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ABSTRACT 

The acoustic perfonnance of dissipative silencers, including the effects of both a mean flow 

in the airway and an induced internal steady flow in the absorbent, are analysed. Finite 

element models, based upon the modified Galerkin method, have been derived for the 

detennination of the noise attenuation of silencers, both by forced response and eigenvalue 

analysis. The corresponding computer programs, incorporating subroutines from the NAG 

Finite Element library, have been developed. 

The induced steady flow field causes the acoustic field in the absorbent to be 

inhomogeneous, anisotropic and nonlinear, even if the porous material is isotropic and 

homogeneous. Material anisotropy and inhomogeneity are also included in the 

formulations. Comparison of the models with experimental and analytical results is also 

carried out. 

The induced steady flow field in the absorbent is detennined by both a simplified linear and 

a more exact nonlinear model. The benefit of nonlinear modelling is evaluated. The effect 

of the induced flow field upon the acoustic properties of the "bulk-reacting" absorbent, and 

hence upon the transmission loss of absorption silencers, is evaluated throughout the 

frequency range of interest. Results are presented for several different test silencers and 

they indicate the accuracy of the fonnulation and the necessity for detailed modelling of the 

effects of the induced flow. Two different matching schemes, between the acoustic fields 

of the flow duct and the absorbent region, on their common boundary, are presented and 

compared. 
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A detailed study is carried out by changing principal design parameters and a number of 

practical design guidelines are deduced. Further applications include the modelling of ISO 

'anechoic' terminations of flow ducts. The analysis has the potential to explore the benefits 

of detailed design changes in the most complex of dissipative silencers. 
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SYMBOLS 

= Four-pole parameters - and' denotes two 

different system 

= Attenuation per unit length [dB/m] 

= Speed of sound in air subscript 0 and -

denotes uniform and steady case 

= Acoustic phase speed 

= Particle displacement 

= Wavenumber 

= Global stiffness matrix 

= Element stiffness matrix 

= Local coordinates 

= Global coordinates 

= Number of nodes 

= Forcing terms 

= Trial solution 

= Residual error 

= Jacobian 

= Integral transform function 

= Abscissae points 

= Shape function with local coordinates 

= Mach number 

= Local node 
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= Structure factor subscript j denotes jtb 

direction 

= Pressure, subscript a represent absorbent 

and - ' notations denote steady and acoustic 

quantities 

= Fluid density 

= Velocity subscript a represent absorbent 

and - ' notations denote steady and acoustic 

quantities 

= Uniform velocity - denote steady case 

= Velocity potential -,' and - notations denote 

steady, acoustic and dimensionless quantities 

= Ratio of specific heat 

= Compressibility 

= Diagonal matrix 

= Characteristic impedance in porous material 

subscript 0 and j denotes zero flow and jtb 

direction 

= Acoustic impedance 

Subscript 0 and e and r denotes zero flow, 

source and radiation case 

= Propagation coefficient subscript 0 and j 

denotes zero flow and jtb direction 

= Differential operator 

= Porosity 

= Density in porous material 
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= Viscous and inertial flow resistivity 

subscript 0 and j denotes zero flow and jth 

direction 

= Angular frequency 

= Frequency 

= Regions of the silencer 

= Boundary of the duct script I, w, 0 

denotes inlet, wall, outlet boundary 

= Intensity in Chapter 2 

= Weighting function 

= Scalar function 

= Boundary surface 

= Volume of domain 

= Eigen value 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Definition 

Noise pollution has long been recognised as a major problem of the urban environment. 

However, effort to control noise pollution has gained momentum relatively recently, as 

people have become more and more conscious of their working and living environment. 

Two of the main sources of urban noise pollution are noise from internal combustion 

engines and, within buildings, noise from heating and ventilation systems. 

Governments of many countries have responded to popular demand wi th mandatory 

restrictions on noise emitted by automotive engines and on the maximum allowable 

noise 'doses' in the industrial work place. These problems have encouraged 

acousticians and engineers to devote themselves to various research projects on how 

best to control the noise pollution. 

A common approach to the reduction of noise is the use of silencers (also called 

mufflers). One result of the effort put into noise control is that auto·mobiles and heating 

and ventilation systems are universally fitted with silencers of various kinds to control 

the noise. In recent years considerable manpower and resources have been employed to 

study the behaviour of such silencers. Practical and theoretical research has also been 

carried out to investigate and/or to quantify the noise reduction which they achieve. In 

current practice, silencers are still quite often being designed empirically. These 

empirical methods do not lead to physical understanding of the silencing mechanism 
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and neither do they account for the complexity of the problem. It is therefore preferable 

that this area should be further investigated and analysed using modem computational 

methods, which have the potential to make silencer design more efficient in terms of 

both effectiveness and cost. The work presented in this thesis was undertaken by the 

author to improve upon current analysis techniques for the computational prediction of 

silencer performance. In particular, finite element techniques are developed to analyse 

the acoustic effectiveness of absorption silencers, with particular attention paid to the 

effects of steady flow within both the open duct and the dissipative material. 

1.2 General description of a silencer 

The function of a silencer in a flow duct is to reduce the sound propagation through the 

system by impedance mismatch, or to dissipate the incoming sound energy into heat, 

while allowing the mean flow to go through almost unimpeded. Silencers are 

conventionally classified according to whether the acoustic energy is dissipated into heat 

or is reflected back by impedance discontinuities. The former type of silencers are 

called dissipative or absorptive silencers, whilst the others are called ret1ective, reactive, 

or nondissipative silencers. However, no silencer is completely reactive or completely 

dissipative. Every silencer contains some elements with impedance mismatch and some 

with acoustic dissipation. Typically, "dissipative" silencers contain some acoustically 

absorptive material, whilst "reactive" silencers do not contain any absorptive material. 

The latter work on the principle that, where a geometrical discontinuity exists, there will 

be an impedance mismatch and hence reflection of a substantial part of the incident 

acoustic energy back towards the source. 
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1.3 Literature Review 

1.3.1 Historical Background 

The possible effects of mean flow in dissipative silencers, comprised of a gas flow 

region surrounded by an absorptive region, do not appear to have received much 

attention in the literature. However, general developments in the theory of sound 

propagation and attenuation in acoustically lined ducts have been extensively reported in 

the literature over the last 50 to 55 years. Much progress was made in this area when 

large computers appeared and numerical techniques were developed. Excellent reviews 

of the state of the art of duct acoustics have been published recently by Munjal [1], 

Cummings [2], Doak [35] and Nayfeh et al [3]. Furthermore, a status report on 

numerical techniques in linear duct acoustics has been presented by Baumeister [29]. 

1.3.2 Review of research performed on absorption silencers and tilled 

ducts 

The problem of sound propagation in hard-walled rectangular ducts was first studied by 

Rayleigh [4] in the early nineteenth century. Sivian [5] dealt with the problem of sound 

propagation in a circular lined duct of a ventilation or exhaust system in which two 

types of lining were considered: (i) lining in which there is no wave motion propagated 

in the direction of the duct axis; (ii) lining admitting of such motion. This theory is 

valid at low frequencies, where the acoustic wavelength is greater than about twice the 

internal duct diameter and the internal sound pressure is roughly uniform over the 

cross-section of the duct. Later, Morse [6] published a rigorous description of the 

propagation of sound in a duct lined with absorbent material, for both rectangular and 

circular ducts with finite wall impedance. The analysis of Morse is limited to 

consideration of a "locally-reacting" liner, that is a liner in which there is no axial wave 

propagation in the liner. This can be achieved, for instance, by the incorporation of 

regularly spaced solid partitions normal to the wall of the liner. Although this limitation 

may not be a problem in aircraft silencer design, where solid partitions are used, it is a 
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problem in general air-conditioning and industrial air-handling systems where the use of 

solid partitions can often be prohibitively expensive. 

Between Rayleigh and Morse, most of the work in duct acoustics was empirical in 

nature. It involved producing correlations of attenuation rates from experimental work. 

These correlations satisfied the needs for non-critical applications of absorbers. Sabine 

[7] describes the experimental study of noise in ventilating ducts and the quieting effects 

of a sound absorbing duct lining. Tests were made on resistance to airflow of a special 

baffle structure introduced in the system. The frictional resistance of a duct lined with 

absorbent was also measured. An expression for the attenuation per unit length was 

found, namely Ll = 12.6aL4p / A (dB/ft), where P is the duct perimeter, A its cross­

sectional area and a the absorption coefficient of the lining material of the reverberation 

chamber. This formula is certainly useful as a rough guide to expected attenuation in 

cases where absorption coefficient data are available. Axial wave propagation in the 

liner was taken into account in an analysis by Scott [8]. This type of liner is referred to 

as" bulk-reacting", as opposed to "locally-reacting" where no axial wave propagation 

occurs within the liner. Scott also discussed in detail the limitation of Morse's approach 

and introduced a more complete theory, by deriving the equation which relates the 

attenuation and wavelength constants in pipes and channels to the characteristic 

impedance and propagation constant in the bulk-reacting lining material as well as to the 

dimensions of the pipes and channels. 

The effects of a mean flow in the lined duct were briefly touched on by Meyer et al 

[74], who carried out an experimental investigation of the effect of turbulent flow on the 

attenuation in ducts lined with different absorbents. King [80] also measured 

experimentally the attenuation of sound in a lined air flow duct. Further work was done 

by Ingard [75], who used wave theory to calculate the attenuation of air-borne sound in 

absorbing ducts, under the influence of only one-dimensional now, and made 

comparison with experimental results. Tack and Lambert [9] formulated the problem of 
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wave propagation in a two-dimensional lined duct with mean fluid flow in the airway 

and lined with an isotropic bulk-reacting liner. Both upstream and downstream 

propagation, with both uniform mean flow and a sheared flow calculated by a 'power 

-law' boundary layer profile, were examined. No numerical results were presented. 

Bokor [10,11) performed experimental studies and described a method of measurement 

of the characteristic impedance and the sound attenuation of bulk-reacting duct liners in 

rectangular ducts, in order to verify an equation of Se ott's [8]. The experimental results 

were restricted to the first mode of propagation only. 

The effect of Mach number on the tuning of an acoustic lining in a flow duct were 

investigated by Eversman [25). Tester [23) established a theoretical analysis of the 

propagation and attenuation of sound in lined ducts containing uniform or "plug" flow 

and a two-dimensional Green's function was derived. An investigation was made by 

Ko [81,82,83) of the theoretical prediction of sound attenuation in acoustically lined 

circular, rectangular and annular cross-sectional ducts in the presence of uniform now 

and shear flow. An eigenvalue equation was developed and sound attenuation spectra 

have been computed. In later work Ko [84) studied the effects of a porous splitter with 

uniform flow in rectangular, circular and annular cross-sectional ducts, but he did not 

present any numerical or experimental results from that work. McCormick [38) 

extended the two-dimensional, lined channel analysis of the previous author to consider 

rectangular ducts lined on all four sides. Kurze and Ver [13) generalised Se ott's model 

[8) to include the effect of non-isotropy of the lining and compared their prediction with 

Bokor's measurements on the attenuation constant of a two dimensional duct lined with 

fiberglass, without mean flow. Experimental data were presented by Wassilieff [12) 

for anisotropic bulk-reacting duct liners without mean flow and he also explained the 

reason for the poor agreement demonstrated in earlier work by Bokor and Kurze and 

Ver. Wassilieff found that, at low frequencies, the least attenuated duct mode was 

always the lowest order mode (equivalent to a plane wave in a hard-walled non­

dissipative duct). This observation remained true at higher frequencies as well, except 
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for a few cases where the (0,2) mode became the least attenuated. In his analysis he did 

not consider odd modes. Nayfeh et al [14] examined the effect of a bulk-reacting liner 

on acoustic wave propagation in two dimensional rectangular and circular ducts 

carrying sheared flow. 

Cummings [15] considered the effects of uniform flow using the bulk-reacting liner 

model of Scott [8], and also included three-dimensional wave propagation and the 

effects of a perforated solid facing on the liner. He presented design charts for ducts 

with various geometric and liner properties. The effect of uniform mean flow along the 

central passage of an expansion chamber containing a bulk absorber was considered 

theoretically by Nilsson and Brander [85,86,87,88]. They developed quantitative 

methods for the calculation of sound attenuation along silencers of both finite and 

infinite length and uniform cross-section, with a bulk-reacting lining and mean flow in 

the airway. They also considered the transmission and reflection of sound at a sudden 

area change in a cylindrical wave guide with two semi-infinite ducts and analysed sound 

transmission at silencer terminations by the use of the Wiener-Hopf method. They also 

gave results for bifurcated, axisymetric, semi-infinite ducts, where the bifurcation was 

of the extended inlet or extended outlet type, including the effects of a perforated tube 

between the gas flow and absorbent in the wide duct. These methods were also applied 

to reactive silencers. In parallel with these physical models, the American Society of 

Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) has published a 

series of simplified prediction methods in its "Systems Handbooks" (see, for example 

reference [52]) based on an empirical approach. 

Although lined duct acoustics is a part of continuous media mechanics, analytical and 

empirical methods are not practicable for the solution of problems of acoustic 

propagation in ducts where the mean flow is non-uniform, or where non-uniform 

steady flow is induced in the absorbent, or where the liner is non-uniform, or where the 

ducts have a complicated geometry. Numerical techniques are the natural choice for the 
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solution of these complex problems. The finite element method (FEM) is one such 

technique and a brief explanation of this method is given in the next chapter. Another 

general numerical method, the finite difference technique, has not proved to be a 

popular choice for the analysis of silencers, partly because the finite element method is 

better able to model complicated geometry. However, a variety of numerical techniques 

have been used in lineat duct acoustics, see for example the status report by Baumeister 

[29]. Use of the Galerkin method for acoustic transmission in an attenuating duct was 

made by Unruh and Eversman [33]. Kapur and Mungur [34] developed an acoustic 

[mite element method for inlet and exhaust jet flow ducts. Use of the variational finite 

element method in muffler analysis was made for the first time by Young and Crocker 

[26], for the prediction of transmission loss in mufflers. However, only unmapped 

rectangulat elements were used and the analysis was restricted to consider only single 

input and output locations for the calculation of transmission loss. Craggs [27,28] 

considered the application of the finite element method to study the performance of 

some simple reactive and dissipative muffler elements. He compared the results 

against some known solutions and added the capability for analysing multiple input and 

output configurations and locally-reacting boundaries. In his later work, Craggs 

[40,42] developed a finite element model to represent the effect of a bulk-reacting liner 

and hence discussed the coupling of the acoustic fields of the dissipative and non­

dissipative regions. (The procedure ensures both equality of pressure and compatibility 

of normal velocity). These applications did not consider steady flow and assumed a 

rigid porous medium. 

Kagawa et al [73,77] developed a finite element formulation for an axisymetric acoustic 

field problem with a sound absorbing wall, based on the true adjoint system, and 

verified their analysis with measured results. They used a triangular ring element with a 

second order polynomial trial function for discretization, and included the effects of 

temperature gradient. In their numerical examples they considered the transmission 

characteristics of acoustic filters and the throat impedance of a conical horn. In later 
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work they extended the finite element approach for acoustic transmission and radiation 

systems for horn and silencer design, but they did not account for any flow effects. 

Young and Crocker [78] expanded the finite element approach to analyse more 

complicated flow-reversing reactive muffler chambers and chamber-resonator 

combinations with and without wall vibrations. In their analysis they did not consider 

steady flow effects and they demonstrated experimentally that steady flow produced 

negligible effects in the muffler chamber, for the cases considered. Sigman et al [39] 

described the application of the Galerkin finite element method to determine the acoustic 

properties of turbofan inlets containing steady flows of high subsonic Mach number, 

for applications to the inlet ducts of jet engines, but did not include any absorbent 

effects. Astley and Eversman [24] used the finite element method to formulate the 

eigenvalue problem for uniform, infinite lined ducts with flow. They considered two­

dimensional problems and used Galerkin's method with a point-reacting liner on the 

boundary. Syed [51] reported a finite difference formulation, together with some 

analytical results, for the prediction of sound attenuation in acoustically lined ducts with 

locally-reacting liners and high Mach numbers for applications to aero-engines. 

Ross [31] presented an acoustic Langrangian energy expression for a parallel-coupled 

system (two parallel chambers) using finite element analysis. This analysis broke down 

the system into two subsystems. The technique has been applied to automotive muffler 

configurations and has been experimentally verified, but it does not consider steady 

flow or absorbent effects. Ling et al [41] developed a Galerkin finite element 

formulation for a semi-infinite acoustic flow duct and proposed an extension to their 

analysis for high flow cases using a compressible fluid finite element. They allowed 

for the acoustic impedance of a uniform locally-reacting lining material on the wall of 

the duct. Peat [32] used a Galerkin finite element formulation to model acoustic wave 

propagation in reactive silencer elements with nonuniform mean flow. The main goal 

was the determination of four-pole parameters, since these could be used to connect 
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muffler components in series. Filippi [30] published a compiled work on theoretical 

acoustics and numerical techniques, including a comprehensive bibliography. 

1.3.3 Recent developments in the analysis of dissipative silencers 

There are two main areas of activity reviewed in the above survey. The first is the 

determination of the acoustic pressure in a duct or cavity which is enclosed by rigid 

walls lined either with point-reacting or with bulk-reacting absorbent material. The 

second is the use of fmite element methods to predict the propagation of acoustic waves 

in ducts or silencers, with or without mean flow. Due to the complications created by 

the presence of a steady flow, most of the studies on sound propagation either ignore 

flow or assume only one-dimensional uniform mean flow in the duct. In some 

instances, comparisons with experimental results have shown that the assumption of 

uniform steady flow in uniform ducts gives good correlation. Further simplifications 

are necessary for the application of analytical methods, which are generally restricted to 

ducts of simple shape with uniform material properties. 

During the last ten years, some developments in both analytical and numerical 

techniques have been made. Rienstra [19] examined theoretically the problem of sound 

propagation in an infinite cylindrical duct with a bulk-reacting liner but no mean now. 

He derived the analytical solution for two configurations of liner, firstly for a liner 

whose properties vary slowly in the axial direction, and secondly for a liner of porous 

material embedded in a rigid structure of annular partitions with a small pitch. Astley 

and Cummings [20] presented a general finite element formulation for sound 

transmission in infinite uniform ducts having bulk-reacting liners and uniform mean 

airflow. The method was applied to rectangular ducts lined on all four sides, and a 

series of design charts was also given, but induced now in the absorbent and its 

acoustic effects were not taken into account. Later, for the first time, induced now 

effects in the absorbent were included in the absorption silencer model by Cummings 

and Chang [17,18]. They considered both infinite duct and finite expansion chamber 
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silencers, lined with a bulk-reacting absorbent containing a uniform mean flow, induced 

by a uniform mean flow in the airway. The mean flow in the absorbent was shown to 

have a significant influence on the effective flow resistance of the duct liner. Peat [48] 

obtained a transfer matrix for an absorption silencer element and compared his simple 

fundamental-mode analysis with the full modal results of Cummings and Chang [17]. 

Peat [54] also presented a numerical decoupling analysis of an absorption silencer 

element. Peat's results were reliable at low frequency, but did not indicate such good 

agreement at high frequencies. 

AstJey [21] calculated the sound attenuation in ducts with bulk-reacting and locally­

reacting liners and then compared both sets of results. Astley et al [63] presented an 

analysis which considered a general flexible-walled duct with a bulk-reacting liner, 

using a variational finite element formulation. Computational results of the acoustic 

propagation were compared with experimental results, but mean tlow effects were not 

considered, either in the airway or in the absorbent. Later, Astley [22] presented a 

variational formulation for the problem of tlexible-walled ducts with bulk·reacting 

liners, including a uniform flow in the airway, but without any now effects in the 

absorbent medium. The effects of nanking transmission on the sound attenuation in 

lined ducts were studied by Cummings and Astley [76]. Craggs [43] reviewed the 

performance of acoustic finite elements for sound fields in small enclosures. He 

considered examples of small lined rooms and compared finite element solutions with 

those from a simple theory of duct acoustics. Later Craggs [47] used transfer matrix 

and matrix condensation methods, with finite element analysis, for duct acoustic 

problems and he proposed models for porous material with damping. However none of 

his investigations included steady now effects, either in the duct or in the absorbent. 

Christiansen and Krenk [44] used the finite element method to include the simultaneous 

use of different material models in acoustically lined ducts, and summarised the 

differential equation for a general porous material medium which was discretized by a 
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scaled Galerkin procedure. In addition, a hybrid technique was used and compared with 

experiments in applications to both reflective and absorption silencers, but without any 

flow. Hobbeling [45] used fmite elements for the analysis of typical designs of purely 

absorption silencers, combined absorption and reflection silencers, and oblique quarter­

wavelength Helmholtz resonator silencers, but the interface boundary conditions were 

inadequate and there was no account of flow in the absorbent. Design curves for 

rectangular splitter silencers and for circular and annular duct silencers were presented 

by Rarnakrishnan and Watson [68,69]. They used finite element analysis, but flow 

effects were not considered in their modelling. Easwaran and Munjal [61] carried out a 

finite element analysis for wedges used in anechoic chambers, hence they did not 

consider flow effects either. Bies et al [46] gave a generalised theory for sound 

propagation in a lined flow duct of arbitrary cross-section, where acoustic wave 

propagation in the lining was also taken into account. The general analysis was applied 

to ducts of both rectangular and circular cross-section. The applications were restricted 

to ventilation duct silencers and they did not account for the flow in the absorbent. 

Rademaker [55] conducted an experimental programme for validation of a theoretical 

duct acoustic model. This model calculates the sound propagation in a cylindrical flow 

duct of finite length, which includes an acoustically lined section between two hard­

walled sections. Mechel [64] analysed rectangular baft1e type silencers of infinite 

length with locally-reacting absorbers and without any flow, for modal solution charts 

which are similar with the Morse [6] charts. Frommhold and Mechel [16] discussed 

simplified methods for calculation of the attenuation of silencers of circular and 

rectangular cross-section, including mean flow in the airway but not the absorbent, and 

they compared their results against measurements. Morel et al [65] gave a combined 

fluid dynamic and acoustic model of a reactive concentric-tube silencer, without any 

absorbent or flow effects. A time-domain solution for the attenuation of high amplitude 

sound in perforated tube silencer problems, has been given by Chang and Cummings 

[72]. Cummings and Sormaz [62] presented a theoretical model describing the sound 

propagation in infinite, two-dimensional planar silencers incorporating an arbitrary 
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number of bulk-reacting, anisotropic, sound absorbing splitters with uniform mean 

flow in the gas flow passage. A numerical computation scheme was also outlined in 

their analysis, but effects of induced flow in the absorbent were not considered. 

Recently Wang et al [79] analysed a three-dimensional muffler with a boundary element 

method, without any absorbent or mean flow. Zhenlin et al [91] also used the 

boundary element method for predicting the acoustic performance of an expansion 

chamber muffler with mean flow. Cummings [70] presented a Rayleigh-Ritz 

variational formulation for the eigenvalue problem of circular and elliptical shaped 

silencers, which included the effects of variable density of the porous material. Induced 

flow effects in the absorbent were not included but the results indicated quite good 

agreement with experiments. 

