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Abstract

The ageing state of the world's nuclear power infrastructure, and the need to reduce hu-

manity's dependency on fossil fuels, requires that this electrical energy generating capacity

is replaced. Economic factors, and its physical and chemical properties, make high purity

iron-chromium binary alloys a strong candidate for use in the construction of the pressure

vessels of the next generation of nuclear reactors. This relatively inexpensive metal retains

the oxidation resistance property of so-called �stainless steel� alloys, and has demonstrated

dimensional stability and low degradation under harsh experimental environments of tem-

perature and radiation.

In this work, we consider radiation induced interstitial damage to the atomic lattices

of iron-chromium binary alloys using the atomistic modelling methods, Molecular Dynamics

and Adaptive Kinetic Monte Carlo, simulating collision cascade sequences, and the migration

of defects in the aftermath. Variations in chromium content does not e�ect the initial

damage production in terms of the number of Frenkel pairs produced, but iron and chromium

atoms are not evenly distributed in defect atoms with respect to the bulk concentration.

In simulations conducted at low temperature, chromium is under-represented, and at high

temperature, a greater proportion of interstitial atoms are chromium than in the lattice

overall. The latter phenomena is most strongly pronounced in systems of low bulk chromium

content. During the simulation of post-cascade defect migration, interstitials atoms are

observed to form temporary clusters and vacancies align along adjacent lattice sites, with

the two types of defect also migrating to annihilate by recombination.

Calculating the energy spectra of cascade events corresponding to an example experimen-

tal con�guration using the SRIM package, we investigated the evolution of lattice systems

in which a sequence of multiple cascade events occurred, both with and without a physically

representative time gap between events. These simulations gave us the opportunity to ob-

serve the behaviour of cascades in the proximity of damage remaining from previous events,

such as the promotion of defect clustering when this occurs.
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Chapter 1

Introduction and Background

The majority of the world's nuclear reactors were built between 1970 and 1985 [1]. With

public opinion turning against the construction of new nuclear power plants, following dis-

asters such as the Chernobyl incident of 1986, we are now left with many of our reactors

operating beyond their originally intended lifespans, and in need of decommissioning and

replacement. For example, in the United Kingdom, nuclear power accounts for 21% of the

country's electrical supply, but under the government's current schedule, just under half of

the �fteen reactors active at the time of writing shall have been decommissioned by 2025 [2].

With renewable technologies having not yet reached the maturity required to form the core

of most countries' civil energy infrastructures, and with traditional fossil-fuel technologies

rendered unattractive by climatological, environmental, and resource availability concerns,

the prospect of constructing new nuclear power installations must be taken seriously.

In the interest of e�ciency, the fourth generation of nuclear power plants will be required

to endure elevated temperatures and harsh radiation environments, while operating safely

for upwards of six decades [3], and in potentia nuclear fusion devices will produce an even

greater hostility of internal environment [4]. For a summary of proposed GenIV designs'

anticipated operating conditions see �gure 1.1.

Metals subjected to radiation are known to experience degradation of their physical

properties, including swelling, embrittlement, and the segregation of their alloying elements
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Figure 1.1: Temperature and anticipated radiation damage conditions for various nuclear reactors, given
in units of degrees Celsius and displacements per atom, see section 1.1 (image from [5]). Proposed GenIV
reactors: VHTR � Very High Temperature Reactor, MSR � Molten-Salt Reactor, SCWR � Super-Critical
Water-cooled Reactor, GFR � Gas-cooled Fast Reactor, SFR � Sodium-cooled Fast Reactor, LFR � Lead-
cooled Fast Reactor, TWR � Travelling Wave Reactor.

[6,7], as is highly visible in �gure 1.2. An important candidate material for new reactors are

high purity Ferritic/Marsinetic steels, having demonstrated dimensional stability and creep

resistance during radiation exposure [8�10], along with thermal shock resistance [11]. In a

nuclear reactor, the form of radiation of predominant concern is that of energetic neutrons,

but few facilities have the means to conduct neutron-based experimentation [12], and to

do so is both expensive and time consuming, given safety concerns arising from radiation

induced activation [13]. Cheaper and faster alternatives exist, such as electron, proton, light

ion, or heavy ion irradiation, but none of these produce results perfectly analogous to those

of neutrons [12,14]. Furthermore, physical analysis techniques struggle to detect the damage

introduced to samples by irradiation before the defects have accumulated into clusters on

the order of nanometres in size [15].

For these reasons, we turn to atomistic modelling, employing the Molecular Dynamics

(MD) and Adaptive Kinetic Monte Carlo1 (AKMC) methods to simulate radiation induced

collision cascades in iron-chromium binary alloys, and the recovery process that follows. It

is the purpose of this work to contribute to informing the important materials engineering

1Not to be confused with Atomistic Kinetic Monte Carlo
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decisions that must be considered for the construction of the next generation of nuclear

power plants.

Figure 1.2: The right-hand steel rod has been irradiated using neutrons (n) of kinetic energy, E > 0.1 MeV,
with a overall dose of 1.5 × 1023 n · cm−2. By comparison to the control sample, seen on the left, it has
swollen considerably [16,17].

1.1 Important Terminology

Atomic Percentage (at.%) This notation is used to describe the composition of a material

in terms of the relative abundance of atomic species, as opposed to specifying the

concentrations by mass (wt.%). Since we study binary alloys in this work, we can quote

an iron-chromium concentration unambiguously with one number, e.g. FeCr10 at.% ,

which refers to a material whose bulk contains nine iron atoms for every chromium

atom.

Mixing Enthalpy The thermodynamical term used to describe the system energy change
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when two or more substances are mixed without a chemical reaction occurring. En-

dothermic processes are indicated by positive mixing enthalpies, while negative mixing

enthalpies are given when the process is exothermic [18]. The alloying of BCC iron

and chromium has the unusual property of negative mixing enthalpy for low chromium

concentrations, and as a consequence, the largest ideal lattice parameter (see section

1.1.1) that can be achieved by an iron-chromium mixture is greater than the ideal

lattice parameters of either metal individually [19�21].

Primary Knock-on Atom (PKA) An atom that, through interaction with an incident

particle (a neutron or alpha particle, for example), receives a large amount of kinetic

energy, the dissipation of which to its surroundings results in a collision cascade. To

give the reader a sense of scale, an iron or chromium atom with a kinetic energy of

1 keV is travelling at approximately 60 km/s.

Collision Cascade An event wherein a PKA introduces damage to an atomic lattice by

the displacement of its neighbours.

Displacements per Atom (DPA) A generalised unit used in radiation materials science

to describe an object's accumulated radiation induced damage in terms of the average

number of times each atom in the system has been displaced from a lattice site.

Cascade Splitting When a high energy PKA will transfer large amounts of momentum to

a small number of secondary knock-on atoms, which propagate in diverging directions,

and e�ectively cause their own cascade events in other parts of the system.

Ballistic Phase The period of the simulation during which there are atoms with su�cient

kinetic energy to move easily between lattice sites.

Recovery Phase The period after the equipartition of the kinetic energy introduced by the

PKA occurs when the time spent by the system in a given state becomes large relative

to the ballistic phase, and its dynamics are best described by transition state theory.
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Equipartition of Energy The phenomenon where additional kinetic energy introduced

to the lattice system tends towards being evenly distributed between thermal and

potential energy, given su�cient time.

Vacancy A lattice site where an atom is absent.

Interstitial An atom which does not have its own lattice site.

Lone Interstitial Atom An atom which is not situated on a lattice site (LIA).

Split-Interstitial/Dumbbell A Split-Interstitial (SI) is a pair of atoms occupying the

same lattice site, that is, lying either side of it. Colloquially, these also known as

dumbbells, a moniker which stems from their appearance on many diagrams, such as

in �gure 1.3. The orientation of a split-interstitial relative to the lattice structure is

speci�ed using Millier indices.

Split-Vacancy A defect con�guration where an interstitial atom resides between two vacant

lattice sites.

Defect Atom An atom which is part of a lattice defect object. For example, if one has

a lattice with three lone interstitials and �ve split-interstitials, there are a total of

thirteen defect atoms.

Frenkel Pair When an ideal lattice is disrupted, and an atom is removed from a lattice

site, both a vacancy and an interstitial atom are created. Together, they are referred

to as a Frenkel pair.

Recombination When a Frenkel pair is annihilated by an interstitial atom moving into a

vacant lattice site.

Replacement Collision Sequence Often occurring during collision cascades, this is a

temporary displacement of atoms from the lattice along a straight line, normally leav-
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ing the atom at the end of the chain as an interstitial, while the others relax back onto

their original sites.

Defect Formation Energy An ideal lattice is the lowest energy state for a system of

atoms. If a defect is introduced, this implies that the energy of the system has increased.

To calculate the formation energy, Ef, of some defect, we use the following equation:

Ef = Edef
total −

∑
m

(
Ndef
m

Nbulk
m

Ebulk
m

)
(1.1)

where Edef
total is the total system energy with a defect, and the sum over m represents

all the atomic species present in the system. Ebulk
m is the energy of all the atoms of

element m in a system without defects, Nbulk
m is the number of atoms of element m

in a defectless system, and Ndef
m is the number of atoms of element m in the defect

system [22].

In �gure 1.3, four varieties of defect are shown.

1.1.1 The Body Centred Cubic Lattice Structure

At the mesoscopic scale, metals take the form of crystals, whose atoms may be described as

being arranged in a Bravais lattice, formed by a repeating pattern of identical unit cells, and

surrounded by a free electron gas [23]. The iron-chromium binary alloys studied in this work

have a Body Centred Cubic (BCC) structure. The atoms of the BCC structure are arranged

into repeating cubes, each with an additional single atom placed at its centre, as shown in

�gure 1.4. The distance over which the pattern repeats itself is called the lattice parameter,

and is denoted a0. In the BCC structure, this distance is also the second nearest neighbour

distance. The �rst nearest neighbour distance is the separation between one of the cube's

vertex atoms, and the central atom. The distances to, and number of, neighbours up to the

�fth nearest neighbour are shown in table 1.1.
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(a) Single Atom Vacancy (b) <100> Dumbbell

(c) <110> Dumbbell (d) <111> Dumbbell

Figure 1.3: Illustration of four types of defect in a BCC lattice. Miller indices are used to indicate orientation
relative to the lattice structure.
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Figure 1.4: The Body Centred Cubic lattice structure, with �rst and second nearest neighbour distances
labelled as A and B respectively.

Table 1.1: The distances to, and number of, neighbours up to the �fth nearest neighbour in the Body Centred
Cubic lattice structure.

Nth Nearest
Neighbour

Separation/a0

Number of
Nth Nearest
Neighbours

1st
√

3/2 8

2nd 1 6

3rd
√

2 12

4th
√

11/2 12

5th
√

3 8

1.1.2 PKA Vectors

The spacial direction of travel of a PKA is called the PKA vector, and is de�ned relative

to the surrounding crystal structure. PKA vectors are speci�ed using Millier indices, in the

form <a b c>, such that this speci�es any point on the unit sphere that can be speci�ed via

a permutation of the given a, b, and c values.
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1.2 Literature Context & Research Aims

To put this project into context amongst the existing literature, in this section we discuss

prior works, which are divided into those that discuss the empirical physical properties

of relevant steels and the experimental work performed, and those utilising computational

methodologies in the simulation of irradiated materials.

1.2.1 Experimental Work & the Properties of Steel

It is apparent from empirical evidence, that Ferritic/Marsenetic (F/M) steels demonstrate

more suitable behaviour than Austenitic steels2 for nuclear reactor construction purposes,

exhibiting lesser thermal expansion, as well as less swelling or segregation when subject to

radiation [10, 24], su�ering little nuclear activation [25]. Furthermore, incorporating even

modest amounts of chromium into the steel bene�ts its radiation damage resistance [24, 26,

27], as well as introducing the oxidation resistance quality [28], from which the moniker,

�stainless steel� is derived. Nevertheless, F/M steels are not immune to degradation; even

without the e�ects of radiation, chromium is observed separating from the iron bulk at

grain boundaries when heated [10]. Radiation is found to promote segregation in metals,

particularly at temperatures approximate to one third of their melting point3 [30]; With the

segregation of materials comes the formation of chromium depleted regions, vulnerable to

corrosion by oxidation, as observed by Brodyanski et al. 2011 [31].

Bhattacharya et al. 2014 [28] studied bombardment of iron-chromium binary alloys with

chromium content between 5.8 and 15.1 at.%, using 2 MeV Fe2+ and 2 MeV He+ ions; they

found the chromium segregation induced was inversely proportional to the bulk chromium

content. They performed their experimentation at 773 Kelvin, but by annealing their samples

post-irradiation at 900 Kelvin, the apparent damage to the lattice structure healed, without

the restoration of chromium distribution. The work of Was et al. 2011 [32] indicates that the

2A phase of steel with a Face Centred Cubic (FCC) structure
3Steels typically have melting points in the region of 1700 to 1800 Kelvin [29]
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formation of chromium enriched regions is more likely in alloys of low bulk concentration,

while Hu et al. 2013 [10] found evidence that the presence of Carbon in their samples

inhibited the segregation of chromium. Little and Stow 1979 [26] and Garner et al. 2000 [24]

showed that by comparison to pure iron, the addition of chromium reduces radiation induced

swelling. The optimal range for chromium concentration appears to be in the range 9 and

12 wt.% [8, 26], with concentrations between 2 and 6 wt.% yielding inferior performance by

comparison [33�35]. Suganuma and Kayano 1983 [36] recorded another notable di�erence

between iron and iron-chromium alloys, insofar as the latter must be annealed at a higher

temperature following irradiation to see the recovery of the lattice structure, with Arakawa

et al. 2004 [37] �nding that the presence of chromium atoms suppresses the mobility of

interstitial atom structures.

1.2.2 Computational Studies

When studying radiation damage e�ects, the simulation of collision cascades using MD (see

Chapter 2) is frequently the starting point for computational studies. Given the experimen-

tal evidence collected regarding the optimal range for the bulk concentration of chromium

in F/M steels, the focus of the literature has been on binary alloys between 0 to 15 at.%

chromium [38�46]. Within this range, the number of Frenkel pairs at the end of the ballistic

phase seems to be largely una�ected by the chromium concentration, meaning that the radi-

ation damage resistance observed on macroscopic scales must emerge over longer timescales

than those used in MD [44], although in high energy cascades, chromium is demonstrated to

promote cascade splitting [39, 42, 44]. Furthermore, chromium appears to form more stable

interstitial defects by comparison to iron, appearing in defect atoms at a higher rate than

would be commensurate with the bulk concentration4 [39, 42, 44, 47], and the presence of

chromium atoms appears to reduce overall defect mobility [7, 44]. The grain size of F/M

steel is very large compared to the scale over which cascade damage is produced [26], so

4Malerba et al. 2013 [44] reports that this e�ect is negatively correlated with bulk chromium concentra-
tion.
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by restraining and containing the migration of defects, the migration of defects towards

each other is promoted over the migration towards grain boundaries, thus favouring the

recombination of Frenkel pairs [44]. Olsson 2009 [48] predicts that regions of relative high

concentration of chromium will inhibit the formation of interstitial clusters, however, the

�ndings of Terentyev et al. 2011 [43] show that the number of defects that are found in

clustered formations after a collision cascade is positively correlated with bulk chromium

concentration. Terentyev et al. 2011's [43] also �nd that the insertion of dislocation loops

into lattices prior to the simulation of a collision cascade, results in the creation of less lattice

damage.

The simulation in the literature infrequently include trace elements, although these must

inevitably exist in real alloys to some degree, even in high purity binary alloys. Nevertheless,

Malerba et al. 2013 [44] report that trace elements, such as Carbon, are not observed to e�ect

the cascade evolution, and the computational literature is consistent with experimentation

in its prediction of the optimal chromium concentration for radiation damage resistance [47].

As with physical reality, the segregation of alloy elements occurs more readily at higher

temperatures [47].

1.2.3 This Project

While a considerable contribution to issues surrounding radiation damage e�ects maybe

found in the literature, there are a number of points we believe we may address. Firstly,

many of the computational works that simulate collision cascades using MD, do so with

minimal application of computing resources, drawing their statistics from tens of simulations

[43, 49, 50]. With the HPC facilities available to us, see section 1.3.2, we will be drawing

our statistics from thousands of data points for high con�dence results. Additionally, many

papers attempt to save computing power through the use of �representative vectors�, see

section 1.1.2, for the orientation of their PKAs [39, 43, 47, 51, 52], which allows them to

draw statistics from a smaller data set. With the computing power available to us, we will
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be able to create statistical samples of cascade simulations, wherein the PKA vectors used

evenly sample the unit sphere � in section 4.4, we explore the validity of this computational

labour saving method. Many of the works described in section 1.2.2 focus on high energy

cascades [43, 44, 47], but this may give misleading results. When considering the motion of

very energetic atoms, the normal interatomic potentials used become inadequate, given that

they do not give separate consideration to electronic stopping [53]. Furthermore, given the

tendency of a high energy cascade to split into sub-cascades, one may simulate these smaller

events, thinking of them as having been initiated by a larger parent cascade sequence. Indeed,

in section 5.2.1.3, it is seen how much more common small events can be with respect to the

very energetic events.

Molecular dynamics is a very commonly employed technique in the �eld of radiation

materials science, but less work involving AKMC has been conducted, and comparatively

little work has explored collision cascades in lattices having already sustained damage from

one or more previous cascade events. With AKMC able to explore the recovery of a system

after damage introducing events, we hope to explore the aftermath of collision cascades, and

achieve timescales appropriate for the simulation of multiple events.

1.3 Computational Resources

1.3.1 Software

1.3.1.1 LBOMD

LoughboroughMolecularDynamics (LBOMD) is our in-house implementation of the Molec-

ular Dynamics technique, which is covered in detail in chapter 2. Presently, the software's

features include the simulation of collision cascades, thin-�lm deposition, nano-indentation,

thermalisation, and damped-MD relaxation.
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1.3.1.2 LAKMC

Loughborough Adaptive Kinetic Monte-Carlo is our in house implementation of the Adap-

tive Kinetic Monte Carlo method, as described in chapter 3. The software requires an ancil-

lary package for its interatomic force calculations and presently, supported software includes

LBOMD and LAMMPS [54]. Additionally, LAKMC includes the ability to incorporate MD

simulations, e.g. of collision cascades, as events in its roulette tables, for which it leverages

an MD package. LAKMC requires the explicit identi�cation of defect objects, and for this

task, Atoman is employed, see section 1.3.1.3.

1.3.1.3 Atoman

Atoman, developed and maintained by C.D.J. Scott, and freely available on-line [55], is used

for the identi�cation and visualisation of defect in the lattices resulting from our atomistic

simulations, supporting �les produced by LBOMD and LAKMC, as well as third-party

packages such as LAMMPS [54]; the images produced that depict our simulated lattices are

created using this software. A brief description of some of the methods available to Atoman

may be found in section 2.4.

1.3.1.4 SRIM

The Stopping & Range of Ions in Matter (SRIM) is a third-party software package [56,57]

that we use in chapter 5 to generate data regarding the collision cascade event frequency

and distribution of PKA energies for a sample exposed to a given radiation environment. A

description of its modelling methods is given in section 5.2.1.

1.3.2 Hardware

For the computationally expensive tasks and large number of simulations performed during

our research, we were granted access to the �Hydra� High Performance System at Loughbor-

ough University. The Hydra supercomputer has 176 nodes available for general computing,
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of which 122 provide twelve processing cores and 34 provide twenty processing cores, with

an additional �ve nodes equipped with GPUs. Over the course of this project5, we expended

approximately three million core-hours.

1.4 Thesis Layout

Chapter 1: Introduction and Background

In this chapter, we introduce the motivation for our project, its context in the literature,

and some useful background information.

Chapter 2: Methodology 1: Molecular Dynamics & Semi-Empirical Potentials

Here, the methodology behind Molecular Dynamics is presented, along with the inter-

atomic potential that is used to calculate the potential energy and forces that act on

atoms, are presented. A background regarding the analysis of lattice defects is also

given.

