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Abstract: Strain localization bands (SLBs) that appear at early stages of deformation of magnesium 

alloys have been recently associated with heterogeneous activation of deformation twinning. Exper-

imental evidence has demonstrated that such “Lüders-type” band formations dominate the overall 

mechanical behavior of these alloys resulting in sigmoidal type stress-strain curves with a distinct 

plateau followed by pronounced anisotropic hardening. To evaluate the role of SLB formation on 

the local and global mechanical behavior of magnesium alloys, an integrated experimental/compu-

tational approach is presented. The computational part is developed based on custom subroutines 

implemented in a Finite Element Method that combine a plasticity model with a stiffness degrada-

tion approach. Specific inputs from the characterization and testing measurements to the computa-

tional approach are discussed while the numerical results are validated against such available ex-

perimental information, confirming the existence of load drops and the intensification of strain ac-

cumulation at the time of SLB initiation. 
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1. Introduction  

Several numerical approaches to model strain localization bands (SLBs) and shear bands 

have been reported in the past, demonstrating the need to describe the role of SLBs in a multitude 

of materials’ phenomena across scales and temperature. In this context, several types of finite ele-

ment models have been reported. For example, Pietruszczak and Mróz [1] developed a two dimen-

sional model in which a band of prescribed thickness was assumed to pre-exist within the elements 

when a maximum stress intensity was reached. In addition, Tvergaard et al. [2] analyzed a plane 

strain tensile test characterized by a phenomenological plasticity model for a nonlinear elastic solid. 

An alternative approach to enrich the elements-level interpolation with suitably defined shape func-

tions that reproduce localized deformation modes once localization is detected was presented by 

Ortiz et al. [3]. In a similar study by Belytschko et al. [4], localization zones were embedded in plane 

strain elements to capture shear localization. Furthermore, Batra and Kim [5] analyzed shear bands 

emerging in a thermally softening viscoplastic block under simple shear deformation. Later, Rama-

krishnan and Atluri [6] modeled shear band formation in plane strain tension and compression tests 

by introducing a plane of lower shear strength. Furthermore, Shaw and Kyriakides [7] created Lüders 

band instabilities in shape memory alloy tensile strips by introducing geometric imperfections in the 

form of small indentations along the specimen’s side. In addition, Tsukahara and Iung [8] analyzed 

Lüders band formation and propagation in a tensile specimen by introducing a local stress-plastic 

strain law and an evolution rule. Shear bands were also studied in relation to voids [9].  

More recently, crystal plasticity type finite element simulations were employed to investigate 

the effect of texture on the development of strain localization. Specifically, Kuroda and Tvergaard 



3 
 

[10] developed a Taylor-type polycrystalline model to obtain the critical strain at the onset of shear 

banding and its corresponding orientation in Al alloys. Moreover, Jia et al. [11] introduced a non-

crystallographic shear band mechanism in addition to dislocation and twinning in a crystal plasticity 

finite element code, and investigated the crystal orientation effect on the shear band development 

in α-Brass single crystal [12].  

Physically, strain localization bands correspond to regions of localized strain that appear in 

both ductile (e.g. metals) and granular materials (e.g. geomaterials). From a mechanics perspective, 

this band formation constitutes a type of instability. Its origin has been debated on whether or not 

it is primarily related to geometrical, crystallographic or a combination of such effects [13]. For 

instance, it has been suggested that in fcc metals the band formation is preceded by the creation of 

obstacles to homogeneous deformation [13]. In addition, it was reported that the probability of 

banding increases when homogeneous dislocation slip is inhibited, as well as when insufficient crys-

tallographic slip systems are available to accommodate the overall state of stress. In these cases, 

banding acts as a competing, non-crystallographic deformation mode [12], which justifies the need 

to investigate its role in the multiscale mechanical behavior of materials.  

From an experimental point of view, plastic flow localizations have been recently investi-

gated with the use of full field deformation measurements provided by Digital Image Correlation 

(DIC), as also shown by the authors [14], who first (to their best knowledge) demonstrated the 

connection between spatially varying twin activity and strain localizations in the form of bands in 

compression experiments of AZ31 magnesium alloy specimens. Later, Aydiner and Telemez [15] 

developed a multi-scale DIC setup to study the formation of shear bands on two orthogonal faces 
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of AZ31B compression samples. They suggested that each compressive strain increment can be 

mainly accommodated by the emergence of a limited band, leaving the rest of the volume insensible 

to the externally applied load. Reported micrographs further showed the emergence of twins in these 

bands. Twin activity and associated strain localization were also reported by the authors to be 

associated with pronounced out-of-plane deformation profiles on the specimens’ surface, a fact that 

was taken into account to modify the boundary conditions of a viscoplastic self-consistent crystal 

plasticity model coupled with continuous dislocation dynamics used to investigate the evolution of 

twinning during cyclic loading of Mg AZ31 [16]. 