1.4 Objectives of this Research 

The purpose of this thesis is to develop a technique which is suitable for detailed 

analysis of the most complex of absorption silencer units, for use with internal 

combustion engines or heating and ventilation systems. As suggested previously, one 

has to resort to one of the various numerical discretization techniques for the acoustic 

analysis of general systems of this nature. The finite element method is one such 

technique and has been used here largely because of the simplicity with which material 

nonlinearities and complicated geometries can be incorporated. Prior to this work, the 

finite element method has not been used to analyse dissipative silencers of finite length 

in the presence either of mean flow in a nonuniform airway, or of any mean flow in the 

absorbent. Indeed the literature survey above does not indicate any work at all in the 

former area and very little in the latter, although induced flow effects in the absorbent 

have been shown to have significant effects (Cummings and Chang [17,18] ). 
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In the application of interest here, the steady flow Mach number of the gas in the flow 

duct is typically less than 0.3, thus the steady flow may be assumed to be 

incompressible. Furthermore the Reynolds number of the flow is typically high, such 

that the steady flow is always turbulent and viscous effects are only important in very 

thin boundary layers adjacent to the duct walls. Thus shear effects are ignored 

throughout this work and hence, if the flow duct is uniform in cross-section, then the 

steady flow will also be uniform in this region. In most silencer applications the flow 

duct tends to be of uniform-cross-section, but non-uniform geometries, such as conical 

sections, are sometimes used and flow - splitter silencers also cause an effective non­

uniformity of the flow cross-section. 

Whenever there is a steady flow present in the now duct of an absorption silencer, there 

will be an induced steady flow field in the dissipative region. The numerical techniques 

presented in this thesis extend previous analytical and experimental work of Cummings 

and Chang [17,18] to include the non-uniform induced flow effects in the absorbent 

and to consider nonuniform packing in a silencer of arbitrary shape. Similarly, the 

finite element analysis of uniform ducts of infinite length by Astley and Cummings [20] 

is extended to include both induced flow effects in the absorbent and material, and 

hence flow non-uniformity. The finite element analysis techniques developed here can 

be used to predict the acoustic effectiveness of a given design of silencer and to explore 

the potential benefits of structuring the 'lay' of fibrous material or designing the shape 

of a silencer volume, with respect to the form of the induced tlow field. 

Three sets of computer codes were developed using the Nag Finite Element Library 

[53] of subroutines, one for the prediction of the velocity field of the induced !low in a 

porous material, one for the eigenvalue analysis of an infinite duct of arbitrary cross­

section, and the third for the analysis of the acoustic four-pole parameters, and hence 

transmission loss, of a complete absorption silencer. The accuracy of the results 

obtained has been checked, wherever possible, against the theoretical and experimental 
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results of other researchers. Some of the work presented in this thesis has already been 

published [90] and further items have been submitted for publication, or are in 

preparation. 

A brief summary of the finite element method is given in Chapter 2. The governing 

equations of acoustic wave propagation in flow ducts and in porous materials are 

presented in Chapter 3. An eigenvalue analysis of the flow acoustics problem in a 

uniform dissipative duct of infinite length, using the finite element method, is given in 

Chapter 4. The results are compared with those from different analysis techniques and 

with experimental results given by other researchers, for the test case of a section of a 

Saab silencer. The analysis technique is used to study the effects upon the attenuation 

of the silencer of nonuniform packing of the absorbent material and of cross-sectional 

shape of the dissipative duct. In Chapter 5 a comprehensive finite element analysis of a 

general three-dimensional absorption silencer with a uniform flow duct and induced 

non uniform flow in the absorbent material is given. The induced now in the absorbent 

is modelled in both a simplistic linear manner and in a more justifiable nonlinear manner 

and the results are analysed. Iterative algorithms, which have been found to be rapidly 

convergent, are given for the nonlinear analysis of both the steady induced now and the 

acoustic field in the absorbent. Two different schemes for the implementation of the 

matching conditions on the common boundary of the flow duct and the absorbent 

region are presented and compared. The general formulation of Chapter 5 is extended 

to include the case of a non-uniform flow duct in Chapter 6. Results are given for the 

modelling of ISO anechoic terminations in a now duct. The last chapter presents the 

conclusions and a discussion of possible future work. 

14 



CHAPTER 2 

APPLICATION OF FINITE ELEMENTS TO 
ACOUSTIC ANALYSIS 

2.1 Introduction 

The finite element method is a computer-aided mathematical technique for obtaining 

approximate numerical solutions to the abstract equations of calculus that predict the 
. 

response of physical systems subjected to external influences. Such problems arise in 

many areas of science and engineering. 

The finite element technique was first introduced in the 1950's and was initially 

developed for the stress/strain analysis of complex engineering structures. Since then it 

has been continually developed and improved. Once the method was given a firm 

mathematical foundation, it was only natural that it should be used for analysing other 

physical problems which could be represented by partial differential equations. Now, 

every area of science and engineering makes use of the power of the finite element 

method of analysis and the field of acoustics has been no exception. Since the original 

development was made in the area of structural analysis, much of the terminology and 

many of the current commercial fmite element programs are heavily oriented toward the 

structural analysis discipline.! 

The extension process of the finite element from structural to non-structural 

applications, via a variational approach, was documented by Cheung in 1965 [SOl. Due 

iJI'''j 
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to its diversity and flexibility as an analyst's tool, growth in the use of the method was 

rapid and it was applied for the first time to the acoustic analysis of silencers during the 

mid-70's by Young and Crocker [26] . 

The focus of this chapter is to introduce the finite element method in the context of the 

acoustic analysis of silencers and to give a very brief summary of the method, which 

will highlight the fundamentals of the technique. It is not intended to detail all the 

historical developments, for there are sufficient reviews and books available concerning 

this area. Perhaps the most notable is the text by Zienkiewicz [36]. 

The growth of the finite element technique is attributable directly to the rapid advances 

in computer technology and computing power, particularly over the last two decades. 

As the power of the computer has increased, so it has been possible to analyse larger 

and more complex problems. There now exist a number of so-called general-purpose 

finite element programs, available commercially. There also exists many smaller, 

special-purpose programs whose capabilities are more limited. Detailed description of 

available programs can be obtained from a handbook on finite element systems by 

Brebbia [89]. A few well-known large, general-purpose tinite element packages are 

discussed later in the chapter. \ \ 

/ne major advantage of the finite element method over other numerical methods such as 

fmite difference, lies in the ease with which complicated in·egular geometry and local 

mesh refinement can be incorporated. Each method has its advantages and 

disadvantages and one cannot say that one method is globally better than any other. 

Any comparisons tha~ can be made will be in the context of specific problems or in 

terms of the general theory of each method. The main advantages of the finite element 

method can be summarised as follows: 

• It is well-suited to problems involving complex geometries. 
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• It can readily handle problems where the physical parameters vary with position 

within the domain. 

• It can be used for non-linear and/or time-varying problems. 

• Complex boundary conditions can be readily dealt with. 

• Conventional numerical techniques can be used to solve the equations resulting 

from a fmite element analysis. I 

An important feature of the finite element method which sets it apart from other 

approximate methods, is the ability to formulate the solution for individual elements, 

before putting them together to represent the entire problem. This means that a complex 

problem can be reduced by considering a series of greatly simplified problenis. 
V 

Another important feature of the finite element method is the variety of ways in which 

one can formulate the properties of individual elements and even change them within 

iterations towards the fmal SOIUtiOn./ 

2.2 Basic concept of the finite element method 

A finite element may be regarded as a piece of a continuum system. Although the 

method has been developed into a sophisticated and apparently complex technique, 

underneath, the fundamental concepts and principles are simple. The general procedure 

for analysis of a system follows a few basic steps. Before outlining the central steps in 

the procedure, we define the following concepts and related terminology that are 

germane to every problem that the fmite element method can analyse. 

• System: The physical problem to be analysed. 

• Domain: The spatial, and temporal, region occupied by the system. 
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• Governing equations: The representation of the response of the system 

throughout the domain. 

• Loading conditions: The internal. boundary or initial forcing terms on the 

system. 

I For example consider the following problem: 

System 

A sound source of frequency ()) and strength f radiating inside a closed room with 

(ideally) rigid ceiling. walls. and floor. 

Domain 

The volume occupied by the room. The boundary of domain is comprised of the 

ceiling. walls. and floor. 

Governing equation 

V2 p + k' p = f where p is the acoustic pressure and k is the wavenumber 

Loading conditions 

Interior load f. Boundary conditions : = 0 on ceiling. walls. and floor (n is the 

nonnal to the bounding surface)., 
j 

12.3 The main steps of the finite element method 

Any fmite element analysis can be broken down into the following basic steps: 

i. 

iL 

iii. 

i v. 

v. 

vi. 

vi i. 

Discretization of the problem. 

Selection of the approximating function. 

Derivation of the element equations. 

Assemblage of the element equations to obtain the system equations. 

Inclusion of the boundary conditions. 

Solution of the system of equations. 

Post-processing. I 
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Details of these steps are outlined in the following sections. 

2.4 Discretization of the problem 

2.4.1 Over-view of domain 

Consider the system under examination whose domain is given in Figure 2.1. This 

domain of the problem is divided (partitioned) into smaller regions (subdomains) called 

"elements", see Figure 2.2 which are considered to be interconnected at joints, known 

as "nodes". Adjacent elements should touch without overlapping, and there should be 

no gaps between the elements. The shape of the elements are conventionally made as 

simple as possible, such as triangles and quadrilaterals in two-dimensional domains and 

tetrahedra, pentahedra ("wedges" or "pyramids"), and hexahedra ("bricks") in three 

dimensions, see Figure 2.3. The entire mosaic-like pattern of elements throughout a 

domain, e.g. Figure 2.2, is called a "mesh". Further details of element choice, their 

properties and the mesh generation procedure are given in the following sections. 

The shape or configuration of the basic element depends upon the number of space co­

ordinates necessary to describe the problem and, to some extent, upon the geometry of 

the domain. The finite element discretization procedure reduces a problem with 

continuously varying field variables to one of a finite number of unknowns, by dividing 

the solution region into elements and by expressing the unknown field variables in 

terms of assumed approximate functions within each element. 

)2.4.2 Mesh Generation 

When the term "mesh generation" is mentioned, the main idea is that the finite element 

discretization should be performed for the whole region. To minimise the effort and 

human error in data preparation, an automatic mesh generation routine can be utilised 

where applicable. A uniform mesh, consisting of elements which are all about the same 

size and shape and repeated in a fairly regular pattern, needs no special word of advice. 
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Such meshes provide a more or less uniform distribution of degrees of freedom 

(number of degrees of freedom per area of domain), and hence they are most 

appropriate in areas of a domain where the solution varies uniformly smoothly. In 

those portions of the domain where the solution varies more rapidly (e.g., near 

concentrated loads and, in some problems, near sharply contoured boundaries), a 

greater degree of freedom density is necessary in order to maintain a given level of 

accuracy; that is, the mesh must be locally refmed. 

2.5 Selection of the approximating function 
; /..5.1 Interpolation Functions 

In the fmite element method, the domain is divided into elements within which the field 

variables are represented by some form of interpolation function. These functions are 

usually referred to as the element "shape functions" and are generally chosen to be low­

order polynomials, although other types of functions may be used for this purpose, e.g. 

trigonometric functions. The shape functions are defined with respect to specified 

nodes of the element, most of which are located on element boundaries, though some 

elements do have interior nodes. Shape functions for the element types used in this 

thesis are given in Table 2.1 and Figure 2.4. 

A key feature of shape functions are that they are local, element-based, functions which 

have the value one at the node to which they refer and the value zero at all other nodes 

on the element, see Figure 2.4. Clearly adjacent elements 'share' the same nodes which 

lie on their common boundary. Thus a node has associated with it shape functions 

throughout all elements' which contain that node. Hence one may consider global, 

nodal-based interpolation functions, termed "basis functions", which are the sum of all 

element-based "shape functions" for a single node, see Figure 2.5. It is important to 

note that a global basis function is zero over all elements which do not contain the node 

corresponding to the particular basis function. 
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The complete set of nodal basis functions determine the nature of the allowed form of 

variation of a field variable throughout the domain. Hence, if the nodal values of a field 

variable are specified, the full form of the variation of the field variable throughout the 

domain follows, and is known as the "trial solution". 

2:5.2 Choice of Element Type 

\/ The selection of the mesh of elements, together with the element shape functions, is the 

most crucial factor in the analysis of the specified problem. The choice of both the 

finite element mesh and the element shape function determines thel potential accuracy of 

the analysis, the cost of computation and the storage limitations. The dimensions of an 

element must be chosen to be the same as the problem of interest./The number of nodes 

assigned to a particular element depends upon the type of shape functions and the 

degree of element continuity required.\ To clarify the meaning of the latter term, 

consider its standard definition. lit a field variable is continuous at the element interface, 

then it is said that the element has CO continuity. If, in addition, all first derivatives are 

continuous across element boundaries, the element has C' continuity, and so on. 

The main criterion in choosing the mesh and element type for the solution of a given 

problem is to select a form of trial solution which can reasonably approximate the 

anticipated variation of the field variable, with a close approximation to the system 

equations, while using a reasonable amount of computational effort. In addition the 

entire mesh of elements must adequately approximate the geometric domain of the 

problem, which can be a particular difticulty if the boundary of the domain is curved. 

The element shape functions from which the trial solution is generated are delined with 

respect to a local, element-based, coordinate system defined over a simple geometric 

domain, see Table 2.1 and Figure 2.4. Thus it is necessary to specify a geometric 

transformation from local to global coordinate space for each element see, Figure 2.6. 

A simple method to achieve this is through the use of a set of element shape functions 
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together with the global coordinates of the nodes to which the shape functions refer, see 

equation (2.15). The same element shape functions which are used to develop the trial 

solution can also be used to specify the relationship between the global coordinates and 

the local element-based coordinate system. If this is so, the element is termed an 

"isoparametric" element. Isoparametric elements have been used exclusively 

throughout the work of this thesis. For isoparametric elements with more then two 

nodes along an edge, the element boundary can be curved in global coordinate space, 

such that a domain with curved boundaries can be accurately represented. Provided that 

isoparametric elements have at least c" continuity, ~acent elements meet precisely at a 

common boundary without either gaps or overlap! 

The discretization of a curved domain uSing small, straight-sided elements is 

satisfactory provided that the number of elements used to fit the domain, particularly 

near its boundary, is large enough. An alternative strategy, and one with guaranteed 

accuracy, is to use curved-sided elements. since then a considerably smaller number of 

elements is required to achieve a close representation of the domain. 

Generally. the larger the number of nodal points the elements have. the more general 

and hence accurate the trial solution they produce, for a given total number of elements. 

Thus, for a given number of elements in the mesh, cubic and higher order elements may 

be used to obtain more accurate results than quadratic or lesser order elements. 

However, attention should be given to the fact that use of such elements would make it 

an expensive process in terms of computer storage and computation time, and similar 

accuracy for less cost might be obtained by using a denser mesh of lower order 

elements. In addition, cubic and higher order element can suffer from problems of 

instability. A good compromise is to use quadratic elements, which are relatively 

simple and yet can model curved boundaries. Eight-noded quadrilateral elements. 

which are complete to second order. are used in most element discretizations of the 
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problems involved in this thesis. Where the geometry dictates use of triangular 

elements, six-noded triangular elements, complete to second order, are used. 

2.6 Derivation of the element equations 

2.6.1 Element equation 

In each element the governing equations, usually in differential or variational (integral) 

form, are transformed into algebraic equations called the element equations, which are 

an approximation of the governing equations. The derivation of the element equations 

follows from the selection of a particular approach of the finite element method and the 

choice of the element shape functions. The following four basic approaches can be 

used in the formulation of the finite element method, to obtain the element properties, 

see AJghatam [50] : 

• The direct approach. 

• The energy balance approach. 

• The variational approach. 

• The weighted residual approach. ' 

2.6.2 Direct and energy balance approach 

The direct approach may be used for some situations, particularly in structural 

mechanics, where discrete elements are already present. Also, for problems prescribed 

by simple geometries and in which direct physical reasoning is used, formulation of the 

system of equations in terms of the variables of interest can follow from this approach. 

The energy balance approach relies on the balance of the thermal and mechanical energy 

of the system. In essence the following two, more general, approaches encompass this 

approach. 
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2.6.3 Variational approach 

This class of approach can be used when the governing equations of the problem can be 

written as variational (integral) equations. It requires knowledge of a variational 

principle (i.e. a functional to be extremized or made stationary) for the given problem. 

The Rayleigh-Ritz method is one specific, well-defined technique for obtaining 

approximate numerical solutions to problems in a variational form, and provides an 

algorithm for minimising a given functional, by choice of a trial function. The 

variational method is still popular in the field of solid mechanics, but in most practical 

problems of other disciplines, it is becoming less popular due to restrictions associated 

with the requirements of a suitable variational principal. 

2.6.4 Weighted residuals approach 

This approach can be used for any general class of problem and is the most widely 

applicable technique for finite element analysis. In the method of weighted residuals, 

the element equations can be derived directly from the governing equations of the 

problem under consideration, without any need of knowing a functional. \'The trial 

solution is substituted directly into the governing equation and the result is termed the 

error or residual function. The error function is then multiplied by chosen weighting 

functions and forced to be zero in an integrable sense over the entire domain. In fact, 

there is a number of methods categorised as weighted residual methods e.g. Galerkin, 

Collocation, Least Squares and Zero mean error methods, which differ only in the 

choice of weighting functions used. 

The general procedure for all of these methods has been given by Zienkiewicz [36]. 

The most popular of these, the Galerkin approach, which employs the nodal basis 

functions as weighting functions, will be adopted in this thesis. In particular the 

"weak" or "modified" Galerkin formulation is used which reduces the inter·element 

compatibility requirements. The advantages of the Galerkin technique are that it 
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produces simple, symmetric element matrices with good convergence properties. 

Details of the Galerkin approach are given in the following section. 

2.6.5 Galerkin Method 

By way of example, consider the Galerkin technique for application to the classic 

Helmholtz equation 

V'p+k'p = O. (2.1) 

We seek a trial solution p. formed from the set of global nodal basis function 

lfIJ(X,y,z) , such that 

(2.2) 

where Pi are the unknown nodal values of P at the N nodes of the entire domain. 

Then 

V'p· + k'p. = R"# 0, (2.3) 

where R is the residual or error function. 

A general weighted residual method would seek to minimise the residual by enforcing 

HI W/(x,y,z)R(x,y,z)dxdydz = 0, (2.4) 
, 

for a general set of weighting function W/(x,y,z). Since the Galerkin method is a 

particular form of weighted residual method for which the weighting functions are taken 

to be the basis functions lfI/(x,y,z), then 
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JJJ ljf/(x,y,z)R(x,y,z)dxdydz = 0, (2.5) 
y 

for I = I to N. Thus from equation (2.3), 

Iffljf/cv2p'+ep')dv=0, 1=ltoN (2.6) 
y 

This set of equations can then be re-written, substituting from equation (2.2), as 

N 

L uIff ljf/(V2ljf} +eljf})dvlp}} = 0, I = I to N (2.7) 
1=1 " 

2.6.6 Modified Galerkin Method 

The "modified" or "weak" Galerkin formulation is a simple variant of the basic Galerkin 

method, in which Green's theorem is invoked to reduce the maximum order of 

derivative terms in the integrals. Green's theorem states that, if <I> and 'I' are two 

scalar functions with derivatives which are continuous in a domain v, then 

JJJ <l>V2'1'dv = If <l>V'I'·!J.ds - JJJ '11<1>. V'I'dv, (2.8) 
y , 

where s is the surface enclosing the volume v and !1 is the uni t outward normal to 

surface s. Application of Green's theorem to the particular example of the Helmholtz 

equation (2.6) in the preceding section results in 

JJJ (Vljf/. 'lip' - eljf/p')dv = If ljf/ a;,,' ds, I = I to N (2.9) 
y , 

where s is the boundary of the domain v Substitution from equation (2.2) gives 
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[= I to N (2.10) 

2.6.7 Numerical Integration 

The integrals in equation (2.10) can be evaluated as the sum of the separate integrals 

over all volume elements of the domain and surface elements of the boundary, for the 

left-hand side and right-hand side integrals respectively. Hence equation (2.10) can be 

written as 

for a mesh of M elements with individual volume vc' and for B surface elements on 

the boundary with individual area Sb' The basis function ljI[ is zero over all element 

except those which contain node [, for which global node [ would correspond to a local 

node number, say i. Hence the non-zero contributions to equation (2.1) are 

n m 

LL{JIf (VljI;' VljIj -k'ljI;ljI)dv)Pj = 
j=i ~=1 v~ 

where ljI;, ljIj are the shape functions based on the local element node numbers j,.i of a 

given n -noded element. The contribution of the,;rh local node of element e to the 

equation based on the [th weighting function, corresponding to the jth local node of 

element e, can then be termed the elemental stiffness k~ . Similarly the right-hand side 

gives rise to forcing terms of the form f;b. Hence equation (2.12) can be written as 

n m 

'" "'k' , £.J~ ijPj 
j=l e=l 

B 

= Lf;b, [= I to N 
b=l 

where kij = If f (V ljI; . V ljIj - k
2

lj1; ljI)dv and f;b = If ljI; : dL 
~ ~ 
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The domain integral of equation (2.12), the term k~, has a known integrand and, in 

principle, can therefore be evaluated. In practice, the integral must be evaluated 

numerically, due to its complexity, for which it is advantageous to conduct a 

transformation into a simpler space. Since the element shape functions are based on a 

local coordinate system of -I :S; ';,7), (:S; + 1, the use of isoparametric elements provides 

an ideal mechanism to accomplish this task. Thus we seek a transformation such that 

+1+1+1 

ffJ (V'I'i . V'I'j - e 'l'i 'I')dv = f f f G(,;, 7),S)IJld,;d7)d( (2.14) 

'. -1-1-1 

where G(,;, 7), () IS the transform of the integrand and J IS lacobian of the 

transformation. 

Now for isoparametric elements with n nodal shape functions of the form 'I',(~, 7),S), 

n 

X = L 'l'i (,; , 7),S)xi 
i=l 

n 

Y = L 'l'i(';' 7)'Y)Yi 
i=l 
n 

Z = L 'l'i(';' 7),S)Zi' 
i=1 

where (Xi'Yi'Z,) are the global coordinates oflocal node i i.e. global node I. 

The Iacobian matrix [J] is given by 

[J] = [a(x,y,z)] = 
a(';,7),S) 

ax ay az 

a,; a,; d'; 
ax ay dZ 
(7) (7) (7) 
dX ay dZ 

a( a( d( 
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and the individual elements follow from equation (2.15). since d~ = t d .. ~i Xi' etc. 
do, .. I a., 

The transformation of the integrand to the form G(~. 71.0 generally involves 

transformations of the global-coordinate derivatives of the shape function. i.e. V ljI 

terms. Now 

~- -l dljl dljl d,~ d71 , dt; 
dx dx dx dx d~ 
dljl J= d~ d~ d~ dljl 

(2.17) 
- -dy- -& dy J dy d71-

dljl dr-d~- d~ dljl 
dz dz dz dz dt; 

where the matrix is simply the inverse of the Jacobian. Higher-order global derivatives 

can be transformed in a similar manner when this is necessary 

Evaluation of the transformed integral of equation (2.14) is performed by the use of a 

quadrature formula. with given weighting functions Wi and abscissae points (~i' 1);. (). 

such that 

(2.18) 

r , 
The Gauss quadrature formulae. as used in this work. have quadrature weights and 

bOints chosen to exactly integrate polynomial functions. The larger the number of 

&uadrature points. nq • the higher the order of polynomial which is integrated exactly. 

but the greater the required computational effort. There are many references which 

provide tables of general quadrature rules assuming a range of (~. 71. I;) values from -1 

to + 1. hence the reason for normalising the element sides in this way. The Gauss 

quadrature formulae used in this thesis are given in Table 2.2. I 
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2.7 Assemblage of the element equations 

2.7.1 General Assembly Rule 

The assemblage procedure of the element equations is an important step in the solution 

of the problem. In this process, the element equations are combined in order to form a 

set of equations governing the composite set of elements. The assemblage of element 

equations provides the compensating effect to that of discretizing into subdivisions the 

region in which the problem of interest is prescribed. Thus, the assemblage of such 

elements represents the original domain. It includes the assembly of the overall 

stiffness matrix for the entire region from the individual element stiffness matrices, and 

the overall right hand side vector from the assembly of individual surface elements on 

the boundary. 