Chapter 3: Methodology 2: Adaptive Kinetic Monte Carlo & the Superbasin

Method

The operation of our long timescale dynamics modelling by way of the Adaptive Kinetic

Monte Carlo algorithm and the Super-Basin method are lain out in this chapter.

Chapter 4: Collision Cascades and Displacement Threshold Energy

In the �rst of our results chapters, we discuss statistics produced by many simulations

of single collision cascade events in a variety of contexts, and our examination of the

concept of displacement threshold energy.

Chapter 5: Modelling Experimental Work

In the second of our results chapters, we attempt to create a multiple cascade event

model, based on an experimental procedure.

5During Hydra's refurbishment, we also made use of HPC Midlands' �Hera� system.
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Chapter 6: Conclusions

In our �nal main chapter, we summarise this work and give recommendations for future

endeavours.

Chapter 7: References

A list of academic publications and other references cited in this work.

Chapter 8: Appendix

In the appendix, one may �nd supplementary information, not part of the main body

of this thesis.





Chapter 2

Methodology 1: Molecular Dynamics &

Semi-Empirical Potentials

2.1 Operation of Molecular Dynamics

Molecular Dynamics is a deterministic method for atomistic simulations. A continuous

potential is de�ned as a function of the relative positions of the system's atoms and their

subsequent trajectory is produced by the numerical integration of Newton's laws of motion.

2.1.1 Velocity Verlet Algorithm

In this work, the integration of Newton's laws of motion in the MD simulations are im-

plemented via the Verlet Velocity Algorithm [58]. First, consider an atom with the vector

position, velocity, and acceleration, ~r, ~v, ~a, respectively. For a potential energy function,

U (~r), the force acting on the atom, ~F , is:

~F = −∇U (~r) (2.1)
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Recalling Newton's second law in the form of ~F = m~a implies:

~a = −∇U (~r)

m
(2.2)

For the �rst timestep of the algorithm, the position and velocity are advanced by the trun-

cated Taylor expansions found in equations (2.3) and (2.4):

~r(t+ ∆t) = ~r + t∆t+
~a(t)∆t2

2
(2.3)

~v(t+ ∆t) = ~v(t) +
~a(t) + ~a(t+ ∆t)

2
∆t (2.4)

where t is used for time and ∆t as the size of the timestep, with accelerations found from

equation (2.2). Subsequent timesteps evolve the system as follows:

1. Calculate the velocity after one half timestep, ~v
(
t+ ∆t

2

)
, using the velocity and accel-

eration at the current time and position.

~v

(
t+

∆t

2

)
= ~v(t) +

~a(t)∆t

2
(2.5)

2. Using this result, calculate the next timestep's position.

~r(t+ ∆t) = ~r(t) + ~v

(
t+

∆t

2

)
∆t (2.6)

3. From the new position, ~r(t+ ∆t), �nd the new acceleration, ~a(t+ ∆t), using equation

(2.2).

4. Finally, the new velocity, ~v(t+ ∆t), is given by:

~v(t+ ∆t) = ~v

(
t+

∆t

2

)
+
~a(t+ ∆t)∆t2

2
(2.7)
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5. One may now advance the time from t to t+ ∆t and return to step 1.

2.1.2 Boundary Conditions

Being only able to simulate a �nite number of atoms, we must give consideration to the

boundary conditions of our cell. It is possible, although far from ideal, to �x the atoms

at the boundaries, but this could distort the dynamics of the system when energetic atoms

or pressure waves approach the edge. The scale of our atomistic models is far below the

macroscopic, which means that an atom deep in the bulk of a material can be considered

physically as if it is in an in�nitely large system. To simulate an in�nite bulk with a �nite

number of atoms, periodic boundary conditions are used. This is to say that as an atom

moves o� the edge of the system in one direction, it is transferred to the opposite face,

retaining its coordinates in the other dimensions. This is illustrated in Figure 2.1. Likewise,

interatomic forces are transferred across the boundary � two atoms with the same x and y

coordinates, each 0.5 Å from the opposite extrema of the z axis will exert an identical force

upon each other as two atoms separated by 1 Å in the centre of the lattice. The technique

gives the illusion of an in�nite space, provided that the mean free path of particles does not

exceed the simulation width/height/depth. It is not acceptable for a cascade event to overlap

with itself; if this becomes a danger, the simulation volume must be increased [40,42].

2.1.3 Thermal Layers

To improve the impression of a bulk beyond the simulation cell, we can apply a thermostat

to the atoms in the outermost layers, which simulates the dissipation of thermal energy

to the larger system. Thermostats alter the equation of motion of these atoms, adjusting

their kinetic energy to bring the system temperature closer to a desired value. Examples of

thermostats include the Nosé-Hoover thermostat and the Berendsen thermostat [59�62].

The Nosé-Hoover thermostat introduces a friction coe�cient of varied strength to give

the desired temperature. It maintains a canonical ensemble, but has the disadvantage that
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Figure 2.1: In this illustration we depict periodic boundary conditions in a two-dimensional example. An
exact copy of the atomic lattice is placed on all edges of the system, fully enveloping it, and an atom that
crosses the boundaries onto the next copy appears in the equivalent position in all cells. Forces transmit
across the boundary such that an atom interacts with its neighbours identically, regardless of whether a
boundary is crossed. In the circled example, four atoms are highlighted in red, blue, yellow and purple, and
these atoms are neighbours across the periodic boundaries, with these interactions marked by double headed
arrows. To illustrate how the method is applied, they retain their colouring in the original cell (green atoms),
and in the copies (grey atoms).
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it is prone to large temperature oscillations, limiting how quickly it can achieve the desired

temperature [60�62].

The Berendsen thermostat simulates the presence of a weakly coupled heat bath. It scales

its atomic velocity alterations such that the rate at which it changes the system temperature

is proportional to the di�erence between the desired and actual temperatures. In contrast

to the Nosé-Hoover thermostat, it can only approximately maintain a canonical ensemble

and is not time reversible. On the other hand, the Berendsen thermostat reaches its target

temperature comparatively rapidly, and its relative simplicity makes it desirable to use. As

such, the Berendsen thermostat is chosen when thermal layers are used in our Molecular

Dynamics work [59�62].

For the purposes of this thermostat, the current temperature of a set of N atoms is

de�ned by T , such that:

T =
2

3NkB

∑
Ek (2.8)

where kB is Boltzmann constant and
∑
Ek is the atoms' total kinetic energy. For a timestep

of ∆t, and target temperature of T0, the velocity of the atoms to which the thermostat is

applied is scaled by a factor of, λ:

λ =

√
1 +

∆t

τ

(
T

T0

− 1

)
(2.9)

where τ parameterises the coupling factor, such that the rate of change in temperature is,

dT
dt

=
T0 − T
τ

(2.10)

2.2 Interatomic Potentials

To simulate the behaviour of our system, an interatomic potential must be selected to de-

scribe the energy of each of the atoms, and thus the potential energy hypersurface. If
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the energy of an individual atom, i, is given by Ui, the force experienced by that atom

is −∇Ui, where ∇ is the di�erential operator. We use a style of potential known by the

name, �Embedded Atom Method �, whose origins lie with the work Dawes and Bakes in the

1980s [63,64]. EAM potentials are semi-empirical, being a combination of Density Functional

Theory (DFT) calculations and experimental data. The general form of an embedded atom

method potential (henceforth EAM potential) is given by equation (2.11).

Ui =
1

2

(∑
j 6=i

Vij(rij)

)
+
∑
b

Fib

(∑
j 6=i

φjb(rij)

)
(2.11)

While EAM potentials do use a pairwise interaction that operates directly between any two

atoms in range of each other (given by the Vij term), the core concept underpinning EAM is

that when the potential energy of an atom is calculated, it is treated as an impurity embedded

in the bulk. This is to say that the embedding functions (the Fib terms) represent the energy

required to implant the atom at its position in the system, considering the aggregate e�ect of

the electrons in the region. One may include terms for as many electron bands as required,

as marked by the sum over b, although in many cases, only one (the d-band) is used.

In all our potential energy calculations, we operate in units of electron volts (eV) and

Ångströms (Å); our unit of force is thus eV/Å.

2.2.1 Heaviside Step Function

While the electrostatic forces which govern interatomic interactions are, in reality, in�nite in

range, due to the practical limitations that stem from the �nite computing power available,

the potentials used for atomistic modelling are limited to a cut o� radius; this is acceptable

because the forces exerted on an atom become diminishingly small with increasing range

compared to its more immediate neighbours. The Heaviside step function is frequently used

in formulating potentials with cut o�s, and thus it is de�ned in equation (2.12).
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H(r) =

 0 for r < 0

1 for r ≥ 0

(2.12)

2.2.2 Selecting the Potential

2.2.2.1 Issues with Olsson 2005 and Bonny 2011 source papers

Originally, it was intended that an iron-chromium EAM potential developed by Olsson et al.

in 2005 would be used in this work, one which was an extension of the pure iron potential

developed in 2004 by Ackland et al. [65, 66]. It transpired, however, the description of the

potential given in the 2005 paper contained a number of errors, and while an erratum has

been published, it is not exhaustive. With correspondence with Pär Olsson, functionality

for pure iron and chromium was achieved, but we were unable to discover all necessary

corrections to reproduce the mix-species interaction. Eventually, it was deemed not to be

time-cost e�ective to continue and we discarded Olsson's potential in favour of similar work

developed in 2011 by Bonny et al., which takes its pure iron interaction from a 2003 paper

by Mendelev et al. [67, 68]. The speci�cation for this potential was published in an open

report by SCK-CEN1, but this document also contained a number of disparities between the

potential as described and the authors' actual work2. In this case, our correspondence with

Giovanni Bonny proved fruitful, and a fully functional implementation of the potential was

created. A catalogue of the known errors in the papers describing the potentials may be

found in the appendix of this document. Bonny et al.'s potential is designed to include the

best features of two other potentials: the Olsson Potential from 2005, and another developed

by Caro et al. in the same year [70]. Both Olsson et al. and Bonny et al.'s potentials use

a two band model to capture the negative mixing enthalpy of iron-chromium systems with

low concentration of chromium (see section 1.1).

1The Belgian Nuclear Materials Science Institute
2It should be remarked that this potential was also published in Taylor & Francis Philosophical Magazine

[69]. The SCK-CEN report [67] is more detailed, and includes many more defect energies and other material
speci�cs, which allows for more thorough implementation veri�cation � This is why it was used as our main
source. Both the paper and the report contain many of the same errors.
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2.2.2.2 Potential Benchmarking

In recent benchmarking work conducted by Klaver et al., it was concluded that insu�cient

attention was given to chromium-chromium interactions in two-band EAM potentials such as

Olsson 2005 and Bonny 2011, and that defect formation energy for high chromium percentage

materials were not physcially appropriate. Thankfully for this project, Klaver et al. conclude

that Bonny et al.'s potential was the less �awed of the two, and since we do not simulate

chromium concentrations above 10 at.% in this work, their �ndings do not present a major

problem [71,72].

2.2.3 Bonny 2011 EAM Two-Band Potential

Every atom in the system has an energy contribution comprised of a pairwise interaction and

embedding terms. The pairwise term is a sum over Vij(rij) terms, where atom i interacts

separately with each of its neighbours, i.e. the j terms, with rij being the scalar separation

between atoms i and j. The form of Vij(rij) is dependent on the species pairing of i and

j, with di�ering forms for Fe-Fe, Cr-Cr, and Fe-Cr. The embedding terms take a more

complex form. First, the electron density around each atom must be found for each electron

band considered. This is done by summing over functions representing the electrons of its

neighbours, the form of which is dependent on the band and importantly, the neighbour's

species only. Here on, we refer to the density sum for some band, b, and atom, i, by ρib, such

that:

ρib =
∑
j 6=i

φjb(rij) (2.13)

This density term is then used by an embedding function to give the embedding energy. This

function's form is dependent on the band type and the i atom's species. Note that same

species interactions only provide a d-band density contribution, whereas atoms of di�ering

species will contribute to both of each others s and d-bands.
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2.2.3.1 Pure Iron

The Bonny Potential takes its pure iron interaction from a 2003 work by Mendelev et al.

[68]. A cubic spline is used for both the Fe-Fe pairwise interaction, and the d-band density

contribution from an iron atom; these are equations (2.14) and (2.15).

Vij(rij) =
13∑
α=1

aα(rα − rij)3H(rα − rij) (2.14)

φijd(rij) =
3∑

β=1

bβ(rβ − rij)3H(rβ − rij) (2.15)

The aα and bβ parametrise the interaction strengths, while rα and rβ set the position of the

Heaviside cut-o�s. Their values are given in table 2.1. iron's d-band embedding function is

given by:

Fid(ρid) = A[d 1]
√
ρid + A[d 2]ρ

2
id (2.16)

With A[d 1] and A[d 2] parametrising the function's strength, equalling −1 eV and

−3.5387096579929×10−4 eV respectively.

2.2.3.2 Pure Chromium

The pairwise function for interactions between chromium atoms takes much the same form

as its iron counterpart,

Vij(rij) =
5∑

α=1

aα(rα − rij)3H(rα − rij) (2.17)

with the relevant parameters given in table 2.2; however the d-band density contribution

from a chromium atom is de�ned as:

φijd(rij) =
1

φ0

[
r0

rij
exp

(
−β rij

r0

)
− exp (−βxcut)

xcut

]
fcut

(
rij
r0

, xcut

)
(2.18)
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Indice Coe�cient Cut-O�

α aα /
(
eV Å

−3
)

rα /
(
Å
)

1 -24.028204854115 2.2
2 11.300691696477 2.3
3 5.3144495820462 2.4
4 -4.6659532856049 2.5
5 5.9637758529194 2.6
6 -1.7710262006061 2.7
7 0.85913830768731 2.8
8 -2.1845362968261 3.0
9 2.6424377007466 3.3
10 -1.0358345370208 3.7
11 0.33548264951582 4.2
12 -0.046448582149334 4.7
13 -0.0070294963048689 5.3

β bβ /
(
Å
−3
)

rβ /
(
Å
)

1 11.686859407970 2.4
2 -0.01471074009883 3.2
3 0.47193527075943 4.2

Table 2.1: Parameters used for pure iron in the Bonny 2011 EAM Potential [68], see equations (2.14) and
(2.15).

where r0 is the �rst nearest neighbour distance in a BCC crystal with a lattice parameter

of 2.878 Å (i.e. r0 = 2.878 ×
√

3
2

Å ≈ 2.492 Å), and xcut = 1.65, being a cut-o� param-

eter3. There are two normalisation factors, these being φ0 = 0.0676504617 and β = 5.

fcut

(
rij
r0
, xcut

)
is a cut-o� function, which brings the density contribution down to zero be-

tween rij ≈ 0.4012 Å and rij ≈ 4.112 Å. It takes the form:

fcut (x, xcut) =


1 for x ≤ 1

1− (x−1)3

(xcut−1)3
for 1 < x ≤ xcut

0 for xcut < x

(2.19)

3Note that xcut marks a speci�c ratio between rij and r0, not an actual length itself, and is thus unitless.
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Bonny et al. report that their d-band embedding function is too complicated to express

as an equation in the paper. They were, however, kind enough to provide the embedding

function in a tabulated form (see �gure 2.2), which is what we use in this work.

Indice Coe�cient Cut-O�

α aα /
(
eV Å

−3
)

rα /
(
Å
)

1 7.942650649×10−1 2.617042168
2 -1.275324968 2.990905335
3 2.424000178 3.364768501
4 -8.216224618×10−1 3.738631668
5 -6.079639840×10−2 4.112494835

Table 2.2: Parameters used for pure chromium in the Bonny 2011 EAM Potential [67], see equation (2.17).

Figure 2.2: Graph depicting the d-band embedding function for chromium, provided in tabulated form by
Giovanni Bonny, for the domain 0 ≤ ρ ≤ 8.
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2.2.3.3 Mixed Species Interaction

For the pairwise interaction between atoms of di�ering species, we again have a cubic/Heav-

iside based function,

Vij(rij) =
9∑

α=1

aα(rα − rij)3H(rα − rij) (2.20)

with the parameters for the mixed case given in table 2.3.

It is necessary to include an s-band electron density term in a system involving both iron

and chromium. This is due to an unusual property of this element combination, i.e. a nega-

tive mixing enthalpy for some relative concentrations [67]. The s-band density contributions

from a chromium atom for an iron atom, and from an iron atom for a chromium atom are

the same, and given by:

φs(rij) =

(
Nsr

3
ij exp

[
− ζsrij

rb

])2

Z
gcut (rij) (2.21)

where Ns = 5, ζs = 1.323, Z = 0.245811927 and Rb is the Bohr Radius,

0.529177210818181818 Å, with gcut being a cut-o� function, taking the density contribution

to zero between rij = 5.1 Å and rij = 5.3 Å by way of:

gcut (rij) =


1 for rij ≤ ri

1
2

[
1− sin

(
π(rij−rm)

2d

)]
for ri < rij ≤ rf

0 for rf < rij

(2.22)

rm and d are given by:

rm =
(rf + ri)

2
and d =

(rf − ri)
2

(2.23)

With ri = 5.1 Å and rf = 5.3 Å.

By contrast, while the form of the s-band embedding function is the same for both iron
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and chromium (see equation (2.24)), its parameters vary by species.

Fis(ρis) = A[s 1]
√
ρis + A[s 2]ρ

2
is (2.24)

For iron atoms, the coe�cients take the values

A[s 1] = −0.217009784 eV and A[s 2] = 0.388002579 eV (2.25)

and for chromium atoms these are

A[s 1] = −0.977557632× 10−2 eV and A[s 2] = 0.374570104 eV (2.26)

Indice Coe�cient Cut-O�

α aα /
(
eV Å

−3
)

rα /
(
Å
)

1 100.0 2.15
2 -5.57581564 2.2
3 -16.22 2.33
4 2.55634481 2.58333333
5 0.0683226765 2.96666667
6 0.414828704 3.35
7 0.0322279809 3.73333333
8 -0.01081841 4.11666667
9 -0.0748992889 4.5

Table 2.3: Parameters used for the mixed pairwise term in the Bonny 2011 EAM Potential [67], see equation
(2.20).

2.2.3.4 Short Range Interactions

The modelling assumptions of EAM break down for atoms very close to each other, and so at

short range, we use the universal potential of Ziegler, Biersack and Littmark (henceforth the

ZBL potential). It replaces the default pairwise terms in the EAM equation, that is equation
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(2.11), since as separation tends to zero, the pairwise interaction becomes massively dominant

in relation to the embedding terms. For two atoms, i and j, with atomic numbers, Zi and

Zj, the ZBL potential is given by [56]:

VZBL(rij) =
ZiZje

2

rij
ϕ

(
rij
as

)
(2.27)

where as is the screening parameter, such that

as =
0.88534ab
Z0.23
i + Z0.23

j

(2.28)

with ab = 0.529 Å being the Bohr Radius and e2 = 14.400 eVÅ, where e is the elementary

charge. The term, ϕ is the screening function, wherein:

ϕ

(
rij
as

)
=

4∑
n=1

Γn exp

(
γn
rij
as

)
(2.29)

where the values of the coe�cients Γn and γn are given in table 2.4. Note that these values

are not dependent on species, since the di�erent element pairings are dealt with by the atomic

number terms. For reference, these are 24 and 26 for chromium and iron respectively [73].

n Γn γn

1 0.1818 -3.2
2 0.5099 -0.9423
3 0.2802 -0.4029
4 0.02817 -0.2016

Table 2.4: Coe�cients for the ZBL screening function [56].

It is tremendously important to maintain continuity of functions, not just in their value,

but in the �rst and second derivatives too. Failing to do so violates conservation of energy.