To better understand the case of strain localizations in magnesium, it is well known that 

twinning has a profound effect on its mechanical behavior. Specifically, twin formation causes large 

reorientation (~87o) of the crystal lattice, which manifests itself macroscopically by the sigmoidal 

stress-strain response dominated by a plateau before the strain-hardening region. In fact, it has been 

demonstrated that the near yielding behavior is governed by twin-related strain localizations that 

form macroscopically observed band-type patterns [14,17]. In this context, Changizian et al. [18] 

inspected the microstructure of an AZ81 alloy focusing on the contribution of twinning in accom-

modating the imposed strain and reported that the extensive twin formation observed was accom-

panied by strain localized in “micro-shear” bands. In fact, at early stages of deformation, several 

twin bands and mutual intersections of twins in a neighborhood of grains were reported. Due to the 

high misorientation angles associated with twinning, such twins ultimately act as barriers to overall 

dislocation movement within grains [19]. Therefore, it is also possible that dislocation pile ups cause 

high strain concentrations, which could lead to band formations. Furthermore, noticeable grain 
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refinement inside band regions was observed which was attributed to the continuous dynamic re-

crystallization (DRX) occurring within these bands [20-22].  

In this article, an integrated approach that combines testing and microstructure characteri-

zation results with a novel computational approach is presented. Emphasis is given on capturing 

the mechanistic effects of SLB formation, including the load drop at the onset of localization and 

the strain accumulation in the plateau region where crystallographic effects are important. To 

achieve these goals, a user-defined subroutine that combines plasticity with a stiffness degradation 

scheme is developed. Inputs for this model were obtained by the mechanical testing and character-

ization measurements.  

2. Methodology 

2.1 Computational modeling approach 

The overall objective of the presented integrated method is to model macroscopically observed 

plasticity effects reported in magnesium specimens with SLBs, including the load drop at the onset 

of strain localization and the strain accumulation in the characteristic plateau of the stress-strain 

curve. To this aim, both 2D (plane stress) and 3D models were developed including notched, dogbone 

and hourglass type specimens as shown in Fig. 1, which were also (except the hourglass) tested 

experimentally. The reason for this variety of specimen geometries was to gain understanding on 

the effect of specimen shape and corresponding 3D deformation effects on the computed strain 

localizations and also to obtain direct inputs to the computational approach. 
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Fig. 1: Specimens geometry with marked FOV for DIC measurements in the notched and dogbone 
specimens. The hourglass geometry was used only for modeling 

The computational part of this approach was implemented in a user subroutine (UMAT) in 

ABAQUS [23]. Specifically, actual experimental inputs were used in a user hardening (UHARD) 

subroutine. The plastic anisotropy in Mg alloys, manifested by the significantly different values of 

yield stresses measured depending on crystallographic texture, was considered in the numerical ap-

proach by directly using the corresponding stress-strain curves obtained experimentally. In addition, 

an isotropic hardening scheme was chosen as the plasticity model in which a stiffness degradation 

step was added to represent effects related to SLB formation. In the general case of biaxial or cyclic 

loading, a yield criterion that could account directly for plastic anisotropy and asymmetry effects 

could be introduced [see e.g. 24,25] as an extension of the method described herein. It should be 

noted here that the plasticity model adopted was purposely chosen to be agnostic to more complex 

descriptions of the behavior of magnesium alloys so that it can demonstrate the generality of the 

computational approach in this article in terms of simulating mechanistic effects of SLB formation. 
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In Fig. 2a, a generic specimen under tension is depicted to better explain the strain localization 

effects targeted using the integrated approach in this article. At a certain stage of the applied 

displacement u (or equivalently load), an instability in the form of a SLB is developed at an angle 

θ from the horizontal axis. Further increase of the applied loading results in an increase of the 

band’s width d as its fronts moves at a rate y . Such material instabilities in the form of a band are 

triggered in this investigation through a stiffness degradation approach. Specifically, once an initia-

tion criterion is met, the material stiffness is gradually reduced, creating a softened region. The 

value of the reduced stiffness in this region is obtained by the experiments described next, while this 

approach follows related modeling efforts [10,26].  

The yield function for the monotonic loading case considered in this investigation is defined 

by the following isotropic hardening model  

 ( )
1 2

3
: 0

2 yf r p s
æ ö÷ç ¢ ¢= - - =÷ç ÷ç ÷è ø

σ σ  , (1) 

where ¢σ  is the deviatoric stress tensor, ( )r p  is the isotropic hardening function, ys  is the yield 

stress and p is the equivalent (accumulated) plastic strain, defined as 
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where p  is the equivalent plastic strain rate and pε  is the plastic strain rate tensor. Plastic strain 

increments were determined based on the following plastic flow rule 
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where es  is the effective stress, defined as 

 
1 2

e
3

:
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σ σ  .                                                     (4)  

The elastic strain and stress increments were also determined and all field quantities (stress compo-

nents, effective plastic strain) were updated at the end of each increment.  

Furthermore, a criterion was implemented to initiate the SLB. Specifically, the accumulated 

plastic strain (defined in Eq. (2)) was compared to an a priori defined critical value pcre  which could 

be either arbitrary (i.e. user-provided) or measured using experiments. If this critical value is reached 

or exceeded, a stiffness degradation approach was followed. Specifically, for those elements that 

exhibit a higher accumulated plastic strain, the corresponding stiffness matrix C  and applied load 

(stress) σ  is reduced according to the following relations: 

 ( ) ( )1 , 1 ,D D= - = -C C σ σ   (5) 

where C  is the initial element stiffness, σ  is the effective (‘undamaged’) stress tensor and D is an 

overall (scalar) damage variable. The stiffness and load reductions alter the local stress-strain re-

sponse, as described in Fig. 2b (top). Specifically, the ‘undamaged’ response is denoted with a dashed 

line and the ‘damaged’ path is displayed with a continuous one. In this approach, the damage 

variable is expressed as a function of accumulated strain given by the expression 

 ( ) ,afD de e= ⋅   (6) 

where fd  and a are a degradation factor and a coefficient to characterize damage progression, 

respectively.  
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Fig. 2: (a) Schematic of shear band initiation and growth geometry, (b) stiffness degradation sce-
narios. 

