.6.1 Introductory sections
	3.6.2 Characteristics of Acceptable Modelling Requirements
	3.6.3 Summary Of The Requirements Writing Guide

	3.7 Information Needs for Model Integration
	3.7.1 The Source of Information for Model and simulation Integration
	3.7.2 The Two Sides of Model and Simulation Integration
	3.7.3 Integration Tables

	3.8 Levels of Abstraction
	3.9 Summary of Systems Engineering Framework and Processes

	4 Case Studies
	4.1 Introduction and the Purpose of Case Studies
	4.1.1 Identified bias
	4.1.2 Display of Process elements

	4.2 Developmental Case Study: Squash
	4.2.1 Customer wants
	4.2.2 System Requirements
	4.2.3 System Architecture
	4.2.4 System Design
	4.2.5 Systems Engineering In Model Integration
	4.2.6 SEIMI Desire to Test Potential Design
	4.2.7 Design of Experiment
	4.2.8 Define Assumptions of Experimental Set Up
	4.2.9 Define Simulation Boundaries
	4.2.10 Simulation Requirements
	4.2.11 Set Standards if They are To Be Used
	4.2.12 Verification
	4.2.13 Preliminary Architecture
	4.2.14 Verification of Preliminary Architecture
	4.2.15 Preliminary Simulation Design
	4.2.16 Verification of Preliminary Simulation Design
	4.2.17 Are There Any Existing Simulations and Models?
	4.2.18 Systems Engineering of Selection of Existing Models
	4.2.19 Set Firm Architecture
	4.2.20 Assess Computational Requirements
	4.2.21 Verification Of computational Requirements
	4.2.22 Define communications
	4.2.23 Detailed Design
	4.2.24 Define Gaps
	4.2.25 Fill Gaps
	4.2.26 Compete Integration Tables
	4.2.27 Verification of Detailed Design
	4.2.28 Integrate Simulations
	4.2.29 Verification of specific integration points
	4.2.30 Verification of Integrated Simulation as a Whole
	4.2.31 Conduct Experiment
	4.2.32 Feedback Into Design Process

	4.3 Automotive Case Study: ABS and Steering
	4.3.1 The Purpose of the Test
	4.3.2 The system being simulated
	4.3.3 Potential bias
	4.3.4 Customer wants
	4.3.5 System Requirements
	4.3.6 System Architecture
	4.3.7 System Design
	4.3.8 Systems Engineering In Model Integration (SEIMI)
	4.3.9 Desire to Test Something
	4.3.10 Design of Experiment
	4.3.11 Define Assumptions of Experimental Set Up
	4.3.12 Define Simulation Boundaries
	4.3.13 Simulation Requirements
	4.3.14 Set Standards if They Are To Be Used
	4.3.15 Verification of Requirements
	4.3.16 Preliminary Architecture
	4.3.17 Verification of Preliminary Architecture
	4.3.18 Preliminary Simulation Design
	4.3.19 Verification of Preliminary Simulation Design
	4.3.20 Are There Any Existing Simulations And Models
	4.3.21 Systems Engineering of Selection of Existing Models SESEMS

	4.4 Evaluation of Methods
	4.4.1 Strengths of the Proposed Methods
	4.4.2 Weaknesses of the Proposed Methods
	4.4.3 The Effectiveness of the Proposed Methods

	4.5 Summary of Case study Testing

	5 Natural Language Processing
	5.1 Natural Language Processing
	5.1.1 Current Capabilities of Natural Language Processing Technology
	5.1.2 Understanding and Comprehension
	5.1.3 Natural Language Processing Technologies
	5.1.4 Language and the Challenges it Brings to Natural Language Processing
	5.1.5 Formal Languages and Natural Language Processing
	5.1.6 Use of language in Engineering Documents
	5.1.7 Current uses of Natural Language Processing in Engineering Projects
	5.1.8 Current Available Natural Language Processing Tool Libraries

	5.2 The Application of Natural Language Processing
	5.2.1 Descriptive vs Prescriptive Languages
	5.2.2 Implications of Descriptive Language on Engineering Projects
	5.2.3 Implications of Descriptive Language For Natural Language Processing
	5.2.4 Rule and Sentiment Based Natural Language Processing
	5.2.5 Natural Language Processing Proof of Concept
	5.2.6 Natural Language Processing Proof of Concept Requirements
	5.2.7 Process For The Development of Proof of Concept Code
	5.2.8 Capabilities of The Proof of Concept
	5.2.9 Algorithms Implemented in The Proof of Concept
	5.2.10 Structure of the Proof of Concept
	5.2.11 Functionality of Proof of Concept functions
	5.2.12 Where Natural Language Processing Fits into the Proposed Processes
	Testing the Proof of Concept