It should be immediately apparent that switching directly from any of the Vij(rij) to the

ZBL potential does not preserve continuity. Thus, we use a splining function to bridge the
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gap. The splining function is continuous in value, and in �rst and second derivatives, with

the ZBL potential at the beginning of its domain, and likewise continuous with the normal

EAM pairwise term at its end, as per equations (2.32) to (2.37). We choose to use a splining

function of the form:

Vspline(rij) = exp
(
f1 + f2rij + f3r

2
ij + f4r

3
ij + f5r

4
ij + f6r

5
ij

)
(2.30)

Fe-Fe Cr-Cr Fe-Cr

f1 42.9788764278213 1166.98925191865 -137.376654559008
f2 -135.545441562262 -4895.55548921096 614.924657879205
f3 197.285864629164 8163.66247905429 -1033.87004596957
f4 -143.728683545253 -6724.10876287315 849.87004196916
f5 50.7129169726354 2731.76870973902 -343.401136475178
f6 -6.93601245159000 -438.094072278465 54.5679121517284

rs1 1.0 Å 1.0 Å 1.0 Å
rs2 2.0 Å 1.5 Å 1.5 Å

Table 2.5: The f coe�cients for the splining functions, see equation (2.30), connecting each EAM potential's
default pairwise term to the ZBL potential for the appropriate species pairing. The points, rs1 and rs2, mark
the transitions between functions, as per equation (2.31).

We generate our own values for the f coe�cients of equation (2.30) , see table 2.5. Bonny

et al. do not provide any reference to ZBL potentials, and thus, neither do they mention

splining functions, whereas Ackland et al. use a splining function with only a third-order

polynomial, where we would prefer a higher-order solution. De�ning the two points at which

functions meet as rs1 and rs2, the pairwise terms for any rij is then:

Vij(rij) =


ZBL Potential for rij ≤ rs1

Splining Function for rs1 < rij < rs2

Default EAM Pairwise Term for rs2 ≤ rij

(2.31)
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VZBL(rs1) = Vspline(rs1) (2.32)

d
drij

VZBL(rs1) =
d
drij

Vspline(rs1) (2.33)

d2

drij2VZBL(rs1) =
d2

drij2Vspline(rs1) (2.34)

VEAM(rs2) = Vspline(rs2) (2.35)

d
drij

VEAM(rs2) =
d
drij

Vspline(rs2) (2.36)

d2

drij2VEAM(rs2) =
d2

drij2Vspline(rs2) (2.37)

2.2.3.5 Gauge Transformations

One complication not yet discussed is the issue of E�ective Potential Gauge. While EAM

potentials are designed in such a way that the individual terms have real physical meaning

in principle, the fact that they are formed in part by �tting to experimental data means that

the energy contribution of each component of equation (2.11) is always somewhat arbitrary,

even while the total energy remains physically grounded. The speci�c way that the energy is

spread between the terms is known as the potential's e�ective gauge. With it not making any

overall di�erence to the �nal result, it is of little consequence when working in a homogenous

system. This changes entirely when one moves to a system involving a mix of atomic species.

In particular, consider the electron band density contributions � the ρ terms will be a sum of

density contributions from a mix of di�erent atom types. These contributions will have been

constructed with the intention of being used with a speci�c embedding function, calibrated

to the developers' chosen means of representing the density mathematically.

Bonny et al. use Mendelev et al.'s iron potential as their starting point, and develop the

chromium, and mixed interactions themselves. These will have been developed to be the best

�t for the speci�c qualities of interest to the author. This being the focus of the development
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process means that the new potentials will not necessarily share the e�ective gauge used by

Mendelev; indeed, they do not. Thus, it is necessary to make a gauge transformation.

The gauge transformation is parameterised by the coe�cients C and S, see table 2.6, and

is performed in two stages. First, with each d-band density contribution, energy is moved

from the pairwise term to the embedding function. Transformed terms are denoted by an

overhead tilde.

�T1

 Vij → Ṽij = Vij − 2Cjφjd

Fid → F̃id = Fid(ρid) + Ciρid

(2.38)

The second acts on the density terms, and their usage in the embedding functions,

�T2

 φjd → φ̃jd = Sjφjd

Fid → F̃id = Fid

(
ρ̃id
Si

) (2.39)

where ρ̃id is the sum of transformed density contributions. If not otherwise apparent, after

both transformations are performed, the new embedding function is:

F̃id = Fid

(
ρ̃id
Si

)
+
Ciρ̃id
Si

(2.40)

Observe that if the transformations are applied to a pure species system, they have no net

e�ect. In a mixed system they rescale the density terms and embedding function signi�cantly,

while at the same time leaving the total energy unaltered.

Iron Chromium

C 0.116093429 -0.0228765475
S 0.0380008812 0.632643294

Table 2.6: Transformation coe�cients for use with equations (2.38) and (2.39) [67].
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2.2.3.6 Veri�cation

Having written a module for our MD software to implement the Bonny 2011 potential, it is

important to be sure that it is functioning as expected. In Bonny et al. and Mendelev et al.'s

papers, they provide a variety of reference values, allowing us to assess the veracity of the

properties emerging from our own work; comparisons are made in table 2.7. Additionally, we

have calculated the ideal lattice parameter as a function of a system's iron-chromium ratio,

and the negative mixing enthalpy property is apparent, see �gure 2.3.

Figure 2.3: Ideal lattice parameters for varying atomic ratios of iron and chromium, as calculated using the
Bonny 2011 EAM potential [67]. Observe the negative mixing enthalpy, that is, the lattice parameter is
actually larger in some mixed systems than for either of the pure metals.
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Property Our Implementation Reference Value [67,68]

BCC Pure Iron
Ideal Lattice Parameter 2.8553 Å 2.8553 Å
Cohesive Energy -4.122 eV/atom -4.122 eV/Atom
Ef<100> 4.342 eV 4.34 eV
Ef<110> 3.528 eV 3.53 eV
Ef<111> 4.015 eV 4.02 eV
Ef Vacancy 1.712 eV N/A: Misprint in

source table
BCC Pure Chromium

Ideal Lattice Parameter 2.866 Å 2.866 Å
Bulk Modulus 215.8 GPa 215 GPa
Cohesive Energy -4.101 eV/atom -4.10 eV/Atom
Ef<110> - Ef<111> -0.06832 eV -0.07 eV
Ef<110> - Ef<100> -0.5769 eV -0.58 eV
Ef Vacancy 2.519 eV 2.52 eV

BCC Iron Bulk with One Chromium Atom
Ef<100> FeCr in Fe 3.641 eV 3.64 eV
Ef<110> FeCr in Fe 3.204 eV 3.20 eV
Ef<111> FeCr in Fe 3.480 eV 3.48 eV

BCC Iron Bulk with Two Chromium Atoms
Ef<100> CrCr in Fe 3.949 eV 3.95 eV
Ef<110> CrCr in Fe 3.264 eV 3.26 eV
Ef<111> CrCr in Fe 3.454 eV 3.45 eV

Table 2.7: In this table, we compare a variety of properties from our implementation of the Bonny 2011
potential to the reference values given in the source papers [67, 68]. Ef refers to defect formation energy, as
de�ned in equation (1.1) and <· · · > refers speci�cly to an SIA of the orientation given.

2.2.3.7 <110> SIAs in an FeCr10 at.% Bulk

Bonny et al. only give defect formation energies with a monospecies bulk. Since we work

predominantly with FeCr10 at.% systems, we would like to know something about the energies

of SIAs in a mixed system. Speci�cally, we look at the <110> dumbbell, since this orientation

is typically the most stable, and thus most representative of SIAs found in our simulations.

This is a less easy value to measure in relation to the previous examples. With our chromium



36 CHAPTER 2. METHODOLOGY 1: MD & SEMI-EMPIRICAL POTENTIALS

atoms placed at random in the system, the apparent defect formation energy of a single

dumbbell will vary based on the local distribution of species. We �nd an average value by

generating two hundred random FeCr10 at.% lattices with 3,456 atoms each, and in these,

we calculate the defect formation energy of two hundred randomly placed <110> SIAs. This

process is performed for FeFe, CrCr, and FeCr dumbbells, giving a total of 40,000 data points

per pairing. Our average results are 3.45 eV for FeFe<110>, 2.83 eV for CrCr<110>, and 2.75

eV for FeCr<110>. Histograms for the full set of results are shown in �gure 2.4. Note that

the standard error was signi�cantly smaller than the number of signi�cant �gures quoted.

2.3 Minimisation Techniques

For the purposes of analysis, and for transferring to our long-timescale techniques, we often

wish to take a molecular dynamics system, with all its atoms in motion, and relax them to

stationary positions in a local energy basin. There are multiple methods available to achieve

this.

2.3.1 Damped MD

Damped MD is the simplest scheme we can use. The velocity of every atom is set to zero,

and a single molecular dynamics step is executed, based on the ordinary interatomic forces.

After each step, the atoms' velocities are reset to zero again, and the process is repeated until

no atom is subject to a force above a given tolerance. While this method has the advantage

of being very unlikely to distort results, it is very computationally expensive compared to

the others outlined in this section.

2.3.2 Conjugate Gradient

Originally developed as a numerical technique for solving sets of linear equations, the Con-

jugate Gradient (CG) method was �rst developed in 1952 by Hestenes and Stiefel [74]. Since
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Figure 2.4: Histograms showing the spread of defect formation energies for <110> SIAs in a FeCr10 at.% bulk,
using the Bonny 2011 EAM potential [67], with each histogram being drawn from 40 000 data points.
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its inception, several variants have been produced � the formulation executed in our software

is that of Polak and Ribiere [75]. Taking the system force as de�ned in equation (2.1), we

de�ne a gradient function, ~g (~rn), as:

~g (~rn) = −∇~Fn = ∇2U (~rn) (2.41)

where subscripts are used to indicate the step index. This vector is then used to advance

the system to the next step by,

~rn+1 = ~rn + αn~dn (2.42)

where ~dn is the search direction and α is the linear search parameter, which minimises the

equation of force along the search vectors, so as to satisfy equation (2.43).

d
dα

~F
(
~rn + α~dn

)
= 0 (2.43)

The initial search vector is equal to the gradient function (i.e. ~d0 = ~g0) , and for all subsequent

steps, is given by,

~dn = ~gn + βn~dn−1 (2.44)

where

βn =
‖~gn‖2 − ~gn · ~gn−1

‖~gn−1‖2
(2.45)

One continues to iterate via equation (2.42) until the magnitude of ~Fn falls below the desired

tolerance.

2.3.3 L-BFGS-B

The Limited-memory BFGS for Bound constrained optimisation (L-BFGS-B) algorithm

is a computationally lightweight implementation of the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method, which has been made publicly available in open source form through the
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SciPy library for Python [76�78]. The method begins with an initial guess for the Hessian

matrix, H0, and at each step, the direction is the vector, ~dn, that satis�es,

Hn · ~dn = ~gn (2.46)

As per equation (2.42), the atoms' positions are updated and the new Hessian approximation

becomes,

Hn+1 = Hn +
[~g (~rn+1)− ~g (~rn)] [~g (~rn+1)− ~g (~rn)]T

[~g (~rn+1)− ~g (~rn)]T
(
αn~dn

) −
Hn

(
αn~dn

)(
αn~dn

)T
Hn(

αn~dn

)T
Hn

(
αn~dn

) (2.47)

Again, this process is iterated for as many steps as is necessary to reach a set of atom

positions for which ~F (~r) has a su�ciently low magnitude to satisfy one's requirements.

Unless stated otherwise, in this work, the L-BFGS-B minimiser is used, falling back to

the CG method if it should fail to converge.

2.4 Lattice Defect Analysis Methods

In this section we outline the methods we use to identify lattice defects for the purposes

of visualisation, see section 1.3.1.3, and de�ning defect volumes, see section 3.2.3, in our

AKMC software, see section 1.3.1.2.

2.4.1 Identifying Lattice Defects

To discover where lattice defects are present in a system of atoms, we compare it to a

reference lattice, and this is depicted in �gure 2.5. The comparison allows the identi�cation

of vacant sites, atoms sharing a lattice site, and atoms not on a lattice site. This requires

that a tolerance must be speci�ed for deviation from the reference lattice, and this is set at

0.9 Å.
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Figure 2.5: Atoman [55] identi�es lattice defects in a system by comparing it with a reference lattice. Vacant
sites, atoms which are further than a user-speci�ed tolerance from a site in the reference lattice, and multiple
atoms sharing a site, are highlighted as defect objects.
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2.4.2 Adaptive Common Neighbour Analysis

To re�ne the analysis of a lattice, one can also consider local variations in its structure.

If atoms have a con�guration that di�ers from the general structure of the lattice, these

deviations can be �agged using Adaptive Common Neighbour Analysis (ACNA) [79, 80].

One begins with the radial distribution function (RFD), g(r), which describe the number

of neighbours an atom has as a function of distance, r, and decomposes it into elements,

j, k, and l, respectively denoting the number of shared nearest-neighbours, the number of

bonds between shared neighbours, and the number of bonds in longest bond-chain formed

by shared neighbours, such that,

g(r) =
∑
jkl

gjkl(r) (2.48)

An atom can then be described by the number of neighbours they have in each combination

of j, k, and l, denoted Njkl, found by integrating the RDF.

Njkl =
4πN

V

∫ rc

0

r2gjkl(r)dr (2.49)

where N
V

is the number of neighbours per unit volume. One de�nes the cut o�, rc, by the

anticipated structure, such that it encompassed all the neighbours considered bonded to

an atom. For BCC lattices, one includes the eight �rst nearest neighbours and six second

nearest neighbours. Therefore, one takes the atom's fourteen closest neighbours, and then,

ranking them from nearest to farthest with labels i = 1 to i = 14, rc is given by,

rc [BCC] =
1 +
√

2

2

(
2√
3
·
∑i=8

i=1 | ri |
8

+

∑i=14
i=9 | ri |

6

)
(2.50)

where ri is the separation between the atom and its ith neighbour. If the resulting values

of Njkl do not match those for the anticipated structure, one can attempt di�erent con�g-

urations, until either a match is found, or all possibilities to be considered are exhausted.
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Ultimately, one �nds a local structure classi�cation for each atom in the lattice.

2.4.3 Defect Replacement Chains

Defect objects can be seen to migrate across an atomic lattice, without any of the atoms

involved moving farther than a few lattice sites. It is therefore useful to be able to plot

the path of these objects through the system, particularly in the multiple cascade event

simulations found in chapter 5. As such, Atoman includes a feature which renders defect

replacement chains (sometimes referred to as �spaghetti� in the literature) [81]. Defect

replacement chains illustrate the lattice sites visited by defects; consequently, so long as

one begins with a perfect lattice, every interstitial defects in the system will be connected

to a vacancy by a defect replacement chain, see �gure 2.6.
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Figure 2.6: Schematic illustration of the rendering of defect replacement chains. When a Frenkel pair is
created by the expulsion of an atom from its lattice site, the defect objects created can migrate through the
system, hopping from site to site separate to the atoms involved. To mark their path, we can render defect
replacement chains. When Frenkel pairs recombine, the chain is left behind � if the interstitial and vacancy
that annihilate were created together, the chain will form a closed loop.





Chapter 3

Methodology 2: Adaptive Kinetic Monte

Carlo & the Superbasin Method

By the end of our MD simulations, the rate of change, i.e. the migration and annealing

of defects, has slowed dramatically relative to the �rst few picoseconds, and the ballistic

phase is considered to have ended. To continue the evolution of the system through our

molecular dynamics implementation would be a very poor use of computer resources. A

di�erent approach is needed in the recovery phase, one that can achieve long timescales.

3.1 Long Timescale Dynamics with Modi�ed MD

There are a variety of long timescale techniques documented in the literature, and a brief

summary of a selection of popular methods is given here. By contrast to the AKMC method

presented in section 3.2, these techniques use modi�cations to the molecular dynamic method

to access long timescales.

3.1.1 Parallel Replica Dynamics

Arguably the simplest method, Parallel Replica Dynamics (PRD) takes the system of atoms

and creates a number of duplicates. This process exploits parallel processing by assigning
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a copy to each processor. The con�guration of each copy is slightly altered at random.

Then each copy is evolved for a short period, such as to allow its energetics to return to

a Boltzmann distribution. During this time, all versions are prohibited from transitioning

between states; however, once this has elapsed, the evolution of the modi�ed duplicates is

unconstrained. Now, as soon as one copy transitions from one metastable state to another,

the simulation is paused. The system clock is advanced by the total time accumulated by

all the processors, i.e. if 30 processors each simulate systems for 10 fs, then the system clock

is advanced by 300 fs. Then, the algorithm takes the transitioned duplicate and uses it as

the basis for a new round of replicas.

The main downfall with this method is its e�ciency scaling with respect to the number

of processors applied and the average transition rate. Suppose we have a system that makes

a state transition once every t̄ arbitrary time units of processor time, and that to it, we

apply parallel replica dynamics, using a total of p processors. Here, in the same arbitrary

time units, we call the total computer time required to prepare the replica systems1 tp. Since

after this process is complete, the average time before one processor sees a transition should

be t̄
p
, the average total computer time per algorithm cycle comes to tp + t̄

p
, so the fractional

time2 saved by PRD, κ, is therefore:

κ =
tp + t̄

p

t̄
(3.1)

What we see is that as the number of processors increases, one receives diminishing returns

on fractional time saved, because although t̄
p
tends to 0, one is always left with the duration of

the preparation time, tp, which can only be computed in serial. Likewise, if the preparation

time is large in relation to the average transition time, then time savings become poor.

1i.e. that taken to create the duplicates, to randomise them, and to allow the return of Boltzmann
statistics

2wherein a value of 1 is no time saved or lost, values less than one and greater than 0 equate to time
saved, and any value greater than 1 means the PRD has actually made the computation take longer than
before.



3.1. LONG TIMESCALE DYNAMICS WITH MODIFIED MD 47

Indeed, if the condition,

t̄ <
ptp
p− 1

(3.2)

is met, then one �nds κ > 1 and PRD becomes a detriment to reduction of computer time.

The e�ciency scaling is visualised in Figure 3.1.

(a) κ with respect to the number of processors

used. t̄ = 1, tp=1

(b) κ with respect to the length of the PRD prepa-

ration time. t̄ = 1, p = 10

Figure 3.1: These graphs depict the scaling of e�ciency in parallel replica dynamics in terms of the number
of processors and the length of the preparation time. The blue lines represent the value of κ as de�ned in
equation (3.1), and red lines represent its �rst derivative with respect to the free variable.

3.1.2 Temperature Accelerated Dynamics

A small increase in temperature can have a dramatic e�ect on the rate of a chemical process,

owing to the shift in the statistical likelihood of an atom or molecule having the necessary

activation energy. The same principle applies here. By simulating the system at a higher

temperature, we can achieve much larger state transition rates; however, this technique,

known as Temperature Accelerated Dynamics (TAD), is not as simple as it might appear.

Consider TAD in the context of the Arrhenius equation [82], which states that for a given

temperature, T , and an attempt frequency, A, the rate of occurrence of an event with energy



48 CHAPTER 3. METHODOLOGY 2 AKMC & THE SUPERBASIN METHOD

barrier, E, is given by k, such that,

k = A exp

(
−E
kBT

)
(3.3)

where kB is Boltzmann's constant.

Due to the exponential term, a small change in the energy term has a dramatic impact on

the relative sizes of rate constants. Speci�cally, there will be an over representation of rare

transitions in relation to their otherwise more common counterparts, although by taking a

transition state centric view, it is possible to apply corrections to the timesteps corresponding

to transitions, yielding more normal behaviour. Unfortunately, it must also be noted that

one may �nd that the potential energy model used becomes inappropriate for the simulated

material, due to phase changes or melting. Due to shortcomings such as these, TAD is often

considered better suited for preliminary studies of a system [83,84].