I The integration procedure of the previous section is carried out over each element in 

turn, to give an element stiffness matrix [k']. This is an n Xn matrix, where n is the 

number of nodes on the element, with individual components k;;-)'as given in equation 

(2.13). lEach individual component of the element stiffness matrix [k'] can then 

assembled into the global stiffness matrix [Kj, by adding it to the KIJ component of 

[Kj, where I is the global node number of local node i on element e, and J is the 

global node number of local node j on element e. This results in an overall system of 

equation of the fonn I 

Kll Kl2 KIN PI II 

K'I K" K'N p, I, 
= (2.19) 

KNl Km KNN PN In 

or (2.20) 
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The right-hand-side vector of forcing terms arises from the boundary integrals ~f 

equation (2.12),\for elements which have an edge on the boundary of the domain. This 

step presupposes that the integral contributions from inter-element boundaries cancel, 

i.e. that there is continuity between elements\ see Section 2.2 on element choice. 

2.7.2 Bandwidth minimisation 

A key feature of equation (2.19) is that most of the terms in the stiffness matrix are 

zero, since component Ku will be zero unless nodes I and J lie on the same element. 

Hence careful global node numbering can give rise to a matrix which is strongly 

banded, that is all the nonzero terms are clustered within a narrow band about the main 

diagonal. The bandwidth is the maximum number of terms along a row from one side 

of the band to the other. The half-bandwidth is the number of terms in a row to one side 

(or the other) of the main diagonal, plus the main diagonal. Hence designating the half 

bandwidth by HB the band width is 2(HB) -I. For a given mesh topology the 

bandwidth is determined by the global pattern of node-numbering. I.e .. 

HB = (M)ma, + I (2.21) 

for a single degree of freedom problem, where M is the difference between the largest 

and smallest global node number on a given element. Computer processing and storage 

costs decrease significantly as the bandwidth of the system stiffness matrix decreases. 

There always exists at least one global node numbering system for a given mesh for 

which the bandwidth will be minimum. There are many algorithms that can be used to 

automatically renumber a mesh to minimise the bandwidth. 

2.8 Inclusion of the boundary conditions 

Once the main part of the assembly is completed the boundary conditions must be 

imposed, by modifying both the system matrix and the right-hand side forcing vector. 
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A boundary value problem of order 2n in some function P requires n boundary 

conditions to be specified at every point on the boundary. A boundary condition is an 

equation relating the values of P and/or some of its derivatives from order 1 up to order 

2n-l, at points or over regions on the boundary. It is conventional to classify the 

boundary conditions into three principal types: 

2.8.1 Dirichlet or Essential boundary condition 

An equation relating the values of any of the derivative of p from order 0 to order n-l. 

(Note: the oth order derivative is simply p, the value of the field variable). These 

conditions may be imposed by two main methods: (i) direct elimination of the freedom 

from the system; (ii) the Payne-Irons procedure. The method of application for direct 

elimination is to delete from the system stiffness matrix any entry corresponding to the 

given boundary freedom. This has the advantages of being exact and of reducing the 

size of the problem prior to solution of the equations, but it involves a reordering of the 

full syste~ matrix for each known boundary value. The mechanism involved is best 

understood by an example. Consider the pressure to be known at node 5, say p, = C, 

of the system of equations (2.19), i.e. 

Kll K12 KIN PI II 

K21 K22 K2N P2 12 

= (2.22) 

KN! KN2 KNN PN In 

For direct elimination one would remove row 5 from the equations and column 5 

terms from the system matrix and would replace I; by I; - K;,C in all remaining 

entries on the right-hand side-jThe Payne-Irons method involves an imposed bias of 

entries in the system stiffness matrix corresponding to the given boundary freedom 

values. The leading diagonal of the entry is augmented by some large number (large in 

comparison with the entries in matrix, say IOlO ) and the corresponding entry on the 
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right-hand side is given a similar scaling and a value to enforce the correct condition. 

For example in equation (2.22), row 5 would be altered to read 

(2.23) 

thus Ps = C. Clearly this approach is approximate and does not reduce the matrix size 

prior to solution. It is, however, much easier to implement than the direct elimination 

method and the accuracy can be improved at will by increasing the scaling factor. The 

Payne-Irons method has been used to implement Dirichlet boundary conditions 

throughout the work in this thesis 

2.8.2 Neumallll or Natural boundary condition 

An equation relating the values of any of the derivatives of p from order n to order 

2n -l. For a second order problem (n=l), the Neumann condition is a known rate of 

change of the scalar field p in the direction of the outward normal to the boundary. For 

example, assuming that ap/Jn = C, a known constant, on portion r of the boundary S 

then the right-hand, side of equation (2.10) for this portion of boundary becomes 

C f lj!lds and is zero unless global node I lies on r. Let portion r of the boundary be 
r 

represented by Nb elements on the boundary, and let global node I correspond to local 

node i on a given element, then the non-zero contribution to the right-hand side is 
N. 

L C f lj!;ds. On occasions when the given derivative is not in the normal direction, 
b=l rb 

then the contribution to the right-hand side must be constructed from the direction 

cosines of the elements on the boundary. 

The form of the elements and hence shape functions on a given boundary depend upon 

the type of domain elements adjacent to the given b~undary, i.e. for a 2-D domain with 

8-noded quadrilateral elements adjacent to a boundar>the elements on the boundary 

will be 1-0, 3-noded line elements. In performing the li~~surface.integration over 
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the boundary, numerical quadrature rules, see Table 2.2, can be used accordingly, such 

that for a l-D element on the boundary of a 2-D domain 

(2.24) 

(2.25) 

On evaluation, the integral contribution corresponding to '1'1 becomes j" the Ith 

element of the right-hand side vector of equation (2.22). 

-' 
27~~3 Cauchy boundary condition 

An equation relating derivative conditions of Dirichlet type to those of Neumann type. 

e.g. For a second-order problem the normal derivative of the field variable is a known 

function of the field variable. For example consider ap' / an = Cp', with known 

constant C, on some portion of on r of the boundary S. Then from the weak Galerkin 

formulation, equation (2.10), the right-hand side integral over r can be written as 

N r le J 'l'/'I'Jds}pJ. (2.26) 
J=1 r 

Again, if nodes I and 1 lie on the same element of the given portion of boundary, the 

only non-zero contributions of expression (2.26) from a given element on the boundary 
n 

are r ClJ 'l'i 'I'/L~}Pj where i and j are the local element numbers corresponding to 
j=l r 

global nodes I and 1. The integrals can be evaluated numerically using the same 

quadrature rules as given above for the Neumann conditions, to leave contributions of 

the form k~p; arising from all nodal pairs i, j on a given element b on the boundary. 

These ki~ terms are therefore contributions to the global stiffness matrix and since they 
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arise from right -hand side of equation (2.10) they must be subtracted from the 

corresponding K JJ terms of equation (2.19). 

2)1' Solution of the system of equations 

0.9.1 Solution techniques 

Once the boundary conditions have been included the resulting system of equations can 

be solved by one of a range of conventional numerical techniques. Appropriate 

techniques are chosen to take full advantage of the characteristics of the system matrix 

i.e. whether it is banded, symmetric, unsymmetric, real or complex. Subroutines from 

the NAG Library were used throughout the work of this thesis. 

\J\LV\ 
~l ,,-l\ ') \ 

2.9.2 Uniqueness aftp convergence requirements 

The nature of the solution and the degree of approximation depend upon the validity and 

accuracy of the finite element model. Validity means how faithfully the problem is 

represented by the finite element formulation, while the accuracy depends upon how 

close the model is to convergence. The actual solution in some domain is approximated 

by an assembly of simple solutions, each local to some element, and hence the overall 

accuracy of the entire solution depends mainly on the number of elements used and the 

order of the shape function within each element. In particular, it is important that the 

accuracy of an analysis can be increased by using more elements, which in turn implies 

that elements must satisfy the following convergence requirements: 

• Completeness 

Completeness is the requirement that, in the limit as the element size decreases 

indefinitely, the combination of trial functions should exactly reproduce the exact 

solution. This condition is satisfied if polynomial expressions are used in each element 

such that the complete mth order polynomial is present, when mth order derivatives 

exist in the integrals of the finite element matrix equations. 
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• Compatibility 

Compatibility is the requirement that there should be no contribution to the integrals of 

approximation from the interfaces between the elements. i.e. as the shape functions are 

constructed in a 'piecewise' manner, the question of inter-element continuity is 

important. If the integral contains mth order derivatives of the unknown function, then 

an element is compatible if the shape function and its derivatives up to order m-I are 

continuous at the boundaries. The element is then said to have om-I) continuity. 

An element which is not compatible may still be admissible if the inter-element 

contributions to the integrals which do exist are of a kind which continuously decrease 

with the fineness of element subdivision. An element which is both complete and 

compatible is said to be a conforming element, while an element which is complete but 

non-compatible is termed a non-conforming element. If conforming elements are used, 

convergence is monotonic, i.e. the accuracy of the solution increases continuously as 

the number of elements increased. If non-conforming elements are used, convergence 

to the 'exact' solution may occur in the limit, but in general will not be monotonic. The 

modified Galerkin method reduces the continuity requirement on the element, by 

reducing the order of derivatives in the integrand, the 'optimum' condition occurring 

when the weighting and trial terms are identical in form. 

2.10 Post-processing 

The final operation, called post-processing, displays the solution to the system 

equations in tabular, graphical, or pictorial form. Other physically meaningful 

quantities might be derived from the solution and displayed. For instance, a solution in 

terms of the acoustic pressure values at all nodes of a mesh can be post-processed to 

indicate the pressure distribution throughout the domain, or to evaluate four-pole 

parameters or transmission loss across the domain, etc. Post-processing also includes a 
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detailed examination of the finite element model to confirm that the whole analysis has 

been constructed correctly, and some verification of the results to prove that they are 

reasonable. 

2.11 Galerkin formulation of eigenvalue problems 

For the finite element solution of an eigenvalue problem, the basic technique is the 

same as that outlined previously, but a few extra details must be noted. By way of 

example consider the Helmholtz equation (2.1) for which the weak Galerkin 

formulation is 

N 

L,lfff (V'I',· V'I'J -k''I','I'J)dv}PJ I = I to N (2.27) 
J=1 

see equation (2.10). The natural frequencies of acoustic wave motion inside a rigid­

walled enclosure v then follow from the values of the wavenumber k for which non-

trivial solutions of the equations 

N 

L,lfff(V'I',.V'I'J)dv-k2fff('I','I'J)dv}PJ = 0, 1=ltoN, (2.28) 
J=l v 

exist, since ap' / an = 0 on a hard wall. The integrals of the left-hand-side follow in the 

same manner as that outlined previously, namely numerical integration in transformed 

coordinates over the separate elements, and element assembly is performed as before to 

give separate global stiffness and mass matrices, [K] and [M] respectively, where 

{[K]- k 2 [M] liE} = IQ). (2.29) 
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a generalised eigenvalue problem. Standard equation solvers can then be used to find 

the eigenvalues k and the corresponding eigenvectors {E).. Appropriate NAG 

routines were used for the solution of eigensystems in this thesis. 

2.12 Software for acoustic analysis and their limitations 

2.12.1 Commercial finite element packages 

There are numerous commercial fmite element packages of varying complexity available 

at present to solve linear acoustic problems involving the two- and three-dimensional 

Helmholtz equation. Some software systems permit a very compact formulation for the 

solution and this facilitates programming so that both the inexperienced tinite element 

method user and the expert programmer spend a reduced amount of time and effort in 

programming and debugging. Detailed description of available programs can be 

obtained from computer manufacturers, or directly from the code distributor. Large 

general-purpose finite element programs include NASTRAN, ANSYS, PAFEC and 

SYSNOISE etc. In particular SYSNOISE, which is dedicated to acoustic problems, 

can use either the finite element method or the boundary element method. It also deals 

with the problems of ducts or enclosures with simple liners. PAFEC has the capability 

to do mixed finite element and boundary element modelling of acoustic problems, but 

cannot handle dissipative liners or wave propagation in a dissipative material. 

To a large degree, the ease and successful application of finite element analysis software 

depends on the supporting pre- and post-processing programs. The pre-processing 

programs assist the user in generating the element mesh in the domain of the problem. 

Since the finite element code requires information about every node and every element, 

the preparation of required data file can be difficult and tedious. In some software, the 

pre-processing program reduces this effort by assisting the user in drawing the outline 

of the problem domain, and then with a simple command it automatically generates the 

mesh, numbers the elements and nodes, defines coordinates, and places all this 
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information in a format that the analysis program can read directly. Following the 

analysis of a fairly large problem, examination of copious amounts of hard-copy output 

can be a daunting task. The post-processing programs assist in interpretation of results, 

very often by incorporating graphical displays. However all software has its own 

limitations. In general these commercial packages have no flexibility with respect to the 

equation system to be solved, such that one cannot add mean flow effects or general 

absorbent material types, such as is required in the present work. 

2.12.2 NAG FE Library 

The NAG Finite Element Library is a library of FORTRAN subroutines [53l, each of 

which performs a single, basic task within the structure of overall finite element 

programs. For instance there is a subroutine for each geometric element type which will 

return the shape function and its partial derivatives for each node, evaluated at a 

specified location within the element. An overall program must be written, which calls 

the appropriate routine as and when required, and within which the problem to be 

analysed is completely specified. However the NAG FE Library does not include any 

pre- and post-processing routines, nor do any of the commercial package available for 

these tasks include interface routines to the NAG FE Library. Thus mesh generation' 

has been done manually or by in!house routines, and graphical post- processing has 

been done by UNIRAS software. 
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Table 2.1 

Element Shape Functions 

Element Shape function 

:;"';~"Lf .,,":" ';','."0 ,.} " • -;,' 

Three~noded line "element 
1 

(see Figure 2.4(a» '1"(';)=2';('; -1) 

'1',(';) = 1-';' 
1 

'1',(';) = 2';('; + 1) 

" "" . 
Six~noded triangular element 

(see Figure 2.4 (b).(c) ) 

Typical corner node '1', = (2L, -I)L, 

Typical mid-side node '1'. = 41-,1-, 

where 
1 

L,(';.1) =-(1+ 2';) 
3 
1 

1-,(';.1) = 3"(1-'; -.../31) 

I 
1-,('; .1) = 3"(1- ,; + .../31) 

c)"" _">" ' 
Eight.:noded quadrilateral element 

(see Figure 2.4 (d).(e» 
'1';(';.1) = 
1 

Corner nodes 
4"(1 + ';';;)(1 + 1)1);)( ';';; + 1)1); - I) 

Typical midside node. ';; = 0 1); = ±I 
1 

'1';('; .1) = 2(1- ';')(1 + 1)1)) 

where 

(';;.1)) are the coordinates of ith node. 
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Table 2.2 

Abscissae points and weighting coefficient of Gaussian 

quadrature formula 

Quadrature Scheme Abscissae points, Weighting functions 

~Ir~~s"".' .. ' ';' 0 

" . ,~ .. ~. "'.'., :z I , 
Y'~"~ ___ <'J.. _,. _ -'. ,r!, ... "~; ,." 

"3 *..,"1#. -~ " --::--. '. pomts,\: ..... .. ' . 1< w; 

(for line elements) ±.j3/5 40/81 

0.0 64/81 

~~/~/.~;4 . omts"> : , . ,. (~, 11) Wj 

(for triangular elements) (0,0) (27 -f3) 
80 

(1,0) (2-f3) 
80 

( -I/2,±-J3/2) (2-f3) 
80 

(-1/2,0) (_1 -f3) 
10 

(l/4,±-J3/4) (_1 -f3) 
10 

;,.;; .- "" -( . 
~'i~t4.hii-0f}-i.i6J,;\\:- " 
9;"'poiilts; .. 

." . 
(~,11) w; 

(for quadrilateral elements) (0,0) 64/81 

(±.j3/5,±.j3/S) 25/81 

(O,±.j3/S) 40/81 

(±.j3/S,O) 40/81 
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Figure 2.1 Over-view of two dimensional domain 
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Figure 2.2 Discretization of a domain into a number of finite elements 
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Figure 2. 3 Examples of (a)-(c); 1-0, (d)-(g); 2-D, and (h)-U); 3-D 
elements 
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Figure 2.4 (a) Shape functions for a 3-noded, line element. (b),(c) Corner 
and mid-side shape functions for a 6-noded, triangular element. (d),(e) 
Midside and corner shape functions for a 8-noded, quadrilateral element. 
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CHAPTER 3 

GOVERNING EQUATIONS 

3.1 Introduction 

This chapter outlines the fundamental equations for three-dimensional acoustic wave 

motion through a flow duct and a surrounding silencer volume which is packed with 

porous material, see Figure 3.1. Both regions of the duct, the gas flow passage and the 

absorbent, are taken to be of arbitrary shape. In Section 3.2 the general governing 

equations of the gas flow are developed and their reduced forms, under various 

simplifications, are given. In section 3.3 the general governing equations in the .-
absorbent region, including steady flow effects through the porous material, are given 

together with various simplified forms. Properties of bulk-reacting porous materials 

and their empirical representation, including the effects of steady now on the porous 

material properties, are given in Section 3.4. Equations for evaluation of the overall 

transfer matrix or four-pole parameters of a silencer, and hence the overall perfonnance 

criteria such as transmission loss, are given in Section 3.5. 

3.2 Governing Equations in the Flow Duct 

The general equations of conservation of mass and momentum for an in viscid tluid are 

(e.g. Morse and Ingard [37) ) 
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~ + V.(pq) = 0 (3.1) 

and 
aq 1 - + (q·V)q = --Vp, (3.2) 
at p 

where p, p and q are the fluid density, pressure and velocity respectively. Since the 

fluid is assumed to be inviscid the flow will be irrotational, hence 

q = VI/! (3.3) 

where I/! is the velocity potential. If one assumes that the tluid is non heat-conducting, 

then the flow will be isentropic and 

J!... = (3.4) 
Po 

where r is the ratio of specific heats and subscript n implies steady-state, stagnation 

conditions. Small disturbances will propagate through the fluid at the speed of sound c 

where, from equation (3.4), 

c' = (~~J = 
dp = 
dp 

rP . 
p 

Expansion of the continuity equation (3.1) gives 

~ +q,Vp+pV'q = 0 

and substitution from equation (3.3) into equation (3.6) yields 
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(3.7) 

The second term of the momentum equation (3.2) can be expanded by standard vector 

relations to 

(q. V)q 
I 

= "2 V (q.q)-qX(Vx q) (3.8) 

or 

(q. V)q 
I 

= "2 V (q.q), (3.9) 

since the flow is irrotationaL Substitution from equations (3.3) and (3.9) into equation 

(3.2) gives a new form of the momentum equation 

or 

I 
--Vp, 

P 

1 
--Vp. 

P 

Spatial.integration of equation (3.11) gives 

a4J+.!.(V4J.V4J)+fdp = F(t) , at 2 p 

(3.10) 

(3.11) 

(3.12) 

where F(t) is the constant of integration, which could be a function of time. 

Evaluation of the integral term from equation (3.4) and substitution from equation (3.5) 

gives 
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at/> 1 c2 

-+-('Vt/>.'Vt/»+- = 
at 2 r-1 

c2 
o --, 

r- 1 
(3.13) 

where the integration constant now follows from the stagnation conditions and is found 

not to be time-dependent. Equation (3.13) can be re-cast to yield the local sound speed 

as 

Substitution from equation (3.5) into equation (3.11) gives 

and into the time derivative form of equation (3.12) gives 

_l... ap ap 
pap at 

= _~ap 
p at 

(3.14) 

(3.15) 

(3.16) 

Equations (3.15) and (3.16) can now be used to eliminate the density from equation 

(3.7) to give 

or 

(3.18) 
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Consider the flow to be composed of a steady background flow of potential ~ together 

with a small time-dependent fluctuation of potential 41', i.e. 

41 = ~ + 41'(t). 

The steady flow forms of equations (3.18) and (3.14) give 

and 

2.V~.V(M2) 
2 

(3.19) 

(3.20) 

(3.21) 

where M = IVljl/c is the local Mach number of the steady flow. Substitution from 

equation (3.19) into equation (3.18), followed by subtraction of the steady flow 

equation (3.20) and linearisation of the small fluctuation terms, leaves the linearised 

acoustic equation of the form 

V'41' = -!,{a'~' +2V~. V(a IP' )+{V41'· V(M2)+(V~. V)241'}. (3.22) 
c at at 2 

The general equations (3.20)-(3.22) simplify considerably under various additional 

assumptions, as detailed in the following sections. 

3.2.1 Zero Steady Flow 

For the simplest case of acoustic propagation in a stationary medium, the equations 

(3.22) and (3.21) reduce to 
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V 24i' 
1 (}2 q>' 

= 2" --:;-;-, 
Co ut 

(3.23) 

the standard wave equation with propagation at constant sound speed co. The 

momentum equation (3.11) also simplifies considerably to 

(3.24) 

such that the wave equation (3.23) can be written in tenns of the acoustic pressure, 

V 2 p' 
1 (}2 p' 

= ---2 ~ 2 • 
Co ot 

(3.25) 

3.2.2 Uniform Steady Flow 

If the steady flow is unifonn throughout the flow field, then 

V~ = V, a constant, (3.26) 

and it follows from equation (3.14) that the speed of sound is constant, say c, 

throughout the flow field and hence the Mach number is also constant. Thus equation 

(3.22) reduces to 

V2q>' (3.27) 

or 

l{() _ }2 
V2q>' = c2 (}t+(V.V) q>'. (3.28) 
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The momentum equation (3.11) also simplifies to 

(3.29) 

hence the acoustic equation (3.28) can be written in tenns of the acoustic pressure p' as 

1 { a }' v' p' = =- - + (V . V) p' . 
c' at (3.30) 

3.2.3 Non-Uniform Steady Flow of Low Mach Number 

If the local Mach number of the steady flow is small enough everywhere such that 

terms of O[M'] can be neglected, then the equation of steady now (3.20) reduces to 

v' ~ = 0, (3.31) 

Laplace's equation of incompressible now. Furthermore, from equation (3.21), 

c' (3.32) 

hence the linearised acoustic equation (3.22) becomes 

V'41' = ~{a'41' +2V~.V(a41')}. 
c~ at' at (3.33) 

Once again the momentum equation (3.11) simplifies, giving 

(3.34) 
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hence the acoustic equation (3.33) can be written in terms of the acoustic pressure as 

(3.35) 

3.3 Governing Equations in the Absorbent. Region 

The equation of mass conservation within a porous material is [37] 

nap" +v.(p q) = 0 
at " " 

(3.36) 

where p",q" are the density and the velocity in porous material, and n is the porosity, 

the ratio of the volume of accessible holes to the total volume of the porous medium. 

