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Abstract 

The main aim of this thesis was to increase our understanding of the metabolic responses 

associated with short-term high-fat overfeeding. To this end, four separate studies are 

described in this thesis; each of which involved the provision of a high-fat, high-energy diet 

to young, healthy, lean individuals. The first of these experimental chapters (Chapter 2) 

determined the effects of a 7-day, high-fat (65%), high-energy (+50%) diet on postprandial 

metabolic and endocrine responses to a mixed meal challenge. This chapter demonstrates that 

7-days of overfeeding impaired glycaemic control in our subject cohort but did not influence 

the response of selected gut hormones (acylated ghrelin, GLP-1 and GIP). In a mechanistic 

follow up study utilising stable isotope tracer methodology we then demonstrate that 

overfeeding-induced impairments in glycaemic control are attributable to subtle alterations in 

plasma glucose flux, rather than the overt tissue-specific adaptations (e.g. increased EGP, or 

reduced glucose disposal) that have previously been reported (Chapter 3). In an attempt to 

delineate the time-course of diet-induced impairments in glycaemic control, we then 

investigated the effects of 1-day of overfeeding (+80% energy with 73% of total energy 

coming as fat) (Chapter 4). Results demonstrate that a single day of overfeeding elicits 

responses which are comparable to 7-days of high-fat overfeeding; highlighting the rapidity 

with which excessive high-fat food intake can negatively influence glucose metabolism. In 

chapter 5 we utilised stable isotope tracer and muscle biopsy techniques to demonstrate that 

7-days of high-fat overfeeding impairs glycaemic control but does not influence the fed-state 

mixed muscle protein fractional synthesis rate (FSR). In conclusion, the findings of this thesis 

demonstrate that while short-term high-fat overfeeding negatively influences whole-body 

glucose metabolism, skeletal muscle protein metabolism appears to be relatively unaffected 

in young, lean, healthy humans. 
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1.1 Background 

Globally, the prevalence of overweight and obesity is increasing at an alarming rate (Joshi et 

al., 2007). Dubbed “prosperity’s plague” (Taubes, 2009), reports estimate that the proportion 

of individuals classed as overweight and obese (i.e. body mass index (BMI) > 25 kg/m2) 

increased by 27.5% worldwide between 1980 and 2013 (Ng et al., 2014); an increase which 

is projected to continue over the next two decades (Finkelstein et al., 2012). In the United 

Kingdom it has been estimated that approximately two-thirds of the male, and over half of the 

female population are overweight or obese (Ng et al., 2014). This is pertinent as obesity is 

strongly associated with a myriad of clinical problems, including non-alcoholic fatty liver 

disease (NAFLD) (Fabbrini et al., 2010), type 2 diabetes mellitus (T2DM) (Steppan et al., 

2001), cardiovascular disease (CVD) (Poirier, & Eckel, 2002) and certain cancers (Bianchini 

et al., 2002), amongst others. Thus, overweight and obesity are an important contributor to 

morbidity and mortality, and a reduced quality of life (Abdelaal et al., 2017) and therefore 

represent one of the major healthcare challenges of the 21st Century. 

 

The recent rise in overweight and obesity is attributable to both genetic and lifestyle factors; 

with genes predisposing individuals and lifestyle factors such as diet and physical inactivity 

providing the catalyst (Swinburn et al., 2011). Based on the speed at which prevalence is 

increasing it would suggest that changes in lifestyle are the driving force, as genetic 

influences would not be expected to change over such a short period. This change in lifestyle 

is driven by the development of machines and technologies which have reduced daily 

physical activity levels (Booth et al., 2008), and the broad availability of relatively 

inexpensive, highly palatable, energy-dense foods (Schrauwen, 2007). Thus, it is extremely 

likely that most individuals experience at least brief periods of positive energy balance (Hall 

et al., 2012). This seems to be especially true during holiday periods or times of celebration 

(Cooper, & Tokar, 2016; Yanovski et al., 2000). If these periods of positive energy balance 

are not counterbalanced by subsequent periods of negative energy balance (where energy 

expenditure exceeds intake), then individuals will begin to gain weight, of which 

approximately 60-80% will be attributable to increases in body fat (Hill, & Commerford, 

1996). If this practice continues long-term then obesity will ensue.  

 

A common feature underpinning many of the diseases associated with obesity is insulin 

resistance; a state in which normal or elevated concentrations of insulin elicit a subnormal 

biological response (DeFronzo, & Tripathy, 2009). Whilst it is clear that insulin resistance is 
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strongly associated with obesity, it would appear that visceral adiposity (i.e. an accumulation 

of adipose tissue underneath the abdominal muscle wall) is particularly deleterious to insulin 

and glucose metabolism (Amati et al., 2012; Hayashi et al., 2008; Indulekha et al., 2011; 

McLaughlin et al., 2011; Preis et al., 2010; Wagenknecht et al., 2003). A prime example of 

this can be seen in individuals with genetic defects who are characterised by partial whole-

body, or depot-specific lipodystrophy. These individuals exhibit an increased visceral fat 

depot with little or no change in subcutaneous adiposity alongside severe insulin resistance 

(Arioglu et al., 2000; Huang-Doran et al., 2010; Reitman et al., 2000). However, the 

molecular mechanisms through which increases in fat, visceral or other, cause insulin 

resistance are yet to be clarified. This is due to ethical considerations which make it difficult, 

nigh on impossible, to study the progression of obesity and/or metabolic disease. Thus, much 

of the knowledge regarding the development of insulin resistance in humans is inferred from 

animal studies (Han et al., 2013; McManaman et al., 2013; Tsai et al., 2016) which cannot be 

directly transferred into our understanding of human metabolic dysfunction. With regards to 

human research, there is a vast amount of cross-sectional research in the literature (i.e. obese 

and/or insulin resistant vs. healthy controls) (McLaughlin et al., 2016; Mitrakou et al., 1992; 

Prager et al., 1986), and epidemiological reports (Marshall et al., 1991; Martin et al., 1992; 

Pereira et al., 2005). While these observational studies are invaluable with regards 

characterising obesity and insulin resistance, they are unable to illuminate causality or offer 

any insight into the developmental time-course. In order to overcome this limitation, 

researchers have employed intervention strategies such as intravenous (iv) lipid infusions, 

bed rest/relative physical inactivity models, and high-fat and/or high-energy diets. These 

interventions are designed to impair glycaemic control/reduce insulin sensitivity, and thus 

provide information on the metabolic responses which underpin the development of insulin 

resistance in humans. However, these early-phase responses are yet to be fully elucidated. 

 

The primary aim of this thesis is to provide a greater insight into the early metabolic 

responses associated with short-term high-fat overfeeding. To this end, the following sub-

chapters will provide a brief overview of insulin and its role in metabolism. Subsequently, 

this chapter will attempt to outline current knowledge regarding the pathophysiology and 

pathogenesis of whole-body insulin resistance in humans. A critical review of current 

literature examining metabolic responses to short-term high-fat overfeeding interventions will 

also be presented. This review will serve to highlight gaps in the literature which this thesis 

will hopefully address.  
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1.2 Physiological role of insulin  

Despite intermittent ingestion of dietary carbohydrates, in healthy individuals circulating 

glucose concentrations are maintained within narrow limits (~4-6.0 mmol/L) (Saltiel, & 

Kahn, 2001). This requires the concerted actions of several different tissues which govern the 

interplay between the rate of glucose entering the circulation (rate of appearance [Ra]), and 

that being removed from the circulation (rate of disappearance [Rd]) (Thorens, 2015; 

Utzschneider et al., 2006; Woerle et al., 2003). Insulin is a critical regulator in this metabolic 

transition from the fasted to the fed state (Saltiel, & Kahn, 2001). Insulin secretion occurs in 

response to numerous stimuli such as amino acids (especially, leucine and lysine), the 

incretin hormones (glucagon-like peptide-1 [GLP-1] and gastric inhibitory polypeptide 

[GIP]), and sulphonylureas (Joshi et al., 2007). However, the most potent stimulus of insulin 

secretion is glucose. In order to sense changes in plasma glucose or other secretory stimuli, 

islets continually sample blood from the branches of the splenic and pancreaticoduodenal 

arteries (Newsholme et al., 2014). When elevations in secretory stimuli are detected, insulin 

is released. In the instance of glucose, this occurs when circulating blood glucose 

concentrations are ≥ 3.3 mmol/L, above which the secretion of insulin is increased in 

proportion to the degree of glucose perturbation (i.e. the greater the glucose concentration, 

the greater the insulin response) (Gerich, 1993). Insulin secretion occurs from the islet cells 

into the portal vein in a pulsatile manner, requiring coordinated secretory bursts from millions 

of cells. The secretion of insulin is characteristically biphasic in nature. The initial rapid (5-10 

min) release of pre-synthesised insulin is mediated by an increase in the β-cell adenosine 

triphosphate (ATP):adenosine diphosphate (ADP) ratio and the subsequent intracellular flux 

of calcium ions. Whereas, the second more prolonged secretion of insulin (30-60 min) 

requires increased synthesis of insulin and is mediated by mitochondrial metabolism and the 

increase in tricarboxylic acid (TCA) cycle intermediates, protein kinase C (PKC) signalling, 

and increased calcium flux (Keane, & Newsholme, 2014; Newsholme et al., 2014; 

Newsholme, & Krause, 2012).  

 

1.2.1 Skeletal muscle 

Skeletal muscle represent one of the primary target tissues for insulin. The principal role of 

insulin in skeletal muscle is to stimulate glucose uptake. This occurs by insulin binding to its 

receptor, which is part of a subfamily of receptor tyrosine kinases. The insulin receptor is a 

heterotetrameric glycoprotein with two extracellular α-subunits and two transmembrane β-
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subunits. Insulin binds to the α-subunits which leads to auto-phosphorylation of tyrosine 

residues on the β-subunits. This process promotes the translocation of the insulin receptor 

substrates (IRS) to the plasma membrane where the interaction with the insulin receptor 

causes it to also undergo tyrosine phosphorylation (Defronzo, 2009). There exist 13 different 

IRS’s, however, in skeletal muscle it is IRS-1 and IRS-2 which are most important. The 

activation of IRS-1, and to a lesser extent IRS-2, leads to the subsequent activation of 

phosphotidylinositol (PI)-3-kinase (PI3-K). PI3-K consists of a regulatory subunit, p85, and a 

catalytic subunit, p110, both of which exist in multiple isoforms (Shepherd et al., 1998). The 

regulatory p85 subunit maintains the p110 catalytic subunit in a low-activity state until 

stimulation by insulin whereby p110 binds to IRS-1 activating PI3-K. PI3K catalyses the 

conversion of phosphatidylinositol (4,5)bis-phosphate (PI(4,5)P 2), to phosphatidylinositol 

(3,4,5)tris-phosphate (PI(3,4,5)P3) (Siddle, 2011). PI(3,4,5)P 3 serves to anchor PI3K and the 

3-phosphoinositide dependent protein kinase-1 (PDK-1) to the plasma membrane (Shepherd 

et al., 1998). PDK-1 acts to phosphorylate and activate protein kinase B (Akt) which acts 

downstream to phosphorylate a variety of substrates, including glycogen synthase kinase-3 

(GSK-3), phosphofructokinase-2 (PFK-2), and Akt substrate of 160 kDa (AS160). 

Phosphorylation of these signalling intermediates, results in the translocation of glucose 

transporter 4 (GLUT-4) to the cell membrane permitting glucose entry into the cell (Siddle, 

2011). It has been reported that skeletal muscle accounts for approximately 60-70% of insulin 

mediated glucose uptake (Smith, 2002). Once within the cell glucose is either stored as 

glycogen or metabolised; glucose is predominantly metabolised through glycolysis from 

which the pyruvate produced can be converted to lactate and released into the blood, or be 

decarboxylated and enter the TCA cycle for complete oxidation (Holloszy, & Coyle, 1984; 

Krebs, 1979). 

 

Insulin has also been shown to be a key regulator in skeletal muscle protein turnover. 

However, the precise role of insulin in this process is complex and a topic of debate. Early 

reports from arterio-venous difference studies demonstrated that an increase in circulating 

insulin concentrations resulted in a reduction in muscle protein breakdown (MPB) (Fryburg 

et al., 1990; Gelfand, & Barrett, 1987; Pozefsky et al., 1969). While these early observations 

have remained true to this day, there exist mixed reports regarding the ability of insulin to 

stimulate muscle protein synthesis (MPS); some studies demonstrate increased MPS with 

increased plasma insulin concentrations (Biolo et al., 1995; Biolo, & Wolfe, 1993), whereas 

others show no change (Chow et al., 2006; Louard et al., 1992). Much of this confusion is 
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likely related to alterations in amino acid concentrations; increased insulin levels reduce MPB 

and thus suppress amino acid availability reducing the available substrate for MPS. In a 

relatively recent study, Greenhaff et al. (2008) demonstrated that amino acids per se are a 

potent anabolic stimulus, able to induce a substantial upregulation of MPS even under basal 

(5 µU/mL) insulin concentrations. Furthermore, in the presence of fixed amino acid 

availability, stepwise elevations in insulin concentration did not further increase MPS, but did 

reduce MPB, a finding which is supported by a number of other studies (Bell et al., 2006; 

Fujita et al., 2006a; Fujita et al., 2006b; Rasmussen et al., 2006; Wilkes et al., 2009). Thus, it 

would appear that insulin itself is not anabolic, but it is definitely anti-proteolytic. However, 

the general consensus is that insulin has a permissive role in MPS, and a small amount of 

insulin is necessary to prime the system (Cuthbertson et al., 2005). Thus, it would appear that 

while insulin itself does not stimulate MPS, it is pro-anabolic through its permissive role in 

MPS and potent ability to reduce MPB, which act in synergy to increase net MPS. 

 

1.2.2 Liver 

A second major target tissue for insulin is the liver. In health, increased circulating insulin 

concentrations stimulate glucose uptake and glycogen synthesis. This effect is mediated via 

the same canonical signalling pathway as muscle (described above), although in this instance 

glucose entry is facilitated by GLUT-2 transporters (Thorens, 2015). The liver has been 

reported to be responsible for approximately 30% of glucose uptake (Smith, 2002). In 

addition, increased insulin concentrations also suppress glycogenolysis and gluconeogensis 

(hereafter combined and referred to as endogenous glucose production [EGP]) leading to a 

reduction in glucose output. (Cersosimo et al., 1994; Saltiel, & Kahn, 2001; Samuel et al., 

2004). This is thought to occur via direct and indirect mechanisms. Directly, activation of Akt 

phosphorylates and inactivates forkhead box protein 01 (FOXO1), reducing the transcription 

of gluconeogenic enzymes (Samuel, & Shulman, 2016), indirectly insulin inhibits adipose 

tissue lipolysis (see below), limiting the availability of substrate for glucose conversion 

(Perry et al., 2014; Previs et al., 1999). 

 

A further process within the liver in which insulin plays a role is the transcriptional regulation 

of de novo lipogenesis (DNL); the biochemical process of synthesising fatty acids from non-

lipid precursors (Strable, & Ntambi, 2010). Increased insulin signalling upregulates the sterol 

regulatory element binding protein 1c (SREBP1c) pathway which increases the expression of 

lipogenic enzymes such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), 
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resulting in a sequence of events which converts acetyl-CoA to malonyl-CoA to the 16 

carbon fatty acid palmitate (Hellerstein et al., 1996; Leavens, & Birnbaum, 2011; Sanders, & 

Griffin, 2016). The primary route of disposal of de novo synthesised fatty acids is secretion in 

triglyceride rich very low density lipoprotein (VLDL) (Sanders, & Griffin, 2016).  

 

1.2.3 Adipose tissue 

In adipocytes insulin stimulates both fatty acid and glucose uptake. Glucose uptake is 

mediated via a Glut 4 dependent mechanism (Ducluzeau et al., 2002), whereas fatty acid 

uptake involves the activation of lipoprotein lipase (LPL) (Sadur, & Eckel, 1982). Adipose 

tissue has been estimated to be responsible for only 2-6% of whole-body glucose uptake 

(Marin et al., 1987; Virtanen et al., 2002), but is the predominant site of dietary-derived fatty 

acid uptake (Nestel et al., 1962). Glucose can be metabolised via glycolysis or stored as 

intracellular lipid via the action of lipogenic enzymes, including pyruvate dehydrogenase 

(PDH), FAS and ACC (Saltiel, & Kahn, 2001). Fatty acids are then re-esterified using 

glycerol 3-phosphate (G3P) (derived from glucose metabolism) as a backbone to form 

triglycerides within adipocytes (Clifton-Bligh, & Galton, 1976).  

 

Insulin also profoundly inhibits adipose tissue lipolysis, suppressing fatty acid and glycerol 

turnover. This occurs by decreasing cyclic adenosine monophosphate (cAMP) levels, through 

the phosphorylation and subsequent activation of a cAMP-specific phosphodiesterase 

(Degerman et al., 1990), which ultimately leads to the inhibition of hormone sensitive lipase 

(HSL) (Anthonsen et al., 1998).  

 

1.3 Heterogeneity of insulin resistance 

Due to the widespread effects of insulin described above, insulin resistance may vary in both 

its cause and effect depending on the physiological function of the tissues in which it is 

manifest. However, defects in any of these tissues can have a profound impact on whole-body 

metabolic control, leading to impaired glycaemic control, dyslipidemia and potential muscle 

atrophy.  

 

1.3.1 Skeletal muscle 

In insulin resistant states the ability of insulin to stimulate glucose uptake in skeletal muscle 

is impaired (DeFronzo, 1988; DeFronzo, 2004; DeFronzo et al., 1989; DeFronzo et al., 1985; 

Ferrannini et al., 1988; Gerich et al., 1990; Mitrakou et al., 1990; Woerle et al., 2006). As 
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skeletal muscle is the predominant site of insulin-stimulated glucose uptake this reduces 

plasma glucose Rd resulting in dysregulations in whole-body glucose metabolism. This is 

evident during fasting, but is considerably more pertinent during the postprandial period 

when circulating glucose concentrations are greater. The reduction in insulin-stimulated 

glucose uptake is due to a combination of defects in insulin signalling (i.e. reduced IRS-1 

tyrosine phosphorylation resulting in decreased PI3-K activation), glucose transport (i.e. 

impaired GLUT4 translocation) and intracellular glucose metabolism (i.e. decreased glucose 

phosphorylation, reduced glucose oxidation and glycolytic flux and reduced activation of 

glycogen synthase) (Abdul-Ghani, & DeFronzo, 2010; Bajaj, & Defronzo, 2003; Bouzakri et 

al., 2005; Cusi et al., 2000; Karlsson, & Zierath, 2007).  

 

Evidence also suggests that relative muscle mass is inversely related to whole-body insulin 

resistance (Srikanthan, & Karlamangla, 2011), and T2DM is associated with impaired 

skeletal muscle function and an accelerated loss of lean mass with aging (sarcopenia) (Kim et 

al., 2010; Park et al., 2009; Park et al., 2006; Park et al., 2007). Taken together these findings 

suggest that insulin resistance negatively impacts skeletal muscle protein metabolism. 

Reductions in muscle mass and strength are directly associated with mortality rates in the 

elderly (McLeod et al., 2016). Furthermore, as skeletal muscle in the primary site for glucose 

uptake following feeding, reductions in skeletal muscle mass would have a profound effect 

on whole-body glycaemic control. In humans the maintenance of skeletal muscle mass is 

dependent on the dynamic equilibrium between MPS and MPB. When investigating the MPS 

response to carbohydrate and protein ingestion in T2DM patients and healthy controls, 

Manders et al. (2008) demonstrated a 60-70% difference in muscle protein fractional 

synthesis rate (FSR) between these two cohorts, with the healthy controls displaying a much 

greater postprandial anabolic response. This would suggest that insulin resistance impairs net 

muscle protein balance by reducing the MPS response to nutrient ingestion. Similar findings 

have been observed in obese, insulin-resistant individuals (Chevalier et al., 2005; Guillet et 

al., 2009; Murton et al., 2015; Pereira et al., 2008). However, there are reports of 

‘normalised’ anabolic responses in individuals with T2DM in response to insulin and amino 

acid stimulation (Bassil et al., 2011), although Bassil et al. (2011) compared leucine kinetics 

with an historical lean cohort, meaning these results should be interpreted with caution. Many 

of the above studies have investigated MPS responses in overweight/obese individuals with 

T2DM and are therefore unable to disentangle the effects of obesity and insulin resistance per 

se, and can merely suggest that one, or both, of these factors impact upon the ability to 
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stimulate MPS. In an attempt to address this limitation Stephens et al. (2015) induced insulin 

resistance by way of Intralipid infusion in young, healthy males. In that study, MPS 

responses to insulin and amino acid stimulation were compared during either 10% Intralipid 

(100 mL/h), or normal saline infusion. Their results display that mixed-muscle fractional 

synthetic rate (FSR) increased 2.2-fold in response to insulin and amino acid ingestion during 

the saline trial, whereas lipid infusion completely suppressed this anabolic response. From 

these findings the authors conclude that lipid-induced insulin resistance blunts the anabolic 

response to insulin and amino acid stimulation (Stephens et al., 2015). However, the 

mechanism by which lipid infusions induce insulin resistance may not be representative of 

human pathogenesis, and it remains to be seen if the same response is observed in a more 

physiological model of insulin resistance. 

 

1.3.2 Liver 

Similar to the response seen in skeletal muscle, insulin resistance in hepatocytes leads to 

reduced glucose uptake and glycogen synthesis (Carey et al., 2003; Magnusson et al., 1992) 

reducing plasma glucose Rd. However, hepatic insulin resistance also results in a reduced 

ability of insulin to suppress EGP (Bell et al., 1989; DeFronzo et al., 1982; Kelley et al., 

1994; Mitrakou et al., 1992; Mitrakou et al., 1990; Singhal et al., 2002; Woerle et al., 2006), 

attributable to both increased gluconeogenesis (Firth et al., 1986; McMahon et al., 1989; 

Meyer et al., 2004; Woerle et al., 2006) and hepatic glycogen recycling (glycogenolysis) 

(Woerle et al., 2006). This reduced suppression of EGP augments the glucose perturbation 

caused by carbohydrate ingestion, leading to a greater plasma glucose Ra. It has been 

suggested that reductions in pancreatic α-cell insulin sensitivity leading to increased glucagon 

secretion are partly responsible for this dysfunctional response (Tsuchiyama et al., 2007). 