3.1.3 Hyperdynamics

An arbitrary system in some state often has ample energy to cross its local energy barriers,

but does not do so quickly because of the improbability of the energy from all its degrees

of freedom alligning simultaneously, and this problem is exacerbated in high dimensionality

systems. Hyperdynamics is the application of a bias potential within a state to increase the

likelihood of a transition, see Figure 3.2. Provided that this bias energy does not exceed

the barrier energy, and the technique is applied appropriately across all states, some very

large accelerations can be achieved for the system's evolution, while keeping the nature of

its dynamics unchanged. Indeed, in their 2001 paper Henkelman et al. found boost factors

of up to 1400 [83,84].
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Figure 3.2: Diagram showing two states with bias potentials, serving as examples of the application of
Hyperdyamics. Note that continuity to the second derivative (or further, if required) is preserved between
the original and bias potentials.

3.2 Adaptive Kinetic Monte Carlo

The methods in the previous section allow the acceleration of the simulation of one's system

by considering its dynamics's key driving phenomena, that is, transitions between local

minima in the potential energy hypersurface. Adaptive Kinetic Monte Carlo, takes this

idea one step further by abstracting the system to a stochastic sequence of jumps between

these locations on the energy hypersurface, thus neglecting the explicit simulation of atomic

vibrations in the lattice. This abstraction is achieved mathematically through Harmonic

Transition State Theory [83]. Considering the system in 3N-dimensional state-space3, where

N is the number of atoms, we imagine the oscillation of the system within a local minima,

and then the time it would take on average to climb up to the top of one of the surrounding

rank-one saddle points4, allowing it then to relax into an adjacent state [84, 85], see the

schematic in �gure 3.3.

Traditionally, to perform a KMC simulation, one would be required to provide a set of

precalculated/predetermined moves that the system could make (for example: [86]), however

our work uses adaptive methods to assess the state-space around the system's position on-

the-�y at each step. Thus we do not run the risk of constraining the evolution of the

system through lack of understanding of the physics, but it does mean that we must expend

3I.e. its potential energy hypersurface
4A point on the hypersurface that is a local maxima on one axis, and a minima in all others
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Figure 3.3: Schematic view of state transitions on a potential energy hypersurface. Consider the position
of all the atoms represented by the x and y axes, and the potential energy shown as a contour sketch, with
high energy levels being the darkest and low energy being the lightest. The system will reside within a
local minima, marked by the red crosses. In one of these, we imagine it oscillating around the minima's
immediate con�nes, until it makes a transition over a rank-one saddle into another state (via the red dashed
lines representing the minimum energy path). Through Harmonic Transition State Theory, we can calculate
an estimate for the average time spent in each state, and the relative probabilities for transitioning into each
of the neighbouring states, without having to explicitly model the system trajectory.

computer time to calculate possible transitions, and furthermore, one can never be certain

of having found an exhaustive list. To drive our Adaptive Kinetic Monte Carlo (AKMC)

simulations, we must turn to the Vineyard equation [84,87], which is based on the Arrhenius

equation (see equation 3.3). For a system in a given state, a, a rate, kb is assigned to the

transition to some state, b, such that:

kb =

∏3N
i νa i∏3N−1
i νb i

exp

(
−Eb − Ea

kBT

)
(3.4)

where T is the system temperature and kB is Boltzmann's constant. Ea and Eb represent
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the potential energy of state a and the rank-one saddle point that must be crossed to reach

state b. Similarly, νa i is the normal mode frequency of state a, and νb i is the normal mode

frequency of the rank-one saddle point that must be crossed to reach state b (see section

3.2.1). Considering that the rate is a positive measure of probability, one sees that transitions

with slightly higher energy barriers (i.e. Eb − Ea) are strongly penalised by comparison

to their lower counterparts, due to the exponential term. Likewise, higher temperatures

correspond to higher rates of activity.

Having found the rates for all of the known transitions, their probability of selection is

linearly proportional to their rate. The clock advancement, ∆t, is made in inverse proportion

to the sum of all event rates, and includes a random factor in the interval, 0 < µ < 1, [62,84]:

∆t = − lnµ∑i=n
i=1 ki

(3.5)

The upshot of this formula, is that the more events one has than can happen, and the

more likely these events are, the less time one has to simulate for something to happen.

3.2.1 Pre-Factor Calculation

The normal mode frequencies in equation (3.4) take the form,

ν =

√
λ

2π
(3.6)

where λ is the corresponding eigenvalue of the Hessian matrix. For the purposes of the pre-

factor calculation, the Hessian matrix is given by equation (3.7), with each element given for

atoms i and j as,

Hi,j =
1

√
mimj

(
~F j+
i + ~F j−

i + ~F i+
j − ~F i−

j

2δ

)
(3.7)

where mi and mj are the atomic masses, and for a small displacement, δ = 0.001, ~F j+
i is

the force acting on atom i when j is displaced by +δ, and ~F j−
i is the force action on atom i
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when j is displcaed by −δ, with the reverse being true of ~F i+
j and ~F i−

j [88].

The eigenvalues can then be found using the DSYEV function in the LAPACK (Linear

Algebra PACKage) library [89,90].

3.2.2 Transition Discovery Method

AKMC relies on an algorithm to search the local potential energy space for transitions to

provide it with a list of possible events on-the-�y. The local state space around the current

state of the system is explored by randomly displacing atoms. When another local energy

minima is discovered the minimum energy path5 (MEP) between the original and discovered

states must be calculated. This means �nding a trajectory connecting the states which runs

through a rank-one saddle point. The increase in potential energy experienced by the system

upon moving from the initial state to the saddle gives the transition's energy barrier, and

thus the rate as seen in equation (3.4), with the di�erence between the �nal and saddle states

being the reverse barrier. Robust calculation of the MEP and saddle is therefore essential

for the AKMC method and descriptions of some of the available techniques can be found in

sections 3.2.2.1 to 3.2.2.6.

3.2.2.1 Nudged Elastic Band Method

The principle behind the Nudged Elastic Band Method (NEB) is conceptually simple. One

takes the position of two adjacent local energy minima in state space and lays a collection

of images (on the order of 4 to 20) between them, equally spaced along a straight line. In

conjunction with the forces from the potential function, each image is acted on by a force

from each of its immediate neighbours, as if elastic bands attached the sequence of images

in a chain. One should then be able to �nd the MEP between the two minima states and

through the saddle-point [91,92].

5The red lines on �gure 3.3.
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Formulation 1

Suppose that one takes an elastic band which is composed of (N + 1) images, at vector

positions ~R0 through to ~RN . ~R0 and ~RN themselves are �xed at the initial and �nal minima

respectively, with the remaining images lain out between them. To compute the forces acting

on the images one needs to approximate the tangent at each image. The tangent vector, ~τi

at some image, i, can be given by:

~τi =
~Ri − ~Ri−1

|~Ri − ~Ri−1|
+

~Ri+1 − ~Ri

|~Ri+1 − ~Ri|
(3.8)

which is then normalised to a unit vector, τ̂i:

τ̂i =
~τi
|~τi|

(3.9)

For a potential U(~Ri), the corresponding force on an image is −∇U(~Ri). If the spring force

acting on i is ~Fs,i, then its component in parallel to the tangent, τ̂i, is denoted as ~F ‖s,i. Using

~F
‖
s,i, and the component of −∇U(~Ri) perpendicular to τ̂i, −

(
∇U(~Ri)

)⊥
, the net force acting

on an image, ~Fi, is:

~Fi = ~F
‖
s,i −

(
∇U(~Ri)

)⊥
(3.10)

where the right-hand terms are given by,

~F
‖
s,i = k

(
~Ri+1 − 2~Ri + ~Ri−1

)
· τ̂ τ̂ (3.11)

(for some spring-constant, k) and

(
∇U(~Ri)

)⊥
= ∇U(~Ri)−∇U(~Ri) · τ̂ (3.12)
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Formulation 2

In the �rst form in which it is presented, NEB will quickly reach a fairly high level of

convergence, but will not typically reach the actual MEP itself. Instead, the elastic band

will become �kinked�, with images either side of the optimal path. Often, this might only

have a small impact on the saddle-point energy found. Including some of the perpendicular

elastic spring forces can reduce the kinking but this can bring with it the side-e�ect of

corner-cutting in regions of high curvature in the MEP. Thankfully, in their 2000 papers,

Henkelman et al. have been able to develop some improvements to the NEB method. In

one of these papers [91], they present a solution to the kinking problem. Speci�cally, they

propose a new formulation for ~τi, this being:

~τi =

 ~τ+
i for U(~Ri) > ~Ri > ~Ri−1

~τ−i for U(~Ri) < ~Ri < ~Ri−1

(3.13)

wherein,

~τ+
i = ~Ri+1 − ~Ri

~τ−i = ~Ri − ~Ri−1

(3.14)

If an image is at a minima or a maxima, however, a situation arises where neither condition

in equation (3.13) is met. In this case, one uses equation (3.15), which smoothly switches

between the two tangents when they become equal.

~τi =

 ~τ+
i ∆U(~Ri)

max + ~τ−i ∆U(~Ri)
min for U(~Ri) > ~Ri > ~Ri−1

~τ+
i ∆U(~Ri)

min + ~τ−i ∆U(~Ri)
max for U(~Ri) < ~Ri < ~Ri−1

(3.15)

wherein,

∆U(~Ri)
max = max

(
|U(~Ri+1)− U(~Ri)| , |U(~Ri−1)− U(~Ri)|

)
∆U(~Ri)

min = min
(
|U(~Ri+1)− U(~Ri)| , |U(~Ri−1)− U(~Ri)|

) (3.16)
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Additionally, the formula for ~F ‖s i is slightly altered.

~F
‖
s i = k

(
|R̂i+1 − R̂i| − |R̂i − R̂i−1|

)
τ̂ (3.17)

Note that equation (3.9) continues to hold, as do any other terms from the previous formu-

lation not explicitly altered.

Variable Spring Constants

Henkelman et al.'s other proposal is variable spring constant across the band [92]. The force

per unit image separation becomes a linear function of potential energy. One then �nds

a greater density of images around the saddle-point, giving higher resolution where it is

needed. With ki lying in the range kmax ≤ ki ≤ kmax −∆k, it is now given by:

ki =

 kmax −∆k
(

U(~Rmax)−U(~Ri)

U(~Rmax)−U(~Rref)

)
for U(~Ri) > U(~Rref)

kmax −∆k for U(~Ri) < U(~Rref)

(3.18)

where,

U(~Rmax) = max
(
U(~Ri) , U(~Ri−1)

)
(3.19)

and U(~Rref) is a reference value, which Henkelman et al. set to

U(~Rref) = max
(
U(~R0) , U(~RN)

)
(3.20)

recalling that ~R0 and ~RR are the initial and �nal local minima states.

In spite of these improvements, Henkelman et al. still recommend that one only use the

NEB Method for a few iterations, before switching to the Dimer method to complete the

search.
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3.2.2.2 Activation Relaxation Technique

First developed in 1996 by Barkema and Mousseau [93], the Activation Relaxation Technique

(ART) method uses a modi�ed force vector to move the system towards a saddle point, from

which it may then relax to �nd the end of the transition. The unmodi�ed force will push

a system close to the saddle towards the minima, but if a small deviation from the MEP is

made, the system will experience a restoring force because a rank-one saddle is a minima

in all but one dimension. To begin the search, the system is displaced by a small random

vector. Then modi�cation is made by negating the force component parallel to the direction

leading back to the minima, ~F‖. With the perpendicular component being ~F⊥, the modi�ed

force, ~Fmod is,

~Fmod = ~F‖ − α~F⊥ (3.21)

where α is given in terms of the relative positions of the system, ~R, and the minima, ~R0,

such that,

α =
β

| ~R− ~R0 |2
(3.22)

The | . . . |2 notation refers to the `2-norm [94]. β is a positive number, used to control the

speed of the motion to the saddle point and would typically take a value of 0.15 [95]. As

remarked by L.J. Vernon [96], if the value of β is set too low, the system will follow an

ine�cient zig-zagged path, and when it is set too high, the estimation of the MEP becomes

poor.

One then allows the force to act on the system for a small step, recalculating the modi�ed

force in the new position and repeating the process until its magnitude becomes vanishingly

small.

3.2.2.3 Relaxation And Translation Method

The Relaxation And Translation (RAT) Method is based on the ART method, but its parallel

and perpendicular components at each step are de�ned with reference to the system's location
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at the previous step. The force is applied with a variable step size, based on the value of ri,

where,

ri =
~F‖i+1 − ~F‖i
~F⊥i+1

(3.23)

with i marking the step. Then, if the step size at step i is si,

si+1 =


6
5
si for ri < 1.2

1
2
si for ri > 1.2

(3.24)

The system's position before and after the application of the force are denoted ~R′i and ~Ri

respectively. After reaching ~Ri, the system is is displaced by a unit vector, ~N ′i+1 such that,

~N ′i+1 =
~Ni + ~N ′i

| ~Ni + ~N ′i |
(3.25)

where ~Ni+1 and ~N ′i+1 are the displacement vectors leading from ~Ri−1 to ~Ri and ~R′i respec-

tively. The process is iterated until equation (3.26) is satis�ed [96,97].

~F‖ · ~N ′ > 0 (3.26)

3.2.2.4 Dimer Method

In the Dimer Method [84, 98], one takes the state of the system in con�guration space, and

creates two modi�ed images of it. These images represent small shifts (something on the

scale of 0.005 Å, for example [84]) in the state space which are equal in size and opposite

in direction. That is, a Dimer image is created, centred on the real position of the system6.

The Dimer is then rotated around the real image until the orientation yielding the lowest

potential energy for the Dimer is found. The rotation for this energy minimisation is achieved

by taking the di�erence between the forces acting on the two Dimer images in the direction

6One may use a slightly randomised version of real position, so that the algorithm can be used repeatedly
to �nd multiple saddle-points around the local state space.
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perpendicular to their separation vector. This is to say that, if N̂ is a unit vector specifying

the direction of separation between the images, and ~F⊥A and ~F⊥B are the forces perpendicular

to it, acting on Dimer components, A and B, then these forces, along with net rotational

force, ~F⊥ are:

~F⊥A = ~FA −
(
~FA · N̂

)
N̂

~F⊥B = ~FB −
(
~FB · N̂

)
N̂

~F⊥ = ~F⊥A − ~F⊥B

(3.27)

where ~FA and ~FB are the total forces on A and B. Rotating the Dimer by small angles

iteratively, the forces are adjusted until the Dimer comes to rest. This should be the minimum

energy con�guration, and this being so means that the Dimer is aligned with the direction

of the energy function's lowest curvature.

The next step is to translate the Dimer towards the saddle-point. Unaltered, the net

forces acting on the Dimer, ~F , would draw it towards a local minima, which is not desired.

Instead, the force acting parallel to the Dimer axis, ~F ‖ is inverted, which makes the e�ective

force on the Dimer, ~F †, equal to:

~F † = ~F − 2~F ‖ (3.28)

The length of the translation resulting from this force is controlled by a timestep, over

which ~F † is integrated. This timestep should be made as large as possible to save computer

time, while also staying su�ciently small to allow the Dimer method to converge to the

saddle-point.

One way to allow the timestep to remain large is to side-step the issue of eventual con-

vergence by switching to a di�erent, and �ner, search scheme when the Dimer is close to

a saddle-point; for example, the Minimum Mode Following Lanczos Algorithm, which are

described in sections 3.2.2.5 and 3.2.2.6.
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3.2.2.5 Minimum Mode Following Algorithm

Published in 1981 by Cerjan and Miller [99], the minimum mode following algorithm can

optimise a system to a saddle state con�guration using the eigenvectors of the Hessian matrix.

Since the computational cost associated with calculating the Hessian grows quadratically

with the number of degrees of freedom, using the full matrix is not practical. A 2011

work by Pedersen et al. presents a simpli�ed version of the problem; they suggest using

only the lowest eigenvalue (the minimum mode) of the Hessian matrix to �nd the rank-one

saddle [100]. Since rank-one saddles are minima in one dimension only, by inverting the force

on the system atoms, ~F , in the axis along which is it is strongest, one can guide the system

towards the saddle. The modi�ed force, ~Fmod, can be computed in terms of the eigenvector

with the lowest eigenvalue, ~vmin, ie.

~Fmod = ~F − 2
(
~F · ~vmin

)
· ~vmin (3.29)

With the modi�cation to the force vector, the saddle point becomes a minima and can then

be found using the Lanczos algorithm, as per section 3.2.2.6.

3.2.2.6 Lanczos Algorithm

Discovered in 1950 by Cornelius Lanczos [101], the Lanczos algorithm is an iterative method

for �nding the eigenvalues and eigenvectors of symmetric matrices. In our case, the matrix

we wish to apply the algorithm to is the Hessian approximation, as described in section 2.3.

We describe the method using the form suggested by C. C. Paige in 1972 [102], in which the

Hessian, H, of size m by m, is converted to a tridiagonal matrix, T with symmetry such
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that Ti,j = Tj,i. The elements of T are,

T =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βm−1

βm−1 αm−1 βm

βm αm


(3.30)

and are derived as follows:

First, set up the initial values

β1 = 0

v0 = 0

v1 = random unit vector ( | v1 |= 1 )

(3.31)

Then, looping over elements i in the range 1 to m− 1:

wi = Hvi

αi = wi · vi

wi = wi−1 − αivi − βivi−1

βi+1 = ‖wi‖

vi+1 =
wi

βi+1

(3.32)

For the mth elements:

wm = Hvm

αm = wm · vm
(3.33)
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The eigenvector with the lowest eigenvalue of the resulting matrix can then be estimated

using the LAPACK library's implementation of QR factorisation [90,103,104], repeating the

Lanczos method until a desired tolerance is met.

3.2.2.7 Saddle Search Method Chosen

In existing work with iron systems by T. Lazauskas in 2014 [88], a combination of methods,

using Dimer techniques to estimate saddle positions, and the MMRA with Lanczos eigen-

vector calculations to re�ne it, was shown to be e�ective and e�cient. Similarly, M. Yu [97]

demonstrated that while the ART method was the fastest method, both it and the RAT

methods were outperformed by Dimer/MMFA searches in practical terms, with the latter

producing more unique transitions for real computing power expended when the number of

failed searches was considered. As such, this is our choice of saddle search method also.

3.2.3 State Categorisation

Attempting to perform transition searches on the entire system is very ine�cient when only

a small fraction of atoms in the vicinity of defects have a non-negligible likelihood of moving.

For this reason, our AKMC software divides the lattice into subsystems called defect volumes.

The current state is compared to a reference lattice, and by their comparison, interstitial

defects and vacancies are located, see section 2.4. A sphere is then drawn around each defect

object; all atoms within this sphere are included in the defect volume, and if multiple defects

fall within each other's sphere, they are treated as one defect volume. Using Brendan D.

McKay's �nauty� (No AUTomorphisms, Yes? [sic.]) library, a hexadecimal code, referred to

as a hashkey, is generated, based on the geometry of the defect volume [105,106]. Transition

searches are then performed on the atoms of each defect volume. Every unique transition

found is stored in a �le associated with that hashkey, meaning that if a defect volume is later

encountered with isomorphic geometry, and therefore the same hashkey, those transitions

can be reused, saving the computational expenditure of the search process for that AKMC
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step.

3.3 The Super-Basin Method

3.3.1 Introduction

AKMC allows one to achieve long-timescale-dynamics, but there is an issue known as the low

barrier �icker problem that can limit its e�ciency, and this we wish to eliminate. Suppose,

that one has a region with a high density of states connected by low energy transitions. Most

likely, transitions between these states will not represent large recon�gurations of the atoms,

yet they will have highly favourable rates, and thus will drive down time advancements. One

is then left with our system �ittering between these very similar states, occupying computer

time, while not simulating any large steps forward in time. The solution is referred to as the

Super-Basin Method. For a given threshold, we can combine states connected by low energy

transitions into a low energy basin, that is, a super-state jointly representing them. For this

basin, one can calculate an aggregate rate of escape via higher energy transitions, allowing

one to integrate out the uninteresting activity, and more importantly, making larger advances

of time accessible to the simulations [107, 108]. We attempt to depict this schematically in

�gure 3.4.