In Fig. 2b (bottom) different stiffness degradation scenarios are depicted. The reduction rates shown 

in Fig. 2b (bottom) could be further connected to the underlying microstructure evolution, actual 

twin formation characteristics including spatial distribution and volume fraction) through a phe-

nomenological description, as for example in Barnett et al. [17]. 

After the criterion is examined at each integration point, the material tangent stiffness ma-

trix is calculated and returned to the finite element solver. An implicit integration scheme based on 

the radial return method was adopted for the purpose of this work. This scheme begins with a 
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with the consistent Jacobian. If yielding occurs ( )0f > , the effective plastic strain increment was 

identified through a Newton’s iteration scheme. A subroutine (UHARD) was used to calculate the 

hardening for the current yield state based on tabulated stress-plastic strain experimental data 

imported into the code. For the i-th increment, the hardening is evaluated as 

 ( )
1

1

i i
y yi
p p
i i

r p
s s

e e

-

-

-
=

-
 , (7) 

where i
ys , p

ie  and 1i
ys
- , 1

p
ie-  are pairs of yield stress and plastic strain values at the current and 

previous increments respectively. 

The overall computational approach is described in the form of a pseudocode in Fig. 3. This 

numerical procedure was successfully implemented in ABAQUS [23] as a user subroutine, suitable 

for both 2D and 3D problems. It should be mentioned that due to the nonlinearities introduced, the 

problem is either solved statically or dynamically with the aid of (artificial) damping. The 2D models 

comprised approximately 50,000 degrees of freedom (DOF), using quadrilateral linear plane stress 

elements (CPS4) and an average mesh size of 0.5 mm. The 3D models consisted of ~400,000 DOF, 

with an average mesh size of 0.5 mm and linear eight-node brick elements (C3D8).  
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Fig. 3: Pseudocode for shear band realization in a finite element code 

The boundary conditions used in all simulations are described in Fig. 4a. The top and bottom 

ends were assumed rigid in accordance with the actual experimental conditions. Hence, the samples 

were fixed at the top rigid area while displacement was applied at the bottom. An additional region 

was identified in the hourglass and notched specimens that corresponded to the area defined by two 

parallel lines set at a distance of 10 mm from the midpoint, where localization in the form of either 

necking or SLB was expected to occur due to geometry. In the case of the notched specimen this 

region was defined based on the FOV in Fig. 1.  
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A mesh sensitivity study was conducted before the implementation of the stiffness degrada-

tion step and pertinent results are shown in Fig. 4b. The objective of this study was to identify the 

mesh size that yields convergent results based on some metric and for a given element type. In 

general, mesh dependency in similar localization problems is a critical parameter to be evaluated as 

reported in the pertinent literature [6,27,28]. In the case of the hourglass specimen, the inset in Fig. 

4b shows the region where the computed equivalent plastic strain at a selected stage of the analysis 

(which corresponded to 5% applied strain) was averaged in the partitioned region at the middle of 

the specimen for three types of elements (linear tetrahedral, linear and quadratic hexahedral) and 

for several mesh densities. Convergence was achieved at ~2.4 × 105 degrees of freedom (DOF) for 

linear tetrahedral and linear hexahedral elements, and at ~4.5 × 105 DOF for quadratic hexahedral 

elements. The corresponding average element sizes for convergent solution were equal to 0.6 mm, 

0.6 mm and 0.8 mm respectively.  

It was further observed that with the application of the criterion the problem under inves-

tigation was dependent not only on the mesh size but on the mesh structure as well. Specifically, 

since the proposed modeling approach does not rely on any imperfection to introduce a strain local-

ization zone, as frequently employed in similar efforts previously reported [7,2], the mesh structure 

could affect the location of SLB initiation. To address this issue, structured meshes were used fol-

lowing similar work in the literature [10,26,7]. In fact, it was observed that even slight mesh non-

uniformities had an effect on the initiation location of strain localizations. Consequently, the mesh 

type used is shown in Fig. 4c, which corresponds to the notched specimen in Fig. 4a. For the models 
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in Fig. 4c, two element sets are shown, one that corresponds to the FOV used to compute the strain 

in the SLB and an additional one that corresponds to the larger FOV, as also shown in Fig. 1. 

 

Fig. 4: (a) Boundary conditions and loading assignment description for the two geometries considered, (b) 
mesh sensitivity study for an hourglass specimen, (c) shear band and full field of view definition in the 

notched specimen 

2.2 Experimental inputs to the computational approach 

Experiments using a commercial magnesium AZ31 alloy were conducted to obtain inputs to 

the computational approach in this investigation. Details on the specimen preparation procedure 

are given in the Appendix. Electron backscatter diffraction (EBSD) data before deformation are 

shown in Fig. 5, demonstrating crystallographic alignment predominantly parallel to the ND direc-

tion for specimens cut perpendicular to the rolling direction (called ND samples), as well as texture 
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predominantly perpendicular to the RD direction resulting to specimens that are called TD, since 

they are cut in the TD direction. Note that the c-axis is aligned with the ND direction for the ND 

samples, while it was perpendicular to the RD direction for the TD samples. Hence, extension 

twinning was expected to occur in tensile testing of the ND samples only.  