 

Evidence suggests that hepatic insulin resistance also contributes to the dyslipidemia 

commonly observed in insulin resistant individuals (Ginsberg et al., 2005). One of the major 

abnormalities is hepatic overproduction of VLDL (Adiels et al., 2007; Pramfalk et al., 2016). 

Paradoxically, the action of insulin on the SREBP1-c pathway remains insulin sensitive even 

in insulin resistant individuals (Brown, & Goldstein, 2008). This would serve to enhance 

transcription of both gluconeogenic and lipogenic genes resulting in increased DNL. The 

induction of DNL would also have the additive effect of reducing fatty acid oxidation as 

malonyl-CoA (a DNL intermediate) is a potent inhibitor of carnitine palmitoyl transferase 
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(CPT)-1 (McGarry et al., 1977), which may result in a greater secretion of TG in VLDL and 

hypertriglyceridemia (Boden, 2006; Hodson et al., 2015; Matikainen et al., 2014). 

 

1.3.3 Adipose tissue 

The principal defect seen in adipose tissue insulin resistance is the increased hydrolysis of 

triglycerides from adipocytes due to the failure of insulin to suppress HSL (Groop et al., 

1989; Groop et al., 1991), this can lead to an increase in plasma non-esterifed fatty acids 

(NEFA) (Ferrannini et al., 1983). It has been proposed that increased NEFA may be a 

contributing factor to the metabolic abnormalities seen in insulin resistance and T2DM 

(Lewis et al., 2002). There are also reports that obese insulin resistant individuals may 

demonstrate a delayed clearance of triglyceride-rich lipoproteins during the postprandial 

period compared to their healthy weight counterparts, possibly contributing to 

hypertriglyceridemia and atherosclerosis (Larsen et al., 2015). However, whether this is due 

to a reduced sensitivity of LPL to insulin remains to be determined.  

 

Adipose tissue is now recognised as an important endocrine organ, secreting a number of 

operationally active proteins (adipokines) which are thought to be involved in the regulation 

of whole-body metabolism and neuroendocrine control of feeding related behaviours (for 

review see Booth et al. (2016)). It has been reported that adipokine secretion is altered in the 

insulin resistant state (Andersson et al., 2016), although it is unclear as to whether this is a 

cause or a consequence of this disease state.  

 

1.3.4 Pancreatic β-cells 

Changes in insulin sensitivity are also associated with reciprocal changes in insulin secretion. 

In healthy β-cells the adaptive response to insulin resistance involves a hyperbolic increase in 

insulin secretion (mediated through changes in both β-cell mass and function) in order to 

compensate for reduced insulin action and maintain glycaemic control (Kahn et al., 1993). A 

failure in this compensatory response is one of the principal defects in T2DM, as evidenced 

by the delayed and relatively diminished secretory function of β-cells in these individuals 

compared to their healthy counterparts (Kahn, 2001a; Kahn, 2001b), and the observation that 

the ~50% reduction in β-cell mass in T2DM does not sufficiently explain the reduction in 

insulin secretion (Butler et al., 2003; Kahn et al., 2006; Kloppel et al., 1985). Longitudinal 

data from the Pima Indians further supports this, demonstrating that the transition from 

normal, to impaired glucose tolerance, to T2DM is characterised by a progressive loss of β-
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cell function (Weyer et al., 1999). Similar observations have been made in other ethnic 

cohorts (Festa et al., 2006).  

 

1.4 Mechanisms of insulin resistance 

The exact mechanisms that lead to insulin resistance in these tissues are not fully understood, 

and multiple hypotheses have been proposed. These include, ectopic lipid accumulation, 

increased circulating concentrations of proinflammatory cytokines, and the development of 

endoplasmic reticulum (ER) and oxidative stress, amongst others. An in depth discussion of 

each of these hypothesised mechanisms and their contribution to whole-body insulin 

resistance is beyond the scope of this thesis, and the reader is directed to a number of 

comprehensive review articles covering this topic (Abdul-Ghani, & DeFronzo, 2010; Duque-

Guimaraes, & Ozanne, 2013; Samuel et al., 2010; Samuel, & Shulman, 2012; Samuel, & 

Shulman, 2016). Briefly, regarding ectopic lipid accumulation, it is clear that obesity is 

associated with an increase in intramyocellular lipid (IMCL) (Goodpaster et al., 2000; 

Thamer et al., 2003). A number of previous studies have reported that IMCL content is more 

tightly correlated with insulin resistance than other risk factors, such as fat mass, circulating 

lipid levels, and fasting blood glucose (Krssak et al., 1999; Perseghin et al., 1999; Virkamaki 

et al., 2001). However, others have shown that IMCL content and insulin resistance are 

completely unrelated (Thamer et al., 2003), or even that IMCL content is inversely related to 

insulin resistance (Goodpaster et al., 2001; Haus et al., 2011). These confusing reports can be 

partly explained by the ‘exercise paradox’, in which endurance training can increase both 

IMCL content and insulin sensitivity (Goodpaster et al., 2001). Therefore, while obesity and 

endurance training influence insulin sensitivity in opposite directions, they are both 

associated with IMCL accumulation. However, although IMCL predominantly reflects 

triglyceride content, evidence suggests that it is not an accumulation of triglycerides 

themselves that initiate insulin resistance, but an accumulation of specific fatty acid 

metabolites (e.g. diacylglycerides (DAGs), fatty acyl-COA and ceramides) (Adams et al., 

2004; Chaurasia, & Summers, 2015). It is proposed that accumulation of these lipid species 

impairs proximal insulin signalling, likely through activation of PKC isoforms which 

phosphorylate IRS-1 serine residues, inhibiting the normal tyrosine kinase cascade through 

counter-regulatory serine/threonine phosphorylation and reducing PI3-K activity and skeletal 

muscle glucose uptake (Zick, 2005). This has previously been demonstrated in a number of iv 

lipid infusion studies in healthy volunteers (Dresner et al., 1999; Itani et al., 2002; 

Szendroedi et al., 2014). There is evidence to suggest that this same mechanism of action is 
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apparent in hepatic insulin resistance (i.e. intracellular accumulation of lipids activating PKC 

isoforms resulting in impaired insulin signalling) (Kumashiro et al., 2011; Samuel et al., 

2004; Samuel et al., 2007). However, further research elucidating the contribution of IMCL 

accumulation to whole-body insulin resistance in humans is required. 

 

A further hypothesis is that insulin resistance is induced by an increase in proinflammatory 

cytokines. This comes from the observation that obesity and insulin resistance are both 

characterised by a low-grade state of inflammation (Hotamisligil, 2006). This inflammatory 

response differs from the classical model of inflammation in that the principal signs of 

redness, swelling, pain, and increased basal metabolic rate are not apparent, although a 

similar set of molecules and signalling pathways are activated (Medzhitov, 2008). The link 

between obesity, inflammation and insulin resistance seems to be mediated by the adipose 

tissue itself. Along with being the predominant lipid storage organ, adipose tissue is also 

accepted as being the largest endocrine organ in the human body, responsible for the 

secretion of adipokines (e.g. adiponectin and resistin), chemokines (e.g. monocyte 

chemotactic protein 1 (MCP-1), and interleukin 8 (IL-8)) and proinflammatory cytokines 

(e.g. interleukin 6 (IL-6), and tumour necrosis factor α (TNF-α)) (Trayhurn, 2005). Excessive 

growth of adipose tissues leads to adipocyte hypertrophy and a disturbance in the adipocyte 

secretory profile, leading to an increased secretion of proinflammatory cytokines (Wellen, & 

Hotamisligil, 2005). It has been shown that an increase in these inflammatory signals (IL-6 

and TNF-α in particular) induce insulin resistance via two operationally diverse pathways; 

jun-N terminal kinase-1 (JNK-1), and Iκ kinase β (IKK-β)/nuclear factor kappa β (NF-κB). 

JNK-1 has been shown to promote insulin resistance through phosphorylation of serine 

residues in IRS-1. In contrast, IKKβ liberates NF-κB for translocation into the cell nucleus 

where it promotes the expression of numerous target genes whose products impair insulin 

signalling (Boden, 2006; Boden et al., 2005; Krogh-Madsen et al., 2006). However, much of 

our knowledge regarding inflammation, obesity, and insulin resistance is based correlational 

data in adult subject groups, meaning a direct causal link is not yet established 

(Adabimohazab et al., 2016). Furthermore, reductions in whole-body and skeletal muscle 

insulin sensitivity have previously been observed following short-term dietary intervention 

studies independently of changes in inflammatory markers (Cornford et al., 2013; Knudsen et 

al., 2012).  
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The development of ER and oxidative stress has also been implicated in the pathogenesis of 

insulin resistance. The ER is an intracellular organelle responsible for the synthesis of 

polypeptides, and post-translational modification and folding of peptides, along with the 

synthesis of lipids and sterols. It has been seen that in response to cellular stress (e.g. excess 

NEFA and glucose), ER function becomes impaired triggering a security mechanism known 

as the “unfolded protein response” (UPR). This has been seen in cultured adipocytes (Guo et 

al., 2007), liver cells (Wei et al., 2006), and pancreatic β-cells (Karaskov et al., 2006; 

Kharroubi et al., 2004) . The purpose of the UPR response is to regulate the expression of 

genes in order to alleviate the stress response. This occurs via activation of three molecular 

components; inositol-requiring protein 1 (IRE-1), activating transcription factor-6, and 

double-stranded RNA-dependent protein kinase (PKR)-like ER kinase (Ron, & Walter, 

2007). However, the UPR response is also associated with an increase in inflammatory 

signals including IL-6 and TNF-α, alongside an increase in oxidative stress (Dali-Youcef et 

al., 2013). Oxidative stress can be defined as an imbalance between the production of 

reactive oxygen species (ROS), and antioxidant defences (Betteridge, 2000). It has been 

proposed that increases in ROS activates NF-κB, and inhibits insulin signalling as described 

above (Chung et al., 2009). However, the increase of proinflammatory cytokines, ER, and 

oxidative stress seem to occur in line with enlargements in adiposity, whereas substantial 

reductions in insulin sensitivity are observed with relatively minor increases in body mass.  

 

The fact at least three distinct hypotheses for the development of insulin resistance exist is 

evidence in itself of the lack of clarity regarding its pathogenesis, and the literature is awash 

with conflicting and at times confusing reports. Moreover, it is currently not known if defects 

in one of the tissues primarily involved in glucose metabolism (i.e. skeletal muscle and liver) 

precede that of the other. Determining the initial impairments that may promote whole-body 

insulin resistance (i.e. the time course of changes in tissue specific insulin sensitivity) will 

allow for more targeted mechanistic investigations and evidence based prevention strategies. 

 

1.5 Studying the development of insulin resistance 

A commonly employed method in the investigation of metabolic disease is the use of 

experimental animal models such as diet-induced obese rodents (Buettner et al., 2007; 

Heydemann, 2016; Winzell, & Ahren, 2004). However, whilst information from these animal 

models is insightful, they are at best ‘predictive’ and not ‘representative’ of human responses, 

and as such any results should be treated with caution (Shanks et al., 2009). In humans, due 
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to ethical considerations, acute intervention studies such as iv lipid-heparin infusions or 

short-term dietary interventions are often performed. These are intended to mimic the 

transition towards obesity and reduce insulin sensitivity/impair glycaemic control.  

  

Lipid infusion protocols involve the iv infusion of a triglyceride emulsion in combination 

with heparin in order to artificially induce intravascular lipolysis (Lee et al., 1988). In healthy 

subjects, this method rapidly (within 3-4 h) reduces whole-body insulin-stimulated glucose 

disposal, associated with a sequential pattern of events starting with an increase in circulating 

triglyceride levels (< 0.5 h), followed by a supraphysiological increase in circulating NEFA 

levels (~1-1.5 h), a rise in IMCL (~ 2.5 h), and finally a reduction in insulin stimulated 

glucose disposal (~3-5 h) (Boden, & Jadali, 1991; Roden et al., 1996; Szendroedi et al., 

2014). This method was developed based on the longstanding notion that enlarged adipose 

tissue mass results in elevated plasma NEFA levels, and has thus provided a hypothetical 

mechanistic link between obesity and insulin resistance (Eckel et al., 2005). However, while 

it is true that acute elevations in plasma NEFA induce insulin resistance, the link between 

circulating NEFA concentrations and insulin resistance has been questioned in a recent 

review of the literature by Karpe et al. (2011). The findings of this review suggest that 

increased circulating NEFA is not simply determined by an increase in fat mass, and insulin 

resistance can occur without elevations in NEFA. Furthermore, when pooling data from a 

number of their own studies where arterio-venous measures were obtained, Karpe et al. 

(2011) observed that the relative release of NEFA per kg of adipose tissue actually decreases 

as adipose tissue mass increases, which in some obese individuals can actually lead to a 

normalisation of NEFA levels. In addition, no association was observed when NEFA 

concentrations were examined in relation to fasting insulin concentrations. This evidence 

casts doubt on the NEFA hypothesis of insulin resistance and the physiological relevance of 

lipid infusion protocols, and indirectly suggests that other methods, such as high-fat diet 

and/or overfeeding interventions, may be a more valid representation of the early-phase 

progression of insulin resistance in humans. 

 

1.6 Metabolic responses to short-term high-fat overfeeding 

There is a plenitude of research investigating the impact of high-fat overfeeding in animal 

models, whereas human data is relatively sparse. Of the available literature it is clear that 

even short-term (3-28 days) high-fat overfeeding (defined as hypercaloric diets where fat 

contributes >35% total energy) is associated with negative alterations in glucose metabolism 
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in healthy, lean subjects, including reductions in whole-body insulin sensitivity and 

impairments in glycaemic control (Hulston et al., 2015; Samocha-Bonet et al., 2010; Tam et 

al., 2010; Wulan et al., 2014), increased EGP (Brons et al., 2009) and defects in skeletal 

muscle insulin signalling (Adochio et al., 2009). However, where impairments in glucose 

metabolism have been observed it would be satisfying to know the process underpinning 

these responses; very few of the studies included above provide any mechanistic insight. 

Information is particularly sparse with regards the tissue-specific responses to short-term 

high-fat overfeeding, and it remains to be seen if the developmental time-course of insulin 

resistance differs in a tissue-specific manner. 

 

Evidence from animal studies suggest that alterations in tissue-specific insulin sensitivity in 

response to high-fat overfeeding are sequential in nature. For instance, Kleemann et al. 

(2010) employed a time-resolved approach whereby mice fed a high-fat diet were assessed 

for glucose tolerance at baseline and following 1, 6, 9 and 12 weeks of overfeeding, while 

insulin sensitivity was assessed by hyperinsulinemic-euglycaemic clamps at baseline, and 

following 6 and 12 weeks of feeding. As expected, animals displayed a gradual increase in 

body weight, which reached significance at 6 weeks and continued to increase until week 12, 

with a similar trend observed for adipose tissue mass in all depots (subcutaneous, visceral, 

and epididymal). Glucose tolerance was impaired after 1 week of high-fat feeding and 

gradually worsened with continuation of the diet. The use of radioactive glucose tracers 

during the hyperinsulinemic-euglycaemic clamps allowed the authors to distinguish between 

the development of insulin resistance in liver, adipose tissue, and muscle. Their findings 

indicate that high-fat overfeeding reduced hepatic insulin sensitivity at 6-weeks leading to a 

reduced suppression of EGP under insulin-stimulated conditions, whereas adipose tissue did 

not display signs of insulin resistance (i.e. reduced glucose uptake) until 12 weeks of feeding 

in these animals. No differences in skeletal muscle insulin sensitivity were observed in that 

study. This data demonstrates that, in mice, hepatic insulin resistance is rapidly induced by 

high-fat overfeeding and has profound consequences for whole-body glycaemic control, 

whereas complications in adipose tissue and skeletal muscle take longer to develop. This 

finding is supported by others (Chisholm, & O'Dea, 1987; Kim et al., 2003; Kraegen et al., 

1991; Samuel et al., 2004; Samuel et al., 2007).  

 

It is plausible that similar responses to those seen in animals regarding tissue-specific insulin 

sensitivity would also be observed in humans. However, there are only a few studies to date 
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which have investigated tissue-specific insulin sensitivity in response to high-fat overfeeding, 

and the findings of these studies are far from conclusive. Brons et al. (2009) subjected lean 

men to 5-days of high-fat (65% total energy) overfeeding (50% caloric excess). They 

demonstrated no change in insulin stimulated glucose disposal during a hyperinsulinemic-

euglycaemic clamp, but did observe a 26% increase in fasting EGP. This finding would 

suggest that changes in hepatic insulin sensitivity precede (and possibly mediate) changes at 

the whole-body level. The authors replicated these findings in 2012 (Brons et al., 2012). In 

that study the authors report reduced hepatic insulin sensitivity and increased EGP in young 

males born with a normal-birth weight after 5-days of high-fat overfeeding. Further support 

for the liver being the predominant site of metabolic dysfunction following high-fat 

overfeeding comes from Bisschop et al. (2001); a high-fat diet led to an a reduction in the 

suppressive effect of insulin on EGP but no change in insulin mediated glucose disposal 

(Bisschop et al., 2001). Intriguingly, when comparing their findings in males born with a 

normal-birth weight to those with a low-birth weight, Brons et al. (2012) demonstrated that 5-

days of high-fat overfeeding induced whole-body insulin resistance which was attributable to 

impaired skeletal muscle glucose storage in the low-birth weight cohort (Brons et al., 2012). 

The finding of defects in skeletal muscle storage are in accordance with those reported by 

Adochio et al. (2009) when overfeeding (40% caloric excess) lean, healthy men and women a 

high-fat diet (50% total energy) for 5 days. Adochio et al. (2009) saw no change in clamp-

derived measures of insulin sensitivity when comparisons were made against an isocaloric 

control diet, but, unlike Brons et al. (2009), these authors saw no change in basal EGP either. 

Despite this, high-fat overfeeding was found to impair skeletal muscle insulin signalling, as 

evidenced by an increase in serine phosphorylation of IRS-1, and increased total expression 

of p85α, alterations which are generally associated with skeletal muscle insulin resistance. 

These discrepant findings highlight the need for further investigation.  

 

Notably, (Hulston et al., 2015) observed a significant increase in the postprandial glucose 

response to an oral glucose load alongside a non-significant increase in postprandial insulin 

concentrations following 7-days of high-fat overfeeding. This insufficient compensatory 

response of insulin potentially indicates that high-fat overfeeding also impairs pancreatic β-

cell function. Furthermore, as a negative association appears to exist between increased 

fasting glucose concentrations and impaired β-cell function, even in those who display 

glucose levels within the normal range (Utzschneider et al., 2006) the observation of 

increased fasting plasma glucose levels in Hulston et al. (2015), Brons et al. (2012) and 
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Brons et al. (2009) further supports this hypothesis. A reduced secretory capacity of 

pancreatic β-cells has previously been observed in mice subjected to high-fat feeding 

(Ohtsubo et al., 2011). A potential avenue through which insulin secretion might be impaired 

is through the reduced sensitivity of β-cells to the incretins hormones. In vitro evidence 

demonstrates that chronic exposure to elevated NEFA disrupts intercellular β-cell 

communication, impeding the propagation of signals through GLP-1–sensitive pathways 

(Hodson et al., 2013). It is plausible that insulin resistance of the adipose tissue leads to 

elevated NEFA that elicit lipotoxic effects on β-cells (Hodson et al., 2013). Patients with 

T2DM are known to have a diminished meal-induced secretion of GLP-1 (Toft-Nielsen et al., 

2001; Vilsboll et al., 2001; Yu et al., 2002) and are resistant to the insulinotropic actions of 

GIP (Nauck et al., 1986; Nauck et al., 1993; Vilsboll et al., 2002). However, there is very 

little data concerning the incretin response to high-fat overfeeding in humans. Of the 

available literature it would appear that the GLP-1 response is well-maintained in response to 

short-term high-fat overfeeding, whereas fasting GIP is increased (Brons et al., 2012; Brons 

et al., 2009). This increase in GIP potentially represents an adaptive response in order to 

compensate for a reduction in β-cell function. However, the author is only aware of two 

studies which have investigated the incretin response to high-fat overfeeding (Brons et al., 

2012; Brons et al., 2009), highlighting the need for further studies. 

 

A further avenue that warrants investigation is the speed at which high-fat overfeeding 

impairs glucose metabolism; evidence suggests that diet-induced impairments may occur 

very rapidly. Nowotny et al. (2013) reported that oral administration of a single dose of 

soybean oil (100 mL), which is enriched with polyunsaturated fat (61% polyunsaturated 

(PUFA), 23% monounsaturated (MUFA), and 16% saturated (SFA)) reduced whole-body 

insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) to a comparable extent 

and within a similar time-frame (6 h post ingestion/infusion) as an energy- and composition-

matched iv lipid-heparin infusion. Insulin sensitivity was assessed 6-8 hours after fat 

ingestion/infusion (Nowotny et al., 2013), and it is possible that the observed reduction in 

insulin sensitivity was a transient response related to the ongoing metabolism of fat; it would 

be of interest to determine if changes persist into the postabsorptive state and occur after 

consumption of a diet more reflective of Western style eating patterns (i.e. SFA rather than 

PUFA enriched). 
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1.7 Conclusions  

Short-term (3-28 days) high-fat overfeeding impairs whole-body insulin sensitivity/glycaemic 

control in healthy, lean individuals prior to substantial gains in body mass/fat (Hulston et al., 

2015; Samocha-Bonet et al., 2010; Tam et al., 2010; Wulan et al., 2014). At present, the 

mechanisms underpinning these processes, and the time-course of development, are not fully 

understood. In particular, it is currently unclear if impairments in glucose metabolism 

develop in specific tissues at different rates, and if so which tissues are the first to respond. 