3.3.2 The Mean Rate Method

The mean rate method (MRM), derived by Puchala et al. in 2010 [107], is used to calculate

the average time a system will spend trapped in the transient states of a low energy basin,

before escaping to an absorbing state. De�ning the mean time spent in the ith transient state

before the basin is escaped as τi, a matrix of transition probabilities, ¯̄T, can be constructed,

whose elements the mean rate method gives as,

Ti,j = τ 1
i Ri→j (3.34)
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Figure 3.4: Schematic view of a section of state space containing two basins, a and b. Without the super-
basin method, this system would dwell in one of those regions, consuming large durations of computer time,
while advancing the system time little. By drawing a basin around a and b, we can integrate out the internal
recon�gurations within these regions and calculate a general rate of escape to state c, making larger advances
of system time [107].

where Ti,j is the probability of transitioning from basin states i to j, with the sum over k

representing all transient and absorbing states, and R is the rate for the transition between

the states marked in superscript in the direction indicated by the arrow. τ 1
i is the mean time

spent in each basin state per single visit, such that,

τ 1
i =

(∑
k

Ri→k

)−1

(3.35)

The occupational probability vector Θ̄(m) is the probability of still being in a transient basin

state, i, in the interval between some transition, m, and the next, given by,

Θ̄(m) = ¯̄T
m

Θ̄(0) (3.36)
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where ¯̄T
m

is the subset of ¯̄T for m's initial and �nal states, and Θ̄(0), the occupational

probability vector for the transition in which the system enters the basin, is de�ned with

elements such that for each state, i,

Θ̄i(0) =

 1 when i is the state by which the basin is entered

0 for all other states
(3.37)

The occupational vector probabilities then sum to Θ̄total (for the identity matrix I),

Θ̄total =
∞∑
k

¯̄T
m

Θ̄i(0) =
(
I− ¯̄T

)−1

Θ̄(0) (3.38)

for all possible moves, m = 0 → ∞. This then relates the mean total time spent in basin

state i to the mean time spent per visitation by,

τi = τ 1
i Θ̄total

i (3.39)

This means that the mean rate to escape the basin from transient state i to absorbing state

j is,

〈Ri→j〉 =
τi∑
k τk

Ri→j (3.40)

with k representing all the transient states.

The sum of the mean time spent in each transient state gives the mean total time that

system will spend in the basin, before escaping to an absorbing state, that is,

τbasin =
∑
i

τi (3.41)

and is used for AKMC timesteps. When a MRM based atomistic modelling technqiue was

proposed by Béland et al. in 2011 [109], they envisioned it used for whole system lattices,

and therefore that only one basin would exist at a time; however in our AMKC method, the
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system is divided into defect volumes, upon whom transitions are discovered independently,

and as such, allow for multiple basins7 to be constructed on-the-�y.

3.3.3 Problems with Super-Basin Method Implementation

3.3.3.1 Duplicate Hashkey Problem

For the super-basin method to work we must have a well de�ned concept of individual states.

The LAKMC code achieves this using the defect volumes' hashkey, centre of mass (~xCOM),

and moment. The centre of mass calculation does not use the real masses of the atoms,

instead treating all atoms in the defect volume as equal point masses, such that for N atoms

with positions ~x0, ~x1, . . . , ~xN ,

~xCOM =
1

N

N∑
i=1

~xi (3.42)

The moment, ~xmom, is then given as a function of the separation of each atom from the

centre of mass,

~xmom =
1

N

N∑
i=1

(~xi − ~xCOM)2 (3.43)

Most of the time, with a small tolerance for variation in COM and moment, these three

attributes are enough to uniquely identify states within a super-basin, however there is a �aw

in this system. When a defect volume has atoms very close to its spatial limits, changes in the

broader system can e�ect slight changes in the exact position of these atoms, causing them

to cross the defect volume boundary, be it inwards or outwards. Since nauty's algorithm is

dependent on the number of atoms in the defect volume, the hashkey of the state changes. To

prevent this from causing major problems with the housekeeping of the super-basin system

we must permit multiple hashkeys to be associated with a single basin state, which we refer

to as duplicates, calling the original version of the defect volume the primary.

Whether the duplicate hashkey problem is a major problem or a minor inconvenience

depends on how frequently such states appear in the speci�c system studied. The original

7Such that, � basins ≤ � defect volumes.
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implementation of the super-basin method was written by erstwhile colleague, Miao Yu, as

part of his doctoral project simulating surface deposition growth of CdTe [97]. In his system,

duplicates did not pose a large problem, and this implementation had only a partial solution.

3.3.3.2 Detailed Balance

Another issue known to exist with the original implementation of the super-basin method, as

noted in section 8.2 of Miao Yu's thesis, is the lack of symmetry in the internal connections it

produces. The method operates under the presumption of detailed balance, which is to say,

every transition within the basin must have a partner, whose connection runs between the

same two states in the reverse direction, with the corresponding energy barriers, see �gure

3.5.

Figure 3.5: Illustration of the concept of detailed balance; if a transition from A to B is added (red) to a
low energy basin, then so must a corresponding transition from B to A (blue), switching the forward and
reverse barriers.

3.3.4 New Implementation

For some systems, duplicate hashkey states are very common, and correct detailed balance

is vital for reliable results. To �x these two problems required a substantial overhaul of the

super-basin method implementation in LAKMC � the methodology described in section 3.4
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describes the software in its amended condition. Note that Miao Yu's implementation of the

MRM is used unaltered [97].

3.4 Implementation

An overview of the operation of LAKMC is shown in �owchart form in �gure 3.6, and is

supplemented by �gure 3.7, which shows the process for adding transitions to the basin

structure. The method by which we detect duplicate hashkey states is shown in �gure 3.8.

3.4.1 Low Barrier Criteria

When each transition is found, it must be examined to determine whether it quali�es as a

low barrier transition. The user speci�es a threshold energy and if either the forward or

reverse barrier is below this value, the transition is marked as low barrier, regardless of how

large the other is. This is because, if the system was to escape of over a high barrier, the

low barrier would give a high probability to move back into the basin from which it came.

Note that is is important not to set the low barrier threshold too high, lest the system does

not �nd any escaping transitions. As will become apparent in section 3.4.2, a complete lack

of transitions to absorbing states will have undesired e�ects.

3.4.2 Basin Exploration

To construct our basins on-the-�y, we begin with an ordinary search procedure on each

defect volume in the system. If a low barrier transition is found, its initial and �nal states

are added to a new basin structure and any non-low barrier transitions found from the initial

are added as moves to absorbing states. The initial state is then considered �explored� and

the defect volume may transition to either the other basin state, or one of the absorbing

states (if any have been found). A defect volume whose hashkey has never been searched

is considered �unexplored� and a basin state which has been discovered as the end defect
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Figure 3.6: Overview of the algorithm used by the LAKMC software implementation. The process by which
transitions are saved to the basin (the actions bordered in red with italic text) is described in �gure 3.7.
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Figure 3.7: Procedure for saving transitions in a basin.
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Figure 3.8: Procedure for identifying whether a defect volume is an existing basin state, and if so, whether
it is the primary version or a duplicate hashkey state.
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volume of a low barrier transition is considered �partially explored�; before being visited, the

only transitions known to it will be the reversed versions of transitions going to it from other

basin states. Each time a defect volume that is a basin makes a transition, it is permitted to

move only to an unvisited basin state or to an absorbing transition, see �gure 3.9. Therefore,

when a basin is fully explored, the only option is exit the structure; as such, if no escaping

transitions have been found, there will be no valid moves available to the defect volume in

the basin and we would advise the user to reduce their low barrier threshold.

Figure 3.9: In the following basin structure, with explored states, [A, B, C, D], a move may be made only to
one of the partially explored states, [E, F, G], which were discovered as the end points of transitions from
the explored states, or to one of the absorbing states, [H, I, J, K, L]. Single headed arrows indicate non-low
barrier transitions which escape to absorbing states, and double headed arrows indicate pairs of low barrier
transitions, internal to the basin.

3.4.3 Escaping a Basin

When a defect volume escapes from a basin, the structure is deleted. Ideally, this should only

ever happen if a move to an absorbing state is made; however, in a system of multiple defect

volumes, such as a post-collision cascade lattice, two or more defects may migrate su�ciently

close to each other to be considered part of one volume. Since the new state occupied will

then have a completely di�erent hashkey and number of defects from any of the previous

con�gurations, it is not recognised as a state of any of the basins from which the defects



72 CHAPTER 3. METHODOLOGY 2 AKMC & THE SUPERBASIN METHOD

came. This process can happen in reverse too, when defect objects move su�ciently distant

to be considered as in separate defect volumes. An additional example can occur when a

transition is found to a state of relatively low stability � later, when the defect volume moves

to that state, changes in the wider system may mean that the state is no longer stable. As

such, during the post-transition minimisation, the defect volume may take on a completely

di�erent con�guration, not found anywhere in its basin. In such cases as these, the a�ected

basin(s) must be deleted, and we begin construction of new basin structures as appropriate.







Chapter 4

Collision Cascades and Displacement

Threshold Energy

4.1 Collision Cascades

To begin our study of radiation degradation e�ects, we used our molecular dynamics soft-

ware to study the main process by which damage is introduced into solid matter � collision

cascades. These occur when an energetic particle sheds some of its momentum to an atom,

causing it to recoil. The recoiling atom, which we refer to as the Primary Knock-On Atom

(PKA), in turn, interacts with its neighbours, displacing them to create pairs of vacant lat-

tice sites and interstitial atoms. To collect representative statistics, our sets of PKA vectors

comprise of over a hundred points, evenly sampling the unit sphere [110]. It was once com-

mon for those studying collision cascades to use a single, highly o� lattice orientation for

the initial vector of their PKA, which would allow fewer simulations to be conducted, while

avoiding introducing bias through e�ects such as channelling, and we discuss the impact of

this method in section 4.4.

In section 4.1, we present a variety of computational experiments with single collision

cascade events, discussing the recovery process in section 4.2. Aside from the total number of

Frenkel pairs produced, we also consider the concentration of chromium among interstitial
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atoms with respect to the bulk. A disparity could be an indication of the beginning of

chromium segregation � those using FeCr materials to construct a reactor will be keen to

avoid regions of chromium depletion, lest these begin to oxidise. For later comparison, the

rate at which chromium would appear in defects if there were no species bias is shown in

table 4.1.

Table 4.1: In this table, for a given bulk concentration of chromium, α, the hypothetical corresponding rate
of occurrence of chromium in defects, if there were no species bias, is shown.

Cr in Bulk Cr LIAs CrFe SIs CrCr SIs Cr Defect Atoms
α α 2(α− α2) α2 α

1% 1% 1.98% 0.01% 1%
5% 5% 9.5% 0.25% 5%
10% 10% 18% 1% 10%

Descriptions of the results are found in sections 4.1.1 to 4.1.3, while a discussion of their

implications may be found in 4.1.4.

4.1.1 PKA Energy

We began our investigation by considering the e�ect of PKA energy on collision cascades in

FeCr10 at.% , and in these experiments, we did not thermalise the lattices prior to the event,

applying a Berendsen thermostat at 0 Kelvin during the simulation. Simulations with PKA

energies of 1, 2, and 5 keV were conducted, and to contain each set of collision cascades,

54,000 atoms, 128,000 atoms and 500,094 atoms were used respectively. Three sets of 108

PKA directions, distributed over the unit sphere, were used in eighteen randomly generated

systems of appropriate size1.

To allow the cascade energy to dissipate, and to ensure that the end of the ballistic phase

had been passed, the 1 and 2 keV simulations were run to 6 ps, with the 5 keV simulation

running to 10 ps. The evolution of the number of Frenkel pairs produced by the cascades is

1This should mean that 5832 simulations were ran for each energy, but technical problems with the
automation scripts lead to slightly fewer for the 1 keV and 5 keV sets.
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Figure 4.1: Evolution of the number of Frenkel pairs produced by collision cascades in FeCr10 at.% with
PKAs of energies 1 keV (5553 simulations) and 2 keV (5832 simulations). Please note that the number of
Frenkel pairs is presented on a logarithmic axis.

shown in �gure 4.12. Final defect statistics are shown in tables 4.2 and 4.3, which show the

�nal state of the lattices before and after minimisation respectively.

There is no tangible di�erence between the defect atoms' chromium content, or the

total number of Frenkel pairs in the two tables, but upon relaxation, lone interstitial atoms

show a tendency to form split-interstitial defects. The relationship between the number

of Frenkel pairs remaining at the end of the simulation is approximately linear, although

this relationship must break down for low cascade energies, such as to intercept the y-axis

at the origin in �gure 4.2. chromium consistently appears in interstitial atoms at a lower

rate than in the bulk for all PKA energies, and our error bars are not su�ciently small to

establish a statistically signi�cant correlation with respect to it, see �gure 4.3. With regard

to the speci�c types of interstitial defects, seen in �gure 4.4, we consistently �nd across PKA

energy, FeCr and CrCr split-interstitials are under-represented, with no signi�cant change

2Given the very large �le sizes associated with the 5 keV PKA simulations, only the �nal lattice at 10 ps
was stored, hence it is absent from �gure 4.1
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seen after minimisation. Lone chromium interstitials are over-represented, and this tendency

is inversely proportional to the overall chromium concentration. Additionally, after lattice

minimisation, this over representation is greatly exaggerated, suggesting that lone chromium

interstitials are more stable than their iron counterparts, and that it is the latter that are

mostly responsible for the overall reduction of LIAs post-minimisations.

Table 4.2: Lattice defects found in FeCr10 at.% systems following collision cascade of varying energy, simulated
at 0 Kelvin. 5553, 5832, and 5825 simulations were performed for the 1, 2 and 5 keV results respectively (no
post-cascade lattice minimisation). The 1 keV and 2 keV simulations ran for 6 ps and the 5 keV simulations
ran for 10 ps.

PKA
Energy

Defect Atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

1 keV 6.9± 0.3 0.406± 0.010 6.39± 0.02 6.80± 0.03

2 keV 7.4± 0.3 0.89± 0.15 10.02± 0.03 10.92± 0.04

5 keV 7.4± 0.3 2.08± 0.03 18.4± 0.06 20.50± 0.07

PKA
Energy

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

1 keV 21.3±0.5 87.4±0.4 12.1±0.4 0.46±0.09
2 keV 15.5±0.5 86.4±0.4 13.1±0.4 0.49±0.09
5 keV 13.3±0.4 86.2±0.4 13.3±0.4 0.47±0.09

Table 4.3: Lattice defects found in FeCr10 at.% systems following collision cascade of varying energy, simulated
at 0 Kelvin. 5553 and 5832 simulations were performed for the 1 and 2 respectively (with post-cascade lattice
minimisation � given the high CPU hour cost associated with the L-BFGS-B/CG minimisation for larger
systems, no minimised results appear for the 5 keV PKA simulations.). These simulations ran for 6 ps.

PKA
Energy

Defect Atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

1 keV 7.0±0.3 0.258±0.008 6.53±0.02 6.78±0.03
2 keV 7.3±0.3 0.616±0.014 10.29±0.03 10.91±0.04
PKA
Energy

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

1 keV 64.9±0.3 86.5±0.5 13.0±0.5 0.49±0.09
2 keV 61.6±1.3 85.9±0.4 13.6±0.4 0.54±0.10
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Figure 4.2: Final number of Frenkel pairs produced by collision cascades in FeCr10 at.% with PKAs of energies
1 keV (5553 simulations), 2 keV (5832 simulations), and 5 keV (5825 simulations) The equation of the line
drawn, for PKA energy, E and Frenkel pair count, F , is F = 3.3715E + 3.7492. Data taken from table 4.2.

4.1.2 Temperature

We compared 1 keV cascades simulated at 500 Kelvin to those conducted at 0 Kelvin, and

these data sets are shown in �gure 4.5. For the latter, the �nal defect statistics may be found

in tables 4.4 and 4.5 as part of section 4.1.33. In the initial stages of the two sets of cascade

data, the hotter systems average a greater number of Frenkel pairs, but after 2.75 ps, they

fall below the low temperature systems. Additionally, while negligible di�erence is seen after

minimising the 0 Kelvin results, a small, but statistically signi�cant fall in Frenkel pairs is

seen after the 500 Kelvin systems are relaxed. A much larger loss of lone interstitials to split-

interstitials is seen, reducing the di�erence between the minimised 500 Kelvin and its 0 Kelvin

counterpart. Likewise, unlike in the 0 Kelvin results, chromium is over-represented in defects

at 500 Kelvin, but relaxing these systems results in its under-representation, more in-line with

the 0 Kelvin data, see �gures 4.3 and 4.7. Similarly, after minimisation, the relative rates

of occurrence for FeCr and CrCr split-interstitials in the 500 Kelvin simulations resemble

3where a description of how this data was generated may also be found.
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Figure 4.3: Relative rate of occurrence of chromium atoms in defects in FeCr10 at.% systems, following
collision cascades of various PKA energies, calculated by dividing the percentage of defect atoms that were
chromium by the bulk concentration (see tables 4.2 and 4.3), and then subtracting one from the result. Thus,
positive values indicate a higher fraction of chromium in defect atoms than the bulk, and negative values
indicate the converse. Given the high CPU hour cost associated with the L-BFGS-B/CG minimisation for
larger systems, no minimised results appear for the 5 keV PKA simulations.
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Figure 4.4: Relative rate of occurrence of chromium in interstitials in FeCr10 at.% systems, following collision
cascades of various PKA energies, calculated by dividing the defect percentages found in tables 4.2 and
4.3 by the relevant reference value in table 4.1, and then subtracting one from the result. Thus, positive
values indicate a higher fraction of chromium in defect atoms than the bulk, and negative values indicate the
converse. The values of the Cr LIAs columns for the minimised 1 keV and 2 keV results are 5.49±0.03 and
5.16±0.13, and the y-axis is deliberately truncated to avoid them dwar�ng the other results. Given the high
CPU hour cost associated with the L-BFGS-B/CG minimisation for larger systems, no minimised results
appear for the 5 keV PKA simulations.
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their 0 Kelvin counterparts, see �gures 4.4 and 4.8. Although lone chromium interstitials

are over-represented in both sets of data, the e�ect is much more pronounced in the low

temperature systems.

Figure 4.5: Comparison between the evolution of one 1 keV PKA cascades simulated in 54 thousand
FeCr10 at.% atoms at 0 and 500 Kelvin (2160 and 4320 simulations, respectively). Please note that the
number of Frenkel pairs is presented on a logarithmic axis.

4.1.3 Bulk Chromium Concentration

Our investigation into the e�ects of varying chromium concentration was conducted at 500

Kelvin with 1 keV cascades, thermalising the lattices prior to the cascade and maintaining

a Berendsen thermostat throughout. Ten sets of 108 PKA vectors are used. For the three

non-zero concentrations of chromium considered, FeCr1 at.% , FeCr5 at.% , and FeCr10 at.% ,

40, 20, and 40 unique lattices of 54,000 atoms were generated respectively. Each set of

PKA vectors would be paired with a lattice on rotation, such that PKA vector set 1 would

be used for lattices 1, 11, 21, 31, etc. In the pure iron simulations, one lattice was used

with each of the PKA vector sets, as there was no alloying element to randomly distribute.
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Thus, the total number of simulations performed in each system type, in ascending order

of chromium concentration (including 0 at.%), were 1080, 4320, 2160, and 4320, with the

lattice parameters of 2.855 Å, 2.856 Å, 2.858 Å, and 2.863 Å, respectively.

4.1.3.1 Unminimised and L-BFGS-B/CG Minimised Results

As is seen in �gure 4.6, the evolution of the number of Frenkel pairs is essentially indistin-

guishable, and there is no statistically signi�cant di�erence between the number of Frenkel

pairs in the �nal lattices, shown in tables 4.4 and 4.5. A major di�erence that does exist, is

the distribution of chromium in interstitial atoms, and the manner in which it di�ers after

relaxation. In these results, there is a trend for chromium atoms to appear in interstitial de-

fects at a higher rate than in the bulk, and this is increasingly evident at low concentration,

see �gure 4.7. Upon the minimisation of these systems however, this trend is lost � not only

do the results no longer have any statistically signi�cant trend, but they have also moved

to an under-representation of chromium in defects. This is more similar to the results in

section 4.1.1.