Subscript a is used throughout to denote variables within the absorbent region. The 

momentum equation in the absorbent region must include the change in inertia and the 

frictional drag suffered by the fluid as it moves through the pores. The inertial term of 

the momentum equation follows from Smith and Greenkom [59] and can be written as 
1 n pJM.laq" I at, where [M,,] is a diagonal matrix whose jth term is mj , the 

structure factor in direction x j • Convective acceleration terms, which are of order 

Iq"l/eo compared to the local acceleration, have been ignored. The overall resistance to 

fluid motion in direction j can be expressed as a sum of a viscous resistance G"j q"j 

and an inertial resistance term due to eddy formation Gijlq" Iq"j' see Carman [91], 

where G"j and Gij are the complex components of viscous now resistivity and inertial 

flow resistivity in the jth direction. Hence the momentum equation for now in a 

porous material can be written as 
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P. [M ] dq. = - VP. -[1:]q. n • dt 
(3.37) 

where [1:] is a diagonal matrix whose jth term is C1.j = C1.j + C1ij~.I. Let the fluid 

variables be expanded as the sum of steady-flow and small, time-dependent, 

perturbation components, such that 

(3.38) 

Thus equations (3.36) and (3.37) become 

£"\ dp~ ( ')" (_ , ) (_ ')'" () uTt+ P,,+P. v· q.+q. + q.+q. ·vp. = (3.39) 

and 

(Po ~P~)[Mo]aat(q.') = "(- + ') [1:](- + ') - V Po Po - q. q •. (3.40) 

For the steady flow case, these equations reduce to 

V·il. = 0 (3.41) 

and 

(3.42) 

where [l:] is a diagonal matrix whose jth term is (faj = (C1'j + C1ij lila I) , and C1'j is the 

steady viscous flow resistivity. 

The fIrst-order perturbation form of equation (3.39) is 
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a' n Pn +P v.q' +q- ·Vp' = 0 at Oaa a . (3.43) 

Once again, the convective acceleration tenn qa' Vp; is of order IqaVco compared to 

the local acceleration and will be ignored. Furthennore the equation of state relates the 

change in density to the excess pressure by the linearised relation [37] 

, 
PoXPa' (3.44) 

hence equation (3.43) can be written as 

a ' 
Xn...1!... + V·q' = 0, at a 

(3.45) 

where X is the effective compressibility of the acoustic medium in the pores. 

The first-order perturbation fonn of the momentum equation (3.40) is 

[Ma] aq; = V' ['<"] , 
PO nar - Pa - "" qa' (3.46) 

where [:E'] is a diagonal matrix whose jth tenn [18] is 

(3.47) 

where ao/m) is the frequency dependent, complex acoustic now resistivity in 

direction j and, as m ~ 0, a();C m) ~ a'i' 
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3.3.1 Isotropic and homogeneous porous media, without mean flow 

The general wave equation in this case follows by taking the time derivative of equation 

(3.45) and the divergence of equation (3.46) to give 

n a2p; a.." 0 x··--+-v·q = at2 at ' (3.48) 

and 
md.." ..,2,.." PO
adt 

v·q, = -v p,-av·q,. (3.49) 

respectively. where mj = m and a;j = a are now constant for all j. Hence. from 

equations (3.45). (3.48) and (3.49) 

(3.50) 

which is the wave equation for isotropic and homogeneous porous media without mean 

flow. 

3.3.2 Internal steady flow in absorbent 

The full equations of the steady flow are the general continuity and momentum 

equations (3.41) and (3.42). The momentum equation in direction Xj is seen to be 

nonlinear. of the form 

dp, 
-= (3.51) 

which is termed the Ergun or Forchheimer equation (see book by Carman [93)). 
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Considerable simplification occurs if the steady flow is uni-directional, in direction Xj 

say, since it follows from equation (3.51) that 

(3.52) 

The continuity equation (3.41) indicates that ii.j is invariant with Xj and hence the 

absorbent properties cannot vary with x j , but they may still vary over the plane 

perpendicular to Xj and would then give rise to non-uniform mean flow. 

An alternative simplification, applicable to the general flow case, is achieved if the 

momentum equation (3.51) is approximated as 

(3.53) 

where Iq. I." is an estimated constant average value of the real non-uniform flow. The 

linear momentum equations of this form can then be combined with the continuity 

equation (3.41) to give 

(3.54) 

where [S] is a diagonal matrix whose .ith term is U'j + uij Iq).,,,. 

3.3.3 Non-homogeneous and anisotropic porous medium, with flow 

If one assumes that the perturbations have harmonic time variation of radian frequency 

OJ, then the continuity and momentum equations (3.45) and (3.46) become 
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(3.55) 

and 

(3.56) 

respectively. The latter can be simplified to 

(3.57) 

where matrix [Il] = ([Ma] + .[I:']), a diagonal matrix whose jth element is 
n WJPo 

(
m. ja'..) 
-' - --.!!L . Let Paj be the effective, complex, mean fluid density in the pores of the 
n mpo 

material for motion in direction j, [17] 

(3.58) 

where Zj' and Yj are the characteristic impedance and the propagation coefficient of 

porous media,[ 17] 

(3.59) 

(3.60) 

The momentum equation (3.57) can then be written as 

(3.61) 
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where [R] = [TIr1 is a diagonal matrix whose jth element is Po/pQj. Equations 

(3.55) and (3.61) can be combined to give 

(3.62) 

the wave equation for harmonic waves in a general porous medium. 

3.4 Porous Material Properties 

It is common practice to use absorption material within at least one volume of an 

exhaust silencer system or flow-duct system, due to its effectiveness at broad-band 

sound reduction in the mid- to high-frequency range. Inclusion of absorbent materials 

increases the complexity of silencer construction and results in cost and weight 

penalties. It is essential, therefore, that the optimum use of the absorption treatment in 

a silencer is achieved. In an acoustic absorber, sound energy is absorbed because of 

frictional dissipation of the energy of motion into heat and irreversible thermal process. 

The acoustical properties of various porous materials have been examined by numerous 

authors [56, 57, 67, 92, 93, 94]. These properties are generally determined from five 

basic parameters (porosity, flow resistivity, tortuosity, steady flow shape factor and 

dynamic shape factor) and specified in terms of characteristic impedance and 

propagation constant. This section describes the bulk acoustic properties of absorbent 
• 

materials and provides the data representation in a mathematical form. It is shown how 

induced steady flow in the absorbent, forced by the steady flow pressure gradient in 

the flow duct, affects the representation. 
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3.4.1 1mpedance and propagation coefficient of acoustic absorbers 

The acoustic performance of porous material can be predicted using an appropriate 

prediction model and applicable values of the prediction parameters. A great deal of 

research has been carried out to obtain correlations between the acoustic impedance of a 

porous absorber and the various parameters of its construction, and the environment in 

which it is employed. The zero flow form of the characteristic impedance and 

propagation coefficient equation follow from equations (3.59) and (3.60), with 

cT.j = O'oj from equation (3.47), and are 

(3.63) 

and 

(3.64) 

respectively. 

The acoustical performance of several types of complex fibrous absorbers have been 

quantified by Delany-Bazley relations [57] with various degree of success by 

subsequent workers [17 ,IS,20,6l,62]. The present analysis also utilises Delany­

Bazley relations. The acoustic impedance for fibrous absorbers can be expressed in 

terms of the thickness and steady flow resistance per unit thickness of the material of 

the fibrous absorber. Delany and Bazley [57] have deduced an empirical power-law 

relationship for such absorbers and have shown that, for bulk acoustic properties of 

porous materials, empirical expressions may be used to represent the zero flow 

characteristic impedance Zoj and propagation coefficient YOj in direction j as a 

function of the frequency parameter I/Jj' where 

(3.65) 
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The expressions for Zoj and YOj are of the fonn 

(3.66) 

and 

(3.67) 

where the coefficients cl to Cs have to be detennined from experimental tests [17,18]. 

The data obtained from equations (3.66) and (3.67) are not valid at low frequencies, the 

lower limit of validity of these data accruing when I/J j > 0.012. Below this limit the 

approximate fonnulae of Mechel [64] can be used: 

Yo' and ;,. =-' , yQ 

where Y is the specific heat ratio and Q is the volume porosity of the absorbent. 

3.4.2 Internal mean flow effects 

(3.68) 

A general expression for the overall resistivity in the presence of non-uniform steady 

flow within the absorbent was given in equation (3.47). If the internal mean flow is 

uni-directional in direction I then equation (3.47) simplifies considerably to 

(3.69) 

The relations for the characteristic impedance Zj and the propagation constant Yj in the 

presence of an internal mean flow, equations (3.59) and (3.60), can be re-written in 

tenns of the zero flow equations (3.63) and (3.64) as 
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(3.70) 

(3.71) 

3.5 Equations for the Four-Pole Parameters 

The overall performance of a silencer can be evaluated in terms of its noise-reducing 

properties which are usually described by insertion loss, transmission loss or level 

difference. Insertion loss is defined as the difference in sound pressure level at a 

specified point exterior to the silencer with and without the silencer present. This value 

depends upon the properties of the source and termination as well as the silencer. 

Specifically, the source impedance as well as terminating impedance for the system will 

affect the amount of insertion loss provided by the silencer. The transmission loss is 

derived from the ratio of acoustic power incident on the silencer to the power 

transmitted from the silencer. The level difference is the difference in sound pressure 

levels at two arbitrary selected points in the upstream exhaust pipe and downstream tail 

pipe. The transmission loss of a silencer element gives an indication of the independent 

effectiveness of the element. It is not affected by the terminating impedance or source 

impedance or other elements of the system. In contrast, insertion loss provides a 

comparative measure of the effectiveness of a silencer element as installed in a complete 

silencer system. Level difference does not give a meaningful indication of either 

element performance or overall system performance and ha~ little value. 

The present work is concerned with analysis of the noise-reducing properties of 

individual absorption silencer elements. Calculated results are generally presented in 

terms of transmission loss, but the underlying analysis is always in terms of the four-
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pole parameters of the elements from which any of the noise measurement criteria can 

than be evaluated, given the relevant information about the rest of the silencer system. 

Four-pole parameters are constituents of the transfer matrix of a given silencer element 

[1] where, adopting acoustic pressure and velocity as the two state variables, one has 

{P,} = [A, B,] {P'_I}. 
q, C, D, q,_1 

(3.72) 

where lp, q,}T is the state vector at some upstream point r, and {P,_I q,_1 f is the state 

vector at some downstream point r -1. The transfer matrix for rth element can be 

[A, B,] 
denoted by [T,] = where A"B"C, and D, are known as four-pole 

C, D, 

parameters. It is implicit in these definitions that plane-wave conditions hold at the 

upstream and downstream locations rand r -I. Analysis is thereby restricted to low 

frequencies and, for a highly non-uniform silencer element, it may be necessary to 

consider lengths of uniform duct attached to the inlet and exit plane of the element and 

to determine the transfer matrix across the combined duct and silencer element, in order 

to enforce plane-wave conditions on the element boundaries, see Figure 3.1. 

Consider a complete system to be composed of a series of n elements, each with a 

given transfer matrix. The downstream state vector of one element is the upstream state 

vector of the succeeding element, thus the n equations of the form of (3.72) combine to 

give 

{P.} [A.. B.][A.._I B._I] [A, B,] [~ BI]{P"} 
q. = C. D. C._

I 
D._I··· C, D,··· Cl D, q" . 

(3.73) 

Following matrix multiplication, the above equation can be written as 
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(3.74) 

Hence, for an individual element or an overall system, the state vectors at the inlet and 

outlet are related by 

{Pm} = [A B] {POUI} 
qUI C D qOUI 

(3.75) 

such that individual elements of the transfer matrix, i.e. the four-pole parameters, can 

be evaluated as 

A = (l!i!!..) B = (l!i!!..) C = (!!l!!...) D = (~) 
Pout q"",=O qout p_=O Pout q_=O q"w P<>u'=() 

The transmission loss of an element or system can then be written as [I] 

TL= 2010glO[.!.(A+~+POCOC+D)] [dB] 
2 Poco 

and the insertion loss as 

IL=2010 [AZ,+B+CZ,Z,+DZ,] 
glO A'Z + B' + C'Z Z + D'Z r r. r c 

[dB], 

(3.76) 

(3.77) 

(3.78) 

where Z, and Z, are the source and radiation impedance respectively, and four-pole 

parameters with the tilde - and prime' notations denotes the quantities for two different 

systems. 
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CHAPTER 4 

EIGENVALUE FORMULATION FOR 
SILENCERS OF ARBITRARY CROSS-SECTION 

4.1 Introduction 

Eigenvalue analysis of uniform ducts of circular or rectangular cross-section, with or 

without mean flow, has been done analytically and numerically. Several researchers 

have published details of tbe eigenvalue analysis of silencers of circular-section. For 

example, Nilsson and Brander [85] have examined sound propagation in an infinite 

duct with uniform mean flow in the central passage, including tbe effects of a 

perforated tube between the gas flow and absorbent, by the use of the Wiener-Hopf 

method. Cummings and Chang [18] have examined the effects of the induced internal 

mean flow in the absorbent on sound attenuation in a circular-section silencer. Bies et 

al [46] presented design charts for infinite circular-section lined ducts with mean flow. 

Some workers have also made use of the finite element method for eigen analysis of the 

infinite duct with or without flow consideration in open central passage, but not with 

flow in the absorbent medium. For example Ramakrishnan and Watson [68,69] used 

tbe finite element method and presented design curves for circular and annular section 

ducts without any flow. Astley and Cummings [20] employed a finite element scheme 

to analyse a rectangular duct lined on all four sides, with flow in the central airway 
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passage but not in the absorbent. Cummings [70] used the Rayleigh-Ritz method and 

compared his results with experimental results for ducts of various cross-section, but 

again without flow in the absorbent. 

In this chapter, a finite element model is presented for analysis of the propagation of 

acoustic waves in an infinite duct of arbitrary but uniform cross-section, comprised of a 

central flow passage surrounded by a bulk-reacting lining of sound absorbing material, 

see Figure 4.1. Computed results of circular and elliptical cross-section absorption 

silencers are presented and the first few lower-order mode shapes are described. 

Comparison is made between predicted and experimental results [18,70] of modal axial 

attenuation rate and phase speed. The model incorporates both uniform now of gas in 

the open central passage and non-uniform induced steady now in the absorbent. 

In Section 4.2 the governing equations in both regions of the silencer, together with the 

respective boundary conditions, are given. Section 4.3 presents the finite element 

formulation of the problem. In Section 4.4 the construction of the matrix equations for 

the two cases of with now and without now are given. In Section 4.5 results are 

presented for different test silencers, together with the effects of now and variation of 

the absorbent packing. Phase speed, sound attenuation and mode shape are found for 

the four least attenuated modes. The method can readily cope with a number of 

physical effects in addition to the general form of cross-section, including 

inhomogeneity and anisotropy of the absorbent, and induced mean flow through the 

absorbent. 
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4.2 Geometry and Governing Equations 

The analysis follows closely that of Astley and Cummings [20]. who considered the 

case of isotropic and homogeneous absorbent material and neglected induced flow 

within the absorbent. The notation used here follows that of [20] as far as possible. 

The basic geometry and co-ordinate system which are used in the analysis are shown in 

Figure 4.1. A duct. of arbitrary cross-section in the x-y plane. is lined with porous 

material of finite thickness. The acoustic properties of the absorbent are assumed to 

vary in the x-y plane. but not along the z-axis. the axis of the duct. This situation may 

arise. for example. due to non-uniform packing of a silencer. particularly when the 

outer shell is not circular in cross-section. The outer shell of the duct. denoted by the 

contour C,. is assumed to be rigid and impervious. The common boundary between 

the open flow passage in the central region of the duct. region RI and the outer region 

which is packed with absorbent material. region R,. is represented by the contour Cl' 

A steady. uniform airflow of speed U is present in region RI and flows along the axis 

of the duct. An axial pressure gradient is required to drive the steady flow and this 

pressure gradient induces a small. steady axial flow in the absorbent of speed U (x. y). 

Coupled acoustical modes. which propagate in both the airway and the absorbent with 

the same axial wavenumber. are then sought. 

4.2.1 Governing equations in the flow passage 

The acoustical pressure and particle velocity in the flow passage, region RI' are 

denoted by p; (x,t) and q; (x,t) respectively. The linearised acoustic equation (3.30) 

can then be written as 

,..". I {a _ a }' . v p = - - + (U -) P 
I c' at az I 

(4.1) 
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since the steady flow V is in the axial z direction. Furthermore, the linearised 

momentum equation (3.29) for this case is 

(4.2) 

where, from equation (3.3), 

• _ n,{". 
ql = V'i' (4.3) 

Hence the momentum equation becomes 

(4.4) 

The acoustical particle displacement in the flow passage is denoted by ~; (X,I). The 

acoustical velocity is the total derivative of the particle displacement, 

(4.5) 

hence the momentum equation (4.4) can be written as 

(4.6) 

A time harmonic solution, of radian frequency (J) is then sought for an acoustical wave 

propagating in the airway with complex wavenumber kA where k = (J) / c. Thus 
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(4.7,4.8) 

and the imaginary component of A determines the degree of attenuation of the wave. 

Equations (4.1) and (4.6) thus become 

(4.9) 

and 

(4.10) 

respectively, where V and ~l now denote two-dimensional forms - in the x, y plane -

of the gradient operator and particle displacement vector, respectively. M is the Mach 

number of the uniform, steady flow, U / c. 

4.2.2 Goveming equations in the absorbent 

The acoustical pressure and particle velocity in the absorbent material in region R, will 

be denoted by p;(x)ei
"" and q;(x)e i

"" respectively, where harmonic time dependence 

has been assumed. The acoustic wave and momentum equations in the porous region 

follow from equations (3.62) and (3.61) respectively, thus 

(4.11) 

and 

(4.12) 

where [R] is a diagonal matrix whose jth element is Po / P'j' and P'j is the effective, 

complex, mean fluid density in the pores of the material absorbent for motion in 

direction j, see equation (3.58). 
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It has been assumed in the derivation of equations (4.11) and (4.12) that the convective 

fluid acceleration in the absorbent is negligible in comparison to the local acceleration, 

since the induced steady flow velocities are very small. Hence, to the same 

approximation, 

(4.13) 

where ~; (x )e i 
.. is the particle displacement in region R,. Once again, solutions for 

given axial wavenumber are sought, thus 

(4.14,4.15) 

Equations (4.11) to (4.15) thus combine to yield, for the porous material, the wave 

equation 

(4.16) 

and the momentum equation 

POw2 ~2 = [R] VP2 + ikA(p"/p,,,)p,k, (4.17) 

where the two-dimensional forms of the vector operator V and matrix [R] are now 

implied, with reference to the x-y plane. k is the unit vector in the axial z direction. 

Furthermore, following equations (3.58), (3.70) and (3.71), 

(4.18a) 

where 
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(4.18b) 

and 

(4.18c) 

are the non-dimensional characteristic impedance and propagation constant in direction 

j. It has been assumed that the absorbent material is homogeneous in the axial z 

direction. 

4.2.3 Steady flow equations in the absorbent 

The steady flow in the absorbent is assumed to be in the axial z direction with speed U, 

such that equation (3.51) reduces to 

dpo I dz = -u"U - ui,U' = constant, (4.19) 

where Po is the static pressure of the mean flow, u" is the viscous component of the 

steady-flow resistivity and u~ is the inertial component, in the z-direction. If the 

material is non-homogeneous in the cross-sectional x-y plane, then U," u" and hence 

U are functions of (x, y). It follows from equation (4.19) that 

(4.20) 

4.2.4 Acoustic properties of the absorbent 

The net components of the acoustic resistivity of an anisotropic porous material in the 

presence of a steady axial flow of speed U follow from equation (3.69), such that 

(4.21) 
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(4.22) 

(4.23) 

where (Joj is the frequency-dependent, complex acoustic flow resistivity in direction j. 

Thus even if the material is isotropic, one effect of steady flow through the absorbent is 

to introduce anisotropy (see also reference [18]). Delany-Bazley empirical 

representation of the bulk acoustic properties and coefficient of the porous material 

used in this model, are given in chapter 3 and Table 4.1 

4.2.5 Boundary Conditions 

Two conditions must be satisfied by the acoustical fields in regions RI and R, on their 

common boundary Cl' namely that the pressure and the component of displacement 

normal to the boundary must be continuous. Hence 

PI = p, on Cl ' (4.24, 4.25) 

where nc is a unit normal to Cl and hence k The latter condition may be re-written 

by use of the momentum equations for the two regions, equations (4.10) and (4.17), as 

VPI ·nc = (l-A.M') [R] Vp, ·nc ' (4.26) 

Finally, the assumption of a hard-wall at the outer boundary C, implies that the normal 

component of particle displacement on this boundary is zero, hence from equation 

(4.17) 

Vp, . n, = 0 on C, . (4.27) 
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4.3 The Finite Element Formulation 

A finite element subdivision of the duct cross-section is performed, where the local 

variation within each element is expressed as a sum of the product of element-based 

nodal shape functions and nodal values. The only constraint on the subdivision is that 

the common boundary Cl must be formed entirely by element boundaries [20], i.e. that 

no element can "straddle" Cl' In total, let there be n nodes in the finite element 

subdivision. The variation of acoustic pressure over the cross-section is approximated 

by the use of n global trial functions, one for each node, such that the trial function 

lj!j(x,y) corresponds to the shape function for elements on which node J lies and is 

zero over all other elements. Hence the approximation to the acoustic pressure can be 

represented as 

N 

P = L lj!j(x,Y)Pj (4.28) 
1=1 

where P j is the value of P at the Jth node. 

The Galerkin formulation is used, thus the weighting function ljI/x,y) yields a 

weighted residual statement of equation (4.9) 

If 1jI[ [V' PI + k'(l- AM)' PI - k' A' PI] dxdy = 0 (4.29) 
RI 

for each node I within RI' Use of Green's theorem then gives the 'weak' form of 

equation (4.29), namely 
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{Q (VlI'l,VlI'J+k' [A,2-(l-A,M)'] lI'llI'J) dWY}{P} 

= f lI'lVp, ·n, dr 
r, 

(4.30) 

where r, is the boundary of R" n, is the unit outward normal to r, and p is the 

vector of PJ values. Similarly, a weighted residual statement of equation (4.16) can be 

written for each node I within Rz as 

If lI'l [V . [RJVP2 + k' (Po I P.,) (r; - A,2)P2J dx dy = O. 
R, 

Green's theorem then gives the 'weak' Galerkin expression 

{!! [VlI'dRJVlI'J -k'(po I p.,)(r; _A,2)lI'llI'J] dx dY} {p} 

= f lI'l[R]VP2' n2dr 
r, 

where r 2 is the boundary of Rz and n 2 is the unit outward normal to r2 • 

(4.31) 

(4.32) 

The continuity of pressure boundary condition, equation (4.24), is satisfied implicitly 

by use of the trial functions of equation (4.28). The boundary r, corresponds exactly 

to C" see Figure 4.1, and the hard-wall boundary condition of equation (4.27) on C2 

implies that the integral contribution from equation (4.32) over r 2 is only non-zero 

over C" as r 2 = C, + C2 • Furthermore since n2 = - n, on C" the boundary integrals 

can be eliminated between equations (4.30) and (4.32) by use of the constant 

displacement boundary condition, equation (4.26), to yield 
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{u (V"'I'V",,+k' [A
2

_(l_,1M)2] "'I",,)dxdy 

+(1- AM)2 fJ [V "'I . [R]V"" - k'(Po / p",)( r; - A2) '1'1 '1', ]dx dY}{P} = 0 
R, 

Equation (4.33), for all nodes I, can be written in matrix fonn as 

{[K1J + k' A2[Md - k'(I- AM)2[M,J + (1- ,1M)2 ([K2J 

-k'[M;J + k 2 ,12[M2D Hp} = {II} 

where the (I, J)th elements of the matrices are 

[K1JI.l = fJ V '1'1 . V'I', dxdy, 
R, 

[M,JI.l = fJ '1'1'1', dx dy, 
R, 

[K2JI.l = fJ V'I'dRJ V'I', dxdy, 
R, 

[M2 JI.l = fJ (Po / p,) "'1'1', dxdy, 
R, 

[M;JI.l = fJ (Po / p",)r;'I'I'I', dxdy. 
R, 

Equation (4.34) is a fourth order-eigenvalue problem in A namely 

{[AJ + ,1[BJ + ,12 [CJ + ,1'(2/ M - A)[DJHp} = {II} 
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(4.34) 

(4.35a) 

(4.35b) 

(4.35c) 

(4.35d) 

(4.35e) 

(4.36) 



where 

[Al = [Kd - e[Md + [K,l- k'[M;l. (4.37) 

[Bl = 2Mk'[M,l-2M[K,l+2Me[M;J. (4.38) 

[Cl = k'(l- M')[M,l + M'[K,l- M'e[M;l+ k'[M,l. (4.39) 

[Dl = -M'e[M,l. (4.40) 

Equation (4.36) is of the same fonn as that obtained by Astley and Cummings [201. 

who outlined the scheme for matrix partitioning and the technique for solution of the 

eigenvaIues which is given in the following section. 