Based on the majority of studies in animals and humans (Brons et al., 2012; Brons et al., 

2009; Chisholm, & O'Dea, 1987; Kim et al., 2003; Kraegen et al., 1991), we would 

hypothesise that changes in hepatic insulin sensitivity occur prior to, and may mediate, 

changes in skeletal muscle/whole-body insulin sensitivity. Determining the tissue-specific 

metabolic alterations to high-fat feeding may reveal important insights regarding the 

development of insulin resistance and T2DM, and aid the development of future mechanistic 

investigations and evidence-based prevention strategies. Furthermore, it is currently unclear 

as to whether the gut hormones play a role in the early metabolic derangements to high-fat 

overfeeding. Based on the available literature we would postulate that high-fat overfeeding 

does not influence the gut hormone response to nutrient ingestion, although this hypothesis is 

based on extremely limited data. Additionally, establishing the speed at which high-fat 

overfeeding elicits metabolic alterations is important as individuals commonly adopt similar 

eating strategies during holiday periods or times of celebration. While it has been seen that 

only 3 days of high-fat overfeeding are required to elicit deleterious alterations in glycaemic 

control, we would hypothesise that these alterations occur earlier than 3-days and may be 

apparent after only a single day of excessive fat consumption. Reductions in the MPS 

response to anabolic stimuli have previously been observed in obese, insulin resistant 

individuals (Chevalier et al., 2005; Guillet et al., 2009; Murton et al., 2015; Pereira et al., 

2008), although it is unclear if this response is driven by insulin resistance, excess adiposity 

or some hitherto unknown mechanism. Based the findings of (Stephens et al., 2015) in 

young, healthy, lean individuals we would hypothesise that insulin resistance per se is 

associated with a blunted MPS response; it remains to be determined if similar responses are 

seen following diet-induced reductions in insulin sensitivity. Any impairments in MPS would 

have profound consequences for both metabolic health and quality of life in general due to 

the central role of skeletal muscle in energy balance and glycaemic control, along with 

mobility and stability (Wolfe, 2006b).  
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Our laboratory has recently demonstrated that 7-days of high-fat (65% total energy) 

overfeeding (50% energy excess) led to a significant increase in fasting glucose, and a 

reduction in whole-body insulin sensitivity (as measured by Matsuda insulin sensitivity 

index) during an oral glucose tolerance test in young healthy subjects (Hulston et al., 2015). 

This reduction in insulin sensitivity was observed despite minimal weight gain (0.6 ± 0.2 kg), 

and with a diet that consisted of realistic experimental meals typical to that seen in Western 

cultures (i.e. high in saturated fat). We therefore believe that this model represents an ideal 

platform from which to base future investigations into the early-phase responses involved in 

the development of insulin resistance.  

 

1.8  Aims and objectives.  

1 To corroborate and further characterise a model of short-term, high-fat overfeeding, 

previously shown by our laboratory to reduce whole-body insulin sensitivity in young, 

healthy, lean individuals. 

 

2 To investigate tissue-specific insulin sensitivity in response to diet-induced impairments 

in glycaemic control.  

 

3 To delineate the developmental time-course of diet-induced impairments in whole-body 

insulin sensitivity. 

 

4 To determine whether diet-induced impairments in glycaemic control impair the anabolic 

response to nutrient stimulation in young, healthy, lean individuals. 
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 CHAPTER 2 

 

Short-term, high-fat overfeeding impairs glycaemic 

control but does not alter gut hormone responses to a 

mixed meal tolerance test in healthy, normal-weight 

individuals.  

 

1This chapter has been accepted for publication (2017) 

  

                                                 
1Parry, S. A., Smith, J. R., Corbett, T. R., Woods, R. M. & Hulston, C. J. (2017). Short-term, 

high-fat overfeeding impairs glycaemic control but does not alter gut hormone responses to a 

mixed meal tolerance test in healthy, normal-weight individuals. Br J Nutr, 117, 48-55. 
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2.1 Abstract  

Obesity is undoubtedly caused by a chronic positive energy balance. However, the early 

metabolic and hormonal responses to overnutrition are poorly described. This study 

determined glycaemic control and selected gut hormone responses to nutrient intake before 

and after seven days of high-fat overfeeding. Nine healthy individuals (5 males, 4 females) 

performed a mixed meal tolerance test (MTT) before and after consuming a high-fat (65%) 

high-energy (+50%) diet for seven days. Measurements of plasma glucose, NEFA, acylated 

ghrelin, GLP-1, GIP and serum insulin were taken before (fasting) and at 30 minutes intervals 

throughout the 180 min MTT (postprandial). Body mass increased by 0.79 ± 0.14 kg after 

high-fat overfeeding (p < 0.0001), and BMI increased by 0.27 ± 0.05 kg/m2 (p = 0.002). 

High-fat overfeeding also resulted in an 11.6% increase in postprandial glucose AUC (p = 

0.007) and a 25.9% increase in postprandial insulin AUC (p = 0.005). Acylated ghrelin, GLP-

1 and GIP responses to the MTT were all unaffected by the high-fat, high-energy diet. These 

findings demonstrate that even brief periods of high-fat food intake are sufficient to disrupt 

glycaemic control. However, as the postprandial orexigenic (ghrelin) and 

anorexigenic/insulintropic (GLP-1 and GIP) hormone responses were unaffected by the diet 

intervention, it appears that these hormones are resistant to short-term changes in energy 

balance, and that they do not play a role in the rapid reduction in glycaemic control. 

 



22 

 

2.2 Introduction  

Changes in human behaviour, such as excessive food intake and/or insufficient physical 

activity, have made obesity a worldwide epidemic (Zimmet et al., 2001). Furthermore, 

obesity is a significant risk factor for the development of insulin resistance and type 2 

diabetes mellitus (T2DM). However, despite the well-known association between obesity and 

insulin resistance, obesity may not trigger early metabolic dysfunction as negative alterations 

in glucose metabolism are often reported before substantial gains in body mass are observed. 

For example, recent human studies report that even brief periods (5-14 days) of high-fat food 

intake can impair skeletal muscle insulin signalling (Adochio et al., 2009), and reduce both 

hepatic (Brons et al., 2009) and whole-body insulin sensitivity (Cornford et al., 2013; 

Hulston et al., 2015). In each of these studies the experimental diets provided an excess of 

energy as well as a high proportion of fat, and it is not yet clear if the observed impairments 

in glycaemic control are a result of the additional energy, the high fat content of the diets 

provided, or a combination of the two. Likewise, the effect of overfeeding with mixed 

composition diets remains unknown. However, an overconsumption of carbohydrate-rich 

foods (5 days; +40% energy intake; 60% of energy from carbohydrate) has been reported to 

enhance skeletal muscle insulin signalling, evidenced by increased tyrosine phosphorylation 

of insulin receptor-1 (IRS-1) as well as increased IRS-1-associated phosphatidylinositol 3 (PI 

3)-kinase activity, whereas high-fat overfeeding (5 days; +40% energy intake; 50% of energy 

from fat) in the same subjects was found to increase serine phosphorylation of IRS-1 and 

total expression of p85α (Adochio et al., 2009). Hence it would seem that a lipid overload 

explains the reduction in insulin sensitivity, rather than a positive energy balance alone. This 

also fits with the hypothesis that it is an accumulation of reactive intramyocellular lipid 

species, such as ceramide and diacylglycerol, that inhibits skeletal muscle insulin signalling 

and impairs GLUT4 translocation (Samuel, & Shulman, 2012; Yu et al., 2002).     

 

Of the previous literature, there has been considerable interest in identifying the molecular 

mechanisms for peripheral (skeletal muscle) insulin resistance. However, whole-body 

glycaemic control is coordinated by a variety of integrated physiological processes, involving 

multiple hormones and their target tissues, and the effects of high-fat food intake on these 

hormonal responses have received relatively little attention to date. Of particular interest are 

the two primary incretin hormones: glucagon-like peptide-1 (GLP-1) and gastric inhibitory 

polypeptide (GIP). These two hormones are secreted from the intestines in response to 

nutrient ingestion and it is suggested that they act to control blood glucose levels by 
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enhancing insulin secretion, suppressing glucagon release and slowing gastric emptying 

(DeMarco, & Sowers, 2015). Patients with T2DM are known to have a diminished meal-

induced secretion of GLP-1 (Toft-Nielsen et al., 2001; Vilsboll et al., 2001; Yu et al., 2002). 

Not only this, but they can also become resistant to the insulinotropic actions of GIP (Nauck 

et al., 1986; Nauck et al., 1993; Vilsboll et al., 2002). This loss of an incretin effect may be 

an important contributor to postprandial hyperglycaemia in T2DM (Holst et al., 2011). 

Evidence for this also comes from the effective use of GLP-1 receptor agonists and dipeptidyl 

peptidase (DPP)-IV inhibitors in the treatment of hyperglycaemia (Drucker, 2003; Kountz, 

2013).   

 

Another gut hormone of interest is ghrelin, which is primarily secreted by the P/D1 cells 

lining the fundus of the stomach, and is thought to stimulate hunger via the orexigenic 

neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurones of the hypothalamus 

(Murphy, & Bloom, 2006). Ghrelin levels are elevated during fasting and reduced following 

feeding (Cummings et al., 2001), and ghrelin infusion has been shown to stimulate food 

intake in both animals (Wren et al., 2001b) and humans (Wren et al., 2001a) alike. In healthy, 

normal weight individuals, ghrelin levels decrease in proportion to the energy content of the 

meal (Callahan et al., 2004), whereas obese individuals exhibit both lower fasting levels 

(Cummings et al., 2002; le Roux et al., 2005; Tschop et al., 2001) and reduced suppression 

following food intake (English et al., 2002; le Roux et al., 2005).  

 

While the derangements in ghrelin and GLP-1 secretion have been reported in situations of 

chronic positive energy balance (i.e. obesity) and metabolic disease (i.e. insulin resistance), it 

is not yet clear whether the reported changes contribute to the development of obesity and 

insulin resistance, or are consequent of the disease state itself. Therefore, the primary purpose 

of this study was to determine whether short-term, high-fat overfeeding, an experimental 

model which impairs whole-body insulin sensitivity, influences gut hormone responses to 

fasting and feeding. High-fat foods were chosen for the overfeeding intervention due to the 

frequent use of this model in both animal and human studies of metabolic disease.  
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2.3 Materials and Methods  

2.3.1 Subjects  

Nine healthy individuals (5 males and 4 females; their physical characteristics can be seen in 

Table 2.1) volunteered to participate in this study. The sample size was based on pilot data 

from our laboratory in which the effect size (Cohens’ d) of high-fat overfeeding on glycaemic 

control was calculated as 0.9 (i.e. a large effect). Assuming a similar effect size in this study, 

α error probability of 0.05 and statistical power of 0.8, a sample size of at least 5 participants 

was required. The inclusion criteria required subjects to be physically active (performing 

moderate to vigorous intensity exercise at least 3 times per week for more than 30 minutes at 

a time), non-smokers, free from cardiovascular and metabolic disease, not taking any 

medication, weight stable for at least 6 months, and with a body mass index (BMI) between 

19-25 kg/m2). The study was conducted according to the guidelines laid down in the 

Declaration of Helsinki and approved by the Loughborough University Ethical Subcommittee 

for human participants. The experimental procedures and possible risks were fully explained 

to the subjects before their written informed consent was given. 

 

Table 2.1 Subject characteristics before and after 7 days of high-fat overfeeding 

Characteristics Before overfeeding  After overfeeding 

Age (years) 23 ± 1 - 

Height (cm) 171.6 ± 2.0 - 

Body mass (kg) 65.6 ± 2.1 66.3 ± 2.0 * 

BMI (kg/m2) 22.3 ± 0.6 22.5 ± 0.6 * 

Data presented are means ± SEM (n = 9). * denotes significant change following the dietary 

intervention (p < 0.05). 

 

2.3.2 Pre-testing  

Prior to the start of the study, subjects attended the laboratory for an initial assessment of 

their baseline anthropometric characteristics (height, weight and BMI). This information was 

then used to estimate their resting energy expenditure (REE) according to the calculations 

described by Mifflin et al. (1990). A standard correction for physical activity level (1.6 and 

1.7 times REE for females and males, respectively) was applied in order to estimate total 
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daily energy requirements. This information was then used to determine individual energy 

intakes for the week-long overfeeding period (diet details described later).  

 

2.3.3 Experimental design 

After the initial pre-testing visit, subjects attended the laboratory for a mixed meal tolerance 

test (MTT) (details of which can be seen in the experimental protocol below). Subjects were 

then provided with all food to be consumed for the following 7 days. The experimental diet 

was designed to be high in fat (65% total energy) and provide a severe energy excess (+50% 

kJ). Individual diet plans were designed using NetWISP nutrition software (Tinuviel 

Software Ltd, UK). All foods were purchased and prepared by the research team and subjects 

were instructed to consume all food provided and to avoid consuming additional food or 

nutritive beverages. Food intake followed a normal daily feeding pattern (i.e., breakfast, 

lunch, dinner and snacks) and water intake was allowed ad libitum throughout the dietary 

intervention. Foods such as processed meats, dairy products, and pastries were used 

extensively throughout the diet intervention, and cooking instructions required subjects to fry 

foods where possible and to avoid wasting any fat left over from the cooking process. Mean 

energy and macronutrient intake during the intervention period can be seen in Table 2.2 and a 

detailed example of typical daily food intake can be seen in Table 2.3. Saturated (SFA), 

monounsaturated (MUFA) and polyunsaturated (PUFA) fats made up 46 ± 0.9%, 37 ± 0.6%, 

and 9 ± 0.4% of the fat intake, respectively. Upon completion of the 7-day overfeeding 

period, subjects returned to the laboratory for a second MTT. 

 

Table 2.2 Estimated daily energy requirement and actual energy and macronutrient intake 

during the high-fat overfeeding period  

 Estimated energy 

requirement 

Self-reported 

habitual intake 

Experimental 

energy intake 

Energy (kJ) 10717 ± 481 8593 ± 749 16075 ± 722 *† 

Fat (g) - 74 ± 10 277 ± 12 † 

Carbohydrate (g) - 263 ± 23 211 ± 9 † 

Protein (g) - 100 ± 12 125 ± 6 † 
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Data presented are means ± SEM (n = 9). * denotes significantly different to estimated 

energy requirement (p < 0.05). † denotes significantly different to reported intake (p < 0.05) 

 

 

2.3.4 Diet records, physical activity and compliance during high-fat overfeeding 

During the pre-testing visit, subjects were provided with standardised forms and digital 

kitchen scales for the purpose of recording weighed food intake for 3-5 days prior to the first 

main trial. Subjects also received detailed written and verbal instructions on how best to 

complete these records. However, due to the well-known issues with self-reporting of energy 

intake (Dhurandhar et al., 2015), especially underreporting of food intake (Goris et al., 2000; 

Macdiarmid, & Blundell, 1998; Salle et al., 2006), even amongst lean and very well-

motivated subjects (Goris, & Westerterp, 1999), it was decided that estimated energy 

requirements would provide a better overall baseline from which to design and implement the 

overfeeding intervention.  

 

Subjects were expected to eat all of the food provided, and the importance of this was made 

explicitly clear to them during initial consultation and recruitment, but were told to report and 

return any uneaten foods so that our calculations could be adjusted if need be. In order to 

improve diet compliance, subjects were asked to complete a food preferences checklist to 

ensure that they only received foods that they were willing to eat; thereby increasing the 

palatability of the diet. Subjects were also given a copy of their diet plans and asked to tick 

off individual foods/meals as they were consumed. Adherence to the diet was assessed by 

daily interviews that were conducted when subjects collected their food bundles. Only one 

subject reported any issues with the diet, and they returned part of an uneaten steak and ale 

pie from one of the meals. Other than this we are confident that the diet was followed; as 

evidenced by a consistent weight gain in all subjects.  

 

All subjects participated in physical activity on a regular basis and were required to continue 

this throughout the overfeeding period. The written information and verbal instructions stated 

that subjects should expect to gain a small amount of weight and that they should not attempt 

to offset the additional energy intake by exercising longer, harder or more frequently. 
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Table 2.3 Example food intake for 1 day of high-fat overfeeding  

Breakfast 

Foods 3 large pork sausages (175 g), 4 rashers of streaky bacon 

(80 g), 2 large fried eggs (120 g), 1 medium slice of fried 

white bread (36 g), whole milk (300 mL) 

Protein (g) 61 

Carbohydrate (g) 47 

Fat (g) 93 

Energy (kJ) 5277 

% of the days intake 31 

Lunch 

Foods 2 slices of medium white bread (72 g), butter (15 g), 

cheddar cheese (70 g), mayonnaise (15 g) 

Protein (g) 27 

Carbohydrate (g) 36 

Fat (g) 47 

Energy (kJ) 2810 

% of the days intake 16 

Snack 

Foods Potato crisps (50 g), milk chocolate bar (49 g) 

Protein (g) 7 

Carbohydrate (g) 55 

Fat (g) 32 

Energy (kJ) 2238 

% of the days intake 13 

Dinner 

Foods 2 beef burgers (200 g), 4 rashers of streaky bacon (80 g), 

cheddar cheese (60 g), coleslaw (100 g) 

Protein (g) 63 

Carbohydrate (g) 5 

Fat (g) 115 

Energy (kJ) 5411 
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% of the days intake 31 

Dessert 

Foods Chocolate sundae (140 g) 

Protein (g) 4 

Carbohydrate (g) 37 

Fat (g) 21 

Energy (kJ) 1474 

% of the days intake 9 

Total intake 

Protein (g) 162 

Carbohydrate (g) 180 

Fat (g) 308 

Energy (kJ) 17210 

Reported values are from a single subjects’ food intake on 1 day of the overfeeding 

intervention. Water intake was allowed ad libitum. 

 

2.3.5 Experimental protocol  

On the experimental days (before and after overfeeding), subjects reported to the laboratory 

between 07.00 and 09.00 h after an overnight fast of at least 10 h and having refrained from 

physical activity for 48 h. After voiding and being weighed, a 20 gauge Teflon catheter 

(Venflon, Becton, Dickinson, Plymouth, UK) was inserted into an antecubital vein of one 

arm to allow for repeated blood sampling during the 3 h MTT. A baseline, fasting blood 

sample (12.5 mL) was obtained before consumption of a standardised breakfast test meal 

(MTT). The MTT consisted of 45 g Rice Krispies, 72 g white bread (toasted), 20 g butter, 30 

g strawberry jam and 300 mL whole milk. The energy intake and macronutrient composition 

of the test meal was 3227 kJ; 30 g fat, 112 g carbohydrate, and 19 g protein. Upon finishing 

the meal, further blood samples of 12.5 mL were obtained at 30, 60, 90, 120, 150 and 180 

min.  

 

2.3.6 Blood sampling  

For analysis of glucose, non-esterified fatty acids (NEFA), triglyceride (TG), total 

cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), GLP-1 and GIP, 

whole blood samples were collected in 4.9 mL ethylenediaminetetraacetic acid (EDTA; 1.75 
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mg/mL) treated tubes (Sarstedt, Leicester, UK) and spun at 1,750 g in a refrigerated 

centrifuge (4°C) for 10 min. The resulting plasma was aliquoted into 1.5 mL Eppendorfs 

before being stored at -20°C until analysis. For analysis of insulin, whole blood was collected 

in 4.5 mL tubes containing a clotting catalyst (Sarstedt, Leicester, UK). Samples were left at 

room temperature until complete clotting had occurred; after which they were centrifuged at 

1,750 g for 10 min. The resulting serum was then aliquoted into 1.5 mL Eppendorfs and 

stored at -20°C until analysis. Finally, to prevent the degradation of acylated ghrelin, a 25 µL 

solution containing potassium phosphate buffer (PBS), p-hydroxymercuribenzoic acid 

(PHMB) and sodium hydroxide (NaOH) was mixed thoroughly with 2.5 mL of whole blood 

in 2.5 mL EDTA treated tubes. Samples were then centrifuged at 1,750 g for 10 min after 

which 500 µL of the resulting supernatant was removed and added to 50 µL of 1 M 

hydrochloric acid. Acidified samples were centrifuged for a further 5 min at 1,750 g before 

being stored at -20°C until analysis. 

 

2.3.7 Analytical procedures  

Plasma samples were analysed using commercially available spectrophotometric assays for 

glucose, triglyceride, HDL, LDL, total cholesterol (Horiba Medical, Northampton, UK) and 

NEFA (Randox, County Antrim, UK) concentrations using a semi-automatic analyser (Pentra 

400; Horiba Medical, Northampton, UK). The coefficient of variation (CV) for plasma 

glucose, triglyceride, HDL, LDL, total cholesterol and NEFA was 0.5, 3.0, 1.6, 0.5, 0.3 and 

4.1%, respectively. Serum insulin concentrations were determined using an enzyme-linked 

immuno-sorbent assay (ELISA: EIA-2935, DRG instruments GmBH, Germany) and the CV 

was 2%. Acylated ghrelin concentrations were determined using an ELISA (EIA-A05106, 

SPI BIO, France) and the CV was 16%. Total plasma GLP-1 and GIP concentrations were 

also determined via ELISA (EZGLP1T-36K and EZHGIP-54K, respectively; Merck 

Millipore, Darmstadt, Germany). The CV was 7% for GLP-1 and 5% for GIP. To eliminate 

inter-assay variation, samples from each participant were analysed in the same run.    

 

2.3.8 Calculations and statistics  

Area under the curve (AUC) for glucose and insulin was calculated using the trapezoidal rule 

with zero as the baseline. Data are presented as means ± standard error of the mean (SEM). 

Statistical analysis was performed using SPSS (V21.0) for windows (SPSS Inc, Chicago, IL). 

Paired t-tests were used to compare differences in body mass, BMI, and fasting metabolic 

responses before and after overfeeding, whereas the dynamic hormonal and metabolic 
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responses to the MTT were compared using a two-way (trial x time) repeated measures 

analysis of variance (ANOVA) and Bonferroni post hoc analysis where appropriate. 

Statistical significance was set at p < 0.05.  

  



31 

 

2.4 Results 

2.4.1 Weight gain and BMI  

All nine subjects gained body mass following 7 days of high-fat overfeeding (increasing by 

0.79 ± 0.14 kg; p < 0.0001, Table 2.1), and their BMI increased by 0.27 ± 0.05 kg/m2 (p = 

0.002; Table 2.1).   