The error bars on the CrCr split-interstitials, see �gure 4.8, are too large to draw any

conclusions regarding whether they are under-represented in the same way as in section

4.1.1, except for the FeCr10 at.% , where this does appear to be so. The FeCr split-interstitials

follow the same trend as the overall relative rate of occurrence of chromium in defect atoms,

in that they are over-represented in inverse proportion to bulk chromium concentration

before minimisation, and under-represented with no apparent trend after minimisation. Lone

chromium interstitials are also over-represented before minimisation in inverse proportion to

bulk concentration. Minimising these lattices increases this over-representation, but the

correlation is no longer seen � with the results for FeCr5 at.% being a clear outlier.
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Figure 4.6: Defect evolution over 6 ps from 1 keV PKA cascades simulated at 500 Kelvin in systems of 54
thousand atoms at various ratios of iron and chromium. Please note that the number of Frenkel pairs is
presented on a logarithmic axis.

Table 4.4: Defect statistics from 1 keV PKA cascades simulated for 6 ps at 500 Kelvin in systems of 54
thousand atoms at various ratios of iron and chromium (no post-cascade lattice minimisation).

Atomic
Percentage
Chromium

Defect atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

0% N/A 1.49±0.04 3.88±0.05 5.37±0.06
1% 1.55±0.18 1.48±0.02 3.87±0.03 5.35±0.03
5% 6.8±0.8 1.54±0.04 3.82±0.05 5.36±0.07
10% 10.7±0.5 1.65±0.02 3.79±0.03 5.42±0.04

Atomic
Percentage
Chromium

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

1% 2.0±0.2 97.1±0.3 2.9±0.3 None recorded

5% 8.2±0.6 87.7±0.7 12.1±0.7 0.21±0.10
10% 13.3±0.5 81.1±0.6 19.4±0.6 0.51±0.11
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Table 4.5: Defect statistics from 1 keV PKA cascades simulated for 6 ps at 500 Kelvin in systems of 54 thou-
sand atoms at various ratios of iron and chromium (with post-cascade L-BFGS-B/CG lattice minimisation).

Atomic
Percentage
Chromium

Defect atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

0% N/A 0.58±0.03 4.54±0.05 5.12±0.06
1% 0.80±0.14 0.613±0.014 4.47±0.03 5.08±0.03
5% 4.5±0.4 0.70±0.02 4.42±0.04 5.11±0.04
10% 8.1±0.4 0.835±0.016 4.32±0.03 5.15±0.03

Atomic
Percentage
Chromium

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

1% 2.1±0.2 98.4±0.19 1.61±0.19 0.005±0.011
5% 9.2±0.6 91.9±0.5 7.8±0.5 0.28±0.11
10% 14.5±0.5 85.7±0.5 13.6±0.5 0.69±0.13

4.1.3.2 Post-Damped MD Analysis

Being concerned about the extent to which the computationally fast relaxation of the lattices

changes our apparent results, we elected to examine the systems after they were relaxed via

damped MD (see section 2.3), and this data can be found in table 4.6. With damped MD

being so much more computationally expensive, we set our force tolerance at 0.1 eV/Å,

rather than the 0.01 eV/Å used during L-BFGS-B/CG minimisation.

Similar to the previous minimised results, we a see loss of lone interstitials to split-

interstitials, with no statistically signi�cant di�erence between those two sets. Likewise,

the same small fall in the number of Frenkel pairs following minimisation is seen. The

results following damped MD have an overall appearance rate of chromium in defects that

is akin to the unminimised results (see �gure 4.9), and as such, we do not observe the

dramatic recon�guration seen after L-BFGS-B/CG minimisation. Damped MD has not

made a statistically signi�cant di�erence to the over-representation of chromium seen in

the FeCr1 at.% and FeCr5 at.% systems, but an increase is seen for the FeCr10 at.% systems.
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Figure 4.7: Relative rate of occurrence of chromium atoms in defects in systems of various bulk concentration,
following 1 keV collision cascades, calculated by dividing the percentage of defect atoms that were chromium
by the bulk concentration (see tables 4.4 and 4.5), and then subtracting one from the result. Thus, positive
values indicate a higher fraction of chromium in defect atoms than the bulk, and negative values indicate
the converse. Bulk concentrations are given in atomic percent. See table 4.1 for reference values.
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Figure 4.8: Relative rate of occurrence of chromium in interstitial atoms in systems of various bulk con-
centration, following 1 keV collision cascades, calculated by dividing the defect percentages from tables
4.4 and 4.5 by the relevant reference value in talbe 4.1, and then subtracting one from the result. Thus,
positive values indicate a higher fraction of chromium in defect atoms than the bulk, and negative values
indicate the converse. Bulk concentrations are given in atomic percent. See table 4.1 for reference val-
ues. Note that the y-axis is deliberately cut o� at 1.2 such that the �5% Minimised Cr LIAs� column,
3.6 ± 0.3, does not dwarf the others.
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Table 4.6: Defect statistics from 1 keV PKA cascades simulated for 6 ps at 500 Kelvin in systems of 54
thousand atoms at various ratios of iron and chromium (with damped MD post-cascade lattice minimisation).

Atomic
Percentage
Chromium

Defect atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

0% N/A 0.56±0.03 4.50±0.05 5.07±0.07
1% 1.61±0.19 0.603±0.013 4.42±0.03 5.02±0.03
5% 7.5±0.6 0.75±0.02 4.29±0.04 5.04±0.04
10% 12.0±0.5 0.934±0.016 4.13±0.03 5.06±0.03

Atomic
Percentage
Chromium

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

1% 5.0±0.3 97.3±0.2 2.7±0.2 0.011±0.016
5% 17.8±0.8 87.0±0.7 12.7±0.7 0.27±0.11
10% 23.4±0.6 79.3±0.6 20.1±0.6 0.64±0.12

Regarding surviving lone interstitial atoms, the very large chromium over-representations

seen after L-BFGS-B/CG minimisation are not seen following damped MD, but the relative

sizes of the three system types' results are in approximately the same proportions. As seen

in �gure 4.10, the switch from over-representation to under-representation of FeCr split-

interstitials seen following L-BFGS-B/CG minimisation does not occur after damped MD

and the di�erence between the latter and the results prior to minimisation is not statistically

signi�cant. CrCr split-interstitials in FeCr10 at.% are under-represented, as they were in the

original minimisation, although we do not have su�ciently good statistics to comment on

the other bulk concentrations � see �gure 4.11.

4.1.4 Discussion

From the results of our simulations, we see that after the initial kinetic energy of the PKA, the

most signi�cant factor in the total number of defects introduced to a lattice is the system's

temperature. While more defects are produced in the early stage of the cascades at 500 Kelvin

in FeCr10 at.% , a greater rate of recombination is seen in these systems during the ballistic
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phase, leading to a lower �nal number of Frenkel pairs, consistent with the increased mobility

of defect objects at higher temperature. Furthermore, temperature is seen to be relevant

to the representation of chromium in defect atoms. The results conducted at 500 Kelvin

in FeCr10 at.% are suggestive of a small over-representation of chromium before minimisation

(although more simulations would have to be performed for statistical con�dence), and while

after minimisation an under-representation is seen instead, it is still lesser than that seen in

the 0 Kelvin simulations.

The variation of bulk chromium concentration does not have an impact on the number

of Frenkel pairs produced by 1 keV PKA cascades, but our results would seem to show that

chromium atoms are more readily taken from their lattice sites than iron at 500 Kelvin, and

while relaxing the lattices sees a general under-representation of chromium, lone chromium

interstitials remain consistently over-represented. This over-representation is negatively cor-

related with both PKA energy and bulk chromium concentration. Given the desire to avoid

chromium segregation in a nuclear reactor, we would therefore recommend against the use

of low chromium concentration materials.

The results of our damped MD suggest that the under-representation of chromium that

appears after minimisation is an artefact of the L-BFGS-B/CG method. Being more robust,

the damped MD results should be more representative of a settled system.

With regard to cascade morphology, as is seen in �gures 4.12 to 4.15, the region around

the initial position of the PKA experiences a rapid displacement of the surrounding atoms.

The centre of this region is left with many lattice vacancies, while at the greatest extent of

the plume of transient damage, interstitials are left. Additionally, damage is transmitted

outwards by replacement collision sequences, leaving interstitial defects further out from the

central cascade region. In the highest PKA energy cascades, we also see evidence of cluster

formation, for example in �gure 4.14.
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Figure 4.9: Relative rate of occurrence of chromium atoms in defects in systems of various bulk concentration,
following 1 keV collision cascades, with damped MD applied afterwards, calculated by dividing the percentage
of defect atoms that were chromium by the bulk concentration (see tables 4.4 and 4.5), and then subtracting
one from the result. Thus, positive values indicate a higher fraction of chromium in defect atoms than the
bulk, and negative values indicate the converse. Bulk concentrations are given in atomic percent. See table
4.1 for reference values.
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Figure 4.10: Relative rate of occurrence of chromium in lone interstitial atom in systems of various bulk
concentration, following 1 keV collision cascades, with damped MD applied afterwards, calculated by dividing
the percentage of defect atoms that were chromium by the bulk concentration (see tables 4.4 and 4.5), and
then subtracting one from the result. Thus, positive values indicate a higher fraction of chromium in defect
atoms than the bulk, and negative values indicate the converse. Bulk concentrations are given in atomic
percent. See table 4.1 for reference values.
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Figure 4.11: Relative rate of occurrence of FeCr and CrCr split interstitial atom in systems of various bulk
concentration, following 1 keV collision cascades, with damped MD applied afterwards, calculated by dividing
the percentage of defect atoms that were chromium by the bulk concentration (see tables 4.4 and 4.5), and
then subtracting one from the result. Thus, positive values indicate a higher fraction of chromium in defect
atoms than the bulk, and negative values indicate the converse. Bulk concentrations are given in atomic
percent. See table 4.1 for reference values.
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Figure 4.12: Snapshots from a 1 keV PKA collision cascade conducted at 0 Kelvin in FeCr10 at.% . This
example is typical of the results described in section 4.1.1. Interstitial atoms are visualised as spheres
and vacant lattice sites are represented as cubes, with on-lattice atoms being hidden. The cascade event
originates at the centre of the lattice and displaces many atoms in the surrounding volume. Most Frenkel
pairs recombine within a few picoseconds, but some damage remains, with vacancies close to the centre of
the event and interstitials found around the maximum extent of the damage plume.
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Figure 4.13: Snapshots from a 2 keV PKA collision cascade conducted at 0 Kelvin in FeCr10 at.% . This
example is typical of the results described in section 4.1.1. Interstitial atoms are visualised as spheres
and vacant lattice sites are represented as cubes, with on-lattice atoms being hidden. The cascade event
originates at the centre of the lattice and displaces many atoms in the surrounding volume. Most Frenkel
pairs recombine within a few picoseconds, but some damage remains, with vacancies close to the centre of
the event and interstitials found around the maximum extent of the damage plume.
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Figure 4.14: Final snapshot from a 5 keV PKA collision cascade conducted at 0 Kelvin in FeCr10 at.% .
This example is typical of the results described in section 4.1.1. Interstitial atoms are visualised as spheres
and vacant lattice sites are represented as cubes, with on-lattice atoms being hidden. The cascade event
originates at the centre of the lattice and displaces many atoms in the surrounding volume. Most Frenkel
pairs recombine within a few picoseconds, but some damage remains, with vacancies close to the centre of
the event and interstitials found around the maximum extent of the damage plume.
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Figure 4.15: Final snapshot from a 5 keV PKA collision cascade conducted at 0 Kelvin in FeCr10 at.% .
This example is typical of the results described in section 4.1.1. Interstitial atoms are visualised as spheres
and vacant lattice sites are represented as cubes, with on-lattice atoms being hidden. The cascade event
originates at the centre of the lattice and displaces many atoms in the surrounding volume. Most Frenkel
pairs recombine within a few picoseconds, but some damage remains, with vacancies close to the centre of
the event and interstitials found around the maximum extent of the damage plume.
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4.2 Long Timescale Dynamics

4.2.1 Defect Mobility

To consider how the presence of chromium in our systems a�ects the migration of defects, we

conducted a series of barrier searches in 2000 atom systems of pure iron and of FeCr10 at.% .

In the pure iron system, we created two modi�ed systems, one containing a single vacant

lattice site, and the other containing a single SIA. For the FeCr10 at.% systems, we create

�ve systems with a vacancy, �ve systems with an FeFe SIA, and �ve systems with an FeCr

SIA. In each of these systems, we conducted 5000 barrier searches, as per section 3.2.2.7. A

far smaller diversity of barrier height is seen in the pure iron systems, with no chromium

atoms to break the homogeneity of the surrounding environment, although the number of

transitions found per search is larger in pure iron. Calculating how this translates to rates, by

way of exp
(
−E
kBT

)
, disregarding prefactors, we �nd that their averages are higher (comparing

vacancies to vacancies and SIs to SIs) in the FeCr10 at.% , see table 4.7, and indeed, the lowest

energy barriers are found in the FeCr10 at.% systems, which is suggestive of a greater defect

mobility.

With regards to the speci�c SIA in FeCr10 at.% , the FeCr SIA has a higher average rate

than the FeFe SIA, and this may be a re�ection of the higher defect formation energy of the

former, see �gure 2.4.

4.2.2 Recovery

To observe the recovery from radiation damage beyond the ballistic phase, we took a selection

of post-cascade lattices, and in these we performed AKMC simulations. These lattices were

taken from the 1 keV cascades in FeCr10 at.% found in section 4.1.1. The average number

of Frenkel pairs in these systems was 6.78 ± 0.03 and so the systems selected for AKMC

have Frenkel pair counts in the range 6 to 8. The barrier height threshold set for the basin

method in these simulations was 0.5 eV. A summary of the simulations is seen in table 4.8,
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Table 4.7: The average values of exp
(

−E
kBT

)
from barrier searches of various defect types in pure iron and

FeCr10 at.% .

Pure Iron

Defect Type
〈

exp
(
−E
kBT

)〉
Vacancy 0.99966± 0.00006

Split-Interstitial 0.999911± 0.000006

FeCr10 at.%

Defect Type
〈

exp
(
−E
kBT

)〉
Vacancy 0.99975± 0.00003

FeFe Split-Interstitial 0.999923± 0.000003

FeCr Split-Interstitial 0.999953± 0.000004

and snapshots are shown in �gures 4.17 to 4.23. Two AKMC simulations were conducted

in the second lattice selected (which is also the system seen in �gure 4.12), and these are

denoted system 2a and system 2b.

Within the computing time allotted to these simulations, only one system, 2b, experienced

the complete recombination of all of its Frenkel pairs, doing so in 5.92 µs. Of the remaining

six, half experience a net fall in Frenkel pairs, with the other having no net change. All of

the systems undergo a fall in potential energy, implying they have evolved to more stable

states. Moreover, the drop in potential energy is positively correlated with the number of

Frenkel pairs recombined. As is seen in �gure 4.16, there is a tenuous positive relationship

between number of AKMC steps taken, number of Frenkel pairs recombined, and simulated

time.

Aside from the annealing of defects, interstitial atoms also show a tendency to form

clusters, although they are less mobile than unclustered split-interstitials, these structures

do, in some cases, break up. Examples of interstitial atom cluster coalesion are seen in

systems 2a, 2b, 3, 5, and 6. Additionally, in system 1, a cluster of vacancies, i.e. a small

void, forms. In systems 2b and 6, vacancies are seen to align themselves in a straight line

along adjacent lattice sites.
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Figure 4.16: Relationship between changes in potential energy and number of Frenkel pairs to steps taken,
and time simulated in seven AKMC simulations, see table 4.8.

Figure 4.17: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has expe-
rienced a 1 keV PKA collision cascade (system 1). The initial lattice is shown on the right and the image on
the left shows the system after 34.3 µs. In this system, the lattice vacancies are seen to cluster. One of the
split-interstitials has recombined with a vacant site, but a split-vacancy has also formed, leaving the total
Frenkel pair count at seven. O� lattice atoms are visualised as spheres, green for iron, red for chromium,
and cubes represent vacancies.
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Figure 4.18: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has expe-
rienced a 1 keV PKA collision cascade (system 2a). The initial lattice is shown in the top-right image and
snapshots of the simulation at 58.9 ps, 190 ns, and 1.31 µs are shown in the other images. Two examples
of the clustering of interstitial defects are seen at 58.9 ps, but ultimately, these clusters break apart, and
recombination with vacant sites occurs, leaving the system with �ve fewer Frenkel pairs by 190 ns. Between
190 ns and the 1.31 µs, no further recombination has occurred. O� lattice atoms are visualised as spheres,
green for iron, red for chromium, and cubes represent vacancies.
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Figure 4.19: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has expe-
rienced a 1 keV PKA collision cascade (system 2b). The initial lattice is shown in the top-right image and
snapshots of the simulation at 96.4 ns, 103 ns, and 5.92 µs are shown in the other images. By the second
snapshot, three Frenkel pairs have annealed and three of the remaining vacancies have aligned themselves in
a straight line along adjacent lattice sites. At 103 ns, one of the interstitial defects that is part of a cluster
is breaking away, and in the next step, it recombines with a vacancy. In the step following the last shown
here, 5.92 µs, the last Frenkel pair recombines, leave a defect free lattice. O� lattice atoms are visualised as
spheres, green for iron, red for chromium, and cubes represent vacancies.
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Figure 4.20: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has expe-
rienced a 1 keV PKA collision cascade (system 3). The initial lattice is shown on the right and the image
on the left shows the system after 127 ns, during which time, there has been no net change in Frenkel pair
count, although a split-interstitial has been lost and a split-vacancy has developed between two empty sites.
O� lattice atoms are visualised as spheres, green for iron, red for chromium, and cubes represent vacancies.

Figure 4.21: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has expe-
rienced a 1 keV PKA collision cascade (system 4). The initial lattice is shown on the right and the image
on the left shows the system after 1.95 ns. During this time, no Frenkel pairs anneal, however the cluster of
interstitials seen at the beginning of the AKMC simulation has separated. O� lattice atoms are visualised
as spheres, green for iron, red for chromium, and cubes represent vacancies.
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Figure 4.22: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has ex-
perienced a 1 keV PKA collision cascade (system 5). The initial lattice is shown in the top-right image
and snapshots of the simulation at 10.0 ps, 822 ps, and 353 ns are shown in the other images. During this
simulation, a cluster of six interstitial atoms coalesces, but this structure still has some mobility. A net loss
of two Frenkel pairs is seen. O� lattice atoms are visualised as spheres, green for iron, red for chromium,
and cubes represent vacancies.
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Figure 4.23: Visualisation of an AKMC simulation conducted in a BCC FeCr10 at.% system which has ex-
perienced a 1 keV PKA collision cascade (system 6). The initial lattice is shown in the top-right image and
snapshots of the simulation at 15.2 ps, 402 ps, and 7.11 ms are shown in the other images. During this
simulation, the formation and loss of interstitial clusters is seen, as well as another example of vacancies
aligning themselves in straight line of adjacent sites, with a forth vacancy directly behind the middle site.
Four of the initial six Frenkel pairs recombine, but despite reaching the greatest clock time of all the AKMC
simulations, two defects remain. O� lattice atoms are visualised as spheres, green for iron, red for chromium,
and cubes represent vacancies.
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System
Initial
Frenkel
Pairs

Final
Frenkel
Pairs

AKMC
Time

Simulated

AKMC
Steps
Taken

Potential
Energy
Change

Visualisation

1 7 7 34.3 µs 1089 -4.67 eV Figure 4.17

2a 7 2 1.31 µs 11705 -33.1 eV Figure 4.18

2b 7 0 5.92 µs 3914 -49.2 eV Figure 4.19

3 8 8 127 ns 3163 -4.94 eV Figure 4.20

4 6 6 1.95 ns 632 -5.99 eV Figure 4.21

5 8 6 353 ns 3898 -31.8 eV Figure 4.22

6 6 2 7.11 ms 5303 -28.8 eV Figure 4.23

Table 4.8: Summary of AKMC cascades conducted in post-1 keV PKA collision cascades in FeCr10 at.% .
System 2b sees the complete recombination of its Frenkel pairs, and also experiences the greatest fall in
potential energy during the simulation. The AKMC temperature was set at 500 Kelvin, with the application
of a low energy basin method with a barrier threshold of 0.5 eV. The Bonny 2011 potential was used to
govern interatomic energetics [67,68].