4.4 Construction of Matrix Eigen-Equation and Mode Shape 

The complex matrices of equations (4.37-4.40) are constructed by assembling the 

element matrices from the appropriate element contributions. as discussed in chapter 2. 

The assembled version of these matrices is then used to construct the overall system 

eigenmatrix as shown in the following sections. The solution of the eigensystem 

produces a complete set of eigenvalues A.i and corresponding acoustical eigenmodes. 

for a given frequency of interest. The attenuation per unit length. Ai of the it' mode 

then follows from equation (4.7) as 

A, = 20Iog lO V')Im(kA t
' = - 8. 6858 Im(kA.,) [dB I ml (4.41) 
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and the axial acoustic phase speed, ci is given by 

Cj = [m/s]. (4.42) 

4.4.1 Linear eigenvalue matrix 

For the case of no flow in the airway, M = 0, the matrices [B] and [Cl are identically 

zero. Equation (4.36) then reduces to 

{[A]+Il?[C]}{p} = {O}, (4.43) 

giving a linear eigenvalue problem of order n. The eigenvalues Ai' and corresponding 

eigenvectors {Pi}, of equation (4.43) can be found by using a generalised complex 

eigenvalue NAG routine. 

4.4.2 Non zero mean flow 

Equation (4.36) does not simplify when mean flow in the airway is present. The 

system of equations (4.37-4.40) can be reduced to a standard eigenvalue problem by 

partitioning of the matrices. Matrices [A] and [B] are partitioned into upper and lower 

submatrices [AI], [A,]' [~] and [B,] respectively, that is 

[A] = [~]and [B] = [~] (4.44) 

where [AI] and [BI ] are of order r x n and [A,] and [B,] of order (n - r) x n. where 

r is the number of nodal points interior to region RI (not including nodes on the 

common boundary Cl)' It has been assumed that the global node numbering pattern is 

such that the nodes internal to region RI are numbered as nodes I to r, whilst nodes on 
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the boundary Cl and the region ~ are numbered as r + 1 to n. The matrices [C] and 

[D] are also partitioned into submatrices such that 

(4.45) 

where [Cll ] and [Dll ] are of order r x r, [Cl2 ] and [Dl2 ] of order r x (n - r), [C21 ] 

and [D2l ] of order (n-r)xr and [C22 ] and [D2,] are of order (n-r)x(n-r). It 

follows from equations (4.35) and (4.40) that the matrix [D] has only one non-zero 

subcomponent, namely [D22]. This is the case since the integral required to evaluate 

the component of [D] (see equation 4.40) involves only an integration over the 

absorbent region R2 , within which the shape functions VII' Vl2 ,··· VI, are identically 

zero, since they are associated with nodes 1,2,··· r which are interior to region RI. The 

original non linear eigenvalue problem of equation (4.36) may therefore be written in 

partitioned form as 

[AI ]IPI + A[~ ]IP I + A2[CI~~]{PI} + 
A, B2 ~ P2 

A3(~ _ A)[~]{PI} = {O}, 
M 0 I D22 P2 

(4.46) 

or by rearrangement as 

(4.47 a) 

(4.47b) 

74 



where {Pl} is the vector of nodal pressure at nodes internal to Rp namely 

{P"P2''''P,}, and {P2} is the vector of pressure values {p,+pp,+,,"Pn}, such that 

{pI = {Pl} + {p,}. 

These equations can now be written in the form of a standard linear eigenvalue 

problem, but with an increase of order of the system to a size of (4n-2r), as 

0 I 0 0 

-C,~'A, _C-l~ 
11 -Cl~lC12 0 

0 0 I 0 

0 0 0 I 

D;; [A, - C21 C;;l All D;;[ B, - C21C,~'B,l D;;[ C" - C21C,~'C"l (~} 
P 

P 
Apl 

Ap 
).'p, 

= ). ).p, 

).'p, 
).3 p, 

).3p, 

(4.48) 

The presence of flow introduces "hydrodynamic" modes whose eigenvalues are 

effectively real and whose eigenvectors contain small pressure components similar to 

those in [24]. These are neutrally stable hydrodynamic disturbances which are 

convected with the mean flow, i.e. with phase velocity U. Table 4.2 shows a list of 

the eigenvalues computed from equation (4.48) for a particular silencer cross-section at 

a frequency of 500 Hz, with M = 0.13 and Co =340 [m/s]. The hydrodynamic modes 

are identifiable in Table 4.2 as modes whose eigenvalues are, to within computational 

error, (7.69,0). This implies, from equation (4.41) and (4.42), that they have zero 

attenuation and a phase speed of U = Mc" = 44.2 [rn/ s] (=34017.69= c" / Re().)). 

They may be neglected when considering acoustical propagation in the silencer. 
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4.5 Discussion of results 

Acoustical design information for two test silencers (of circular and approximately 

elliptical cross-section) in terms of the attenuation, phase speed and mode shapes 

corresponding to the four least attenuated acoustical modes have been obtained by using 

the finite element method outlined above. At each frequency of evaluation for each 

silencer tested, the solution of equation (4.48) gave a list of eigenvalues of the form 

shown in Table 4.2 and a corresponding set of eigenvectors. Software was written to 

post-process the results and reject the hydrodynamic modes, prior to searching for the 

least attenuated acoustical modes. In cases where modes have the same eigenvalues, to 

within computational accuracy, a check was made on the eigenvectors to see whether 

the modes were repeated or distinct. 

Results are given for attenuation and phase speed as a function of frequency, but only 

samples of the mode shapes at selected frequencies are presented. The density of 

packing of the absorbent material and its variation with respect to both the radial and 

peripheral directions, as well as flow effects in the absorbent material, have been 

investigated and found to be important parameters for design information. 

Taking advantage of the two axes of symmetry of the test silencers, see Figure 4.2, 

only one quarter of the cross-section was taken into account for the initial finite element 

representation, see Figure 4.3 and Figure 4.14. Boundary conditions of zero normal 

pressure gradient were imposed on the axes of symmetry. However it was found that a 

few higher order modes with some circumferential variation were missed by this 

approach and that it was essential to model the full cross-section in order to identify all 

possible modes. Discretization of the circular and elliptical cross-section silencers into 
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quarter models with 75 nodes and full models with 177 nodes are illustrated in Figures 

4.3 and 4.14. Finite element discretization for both silencers was originally done by 

writing a routine to generate the meshes of 6-noded triangular and 8-noded quadrilateral 

elements and was later performed on FEMGEN software, when this became available. 

Results were compared by using 35 nodes, 75 nodes and 142 nodes in the quarter 

section mesh of each silencer and with 105 nodes and 177 nodes in the full cross­

section. For further design information, an "equivalent area" circular cross-section 

silencer was also tested and compared with the elliptical cross-section silencer. 

Comparisons have been made for both test silencers with available experimental and 

analytical test data to validate the finite element model. 

4.5.1 Circular silencer 

The circular test silencer shown in Figure 4.2(a) is the same as that used in reference 

[18], with dimensions of outer diameter 76 mm and inner diameter 39.6 mm. Similarly 

the absorbent material (Polyether foam) and properties given in [18], and shown in 

Table 4.1, are utilised for estimation of the results and comparison purposes. 

Results in terms of the axial sound attenuation Ai and phase speed ci of the least 

attenuated mode as the function of frequency are shown in Figures 4.4 and 4.5. 

Results for zero mean flow in Region R, are shown in both Figures, in comparison to 

the results for mean flow of Mach numbers M = ±.197 and M = ±.149 in Figures 4.4 

and 4.5 respectively. In each Figure, for each non-zero mean flow case, results are 

shown on the assumption of zero flow in the absorbent and with induced flow in the 

absorbent calculated on the basis of the measured pressure gradient for each case [18]. 

In each figure, the upper graph compares the finite element results with experimental 

results [18] which are denoted by symbols. The lower graph in each case compares the 
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finite element results with results from a mode-matching analysis [18], and this time the 

finite element results are denoted by symbols. The continuous curves of fmite element 

results shown in the upper plots are simply interpolations through the set of finite 

element data given in the lower plots. The results obtained from the finite element 

method agree well with the experimental and analytical data of [18]. This suggests that 

the fmite element fonnulation and implementation are fundamentally correct and use of 

the various mesh densities indicated that numerical convergence has been obtained in 

these results. Further information from the same silencer was obtained in tenns of the 

mode shapes at select frequencies. Figures 4.6 and 4.7 present the predicted 

distribution of the relative sound pressure amplitude in tenns of contours for the least 

attenuated mode at frequencies of 500 Hz and 2000 Hz respectively. In each figure, 

mode shapes for the case of zero mean flow and mean flow Mach number M = 0.197, 

with and without induced flow in the absorbent are given. Upper plot contours are 

without mean flow, the middle plots are with mean flow of Mach number M =0.197, 

and the lower plots also include internal flow in the absorbent. These contours show 

little variation between each case of without flow, with flow and with induced flow. 

The variation in sound pressure with induced flow at frequency 500 Hz is very small 

and the erratic fonn of some contours is almost certainly due to computational 

inaccuracy. This computational error might be reduced by use of a different 

interpolation scheme or be made less apparent by plotting the normalise mode shapes 

on a scale of -I to +1. 

It became apparent that the quarter cross-section model was not sufficient for inclusion 

of all low-order modes, hence a full circular cross-section model with the same 

dimensions was discretized for a finite element solution and the results in terms of the 

sound attenuation and phase speed for the first four lower-order eigenvalues, without 

mean flow, are given in Figures 4.8 and 4.9. It is seen that, at low frequencies, the 
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attenuation rate of the 2nd, 3rd and 4th modes is much higher than that of the least 

attenuated mode. It is seen from Figure 4.9 that the phase speed of the higher-order 

modes drops as the modes become effectively cut-on, from extreme values towards the 

order of the speed of sound. The high-order modes are not cut-off in the absolute 

sense of modes in open, rigid ducts, but in practical terms it is seen in Figure 4.8 that 

the higher-order modes become cut-on at high frequencies, above I kHz in this case. 

In the effectively cut-off low frequency region, the phase speed of these modes 

increases with frequency. At low frequencies it is clear that the behaviour of the least 

attenuated mode is the dominant factor in the overall effecti veness of a silencer. 

The mode shapes of the four least-attenuated modes, in terms of three-dimensional 

contours of their real and imaginary parts, have been obtained at frequencies of 500 Hz 

and 2000 Hz and are shown in Figures 4.10 to 4.13. Figures 4. IO (a-d) and 4.11 (a-d) 

show mode shapes for the four modes in the case of zero mean flow (i.e. M = 0), for 

frequencies of 500 Hz and 2000 Hz respectively. Figures 4.12 (a-d) and 4.13 (a-d) are 

similar mode shapes corresponding to a flow Mach number M =0.197. In Figures 

4.10-13 one can observe that the first mode at both frequencies is virtually plane, i.e. at 

frequency 500 Hz there is no variation in pressure value and at frequency 2000 Hz 

there is only a small variation. The presence of mean flow is seen to cause the mode to 

become increasingly non-planar. Once again the erratic form of the contours at 

frequency 500 Hz for M={1.I97 is presumably due to numerical error in an almost 

planar contour plot. It is observed, though, that now causes an inversion of the mode 

shape at 500, Hz, but no change at 20()() Hz. 

The next least-attenuated mode shows rather more interesting characteristics. At 500 

Hz, M={W, Figure 4.10 (b), the mode is radial and the inverse of the shape of the least 

attenuated mode. In all other cases, the mode is a circumferential mode, and would 
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have been missed on a quarter wave model. It is also true, of course, that this mode 

would not be excited in a totally axisymmetric system. 

The third least-attenuated mode shows even more variation. At 500 Hz, M=O, it is 

found to be a circumferential mode, see Figure 4.1O(c). In the presence of flow of 

M=O.197, Figure 4.12(c), it is like a second radial mode, although still nearly planar. 

At 2000 Hz, with and without flow, the third least-attenuated mode is like a second 

circumferential mode, Figures 4.II(c) and 4.13(c). 

The fourth least-attenuated mode shows similar varied behaviour. At 500 Hz, M=(), it 

is very complicated and yet with flow of M=O.197, see Figure 4.l2(d), it is like a first 

circumferential mode. At 2000 Hz, with and without mean t1mv, the mode is radial and 

show elements of first and second mode behaviour in the real and imaginary parts, but 

switches with flow. 

4.5.2 SAAB Silencer 

The second test silencer has an approximately elliptical outer duct cross-section, with a 

circular-section central gas flow region, as shown in Figure 4.2(b). In particular, this 

test silencer is the case of a SAAB automobile silencer and has inhomogeneous 

absorbent material of variable density. The same silencer was also investigated by 

Cummings [70], both experimentally and analytically using the R-R (Rayleigh-Ritz) 

method, but without mean flow in the absorbent. Here, the same silencer has been 

analysed by the finite element method and results have heen compared with the 

experimental and R-R results of Cummings [70). In addition the effects of induced 

mean flow in the absorbent have been included. The bulk acoustic properties of the 

porous material (Basalt wool) given by Cummings [70] have been used here and the 

coefficients of viscous flow resistivity, rI, and the inertial flow resistivity, rI, as given 

in [70], are shown in Table 4.1. The density of packing of the ahsorbent material 
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varies circumferentially from the major axis to minor axis and the corresponding flow 

resistivity coefficient varies from 8000 SI rayUm to 24000 rayl Im for the viscous 

coefficient Gy and from 3755 to 9177 Ns' I rn' for the inertial coefficient G;. 

In the first instance, analysis was restricted to a quarter model of the silencer cross­

section, as shown in the Figure 4.14. Figures 4.15 and 4.16 show the attenuation rate 

A; and the axial phase speed c; for the fundamental mode in the SAAB silencer, plotted 

as a function of frequency, for no flow CM = 0) and with mean flow Mach number 

M =0.067 and 0.13 respectively, both with and without induced flow in the absorbent. 

These results are compared with the experimental and R-R method results given in 

[70). Upper plots show the comparison of experimental results with finite element 

results, the symbols corresponding to the experimental data and the curves to the finite 

element results. Similarly the lower plots compare finite element results with those 

from the R-R method, but here the symbols represent the finite element predictions and 

the curves are the R-R results without induced flow. The axial mean flow pressure 

gradient which was used to calculate the internal flow in the absorbent region was that 

given by Cummings [70], who measured the pressure drop between a series of 

pressure tappings. For a mean flow Mach number of 0.067. the axial mean pressure 

gradient was -3.12 kPalm, and for a Mach number of 0.13. the pressure gradient was 

-10.02 kPalm. 

The finite element results and R-R results are seen to be virtually identical at low 

frequencies, which indicates that the finite element formulation and code is 

fundamentally correct in this more general case. The two sets of results diverge at high 

frequencies as one would expect, since R-R results have been obtained using a much 

simpler form of trial solution than the finite element results. The tinite element results 

suggest that at some frequencies the internal flow in the absorbent can make a 
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difference of the order of 10 dB/m in the attenuation rate and clearly must be taken into 

account Similarly internal flow in the absorbent has a noticeable effect upon the phase 

speed. Inclusion of internal flow in the finite element results gives better correlation 

with experimental results for phase speed and also with attenuation at the higher flow 

Mach number of M=O.13, but not obviously so at the lower flow rate. 

Contours of relative sound pressure amplitude for the least attenuated mode over a 

quarter cross-section are presented in Figures 4.17 and 4.18 at frequencies of 500 and 

2000 Hz respectively. The upper graph is without mean flow, the middle one is with 

mean flow of Mach number 0.13 and the lower one also includes induced flow in the 

absorbent. At frequency 500 Hz there is little change in the mode shape for each case, 

although the case with internal flow in absorbent shows greater variation in sound 

pressure over the quarter duct area than the other two. At high frequency the presence 

of mean flow creates a substantial change in mode shape which is further modified by 

induced flow. For computation of the four least-attenuated acoustic modes the full 

elliptical cross section has been discretized and the results in terms of sound attenuation 

and phase speed for these modes without flow are presented in Figures 4.19 and 4.20. 

This time the modal attenuation of modes two to four is much closer to that of the first 

mode and they are all of similar magnitude at high frequencies. Similarly the phase 

speed of all modes are of comparable order, except that the fourth mode does not 

become effectively cut-on until the frequency is about 500 Hz. This indicates that in 

order to calculate the overall transmission loss at high frequencies many modes must be 

included. The practical application of a mode-matching scheme would seem to be in 

doubt at very high frequencies. The corresponding mode shapes in terms of three­

dimensional contours have been obtained at frequencies 500 Hz (Figures 4.21 and 

4.23) and 2000 Hz (Figures 4.22 and 4.24) for the two cases of zero mean flow 

(Figures 4.21 and 4.22) and with mean flow of Mach number M:{1.l3 (Figure 4.23 
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and 4.24). In all cases the least-attenuated mode is basically a radial mode. The second 

mode at 500 Hz and the third mode at 2000 Hz are like first circumferential modes and 

would have been missed on a quarter-duct model. The same is true for the fourth least­

attenuated mode in all cases, the only difference being that the position of the maxima 

and minima now lie on the minor axis, instead of the major axis as occurred in lower 

modes. 

4.5.3 Effects of non-homogeneous absorbent material 

As mentioned above, the density of packing of the absorbent material in the SAAB 

silencer varies with respect to the circumferential direction. It would appear that the 

reason for this was the manufacturing process rather than intentional design, with the 

highest density of material occurring along the minor axis of the "ellipse", where it was 

compressed during manufacture. It was decided to use the finite element model to 

investigate the effect of non-uniform packing, using the same basic shape and the same 

extremes of material variation as for the SAAB silencer. The results, in terms of 

attenuation and phase speed, were repeated for the same geometry of model but with 

differing geometric variation ofthe material properties. Figures 4.25 and 4.26 present 

results for attenuation and phase speed of the least attenuated mode respectively, 

showing the comparison between five different cases namely: (i) no material variation 

(i.e. with averaged flow resistivity); (ii) circumferential variation only, from highest 

density on the minor axis to least density on the major axis; (iii) circumferential 

variation only, from highest density on the major axis to lowest density on the minor 

axis; (iv) radial variation only, from highest density at the outer radius to lowest 

density at the inner radius; (v) radial variation only, from highest density at the inner 

radius to lowest density at the outer radius. In both figures, separate plots are shown 

for the cases of zero mean flow and mean flow of Mach number M=0.067 and 0.13, 

both with and without induced flow in the absorbent. The results for attenuation, 
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Figure 4.25, show that variation of material density can be beneficial in comparison to 

unifonn packing, but equally the wrong choice of variation can be detrimentaL In the 

zero flow case, Figure 4.25(a), it is seen that radial variation from least dense at the 

inner radius to most dense at the outer gives better low frequency performance than 

unifonn packing. For a limited range of higher frequencies, the opposite radial 

variation is more beneficial than unifonn packing. In all other cases, material variation 

results in perfonnance which is worse, or no better, than that achieved by unifonn 

packing. 

At a flow Mach number of 0.067, Figure 4.25(b), similar features are observed, except 

that circumferential variation of packing, from least dense at the minor axis to most 

dense at the major axis, is the only fonn to clearly dominate over uniform packing at 

high frequencies. The presence of induced flow, Figure 4.25 (c), exaggerates this 

effect, but also makes the radial variation, least dense at the inner boundary, superior to 

unifonn packing at all frequencies. The same features are observed at the higher now 

speed of M=0.13, see Figure 4.25(d), without induced now. Addition of induced 

flow, Figure 4.25(e), now causes the radial variation, least dense at the inner 

boundary, and the tangential variation, least dense at the minor axis, to be superior to 

unifonn packing throughout the frequency range. It should be noted that the fonn of 

material variation used causes the total mass of absorbent material present in the silencer 

to be greatest for these two cases and least for the other two variational forms. It is 

possible that this is the major reason for differences in performance and this should be 

investigated in the future. 

Variation in material density causes slight changes to the phase speed of the waves, as 

seen in Figure 4.26. In all flow cases, there is a tendency in the mid-frequency range 

for the cases of circumferential variation, highest density on the major axis, and radial 
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variation, highest density at the outer radius, to have greater phase speed than the 

uniform packing case. The other two forms of variation have lower phase speed. At 

frequencies below 300 Hz and above 1700 Hz there are some local variations to this 

pattern. The effect of mean flow, and further of induced flow, appears to be to reduce 

any differences in phase speed brought about by variation of material density. 

4.5.4 Comparison betweell elliptical and equal area circular silellcer 

For further design guidelines an "equivalent area" circular silencer was discretized and 

results from this were compared with those for the SAAB silencer for the cases of zero 

mean flow and flow of Mach number 0.13, with and without induced now. Once 

again, results are obtained in terms of attenuation and phase speed for the least 

attenuated mode and are shown in Figures 4.27 and 4.28. These results were 

computed by taking the same set of variations of absorbent material as were used in 

Section 4.5.3. Separate plots are shown for the cases of zero material variation (i.e. 

with averaged flow resistivity), variation circumferentially from maximum density at 

the minor axis to minimum density at the major axis, and for both sets of radial 

variation. For the case of homogeneous material it is seen in Figure 4.27(a) that the 

attenuation at high frequencies is greater for the circular-section silencer than for the 

SAAB silencer. It is seen from the figure that the presence of mean now and then 

internal flow in the absorbent serves to accentuate the differences and reduce the 

frequency at which the effects are observed. However, rather surprisingly, the figure 

also indicates that the SAAB silencer has marginally better attenuation at low 

frequencies than the circular-section silencer. 

In Figure 4.27(b) the effect of variation along the circumferential direction, from least 

dense at the major axis of the SAAB silencer, is included. In the absence of flow there 

is no observable difference between the circular and oval silencers at low frequencies, 
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but the circular silencer is clearly better at high frequencies. Similar comments hold in 

the presence of mean flow of Mach number 0.13, but the addition of induced flow does 

make oval silencer clearly beneficial at low frequencies. 