Given the achieved microstructures and corresponding specimens, a number of inputs to the 

computational modeling based on experiments were attempted, as explained next in this section. 

 

Fig. 5: Texture and specimen information for the experimental portion of this article 

 2.2.1 Strain inside the SLB 

The double-notched geometry (Fig. 1a) was used to provide an a priori defined strain local-

ization zone and assist the strain quantification in the SLBs. Details on the mechanical testing and 

DIC parameters are given in the Appendix. Fig. 6 shows the obtained stress-strain curves for the 

two textures defined in Fig. 5, in addition to snapshots of the full field strain field along the loading 

direction (y-axis in this case) at four different time instances, displayed for the ND (top row) and 



15 
 

TD (bottom row) specimens, respectively. A fixed range legend was used so that the initiation and 

growth of the SLBs become more evident both as a function of the bulk strain increment as well as 

its geometry. For the stress-strain curves the average full field true strain yye , as shown in the 

snapshots of Fig. 6, was computed by the DIC method. 

As seen in Fig. 6, a strain localization zone is formed on the ND specimen. This zone initiated 

at relative low bulk strain levels ( 0.0028yye = ) compared to the TD specimen ( 0.0044yye = ). 

The strain localization in the TD specimen, which is not favorable to twinning, appears to develop 

in a less geometrically ordered way compared to the almost contained within the band strain local-

ization seen in the ND tension sample, which is twin favorable. Hence, the formation of a pronounced 

SLB in ND specimens could be related to the formation of twinning. In fact, it has been reported 

[29] that when a propagating twin interacts with a grain boundary (or other defects e.g. a stacking 

fault), high stress concentrations may develop and as a result twin nucleation may take place [30]. 

Such induced twinning near grain boundaries was also reported by the authors before, and was 

related to both Schmid factor and dislocation stored energy effects [14,16]. In addition, since twins 

can locally and “autocatalytically” generate further twinning, it was reported earlier by the authors 

that “twin walls” can be formed which were also found to be correlated with strain localization 

patterns [14,17]. Microstructure evidence on twinning is shown later in this section.  

To quantify such strains inside the localized regions shown in Fig. 6 and make comparisons 

between the two types of textures, the available DIC data were used to compute strain values for 

two separate fields of view, schematically shown in Fig. 1, consisting of one inside the shear band 

(diagonally between the two notches marked with the red rectangle in Fig. 1) and one in the entire 
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area shown in Fig. 6 (with dimensions specified in Fig. 1). The resulting average values for both 

FOV are presented in Fig. 7 by the ratio of SB FOV Full FOV
yy yye e  corresponding to the computed strain 

values for both ND and TD specimens. Interestingly, although only qualitative differences can be 

made by visual comparison of the data in Fig. 6, the results in Fig. 7 demonstrate that the average 

longitudinal strain in the SLB region of the ND specimen quickly rises up to a maximum value of 

2.7 times that of the average strain of the sample (at 0.40%yye = ), while the corresponding value 

for the TD specimen reaches a peak of only 1.87 at a much later state of specimen deformation (at 

1.88%yye = ). In fact, the ratio of 1.87 is attained in the ND case at approximately the same strain 

level ( 1.84%yye = ) compared to the TD specimen; hence it is probably geometry determined. 

 

Fig. 6: Strain localization evolution for ND (top row) and TD (bottom row) specimens  

Given the findings in Fig. 7, it could be stated that the sharp increase of the strain in the 

SLB of the ND specimen happens relatively early in the deformation process and at overall strain 
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that the mechanical data in Fig. 6 show to be related to the onset of yielding, which has repeatedly 

been associated with twin nucleation and growth. In addition, the fact that the ratio in the ND case 

appears to exponentially drop past the peak value of 2.7 can be explained by the fact that as the 

overall strain in the specimen increases, the strain in the entire FOV measured in Fig. 6 also in-

creases. Hence, such an increase is mostly due to the localization induced by the adopted notched 

geometry which is common between the ND and TD specimens. Consequently, the results in Fig. 7 

are considered as a first indication of the effect that the strain in the SLB region has on the overall 

plasticity of such magnesium specimens. 

 

Fig. 7: Ratio between average strain in the SLB and full FOV for ND and TD notched specimens 

To reduce the geometry effect in the notched samples, a straight dogbone specimen (Fig. 

1b) was also tested. The details of the experimental setup can be found in the Appendix. Figure 8 

shows the stress-strain strain curve from two samples machined in different directions (in accordance 

with Fig. 5). The stress-strain curves obtained match the corresponding mechanical behavior of 

magnesium alloy and its reported plastic anisotropy. In addition, DIC strain maps of selected early 
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strain stages from both ND (left) and TD (right) samples with fixed legend are shown to illustrate 

the growth of SLB in the ND compared to the TD specimen. As seen in Fig. 8, the strain localization 

became noticeable at very low strain ( 0.20%yye = ) in the ND specimen while no localization is 

observed at the same strain increment in the TD specimen. Moreover, while at 0.54%yye =  the 

maximum strain in the SLB of the ND sample was found equal to max 1.50%yye =  the TD specimen 

had a much smaller peak ( max 1.05%yye = ) at a different location. 