4.3 Displacement Threshold Energy

In the simulation work, such as ours, that utilises an interatomic potential, properties such

as defect formation or migration energies are not directly speci�ed, but emerge from the

potential. By contrast, there exist other approaches, such as Objective KMC, where defects

are the only objects that explicitly exist in the simulation4 and the energy barriers to their

motion are speci�ed a priori as parameters to the simulation [86]. Similarly, the widely used

and popular software, SRIM (Stopping and Range of Ions in Matter), requires an explicit

speci�cation of the energy required to displace an atom from its lattice site [56]. This

operates using a concept known as Displacement Threshold Energy, which is the idea that

for some atom in a lattice, there is a single value of kinetic energy that is su�cient to move

the atom o�-lattice to form a Frenkel pair, and any displacement below this energy will have

no �permanent� e�ect. What constitutes permanence, however, is somewhat arbitrary. Little

energy is required to remove an atom from its lattice site, but as one sees from section 4.1,

damage can be very short lived. Furthermore, while AKMC shows that defects can anneal

4As opposed to deviving the presence of defects from the atom positions and a reference lattice (see
section 2.4).
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on timescales much longer that we use in MD, these processes are still very transient from

a human perspective. Here, we explore if anything resembling a hard threshold exists for

FeCr10 at.% .

Inspired by the work of Robinson et al. with TiO2 in 2012 [110], we approach the problem

from a probabilistic perspective. Rather than attempting to quantify a hard threshold, we

calculate the probability of defect production in the system as a function of displacement

energy. Similar to our work with collision cascades, using Molecular Dynamics, we take

a large number of randomly generated FeCr10 at.% systems, and in each, we simulate the

displacement of a single atom using a range of kinetic energies, with a large spread of

displacement vector orientations � three sets of 108 evenly spread points on the unit sphere.

We choose to run our simulations to 10 ps; this allows any low stability defects to anneal,

while anything remaining by the end of the simulation maybe considered �true� damage �

�permanent� on the timescale of MD, if not AKMC.

We simulated displacement energies up to 240 eV for iron and 140 eV for chromium atoms.

100 randomly generated lattices, sized appropriately for the displacement energy, were used

for each probability calculation, each thermalised to 500 K before the simulation start, with

a Berendsen thermostat to maintain this temperature during the simulation. This brings

the total number of data points per displacement energy to 32,400. Our results are shown

in �gure 4.24.

The results show a sharp initial increase in the success rate of producing defects with

respect to displacement energy up to around 40 eV, after which, it becomes steadily more

di�cult to increase the percentage of systems with surviving defects. For iron, the curve had

become almost completely �at in the 200 to 240 eV range, likely because as the displacement

energy grows, more atoms (i.e �rst, second, third nearest neighbours of the displacement

atom etc.) become involved in the resisting and restoring forces absorbing the energy. Given

the diminishing returns from increasing the displacement energy, and the high computing

cost of generating good statistics, it was decided not to continue these calculations any
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Figure 4.24: Using the Bonny 2011 potential [67] we have calculated the probability of an FeCr10 at.% system
containing defects, 10 ps after a small displacement energy is introduced to either an iron or a chromium
atom. A Berendsen was used to maintain a system temperature of 500 K. The results for the displacement
of iron and chromium atoms are shown in green and red, respectively, with the number of atoms used to
contain the event illustrated in blue. 32,400 data points are used for each energy and our standard error is
low; as such we mark our error bars on this graph at 3σ, corresponding to 99.73% con�dence.

further. Displacing an iron atom with 240 eV achieves a surviving defect creation success

rate close to 95%. With the exception of the one data point at 40 eV, displacing a chromium

is less likely to produce surviving defects in the system.

4.4 PKA Orientation

When greater limits on available computing power constrained computational work, it was

common for one to sample only one PKA vector, allowing fewer simulations to be run. To

avoid the results from being biased by channelling e�ects, a high-index orientation would be

selected [51], for example, <1 3 5>.

In this section we examine how the simulations are e�ected when the PKA vectors are
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limited to the <1 3 5> orientation, since this technique still sees some use. For example, in

2005, Terentyev et al. conducted work in BCC FeCr10 at.% at 300 Kelvin where only <1 3 5>

vectors were employed [39]. We have simulated �fty systems with the eight possible <1 3 5>

vectors to compare with �ve systems where an even spread of 108 vectors were used, with

these simulations conducted at 300 Kelvin. The evolution of these systems may be seen in

�gure 4.25, with a summary of the �nal state of the systems to be found in table 4.9.

The intermediate and �nal number of Frenkel pairs are not signi�cantly di�erent; however,

there is a large disparity between the distribution of chromium in the two sets, see �gure

4.26. There is a much larger occurrence of chromium in lone and split-interstitials (and

therefore in overall defect atoms). Comparing these results to Terentyev et al. 2005 [39],

we notice that their 1 keV cascades exhibit a similar trend, see �gure 6 (inset image) of the

paper, although their choice of interatomic potential di�ers from ours, being taken from a

2002 work by Chakarova et al. [111, 112]. Similarly, Wallenius et al. 2004 [47] also use <1 3

5> PKA vectors only. In their cascade simulations performed at 100 Kelvin using a potential

described in the same paper, they �nd that in FeCr5 at.% , 19% of their interstitial atoms

are chromium � far more than seen in our results where an even spread of PKA vectors was

used, and similar to our <1 3 5> results.

On this basis, while using only <1 3 5> orientated PKA vectors should be acceptable

for estimates of Frenkel pair production, we would caution against its use when one is

Table 4.9: Lattice defects remaining 6 ps after a 1 keV PKA was introduced to 54,000 atom
FeCr10 at.% systems at 300 Kelvin, comparing a set of PKA orientations that samples the entire unit sphere
to only PKA vectors in the <1 3 5> orientation (No post-cascade minimisation).

PKA Vector
Set

Defect Atoms of
which Cr (%)

Lone
Interstitials

Split-
Interstitials

Total Frenkel
Pairs

<1 3 5> 22 ± 2 1.71±0.07 4.32±0.09 6.03±0.11
Spread 9.0±1.2 1.16±0.04 4.60±0.08 5.76±0.08

PKA Vector
Set

LIAs of which
Cr (%)

SIs of which
FeFe (%)

SIs of which
FeCr (%)

SIs of which
CrCr (%)

<1 3 5> 37±2 68±2 27±2 4.8±1.1
Spread 14.4±1.5 83.9±1.6 15.7±1.6 0.4±0.2
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Figure 4.25: Evolution of the number of Frenkel pairs in two sets of 1 keV collision cascades in FeCr10 at.% �
with one set using PKA vectors in the <1 3 5> orientation only, and the other employing an even sample of
the unit sphere. Please note that the number of Frenkel pairs is presented on a logarithmic axis.

investigating species dependent behaviour, and encourage evenly sampling the unit sphere.

4.5 Chapter Conclusions

From the results presented in this chapter, we �nd that varying the concentration of chromium

in the atomic lattices does not have any apparent e�ect on the production of Frenkel pairs

during the collision cascades simulated. We do �nd that simulating our systems at a temper-

ature of 500 Kelvin produces fewer �nal Frenkel pairs by comparison to those conducted at

0 Kelvin, and that at the elevated temperature, chromium atoms are found in defect objects

at a higher rate than would be commensurate with their bulk concentration, while the oppo-

site is observed for the low temperature systems. In the simulations conducted at 500 Kelvin,

the over-representation of chromium phenomena was most pronounced at the lowest bulk

concentration. With the simulations conducted at 0 Kelvin, while a linear relationship be-

tween a cascade's PKA energy and the �nal Frenkel pair count was seen, its linearity must
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Figure 4.26: Relative rate of occurrence of chromium atoms in defects in systems 6 ps after a 1 keV collision
cascade has occurred in FeCr10 at.% , with one set of data using PKA vectors in the <1 3 5> orientation
only, and the other employing an even sample of the unit sphere (No post-cascade minimisation). Values
calculated by dividing the percentage rate of occurrence of defect as by the relevant reference �gure in 4.1,
and then subtracting one from the result. Thus, positive values indicate a higher fraction of chromium in
defect atoms than the bulk, and negative values indicate the converse.

break down at lower energies, such that zero cascade energy produces no damage. Further-

more, PKA energy was not observed to a�ect the chromium defect representation.

We also found that the use of L-BFGS-B/CG minimisation on the 500 Kelvin post-

cascade lattices causes distortions in the results, and as such made use of the much more

computationally costly method of damped-MD. With the low temperature systems, L-BFGS-

B/CG minimisation could be used without issue. Minimising via either method results in a

reduction of lone interstitial atoms in favour of split-interstitials, and a small overall fall in

total Frenkel pairs.
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In our study of displacement threshold energy, while in places, the rate of increase in

successful defect production rises rapidly with increasing displacement energy, there is no

de�nitively sharp transition from low success rate to high success rate that could be regarded

as a �threshold energy�. For both iron and chromium in FeCr10 at.% lattice systems, the

displacement energy for which the defect production success rate was 50%, was approximately

55 eV.

Comparing the use of the representative vector, <1 3 5>, to an even sampling of the unit

sphere, we found that in 1 keV cascades conducted at 300 Kelvin, the number of Frenkel pairs

produced was not signi�cantly altered, but in the former set of cascade simulations, the over-

representation of chromium was increased signi�cantly, and this behaviour is also evident in

publications that employ the <1 3 5> vector to save on computational expenditure [39,47].

Barrier searches conducted on the potential energy hypersurfaces of FeCr10 at.% and pure

iron lattices suggest greater defect mobility in the former. Using the AKMC method, we

simulation the damage recovery process of six FeCr10 at.% systems after a 1 keV PKA cascade.

In the computer time allotted to this task, only one system fully annealed, taking 6 µs to

do so. During the AKMC simulations, clusters of interstitial defects are seen to coalesce

and then disperse, while the generally less mobile vacancies are observed aligning themselves

along adjacent lattice sites.





Chapter 5

Modelling Experimental Work

5.1 Experimental Context

There are very few experimental facilities with the capacity to replicate nuclear reactor like-

conditions, and even where these exist, the procedure is expensive and time consuming. In

addition, neutron induced activation leaves materials unsafe to interact with for extensive

periods. For this reason, many experimentalists choose to use alternatives which can achieve

high DPA rates over short periods, and whose low activation makes irradiated samples

comparatively easy to handle. In lieu of neutrons, one may bombard materials with highly

energetic protons, electrons, or heavy ions, which, being charged, are much less likely to be

absorbed by target nuclei.

We were interested in using our atomistic modelling software to simulate a sequence of

cascade events that re�ected the conditions experienced by a nuclear pressure vessel in a

nuclear reactor. However, the relevant information proved di�cult to obtain, so we instead

turned to attempting to replicate experimental analogues. In our example procedure, steel

rods at room temperature are exposed to protons with a kinetic energy of 3 MeV, at a �ux

of 3×1017 s−1·cm−2, and these �gures serve as the basis of our model [113].
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5.2 Creating a Physically Representative Model

5.2.1 SRIM: The Stopping & Range of Ions in Matter

To convert the given description to �gures that we can apply in our models, we utilised

the third-party software package, SRIM (The Stopping & Range of Ions in Matter), which is

freely available online [56,57]. SRIM uses the binary collision approximation [114] to compute

the path of moving ions as they interact with, and deposit energy into, a given material. A

Monte Carlo algorithm is used to calculate distances travelled by ions between interactions

with atoms, based on the density of the material. Electronic stopping is considered in free

space, with interactions between ions and the system's atomic nuclei abstracted to direct

�collisions�, wherein the classical scattering integral is solved, see �gure 5.1.

Figure 5.1: Illustration of the Binary Collision Approximation, as applied by SRIM. An ion travelling through
matter travels between collisions for a random distance, whose average is based on the density of the material.
Each interaction between the ion and an atom is considered in terms of those two bodies only, where the
classical scattering integral is solved, and during transit between atoms, the atom losses momentum by
electronic stopping forces [56].

5.2.1.1 Two-Body Scattering of Ions by Atoms

Suppose one takes an interaction between an atom and a light ion, moving in the laboratory

frame of reference, such as is seen in �gure 5.2. Letting the mass of the atom and of the
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Figure 5.2: Diagram of two body interaction between a light ion and an atom, depicted in the laboratory
frame of reference. The ion has incident velocity ~V0 and after interaction, the atom and ion have velocities,
~Vatom and ~Vion, at angles θatom and θion from the initial trajectory of the ion. The perpendicular separation
between the objects is given by p.

ion be Matom and Mion respectively, and de�ning ~V0 as the incident velocity of the ion, the

energy lost by the ion to an atom through a collision, T is given by [56],

T =
2

Matom

(
| ~V0 |MatomMion cos θatom

Matom +Mion

)2

(5.1)

where θatom is the angle at which the atom recoils relative to the original trajectory of the

ion, and is given by equation 5.2.

θatom =
1

2

∫ ∞
−∞

(
p

r2

[
1− V (r)

E
− p2

r2

]−1/2
)
dr (5.2)

where p is the initial perpendicular separation between the ion and the atom, see �gure 5.2,

V (r) is the ZBL potential [56], see equation 2.27, and E is the kinetic energy of the system's
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centre of mass, such that,

E =
1

2

MatomMion

Matom +Mion

| ~V0 |2 (5.3)

The angle of defection of the ion is then given by [56],

θion = arctan

(
Matom sin 2θatom

Mion −Matom cos 2θatom

)
(5.4)

5.2.1.2 Electronic Stopping Power

SRIM calculates the energy loss to electronic stopping using empirical data. The electronic

stopping power that SRIM provides for protons in FeCr10 at.% is shown in �gure 5.3.

Figure 5.3: Electronic stopping in FeCr10 at.% , as calculated by SRIM [56, 57] for protons with kinetic
energies below 104 MeV. Image generated by [115].
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5.2.1.3 SRIM Calculations

Figure 5.4: Collision events as a function of depth from one million full-cascade SRIM calculations of 3 MeV
protons in FeCr10at.% of density 7.849 g·cm-3.

We performed one million of SRIM's �full cascade� TRIM1 calculations with 3 MeV protons

in a material of iron and chromium atoms at a ratio of 9:1 and a density2 of 7.849 g·cm-3.

The collision events resulting from these calculations are displayed in �gure 5.4, where it

is seen that the protons are halted between 35 to 40 µm. We opted to sample the region

10 to 15 µm, as the number of events as a function of depth is comparatively �at over this

domain. Within these 5 µm, 3,843,201 events occurred (including secondary displacements)

and the distribution of their energies is shown in �gure 5.5. For the largest PKA energy that

we permit in our model, 5 keV, we require 432,000 atoms to contain the cascade. These are

arranged in a cube of sides 17.2 nm. If our simulation cell is placed in the sample depth,

its size, the experimental proton �ux, and the data produced by SRIM equates to a rate of

0.370 cascade events per second, see �gure 5.6. This �gure accounts for the inclusive upper

1TRansport of Ions in Matter
2Based on the density of atoms at the ideal lattice parameter predicted by the Bonny 2011, i.e. 2.863 Å.
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and lower bounds we set for the event energies, 60 eV to 5000 eV; events below 60 eV do not

produce damage that survives the ballistic phase3, see �gure 4.24, and events in excess of

5000 eV are su�ciently rare as to be neglected.

Figure 5.5: Distribution of event energies for one million full-cascade SRIM calculations of 3 MeV protons in
FeCr10 at.% of density 7.849 g·cm-3. The 50th, 90th, and 99th percentiles are 41.7 eV, 155 eV, and 1040 eV
respectively, with 99.85% of events below 5 keV.

5.2.1.4 Cascade Procedure

To simulate the conditions described by the experimental team, we conducted multiple MD

simulations of collision cascades, with AKMC simulation between cascades. The �rst cascade

in each system was placed in the centre of the lattice, with all subsequent PKAs being selected

at random. We generated ten FeCr10 at.% systems of 432,000 atoms, and because the PKAs

are randomly selected (and therefore could be anywhere in the system), no thermostat is

3or otherwise, would produce Frenkel pairs su�ciently localised as to recombine in a single AKMC step
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Figure 5.6: Schematic of depicting the sampling of data produced by SRIM calculations for one million
1 MeV protons in FeCr10 at.% to arrive at an average occurrence rate for collision cascades in a given volume.

applied during the simulation, meaning that the number of atoms could be reduced from the

500,094 used for 5 keV cascades in section 4.1.1. Before each collision cascade, the lattices

were thermalised to 300 Kelvin, and each MD simulation would last 10 ps. If Frenkel pairs

survived to the end of the ballistic phase, AKMC at 300 Kelvin would be used to simulate

lattice recovery until either all Frenkel pairs had recombined, or the time scheduled for the

next event was reached. Then, the lattices would be thermalised again, prior to the next

cascade. The interval between individual events in a system was assigned via equation 3.5,

for n = 1 and k1 = 0.370 s−1.

5.2.2 Simulation Results

Table 5.1 shows the progression of the ten simulations, the events selected, the interval

between the events, and the defect annealing recovery times. As apparent from �gure 5.5,

low energy cascades dominate the events, with ten of the nineteen events falling below 150 eV.

This has two main consequences:

� The number of Frenkel pairs present at the end of the MD phase is typically small. Of

nineteen total events, six produce only one Frenkel pair surviving to 10 ps, and in four
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Table 5.1: Summary of multiple collision cascades in FeCr10 at.% with AKMC recovery between events.
Recovery times are measured from the end of the last MD phase of the simulation. *In system 10, the single
vacancy-interstitial pair produced by the �rst event is left well separated after a large number of AKMC
steps. For this reason, we proceeded to the next event at 5.40 ms.

System
Event 1

Event
Start/s

PKA
Energy/eV

Frenkel Pairs
10 ps After Event

Recovery Time/s

1 0 95 1 5.06× 10−10

2 0 75 0 -
3 0 75 1 -
4 0 125 1 1.10× 10−11

5 0 70 0 -
6 0 210 3 4 Frenkel pairs remaining at 823 ms
7 0 220 2 2 Frenkel pairs remaining at 0 s
8 0 160 0 -
9 0 180 2 2 Frenkel pairs remaining at 124 µs
10 0 55 1 5.40× 10−3 *

System
Event 2

Event
Start/s

PKA
Energy/eV

Frenkel Pairs
10 ps After Event

Recovery Time/s

1 3.01 60 1 1 Frenkel pairs remaining at 1.65 µs
2 1.70 130 1 1.24× 10−3

3 4.10 60 0 -
4 0.863 470 5 2 Frenkel pairs remaining at 68.8 µs
5 1.16 180 2 1 Frenkel pairs remaining at 24.7 µs
8 2.11 160 3 2 Frenkel pairs remaining at 1.09 µs
10 0.776 80 3 2 Frenkel pairs remaining at 99.7 µs

System
Event 3

Event
Start/s

PKA
Energy/eV

Frenkel Pairs
10 ps After Event

Recovery Time/s

2 12.9 450 3 3 Frenkel pairs remaining at 0 s
3 8.05 960 7 7 Frenkel pairs remaining at 35.7 ms
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cases none survive at all.