For radial variation of material density, from least dense at the inner boundary, Figure 

4.27(c), the oval section is clearly better than the circular section at low frequencies, for 

all flow situations. For the opposite radial variation, Figure 4.27(d), the circular 

silencer is to be preferred for all frequencies and for all now cases. Once again it 

should be noted that the total mass of absorbent material is greatest for the circular 

silencer in this case, but was greatest for the oval silencer in the previous case. 

It is seen from Figure 4.28 that in all flow cases and for all forms of material variation, 

there is a tendency for the phase speed of the waves in the oval silencer to be slightly 

higher than the phase speed of the waves in the circular silencer. This is always true in 

the mid-frequency range, but there are some localised exceptions at low and high 

frequencies. It is seen form Figures 4.25-4.28 that use of simplified modelling, either 

representing a given cross-sectional shape by an equivalent area circular silencer, or 

representing a silencer with non-uniform packing by an equivalent uniformly packed 

silencer, will give results which correctly predict general trends but which are 

inaccurate in actual level throughout the frequency spectrum. 

4.6 Conclusion 

The results obtained by use of the finite element formulation described in this Chapter, 

in terms of both attenuation and phase speed, were compared against some established 

results for two test cases. The first was a circular cross-section test silencer, the same 
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as that which was analysed by Cummings and Chang [18]. The second test case was 

that of a SAAB automobile silencer, which was also investigated by Cummings [70]. 

Finite element results were compared with analytical and experimental results [18,70] to 

validate the current finite element modelling for eigenvalue analysis. Detailed 

investigations were carried out to obtain design information regarding the effect upon 

performance of silencer shape, density variation of the absorbent material and inclusion 

of induced mean flow in the absorbent. 

In both test silencers, the attenuation and phase speed as computed from the finite 

element results were shown to have good agreement with the available experimental and 

analytical results [18,70]. Additional computations for both test silencers were 

obtained, to include induced mean flow in the absorbent and determine its effects on the 

overall sound attenuation and phase speed. Results were also obtained for the "lowest 

four acoustic modes" of propagation in terms of attenuation and phase speed versus 

frequency. The corresponding mode shapes were plotted in terms of three dimensional 

contours at selected frequencies. Further design information was obtained by 

comparison of the acoustic performance for different variations of packing density of 

the absorbent material throughout the cross-section of the second test silencer. 

Comparison was also made between the performance of an oval cross-section silencer 

and an "equivalent area" circular cross-section silencer, for different variations of 

packing density. It was found that the circular cross-section, uniform packing silencer 

was not always the best. Careful choice of shape and variation of packing density 

could produce slight benefits, but generally over a restricted frequency range. 

Conversely, the wrong combination of shape and variation of packing density could 

make matters significantly worse. The method used to specify variation of material 

density caused some differences in the overall mass of the absorhent between different 

test cases and this rather warrants further investigation. 
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Table 4.1 

Delany.Bazley coefficients for absorbent materials 

Delany-Bazley Porous material 

coefficient 

Polyether foam Basalt wool 

Cl 0.196 0.0414 

c2 -0.399 -0.774 

c3 0.112 0.124 

c4 -0.55 -0.645 
. 

Cs 0.157 0.196 

C. -0.58 -0.639 

C7 0.185 0.0971 

C, -0.475 -0.749 

Flow resistivity coefficients 

Porous material Flow resisti vi ty 

0'.", CTj 

Polyether Foam 5430,3070 

Basalt wool max 24000,9000 

min 8000,3755 

88 



Table 4.2 

Computed eigenvalues at frequency SOO Hz, Mach number M=0.13, for 

the SAAB silencer (quarter cross-section model) 

No Eigen value 

1 (-.438917607069016,-57.5583534240723) 
2 (.4547904431819915,57.16033554077148) 
3 (-.132483303546906,50.94334030151367) 
4 (-.132030710577965,-50.9431800842285) 
5 (-.250597655773163,46.19968032836914 ) 
6 (-1.205345056951 045E-02,-46. 1 097030639648) 
7 (-.204949215054512,44.48196029663085) 
8 (-6.184955313801765E-02,-44.4252471923828) 
9 (.2560570240020751,40.74885559082031 
10 (-.239587068557739,-41.1795692443848) 
1 1 (-.500091731548309,38.83007049560546) 
12 (.4428501427173614,-38.4723167419434 ) 
13 (-.382357597351074,36.66651535034179) 
14 (.1695096343755722,34.91752624511718 
15 (-.282103091478348,33.991943359375) 
16 .248755007982254,-36.4216651916504 ) 
17 -.438133865594864,-35.5338935852051 ) 
18 (19.76343154907226,16.13166809082031 
19 (-.471595764160156,31.31706428527832 
20 ( -.222312495112419,29.94469451904296 
21 (1.47109460830688,29.61311149597167) 
22 (4.161543026566505E-02,-33.8487586975098) 
23 (-2.08591365814209,-32.1414833068848) 
24 (-.619812846183777,28.16487121582031 ) 
25 17.67169952392578,13.92497730255126 
26 16.03779602050781,14.47114467620849) 
27 (.627413272857666,25.63568878173828) 
28 (-.266403913497925,25.75009536743164 
29 (-.467945069074631,25.14741706848144 
30 (14.75516128540039,10.30178165435791 ) 
31 (13.13383293151855,12.01153945922851 
32 (.5204967260360717,23.25580215454101 
33 (.2420987039804458,23.00268936157226) 
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34 1 .08799159526825,22.56097030639648) 
35 -.350765705108643,21.58371353149414 ) 
36 .3667117059230804,-30.8501129150391 ) 
37 (-.138078421354294,19.71438598632812) 
38 (-4. 000199586153030E-02,-29. 6382274627686) 
39 (-.531609058380127,18.22828865051269) 
40 (-.4519394934177 4,17 .00961875915527) 
41 (-.206515178084373,16.45929718017578) 
42 (-6.219318136572837E-02,14.62305831909179) 
43 (.3607182204723358,13.89950847625732t 
44 (-.2243712246418,13.26188659667968) 
45 (-.986545085906982,-27.92893409729) 
46 (1.39414000511169,-27.4869403839111 ) 
47 (-.291223704814911,10.98579978942871 ) 
48 (5.559276416897773E-02,10.73978042602539) 
49 (-.161222815513611,9.8976993560791 ) 
50 -2.62904262542725,-24.7477512359619) 
51 1.24738311767578,-24.6647529602051) 
52 (.2038390934467315,-24.9701881408691 ) 
53 (-.170571729540825,-23.92431640625) 
54 (-.961073279380798,-23.6531200408936) 
55 (-.409695655107498,7.77131271362305) 
56 (-.4 75 720554590225,6 .44649362564087) 
57 (-.503364741802216,5.37132596969604) 
58 (-.850029468536377,2.65186786651611 ) 
59 (-1.88065612316132, .8875285387039184) 
60 (1.16250193119049,-20.9446811676025) 
61 .448605865240097,-20.1648139953613) 
62 -5.98281383514404,-14.9376449584961 } 
63 1(-4.10381555557251,-15.6994581222534} 
64 1(-2.92940497398376,-15.9656972885132) 
65 1(2.36957120895386,-17.8907585144043) 
66 1(2.44754648208618,-17.187385559082) 
67 I (.5969531536102294,-16.7269420623779) 
68 I (1.58494651317596,-.4 77984249591827) 
69 1(1.25474810600281,-2.44407033920288} 
70 I (.1160146817564964,-14.6734018325806) 
71 I (.8339191675186157,-5.085326194 76318) 
72 ! (-1.34251773357391 ,-6.28385162353516) 
73 . (-1.68729913234711,-10.792929649353) 
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74 (2.21084117889404, -8.05904006958008) 
75 .4210554659366607,-8.13520622253418) 
76 1.52967441082001,-12.573956489563) 
77 (1.4107049703598,-11.3189554214478) 
78 (1.73119854927063,-9.70550918579102) 
79 (-1.01791477203369,-10.5234880447388) 
80 (.146771028637886,-10.6156949996948) 
81 7.69813013076782,-2.613438409753143E-04) 
82 (7.69219923019409,-5.492344498634338E-03) 
83 (7.68648195266724,2.621556923259049E-04) 
84 (7.69241380691528,5.492270458489656E-03) 
85 (7.69669485092163,-1.606825971975922E-04) 
86 (7.68791770935059,1.611126353964209E-04) 
87 7.69227027893066,-3.294871188700199E-03) 
88 7.69234466552734,3.294832538813352E-03) 
89 (7.692298412323,-2.8446360956877 4 7E-03) 
90 7.69231605529785,2.844625385478138E-03) 
91 7.69228649139404,-2.267907606437802E-03) 
92 7.69227981567383,-2.184925600886344E-03) 
93 7.6937050819397,-1.054535154253244E-03) 
94 7.69372749328613,1.013369532302021 E-03) 
95 (7.69376373291016,-2.252467857033479E-05) 
96 7.69232606887817,-1.729338429868221 E-03) 
97 (7.69232797622681,2.267994219437241 E-03) 
98 (7.69233465194702,2.184842946007847E-03) 
99 (7.69088745117188,-1.013122382573783E-03) 
100 (7.6923189163208,-1.347989542409777E-03) 
101 (7.69237852096558,-1.000421936623752E-03) 
102 7.69222784042358,-9.356471127830445E-04) 
103 7.69090938568115,1.054344116710126E-03) 
104 7.69085264205933,2.251038495160173E-05) 
105 7.6912784576416,8.736064046388491 E-06) 
106 7.69173240661621,-6.621706415899097E-05) 
107 7.69333648681641,-8.732807145861443E-06) 
108 7.69288349151611,6.616813334403559E-05) 
109 7.69228839874268,1.729381619952619E-03) 
110 7.69229555130005,1.348047284409403E-03) 
111 7.69223642349243,1.000540098175406E-03) 
112 (7.69238710403442, 9.355011861771345E-04) 
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Figure 4.1 Geometry of the system. 
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(b) Cross-Sectional Geometry of Saab Silencer 

Figure 4.2 
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Figure 4.3 Quarter and full mesh model of the circular cross-section 
silencer 
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Figure 4.15(a). Axial attenuation rate for SA AB silencer. (i) 
Comparison of FE(curves) results with experimental results(symbols) of 
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(curves) of Cummings [701. 
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CHAPTER 5 

CONVECTED ACOUSTIC WA VE MOTION IN 
FINITE LENGTH ABSORPTION SILENCER 

5.1 Introduction 

In this chapter a general finite element formulation for the analysis of the sound field in 

a finite length flow duct with a surrounding volume filled with porous or fibrous 

absorbent material is given. The detailed, non linear, steady flow tield which is induced 

in the absorbent by the high speed mean flow in the central duct is evaluated. The 

induced steady flow field causes the acoustic field in the absorbent to be 

inhomogeneous, anisotropic and nonlinear, even if the material is isotropic and 

homogeneous. Material anisotropy and inhomogeneity are also included in the 

formulation, which is therefore applicable to the most complex of dissipative silencers. 

Rapidly convergent solution schemes for the nonlinear analyses are given and the 

merits of two different matching schemes between the acoustic fields of the flow duct 

and the absorption silencer are compared. Results are given which indicate the 

accuracy of the formulation and the necessity or otherwise to accurately model the 

induced steady flow field in the absorbent material. 

Dissipative silencers within vehicle exhaust systems or heating and ventilation systems 

are characterised by a central flow duct region, which conveys a pulsating gas flow of 
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high mean speed, surrounded by an absorptive region which is packed with porous or 

fibrous material. The flow duct is generally of uniform cross-section, being a direct 

continuation of the exhaust pipe or ventilation duct prior to the dissipative silencer 

section. In contrast the absorptive region may have a very complex shape, particularly 

so for 'clam' type exhaust silencers. The method of manufacture of dissipative 

silencers can cause significant variation in the packing density of the porous or fibrous 

material, which in turn causes significant inhomogeneity of the acoustic properties 

throughout the dissipative unit. This is particularly true for silencer units which are 

packed with absorptive material prior to having their cases pressed into their final form. 

In addition, the absorptive material may have significant acoustic anisotropy. This 

effect would be most noticeable for a dissipative silencer packed with fibrous material 

and manufactured in a manner which causes the fibres to be aligned in a particular 

direction, such as when glass wool is 'spun' into a dissipative unit. Cummings and 

Chang [17] have shown that the mean gas flow in the open pipe region induces a steady 

flow field within the absorbent which, though small in magnitude, has a significant 

effect upon the acoustic performance of the silencer. One effect of the steady flow in 

the absorbent is to cause acoustic anisotropy and inhomogeneity, even if the dissipative 

material itself is isotropic and homogeneous. 

Thus, in order to analyse the acoustic effectiveness of dissipative silencers of the types 

currently being manufactured, it is necessary for the analysis to include all of the above 

effects. Furthermore such an analysis scheme could be used not just to predict the 

acoustic effectiveness of a given design of silencer, but to explore the potential benefits 

or otherwise of varying the packing density of the absorptive material, or structuring 

the 'lay' of fibrous material, or designing the shape of the silencer volume with respect 

to the form of the induced flow field. The requirement to couple together the acoustic 

fields of a flow duct region and a dissipative region of arbitrary shape, and within the 
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latter to model material and flow-induced inhomogeneity and anisotropy, leads 

inevitably to the use of numerical analysis. In particular finite element analysis is 

ideally suited to the problem. 

The present chapter extends previous finite element formulations for finite length 

silencers to include the effects of mean flow within both the central flow duct and the 

surrounding absorptive material. Cummings and Chang [17] included these effects in 

their modal solution of the problem, but they had to assume that the induced steady 

flow within the absorbent was uniform and axial. Furthermore their method of solution 

is only applicable to silencers of uniform and simple cross-sectional geometry whose 

absorbent material is homogeneous. The present analysis begins with a finite element 

formulation for the nonlinear analysis of the three-dimensional, induced steady flow 

field within the absorbent. The acoustic properties of the absorbent material are shown 

to be dependent upon the steady and acoustic flow velocities, in this general case, and 

thus the analysis of the acoustic field within the absorbent is also found to be nonlinear. 

Finite element formulations of the acoustic fields within the flow duct and the absorbent 

region are given, together with two possible methods of coupling together these 

formulations at their common boundary. The relative merits of these two techniques 

are compared. Iterative schemes with rapid convergence properties are given for the 

nonlinear solutions of both the steady flow and acoustic fields within the absorbent. 

The finite element formulations are for the most general case of arbitrary three­

dimensional geometry and non-homogeneous, anisotropic absorbent material. Results 

are given for axisymmetric absorption silencers packed with homogeneous, isotropic 

material, to enable comparison with the experimental and modal analysis results of 

Cummings and Chang [17], and to investigate the practical importance of detailed 

modelling of the induced steady flow field within the absorbent. Modelling of flow­

induced acoustic inhomogeneity and anisotropy is included in these results. 
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Comparisons are made between the results of the full nonlinear modelling scheme and a 

simplified analysis in which nonlinear effects in both the steady flow and acoustic 

equations are ignored. Preliminary results of this type have been presented earlier [90]. 

5.2 Analysis 

5.2.1 Geometry and governing equations 

The analysis considers convected acoustic wave motion through a duct and a 

surrounding silencer volume which is packed with porous material. see Figure 5.1. 

The duct. region RI' is taken to be of arbitrary but constant cross-section and to have 

its axis in the xI-direction of an orthogonal coordinate system x '" (XI' x2' X3)' The 

steady convective flow is assumed to have uniform axial velocity U within the duct and 

to be of low Mach number M, such that the steady flow may be regarded as 

incompressible. The absorption silencer, region R2 , is a volume of arbitrary shape 

which is packed with porous material which may be inhomogeneous and anisotropic. 

The axial pressure gradient of the steady flow in the duct induces a steady flow field 

within the porous material of region R2 which can have significant acoustic effect 

[17,18]. The magnitude of the velocities of the induced flow are very small. typically 

0[10-3 U], such that the cross-flow between regions RI and R2 does not seriously 

compromise the assumption of uniform flow in region RI' 

The outer walls of regions RI and R2 are assumed to be rigid and impervious. hence of 

infinite impedance, and are denoted by r WI and r W2 respectively, or collectively by 

r w(= r WI + r W2)' The duct is taken to extend sufficiently far upstream and 

downstream of the silencer volume such that plane-wave conditions may be 

implemented on the inflow and outflow boundaries of region RI' which are denoted by 

r[ and ro respectively. The frequency of analysis is thus restricted to be below the 
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cut-on frequency of higher-order modes in the central duct Regions RI and R2 share a 

common boundary re within the silencer volume. In many practical situations a 

perforated screen separates these two regions, the purposes of which are to keep the 

porous material in place and to guide the mean flow, in order to keep the back-pressure 

to a minimum. Genera1\y the porosity of such a screen is so large that its acoustic effect 

is negligible and its effect is ignored in the following analysis. 

5.2.2 Acoustic equatiolls ill the airway 

For uniform steady flow in the airway, the linearised acoustic wave and momentum 

equations (3.30) and (3.29) become 

V2p' = _1 {~+ u~}2p' 
1 c2 at aX1 1 

(5 1) 

and 

, 
=-Pl (5.2) 

where Po is the density,p; is the acoustic pressure and I/J; is the acoustic velocity 

potential, such that 

(5.3) 

where q; is the velocity. For harmonic time variation eirut the equations (5.1) and 

(5.2) become 

(5.4) 

and 
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(5.5) 

where k = m / c is the wavenumber. 

5.2.3 Steady flow equations in the absorbent region 

The steady flow through the anisotropic porous material in region R2 is governed by 

the Ergun or Forchheimer equation (3.42) 

(5.6) 

where [1:] is a diagonal matrix whosejth element is (ay) + aij 1 ih I) and ay). aij are 

the viscous and inertial flow resistive coefficients respectively. in direction x). The 

continuity equation (3.41) 

(5.7) 

together with equation (5.6) implies (equation (3.53)) 

v-[1:r'Vp2 =0. (5.8) 

Since the elements of (E] are dependent upon 1 ih I. equations (5.6) and (5.8) must be 

solved iteratively. A rapidly convergent technique has been found to be as follows: 

(i) assume 1 ih 1 = 0 and evaluate [1:] 

(ii) evaluate P2 from equation (5.8) 

(iii) evaluate ih from equation (5.6). using [1:]from (i) 

(iv) update 1 rh I and re-evaluate [1:] 
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(v) re-evaluate ih from equation (S.6) and repeat step (iv) 

(vi) repeat from step (ii) 

Step (ii) demands the implementation of boundary conditions. as follows. The normal 

component of velocity and hence pressure gradient is zero on the hard-wall boundary of 

region R2 • namely r w. The axial steady flow pressure gradient Op2 I aXI on the , 

common boundary re is the same as the axial pressure gradient throughout region RI' 

Opl I aXI' and is assumed to be known from experiment 

The iterative procedure can be simplified for isotropic absorbent material. since in this 

case equation (S.6) can be used to form a quadratic equation in I ih I with solution 

(S.9) 

The preferred iterative technique is then as follows: 

(i) assume I ih I = 0 and evaluate [1:) 

(ii) evaluate lh from equation (S.8) 

(iii) evaluate ih from equation (S.9) 

(iv) update I ih I and re-evaluate [1:) 

(v) repeat from step (ii) 

5.2.4 Acoustic equations in the absorbent region 

For harmonic time variation e iaJI the linearised wave and momentum equations (3.62) 

and (3.61) in the absorbent region are (assuming that the convective fluid acceleration is 

negligible [18)) 

Pow'Qx p; + V·[R)V p; = () (S.IO) 

'-
and 
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(5.11) 

where n is the volume porosity, X is the compressibility and [R] is a diagonal matrix 

whosejth element is Po I Paj. Paj is the effective, complex, mean fluid density in the 

pores of the material for motion in directionj, equation (3.58), namely 

(5.12) 

where mj is the structure factor and cT.j is the flow resistivity. 

The flow resistivity and hence effective density are dependent upon the steady flow 

through the porous material. The flow resistivity can be written as equation (3.47) 

(5.13) 

where O"o/m) is the complex acoustic flow resistivity In direction j and, as 

m ~ 0, O"Oj(m) ~ O"vj. If the steady flow in the absorbent is uni-directional In 

direction I, then equation (5.13) simplifies considerably (see equation 3.69) to 

(5.14) 

In this situation, the acoustic properties are known a priori and the acoustic problem is 

then linear. In the more general case it is seen, from equation (5.13), that the acoustic 

properties depend upon the acoustic velocity field in addition to the steady flow velocity 

field and hence the acoustic problem is non-linear. A rapidly convergent iterative 

scheme for this problem is as follows: 

(i) Assume q2 = ° in equation (5.13) and find all acoustic properties. 
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(ii) Evaluate the acoustic pressure field from equations (5.4) and (5.10), together 

with boundary conditions. 

(ill) Find q2 from equation (5.11). 

(iv) Re-evaluate the cr.j from equation (5.13) and hence all acoustic properties. 

(v) Re-evaluate q; from equation (5.11) with the new acoustic properties. 

(vi) Repeat step (iv) 

(vii) Repeat from step (ii). 

Delany and Bazley [57] formulae are used to define the zero flow acoustic properties of 

the porous materials. From equations (3.58) and (3.70-71), the general properties are 

given by 

I 'e' Paj Po = ZjYj' Co XP'j = Yj' (5.15,5.16), 

Z: - ~j = (-izoj I Pocoroj)( cr.j - aoj ) , (5.17) 

and 

(5.18) 

where the expression for ( cr.j - aOj ) follows from equation (5.13). 

5.2.4 Boundary conditions 

The component of acoustic velocity normal to the hard walls of boundary Tw is zero, 

which in turn implies from equations (5.5) and (5.11) that 

"Vp'·n=O on Tw (5.19) 

for both regions RI and R2 , where n is a unit normal vector to the boundary. On the 

common boundary re> there is continuity of pressure and the normal component of 

displacement, thus 
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, , 
PI = P2 (5.20, 5.21) 

where ~' is the panicle displacement vector and nc is a unit normal vector to re-

Since convective acceleration terms are negligible in region R2 

D~' IDt=q; and a~' lat=q;. 
_1 _2 

(5.22a,b) 

Assuming harmonic time variation e iOll
, use of the momentum equations (5.5) and 

(5.11) together with equations (5.22) enables one to re-write the continuity of 

displacement boundary condition (5.21) in terms of normal pressure gradients, 

(5.23) 

It is assumed that sufficient length of inlet and outlet duct is modelled such that plane­

wave conditions apply on the inlet and outlet flow boundaries rl and r 0 ofregion RI' 

In particular, the four-pole parameters and hence transmission loss of the overall 

system can be evaluated from two separate solutions of the entire problem with 

different inflow and outflow boundary conditions, namely [32] 

(5.24a,b) 

and 

(5.25a,b) 
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5.3 Finite Element Formulation 

The first task is to determine the pressure and hence velocity field of the steady flow in 

the absorbent. region R2 • The steady flow velocity field is required in order to 

determine the acoustic properties of the absorbent material. for use in the coupled 

acoustic analysis of regions R\ and R2 . The weak Galerkin method of formulation is 

used throughout. 

5.3.1 Steady flow in the porous material 

Let 'l'l(x\. x2' x3) be a global basis function associated with node J of a finite 

element mesh. The basis functions are chosen to be the element-based shape function 

over any element containing node J and to be zero everywhere else. such that for a 

mesh of N2 nodes. the approximation to the steady flow pressure P2 is of the form of 

the trial solution 

N2 

P2 = L 'l'lP21 (5.26) 

l=\ 

where P21 is the value of P2 at the Jth node. 