	5.3 Proof of Concept Testing and Case Study One
	5.3.1 Findings From Test One
	5.3.2 Findings From Test Two

	5.4 Proof of Concept Testing and Case Study Two
	5.4.1 Results From Proof of Concept Testing

	5.5 Summary

	6 Discussion
	6.1 Introduction
	6.2 Philosophical Aspects
	6.2.1 Philosophical Argument of High Fidelity Simulation Integration
	6.2.2 Reductionism
	6.2.3 The Need For Model and Simulation Validation
	6.2.4 Challenges With Knowns and Unknowns
	6.2.5 Impacts of Hardware and Human in the Loop Testing
	6.2.6 System Creators, End Users, and System Customers
	6.2.7 Virtual Simulation Vs Physical Prototype
	6.2.8 The Need and Place of Physical Prototypes
	6.2.9 Time Spent on a Project
	6.2.10 Impact of Increased Computational Power on Modelling and Simulation

	6.3 Simulation and Model Integration Issues
	6.3.1 Implementation Platforms
	6.3.2 Abstraction
	6.3.3 Fidelity
	6.3.4 Time
	6.3.5 Local and Distributed Integration

	6.4 Current Methods of Storing and Interrogating Models From a Repository
	6.5  Ontologies and Their Uses for Integration
	6.5.1 Ontologies Applied to Simulation Integration
	6.5.2 How Ontologies Can Aid in Integration
	6.5.3 Evaluation of Ontologies For This Problem Space

	6.6 Business Challenges With Model and Simulation Integration
	6.6.1 Adoption of New Technologies
	6.6.2 Vendor Lock in and Risks of One Supplier
	6.6.3 The Possibility To Do More With The Same
	6.6.4 Commercial-Off-The Shelf

	6.7  Automation of Engineering Tasks
	6.8 Potential Paradigm Shift Brought About by Model Integration
	6.9 Summary

	7 Conclusion
	7.1 Conclusion
	7.2 Contribution to knowledge
	7.3 Future Work

	8 References
	9 Appendix
	9.1  Appendix Process Elements
	9.1.1 System Creation Lifecycle
	9.1.2 Verification Representation
	9.1.3 Validation Representation
	9.1.4 Systems Engineering in Integration of Simulations
	9.1.5 Systems Engineering of Selection of Existing Models and Simulations
	9.1.6 Defining Gaps in SEIES (A Sub Process)
	9.1.7 Fill Gaps in the Systems Engineering in Integration of Simulations

	9.2 Appendix Identified Topics for Model and Simulation Integration and Reasoning
	9.2.1 Identified Topics for Model and Simulation Structure
	9.2.2 Verification Experiment
	9.2.3 Model Information
	9.2.4 Model Environment

	9.3 Integration tables
	9.3.1 Blank integration tables
	9.3.2 Developmental Case Study Completed Integration Tables

	9.4 NLP Application POC Code
	9.4.1 Setting_up_files_to_compair.py
	9.4.2 A1_Verb_Noun_sentence_pair_fn
	9.4.3 Actual_Dif
	9.4.4 Bar_Chart_compair_two_dics
	9.4.5 Common_identified_words
	9.4.6 Companey_dictonary
	9.4.7 Comparing_identifiec_company_words
	9.4.8 Noun_Verb_search_and_record
	9.4.9 Number_of_times_a_word_Appears
	9.4.10 Same_tag_identifyer
	9.4.11 Tag_count
	9.4.12 Tag_percentage
	9.4.13 Text_charactaristics
	9.4.14 Read_Textfile_andtag

	9.5 Test Files for Proof of Concept Verification
	9.5.1 Test file one
	9.5.2 Test File Two
	9.5.3 Test File Three
	9.5.4 Result of the Proof of Concept Test File
	9.5.5 Verification Analysis Two
	9.5.6  Verification Analysis Three

	9.6 Outputs From The Proof of Concept Application
	9.6.1 Case study One Squash Court
	9.6.2 Analysis one
	9.6.3 Analysis Two
	9.6.4 Analysis Three
	9.6.5 Analysis Four
	9.6.6 Analysis Five
	9.6.7 Analysis Six

	9.7 Documents used for Case study One
	9.7.1 Requirements For Case Study One Squash Ball Moving Around A Court
	9.7.2 Documentation of a Particle Moving in Free Space
	9.7.3 Documentation of Energy Transfer Model
	9.7.4 Documentation of Squash Court in or Out Model

	9.8  Case Study two Automotive Case Study
	9.8.1 Analysis one
	9.8.2 Analysis Two
	9.8.3 Analysis Three
	9.8.4 Analysis Four
	9.8.5 Analysis Five
	9.8.6 Analysis Six

	9.9 Documents used for Case study Two
	9.9.1 Requirements for a Combined Braking and Steering System