 

Fig. 8: Strain localization evolution for ND (left) and TD (right) specimens 

The ratio computed and reported in Fig. 7 is also shown in Fig. 9 for the dogbone specimens 

of Fig. 8. Interestingly, the straight ND specimen exhibits a similar behavior as the notched one. 
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Specifically, the average strain in the SLB region (marked with the red box) rises to 2.51 times more 

than the average strain (at 0.35%yye = ) in ND specimen, while the corresponding ratio in TD 

sample peaks at 1.68 (at 1.12%yye = ). The maximum value of localized strain in the ND specimen 

drops much faster compared to the corresponding value in the notched sample. This could be at-

tributed to the fact that the notched specimen affects the location and growth of SLBs, while in the 

straight specimen such localizations can propagate freely. Nevertheless, the initiation of the SLB 

matches well the one observed in the notched specimen, providing strong evidence that it might be 

caused by microstructural effects, which is explored next. 

 

Fig. 9: Ratio between average strain in the SLB and full FOV for ND and TD dogbone specimens 

To investigate the origin of strain localizations, post mortem microscopy was performed on 

both types of specimens. Several twins were found throughout the SLB of the ND notched specimens, 

as shown in Fig. 10a. Such twinning activity could be thought of as a response to local strain 

accommodation since not all grains in the area with macroscopic strain localization was found to be 

twinned. In this case, the observed twins were found, as shown in Fig. 10b to extend past several 
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grains within areas of the SLB, which agrees with previous findings by the authors [14] and provides 

further evidence on the role of twinning in strain localization of  magnesium alloys. Twin boundaries 

are highlighted in Fig. 10a and 10b, while the misorientation angle was found to be between 86° and 

87° which is in agreement with previous work. This further corroborates the findings reported by 

Barnett et al. [17], Beyerlein et al. [31], and Hazeli et al. [14]. On the other hand, for the TD texture, 

the EBSD scan performed after loading showed no indication of twinning, as expected. It is im-

portant to note that the cross-boundary twinning activity reported herein appears to follow the 

direction of the band front. This observation can therefore be regarded as evidence of twinning 

acting as a barrier to the motion of the SLB front, which results in progressive reduction of the 

front’s rate of growth (denoted as y  in Fig. 4); it could subsequently also lead to an increase of 

strain levels inside the band.  

 
 

Fig. 10: (a) EBSD-IQ scan around the edge of SLB region for the ND specimen (b) extension twins 

Similar evidence is also found in the straight ND specimen. A separate interrupted test 

within the Scanning Electron Microscope was conducted with in-situ EBSD providing microstruc-

ture evolution in the plateau region. Four EBSD scans were taken at a randomly selected location 

for four strain values, as shown in Fig. 11. The twin area fraction, defined as the number of grains 
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that have been twinned over the total number of grains, grew during the plateau region while a 

large jump between 2e  and 3e was observed. At 3e , the area monitored revealed extensive twinning 

activity with lots of cross-boundary twins similar to previous results shown in Fig. 10. Moreover the 

jump in the twin area fraction is accompanied by a minimum value of stiffness as quantified by the 

derivative shown in Fig. 11. This minimum indicates that softening occurs due to texture changes 

caused by changes in the rate of twinning as quantified by the twin area fraction. After 3e  work 

hardening seems to start affecting the overall deformation. 

 

Fig. 11: EBSD-IQ scans at different stages of applied loading and corresponding stress-strain response 
along with twin fraction and rate of change of stress over strain 

2.2.2 Load drop at the initiation of the SLB 

The critical strain value for stiffness degradation pcre  defined in the computational approach 

section was determined from the DIC results obtained for dogbone specimens. Specifically, load 
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serrations attributed to dislocation interactions have been reported in the literature that could po-

tentially cause Lüders bands near yielding [32]. Moreover, significant load drops have been observed 

by the authors in magnesium single crystal compression testing due to the initiation of strain local-

ization [33]. Taking both these remarks into account, the force vs time response is plotted in Fig. 

12 and is compared to the first derivative over time, as load drops are expected to trigger changes 

in the first derivative.  

 

Fig. 12: (a) Force vs time plot for a straight ND specimen; (b) evolution of the first derivative of the force 
over time and the standard deviation of the average strain in the FOV; (c) corresponding full field plot at 

initiation time 

In addition, the standard deviation of the strain values inside the FOV was also calculated 

for each time instance. The occurrence of SLB is expected to increase the standard deviation as the 
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increased strain in the SLB would deviate from the average value in the FOV. In fact, and as seen 

in Fig. 12, load drops are accompanied by changes of the derivative and jumps in the standard 

deviation. This provides convincing evidence that a good estimate of the critical strain value to be 

used in modeling could be . 0.177%cre = . Actually, the DIC snapshot at this time instance is also 

shown in Fig. 12c and demonstrates the initiation of a SLB at the bottom half of the specimen. 