 

2.4.2 Fasting plasma metabolites 

Fasting substrate, hormone and lipoprotein concentrations before and after high-fat 

overfeeding are presented in table 2.4. Fasting plasma glucose, HDL and GIP increased 

following overfeeding (p = 0.025, p = 0.012 and p = 0.017, respectively), while fasting 

plasma TG and NEFA decreased (p = 0.039 and p = 0.023, respectively). Fasting serum 

insulin, plasma acylated ghrelin, LDL, total cholesterol, and GLP-1 were all unaffected by 

high-fat overfeeding.   

 

Table 2.4 Fasting plasma substrate and hormone concentrations before and after 7-days of 

high-fat overfeeding 

 Before overfeeding After overfeeding 

Glucose (mmol/L) 5.5 ± 0.1 5.8 ± 0.1 * 

Insulin (pmol/L) 67 ± 8 79 ± 9 

NEFA (mmol/L) 0.60 ± 0.05 0.40 ± 0.06 * 

Triglyceride (mmol/L) 1.0 ± 0.1 0.7 ± 0.1 * 

Total cholesterol (mmol/L) 4.0 ± 0.2 4.0 ± 0.2 

HDL (mmol/L) 1.3 ± 0.1 1.5 ± 0.1 * 

LDL (mmol/L) 1.8 ± 0.2 1.8 ± 0.1 

Acylated ghrelin (pmol/L) 318 ± 57 268 ± 39 

GLP-1 (pmol/L) 31 ± 4 31 ± 4 

GIP (pmol/L) 22 ± 2 36 ± 6 * 

Data presented are mean ± SEM (n = 9). * denotes significant change following the dietary 

intervention (p < 0.05)  

 

2.4.3 Mixed meal tolerance test 

Substrate and hormone responses to the 3 hour MTT are presented in figure 2.1. Plasma 

glucose and serum insulin concentrations increased in response to the MTT, peaking 30 min 
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after meal ingestion. Seven days of high-fat overfeeding increased plasma glucose AUC by 

11.6% (from 1020 ± 74 mmol/L per 180 min before overfeeding to 1138 ± 56 mmol/L per 

180 min after overfeeding; p = 0.007, figure 2.1a) and serum insulin AUC by 25.9% relative 

to baseline (from 53267 ± 6375 pmol/L per 180 min before overfeeding to 67046 ± 6849 

pmol/L per 180 min after overfeeding; p = 0.005, figure 2.1b). Plasma NEFA concentrations 

decreased following food consumption. However, there was a more pronounced meal-

induced suppression of plasma NEFA before high-fat overfeeding than afterwards (p < 

0.0001, figure 2.1c). Plasma acylated ghrelin concentrations decreased rapidly following food 

consumption (p < 0.0001, figure 2.1d), reaching a nadir at the 60 min sample point and 

remaining supressed throughout the entire postprandial measurement period. This response 

was not influenced by high-fat overfeeding. Plasma GLP-1 concentrations peaked 30 min 

after food ingestion, returning to fasting levels thereafter, with no difference before and after 

high-fat overfeeding (figure 2.1e). Plasma GIP concentrations increased approximately 3-fold 

immediately following food consumption and remained elevated throughout the 3 h MTT (p 

< 0.0001), but again this response was not influenced by adherence to the high-fat, high-

energy diet (figure 2.1f).  
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Figure 2.1 Plasma glucose (A), serum insulin (B), plasma NEFA (C), plasma acylated 

ghrelin (D), total plasma GLP-1 (E), and total plasma GIP (F) concentrations during a 3 hour 

meal tolerance test conducted before (pre) and after (post) 7-days of high-fat overfeeding 

(HFD). Data presented are mean ± SEM (n = 9). # denotes significant main effect of 

trial/high-fat overfeeding (p < 0.05). * denotes significant difference between trials at the 

annotated time point (p < 0.05).        
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2.5 Discussion  

The main finding of the present study was that postprandial responses of selected gut 

hormones (acylated ghrelin, GLP-1 and GIP) were unaffected by short-term, high-fat 

overfeeding, and that only fasting levels of GIP were altered (increased) as a result of the 

dietary intervention. A secondary finding was that excessive consumption of high-fat foods 

impaired glycaemic control, as evidenced by a significant increase in postprandial glucose 

and insulin AUC.   

 

The incretin hormones, GLP-1 and GIP, are thought to be responsible for the augmentation of 

insulin secretion that occurs after food intake compared with intravenous nutrient 

administration. We chose to investigate the impact of short-term, high-fat overfeeding on 

meal-induced GLP-1 and GIP responses as patients with T2DM exhibit a reduced GLP-1 

secretion following nutrient ingestion (Toft-Nielsen et al., 2001; Vilsboll et al., 2001) and 

may become resistant to the insulinotropic actions of GIP (Nauck et al., 1986; Nauck et al., 

1993; Vilsboll et al., 2002), suggesting that a diminished incretin effect might be partly 

responsible for the development of postprandial hyperglycaemia. In the present study, 

however, we report elevated postprandial glucose and insulin concentrations following 7 days 

of high-fat overfeeding without any changes in GLP-1 or GIP. In this regard, elevated insulin 

concentrations are most probably a simple compensatory mechanism for reduced insulin 

sensitivity (hepatic and/or peripheral tissues) and elevated glucose concentrations. Thus, an 

altered incretin effect does not appear to play a role in the early adaptive response to 

overnutrition or the observed impairment in glycaemic control. Whilst we did observe a 

small, but significant, increase in fasting GIP concentrations, the physiological relevance of 

this remains unclear as fasting insulin concentrations were seemingly unaffected.   

 

As mentioned previously, ghrelin concentrations are known to increase during fasting and 

decrease following food intake (Cummings et al., 2001). This, combined with the observation 

that ghrelin administration stimulates appetite and food intake (Lawrence et al., 2002; Wren 

et al., 2001a; Wren et al., 2001b), has led to the suggestion that ghrelin is an appetite-

regulating hormone that is responsible (at least partially) for eating behaviour. Thus, reduced 

ghrelin levels reported in obese (Cummings et al., 2002; le Roux et al., 2005; Tschop et al., 

2001) and insulin resistant (McLaughlin et al., 2004; Stepien et al., 2011) individuals might 

represent a feedback loop by which the body attempts to reduce food intake within 

individuals that have been exposed to a chronic positive energy balance. Ghrelin is also 



35 

 

known to inhibit insulin secretion (Broglio et al., 2001; Dezaki et al., 2004; Dezaki et al., 

2006; Reimer et al., 2003; Tong et al., 2010), and may, therefore, play a role in glucose 

homeostasis. Indeed, ghrelin knock-out mice exhibit elevated basal insulin concentrations, 

enhanced glucose-stimulated insulin secretion, and improved peripheral insulin sensitivity 

when compared to wild-type controls (Sun et al., 2006). With this in mind, reduced ghrelin 

levels might also be an attempt to lower glucose concentrations within hyperglycaemic obese 

and insulin resistant populations. Given the discussion points above, we might have expected 

to see a high-fat diet-induced decrease in fasting and/or postprandial acylated ghrelin 

concentrations, especially as we observed significant gains in body mass (presumably body 

fat) and increases in both fasting and postprandial glucose concentrations, but this was clearly 

not the case (Figure 2.1d). However, our results are in accordance with other overfeeding 

studies ranging in duration from 3-100 days (Brons et al., 2009; Hagobian et al., 2008; 

Ravussin et al., 2001; Votruba et al., 2009). Thus, it would seem that changes in circulating 

ghrelin concentrations occur secondary to the development of obesity and/or insulin 

resistance rather than in response to relatively short-term positive energy balance or modest 

increases in blood glucose concentrations.    

 

Whilst the selected gut hormones demonstrated little response to the dietary intervention, 

high-fat overfeeding resulted in a significant increase in fasting glucose and postprandial 

glucose and insulin concentrations (Figures 2.1a and 2.1b), which is consistent with a number 

of previous human studies (Cornford et al., 2013; Hulston et al., 2015; Numao et al., 2012; 

Pehleman et al., 2005; Sparti, & Decombaz, 1992). Notably, our findings suggest some 

degree of impaired pancreatic β-cell dysfunction as, in health, the adaptive response to 

changes in insulin sensitivity typically results in a reciprocal increase or decrease in insulin 

release to maintain glucose homeostasis (Kahn et al., 2006). For example, when 

experimentally inducing insulin resistance through administration of nicotinic acid, (Kahn et 

al., 1989) observed an increase in insulin secretion that was sufficient to maintain glucose 

tolerance in young healthy males. Furthermore, a negative association appears to exist 

between increased fasting glucose concentrations and impaired β-cell function, even in those 

who display glucose levels within the normal range (Utzschneider et al., 2006). Reductions in 

β-cell function have previously been reported to be one of the key mediators in the onset of 

T2DM (Kahn, 2001b). Others have reported impairments in skeletal muscle insulin signalling 

without (possibly before) a corresponding decrease in whole-body insulin sensitivity 

(Adochio et al., 2009), or reduced hepatic insulin sensitivity without changes in peripheral 
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glucose uptake (Brons et al., 2009). The lack of mechanistic agreement between some of 

these studies is most likely explained by differences in the duration of overfeeding, the 

varying energy content and/or macronutrient composition of the diets administered, or the 

particular method used for assessing insulin action and glycaemic control (oral glucose 

tolerance test vs. hyperinsulinaemic euglycaemic clamp vs. MTT). Where impairments in 

postprandial glycaemic control have been observed, it would be useful to know the processes 

responsible for such an effect. Blood glucose concentrations are governed by the balance 

between the rate of appearance of glucose from the gut, endogenous glucose production 

(primarily from the liver), and peripheral glucose uptake (mainly skeletal muscle). Therefore, 

the high-fat diet-induced increase in postprandial glucose concentration could be due to a 

defect in one, or a number, of these processes, which warrants further investigation.  

 

In addition to changes in glucose and insulin concentrations, we also observed a significant 

decrease in fasting plasma triglyceride and NEFA concentrations after 7 days of high-fat 

overfeeding. This is consistent with previous work by us (Hulston et al., 2015) and others 

(Adochio et al., 2009; Lagerpusch et al., 2012; Wulan et al., 2014) and most likely reflects a 

decrease in endogenous triglyceride production as a result of increased fat consumption 

(Hellerstein, 2002) and suppression of adipose tissue lipolysis as a result of consuming larger 

and/or more frequent meals. It has been suggested that elevated NEFA concentrations might 

be responsible for the development of insulin resistance and T2DM (Eckel et al., 2005). This 

notion has been fuelled by classical reports of elevated NEFA concentrations in obesity 

(Opie, & Walfish, 1963) as well as acute studies in which NEFA have been elevated by 

means of intravenous lipid-heparin infusion (Boden et al., 1994). The later approach elevates 

NEFA by activating lipoprotein lipase (LPL) located in the vascular endothelium and 

supplying a lipid-based substrate for hydrolysis. More recently, however, the NEFA 

hypothesis of insulin resistance has been questioned as NEFA release per kilogram of adipose 

tissue is reduced as adipose tissue mass increases, and lipid-heparin infusion trials often elicit 

NEFA concentrations far in excess of the disease state that they aim to mimic (Karpe et al., 

2011). Whilst our data tend to support this change in consensus, in that we observed impaired 

glycaemic control at a time when fasting NEFA levels were reduced, we should also point out 

that frequent consumption of high-fat foods throughout the week-long diet intervention could 

have led to a considerable “spill-over” effect, whereby the hydrolysis of diet-derived 

circulating triglycerides could have driven regular postprandial increases in plasma NEFA.   
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It is also interesting to note that the high-fat-diet did not affect total cholesterol or LDL 

concentrations as one might have expected, whereas HDL levels actually increased following 

the dietary intervention. In general, saturated fats (that were highly prevalent in the present 

study) raise total cholesterol and LDL whereas polyunsaturated fats lower total cholesterol 

and LDL, and both types of fat increase HDL (Kris-Etherton, & Yu, 1997; Samaha, 2005). It 

is likely that our study did not affect total or LDL cholesterol levels due to the short duration 

of the diet intervention. Large scale population studies have demonstrated a strong 

association between low levels of HDL and cardiovascular disease risk (Gordon et al., 1977; 

Jenkins et al., 1978; Wilson et al., 1988); a risk that is progressively reduced with increasing 

levels of HDL (Gordon et al., 1989). This has been attributed to the potent anti-

atherosclerotic properties of HDL (Mahdy Ali et al., 2012). Therefore, the increase in HDL 

observed in our study may represent a short-term protective response against the 

atherosclerotic properties of our dietary intervention, although this is largely speculative.     

 

As a last point for consideration, our subjects were all healthy, young, lean and physically 

active, and yet they still exhibited a rapid reduction in glycaemic control as a result of 

excessive consumption of high-fat foods. Whilst there is a paucity of information regarding 

the metabolic responses to overnutrition in humans, especially within at risk populations, one 

might expect even greater deleterious responses in those who are already overweight, 

sedentary or elderly.       

 

In conclusion, in this study we have provided further evidence that short-term, high-fat 

overfeeding leads to impairments in glycaemic control, as indicated by a significant increase 

in meal-induced glucose and insulin responses. Furthermore, the postprandial responses of 

GLP-1, GIP and acylated ghrelin were not affected by the dietary intervention, suggesting 

that these selected gut hormones are not responsive to brief periods of positive energy 

balance and/or severe lipid overload. Therefore, the incretin hormones, and the gut peptide 

ghrelin, are not major regulators of the early adaptive responses to overnutrition. 
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 CHAPTER 3 

 

Short-term, high-fat overfeeding impairs glycaemic 

control in young, healthy, lean individuals by altering the 

coordinated processes regulating plasma glucose flux. 
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3.1 Abstract 

Short-term (4-14 days) high-fat overfeeding is known to impair glycaemic control and reduce 

insulin sensitivity. However, the mechanisms underpinning these observed alterations in 

glucose metabolism are unclear. Thus, the aim of this study was to investigate the individual 

processes contributing to the early diet-induced impairments in glycaemic control in young, 

healthy, non-obese individuals. Fourteen individuals (12 males and 2 females) underwent two 

experimental trials (before and after consumption of a 7-day high-fat [65%] high-energy 

[+50%] diet) during which glycaemic control and systemic glucose kinetics were analysed by 

way of a dual-glucose tracer technique. Briefly, after fasting blood samples had been 

obtained, a primed, continuous infusion of [6,6-2H2]glucose was initiated and continued for 

the duration of the experiment. After 120 minutes of infusion, subjects then ingested a mixed 

carbohydrate and protein beverage which contained 50 g glucose (1.6 g [U-13C6]glucose) and 

15 g whey protein. Measurements of plasma glucose, NEFA and serum insulin were obtained 

before, and 15, 30, 45, 60, 90 and 120 minutes post-ingestion. Postprandial plasma glucose 

AUC was increased by 11.3% (p = 0.006) after overfeeding, and postprandial serum insulin 

AUC was increased by 17% (p = 0.068). Analysis of glucose kinetics revealed the increased 

postprandial glucose response was not attributable to tissue-specific alterations in glucose 

metabolism (i.e. endogenous glucose production or glucose disposal), but rather an imbalance 

in the relationship between plasma glucose rate of appearance and disappearance. This 

imbalance resulted in a 2.5-fold increase in net glucose influx at 30 minutes post-ingestion, 

and a ~28% reduction in glucose efflux at 45 minutes. In conclusion, 7-days high-fat 

overfeeding impairs glycaemic control in young, healthy, non-obese individuals by 

influencing the coordinated processes regulating plasma glucose flux. 

 

Acknowledgement: Stable isotope tracer analysis presented in this chapter was conducted by 

Professor Gerrit van Hall and his team at The Clinical Metabolomics Core Facility, 

Righospitalet.  
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3.2 Introduction  

Type 2 diabetes mellitus (T2DM) represents one of the major causes of morbidity and 

mortality worldwide (Naghavi et al., 2015). Alongside β-cell failure, one of the principal 

defects in T2DM is a state of insulin resistance; defined as a reduced responsiveness of target 

tissues to the physiological actions of insulin (Savage et al., 2005). Insulin resistance impairs 

a broad array of metabolic processes in numerous tissues, however, the most profound effects 

are seen in the dysregulation of glucose homeostasis. This dysregulation is mediated by two 

distinct defects; a reduction in peripheral (i.e. predominantly skeletal muscle, but also adipose 

tissue) glucose uptake, and increased endogenous glucose production (EGP), predominantly 

driven by changes in hepatic glucose output (Samuel, & Shulman, 2016). Elevations in 

glucose concentration are associated with a concomitant increase in insulin secretion, and 

eventual hyperinsulinemia. The prevailing theory regarding the development of T2DM is that 

hyperinsulinemia, caused by chronic hyperglycaemia, effectively exhausts the secretory 

capacity of β-cell, resulting in a gradual decline in function and ultimate failure (Cerf, 2013). 

 

At present, the development of insulin resistance is not fully understood. Obesity is 

considered a significant risk factor. However, there is substantial evidence that brief periods 

of positive energy balance can elicit negative alterations in glucose metabolism before 

substantial increases in body mass/fat. For instance, our laboratory has previously observed 

reductions in whole-body insulin sensitivity of approximately 25% following a 7-day high-

fat, high-energy diet (Hulston et al., 2015). A finding which is supported by other short-term 

(4-14 days) overfeeding studies (Cornford et al., 2013; Lagerpusch et al., 2012; Parry et al., 

2017; Wulan et al., 2014). However, none of the above mentioned studies are able to provide 

any information regarding the mechanisms underpinning these whole-body impairments. 

Therefore, very little is known regarding the pathological time-course of events, and tissue-

specific responses, which are associated with impaired glycaemic control and the 

development of whole-body insulin resistance. When investigating the time-course of 

impairments in insulin sensitivity using a model of combined overfeeding and reduced 

physical activity, Knudsen et al. (2012) demonstrated reductions in oral glucose tolerance 

derived estimates of whole-body insulin sensitivity after only 3-days. This marker of insulin 

sensitivity was further reduced at 7-days and was associated with a compensatory increase in 

postprandial insulin levels during the oral glucose tolerance test which were sufficient to 

maintain plasma glucose homeostasis. At 14-days of intervention clamp derived measures of 
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insulin sensitivity were reduced, attributable to a fall in insulin stimulated glucose uptake 

whereas insulins ability to suppress EGP was maintained (Knudsen et al., 2012).  

 

The findings of Knudsen et al. (2012) are supported by Adochio et al. (2009) who observed 

defects in skeletal muscle insulin signalling in response to a 5-day high-fat high-energy diet. 

These signalling defects occurred without concurrent changes in clamp-derived measures of 

whole-body insulin sensitivity, suggesting that changes at the level of skeletal muscle 

develop ahead of (and possibly mediate) whole-body impairments. However, in direct 

opposition to this, Brons et al. (2009) and (Brons et al., 2012) observed a reduction in hepatic 

insulin sensitivity and increased fasting EGP in lean, healthy men subjected to 5-days of 

high-fat overfeeding, but no change in insulin-mediated glucose uptake during a 

hyperinsulinemic-euglycaemic clamp. A finding which is similar to that seen in lean women 

after 3 days of overfeeding (Cornier et al., 2006). This suggests that it is indeed the liver 

which is the primary site of metabolic dysfunction. These discrepant findings highlight the 

need for further investigations in this area. Therefore, the aims of this study are to provide a 

greater insight into the early-phase impairments in glycaemic control. To this end, we herein 

utilised a model of short-term high-fat overfeeding previously shown by our laboratory to 

reduce whole-body insulin sensitivity and impair glycaemic control (Hulston et al., 2015; 

Parry et al., 2017), in combination with dual-isotopic tracers in order to investigate systemic 

glucose kinetics in response to diet-induced impairments in glycaemic control in young, 

healthy, lean individuals. Using this approach it is possible to determine EGP, the absorption 

of digested glucose from the gut, and whole-body glucose uptake.  
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3.3 Methods 

3.3.1 Subjects  

Seventeen healthy individuals were initially recruited to participate in this study but two were 

excluded due to experimenter concerns regarding dietary compliance. Furthermore, a full 

data set is unavailable for one participant due to experimental error with the preparation of 

the tracer infusate. Therefore, data is presented for 14 subjects (12 males and 2 females; their 

physical characteristics can be seen in Table 3.1). The inclusion criteria required subjects to 

be physically active (exercising at least 3 times per week for more than 30 minutes at a time), 

non-smokers, free from cardiovascular and metabolic disease, not taking any medication, 

weight stable for at least 6 months, and with a body mass index (BMI) below 30 kg/m2. The 

study was conducted according to the guidelines laid down in the Declaration of Helsinki and 

approved by the Loughborough University Ethical subcommittee for human participants. The 

experimental procedures and possible risks were fully explained to the subjects before their 

written informed consent was given. 

 

Table 3.1 Subject characteristics before and after 7 days of high-fat overfeeding. 

Characteristics Before overfeeding After overfeeding 

Age (years) 24.9 ± 1.0  - 

Height (cm) 176.5 ± 2.2  - 

Body mass (kg) 77.4 ± 3.2  78.8 ± 3.3 * 

BMI (kg/m2) 24.7 ± 0.6  25.1 ± 0.7 * 

Data presented are means ± SEM (n = 14). * denotes significant change following the dietary 

intervention (p < 0.05). 

 

3.3.2 Pre-testing  

Prior to the start of the study, subjects attended the laboratory for an initial assessment of 

their baseline anthropometric characteristics (height, weight and BMI). This information was 

then used to estimate their resting energy expenditure (REE) according to the calculations 

described by Mifflin et al. (1990). A standard correction for physical activity level (1.6 and 

1.7 times REE for females and males, respectively) was applied in order to estimate total 

daily energy requirements. Diet-induced thermogenesis (DIT) was estimated pre-intervention 
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as 10% of energy intake (Westerterp, 2004). This information was then used to determine 

individual energy intakes for the week-long overfeeding period (diet details described later). 

 

3.3.3 Experimental design  

Approximately 1-week after the initial pre-testing visit, subjects returned to the laboratory for 

two experimental trials; one immediately before, and one immediately after, a 7-day, high-

energy, high-fat dietary intervention (described below). Briefly, during the experimental 

trials, circulating substrate and hormone concentrations were determined before, and for 2-h 

after the ingestion of a mixed carbohydrate and protein beverage (described in detail below). 