The Galerkin formulation uses weighting functions 'I'[(x\. x2' x3) to form weighted 

residual statements of equation (5.8) of the form 

J 'I'/(V·[l:r'Vp2)dV=O • 1=1 to N2 (5.27) 
R, 

where dVis a volume element in (x\. X2. x3) space. 
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The 'weak' Galerkin formulation follows from application of Green's theorem to 

equation (5.27) to give, with substitution from equation (5.26), 

{f (V'I'd~rIV'I'J) dV}{P2} = f 'l'/[~rIVp2·n2 dr, 
Rl r 1 

(5.28) 

where { P2} is the vector of nodal values P2l and r 2 is the entire bounding surface of 

region R2 . The boundary integral is zero over r w2 ' due to the hard-walled boundary 

condition, and is redundant over re> where P2 is known to within a constant from the 

given axial pressure gradient. Hence equation (5.28) can be solved for the unknown 

nodal values P2' However, it should be remembered that the equation is non-linear, 

since the terms of [~l are flow-dependent. The iterative scheme for solution is outlined 

in Section 5.2.2. The velocity field can be found from the finite element solution of the 

pressure field, at any stage of the iteration, from a combination of equations (5.6) and 

(5.26), namely 

N, 

if2 = - I, [~rl V 'l'J P2l (5.29) 
J=l 

5.3.2 Acoustic field in the duct 

Let there be N, nodes within the finite element mesh of region R" such that the 

approximation to the acoustic pressure is given by the trial solution 

NI 

PI ~ L 'l'lPll (5.30) 

1=' 

where 'l'l(X" x2' x3) are the global basis functions and P;J is the value of Pi at the 

lth node. The Galerkin formulation of equation (5.4) is then 
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J '1'1 (V.[MjVp;+ep;-2iMkdp;ldx,)dV=O , 1=1 to N, (5.31) 
R, 

[

1-M2 

where [M] is the diagonal matrix, ~ 

The weak Galerkin formulation follows from the application of Green's theorem to 

equation (5.31) which gives, following substitution from equation (5.30), 

{I (v 'I'dMjV ~J +2iMkd 'I'J I dx, - e'l'I'I'J) dV}{P;} 

= J 'I'/[MjV p;·n, dr, 
r, 

(5.32) 

where PI is the vector of nodal PI} values and nl is the unit outward normal to ri' the 

boundary of region RI' 

5.3.3 Acoustic field in the absorbent 

The approximation to the acoustic pressure in region R2 is given by the trial solution 

N, 

P2 = L 'I'} P2}' (5.33) 
}=I 

The Galerkin formulation of equation (5.10) is then 

J 'I'1(V.[RjVp;+Pom'Qxp;) dV=O ,1=1 to N, (5.34) 
R, 
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and Green's theorem gives the 'weak' fonnulation 

(5.35) 
R, r, 

Substitution from equations (5.16) and (5.33) yields 

{f (V'I'dG]V'I'J-e'l'J'I'J) dV}{P;} = f 'l'J[G]Vp;·n,dr, 
~ G 

(5.36) 

where [G] is a diagonal matrix whosejth element is 1/ r; and P2 is the vector of nodal 

P2J values. 

5.4 Solution of System 

5.4.1 Matching of the acoustic fields 

The finite element meshes of regions RI and R2 share a common set of, say, Ne nodes 

along the common boundary re' The hard-wall boundary condition of equation (5.20) 

implies that the surface integral contribution to equation (5.36) is zero except over rc' 
since r 2 = rw2 + re' Similarly the surface integral of equation (5.32) has zero 

contribution from r wl' but finite contributions from ri' ro and re- The two sets of 

inflow and outflow boundary conditions on r l and ru given in equations (5.24) and 

(5.25) are, variously, Dirichlet, Neumann and Cauchy conditions which are 

implemented within the finite element technique in the standard fashion. Thus 

equations (5.32) and (5.36) may be written in matrix form as: 

(5.37a,b) 
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where [KlI ] is of order (NI-Nc)x(NI-NJ, [K22 ] is of order 

(N2-Nc)x(N2 -Nc), [K!c] and [K;c] are of order (NcxNc),etcetera. PI' P2 are 

the vectors of PI" PZJ values which do not lie on rc' and Pc is the vector of P' 

values on rc' /1 is a forcing vector whose elements are known from the appropriate 

inflow and outflow boundary conditions, as discussed above, while 

t:, = f ljI,[M] V p;·n l dr t;, = f ljI,[G] V p; ·n2 dr. (5.38a,b) 
r. r. 

Implementation of the displacement boundary condition of equations (5.23), with 

nc = nl = -n2' leads to 

t~, = f 1jI1 (1- i(M / k)J / JXI)2 [(Po / Pan)(JP2 / Jxn)]dr, (5.39) 

r. 

t~ = -J (1jI1 / y;)(Jpz / JXn) dr. (5.40) 

r. 

where x. = x·n l and only the unitary elements of [M] were of relevance since xn is 

perpendicular to Xl' The order of differentiation in equation (5.39) can be reduced by 

integration to give 

[(Po / p~)(Jp; / Jx.)jdr - (M / k)2 f ljI,(Po / Pa.)(Jp; / Jx.) dS (5.41) 
s. 
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where dS dxt = dr and Se is the pair of circuits which mark the ends of boundary re 

at inlet and outlet to the silencer volume, see Figure 5.1. There are two basic 

techniques which may be used to couple together equations (5.37a,b), as follows. 

5.4.2 Gradient elimination 

Let the variation of ap2 , aXn over re be approximated by the use of Ne global basis 

functions IJi'(Xt, x2' x3) for nodes which lie on rc' such that 

N, 

ap;' aXn = L Ym (ap;' aXnt (5.42) 
m=l 

where (ap2' aXn)m is the value of (ap2' aXn) at the mth node. Equations (5.41) and 

(5.40) can then be written in the matrix form 

{!~} =[Ftl {::} (5.43a,b) 

where {.1]J2' aXn} is the vector of Ne nodal values of (ap,' axn)· [Ftl and [F21 are 

square matrices of order Ne whose (l,m)th elements are given by 

T, 

- (M' k)2 f IJi'I IJi'm (Po 'Pun) dS (5.44a) 

s, 

(F2)I,m = - f IJi'llJi'm' r~ dr. (5.44b) 

T, 
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The vectors /~ and /; in equation (5.37) can now be replaced by use of equation 

(5.43) and the common vector {Jp, / ax.} can then be eliminated from equations 

(5.37a) and (5.37b) to give 

(5.45) 

5.4.3 Gradient evaluation 

It is simpler to substitute directly into equations (5.41) and (5.40) the trial solution form 

of P2 given in equation (5.33), such that 

(5.46a,b) 

where [Fd and [F21 are (Ne X N2 ) matrices whose (I,J)th elements are given by 

(FI)l,J = J ["'I - (2i(M / k) "'I - (M / k)2 a"'l / aXI) a/ axd [a", J I !1Xn 
r, 

(PO/Pan)] dT-(M/k)2 J ",M"'J/aXn)(PO/Pan) dS, (5.47a) 

s, 

(F2 )l,J = - J ",M", J / aXn) / y; dT. (5.47b) 

r, 

Equations (5.37) and (5.46) can then be combined to give 
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[ 
K\l Klc 0 

Kc1 
I - 2-

Kc2 - FI2 - F22 Kcc - Flc + Kcc - F2c 

0 K 2c K22 11:;) " m (5.48) 

This approach has the advafllage, with reference to the gradient elimination approach of 

equation (4.45), that matrix inversions are not required. The benefit in terms of 

computing cost is substantial for large systems of equations. The drawback with this 

gradiefll evaluation approach is that second-order derivatives occur in the boundary 

integral of equation (4.47a). This in turn requires the use of Cl cOfllinuous elements to 

guarantee inter-element compatibility in all circumstances. 

5.5 Overall Acoustic Performance 

The whole system of equations was solved for the two sets of inlet and outlet boundary 

conditions given in equations (5.24) and (5.25). The overall acoustic performances of 

the silencers were then found in terms of the four-pole parameters, equation (3.76), 

from which the transmission loss or insertion loss follow by using equations (3.77) 

and (3.78). 

5.6 Results 

The results shown all refer to the transmission loss ofaxisymmetric silencers, the 

absorptive region of which is filled with the homogeneous, isotropic foam considered 

by Cummings and Chang [17], who gave the relevant acoustic properties. The now 

duct geometry and now Mach numbers have also been restricted to the values used by 
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Cummings and Chang [17], such that their measured values of axial pressure gradient 

could be used in the detennination of the induced velocity field. The finite element 

results have all been obtained by the use of eight-noded, quadrilateral, isoparametric 

elements. Mesh refmement was used to establish convergence and the necessary inlet 

and outlet duct lengths such that the assumption of plane-wave inlet and boundary 

conditions was valid. 

The first test case was exactly the same silencer as considered by Cummings and Chang 

[17], shown in Figure 5.2(a), such that comparison can be made against their results. 

The finite element results shown refer to a mesh of 152 elements as shown in Figure 

5.2(b). The computed velocity vectors of the induced flow within the absorbent, 

Region 2, are shown in Figure 5.2(c), where the location of the computed velocity is at 

the tail of the plotted vector. It is seen that the velocity is almost unifonn throughout 

the whole of the absorbent region, with non-unifonn and non-axial flow being confined 

to very short entry and exit lengths. 

Finite element results have been obtained upon the assumption of zero induced flow in 

the absorbent, uniform axial induced flow in the absorbent, and calculated variable 

induced flow in the absorbent. The first two of these cases relate directly to the results 

of Cummings and Chang [17]. The finite element results are compared with the mode­

matching results ofCummings and Chang [17] in Figures 5.3(a) and 5.3(b), and with 

the fundamental mode solutions of Peat [46] in Figures 5.3(c) and 5.3(d). Figures 

5.3(a) and 5.3(c) refer to a mean flow Mach number of 0.163, while Figures 5.3(b) 

and 5.3(d) refer to a mean flow Mach number of 0.196, as considered by Cummings 

and Chang [17]. The corresponding speed of unifonn axial induced flow in the 

absorbent for the two Mach numbers was 0.44 [m/s] and 0.6 [m/s] respectively. It is 

seen that the mean flow in the airway reduces or increases the transmission loss of the 
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silencer, according to whether it is in the same sense or opposite sense to that of the 

initial acoustic propagation. In contrast, the effect of the small induced flow in the 

absorbent is always to increase, by a significant amount, the transmission loss of the 

silencer. These effects have been well-documented by Cummings and Chang [17,18] 

and the results here serve merely to validate the finite element analysis. In this regard, 

it is seen from Figures S.3(a) and S.3(c) that agreement between the fmite element and 

mode-matching results is generally good, with the worst discrepancies at low 

frequencies, which is somewhat surprising. In contrast, the agreement between the 

finite element and the fundamental mode solutions, seen in Figures S.3(b) and S.3(d), 

is good at low frequencies but not at high frequencies. This is to be expected, since the 

fundamental mode solutions cannot be expected to be accurate at high frequencies, but 

are accurate at low frequencies. Thus it would appear that the finite element analysis 

itself remains accurate at low frequencies, as one would expect, and that an alternative 

explanation is required for the differences seen in Figures S.3(a) and S.3(b). The finite 

element and the fundamental mode solutions were both evaluated using precisely the 

same expressions for wave propagation in the absorbent material, whereas only the 

underlying material properties and Oelaney and Bazley coefficients were known to be 

the same between the finite element and the mode-matching solutions. This offers one 

possible explanation for the differences in transmission loss, particularly at very low 

frequencies where the Delaney and Bazley formulae are not accurate. 

The finite element results for transmission loss which were ohtained upon the basis of 

the computed induced flow field in the absorbent, as shown in Figure S.2(c), do not 

differ from those calculated with an assumed uniform axial flow by any observable 

degree. The differences are less than 0.1 % and hence the 'induced flow' results shown 

in Figures S.3(a) to S.3(d) refer equally to either case. This result is not of any great 

surprise, given the uniformity of the induced flow field in Figure S.2(c) and the close 
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correlation between experimental and analytical results [17], where the latter were 

obtained with an assumption of uniform axial induced flow. Clearly the assumption of 

uniform axial induced flow in a long, thin dissipative silencer of uniform cross-section 

with homogeneous absorbent material is valid, with regard to calculation of 

transmission loss. The induced flow field would be less uniform if at least one of the 

following criterion were met: the diameter to length ratio of the silencer were increased; 

the cross-section were non-uniform; the absorbent material were non-homogeneous. 

All of these situations commonly arise within dissipative silencers, for which the 

geometry of the silencer in Figure 5.2(a) would be an extreme case. In order to gain 

some insight into the necessity or otherwise for detailed calculation of the induced flow 

field, a uniform, homogeneous absorption silencer of large diameter to length ratio, at 

the opposite extreme of practical interest, was considered. 

The dimensions of this second silencer unit are shown in Figure 5.4(a), the finite 

element mesh used for computation is given in Figure 5.4(b), and the computed flow 

field within the absorbent is shown in Figure 5.4(c). The latter clearly indicates that the 

flow field is now far from uniform and axial, as one would expect. Finite element 

results of the transmission loss of the silencer for a mean flow within the airway of M = 

0.163 are given in Figures 5.5(a) and 5.5(b), for flow in the same sense and the 

opposite sense respectively to that of initial acoustic propagation. In each figure, 

results are given for three cases, namely zero flow in the absorbent, uniform axial flow 

in the absorbent, and the computed flow field in the absorbent. It is seen that there is 

now an observable difference between the results obtained assuming uniform flow and 

those which follow from the use of the computed flow field, although this difference is 

much smaller than that between the results for uniform induced flow and zero induced 

flow. Similar results are presented in Figures 5.6(a) and 5.6(b) for a steady flow Mach 

number within the airway of M = 0.196 and the same comments apply. In these 
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figures, and similarly in Figures 5.8 to 5.11, finite element results have only been 

calculated at the discrete frequencies indicated by the symbols on the plots, and linear 

interpolation has been used between these values to give the plotted lines. 

It is clearly a drawback of the current approach that a measured value [or the steady 

flow axial pressure gradient in the flow duct is required in order to evaluate the induced 

steady flow in the absorbent. It would be possible to use an empirical estimate of this 

pressure gradient, but the resulting value could not be expected to be as accurate as that 

given by direct measurement. In this regard, an investigation has been made into the 

sensitivity of the results for transmission loss to changes in the axial pressure gradient, 

for the silencer of Figure 5.2 at the highest flow Mach number of 0.196. The results 

showed that changes of ±12.5% in the magnitude of the axial pressure gradient gave 

changes in transmission loss of ±1.2% at 1 kHz, rising to ±1.9% at 2 kHz. 

Furthermore changes of ±25% in the magnitude of the axial pressure gradient gave 

changes in transmission loss of ±2.3% at 1 kHz, rising to ±3.7% at 2 kHz. The error 

when decreasing the axial pressure gradient was always slightly greater than when 

increasing the axial pressure gradient. In summary, it is seeri that the transmission loss 

is not very sensitive to the value of axial pressure gradient and that the use of an 

empirical estimate for the latter is in order. 

The normalised radial pressure distribution at the axial mid-point of the silencer, at 

frequencies of 1000 Hz and 1890 Hz, are shown in Figures 5.7(a) and 5.7(b) for the 

silencers of Figures 5.2(a) and 5.4(a) respectively. The pressure distribution across the 

cross-section is near to being uniform for the long, thin silencer of Figure 5.2(a) and 

indicates that the acoustic energy propagates in the lowest order mode. In contrast, 

there is marked radial variation, indicating significant energy propagation in higher­

order modes, for the short, fat silencer of Figure 5.4(a). In both cases there is a change 
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in the magnitude, but not of underlying shape, of the radial pressure distribution with 

frequency. In particular, there is no evidence of energy propagation in a newly cut-on 

mode between the results at low and high frequencies, either side of the peak in 

transmission loss. 

Figures 5.5 and 5.6 indicate that the frequency of the peak in transmission loss is not 

affected by induced flow in the absorbent. Figure 5.8 shows the transmission loss of 

the short silencer of Figure 5.4(a) for various mean flow Mach numbers in the now 

duct, assuming zero induced now in the absorbent. One interesting feature of Figure 

5.8 is that the magnitude of the peak transmission loss is increased for mean flow in the 

same direction as the initial sound propagation and reduced when the mean flow is in 

the opposite sense. This is the opposite of the effect of steady now throughout the rest 

of the frequency spectrum. Cummings [15) reported a cross-over of greatest 

attenuation of rectangular splitter silencers from the sound against now situation at low. 

frequencies to the sound with now case at high frequencies and attributed this to the 

relative dominance of the convective effect of the mean now in contrast to the refracti ve 

effect into the absorbent. A similar effect can be observed in the case of the attenuation 

of a square duct lined on all four sides [20). However, the cross-over effect of now on 

the resonance peak for a circular silencer of finite length, shown in Figure 5.8, is far 

more marked in magnitude and restricted in frequency than anything seen in these 

earlier results for attenuation. Figures 5.9, 5.10 and 5.11 show further transmission 

loss results with varying steady now for three cases in which the geometry of the 

silencer of Figure 5.4(a) is perturbed in different ways. Figure 5.9 corresponds simply 

to a doubling of the length of the silencer. The frequency of the peak of transmission 

loss is unaltered but the peak is less pronounced and there is no cross-over effect due to 

changing the direction of the steady now. Figures 5.10 and 5.11 refer to situations 

where only the radial dimension of the absorbent region of the silencer of Figure 5.4(a) 
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has been altered, by reductions of 25% and 50% respectively. The frequency of the 

peak transmission loss increases as the radius is reduced and the peak becomes 

progressively less noticeable as the length/diameter ratio of the silencer is increased. In 

particular, the cross-over effect due to a change in direction of the steady becomes less 

evident as this ratio is increased. 

Two techniques for coupling the finite element analyses of the acoustic fields in 

Regions RI and R2 were given in Sections 5.4.2 and 5.4.3. The results corresponding 

to Figures 5.3, 5.5 and 5.6 were obtained by both techniques and found to be almost 

identical. Eight-noded, quadrilateral, isoparametric elements, as used for all of the 

results for this paper, only possess cO continuity. As noted earlier, since the sl!rface 

integral of equation (5.47a) involves second-order derivatives of the shape function, cl 

continuous elements are required to guarantee inter-element compatibility in the general 

case. However in all the grids used to generate the results for Figures 5.3, 5.5 and 

5.6, the element boundaries were aligned to both the axial and its normal (radial) 

directions. Thus continuity of the normal derivative at an inter-element boundary is 

guaranteed, since the normal pressure variation is uniquely defined by the three shared 

nodes on the element boundary. Thus the second derivative term in the integral 

equation experiences only a finite discontinuity at the inter-element boundary, which 

requires only CO continuity. In order to give a more demanding test for the gradient 

evaluation approach, the mesh of Figure 5.2(b) was altered such that the element 

boundaries in the absorbent region, and hence the ends of the silt:ncer box in Figure 

5.2(a), were inclined at an angle of 40" clockwise from the vertical. The result was to 

give a maximum discrepancy of transmission loss of 4% between the gradient 

elimination results and the gradient evaluation results. It would imply, therefore, that 

while the eight-noded CO elements are not compatible for the gradient evaluation 

method, they are complete and non-conforming, since inter-element compatibility has 
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occurred. Further studies of inter-element compatibility in the gradient evaluation 

technique are required for cases in which the elements along the common interface 

boundary are not aligned with the axial direction, but this would imply a non-uniform 

flow duct and is outside the scope of the current chapter. Since the gradient evaluation 

technique is by far the most computationally efficient of the two techniques, it was 

adopted for all subsequent analyses, which also have all element boundaries aligned to 

the axial and radial directions. 

For further detailed information regarding the effects of non-homogeneous absorbent 

material packing, of similar variation to that encountered in the SAAB silencer of 

Chapter 4, material density variation was taken into account in the finite length silencer 

of Figure 5.2. Acoustic performance was found in terms of transmission loss, using 

the maximum to minimum density variation along the axial direction, from both the inlet 

and outlet ends and along the radial direction, in both senses. Figure 5.12 shows the 

comparison between each variation, namely: (i) no material variation, average density; 

(ii) variation along length from highest density at the inlet end to the lowest density at 

the outlet end; (iii) variation along length with highest density at outlet end and lowest at 

inlet end; (iv) radial variation form highest density at the inner radius to lowest at the 

outer radius (v) radial variation from highest density at the outer to lowest at the inner 

radius. Separate plots are shown for the cases of zero mean flow and mean flow of 

Mach number M=O.163 both with and without induced flow in the absorbent. In the 

case of zero mean flow, maximum to minimum variation from inlet to outlet axially and 

inner to outer radially, both give significantly better transmission loss at low 

frequencies than uniform packing, but at high frequencies uniform packing is best. In 

the case of mean flow of Mach number M=.163, variation of absorbent material from 

minimum to maximum density from inlet to outlet axially and inner to outer radially 

gives increasingly higher transmission loss, as compared with uniform packing, as the 

116 



frequency increases. The opposite variations, which were best of all in the no-flow 

case, are significantly worse than the uniform packing case. The presence of induced 

flow in the absorbent slightly exaggerates all the mean flow effects. It should be noted 

that, while the slight difference in overall mass of absorbent could be thought to explain 

the observed differences for radial variation, there is no such discrepancy for axial 

variation. 

A major drawback of the method outlined above is the large computational effort 

required. This problem is compounded by the non-linearity of the problem, resulting in 

iterative solutions. It was decided to investigate the errors which are incurred by 

employing simplified governing equations of linear form. Thus an "average" induced 

velocity was used to factor the inertial flow resistivity, see equation (3.53), such that 

the steady induced flow field could be determined from the linear equation (3.54). 

Similarly the solution of the acoustic equation was made linear by neglecting the 

acoustic terms in determining the acoustic flow resistivity from equation (5.13). 

Effectively this implies using only the first iteration from the full nonlinear analysis 

with, of course, non-exact solution of the steady flow velocity field. Clearly this 

"linearised" solution represents a compromise between the complete nonlinear solution 

above and the solution obtained on the basis of a uniform now field. Results have been 

obtained to compare all these of three solutions for the silencers of Figure 5.2 and 5.4 

with steady flow Mach number of 0.13. These results are shown in Tables 5.1 and 5.2 

and Figures 5.13 and 5.14. 

It has been noted earlier that, in the case of the long thin silencer of Figure 5.2 for 

which the flow field is virtually uniform and axial, there is very little difference between 

the results of the full nonlinear analysis and those obtained assuming uniform flow. It 

is seen in Table 5.1 and Figure 5.13 that the results from the "linear" analysis are worse 
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than those obtained assuming uniform flow. The reason for this is that the neglect of 

acoustic effect on the axial flow resistivity has. in essence. removed the factor 2 in 

equation (S.14a). In the case of the short. wide silencer of Figure 5.4. for which the 

flow field is markedly non-uniform. the "linear" results are generally slightly closer to 

the nonlinear results than those assuming uniform axial flow. but not consistently so. 

In summary. bearing in mind that these two silencers are extreme cases. if one is to use 

a simplified form of modelling then one may as well as choose the simplest case of an 

assumed uniform flow. However. since the fully nonlinear analysis has always been 

found to be rapidly convergent. and since the time spent on analysis is only one 

contribution to the overall cost of a finite element solution scheme. one may as well 

conduct the full nonlinear analysis if embarking upon a finite element solution. 