2.2.3 Stiffness degradation quantification  

After identifying the critical strain for damage initiation, the stiffness degradation in the 

plateau was also attempted to be quantified from the conducted experiments. In fact, it was reported 

previously that stiffness drops due to texture changes caused by deformation twinning [34]. To 

measure this softening response, a separate fully reversed cyclic loading of the straight ND sample 

was conducted and the obtained stress-strain curve is shown in Fig. 13. Specifically, the specimen 

was loaded until within the plateau region. An estimate of the specimen’s stiffness in this region 

was obtained by computing the slope in the unloading portion and was found to be equal to 13.9 

GPa, which agrees with previously reported values and is considerably less than the stiffness meas-

ured during tensile loading confirming the softening effect. 
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Fig. 13: Loading-unloading process to evaluate the stiffness in the plateau region  

3. Results and discussion 

3.1  Strain inside the SLB 

The objective of the modeling approach was to create a methodology to compute stain locali-

zations and relate them to global effects, similar to the experimental portion of this investigation. 

Several geometries were computationally tested to understand geometrical contributions to localized 

deformations in addition to effects caused by the adopted modeling approach. Specifically, the dou-

ble notched and the hourglass specimens were used in FEM simulations. The height of the hourglass 

specimen was 152.54 mm, its thickness equal to 3.18 mm while the minimum width was 10 mm and 

the arc length 176.91 mm (see also Fig. 1). 

Computational results for the case of the notched specimen are shown in Fig. 14. Specifically, 

in Fig. 14a stress-strain curves are shown for both ND and TD specimens calculated by using strain 

averages computed in the larger FOV, as described in Fig. 4c. The response of the TD and ND 
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specimens numerically computed agrees with the available experimental data (Fig. 6), which was 

expected as actual stress-strain curves were used to define the plasticity in these modes. The response 

of the TD specimen for which in addition to plasticity, a strain-based stiffness degradation initiation 

criterion of . 0.177%cre =  was used is also plotted in this figure (denoted as ‘damaged’ as opposed 

to ‘undamaged’ which did not employ such criterion) to demonstrate the capability of the approach 

to affect global and local strain values. The objective of studying a ‘damaged’ TD specimen was to 

demonstrate the way the softening criterion can alter an arbitrary nonlinear hardening material law, 

so that it could model the mechanistic contribution that could be caused by the sudden activation 

of a plasticity mechanism, such as twinning in this case. The parameters fd  and a were set equal 

to 1.98 and 0.01, respectively, in order to match the softening response of Fig. 13. The calibration 

of these parameters was found to be a non-trivial task because the initiation criterion, the stress-

strain response, and twin evolution taken from experiments were actually based on average values 

obtained by full field results either of DIC or EBSD of a certain area. This information is computa-

tionally imposed at a finite element level with the outputs being averaged again over a given FOV. 

Therefore, the parameters fd  and a are selected in order to match the experimentally observed 

macroscopic response. Depending on the mesh discretization, the damage variable evolution decreas-

ing rate needs to be adjusted so that the softened region would propagate spatially in an appropriate 

way for the average stress-strain fields to match the macroscopic experimental values. 
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Fig. 14: (a) Stress-strain curves for damaged TD and undamaged TD and ND specimens, (b) ratio between 
average strain in the shear band and full FOV region, (c) strain evolution TD damaged specimens 

Based on the results presented in Fig. 14 it can be observed that the stiffness of the damaged 

specimen diverges from that of the undamaged at very early strain stages. This behavior is expected 

since some elements in these simulations reach the critical value selected during the initial loading 

stages. Consequently, their stiffness is degraded and as a result the global stiffness computed is also 

reduced with respect to the undamaged specimen. In addition, a stress drop was observed at 

0.16%e »  (point A) leading to a local minimum at 0.28 %e »  (point B) followed by a subsequent 

increase of stress as a function of average strain in the loading direction. This type of local decrease 

followed by an increase in the stress-strain curve is representative of a shear band formation in 

similar computational efforts reported in the pertinent literature (see e.g. [35,8]). 
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To further characterize the strain effects in these simulations, the average strain values were 

extracted from the two element sets defined in Fig. 4c and in accordance with the results in Fig. 7 

and Fig. 9. The ratio of the average strain in the two regions, defined again as SB FOV Full FOV
yy yye e  

is shown in Fig. 14b, as a function of the average strain in the full field region. The general trend 

computationally obtained is similar to the experimental results in Fig. 7; the maximum ratio value 

computed in the ND specimen was equal to 2.18 (as opposed to 2.7 measured by the DIC data) and 

was achieved at 0.39%yye = . The same ratio in the (undamaged) TD specimen is also in good 

agreement with the experimental results, showing a peak value of 2.16 much later in the deformation 

history (~4%). Interestingly, the response of the damaged TD specimen resembles the behavior of 

the ND specimen in the early strain stages, providing evidence on the effect of the adopted plasticity 

and damage initiation criterion on global trends. Indeed, there is a distinct maximum value of 2.07 

at 0.26%yye =  (which is very close to the value of 0.4% measured experimentally) followed by a 

monotonically decreasing response. On the other hand, application of the damage criterion on an 

ND specimen improves the response, as the maximum ratio value computed was 2.64, which is very 

close to the DIC value. However, the strain value in the SLB is overestimated as further deformation 

is applied, since the ratio does not drop as quickly compared with the experimental plots (Fig. 7).  