A dual-glucose tracer technique (described in detail below) was also utilised at this time to 

determine systemic glucose kinetics (i.e. total glucose rate of appearance [Ra total], glucose 

rate of disappearance [Rd], oral glucose rate of appearance [Ra oral], and endogenous glucose 

rate of appearance [Ra endo]). The dietary intervention was designed to be high in fat (65% 

total energy) and provide a severe energy excess (+ 50% kJ). Mean energy intake throughout 

the dietary intervention was 20181 ± 734 kJ, with 13117 ± 477 kJ provided as fat (more 

detailed information regarding the dietary intervention can be viewed in chapter 2). All foods 

were purchased and prepared by the research team. Subjects were instructed to eat all of the 

food provided, and to maintain normal, habitual physical activity levels during the 

intervention period.  

 

3.3.4 Experimental protocol  

On the experimental days (before and after overfeeding) subjects reported to the laboratory 

between 07.00 and 09.00 h after an overnight fast of at least 10 h and having refrained from 

physical activity for 48 h. After voiding and being weighed, a 20 gauge Teflon catheter 

(Venflon, Becton, Dickinson, Plymouth, UK) was inserted into an antecubital vein on each 

arm to allow for repeated blood sampling and infusion of stable isotope tracers. A baseline, 

fasting venous blood sample (10 mL) was obtained to determine fasting metabolite 

concentrations and background isotopic enrichment before a primed constant infusion of [6,6-

2H2]glucose (0.35 µmol/kg/min, prime 14 µmol/kg) was initiated and continued for the 

duration of the experiment. Blood samples (10 mL) were obtained 90, 105 and 120 min into 

the infusion period to ascertain isotopic steady state, after subjects ingested a mixed 

carbohydrate and protein beverage (CHO + PRO; described in detail below). Further venous 

blood samples (10 mL) were obtained at 15, 30, 45, 60, 90 and 120 min post-ingestion, and 

additional muscle biopsies were obtained at 30 and 120 min post-ingestion. Stable isotopes 
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were purchased from Cambridge Isotope Laboratories (Andover, MA). A schematic of the 

experimental protocol can be viewed in Figure 3.1. 

 

 

 

Figure 3.1. Schematic of experimental protocol. CHO + PRO = 50 g glucose (48.4 g 

unlabelled and 1.6 g [U-13C]glucose) and 15 g whey protein. * denotes an approximate 10 

minute delay between sampling and ingesting the CHO + PRO beverage. 

 

3.3.5 Beverages  

The CHO + PRO beverage was a 12.5% glucose solution (48.4 g unlabelled and 1.6 g [U-

13C]glucose dissolved in 400 mL of water) with the addition of 15 g whey protein in the form 

of a commercially available protein supplement (Volac; UltraWhey 90, Hertfordshire, UK). 

The amino acid content of the protein was (in percent content wt:wt): Alanine, 5; Arginine, 

2.1; Aspartic acid, 11; Cysteine, 2.2; Glutamic acid, 18.1; Glycine, 1.4; Histidine, 1.7; 

Isoleucine, 6.4; Leucine, 10.6; Lysine, 9.6; Methionine, 2.2; Phenylalanine, 3; Proline, 5.5; 

Serine, 4.6; Threonine, 6.7; Tryptophan, 1.4; Tyrosine, 2.6, and Valine, 5.9.  

 

3.3.6 Blood sampling 

For analysis of glucose, non-esterified fatty acids (NEFA), triglyceride (TG), total 

cholesterol, high-density lipoprotein (HDL), low-density lipoprotein LDL, and tracer 

concentrations and enrichments, whole blood samples were collected in 4.9 mL 

ethylenediaminetetraacetic acid (EDTA; 1.75 mg/mL) treated tubes (Sarstedt, Leicester, UK) 

and spun for 10 min at 1,750 g in a refrigerated centrifuge (4°C). The resulting plasma was 
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aliquoted into 1.5 mL Eppendorfs and stored at -20°C until analysis. For analysis of insulin, 

whole blood was collected in 4.5 mL tubes containing a clotting catalyst (Sarstedt, Leicester, 

UK). Samples were left at room temperature until complete clotting had occurred, after which 

they were also spun for 10 min at 1,750 g in a refrigerated centrifuge (4°C). The resulting 

serum was aliquoted into 1.5 mL Eppendorfs and stored at -20°C until analysis. 

 

3.3.7 Analytical procedures 

Plasma samples were analysed using commercially available spectrophotometric assays for 

TG, total cholesterol, HDL, LDL, (Horiba Medical, Northampton, UK) and NEFA (Randox, 

County Antrim, UK) concentrations using a semi-automatic analyser (Pentra 400; Horiba 

Medical, Northampton, UK). Serum insulin concentrations were determined using an 

enzyme-linked immuno-sorbent assay (ELISA: EIA-2935, DRG instruments GmBH, 

Germany). To eliminate inter-assay variation, samples from each participant were analysed in 

the same run.   

 

3.3.8 Plasma glucose concentration and enrichment analysis 

Prior to derivatisation, 50 µL of plasma was mixed with 50 µL internal standard ([U-

13C,2H7]glucose), and 100 µL ethyl acetate (LiChroSolv ≥99.8%, Merck KGaA, Germany). 

Samples were then vortexed for 5 minutes (2000 rpm) using an Eppendorf MixMate 

(Eppendorf AG, Hamburg, Germany), before being centrifuged at 15,700 relative centrifugal 

force (rcf) for 5 minutes (Sigma 1K15 centrifuge, Osterode am Harz, Germany). After 

centrifugation, the upper organic phase was disposed, and derivatisation was performed by 

adding 20 µL of 1 M K2HPO4, 20 µL of 8 M NaOH, and 10 µL benzoyl chloride to the 

remaining sample. The benzoylated derivatives were then immediately vortexed for 5 

minutes, before being neutralised with 10 µL 1.4 M H3PO4 and extracted with 500 µL 

ethylacetate. Samples were then vortexed for 2-3 minutes (2000 rpm), before being 

centrifuged at 15,700 rcf for 5 minutes. Hereafter, 100 µL of the ethylacetate phase was 

aliquoted into a new Eppendorf. The extraction procedure was repeated once more and a 

further 100 µL ethylacetate was added to the first; resulting in a final volume of 200 µL. This 

sample was then evaporated to dryness under a stream of nitrogen for 5-10 minutes. The 

precipitate was then re-dissolved in 200 µL injection buffer (10 mM NH4AC in 75:25 [v/v %] 

acetonitrile/water) and vortexed for 1 minute prior to being filtered through a 0.45 µm 96-

well filter plate within a vacuum manifold (Pall Corporation, Ann Arbor, MI, USA) and 

directionally transferred to high performance liquid chromatography (HPLC) vials for 
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analysis. The enrichment of [6,6-2H2]glucose and [U-13C]glucose was then determined by 

liquid chromatography-tandem mass spectrometry (LC-MS/MS). The glucose derivatives 

were quantified by selected ion monitoring at mass-to-charge (m/z) of 231, 233, 237, and 243 

for glucose, [6,6-2H2]glucose (M+2), [U-13C]glucose (M+6), and [U-13C,2H7]glucose (the 

M+12 peak was utilised due to the loss of one of the seven deuterium labels during 

fragmentation by MS/MS). 

 

3.3.9 Systemic glucose kinetics 

Ra total (equation 1) and Rd (equation 2) of glucose was determined through analysis of [6,6-

2H2]glucose in combination with the single-pool, non-steady state equations of (Steele, 1959), 

modified for use with stable isotopes (Radziuk et al., 1978). Ra total represents the combined 

systemic appearance of glucose from Ra endo (primarily from the liver and a possible minor 

contribution from the kidneys), and the digestion and absorption of glucose from ingested 

carbohydrate (Ra oral).   

 

1) Ra total = F - V·([C2 + C1]/2) X [Ep2 - Ep1]/t2-t1)/([Ep2 + Ep1]/2) 

 

2) Rd = Ra total - V X (C2 + C1)/(t2 - t1) 

 

Where F represents the glucose infusion rate; V is volume for distribution (40 mL/kg); C1 and 

C2 are total glucose concentrations (i.e. the sum of endogenous unlabelled, infused [6,6-

2H2]glucose, and ingested [U-13C]glucose) at time-points (t) t1 and t2 respectively; and Ep1 and 

Ep2 are the [6,6-2H2]glucose enrichments in plasma at t1 and t2 respectively. Ra endo was 

determined via modification of equation 1; where, C1 and C2 are 2H2 glucose concentrations 

at time-points t1 and t2 respectively. Ra oral = Ra total – Ra endo.  

 

3.3.10 Calculations and statistics  

Area under the curve (AUC) for glucose, insulin and NEFA was calculated using the 

trapezoidal rule with zero as the baseline. Data are presented as means ± standard error of the 

mean (SEM). Statistical analysis was performed using SPSS (V21.0) for windows (SPSS Inc, 

Chicago, IL). Paired t-tests were used to compare differences in body mass, BMI, and fasting 

metabolic responses before and after overfeeding, whereas the dynamic hormonal and 

metabolic responses to carbohydrate and protein ingestion were compared using a two-way 

(trial x time) repeated measures analysis of variance (ANOVA) and Bonferroni post hoc 
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analysis where appropriate. Statistical significance was set at p < 0.05. Prior to analysis, all 

data were tested for normality according to the Shapiro-Wilk test. Due to demonstrating a 

skewed distribution, and thus violating the assumptions of normality, logarithmic 

transformation of Ra total, Rd, Ra oral and Ra endo data was performed prior to statistical analysis. 

However, in order to maintain physiological relevance, all data are maintained as raw values 

for the purpose of graphical presentation.  
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3.4 Results 

3.4.1 Weight gain and BMI 

All 14 subjects gained body mass following the overfeeding intervention (increasing by 1.3 ± 

0.3 kg) (p < 0.0001, Table 3.1), leading to an increase in BMI of 0.44 ± 0.08 kg/m2 (p < 

0.0001, Table 3.1). 

 

3.4.2 Fasting metabolic responses 

Fasting substrate, hormone and lipoprotein concentrations before and after overfeeding are 

presented in table 3.2. Fasting plasma glucose, HDL, total cholesterol and serum insulin all 

increased after overfeeding (p = 0.05, p < 0.0001, p = 0.011, and p = 0.04, respectively). 

Whereas, plasma TG and serum NEFA decreased (p < 0.0001, and p = 0.005, respectively). 

Fasting plasma LDL was unaffected by high-fat overfeeding (p = 0.182).  

 

Table 3.2 Fasting substrate, hormone, and lipoprotein concentrations before and after 7-days 

of high-fat overfeeding. 

 Before overfeeding After overfeeding 

Glucose (mmol/L) 4.78 ± 0.08 5.08 ± 0.08 * 

Insulin (pmol/L) 65 ± 6 76 ± 5 * 

TG (mmol/L) 0.82 ± 0.07 0.59 ± 0.06 * 

NEFA (mmol/L) 0.66 ± 0.09 0.41 ± 0.05 * 

LDL (mmol/L) 2.17 ± 0.14 2.08 ± 0.14 

HDL (mmol/L) 1.32 ± 0.08 1.57 ± 0.08 * 

Total cholesterol (mmol/L) 3.75 ± 0.16 3.90 ± 0.12 * 

Data presented are means ± SEM (n = 14). Fasting plasma glucose, NEFA and serum insulin 

represent mean values across the -30 - 0 min period before CHO + PRO ingestion. All other 

measures were performed on the single, -30 min sample. * denotes significant change 

following the dietary intervention (p < 0.05).  

 

3.4.3 Substrate and hormone responses to carbohydrate and protein ingestion 

Substrate and hormone responses to CHO + PRO before and after overfeeding are presented 

in Figure 3.2. Plasma glucose and serum insulin increased in response to CHO + PRO 

ingestion, peaking at 30-45 min (figure 3.2a and 3.2c, respectively). There was a significant 

trial x time interaction evident for plasma glucose (p = 0.002, figure 3.2a). Plasma glucose 
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AUC was increased by 11.3% after overfeeding (from 596 ± 24 mmol/L per 120 min before 

overfeeding to 663 ± 20 mmol/L per 120 min after overfeeding; p = 0.006, figure 3.2b). A 

significant trial x time interaction was also evident for serum insulin (p = 0.002, figure 3.2c). 

Serum insulin AUC increased by 17% following overfeeding (from 34433 ± 3958 pmol/L per 

120 min before overfeeding to 40210 ± 3332 pmol/L per 120 min after overfeeding), but this 

failed to reach significance (p = 0.068, figure 3.2d). Plasma NEFA concentrations decreased 

in response to CHO + PRO ingestion, reaching a nadir at 90 minutes post-ingestion in both 

trials (figure 3.2e). Plasma NEFA also displayed a significant time x trial interaction (p < 

0.0001, figure 3.2e). Plasma NEFA AUC was reduced by 17% after overfeeding (from 26.4 ± 

2.4 mmol/L per 120 min before overfeeding, to 21.9 ± 1.7 mmol/L per 120 min after 

overfeeding; p = 0.045, figure 3.2f).  
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Figure 3.2 Fasting and postprandial plasma glucose (A), serum insulin (C), and plasma 

NEFA (E) concentrations, and plasma glucose (B), serum insulin (D), and plasma NEFA 

AUC (F), before (pre) and after (post) 7-days of high-fat overfeeding (HFD). Time point 0 

represents mean (-30-0 minutes) fasting values. Data presented are means ± SEM (n = 14). * 

denotes significant difference between trials at the annotated time point (p < 0.05). # denotes 

significant main effect of trial/high-fat overfeeding (p < 0.05). 

 

3.4.4 Systemic glucose kinetics 

Plasma enrichment of the infused [6,6-2H2]glucose and ingested [U-13C]glucose are presented 

in figure 3.3. Plasma [6,6-2H2]glucose enrichment decreased following CHO + PRO 
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ingestion, reaching a nadir at 90 minutes post-ingestion, whereas [U-13C]glucose enrichment 

displayed an inverse response, increasing after CHO + PRO ingestion and peaking at 90 

minutes. No difference in plasma [6,6-2H2]glucose or [U-13C]glucose enrichments were 

evident between trials (p = 0.330, and p = 0.066, respectively). Plasma Ra total, Rd, Ra oral, and 

Ra endo are presented in figure 3.4a-d, respectively. As expected, plasma Ra total increased in 

response to CHO + PRO ingestion, peaking at 90 minutes post ingestion (figure 3.4a). Ra oral 

also increased across time, peaking at 90 minutes (figure 3.4c). Ra endo displayed an inverse 

response, gradually decreasing across time and reaching a nadir at 120 minutes (figure 3.4d). 

Plasma glucose Rd gradually increased from 15 minutes post-ingestion onwards, reaching a 

peak at 60-90 minutes (figure 3.4b). Overfeeding did not influence Ra total (p = 0.168), Rd (p = 

0.098), Ra oral (p = 0.148), or Ra endo (p = 0.217). Nonetheless, while neither Ra total nor Rd 

displayed significant differences between trials, a significant trial x time interaction was 

observed when calculating Ra total - Rd (p = 0.023, figure 3.5). This interaction affect is 

attributable to larger differences between Ra total and Rd at 30, 45 and 60 minutes post CHO + 

PRO ingestion when comparisons are made across trials. To elaborate, during both trials 

there was an imbalance in favour of Ra total evident at 30 minutes post ingestion. However, the 

magnitude of this imbalance was considerably greater after overfeeding, resulting in a 2.5-

fold greater net glucose influx at this time. Furthermore, while both trials displayed a shift in 

balance in favour of Rd at 45 minutes post-ingestion, net efflux was 28% lower after 

overfeeding. These divergent responses (i.e. greater net glucose influx at 30 minutes, and 

reduced net glucose efflux at 45 minutes) are responsible for the higher postprandial plasma 

glucose concentrations seen after overfeeding (figure 3.2a). Net glucose efflux at 60 minutes 

post ingestion was 80% greater after overfeeding (figure 3.5). However, this compensatory 

response was insufficient to normalise plasma glucose concentrations which remained higher 

than pre-overfeeding levels throughout the postprandial period (figure 3.2a). 
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Figure 3.3 Plasma [6,6-2H2] and [U-13C] glucose enrichments. Time points -30 – 0 min 

represent the final 30 min of the initial 2-h infusion period. All subsequent time points are 

following the ingestion of CHO + PRO. Data presented are means ± SEM (n = 28). As no 

significant differences were evident between trials (i.e. before and after overfeeding) data 

were grouped for graphical presentation.  
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Figure 3.4 Plasma glucose Ra total (A), Rd (B), Ra oral (C), and Ra endo (D) before (pre) and after 

(post) 7-days of high-fat overfeeding (HFD). Time points -15 – 0 min represent the final 15 

min of the initial 2-h infusion period. All subsequent time points are following the ingestion 

of CHO + PRO. Data presented are means ± SEM (n = 14). 
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Figure 3.5 Fasting and postprandial Ra total - Rd before (pre) and after (post) 7-days of high-fat 

overfeeding (HFD). Time points -15 – 0 min represent the final 15 min of the initial 2-h infusion 

period. All subsequent time points are following the ingestion of CHO + PRO. Data presented 

are means ± SEM (n = 14).  
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3.5 Discussion 

The main finding of the present study was that 7-days of high-fat overfeeding impaired 

glycaemic control in young, healthy, non-obese individuals, as evidenced by a significant 

increase in postprandial glucose AUC in the presence of similar, or somewhat elevated, 

insulin levels (17% non-significant increase). Our data indicates that this impairment is 

underpinned by a subtle change in the relationship between glucose appearance and 

disappearance that would favour an accretion of plasma glucose over time, rather than overt 

tissue-specific alterations in glucose metabolism such as increased EGP or reduced peripheral 

glucose uptake.  

 

Negative alterations in glucose metabolism following short-term (4-14 days) overfeeding 

protocols, including impaired glycaemic control and reductions in whole-body insulin 

sensitivity, have previously been observed by our laboratory and others (Cornford et al., 

2013; Hulston et al., 2015; Lagerpusch et al., 2012; Parry et al., 2017; Wulan et al., 2014). 

However, while these studies highlight the rapidity with which overnutrition can negatively 

impact glucose metabolism, they provide no information as to the mechanisms underpinning 

these whole-body impairments. The utilisation of a dual-glucose tracer technique in this study 

allowed us to examine the individual processes which contribute to whole-body glycaemic 

control (i.e. intestinal absorption of glucose following carbohydrate ingestion [Ra oral], EGP 

[Ra endo], or whole-body glucose uptake [Rd]), and thus gain a more complete understanding 

of the early metabolic responses to overnutrition. Intriguingly, in the present study 

postprandial glucose AUC was increased by 11.3% after overfeeding, however, this increase 

occurred without any observable, diet-induced changes in Ra total, Rd, Ra oral or Ra endo. 

Nonetheless, when comparing plasma glucose flux (Ra total - Rd) between trials it is evident 

that overfeeding induces an imbalance between glucose appearance and disappearance which 

would favour the accretion of plasma glucose. These imbalances manifest as a 2.5-fold 

increase in net glucose influx at 30 minutes post-ingestion, and a ~28% reduction in net 

glucose efflux at 45 minutes. Therefore, the findings of our study would suggest that it is not 

overt, tissue-specific alterations in glucose metabolism per se (e.g. increased EGP or reduced 

peripheral glucose uptake), that underpin the early impairments in glycaemic control, but 

rather, subtle changes in the coordinated responses which regulate glucose flux. 

 

There is limited available literature providing any mechanistic insight into the early-phase 

responses to overnutrition in humans. Furthermore, of the literature that is available there 
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appears considerable inconsistencies; with some reports suggesting the early impairments in 

whole-body glucose metabolism are attributable to changes in hepatic insulin sensitivity and 

increased EGP (Brons et al., 2009; Cornier et al., 2006), whereas others suggest that skeletal 

muscle is the primary site of metabolic dysfunction (Adochio et al., 2009; Knudsen et al., 

2012). It is likely that these divergent responses are attributable to methodological differences 

such as the duration and magnitude of overfeeding, the macronutrient composition of the 

experimental diets, and the physical activity levels of participants during the intervention. 

These methodological differences make direct comparisons with the present study difficult. 

Furthermore, all of the above mentioned studies assessed insulin sensitivity by way of a 

hyperinsulinemic-euglycaemic clamp. While the hyperinsulinemic-euglycaemic clamp is 

considered the “gold-standard” method for determining insulin sensitivity in humans (Kim, 

2009), it is a steady-state (static) measure and therefore does not accurately reflect the 

dynamic glucose and insulin responses seen in humans during the postprandial period. The 

use of a dual-glucose tracer technique can therefore be considered a major strength of the 

current study as it allows for determination of the integrated physiological responses seen in 

humans after feeding. However, it is pertinent to note that unlike the hyperinsulinemic-

euglycaemic clamp our method measures oral glucose tolerance and not insulin sensitivity, 

and it is therefore influenced by a variety of factors including insulin sensitivity, insulin 

secretion, incretin hormone response, and neural inputs (Bartoli et al., 2011; Stumvoll et al., 

2001). Therefore it is possible that this method is not sensitive enough to detect small 

differences in tissue-specific insulin sensitivity. The sensitivity of the dual-glucose tracer 

technique has previously been questioned, and a triple-tracer method proposed (Basu et al., 

2003; Toffolo et al., 2006; Toffolo et al., 2008). However, whilst the triple tracer approach 

may be more sensitive, it requires a substantial degree of expertise due to the experimental 

and analytical complexity of the method. Expertise that is currently unavailable to our 

laboratory. Conversely, the dual-glucose method has previously been reported to be accurate 

and reliable in postprandial conditions (Haidar et al., 2012). It would be of interest to 

combine the dual-glucose tracer method with arterio-venous difference measures across 

skeletal muscle and adipose tissue in an attempt to improve sensitivity; it would not be 

possible to assess hepatic insulin sensitivity in this manner. Additionally, while we failed to 

see significant changes in factors such as EGP or peripheral glucose disposal in the current 

study, it is possible that significant differences in these processes may have been apparent 

under more controlled levels of insulinaemia, such as that achieved during hyperinsulinemic-

euglycaemic clamps. This premise can also be extended to explain the apparent discrepancies 
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regarding tissue-specific responses reported in the above studies (Adochio et al., 2009; Brons 

et al., 2009; Cornier et al., 2006; Knudsen et al., 2012), as each of these studies assessed 

insulin sensitivity under different insulin infusion rates.  