� Correspondingly, the volume in which damage (transient or otherwise) caused by a

cascade occurs is small. Thus, the likelihood of it intersecting with either a region in

which a previous event occurred, or any surviving damage, is su�ciently low that we

have no example of this happening.

Figure 5.7: In system 10, a second cascade event is introduced at 0.776 s. The damage remaining from the
previous cascade is seen towards the middle of the image, where the migration of the defect pair may be seen
from the defect replacement chain. The cascade in progress is seen at the top and bottom of the image, with
the event crossing the periodic boundary conditions, and being well separated from the location of the �rst
event. O� lattice atoms are visualised as spheres and vacancies as with cubes, with colour denoting depth.

The examples where complete lattice recovery occurs do so on timescales far smaller than

the 2.70 second mean interval between events, and consequently we do not have any examples

of cascades occurring in systems where there are still defects present from prior events, with

the exception of system 10. System 10's initial cascade produced one Frenkel pair and

after 5.40 ms of AKMC simulation, it had not annealed, with the vacancy and interstitial
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Figure 5.8: Snapshots from system 3, shortly after each of the three cascade events occur, with PKA energies
75 eV, 60 eV, and 960 eV respectively. O� lattice atoms are visualised as spheres and vacancies as with cubes,
with colour denoting depth.
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defects well separated from each other, and not making progress towards recombining. In

these systems, larger than those used in section 4.2, the greatest possible separation between

two defects is considerably further. Thus, this system was advanced to its second cascade.

While system 10 therefore experienced a cascade event with existing lattice defects, the

second event was low in energy, and its PKA's original location was not in proximity to

either defect. Consequently, the region containing the cascade did not intersect the volume

surrounding the existing damage, see �gure 5.7. Similarly, in system 3, which experienced

both the highest number of events, and the single most energetic event, the cascades are

distant from each other, see �gure 5.8. Examining the distribution of atomic species in the

lattices before and after the simulations4, we �nd that one to three cascade events occurring

over timescales on the order of a few seconds is not su�cient to detect any segregation of

elements.

5.3 MD Timescale Multiple Cascades

In the previous section, we saw that conducting our multiple cascade model with a physically

representative event frequency means that the high expenditure of computing required during

the recovery phase makes our simulations su�ciently slow that we do not accumulate high

damage in the systems, or observe overlapping cascade regions. We considered continuing

the model in its original form, or making alterations to the range of event energies available,

but ultimately settled on constructing a model where we forego the AKMC recovery phase

of the simulation. To this end, we took the ten FeCr10 at.% systems of 432,000 atoms created,

and began new simulations, using the same probability distribution for the event energies as

before. In these simulations, however, rather than switching to AKMC after each MD phase,

the system would immediately be thermalised and the next cascade introduced. This scheme

of modelling multiple cascades on MD timescales is similar to the technique used by Nord et

al. 2003 [116] in GaN. Fifteen cascades were simulated per system, and a summary may be

4via the radial distribution function
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Figure 5.9: Evolution of the number of Frenkel pairs (NB: presented on a logarithm axis) during �fteen
consecutive collision cascade events occurring in ten FeCr10 at.% systems of 432,000 atoms. PKA energies,
found in table 5.2, were selected probabilistically based on data generated by SRIM, see �gure 5.5.
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found in table 5.2, with the evolution of the number of Frenkel pairs seen in �gure 5.9. In

�gures 5.11 to 5.20, the �nal states of each lattice are shown; in these visualisations, colour is

applied according to depth, and to aid in identifying where cascades have overlapped, defect

replacement chains are rendered.

Over the course of the �fteen collision cascades, the number of Frenkel pairs steadily

grows, with all but one system accumulating between eighteen to twenty-eight pairs by the

end of their simulation; in system 7, no event larger than 370 eV occurred, leaving only nine

Frenkel pairs by 150 ps. The average number of Frenkel pairs remaining at the end of the

simulations is 21.9±1.7, which equates to 2.9 ± 2 × 10−4 Frenekel pairs nm−3 per cascade.

These ten simulations do not give us su�cient data to permit any remarks with regard to

chromium defect behaviour in the simulation that would be statistically meaningful.

As intended with the MD timescale multiple event model, in these simulations, we did

observe cascades occurring in overlapping volumes, and this was found in exactly half of

the systems. De�ning clusters as regions where multiple defects are found within 2.9 Å 5

of each other, and excluding examples where vacancy-interstitial pairs are on the verge of

recombination, see �gure 5.10, we �nd that in the systems without examples of overlapping

cascades, �fteen clusters are seen, whereas in systems with overlapping cascades, twenty-�ve

are observed.

Figure 5.10: Vacancy and split-interstitial defects in close proximity. This Frenkel pair is close to recombi-
nation, and therefore these objects are excluded from the defect cluster count.

Taking a closer look at each of the overlapping events, we can make some remarks re-

garding the consequences for cascades that encounter existing damage:

5I.e. slightly larger than the lattice parameter, which in BCC systems is the second nearest neighbour
distance.
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� System 5 : Event 14, with a PKA energy of 300 eV, has a cascade plume that encounters

the interstitials left at the edge of the previous cascade, from event 13, which had a PKA

energy 1370 eV. The plume does not extend beyond this point, and the interstitials it

creates coalesce with those from the prior cascade to form a cluster, see �gure 5.21.

� System 6 : Event 4, with PKA energy of 2530 eV, totally engulfs the remaining damage

from event 2, whose PKA energy was 300 eV. After the damage plume recedes, a

cluster of interstitials is left in the approximate location of event 2, shifted in towards

the position of event 4, see �gure 5.22. Event 14, with PKA energy of 130 eV, also

occurs in this region, and does not have a large e�ect on the existing defects, although

the event's damage plume does not pass the existing damage it encounters.

� System 8 : Event 2, with PKA energy of 2050 eV, creates a relativity isolated split-

interstitial, and event 4, whose PKA energy was 150 eV, occurs in proximity to it, and

the pre-existing defect is pushed aside by the later cascade, see �gure 5.23. Note that

the split-interstitial is composed of a di�erent two atoms after the move.

� System 9 : A replacement collision sequence from event 12, with PKA energy of 240 eV,

passes through the volume which contained the damage plume from event 9, whose

PKA energy was 90 eV. Within this region, it leaves a split-interstitial, which migrates

towards vacancies left by event 9, see �gure 5.24.

� System 10 : The events 4 and 7, of PKA energies 140 eV and 100 eV respectively, both

create only one Frenkel pair each. Over the course of the simulation, these interstitial

defects meet and form a cluster, see �gure 5.25.

These results show that when cascades occur in proximity to existing damage, the for-

mation of defect clusters is promoted. In a real experiment or reactor, the long time-spans

between cascade events will allow the annealing of damage, and thus the density of defects

will be reduced. However, this will also allow isolated defects to spread more evenly through

the lattice, and allow defects in proximity to each other to coalesce. Assuming that damage
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is accumulated faster than the rate of recombination, the probability of a cascade event in-

tersecting existing damage will rise as the total time of radiation exposure progresses, and

as such, the clustering of defects will also increase.

5.4 Chapter Conclusions

In this chapter, we attempted to apply our atomistic modelling methods to create an ana-

logue of an experimental system. To bridge the gap between the given proton radiation

environment to which the material samples were exposed, and the simulation of collision

cascades, we turned to the SRIM package. This estimated the number of events per incident

proton as a function of depth, and provided a distribution for the energy exchanged in those

events. This data, combined with the number of protons delivered per unit time, was used

to construct a model in which collision cascades of PKA energy selected randomly from said

distribution were simulated through Molecular Dynamics, followed by the simulation of the

annealing of the resulting damage (if any) via Adaptive Kinetic Monte Carlo. The largest

PKA energy permitted in the model was 5 keV and to contain an event of this size required

a simulation cell with 432,000 atoms; however, low energy events, which create small cas-

cade plumes and few Frenkel pairs, dominate the spectrum of event energies. As such, we

did not encounter any examples of cascades intersecting the volume in which prior cascades

had occurred, nor interacting with their pre-existing damage, if still present. With a new

cascade event being initiated only once every 2.70 seconds on average, we were unable to

achieve su�ciently long timescales to overcome this problem. Thus, we switched to introduc-

ing a new cascade at the immediate conclusion of the MD simulation, using the same event

energy spectra as before, but neglecting any simulation of the recovery period previously

attempted with AKMC. Therefore, these systems experienced an event every 10 ps, with

a total of �fteen cascades simulated per system, and these models gave us the opportunity

to examine overlapping cascade phenomena. As well as a greater tendency for clusters to

form when events occurred overlapping or in proximity to prior cascade plumes, interstitial
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damage engulfed by a cascade is seen to re-emerge when the plume recedes. Additionally,

while pre-existing defects may be displaced to adjacent lattice sites by a later event, they

appear to contribute to containing the maximum extent of cascade plumes.
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Figure 5.21: In system 5, events 13 and 14, with PKA energies of 1370 eV and 300 eV respectively, occur
close to each other in the lattice. The latter cascade brings its new and existing interstitial atoms into a
cluster. For a complete summary of events in this system, see table 5.2. Interstitial atoms are visualised as
spheres, red for iron, green for chromium, and vacant lattice sites are represented as cubes, with on-lattice
atoms being hidden.
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Figure 5.22: In system 6, event 4, with PKA energy 2530 eV, totally envelopes the damage remaining from
the 300 eV cascade from event 2. After event 4's plume of damage recedes, a cluster of interstitial defects
is left where the expanding region of new damage met the existing lattice defects. The damage before and
after event 4 is circled in black. For a complete summary of events in this system, see table 5.2. Interstitial
atoms are visualised as spheres, red for iron, green for chromium, and vacant lattice sites are represented as
cubes, with on-lattice atoms being hidden.
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Figure 5.23: In system 8, the isolated split-interstitial left by PKA event 2, with PKA energy 2050 eV, is
pushed over, by event 4, with PKA energy of 150 eV. After event 4, the split-interstitial, circled in black,
shift back towards its original position, although its net motion is still to the right, from viewing angle of
this image. For a complete summary of events in this system, see table 5.2. Interstitial atoms are visualised
as spheres, red for iron, green for chromium, and vacant lattice sites are represented as cubes, with on-lattice
atoms being hidden.
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Figure 5.24: In system 9, a split-interstitial ejected by event 7, with PKA energy of 100 eV is left in proximity
to the damage left by event 4, whose PKA energy was 140 eV, and over the rest of the simulation, it begins
to migrate towards the vacancy cluster resulting from event 4, as depicted by the arrows. For a complete
summary of events in this system, see table 5.2. Interstitial atoms are visualised as spheres, red for iron,
green for chromium, and vacant lattice sites are represented as cubes, with on-lattice atoms being hidden.
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Figure 5.25: In system 10, damage is created by events 4 and 7, with PKA energies 140 eV and 100 eV,
leaving two split interstitials in proximity, labelled SI 1 and SI 2. These migrate closer still to each other,
eventually forming a cluster. For a complete summary of events in this system, see table 5.2. Interstitial
atoms are visualised as spheres, red for iron, green for chromium, and vacant lattice sites are represented as
cubes, with on-lattice atoms being hidden.







Chapter 6

Conclusions

6.1 Summary

In a world with an ever-growing demand for energy, the need for reliable materials with

which to construct the next generation of nuclear power plants, becomes evermore vital as

existing installations' operational lifespans expire. In this work, we used atomistic mod-

elling techniques to simulate the production of radiation induced damage to BCC iron and

iron-chromium binary alloys by way of collision cascade sequences, and to examine the sub-

sequent migration and annihilation of interstitial defects. High purity iron-chromium binary

alloys are of considerable interest to future nuclear construction applications, being rela-

tively inexpensive, resistant to oxidation, and having demonstrated resilience to radiation in

experimental studies.

To accomplish this we implemented an Fe-Cr interatomic potential [67, 68] to be called

by our in-house Molecular Dynamics and Adaptive Kinetic Monte Carlo routines, LBOMD

and LAKMC, as well as revamping features of the latter to include integrated Molecular

Dynamics events and an improved execution of the Superbasin method [97,107,108].

Given that much of the literature focuses on cascades with PKA energies above 5 keV,

and that large collision sequences can be considered as a series of subcascades, our simula-

tions were conducted with PKAs with kinetic energetics of 1, 2, and 5 keV, and the lattices
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modelled ranged between 0 and 10 at.% bulk chromium concentration. Simulations with

a range of PKA energies were conducted at 0 Kelvin in FeCr10 at.% systems, and simula-

tions with 1 keV PKAs were conducted at 500 Kelvin for Fe, FeCr1 at.% , FeCr5 at.% , and

FeCr10 at.% systems.

Over the range of PKA energies studied, we found the number of Frenkel pairs produced

to be linear, although this must break down at lower energies. Simulating at 500 Kelvin

resulted in a modest reduction in defect production compared to the 0 Kelvin simulation,

however chromium was under-represented in defect atoms in the latter, and by contrast,

the simulations at the higher temperature produced the reverse. The variation of PKA

energy in the low temperature simulations did not have an appreciable e�ect on chromium

under/over-representation. In the high temperature cascades, varying the bulk concentration

of chromium made no measurable di�erence to Frenkel pair production whatsoever, but the

over-representation of chromium was considerably more pronounced at low concentration.

With the simulations conducted at higher temperature, we found that greater care is

necessary when relaxing the post-cascade lattices. L-BFGS-B/CG minimisation, appeared

to distort the results, so the more robust damped MD was applied to analyse this data. To

a lesser extent, similar distortions were seen in the results conducted at 0 Kelvin, with these

lattices already being closer to a relaxed state after a cascade due to their lower thermal

vibration. The use of damped MD was applied sparingly due to the much high computation

cost associated. Regardless of minimisation technique used, a reduction in the less stable

lone interstitial defects, and a modest fall in Frenkel pairs, was seen.

Considering the concept of displacement threshold energy, we simulated the displacement

of iron and chromium atoms in FeCr10 at.% systems, by upto 240 and 140 eV, respectively,

and recorded the number of systems with o� lattice atoms after 10 ps. Contrary to the

aforementioned concept, a sharp threshold hold between displacement and non-displacement

was not observed; however, the percentage of systems in which damage was successfully

created did rise rapidly from 0 to 40 eV, before the trend �attened. For both atomic species,
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the point at which damage was successfully produced in half of the systems was close to

55 eV.

Many computational studies will use a representative vector to collect statistics with

small error bars, with lower expenditure of CPU hours, and to this end, <1 3 5>, is a common

choice. Having conducted our main simulations using even samples of the unit sphere, we

ran simulations with only these PKA vectors to examine if any bias was introduced � no

signi�cant di�erence in Frenkel pair production was seen; however, the over-representation

of chromium seen was massively exaggerated, and in papers using the <1 3 5> PKA vectors,

this behaviour was also observed [39,47]. As such, we caution against its use when resources

permit.

Using AKMC, we simulated the post-cascade migration of defects in FeCr10 at.% systems

after a 1 keV event. Unsurprisingly, correlation between system energy loss and number of

Frenkel pair recombinations, and between time and number of Frenkel pair recombinations,

was observed. Only one of the systems fully annealed, doing so in 6 µs, falling in potential

energy by 49.2 eV (9.11×10−4 eV per atom), having begun with seven Frenkel pairs. Visual

inspection indicates that during the migration process, interstitial defects tend to form non-

permanent clusters, while examples of vacancies aligning along adjacent sites is also seen.

Potential energy hypersurface transition searches applied to single defects were suggestive of

greater defect mobility in FeCr10 at.% by comparison to pure iron.

A study of the energies of the cascade events in FeCr10 at.% produced by protons, con-

ducted via SRIM, found the overwhelming majority of interactions fall at the low magnitude

end of the scale. This data was used to simulate systems experiencing a series of successive

events, such as to be physically representative of a real experimental set-up, but the large

lattices that this necessitated made the recovery process prohibitively slow.

Foregoing the recovery time, we simulated successive cascades every 10 ps, producing

1.46± 0.11 Frenkel pairs per event, and giving us the opportunity to observe the production

of damage in regions intersecting that from prior events. Clustering is more prominent when
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events overlap, and within the 150 ps simulation timescale, damage from separate events is

seen to coalesce.

6.2 Recommendations for Future Work

As the �nal remarks made in this work, the author would like to make a series of suggestions

for anyone who may wish to continue this research.

� Expand the range of PKA energies to include larger cascades. These events are rare, but

should provide the opportunity to observe cascade-splitting. When we collected data

on event energies from SRIM, that data includes secondary atom displacements, and it

would be of interest to consider how these evolve in the more detailed MD regime. Note

that a normal EAM potential becomes unsuitable when very high cascade energies are

involved, and an approach that considers separate energy lost to nuclei and electrons

separately is required [53].

� In all our simulations, chromium was evenly randomly distributed amongst the iron

atoms. Given that the energetics of iron-chromium interaction favours segregation,

there may be merit in experimentation with non-even distributions.

� As seen in �gure 1.1, there is a very broad range of temperatures at which a reac-

tor might operate. An expansion of this work could be to repeat the computational

experiments with a broader range of temperatures.

� The overlapping cascade e�ects that we were able to study were dependant on the

placement of randomly selected primary knock-on atoms. We would suggest a study of

overlapping collision cascade volumes conducted in a more controlled manner. Generate

lattices in which two events are simulated, observing the e�ects of the relative initial

PKA locations on the cascades, varying the separation between that required for total

overlap and total non-overlap.
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� Investigate if there are any other bias introducing practices common in atomistic mod-

elling, aside from that of the use of <1 3 5> PKA vectors.

� It would be of interest to compare the migration behaviour of defects during our

AKMC simulations to similar systems at di�erent temperatures and concentrations

of chromium.

� Compare proton event energy spectrum with that of heavy and light ions. Third

party extensions exist to allow SRIM to simulate neutrons, but we encountered a

paywall when attempting to access them [117]. Similarly, SRIM cannot model electron

irradiation without external assistance.
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Chapter 8

Appendix

Catalogue of Paper Corrections

In the various source papers used for the potentials used in this investigation, there are a

number of errors which must be accounted for in order to use them.

Olsson 2005/Ackland 2004

� The ζs coe�cient is given incorrectly and should be 2.5 Å
−1
.

� The a2 coe�cient is incorrectly given as negative, where it should be positive.

� The substitutional energy for potential A given in Table IV should be -0.26 eV.

� NB: In the tabulated data provided for this potential, Bonny uses Kelvin-based units

to represent energies. Since we work in electron volts, one has to multiply his V and

F values by the Boltzmann Constant, 8.617× 10−5eV K−1

� The values given for the pairwise term in Table III are given in terms of a lattice

parameter where they should be given in terms of the corresponding nearest-neighbour

distance. The correct reference value is 2.4777 Å
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Bonny 2011/Mendelev 2003

� Looking at the tabulated data provided by Bonny, transformations are applied to

tabulated data. Therefore one may use the tabulations as they are and as they appear

in the equations. However, contrary to as implied in the paper, the transformations

are not applied to the mixed case functions.

� In Bonny's papers, it appears that he sets the transformation constant, C as d
dρ
F (ρeq),

but in fact he uses C = −F (ρeq). This is not actually a mistake in the paper, but a

confusing choice of notation.

� The formula used for the s-band in the paper is incorrect and returns values a factor

of �ve too small. It should be:

φs(rij) =

(
Nsr

3
ij exp[− ζsrij

rb
]
)2

S
(8.1)

where Ns = 5, ζs = 1.323, S = 0.245811927 and Rb is the Bohr Radius,

0.529177210818181818 Å. Alternatively, one can correct the formula by using it as

given, but with K = 101.703771273881 and ζs = 2.50010766328062.

� In the source paper for the pure iron potential, Mendelev 2003, the 7th coe�cient for

the pairwise term, aϕ7 , should be negative.

� There is a typographical error in the formula used for chromium's φd term given in the

paper. One should replace the ϕ0 term with 1
ϕ0
.

� For chromium's φd, xcut is given incorrectly and should be xcut = 1.65

� The coe�cients for VFeCr are all sign �ipped.
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