Regarding the local aspect of these results, strain results are presented for the damaged TD 

case in Fig. 14c at four different loading instances which were selected so that the average strain 

levels in the chosen FOV are the same as the DIC results in Fig. 6. A fixed colormap was also used 

to track the initiation and development of strain localizations. In general, a direct comparison of 
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Fig. 6 with Fig. 14c shows that the softening criterion spatially alters the computed strain localiza-

tions, as the shear band thickness for the damaged specimen appears to be reduced compared to the 

undamaged case (not shown but related results are shown in the hourglass case) for a given corre-

sponding loading frame; this is particularly visible in the third frame shown in Fig. 14c.  

 

Fig. 15: Strain plots in (a) TD and (b) ND specimens with (right) or without (left) the application of the 
stiffness degradation step 

Moreover, results from the hourglass specimen are presented in Fig. 15, both for TD and 

ND specimens for damaged and undamaged cases. This geometry does not introduce any imperfec-

tions (e.g. notches, width variation) to trigger a strain localization. As shown in Fig. 15a, the only 

way to induce such localizations is by using the plasticity law in conjunction with the proposed 

damage criterion. Otherwise, a homogeneous deformation is observed in all loading ranges. For the 

ND case in particular, one could expect that the implementation of the experimentally extracted 

material law would be adequate to produce localized deformation, as shown in Fig 8. However, this 
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is not the case, as the material law is the average response over a specified field of view and in 

consequence localized effects are smeared out. A SLB is produced in this case (Fig 15b) by using a 

damage criterion, as described earlier.  

3.2 Load drop at the initiation of the SLB 

In order to further explore the capability of the proposed modeling approach in initiating 

SLBs and creating added effects similar to those observed experimentally, the results in Fig. 16 were 

computed. The specimen geometry chosen for this analysis is suitable to study deformation effects 

in a geometrically predetermined region. The overall computed stress-strain responses for both ND 

and TD (damaged and undamaged) specimens is shown which agree with the experimental data 

(given in Fig. 8). The stiffness degradation criterion used for the ‘damaged’ case was . 0.01p
cre =  in 

this example to examine the control of the criterion in initiating SLBs and form the instability after 

the yielding region; the parameters fd  and a were equal to 0.7 and 0.5 respectively to achieve this 

goal. A stress drop can be seen at 1.24%yye »  and a local minimum is reached at 1.48%yye » . 

Thereafter, a wavy response is obtained followed by a strain hardening behavior. Furthermore, the 

average longitudinal strain in the FOV as a function of the applied strain for the TD damaged and 

undamaged specimens is plotted in Fig. 16a. The strain in the undamaged specimen monotonically 

increases at an almost constant rate, while the damaged specimen follows the same path until a 

sudden jump at applied strain 0.43%e » . This increase of strain corresponds to the range from the 

stress drop to the stress local minimum, that is from 1.24%yye »  to 1.48%yye » . After this 

point, the strain is increasing at a higher rate.  
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In Fig. 16b representative plots of the longitudinal strain field for the two cases are given. 

The legend range is fixed and the time instances are marked on the stress-strain and strain evolution 

plots with Latin numerals and actual numbers. The top row fields reveal a necking mode for the 

deformation of the undamaged TD specimen. The bottom row figures depict how a SLB initiates, 

grows along the specimen’s width and increases its thickness. It should be mentioned that no special 

considerations were made to model the band’s thickness and growth. Consequently, the movement 

of the band’s front was governed by the element stiffness degradation which appeared to follow the 

‘kinematic docking’ process, described by Ramakrishnan and Atluri [6], referring to the fact that 

the band’s fronts are nearly linear suggesting some sort of kinematic influence of elements that 

degrades their stiffness, as well as the stiffness of their neighbors.  

 

Fig. 16: (a) Stress-strain and strain evolution curves for an undamaged and a damaged TD specimens, (b) 
representative strain contours for the two cases. 
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3.3  Geometry of the SLB 

Other related geometrical properties of the computed strain localizations including their 

width and relative angle, were determined in Fig. 17. The range was fixed while various mesh 

densities were employed to investigate the repeatability of these calculations. It should be mentioned 

at this point, that these numerical results were calculated by averaging values at nodes common to 

two or more elements when these elements lied in the same region. A threshold was applied to 

control such averaging and smooth the solution. Under these conditions, the results for the strain 

localization width and relative angle evolution are presented in Fig. 17.  

As mentioned earlier, the SLB starts forming at applied strain 0.43%e » . After growing 

through the specimen’s width, the band’s fronts are moving at almost a constant rate as indicated 

by the linear trend shown in Fig. 17a. It should be reminded that the mesh dependence study 

presented earlier suggested a mesh density of 0.6 mm for convergent solutions. Accordingly, the 

shear band angle evolution as a function of applied strain is shown in Fig. 17b. As the band forms 

and its thickness starts to grow, the angle increases up to a maximum value of ~32.5°, which is in 

agreement with the analytical prediction of 1 2 o33q n= » , where ν is the Poisson ratio [36]. The 

angle is then affected by the specimen’s geometry and the accumulated strain in the SLB and 

therefore decreases as the band approaches the wider parts of the specimen. 
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Fig. 17: SLB (a) thickness and (b) angle as a function of applied strain for different mesh sizes 

4. Concluding remarks 

The effects of strain localizations in the form of bands in magnesium alloys were investigated 

in this article through an integrated experimental and computational approach. The experimental 

portion of this investigation targeted the comparison of the local and bulk mechanical behavior of 

specimens that had predetermined textures that either favored or not the activation of deformation 

twinning. The specific geometry of the specimens used facilitated the comparison of the strain lo-

calizations that were induced by the externally applied tensile load, while further allowing post 

mortem microscopic investigation. Overall, three measurable effects were captured. The first relates 

to the strain accumulation inside such bands, the second on the initiation of band formation and 

the third on the softening observed past this initiation. Microscopic investigation showed twin ac-

tivity near the strain localization band fronts. In addition, the strains measured within the localiza-

tion regions were found to be significantly larger in the specimens which were favorable to twinning. 