 

Alongside augmented glucose and insulin responses, we also observed a significant reduction 

in fasting plasma NEFA and TG after the 7-day overfeeding intervention. Reductions in 

fasting NEFA and TG seem to be a salient feature of short-term, high-fat, overfeeding 

studies, (Adochio et al., 2009; Brons et al., 2009; Parry et al., 2017; Wulan et al., 2014). 

However, the underlying cause of these responses are yet to be clarified. Possible 

explanations include a reduction in endogenous TG production due to a relative reduction in 

carbohydrate consumption throughout the dietary interventions (Hellerstein, 2002), and an 

increase in the suppression of adipose tissue lipolysis resulting from increased insulin 

concentrations. Nevertheless, the reduction in plasma TG and NEFA could also be due to 

increased uptake/storage in ectopic depots such as the liver and skeletal muscle. Indeed, 

substantial increases in intramyocellular (Adochio et al., 2009; Bachmann et al., 2001; 

Schrauwen-Hinderling et al., 2005), and hepatic (Rosqvist et al., 2014; Sobrecases et al., 

2010; van der Meer et al., 2008) lipid concentrations have previously been reported after 

short-term high-fat overfeeding. Previous research investigating the correlation between 

insulin sensitivity and intramyocellular lipid (IMCL) concentrations have demonstrated 

equivocal findings, with positive (Goodpaster et al., 2001; Haus et al., 2011), negative 

(Krssak et al., 1999; Pan et al., 1997), and no relationship (Thamer et al., 2003) all reported. 

Conversely, there is evidence to suggest that increases in hepatic lipid content may be more 

closely related to insulin resistance and other features of the metabolic syndrome than IMCL 

accumulation (Kotronen et al., 2008). This is interesting as both the macronutrient and fatty 

acid composition of diets appears to differently modulate hepatic fat content, even in the 

context of overfeeding; with diets which are high in saturated fat increasing liver fat to a 

greater extent than diets high in carbohydrate, or monounsaturated and polyunsaturated fat 

(Yki-Jarvinen, 2015). Thus, some of the inconsistencies between overfeeding studies may be 

explained by differences in the site of lipid deposition attributable to different intervention 

diets. However, further research focusing on in depth measures of fatty metabolism are 

required in order to elucidate this.  

 

The experimental cohort chosen in the current study were young, healthy, non-obese, males 

and females who were recreationally active. These individuals were chosen in order to avoid 
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the potentially confounding factors associated with excess adiposity, thus ensuring any 

observed responses were a result of the intervention and not due to pre-existing metabolic 

complications or chronic inactivity. However, it is likely that these individuals are relatively 

metabolically flexible, and are thus able to somewhat adapt to the dietary intervention. 

Indeed, while we saw significant increases in the postprandial glucose response after 

overfeeding, circulating glucose levels at 2 h post-glucose load were considerably lower than 

the diagnostic values of impaired glucose tolerance (i.e. 7.7-11 mmol/L), although, it must be 

noted that in this study participants ingested 50g of glucose rather than the standard 75g used 

in clinical settings (Nathan et al., 2007). It is therefore possible that the dietary intervention 

employed in the current study may produce a more dramatic effect, and elicit different 

responses in populations at risk of developing T2DM (e.g. middle aged, sedentary, 

overweight males [Lee et al., 2013]).  

 

In conclusion, the findings of our study demonstrate that 7-days high-fat overfeeding impairs 

glycaemic control in young, healthy, non-obese individuals. These impairments are 

seemingly underpinned, by subtle differences in the coordinated processes that regulate 

plasma glucose flux rather than tissue-specific alterations in glucose metabolism. It is 

possible that these findings may be exacerbated in populations at risk of developing T2DM. 
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 CHAPTER 4 

 

A single day of excessive dietary fat intake impairs whole-

body insulin sensitivity in healthy, non-obese, young men. 
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4.1 Abstract  

Reductions in insulin sensitivity can be observed in healthy, lean individuals within just a few 

hours of intravenous lipid-heparin infusion. Short-term (4-14 days) high-fat overfeeding has 

also been shown to reduce insulin sensitivity and impair glycaemic control in healthy 

individuals. However, the time-course of these diet-induced impairments remains unclear. 

Therefore, the aim of this study was to determine if one day of high-energy, high-fat feeding 

impairs whole-body insulin sensitivity in young, healthy, non-obese males. Ten males 

underwent an oral glucose tolerance test (OGTT) before and after consuming a high-fat 

(73%), high-energy (+80%) diet for 1 day. Measurements of plasma glucose, NEFA and 

serum insulin were measured at baseline (fasting) and during the 2 h postprandial period after 

glucose ingestion. One day of high-fat overfeeding increased postprandial glucose AUC by 

16.2% (p = 0.008), and postprandial insulin AUC by 14.1% (p = 0.085). Whole-body insulin 

sensitivity, calculated by the Matsuda insulin sensitivity index, was reduced by 24% after 

overfeeding (p = 0.021). In conclusion, in this study we demonstrate that only a single day of 

excessive high-fat food intake is sufficient to impair glycaemic control in young, healthy, 

non-obese males. 

 



61 

 

4.2 Introduction  

Whilst chronic obesity is a major risk factor for the development of insulin resistance and 

type 2 diabetes mellitus (T2DM), insulin resistance can be induced very rapidly (within just a 

few hours) in healthy, lean individuals by means of an intravenous (iv) lipid-heparin infusion 

(Boden et al., 1994; Boden et al., 1991). This model increases plasma non-esterified fatty 

acids (NEFA) by providing an exogenous source of triglycerides as well as activating 

endothelial lipoprotein lipase (LPL; an enzyme responsible for the hydrolysis of circulating 

triglycerides). This, combined with early observations that NEFA are elevated in obese 

individuals (Opie, & Walfish, 1963) has led to the hypothesis that elevated circulating fatty 

acids are a major regulator of insulin resistance (Eckel et al., 2005). An alternative approach 

to study the early onset of insulin resistance and T2DM is through high-fat food consumption 

(i.e., the high-fat diet model). Using this model, human studies have reported negative 

alterations in glucose metabolism, including impaired glycaemic control (Cornford et al., 

2013; Parry et al., 2017; Wulan et al., 2014), and reductions in whole-body (Hulston et al., 

2015), and hepatic (Brons et al., 2009) insulin sensitivity within just a few (4-14) days. 

Paradoxically, these effects occur despite only small increases in body mass (body fat) and 

with unchanged or even reduced plasma NEFA concentrations; thereby casting some doubt 

on the NEFA hypothesis of insulin resistance. 

 

Currently, very little is known regarding the time-course of the observed diet-induced 

impairments in glucose metabolism. One recent study reported that oral administration of a 

single dose of soybean oil (100 mL) reduced whole-body insulin sensitivity (assessed by 

hyperinsulinaemic-euglycaemic clamp) to a level comparable to that observed during an 

energy- and composition-matched iv lipid-heparin infusion (Nowotny et al., 2013). 

Intriguingly, this response occurred independently of NEFA levels, which were elevated 

during fat infusion but unchanged following fat ingestion, and may suggest that insulin 

resistance occurs via different mechanistic pathways depending on the method of lipid 

administration. A practical criticism of the study by Nowotny et al. (2013) would be the use 

of a single fat supplement (i.e. soybean oil), as opposed to realistic meal options, and the fact 

this supplement was particularly high in polyunsaturated fat (61% polyunsaturated, 23% 

monounsaturated, and 16% saturated), whereas a Westernised diet is typically far higher in 

saturated fat (van Dam et al., 2002). Additionally, insulin sensitivity was assessed 6 hours 

post-ingestion (or commencement of continuous lipid-heparin infusion) and, as the responses 
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associated with the digestion and metabolism of dietary fat typically last between 6 to 8 h 

(Pramfalk et al., 2015; Pramfalk et al., 2016), it is likely that the subjects were still in a 

postprandial state upon commencement of the clamp. Elevated levels of both chylomicron 

triglycerides and incretin hormones (glucagon-like peptide-1 [GLP-1] and gastric inhibitory 

polypeptide [GIP]) at 6 h support this notion. Thus, the observed decrease in insulin 

sensitivity may have been a transient response to fat ingestion/infusion, and it remains to be 

seen whether this response would persist into the postabsorptive state. To address these 

issues, we determined the effect of a single day of high-fat food intake on whole-body insulin 

sensitivity. Food intake followed a normal daily feeding pattern (i.e., breakfast, lunch, dinner 

and snacks), was high in saturated fat, and the assessment of insulin sensitivity took place 

after an overnight fast of at least 10 h.  
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4.3 Methods 

4.3.1 Subjects 

Ten healthy males (their physical characteristics can be seen in Table 4.1) volunteered to 

participate in this study. The inclusion criteria required subjects to be physically active 

(exercising at least 3 times per week for more than 30 minutes at a time), non-smokers, free 

from cardiovascular and metabolic disease, not taking any medication, weight stable for at 

least 6 months, and with a body mass index (BMI) below 30 kg/m2. The study was conducted 

according to the guidelines laid down in the Declaration of Helsinki and approved by the 

Loughborough University Ethical subcommittee for human participants. The experimental 

procedures and possible risks were fully explained to the subjects before their written 

informed consent was given.  

 

Table 4.1 Subject characteristics before and after 1-day of high-fat overfeeding  

 Before overfeeding After overfeeding 

Age (years) 22.1 ± 0.5 - 

Height (cm) 180.9 ± 2.1 - 

Body mass (kg) 86.0 ± 3.2 86.8 ± 3.2 * 

BMI (kg/m2) 26.4 ± 1.1 26.6 ± 1.1* 

Body fat (%) 16.2 ± 1.4 - 

Data presented are means ± SEM. (n = 10) * denotes a significant change following the 

dietary intervention (p < 0.05). 

 

4.3.2 Pre-testing  

Prior to the start of the study, subjects attended the laboratory for an initial assessment of 

their baseline anthropometric characteristics (height, weight and BMI). This information was 

then used to estimate their resting energy expenditure (REE) according to the calculations 

described by Mifflin et al. (1990). A standard correction for physical activity level (1.7 times 

REE) was applied in order to estimate total daily energy requirements. This information was 

then used to determine individual energy intakes for the 1-day overfeeding period (diet 

details described later). 
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4.3.3 Experimental design 

After the initial pre-testing visit, subjects attended the laboratory for an oral glucose tolerance 

test (OGTT; details of which can be seen in the experimental protocol below). Following this 

initial OGTT, subjects left the laboratory and continued their habitual food intake for 6 days. 

Subjects were then provided with all food to be consumed on the 7th day. The experimental 

diet was designed to be high in fat (73% total energy) and provide a severe energy excess (+ 

80% kJ). All foods were purchased and prepared by the research team. Subjects were 

instructed to eat all of the food provided, and to maintain normal, habitual physical activity 

levels during the intervention period. No subjects reported any issues with diet compliance. 

Mean energy and macronutrient intake during the intervention period can be seen in Table 

4.2. Saturated, monounsaturated and polyunsaturated fats made up 46 ± 0.9%, 37 ± 0.6%, and 

9 ± 0.4% of the fat intake, respectively. An example diet plan for one of the subjects can be 

seen in Table 4.3. The next day (day 8) subjects returned to the laboratory for a second 

OGTT. 

 

Table 4.2 Estimated daily energy intake and actual energy and macronutrient intake during 

the high-fat overfeeding period 

 Estimated 

energy 

requirement 

(kJ) 

Experimental 

energy intake 

(kJ) 

Experimental 

macronutrient 

intake 

(g) 

Contribution to 

total energy 

intake (%) 

Total 14794 ± 299 26629 ± 483 * - - 

Fat  - 19336 ± 316 523 ± 9 73 

Carbohydrate  - 3307 ± 119 195 ± 7 12 

Protein  - 3987 ± 71 235 ± 4 15 

Data presented are means ± SEM. (n = 10). * denotes significantly different to estimated 

energy requirement (p < 0.05).  

 

4.3.4 Experimental protocol 

On the experimental days before (day 0) and after overfeeding (day 8), subjects reported to 

the laboratory between 07.00 and 09.00 h after an overnight fast of at least 10 h and having 
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refrained from physical activity for 48 h. After voiding and being weighed, a 20 gauge Teflon 

catheter (Venflon, Becton, Dickinson, Plymouth, UK) was inserted into an antecubital vein of 

one arm to allow for repeated blood sampling during the 2 h OGTT. A baseline (fasted) blood 

sample (10 mL) was obtained before subjects consumed a 25% glucose solution (75 grams of 

glucose dissolved in 300 mL of water). Additional 10 mL blood samples were obtained 15, 

30, 45, 60, 90 and 120 minutes after glucose ingestion. Following the final blood sample, 

percentage body fat was assessed using bioelectrical impedance analysis (BIA; Bodystat 

1500, Bodystat Ltd, Cronkbourne, Isle of Man). The timing of this measurement was selected 

in order to standardise fluid consumption and hydration status, which can influence the 

accuracy of BIA measurements (Kushner et al., 1996). BIA measurements were made on the 

first trial only, as meaningful alterations in body composition would not be expected after a 

single day of high-fat overfeeding. 
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Table 4.3 Example 1-day diet plan for one subject  

Breakfast 

Foods Pork sausages (230 g), streaky bacon (120 g), fried eggs 

(180 g), fried white bread (36 g), whole milk (300 mL) 

Protein (g) 86 

Carbohydrate (g) 52 

Fat (g) 127 

Energy (kJ) 7045 

% of the days intake 26 

Lunch 

Foods White bread (72 g), butter (15 g), cheddar cheese (70 g), 

mayonnaise (20 g), sausage roll (90 g) 

Protein (g) 31 

Carbohydrate (g) 65 

Fat (g) 86 

Energy (kJ) 4814 

% of the days intake 17 

Snack 

Foods Pork pie (200 g) 

Protein (g) 22 

Carbohydrate (g) 47 

Fat (g) 51 

Energy (kJ) 3060 

% of the days intake 11 

Dinner 

Foods Beef burgers (300 g), streaky bacon (120 g), cheddar 

cheese (90 g), coleslaw (150 g) 

Protein (g) 95 

Carbohydrate (g) 7 

Fat (g) 173 

Energy (kJ) 8135 

% of the days intake 30 
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Dessert 

Foods Chocolate chip muffin (70 g), double cream (150 mL) 

Protein (g) 6 

Carbohydrate (g) 37 

Fat (g) 98 

Energy (kJ) 4357 

% of the days intake 16 

Total intake 

Protein (g) 240 

Carbohydrate (g) 209 

Fat (g) 535 

Energy (kJ) 27411 

Water intake was allowed ad libitum throughout the day 

 

4.3.5 Blood sampling 

For analysis of glucose and non-esterified fatty acids (NEFA), whole blood samples were 

collected in 4.9 mL ethylenediaminetetraacetic acid (EDTA; 1.75 mg/mL) treated tubes 

(Sarstedt, Leicester, UK) and spun at 1,750 g in a refrigerated centrifuge (4C) for 10 min. 

The resulting plasma was aliquoted into 1.5 mL Eppendorfs before being stored at -20C 

until analysis. For analysis of insulin, whole-blood was collected in 4.5 mL tubes containing 

a clotting catalyst (Sarstedt, Leicester, UK). Samples were left at room temperature until 

complete clotting had occurred; after which they were centrifuged at 1,750 g in a refrigerated 

centrifuge (4C) for 10 min. The resulting serum was aliquoted into 1.5 mL Eppendorfs 

before being stored at -20C until analysis. 

 

4.3.6 Analytical procedures  

Plasma samples were analysed using commercially available spectrophotometric assays for 

glucose (Horiba Medical, Northampton, UK) and NEFA (Randox, County Antrim, UK) 

concentrations using a semi-automatic analyser (Pentra 400; Horiba Medical, Northampton, 

UK). Serum insulin concentrations were determined using an enzyme-linked immuno-sorbent 

assay (ELISA: EIA-2935, DRG instruments GmBH, Germany). To eliminate inter-assay 

variation, samples from each participant were analysed in the same run.  
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4.3.7 Calculations and statistics 

Plasma glucose and serum insulin concentrations obtained before and during the OGTT were 

used to determine whole-body insulin sensitivity using the Matsuda insulin sensitivity index 

(ISI):  

ISI =
10000

√
(𝐹𝑃𝐺 ×  𝐹𝑆𝐼) × (𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)

× (𝑚𝑒𝑎𝑛 𝑂𝐺𝑇𝑇 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)

 

 

Where FPG is the fasting plasma glucose concentration; FSI is the fasting serum insulin 

concentration; and 10000 represents a constant that allows numbers ranging between 1 and 

12 to be obtained. The square root conversion is used to correct the nonlinear distribution of 

values (Matsuda, & DeFronzo, 1999).  

 

Area under the curve (AUC) for glucose, insulin and NEFA was calculated using the 

trapezoidal rule with zero as the baseline. Data are presented as means ± standard error of the 

mean (SEM). Statistical analysis was performed using SPSS (V21.0) for windows (SPSS Inc, 

Chicago, IL). Fasting concentrations of glucose, insulin and NEFA before and after high-fat 

overfeeding were compared using a paired t-test, whereas the dynamic hormonal and 

metabolic responses to the OGTT were compared using a two-way (trial x time) repeated 

measures (0-120 min time points) analysis of variance (ANOVA) and Bonferroni post hoc 

analysis where appropriate. Statistical significance was set at p < 0.05. 
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4.4 Results 

4.4.1 Weight gain and BMI  

Subjects gained 0.85 ± 0.29 kg body mass following 1-day of high-fat overfeeding (p = 

0.017, Table 4.1), and their BMI increased by 0.25 ± 0.08 kg/m2 (p = 0.014, Table 4.1). 

 

4.4.2 Fasting metabolic measures 

Fasting substrate and hormone concentrations before and after overfeeding are presented in 

Table 4.4. Fasting plasma glucose and serum insulin were unaffected by 1-day of high-fat 

overfeeding (p = 0.48 and p = 0.39, respectively), while fasting plasma NEFA displayed a 

significant decrease (p = 0.011).  

 

Table 4.4. Fasting metabolic measures before and after 1-day of high fat overfeeding  

 Before overfeeding After overfeeding 

Plasma glucose (mmol/L) 5.6 ± 0.1 5.6 ± 0.1 

Serum insulin (pmol/L) 70 ± 8 76 ± 10 

Plasma NEFA (mmol/L) 0.48 ± 0.08 0.21 ± 0.03* 

Data presented are means ± SEM. (n = 10). * denotes a significant change following the 

dietary intervention (p < 0.05). 

 

4.4.3 Oral glucose tolerance test 

Substrate and hormone responses to the 2 h OGTT are presented in figure 4.1. Plasma 

glucose and serum insulin concentrations increased in response to the OGTT, peaking 30-45 

min after glucose ingestion (figure 4.1a and 4.1c, respectively). For plasma glucose, there 

was a significant trial x time interaction (p = 0.003, Figure 4.1a). Postprandial plasma glucose 

AUC was increased by 16.2% after overfeeding (from 798 ± 41 mmol/L per 120 min before 

overfeeding to 927 ± 45 mmol/L per 120 min after high-fat overfeeding; p = 0.008, Figure 

4.1b). Serum insulin concentrations appeared to follow a similar trend, with AUC increasing 

by 14.1% after high-fat overfeeding (from 38221 ± 3147 pmol/L per 120 min before 

overfeeding to 43613 ± 3626 pmol/L per 120 min after overfeeding; Figure 4.1d) but this was 

not statistically significant (p = 0.085). A significant trial x time interaction was evident for 

plasma NEFA (p < 0.0001, Figure 4.1e). Nonetheless, average NEFA concentrations 

throughout the 2 h OGTT were not significantly different between trials (0.23 ± 0.04 mmol/L 

before overfeeding and. 0.20 ± 0.03 mmol/L after high-fat overfeeding, p = 0.407), and no 
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difference was evident in NEFA AUC (23 ± 3 mmol/L per 120 min before overfeeding and 

22 ± 3 mmol/L per 120 min after overfeeding; p = 0.974, Figure 4.1f).      

 

4.4.4 Insulin sensitivity 

On average, whole-body insulin sensitivity decreased by 24% following 1-day of high-fat 

overfeeding (from 5.2 ± 0.5 Matsuda ISI before overfeeding to 4.0 ± 0.5 Matsuda ISI after 

overfeeding; p = 0.021, Figure 4.2).  
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Figure 4.1 Fasting and postprandial plasma glucose (A), serum insulin (C) and plasma NEFA 

(E) concentrations; and postprandial plasma glucose (B), serum insulin (D) and plasma 

NEFA AUC (F), during a 2 hour oral glucose tolerance test (OGTT) conducted before (pre) 

and after (post) 1-day of high-fat overfeeding (HFD). Data presented are means ± SEM (n = 

10). * denotes significant difference between trials at the annotated time point. #, denotes 

significant main effect of trial/high-fat overfeeding (p < 0.05). †, denotes significant 

difference between the annotated time point and 0 min within the pre-overfeeding trial (p < 

0.05). §, denotes significant difference between the annotated time point and 0 min within the 

post-overfeeding trial (p < 0.05).  
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Figure 4.2 The Matsuda insulin sensitivity index (ISI) calculated during an oral glucose 

tolerance test, conducted before (pre) and after (post) 1-day of high-fat overfeeding (HFD). 

Data presented are means ± SEM (n = 10). #, denotes significant change following the dietary 

intervention (p < 0.05). 
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4.5 Discussion  

The main finding of the present study was that 1-day of high-fat overfeeding led to a 

significant 24% reduction in whole-body insulin sensitivity in young, healthy, non-obese 

males. Intriguingly, this reduction in insulin sensitivity occurred despite a decrease in fasting 

NEFA concentrations and similar average concentrations throughout the 2 hour OGTT, 

possibly suggesting that experimental models which acutely elevate plasma NEFA levels 

may not accurately represent the development of metabolic diseases that are associated with 

excessive dietary fat intake. Our findings of increased postprandial glucose concentrations 

occurred alongside a non-significant increase in circulating insulin which indicates an 

insufficient adaptive response of pancreatic β-cells; a marker of reduced β-cell function.  