5.7 Conclusions 

Finite element formulations have been developed for two related non linear problems 

concerned with convected acoustic wave motion in dissipative silencers of general 

geometry and non-homogeneous. anisotropic absorbent material. The first refers to the 

solution of the induced flow field within the absorbent material. given the axial pressure 

gradient of the steady flow in the central flow duct region. The second formulation is 

for the coupled acoustic wave motion between the convected acoustic waves in both the 

flow duct and absorbent regions. The induced flow in the absorbent causes acoustic 

inhomogeneity and anisotropy even if the material itself is homogeneous and isotropic. 

Rapidly convergent iterative schemes for both non linear analyses have been given. 

Two or three iterations only have been found necessary for convergence to practical 

limits of accuracy. 
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The finite element fonnulations have been validated with reference to a simple 

axisymmetric silencer of high length to diameter ratio, for which experimental and 

analytical results were available [17]. The latter results assumed unifonn, axial induced 

flow in the absorbent. The calculated induced flow field was non-unifonn and non­

axial only in small regions at the inflow and outflow planes of the silencer. No 

difference was found between finite element results of transmission loss with assumed 

unifonn axial flow or with the computed flow field. In a second test case, namely an 

axisymmetric silencer of much lower length to diameter ratio, the computed induced 

flow field for the silencer was markedly non-unifonn and non-axial. In this case there 

were observable, but very small, differences between the transmission loss results with 

the computed non-unifonn induced flow field and with an assumed uniform, axial 

induced flow. Thus, even for short, wide silencers of this type, little error results from 

ignoring non-unifonnity in the induced flow field. Flow non-uniformity could equally 

well be caused by a silencer of non-unifonn cross-section or inhomogeneous absorbent 

material and, particularly for extreme cases of the latter, it is possible that detailed 

calculation of the induced field, and its convective effect upon wave propagation in the 

absorbent, may be necessary. 

The matching condition of the two acoustic fIelds can be implemented by a simple and 

efficient gradient evaluation technique using standard CO elements, even though such 

elements are non-confonning in this case. 

Variation in the density of the absorbent material can cause significantly beneficial 

effects in tenns of transmission loss as compared with using the same total amount of 

absorbent packed uniformly. The fonn of variation required is different with and 

without mean flow. 
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TABLE 5.1 

FREQUENCY TRANSMISSION LOSS 
(Hz) (dB) 

Uniform Linear Non linear 
flow flow flow 

273 5.0 5.2 5.0 

546 8.5 8.2 8.5 

819 10.9 10.3 10.9 

1093 13.4 12.6 13.4 

1366 15.3 14.3 15.3 

1639 17.2 16.0 17.2 

1913 18.9 17.6 18.9 

2186 20.6 19.1 20.6 

2459 22.5 20.9 22.5 

2733 24.5 22.7 24.4 
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TABLE 5.2 

FREQUENCY TRANSMISSION LOSS 
(Hz) (dB) 

Uniform Linear Non linear 
flow flow flow 

270 15.8 16.2 15.9 

541 19.4 19.1 19.0 

811 22.9 21.3 21.7 

1082 29.8 28.4 28.9 

1352 42.2 47.4 41.4 

1623 26.8 26.3 26.3 

1893 21.7 20.9 21.2 

2164 20.1 19.2 19.6 

2435 20.2 19.1 19.6 

2705 21.6 20.4 21.0 
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CHAPTER 6 

ANALYSIS OF ABSORPTION SILENCERS 
WITH A NON-UNIFORM FLOW DUCT 

6.1 Introduction 

This chapter extends the finite element formulation given in Chapter 5 to consider non­

uniform flow in the central duct, caused either by non-uniformity in cross-section of the 

flow duct or by regions of absorbent material placed within the flow duct. Both non­

uniform steady flow of low Mach number in the central duct and the nonlinear steady 

flow field which is induced in the absorbent are evaluated. In subsequent acoustic 

analysis, the effects of these steady flow fields on the convection of acoustic waves and 

the properties of the absorbent material are included. 

The non-uniform flow formulation is first applied to the case of non-uniform 

dissipative silencers of arbitrary cross-section with non-uniform mean flow in the 

central duct. and then the boundary condi tions are modified to consider the case of 

"anechoic" terminations of flow ducts. 
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6.2 Analysis 

In this analysis, the fonnulation used in chapter 5 is modified to consider a duct RI of 

arbitrary, non-unifonn cross-section and of finite length, see Figure 6.1. Thus the 

steady convective flow within the duct is non-unifonn, with velocity U(xl'x"x,) say, 

and is assumed to be of low Mach number M, such that the steady flow may be 

regarded as incompressible. Region R2 is a volume of arbitrary shape which is packed 

with porous material, which may be inhomogeneous and anisotropic. The outer walls 

of regions RI and R2, the boundary T w = r WI + r W2' an:~ assumed to be rigid and 

impervious. Upstream and downstream of the absorbent region, it is assumed that only 

plane-wave components are present in the flow duct on the inflow and outflow 

boundaries of region RI' r[ and To respectively. Regions RI and R2 share a 

common boundary re ' as in Chapter 5. 

6.2.1 Governing equations in the flow duct 

For non-uniform steady flow of low Mach number in the flow duct, the equation of the 

steady flow and the acoustic wave and momentum equations follow from equations 

(3.31), (3.35) and (3.34) respectively, namely 

V2~ = 0, (6.1 ) 

(6.2) 

and 

(6.3) 
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where Po is the density of the mean flow, p; is the acoustic pressure, l/J is the steady 

flow velocity potential and 1/1; is the acoustic velocity potential, such that 

(6.4 a,b) 

where q; is the acoustic velocity. For harmonic time variation eirot
, the acoustic 

equations (6.2) and (6.3) become 

(6.5) 

and 

(6.6) 

where k = m I Co is the wavenumber and ~ is a dimension less velocity potential, such 

that M'V ~ = U I co' where M is the Mach number and Co is the speed of sound. 

6.2.2 Governing equations in the absorbent 

Conditions in the absorbent region are exactly the same as for the formulation in 

Chapter 5, thus the governing equations are identical. From equation (5.8) the steady 

flow equation is 

(6.7) 

where [~] is a diagonal matrix whose jth element is (aV) + aij 1 712 I) and avj ' aij are 

the viscous and inertial flow resistive coefficients respectively, in direction Xj. 

The acoustic wave and momentum equations follow from equations (5.10) and (5.11), 

namely 

124 



(6.8) 

and 

(6.9) 

where n is the volume porosity, X is the compressibility and [RJ is a diagonal matrix 

whosejth element is Po I Paj. Paj is the effective, complex, mean fluid density in the 

pores of the material for motion in direction j. Expressions for relevant acoustical 

properties are given in equations (5.12) to (5.18) 

6.2.3 Boundary conditions 

The first task is to determine the steady flow field in the non-uniform duct. A set of 

boundary conditions are imposed at the input and output ends. Thus for mean flow the 

boundary conditions are:-

a~ =0 
an (6.10) 

along the duct wall and centreline, n being the outward normal to the surface, such 

that component of velocity normal to a hard wall boundary is zero, 

a~ = constant an (6.11) 

along the outlet plane, i.e. axial velocity is uniform at out.flow and 

rfJ = constant (6.12) 
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at the inlet plane boundary, such that the inflow velocity is axial. 

For the complete acoustic solutions, two different sets of boundary conditions are 

implemented for the two different areas of applications, namely complete absorption 

silencers and "anechoic" terminations of flow ducts. In both cases the component of 

acoustic velocity normal to the hard walls of boundary r w is zero, which in turn 

implies from equations (6.6) and (6.9) that 

Vp'·n=O on rw (6.13) 

for both regions RI and R2, where n .is a unit normal vector to the boundary. Similarly 

on the common boundary re' in both applications, there is continuity of pressure and 

the normal component of displacement, thus 

, , 
PI = p, (6.14 a,b) 

where ~' is the particle displacement vector and ne is a unit normal vector to re. 

Since convective acceleration terms are negligible in region R2 , the continuity of 

displacement boundary condition (6.14) can be re-written in terms of normal pressure 

gradients 

(6.15) 

Case 1 

This case involves the solution of any general noise reduction measure for non-uniform 

absorption silencer systems. Hence boundary conditions are imposed on the inlet and 

outlet flow boundaries r[ and ro of flow duct RI' such that the four-pole parameters 

126 



can be evaluated. This involves two separate solutions of the entire problem with 

different inflow and outflow boundary conditions, which follow from equations (5.24) 

and (5.25) of Chapter 5, namely 

Vp; = constant on r1 (6.l6a,b) 

and 

Case 2 

This case involves the analysis of the effectiveness of so-called "anechoic" tenninations 

of flow ducts. Thus a set of boundary conditions are imposed to determine the 

reflection coefficient at the inlet plane of the termination. It is assumed that, at the outlet 

plane of the termination, sound radiates into free space and that there is a known 

radiation impedance at this boundary. Furthermore, it is assumed that only the plane­

wave component is present at the inflow boundary and that the tlow is uniform and 

axial on both inflow and outtlow boundaries. Thus 

where the radiation impedance, Z , in the presence of mean tlow from the open end of 

an untlanged pipe of circular cross-section is given by 

Z = 2;, - M(l + k'(O.6133r,,)'), (6.19) 

see Munjal [I], where z;, is the value of the radiation impedance in the zero now case 

and is given in tabular form in Morse and Ingard [37]. For radiation from pipes of 
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non-circular cross-section, the radiation impedance was assumed to be that from a 

circular pipe of equivalent cross-sectional area. 

6.3 Finite Element Formulation 

The only new formulation required here is that for steady flow in a non-uniform duct. 

The other formulations follow almost straight from Chapter 5. 

6.3.1 Steady flow in non·uniform duct 

Let Vj(Xt, X2' X3) be the a global basis function associated with node J of a finite 

element mesh. Suppose there are Nt global nodes within the flow duct region RI, 

such that the approximation to the steady flow velocity potential ~ is given by the trial 

solution 

N, 

~ = L vAJJ' (6.20) 
J=l 

where ~ J is the value of ~ at the Jth node. The Galerkin formulation uses weighting 

functions V/(xI, x2' x3) to form weighted residual statements of equation (6.1), 

namely 

J VI (V. V ~ ) dV = 0 , I = I to NI· (6.21) 
R, 

The 'weak' Galerkin formulation follows from application of Green's theorem to 

equation (6.21) to give, 
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(6.22) 

where {~} is the vector of nodal values ~ J and rJ is the entire bounding surface of 

region RI. The boundary integral is zero over r w " due to the hard-wall boundary 

condition, and at the inlet boundary rJ' ~ is set constant whereas at the outlet 

boundary r o' the normal derivative of ~ is set constant and equal to I, such that M is 

the actual flow Mach number in this plane. Thus equation (6.22) can be solved for the 

unknown nodal values 1/1, where the boundary conditions are implemented in the 

manner outlined in Chapter 2. 

6.3.2 Steady flow in the porous material 

The 'weak' Galerkin formulation for steady flow in porous region follows from 

Chapter 5 equations (5.28) and (5.29) to give the steady flow velocity field, namely 

{f (VlI'dfr'VlI'J) dV}{P'} = f lI'J[fr'vp,·n, dr, 
Rl r 1 

(6.23) 

N, 

If, = - L [fr' V lI'J P21 (6.24) 
1=1 

where { P2} is the vector of nodal values P21 and r 2 is the entire bounding surface of 

region R2 . It should be remembered that the equation is non-linear, since the terms of 

[f] are flow-dependent. The iterative scheme for solution is outlined in Section 5.2.2 

of Chapter 5. 

6.3.3 Acoustic field in the flow duct 

129 



Taking the same assumptions of trial functions as in Chapter 5 the final Galerkin form 

of acoustic field equation in flow duct equation (6.4) can be written as 

{f. (V'I',.V'I',+2iMkV~.V'I',-elfl''I'') dV}{P;} 

= f '1', V Knl dr, (6.25) 
r, 

where ~ is the velocity potential obtained from the solution of the steady flow equation 

(6.22). There are two differences from the corresponding equation of Chapter 5, 

where the mean flow was uniform. The first-order term in the Mach number now has 

the term V ~ which varies throughout the flow field and the second-order term in the 

Mach number is absent. The reason for this is that terms of O[M2) had to be negligible 

for the mean flow to be regarded as incompressible, see Chapter 3, hence it would be 

inconsistent to retain terms of D[M2) in the acoustic equation. 

6.3.4 Acoustic field in the absorbent 

The Galerkin formulation of the acoustic equation in region R2 follows from Chapter 

5, equation (5.36), namely 

{f (V'I'dG)V'I',-e'l',IfI,) dV}{P;} = f 'I',[G)Vp;'1I2 dr, 
~ G 

(6.26) 

where [G) is a diagonal matrix whose jth element is I / yJ and P2 is the vector of nodal 

PZJ values. 

For coupling the two acoustic equations, the gradient evaluation technique which was 

outlined in Chapter 5 has been used. 
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6.4 Results 

The computational scheme for the finite element formulation described above was 

initially tested for an absorption silencer, the first test silencer of Chapter 5 shown in 

Figure 5.2, with the same uniform mesh as given there. The formulation was then 

applied to analyse a similar test silencer of non-uniform cross-section, obtained by 

modifying the shape, see Figure 6.2, such that the outflow diameter is increased by 

about 200%. This resulted is an expansion angle of 5°, around the limit before which 

flow separation would occur making the potential solution of the mean flow invalid. 

The results were obtained in terms of transmission loss with a flow Mach number at the 

outlet end of M=.163. They are compared with the results from the uniform duct case 

in Figure 6.3. There is an increase in the transmission loss for the non-uniform 

expansion nozzle case as compared with the uniform duct case, both with and without 

mean flow. The difference is greater without steady flow. It should be noted that the 

mass of absorbent material in the silencer is greater for the expansion nozzle case than 

for the uniform duct. Furthermore, in the case of the uniform duct results with mean 

flow, the transmission loss is greater than for the identical case in Chapter 5, Figure 

5.3, due to neglect of the higher order terms of flow Mach number in the present 

theoretical model. 

Analysis has been carried out for the two "anechoic" termination models shown in 

Figures 6.4 and 6.5. Both models are axisymmetric, the simplest case for application 

of the above formulation to three-dimensional ducts. The flow duct of the first is non­

uniform due to the insertion of an absorbent core, whereas in the second case there is 

slight expansion of the actual flow duct. This second test case is exactly as prescribed 

in ISO 7235 [95] except for the omission of a perforated screen (the effects of such 
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screens are assumed to be negligible). whereas the first test case is an approximation to 

an ISO standard termination. 

Results have been obtained in terms of the pressure reflection coefficient at the inlet to 

the termination and are shown in Figures 6.6 to 6.9. Two types of absorption material. 

E. Glass (Lancaster Glass Fibre) and polyether foam. with different densities were 

used in determining the pressure reflection coefficient. Figure 6.6 shows the reflection 

coefficient for the first test case anechoic termination with polyether foam as the porous 

material. The material properties are given in Table 4. L Figure 6.7 shows results for 

the same termination but with E. Glass as the porous material. It was assumed that the 

E. Glass had uniform density and the values of flow resistivity used were the average 

of the extremes given in Table 6. L For both materials. results in terms of pressure 

reflection coefficient have been computed for flow Mach numbers of M=O, M:().163 

and M=O.196. In these results resonances of the termination section are clearly 

observed both with and without mean flow. Even between the resonances, the 

terminations are far from being "anechoic", the best result being for polyether foam 

absorbent at frequencies approaching 1 kHz. 

The reflection coefficients obtained from the second test case, with no flow and with 

both flow Mach numbers, are shown in Figures 6.8 and 6.9. For the results of Figure 

6.8 the absorbent material was taken to be polyether foam of uniform density, see Table 

4.1, whereas for the results of Figure 6.9, E. Glass of two different densities was 

used, exactly as specified in the ISO standard [95] and as given in Table 6. I. In both 

figures, the reflection coefficient seems to be reasonably low at frequencies from 100 

Hz to 800 Hz, both with flow and without flow. Indeed the presence of mean flow 

makes for very little difference. It is clear from the figures of both test cases that the 

geometry of the termination strongly affects the pressure reflection coefficient, whereas 
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the choice of the porous material has marginal effects. The performance of the second 

type of anechoic tennination is much better than that of the first type. 

6.5 Conclusion 

A theoretical model for the analysis of acoustic wave motion in a non-uniform flow 

duct and adjacent bulk-reacting absorbent material has been presented. The finite 

element formulation and computational scheme used in chapter 5 have been moditied 

for this non-unifonn flow fonnulation. Two different applications have been given, 

firstly results in terms of four-pole parameters and overall transmission loss for 

complete absorption silencers, and secondly computation of the pressure reflection 

coefficient for "anechoic" tenninations of flow ducts. Effects of differing flow Mach 

number and type of absorbent material packing have been studied. Although only a 

few test cases have been examined, so only a limited amount of acoustic design 

information has been obtained, the method can easily be applied to the study of 

different combinations of materials and different tennination or silencer geometries. 
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Table 6.1 

Delany·Bazley coefficients for E glass absorbent material* 

Delany-Bazley coefficient Porous material 

E Glass 

Cl 0.2202 

C, -0.5827 

C3 0.2010 

c. -0.5829 

Cs 0'()954 

C6 -{).6687 

C 1 0.1689 

c. -0.5707 

Flow resistivity coefficients 

Porous material Flow resistivity 

Gv ' cri 

E.Glass max 5948,4170 

min 1717,1140 

* Data kindly provided by Dr. A. Cummings and R Kirby, Department of Engineering 

Design and Manufacture, University of HulL 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK 

7.1 Discussion 

Acoustic wave motion in complex absorption silencers with mean flow has been 

studied. Computational techniques using the Galerkin finite element method were 

developed for determination of the acoustic performance of such systems, both by 

forced response and eigenvalue analysis. The finite element proved to be an ideal 

choice to perform such analysis and to predict accurate results which are of use in the 

design of such complex silencers. Acoustic design information was obtained in terms 

of sound attenuation and phase speed from the eigenvalue analysis model and this 

compared well with some established results by Cummings and Chang [18) for simple 

silencers. Detailed investigations were then carried out to obtain design information 

regarding the effects upon performance of silencer shape, the density variation of 

absorbent material and inclusion of induced mean now in the absorbent. The model 

incorporated both uniform flow of gas in the open central passage and non-uniform 

induced flow in the absorbent. 

In the forced response model, a comprehensive finite element scheme has been 

developed for convected acoustic wave motion in finite length dissipative silencers of 
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general geometry with non-homogeneous, anisotropic absorbent material. 

Formulations for the coupled acoustic wave motion between the convected acoustic 

waves in both the flow duct and absorbent regions were presented. Results have been 

validated against experimental and analytical results [17] ofaxisymmetric silencers. 

The four-pole parameters of the transfer matrix were determined and from these various 

noise reduction properties, such as transmission loss, can be computed for different test 

silencers. Nonlinear analysis of the three-dimensional, induced, steady flow in the 

absorbent was carried out and the velocity field was determined on the basis of a 

known pressure gradient at the common boundary. Rapidly convergent iterative 

schemes for the nonlinear analyses of both the steady flow and acoustic tields have 

been given. The matching conditions of the two acoustic fields were implemented by 

two different techniques and it was found that a simple and efficient gradient evaluation 

technique, using standard CO elements, was suitable. It was found that a circular 

cross-section silencer with uniform packing was not always the best. Careful choice of 

shape and variation of the packing density, within a fixed total mass of absorbent, 

could produce slight benefits. Conversely the wrong choice of geometry and density 

variation of absorbent made matters significantly worse. It was also found that non­

uniform steady flow in the central duct can have important effects upon the 

transmission loss. 

7.2 Future Work 

There are several directions in which the results of this thesis can be usefully pursued 

and extended. Thus far, for simplicity, the geometry of complete absorption silencers 

has been restricted to those which are axisymetric in nature. The given formulations are 

for general three-dimensional silencers, hence it would be simple to extend the 
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applications to consider fully three-dimensional, non-axisymmetric silencers. 

However, such analyses would be very time consuming and costly, both in terms of 

direct computational cost and user input in creating the corresponding meshes. In order 

to avoid these problems, an alternative approach to the modelling of fully three­

dimensional silencers would be to use the eigenvalue model on the cross-section of a 

given silencer, to determine the dominant modes of wave propagation along an infinite 

length of duct, and then to use boundary conditions at the inlet and outlet of the finite 

silencer to determine the relative amplitude and phase of the various modes, in order to 

achieve a complete model of the silencer. This approach has the advantage that only 

two-dimensional finite element modelling is necessary. One disadvantage. however. is 

that both the flow duct and the absorbent section must be of uniform cross-section 

along the entire length of the silencer. Thus the method would not be applicable to the 

most general of three-dimensional silencers. 

Throughout this thesis it has been assumed that the effects of a perforated screen, 

which may be used to separate the flow duct from the absorbent packing of the silencer, 

are negligible. Typically the porosity of such perforates is 25% or more, for which this 

is a valid assumption. However, it would be possible to include these effects. subject 

to the availability of data for the impedance of the perforate, by an alteration of the 

matching boundary conditions between the two regions. For perforates of low 

porosity, such as often occurs with louvred screens, such analysis would be necessary 

for accurate prediction of overall effectiveness. 

Another area which needs further attention concerns the modelling of absorption 

silencers with varying density of the absorbent packing. In the analysis given in this 

thesis, the density was varied linearly between the same two extremes, which meant 

that the total mass of absorbent material varied slightly when the variation was made 
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along the radial or circumferential directions. It would be useful to use a non-linear 

variation chosen to maintain a constant total mass, but there is then the problem that 

there are infmitely many ways of achieving this goal. 

A further area for development follows from the modelling of the induced steady flow 

velocity field in the absorbent, where the pressure gradient along the common boundary 

is a required boundary condition. In this thesis, the pressure gradient has been 

assumed to be known and in actual examples measured values have been used. It 

would be possible to determine this pressure gradient from a viscous flow analysis of 

the flow in the open duct, with appropriate conditions at the common boundary. In 

practice, detailed modelling of induced flow fieid proved to be of little benefit, hence 

modelling of the pressure gradient may not be considered to be worth the effort. 

Furthermore, if a perforated plate separates the absorbent from the flow duct, the 

pressure gradient and induced flow would both be reduced 

Another problem remaining is that of the correct radiation impedance for analysing a 

general "anechoic" termination of a non-uniform flow duct. In this work, the radiation. 

impedance was assumed to be that for radiation from a circular pipe of the same overall 

cross-sectional area as that of the actual outlet of the termination. It would be possible 

to calculate the precise radiation impedance for any given non-circular cross-section, 

including cases for which sound does not radiate into a free-field, such as occurs in the 

some of the ISO standard terminations [95] where there is a reflecting disk offset a 

small axial distance from the outlet of the termination. 

Throughout the work of this thesis it has been assumed that the wall of the ducts and 

silencers are rigid. Further work could include the modelling of non-rigid walls and the 

138 



consequent effects upon the sound attenuation of silencers and shell noiselbreakout 

noise from the vibrating surfaces. 

It has been mentioned earlier that the theoretical models in this thesis consider only 

linearised acoustic wave motion. which is valid for general silencer analysis. However 

if analysis is required for high amplitude sound levels such that non-linear terms must 

be retained in the governing wave equations. then it is necessary to use a time-domain 

rather than a frequency domain analysis. It would be possible to use similar finite 

element formulations for the spatial variation to those used in this thesis. together with a 

finite difference formulation to step through the time variation. In essence. a separate 

finite element solution is required for each step and the time steps have to be very small 

to guarantee convergence. Thus the computing resources required are an order of 

magnitude greater than for frequency domain analysis. 
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