33 
 

Given these experimental inputs, bands in the computational approach were not triggered by any 

artificial change in geometry (e.g. side indentation, thickness alteration) but were instigated through 

a stiffness degradation step, in accordance with the softening that was measured. Furthermore, the 

simulation results agreed well with the corresponding experimental data demonstrating that strain 

localization band formation affects both local, as manifested by the strain accumulation in the band 

regions, and bulk mechanical behavior as computed by effects observed at the stress-strain level. On 

the other hand, the presented integrated method does not eliminate the mesh dependence often 

observed in strain localization simulations. In conclusion, this investigation contributes in the un-

derstanding of the role of strain localization bands on the mechanical behavior of magnesium allows, 

while it also allows for further refinement of the constitutive description of such instabilities. 

 

Acknowledgments 

The corresponding author acknowledges the financial support provided by the National Science 

Foundation through the CMMI #1434506 award to Drexel University. He also acknowledges the 

technical support received under the National Aeronautics and Space Administration Space Act 

Agreement, No. SAA1-19439 with Langley Research Center. The results reported were obtained by 

using computational resources supported by Drexel's University Research Computing Facility. This 

investigation was also supported by the funds received in terms of fellowship to M. Cabal from the 

Greater Philadelphia Region Louis Strokes Alliance for Minority Participation.  

 

 



34 
 

Appendix 

Material 

Two sets of samples were machined from two different commercial magnesium AZ31 alloy 

(3 wt. % Al and 1 wt. % Zn) plates. The notched specimens were prepared from a 25.4 mm thick 

plate in the soft annealed condition (O temper). Two cubes were extruded from the plate and then 

compressed to 5% load in either the normal to rolling (ND) or transverse to rolling (TD) direction. 

The cubes were later held at 500oC for 50 hours to increase their grain size. Texture and grain size 

were measured in samples cut from the normal direction. The straight specimens were prepared 

from a 50.8 mm thick plate in H24 condition. Cubes were cut from the plate and heat treated to O 

temper at 350oC for 1 hour. Both tensile specimens were machined from the cubes using Electrical 

Discharged Machining (EDM) according to ASTM E606.  

Samples were mechanically ground using 800, 1200, and 2400 SiC papers. Subsequent pol-

ishing was carried out using an alcohol based diamond solution through a sequence of 6 μm, 3 μm, 

and 1 μm Buehler’s TriDent and Struers’ Nap polishing cloths. Polishing was completed using a 

mixed solution comprising of 25% MasterPrepTM Polishing Suspension (0.05μm), 5% LiquinoxTM 

critical-cleaning liquid detergent, and 70% water. In each polishing step, ultrasonic cleansing was 

used to completely eliminate adhered particles from previous polishing courses. Specimens were then 

immersed in a chemical polishing solution comprised of 5% nitric acid, 15% acetic acid, 20% distilled 

water, and 60% ethanol for 3 seconds.  

All EBSD data was collected with a Scanning Electron Microscope (SEM) FEI XL30 

equipped with an EBSD detector, controlled by the TSL software. Grain information, including 
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lattice orientations and grain size, were measured at intervals of 2 μm on a hexagonal grid by 

automated acquisition and processing of backscatter diffraction patterns. The accelerating voltage 

and working distance were set at 30 kV and 15 mm, respectively. EBSD data was post processed 

using MTEX algorithm in MATLAB platform [37].  

Mechanical Testing 

A speckle pattern was applied on the surface of samples before testing for DIC measure-

ments. A white paint coating was sprayed using at aerosol canister, while black dots were scattered 

on top using an airbrush. The notched samples were tested using a MTS 858 table top system with 

a load cell of 3 kips (13.35 kN). The testing was carried out using displacement control, at a rate of 

5.315 × 10-4 in/s (1.35 × 10-2 mm/s). Experiments of the ND and TD specimens both to failure and 

to a pre-determined value of engineering strain are reported in this article. DIC was carried out by 

an optical microscope with dual (2) cameras in concurrence with the commercial software VIC-3D 

(commercially available by Correlated Solutions, Inc.) monitored deformation in a Field of View 

(FOV) of 5 mm × 6 mm size during two tension tests (Fig. 1). Along with the selected FOV, a 

narrower diagonal area marked in Fig. 1 was used to quantify the deformation of the shear band 

region only. 

The straight specimens were tested with a screw-driven Gatan MTEST stage with a 2000 N 

load cell. The tests were conducted using displacement control with a rate of 0.1 mm/min. The 

Gatan stage has pre-tilted grips providing the capability for in-situ EBSD measurement testing 

inside of SEM. DIC measurements were attained using a GOM (Trillion) 5M dual cameras setup 

and the ARAMIS software. 
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