 

Previous studies have demonstrated that short-term (3-14 days) high-fat overfeeding can 

impair glycaemic control (Cornford et al., 2013; Parry et al., 2017; Wulan et al., 2014), and 

reduce whole-body (Hulston et al., 2015), and hepatic (Brons et al., 2009) insulin sensitivity 

in healthy individuals. There is, however, a paucity of information available delineating the 

time-course/initiation of these diet-induced impairments. Evidence from lipid-heparin 

infusion trials suggest that insulin resistance can be induced within a matter of hours in 

healthy, lean individuals (Boden et al., 1994; Boden et al., 1991). More recently, Nowotny et 

al. (2013) reported that ingestion of a single oral fat bolus reduced clamp-derived measures 

of whole-body insulin sensitivity to a comparable degree, and within a corresponding time-

frame (6 h post ingestion/infusion), as that seen with iv lipid-heparin infusion, highlighting 

the rapidity with which dietary fat intake can alter glucose metabolism. A potential 

confounder of that study relates to the fact that participants were likely still in a postprandial 

state upon initiation of the hyperinsulinemic-euglycemic clamp, as evidenced by elevated 

plasma chylomicrons, GIP, and GLP-1 at this time point. It is consequently unclear if the 

observed reduction in insulin sensitivity in that study were simply a transient response related 

to the ongoing metabolism of dietary fat. For this reason, we chose to investigate the effects 

of a single day of high-fat food intake on whole-body insulin sensitivity when measured in 

the fasting/postabsorptive state. Our results demonstrate that only 1-day of high-fat 

overfeeding is sufficient to reduce whole-body insulin sensitivity in young, healthy, non-

obese individuals.  

 

It has been suggested that elevations in plasma NEFA concentrations are a primary mediator 

of insulin resistance (Eckel et al., 2005). However, when comparing an oral fat challenge 
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(100 mL soyabean oil) with iv lipid-heparin infusion, Nowotny et al. (2013) observed a 

similar reduction in insulin sensitivity following both methods of lipid administration, despite 

divergent NEFA responses. In that study, iv lipid-heparin infusion doubled plasma NEFA 

concentrations from approximately 400 µmol/L to 800 µmol/L, whereas, fat ingestion had no 

discernible effect on plasma NEFA. Despite this, both experimental models activated protein 

kinase C theta (PKCθ) within skeletal muscle, which is suggested to impair insulin signalling 

by inhibiting the normal tyrosine kinase cascade via phosphorylation of the counter-

regulatory serine residue of insulin receptor substrate-1 (IRS-1) (Zick, 2005). These findings 

suggest that different mechanistic pathways may be activated depending on the method of 

lipid administration. It also casts doubt on the physiological relevance/validity of using iv 

lipid-heparin infusion protocols when studying the mechanistic development of insulin 

resistance, and suggests that dietary models should be applied in order to enhance our 

understanding of human metabolic disease  

 

In agreement with the findings of Nowotny et al. (2013), our data also suggest little, or no, 

relationship between plasma NEFA concentrations and insulin sensitivity, as we observed a 

reduction in whole-body insulin sensitivity after high-fat overfeeding despite reduced fasting 

NEFA concentrations, and similar average NEFA levels across the 2 h OGTT. The reduction 

in fasting plasma NEFA after high-fat overfeeding may be attributable to a sustained increase 

in insulin concentration throughout the dietary intervention period due to the large and 

frequent meals that are characteristic of our high-fat diet. This would lead to a suppression of 

adipose tissue lipolysis, and a reduction in circulating NEFA. It is also possible, however, 

that plasma NEFA levels may have been elevated on a meal-to-meal basis throughout the 

dietary intervention by way of the “spillover” phenomenon, which could explain the 

reduction in insulin sensitivity. Spillover refers to the proportion of fatty acids that escape 

into the circulation during the hydrolysis of dietary triglycerides by LPL. It has been shown 

that feeding repeated boluses of fat in combination with a continuous heparin infusion 

increases plasma NEFA concentrations (which is almost certainly attributable to spillover) 

and decreases whole-body insulin sensitivity (Beysen et al., 2003; Beysen et al., 2002). In the 

present study, the consumption of mixed composition meals during the dietary intervention 

would increase postprandial insulin concentrations, thereby activating LPL, which, due to the 

large quantity of dietary fat contained within these meals, may mimic the response seen in the 

studies of Beysen et al., (i.e. a progressive increase in plasma NEFA levels).  



75 

 

Chronic NEFA exposure results in a reduction in insulin synthesis and secretion and β-cell 

apoptosis (Giacca et al., 2011; Natalicchio et al., 2013; Natalicchio et al., 2015; Poitout et al., 

2006; Sako, & Grill, 1990; Zhou, & Grill, 1994). This has been demonstrated in lipid infusion 

studies where not only do elevated NEFA concentrations induce peripheral insulin resistance, 

but they also impair the ability of the β-cell to mount a sufficient adaptive response resulting 

in hyperglycaemia (Carpentier et al., 1999). An intriguing finding of the present study is the 

indication that β-cell function was reduced, evidenced by the insufficient compensatory 

increase in postprandial insulin secretion, despite a reduction in fasting NEFA, and similar 

postprandial NEFA levels. NEFA are an important mediator of β-cell function, potentiating 

insulin release in response to glucose and non-glucose stimulants (Dobbins et al., 1998; 

Prentki et al., 2002). It is therefore plausible that the reduction in fasting NEFA is associated 

with the failure of the β-cell to sufficiently augment insulin secretion and maintain glucose 

homeostasis. There are a number of potential mechanisms through which this might occur. 

Firstly, a reduction in the availability of NEFA to bind to the G-protein coupled receptor 

(GPR)40 on the β-cell membrane may impair intracellular signalling, resulting in a reduced 

intracellular calcium concentration and decreased exocytosis (Itoh et al., 2003). Secondly, a 

reduction in NEFA uptake by the β-cell would reduce intracellular fatty acyl-CoA levels. As 

fatty acyl-CoA mediate insulin release both directly and indirectly (via activation of PKC 

isoforms) (Prentki et al., 2002), reduced uptake may lead to a reduction in insulin secretion. 

Notably, our data are unable to determine the mechanisms responsible for the observed 

reduction in fasting NEFA. In animals models of diet-induced obesity an increased 

expression of cluster of differentiation (CD)36 in the liver is associated with increased NEFA 

uptake (Koonen et al., 2007), and elevated expression levels of CD36 have been observed in 

human NAFLD patients compared to their healthy counterparts(Greco et al., 2008; 

Mitsuyoshi et al., 2009). It could therefore be hypothesised that our dietary intervention 

reduces circulating NEFA levels through increased hepatic uptake, this would have 

implications for hepatic fatty acid partitioning and may be a mechanism of hepatic steatosis 

(Yki-Jarvinen, 2015). This warrants further investigation. 

 

The reduction in whole-body insulin sensitivity observed in this study is in accordance with 

previous findings from our laboratory (Hulston et al., 2015; Parry et al., 2017). Our previous 

work adopted a 7-day overfeeding period so that so that we could study the early metabolic 

responses to overnutrition without the confounding factor of excessive weight gain or an 

increase in adipose tissue mass that is seen in dietary interventions of longer duration. 
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Furthermore, this model consisted of realistic experimental meals, rather than isolated fat 

sources or loose association food components (e.g. supplementing habitual diets with oil 

and/or cream etc) which were selected to represent a typical Western diet (i.e. high in 

energy/total fat/saturated fatty acids). Whilst adherence to this diet-intervention is not 

typically a problem, participants often comment on the challenging nature of the 7-day 

overfeeding period. Thus, amending this model to just 1-day might reduce participant burden 

and further improve participation and retention, whilst also reducing experimental time and 

the costs associated with providing food. This seems like a feasible option given that the 

reductions in insulin sensitivity appear similar in magnitude regardless of whether 1 or 7 days 

of overfeeding was followed (24% in the current study and 27% in Hulston et al., 2015). One 

explanation for this might be the severe lipid overload that we provided in the present study 

(>500 g of fat intake). In our 7 day experiments we have overfed by ~50% and provided 

~65% of the energy as fat, but the shorter duration of this study meant we were able to 

increase the magnitude of overfeeding to 80% additional energy with 73% of total energy 

coming from fat intake. Whilst few individuals are likely to consume this much fat in such a 

short timeframe, the results of this study demonstrate the speed in which insulin sensitivity is 

impaired through excessive fat intake. However, further characterisation of the metabolic 

responses associated with 1-day of high-fat overfeeding, and replication of our findings in a 

more heterogeneous cohort, is required before this model can be advocated for future use.  

 

In conclusion, we have demonstrated that 1-day of high-fat overfeeding impairs whole-body 

insulin sensitivity in young, healthy, non-obese males. This finding is in accordance with 

previous studies from our laboratory following a similar dietary intervention, albeit for 7-

days. Furthermore, this reduction in insulin sensitivity is seemingly unrelated to circulating 

plasma NEFA levels. 
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 CHAPTER 5 

 

Diet-induced impairments in glycaemic control do not 

influence the muscle protein synthetic response to 

carbohydrate and protein ingestion in young, healthy, lean 

individuals. 
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5.1 Abstract 

Recent evidence indicates that lipid-induced insulin resistance is associated with insulin 

resistance and a blunted ability to stimulate muscle protein synthesis (MPS) following amino 

acid ingestion in young, healthy, lean individuals. Short-term (4-14 days) high-fat 

overfeeding has also been shown to reduce insulin sensitivity and impair glycaemic control in 

this population, however, it is currently unknown if the observed diet-induced changes in 

glucose metabolism impact upon MPS. Therefore, the aim of this study was to determine if 7-

days of high-fat overfeeding influences fed-state MPS following carbohydrate and protein 

ingestion in young, healthy, lean individuals. Thirteen individuals (11 males and 2 females) 

underwent two experimental trials (before and after consumption of a 7-day high-fat [65%] 

high-energy [+50%] diet) during which glycaemic control, fed-state mixed muscle protein 

fractional synthesis rate (FSR) and associated signalling responses were assessed by stable 

isotope tracer and muscle biopsy techniques. Results demonstrate that 7-days of high-fat 

overfeeding was associated with an increase in postprandial glucose AUC of 10% (p = 0.008) 

and serum insulin AUC of 17% (p = 0.086). Analysis of fed-state mixed muscle protein FSR 

revealed similar values before and after overfeeding (0.073 ± 0.008 %/h before overfeeding 

and 0.066 ± 0.006 %/h after overfeeding; p = 0.432).The phosphorylation status of anabolic 

signalling proteins was similar before and after overfeeding, with the exception of 

4EBP1Thr37/46 which was reduced by a mean difference of 8.8% after overfeeding (p = 0.028). 

These findings suggest that diet-induced impairments in glycaemic control do not affect the 

MPS response to nutrient stimulation in young, healthy, lean individuals. However, the 

reduction in 4EBP1 phosphorylation may suggest that MPS may be impaired if the diet was 

continued for a longer duration. 

 

Acknowledgement: Stable isotope tracer analysis presented in this chapter was conducted by 

Professor Gerrit van Hall and his team at The Clinical Metabolomics Core Facility, 

Righospitalet.  
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5.2 Introduction 

Skeletal muscle is a critical factor in whole body metabolic health, occupying a central role in 

the regulation of energy homeostasis (Tzankoff, & Norris, 1977), glycaemic control (Smith, 

2002), and whole-body protein metabolism (Wolfe, 2006b). In addition, due to its central 

involvement in mobility and stability, skeletal muscle is also important in the performance of 

habitual daily living activities (Wolfe, 2006a). Consequently, the maintenance of muscle 

mass is vital to both metabolic health and quality of life in general. In humans the 

maintenance of skeletal muscle mass is dependent on the dynamic equilibrium between 

muscle protein synthesis (MPS) and muscle protein breakdown (MPB). On a day-to-day 

basis, MPS and MPB are largely dependent on food intake, with protein intake being 

particularly important (Atherton et al., 2010; Wilkinson et al., 2015). Following protein 

ingestion and absorption, plasma amino acid and insulin levels will increase, thereby 

stimulating MPS and suppressing MPB. This results in the rate of MPS exceeding MPB 

during the fed/postprandial state. Conversely, this balance is inverted in the 

fasting/postabsorptive state (i.e. MPB exceeds MPS) (Atherton, & Smith, 2012). Changes in 

skeletal muscle mass occur when one of these processes chronically exceed that of the other 

(i.e. skeletal muscle atrophy will occur if MPB is consistently greater than MPS).  

 

In recent years, one of the emerging concepts in the field of health sciences has been that of 

“anabolic resistance”; defined as a reduced MPS response to external growth stimuli (Phillips 

et al., 2012; Rennie, 2009b) Anabolic resistance has been implicated as a major contributor to 

the loss of skeletal muscle mass observed with aging (Cuthbertson et al., 2005), immobility 

(Wall, & van Loon, 2013) and critical illness (Rennie, 2009a). Moreover, findings from 

recent studies suggest that anabolic resistance is also a comorbidity of obesity-induced insulin 

resistance. For instance, Guillet et al. (2009) report that obese, insulin-resistant men exhibit a 

reduced MPS response to insulin and amino acid stimulation when compared to their healthy-

weight counterparts; a finding which is supported by some (Chevalier et al., 2005; Murton et 

al., 2015; Pereira et al., 2008), but not all (Chevalier et al., 2015) studies. Conversely, none 

of the above mentioned studies are able to determine the specific contribution of insulin 

resistance and excess adiposity per se, and can merely suggest that one, or both, of these 

factors may be associated with anabolic resistance. Intriguingly, when investigating 

differences in fat deposition, Liebau et al. (2014) report that upper-body obese women 

exhibit a greater degree of insulin resistance and a reduced postprandial anabolic response 

when compared to lower-body obese women who were matched for age, weight and BMI. 
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This suggests that it is insulin sensitivity, rather than obesity, that mediates anabolic 

resistance. However, this finding must be interpreted with caution as, in that study, anabolic 

response was assessed by investigating changes in whole-body protein balance, and direct 

measures of MPS were not obtained.  

 

In an attempt to control for potentially confounding factors and investigate the impact of 

insulin resistance per se on MPS, Stephens et al. (2015) acutely impaired insulin sensitivity 

in young, healthy males by way of lipid-heparin infusion. In that study, MPS responses to 

insulin and amino acid stimulation were compared during either 10% Intralipid (100 mL/h), 

or normal saline infusion. Their results display that mixed-muscle fractional synthetic rate 

(FSR) increased 2.2-fold in response to insulin and amino acid ingestion during the saline 

trial. However, this increase in FSR was completely suppressed during the lipid infusion trial, 

indicating that lipid-induced insulin resistance reduces the anabolic sensitivity of skeletal 

muscle to nutrient stimulation. This impaired anabolic response appears to be underpinned by 

defects in translational efficiency, as evidenced by the failure of insulin and amino acids to 

increase phosphorylation of 4EBP1 above baseline/unstimulated values (Stephens et al., 

2015). While this work provides mechanistic insight into the association between lipid-

induced insulin resistance and anabolic resistance, lipid infusion protocols represent an 

experimental situation where circulating NEFA is elevated to supraphysiological levels; a 

response which is not representative of obesity-induced insulin resistance in humans (Karpe 

et al., 2011). Thus, it is currently not known as to whether similar responses are observed in 

experimental models which are more representative of the development of insulin resistance 

in humans (i.e. the high-fat diet model). Therefore, the purpose of this study was to determine 

whether 7-days of high-fat overfeeding, a model previously shown by our laboratory to 

reduce whole-body insulin sensitivity and impair glycaemic control (Hulston et al., 2015; 

Parry et al., 2017), influences the postprandial skeletal muscle protein FSR, and associated 

signalling responses, in young, healthy, lean individuals.  
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5.3 Methods  

5.3.1 Subjects 

Sixteen healthy individuals were initially recruited to participate in this study but two were 

excluded due to experimenter concerns regarding dietary compliance. Furthermore, a full 

data set is unavailable for one participant due to their aversion for the muscle biopsy 

procedure. Therefore, data is presented for 13 healthy individuals (11 males and 2 females; 

their physical characteristics can be seen in Table 6.1). Data from 12 of these subjects has 

already been presented in this thesis (Chapter 3). The inclusion criteria required subjects to be 

physically active (exercising at least 3 times per week for more than 30 minutes at a time), 

non-smokers, free from cardiovascular and metabolic disease, not taking any medication, 

weight stable for at least 6 months, and with a body mass index (BMI) below 30 kg/m2. This 

study was conducted according to the guidelines laid down in the Declaration of Helsinki and 

approved by the Loughborough University Ethical subcommittee for human participants. The 

experimental procedures and possible risks were fully explained to the subjects before their 

written informed consent was given. 

 

Table 5.1 Subject characteristics before and after 7-days of high-fat overfeeding. 

 Before overfeeding After overfeeding 

Age (years) 23.2 ± 0.7  - 

Height (cm) 175 ± 2.1  - 

Body mass (kg) 76.4 ± 3.3  77.7 ± 3.4 * 

BMI (kg/m2) 24.7 ± 0.7   25.1 ± 0.7 * 

Data presented are means ± SEM (n = 13). * denotes significant change following the dietary 

intervention (p < 0.05).  

 

5.3.2 Pre-testing 

Prior to the start of the study, subjects attended the laboratory for an initial assessment of 

their baseline anthropometric characteristics (height, weight and BMI). This information was 

then used to estimate their resting energy expenditure (REE) according to the calculations 

described by Mifflin et al. (1990). A standard correction for physical activity level (1.6 and 

1.7 times REE for females and males, respectively) was applied in order to estimate total 
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daily energy requirements. This information was then used to determine individual energy 

intakes for the week-long overfeeding period (diet details described later). 

 

5.3.3 Experimental design  

Approximately 1-week after the initial pre-testing visit after the initial pre-testing visit, 

subjects reported to the laboratory for a battery of metabolic tests immediately before, and 

after, a 7-day high-energy, high-fat dietary intervention (described below). Briefly, during 

each visit, glycaemic control, and fed-state mixed muscle protein FSR and associated 

signalling responses were examined in response to carbohydrate and protein ingestion with 

the use of stable isotope tracer and muscle biopsy techniques (described in detail below). The 

dietary intervention was designed to be high in fat (65% total energy) and provide a severe 

energy excess (+ 50% kJ). Mean energy intake throughout the dietary intervention was 20018 

± 766 kJ, with 13012 ± 498 kJ provided as fat (more detailed information regarding the 

dietary intervention can be viewed in chapter 2). All foods were purchased and prepared by 

the research team. Subjects were instructed to eat all of the food provided, and maintain 

normal, habitual physical activity levels during the intervention period.  

 

5.3.4 Experimental protocol  

On the experimental days (before and after overfeeding) subjects reported to the laboratory 

between 07.00 and 09.00 h after an overnight fast of at least 10 h and having refrained from 

physical activity for 48 h. After voiding and being weighed, a 20 gauge Teflon catheter 

(Venflon, Becton, Dickinson, Plymouth, UK) was inserted into an antecubital vein on each 

arm to allow for repeated blood sampling and infusion of stable isotope tracers. A baseline, 

fasting venous blood sample (10 mL) was obtained to determine fasting metabolite 

concentrations and background isotopic enrichment before a primed constant infusion of [6,6-

2H2]glucose (0.35 µmol/kg/min, prime 14 µmol/kg) and L-[ring-13C6]phenylalanine (0.05 

µmol/kg/min, prime 2 µmol/kg) was initiated and continued for the duration of the 

experiment. Blood samples (10 mL) were obtained 90, 105 and 120 min into the infusion 

period to ascertain isotopic steady state, after which a resting (fasted) muscle biopsy was 

taken. Biopsies were obtained from the vastus lateralis under local anaesthesia (lidocaine 20 

mg/mL) using a 5-mm Bergström needle, modified for use with manual suction. Two 

sections of muscle tissue, each weighing approximately 30-50 mg, were quickly blotted free 

of excess blood, snap-frozen in liquid nitrogen, and stored at -80ºC until analysis. A third 

section of muscle tissue, weighing approximately 10-30 mg, was mounted in Tissue-Tek 
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OCT (Sakura Finetek UK Ltd, Thatcham, UK) and frozen in isopentane for cryo-sectioning 

and histology analysis (data to be presented elsewhere). Within 10 min of the biopsy 

procedure, subjects ingested a mixed carbohydrate and protein beverage (CHO + PRO; 

described in detail below). Further venous blood samples (10 mL) were obtained at 15, 30, 

45, 60, 90 and 120 min post-ingestion, and additional muscle biopsies were obtained at 30 

and 120 min post-ingestion. Each biopsy was taken from a separate incision on the same leg, 

spaced ~3-4 cm apart. Biopsies were obtained from the opposite leg during the second 

experimental trial (after overfeeding). All stable isotopes were purchased from Cambridge 

Isotope Laboratories (Andover, MA). A schematic of the experimental protocol can be 

viewed in Figure 6.1. 

 

 

Figure 5.1 Schematic of experimental protocol. CHO + PRO = 50 g glucose (48.4 g 

unlabelled and 1.6 g [U-13C]glucose) and 15 g whey protein with the addition of 27 mg L-

[ring-13C6]phenylalanine. * denotes an approximate 10 minute delay between sampling 

(skeletal muscle and blood) and ingesting the CHO + PRO beverage.   

 

5.3.5 Beverages  

The CHO + PRO beverage was a 12.5% glucose solution (50 g glucose [48.4 g unlabelled 

glucose and 1.60 g [U-13C]glucose] dissolved in 400 mL of water) with the addition of 15 g 

whey protein in the form of a commercially available protein supplement (Volac; UltraWhey 

90, Hertfordshire, UK). The amino acid content of the protein was (in percent content wt:wt): 

Alanine, 5; Arginine, 2.1; Aspartic acid, 11; Cystine, 2.2; Glutamic acid, 18.1; Glycine, 1.4; 
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Histidine, 1.7; Isoleucine, 6.4; Leucine, 10.6; Lysine, 9.6; Methionine, 2.2; Phenylalanine, 3; 

Proline, 5.5; Serine, 4.6; Threonine, 6.7; Tryptophan, 1.4; Tyrosine, 2.6, and Valine, 5.9. An 

additional 27 mg of L-[ring-13C6]phenylalanine was added to the beverage in order to 

minimise shifts in isotopic steady state as a result of consuming unlabelled phenylalanine in 

the protein supplement. The amount of labelled phenylalanine added to the test solution was 

determined assuming that the tracer infusion rate would elicit a plasma TTR of approximately 

0.06.  

 

5.3.6 Blood sampling 

For analysis of glucose and NEFA concentrations and phenylalanine concentration and 

enrichment, whole blood samples were collected in 4.9 mL Ethylenediaminetetraacetic acid 

(EDTA; 1.75 mg/mL) treated tubes (Sarstedt, Leicester, UK) and spun for 10 min at 1,750 g 

in a refrigerated centrifuge (4°C). The resulting plasma was aliquoted into 1.5 mL 

Eppendorfs and stored at -20°C until analysis. For analysis of insulin, whole blood was 

collected in 4.5 mL tubes containing a clotting catalyst (Sarstedt, Leicester, UK). Samples 

were left at room temperature until complete clotting had occurred; after which they were 

also spun for 10 min at 1,750 g in a refrigerated centrifuge (4°C). The resulting serum was 

aliquoted into 1.5 mL Eppendorfs and stored at -20°C until analysis. 

 

5.3.7 Analytical procedures 

Plasma NEFA concentrations were analysed using commercially available 

spectrophotometric assays (Randox, County Antrim, UK). Plasma glucose concentrations 

were analysed by the addition of a tracer (M+13) internal standard and liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) as previously described (Chapter 

3). Serum insulin concentrations were determined using an enzyme-linked immuno-sorbent 

assay (ELISA: EIA-2935, DRG instruments GmBH, Germany).  

 

5.3.8 Plasma phenylalanine concentration and enrichment analysis 

A 200 µl aliquot of plasma was mixed with 50 µL of internal standard (105 µmol/L, L-[ring-

13C9]phenylalanine) and 500 µL of 50% acetic acid before being passed through a strong 

cation exchange column (Dowex AG 50W-X8; BioRad, Hemel Hempstead, UK). The 

purified amino acids were eluted with 3 mL of 2 M ammonium hydroxide (NH4OH), dried 

under a stream of nitrogen, and converted to their t-butyldimethylsilyl derivatives by adding 

200 µL of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and acetonitrile (1:3) and 
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heating for 1 h at 70ºC. The enrichment of the sample and the internal standard was 

determined using gas chromatography-tandem mass spectrometry (GC–MS/MS) with 

electron impact ionisation and selective ion monitoring for 336, 342 and 345 m/z, for 

phenylalanine, L-[ring-13C6]phenylalanine, and L-[ring-13C9]phenylalanine, respectively.   

 

5.3.9 Muscle phenylalanine concentration and enrichment analysis 

At least 30 mg of wet weight tissue was freeze-dried and dissected free from visible blood, 

fat and connective tissue. From the cleaned fibre mass, 3-5 mg was used for analysis. The 

precise mass of each sample was recorded before adding 100 µL of L-[ring-

13C9]phenylalanine. The sample was then extracted three times with 500 µL of 2% perchloric 

acid. Supernatants were then pooled and processed in the same manner as plasma (described 

above) for determination of intracellular phenylalanine concentration and enrichment. The 

remaining protein pellet was then washed twice with 1 mL of 70% EtOH, once with 1 mL of 

100% EtOH, dried under a stream of N2 and hydrolysed in 1 mL of 6 M HCl that was heated 

to 120ºC for 15-18 h. Once hydrolysed, the protein fraction was dried at 120ºC and dissolved 

in 500 µL of 50% acetic acid. Samples were then treated in the same manner as plasma 

samples except that column purified amino acids were then converted to their N-acetyl N- 

propyl esters for determination of protein bound phenylalanine enrichment using gas 

chromatography-combustion-isotope ratio mass spectrometry (GC–C–IRMS, Hewlett 

Packard 5890-Finnigan GC combustion III-Finnigan Deltaplus; Finnigan MAT, Bremen, 

Germany). As fed-state FSR was calculated using the 0 and 120 minute samples 

phenylalanine concentration and enrichment analysis was only performed on these samples.  

 

5.3.10 Muscle protein fractional synthesis rate 

Mixed muscle protein FSR was determined using the standard precursor-product method: 

 

FSR (%/h) =  
∆𝐸𝑝 𝑝ℎ𝑒

(𝐸𝑖𝑐 𝑝ℎ𝑒𝑡)
 X 100 

 

Where, ΔEp phe is the change in protein bound enrichment between the muscle biopsies at 

time point 1 and 2, Eic phe is the mean intracellular phenylalanine enrichment between muscle 

biopsies at time point 1 and 2, and t is the period of tracer incorporation in time (hours). A 

factor of 100 is used to express FSR in percent per hour (%/h). 
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5.3.11 Western blotting  

The optimisation procedures for Western blotting analysis performed in this thesis are 

presented in Appendix A. Approximately 30-50 mg of frozen muscle tissue was homogenised 

in 10 µL/mg ice-cooled buffer (1 x PBS containing 1 % Triton X-100, 1% protease and 

phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL), and 1% 0.5 M EDTA 

(Thermo Scientific, Rockford, IL) using a TissueLyser II (Qiagen, Hannover, Germany). All 

samples were disrupted by the TissueLyser II for 2 x 2 min at 20 Hz. Homogenates were then 

centrifuged for 10 min at 13,300 g. The resulting supernatant was removed and aliquoted into 

1.5 mL Eppendorfs prior to being stored at -80˚C until analysis. Protein concentration was 

determined in aliquots of supernatant diluted 1:5, 1:10, and where necessary 1:20 in 1 x PBS 

using the Pierce 660 nm protein assay (Thermo Scientific, Rockford, IL, USA). After protein 

determination, homogenates were mixed in sample buffer containing 25% NuPAGE LDS 

sample buffer (Invitrogen, Carlsbad, CA), 5% β-mercaptoethanol and distilled water. The 

ratio of lysate to distilled water was amended for each sample to produce two distinct gel 

samples with protein concentrations of 1.5 µg/µL and 2.5 µg/µL. Samples were then 

vortexed, and heated at 95˚C for 5 minutes in order to denature proteins. 

 

For analysis of p-AktSer473, p-eEF2Thr56, and p-4EBP1Thr37/46, 15 µg (10 µL of the1.5 µg/µL 

gel samples) of protein was loaded onto NuPAGE 10% Bis-Tris Gels (Invitrogen, UK). Due 

to being lowly expressed, 40 µg (16 µL of the 2.5 µg/µL gel samples) of protein was loaded 

for analysis of p-P70S6K1Thr389.  Gels were then run for 2 h at 125 V in 1 x NuPAGE MOPS 

SDS running buffer (Invitrogen, UK) to allow for ample separation of proteins. For p-

mTORSer2448, 15 µg of protein was loaded onto NuPAGE 3-8% Tris-Acetate Gels (Invitrogen, 

UK), before being ran for 35 min at 150 V in 1 x NuPAGE Tris-Acetate SDS running buffer 

(Invitrogen, UK). Following separation, all proteins were transferred onto PVDF membrane 

(Invitrogen, UK) for 1 h (p-AktSer473, p-eEF2Thr56 and p-mTORSer2448) or 2 h (p-P70S6K1Thr389 

and p-4EBP1Thr37/46) at 30 V in 1 x NuPAGE Transfer Buffer (Invitrogen, UK) containing 

10% methanol, with the exception of p-mTORSer2448 for which no methanol was added. After 

transfer, membranes were blocked for 1 h at room temperature in Tris-buffered saline (TBS: 

50 mmol/L Tris base, 150 mmol/L NaCl, pH 7.6) containing 0.5 % Tween-20 (TBST), and 

either 5% BSA (p-eEF2Thr56 and p-mTORSer2448) or 5% NFDM (p-AktSer473, p-4EBP1Thr37/46 

and p-P70S6K1Thr389). Membranes were then incubated overnight at 4˚C in 1 x TBST and 2-

5% BSA or NFDM with commercially available primary antibodies (Table 6.2). The next 

morning, membranes were serially washed in TBST (3 x 5 min and 1 x 15 min) before being 
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incubated for 1 h at room temperature in 1 x TBST and 2-5% BSA or NFDM with a 

commercially available secondary antibody (Table 6.2). Following secondary antibody 

incubation, membranes were serially washed (3 x 5 min and 1 x 15 min) in TBST before 

being incubated in enhanced chemiluminescent substrate at room temperature in the dark for 

5 minutes. Finally, membranes were blotted free of excess chemiluminescent and antibodies 

bound to target proteins were visualised on a Bio-Rad Chemi-doc imaging system. 

Membranes were exposed long enough to ensure clear, non-saturated bands for all samples. 

Bands apparent at expected molecular weights were manually defined with sample boxes 

fitted as tightly as possible and the volume of band densities were determined using Quantity 

One image-analysis software. All samples were normalised to Coomassie staining of 

membranes to control for loading. The phosphorylation of target proteins was used as an 

indirect measure of their activity. 

 

5.3.12 Calculations and statistics  

Area under the curve (AUC) for glucose, insulin and NEFA was calculated using the 

trapezoidal rule with zero as the baseline. All data are presented as means ± standard error of 

the mean (SEM). Statistical analysis was performed using SPSS (V21.0) for windows (SPSS 

Inc, Chicago, IL). Paired t-tests were used to compare differences in body mass, BMI, fasting 

glucose, NEFA and insulin concentrations, and fed-state skeletal muscle FSR before and after 

overfeeding. All remaining data were compared using a two-way (trial x time) repeated 

measures analysis of variance (ANOVA) and Bonferroni post hoc analysis where appropriate. 

Statistical significance was set at p < 0.05. 
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Table 5.2 Primary and secondary antibody information.  

All antibodies were purchased from Cell Signaling Technology (Danvers, USA) 

Antibody Product 

No. 

Isotype Molecular 

weight 

(kDa) 

Antibody 

dilution (w/v 

with diluent) 

Diluent in 

TBST 

p-Aktser473 4060 Rabbit 60 1:5000 5% NFDM 

p-mTORSer2488 5536 Rabbit 289 1:2000 2.5% BSA 

p-eEF2Thr56 2331 Rabbit 95 1:1000 5% BSA 

p-P70S6K1Thr389 9234 Rabbit 70, 85 1:1000 2% NFDM 

p-4EBP1Thr37/46 2855 Rabbit 15-20 1:1000 2% NFDM 

      

Secondary Antibody   

Anti-rabbit IgG, 

HRP-linked 

7074 Goat -- 1:2000 Equivalent to 

the primary 

antibody of 

interest. 
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5.4 Results  

5.4.1 Weight gain and BMI 

All 13 subjects gained body mass following the overfeeding intervention (increasing by 1.4 ± 

0.3 kg; p < 0.0001, Table 6.1), leading to an increase in BMI of 0.44 ± 0.09 kg/m2 (p < 

0.0001, Table 6.1). 

 

5.4.2 Fasting metabolic responses 

Fasting substrate and hormone concentrations are presented in table 6.3. Fasting plasma 

glucose displayed a tendency to increase after overfeeding, but this did not reach significance 

(p = 0.08). Serum insulin increased after overfeeding (p = 0.026), while plasma NEFA 

decreased (p = 0.004).  

 

Table 5.3 Fasting substrate and hormone concentrations before and after 7-days high-fat 

overfeeding. 

 Before overfeeding After overfeeding 

Glucose (mmol/L) 4.93 ± 0.09  5.09 ± 0.08  

Insulin (pmol/L) 67 ± 7   82 ± 8 * 

NEFA (mmol/L) 0.58 ± 0.08  0.35 ± 0.05 * 

Data presented are means ± SEM (n = 13). Fasting values represent mean values across the -

30 - 0 min period before CHO + PRO ingestion. * denotes significant change following the 

dietary intervention (p < 0.05). 

 

5.4.3 Substrate and hormone responses to carbohydrate and protein ingestion 

Substrate and hormone responses to CHO + PRO ingestion before and after overfeeding are 

presented in Figure 6.2. Plasma glucose concentrations increased after CHO + PRO 

ingestion, peaking at the 30 minute time point in both trials. Seven days of high-fat 

overfeeding increased plasma glucose AUC by 10% (from 610  23 mmol/L per 120 min 

before overfeeding to 672  19 mmol/L per 120 min after overfeeding; p = 0.008, figure 

6.2b). A significant trial x time interaction was evident for plasma glucose (p = 0.043, figure 

6.2a). Serum insulin AUC tended to increase by 17% after overfeeding (from 34554  4200 

pmol/L per 120 min before overfeeding to 40518  3382 pmol/L per 120 min after 

overfeeding), but this did not reach statistical significance (p = 0.085, figure 6.2d). Consistent 

with plasma glucose, a significant trial x time interaction was also evident for serum insulin 
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(p = 0.006, figure 6.2b). Plasma NEFA concentrations decreased in response to CHO + PRO 

ingestion, reaching a nadir at 90 minutes post-ingestion in both trials (figure 6.2e). Plasma 

NEFA also displayed a significant time x trial interaction (p < 0.0001, figure 6.2e). Serum 

NEFA AUC was reduced by 19.5% after overfeeding (from 26.6 ± 2.5 mmol/L per 120 min 

before overfeeding to 21.4 ± 1.8 mmol/L per 120 min after overfeeding; p = 0.039, figure 

6.2f). 

 

 

Figure 5.2 Fasting and postprandial plasma glucose (A), serum insulin (C), and plasma 

NEFA (E) concentrations, and plasma glucose (B), serum insulin (D), and plasma NEFA 
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AUC (F), before (pre) and after (post) 7-days of high-fat overfeeding (HFD). Time point 0 

represents mean (-30-0 minutes) fasting values. Data presented are means ± SEM (n = 13). * 

denotes significant difference between trials at the annotated time point (p < 0.05). # denotes 

significant main effect of trial/high-fat overfeeding (p < 0.05). 

 

5.4.4 Plasma and intracellular phenylalanine concentration 

Ingestion of CHO + PRO led to an increase in plasma phenylalanine concentrations, reaching 

a peak at the 30-45 minute time point (figure 6.3). No difference in plasma phenylalanine 

concentrations were evident between trials (p = 0.244). Intracellular phenylalanine 

concentrations also exhibited a main effect of time, (p < 0.0001), with the biopsy taken 120 

minutes post CHO + PRO ingestion exhibiting a lower concentration than the baseline/fasted 

biopsy (Table 6.4). Again, no difference in intracellular phenylalanine concentrations were 

evident between trials (p = 0.696).  

 

 

Figure 5.3 Fasting and postprandial plasma phenylalanine concentrations before (pre) and 

after (post) 7-days of high-fat overfeeding (HFD). Time points -30 – 0 min represent the final 

30 min of the 2-h pre-infusion period. All subsequent time points are following the ingestion 

of CHO + PRO (indicated by dotted line). Data presented are means ± SEM (n = 13). 
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5.4.5 Plasma and intracellular [13C6]phenylalanine enrichment  

Plasma [13C6]phenylalanine enrichment displayed a progressive increase over time, peaking 

at 120 minutes in both trials (figure 6.4a). This response was not influenced by high-fat 

overfeeding (p = 0.244). Intracellular [13C6]phenylalanine enrichment also displayed an 

increase over time (figure 6.4b). Again, this response was not influenced by high-fat 

overfeeding (p = 0.659). The gradual increase in isotopic enrichment within both plasma and 

intracellular amino acid pools is most likely attributable to an insulin-induced suppression of 

whole-body protein breakdown following ingestion of the test beverage. This would reduce 

isotopic dilution due to a decreased rate of release of unlabelled amino acids from the protein 

pool.  
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Figure 5.4 Plasma (A) and intracellular (B) [13C6]phenylalanine enrichment before (pre) and 

after (post) 7-days high-fat overfeeding (HFD). Time points -30 – 0 min represent the final 30 

min of the 2-h pre-infusion period. All subsequent time points are following the ingestion of 

CHO + PRO (indicated by dotted line). Data presented are means ± SEM (n = 13). 
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Table 5.4 Intracellular phenylalanine concentration, [13C6]phenylalanine enrichment and 

change in muscle bound protein enrichment before (0), and 120 minutes after CHO + PRO 

ingestion, before and after 7-days of high-fat overfeeding. 

 Before overfeeding After overfeeding 

 0 120 0 120 

Intracellular 

concentration 

(µmol/L) 

54 ± 2 42 ± 2 * 51 ± 2 43 ± 2 * 

Intracellular 

enrichment 

(TTR) 

0.042 ± 0.002 0.054 ± 0.002  0.047 ± 0.004 0.052 ± 0.003  

∆ muscle 

protein 

enrichment 

(TTR) 

─ 0.000067 ± 

0.000007 

─ 0.000070 ± 

0.000006 

Data presented are means ± SEM (n = 13). * denotes significant difference between the 

fasting (0) and 120 minute biopsies (p < 0.05). 

   

5.4.6 Mixed muscle protein synthesis  

Fed-state mixed muscle protein FSR were similar before and after high-fat overfeeding 

(0.073 ± 0.008 %/h before overfeeding and 0.066 ± 0.006 %/h after overfeeding; p = 0.432, 

figure 6.5). This suggests that MPS is not affected by high-fat, overfeeding-induced 

impairments in glycaemic control.   
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Figure 5.5 Mixed muscle protein FSR following CHO + PRO ingestion before (pre) and after 

(post) 7-days high-fat of high-fat overfeeding (HFD). Data presented are means ± SEM (n = 

13). 

 

5.4.7 Anabolic signalling  

The phosphorylation status of skeletal muscle Aktser473, mTORSer2488, eEF2Thr56, 

P70S6K1Thr389, and 4EBP1Thr37/46 are presented in figure 6.6a-e respectively. Phosphorylation 

of Aktser473 increased approximately 2-fold 30 minutes after CHO + PRO ingestion, before 

decreasing again at 120 minutes. Phosphorylation of mTORSer2488 and P70S6K1Thr389 also 

increased 30 minutes post ingestion by approximately 20%, and 2-fold, respectively. The 

phosphorylation status of these signalling intermediates remained elevated above baseline at 

the 120 minute time point. Phosphorylation of eEF2Thr56 was slightly (7.4%) decreased at the 

120 minute time point when compared to baseline. Seven days of high-fat, overfeeding did 

not alter the phosphorylation status of Aktser473, mTORSer2488, eEF2Thr56, and P70S6KThr389. 

However, there was an overall main effect of trial/high-fat overfeeding for 4EBP1Thr37/46 

phosphorylation, which was reduced by a mean difference of 8.8% after overfeeding (p = 

0.028). No difference in 4EBP1Thr37/46 phosphorylation was evident in response to CHO + 

PRO ingestion. Representative western blot images are presented in Figure 6.7. 



97 

 

 

Figure 5.6 Phosphorylation of skeletal muscle Aktser473 (A), mTORSer2488 (B), eEF2Thr56 (C), 

P70S6K1Thr389 (D) and 4EBP1Thr37/46 (E) at baseline (0) and 30 and 120 min after CHO + 

PRO ingestion before (pre) and after (post) high-fat overfeeding (HFD). Data presented are 

means ± SEM (n = 13). AU, arbitrary units. # denotes significant main effect of trial/high-fat 

overfeeding (p < 0.05). *, denotes significant difference from baseline measurement (time 0) 

(p < 0.05).   
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Figure 5.7 Representative blots of phosphorylated (p) AktSer473, p-mTORSer2488, p-eEF2Thr56, 

p-P70S6K1Thr389 and p-4EBP1Thr37/46, and Coomassie staining at baseline (0), 30, and 120 

min after CHO + PRO ingestion, before (pre) and after (post) high-fat overfeeding (HFD).  
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5.5 Discussion  

The main finding of the present study was that 7-days of high-fat overfeeding impaired 

glycaemic control in young, healthy, lean individuals as evidenced by a significant 10% 

increase in postprandial glucose AUC and similar (arguably elevated) serum insulin AUC 

(17% non-significant increase). In addition, overfeeding was also associated with an overall 

reduction in the phosphorylation status of 4EBP1Thr37/46. However, while 4EBP1 is considered 

one of the principal regulators of translation initiation, this reduction in phosphorylation did 

not influence fed-state skeletal muscle protein FSR, with similar values observed before and 

after the overfeeding intervention. These findings suggest that diet-induced impairments in 

glycaemic control do not affect the MPS response to nutrient stimulation in young, healthy, 

non-obese individuals.  

 

There is currently contention in the literature as to whether insulin resistance impairs the 

anabolic sensitivity of skeletal muscle, with some (Chevalier et al., 2005; Guillet et al., 2009; 

Murton et al., 2015; Pereira et al., 2008), but not all (Chevalier et al., 2015), studies reporting 

that obese, insulin resistant individuals exhibit a reduced MPS response to nutrient 

stimulation. In humans the maintenance of skeletal muscle mass is dependent on the balance 

between MPS and MPB (Atherton, & Smith, 2012). Thus, reductions in MPS may lead to an 

imbalance between these processes resulting in skeletal muscle atrophy. This is important as 

relative muscle mass is inversely related to whole-body insulin resistance (Srikanthan, & 

Karlamangla, 2011) and reductions in mass may therefore further exacerbate the metabolic 

derangements seen in obesity. Furthermore, T2DM is associated with impaired skeletal 

muscle function and an accelerated loss of lean mass with aging, this would have 

implications for mobility and stability and has been reported to be a key regulator of 

morbidity and mortality in the elderly (Kim et al., 2010; McLeod et al., 2016; Park et al., 

2009; Park et al., 2006; Park et al., 2007). However, studying obese insulin resistant 

individuals makes it difficult to disentangle the effects of insulin resistance from the other 

metabolic alterations seen in obesity. In an attempt to address this question, Stephens et al. 

(2015) investigated the MPS response in healthy, lean individuals during a hyperinsulinemic-

euglycaemic clamp with supplementary amino acid ingestion, and concomitant intravenous 

(iv) infusion of either 10% Intralipid (100 mL/h) or normal saline. The findings of that study 

demonstrate that lipid infusion was associated with a 20% reduction in peripheral glucose 

disposal, and a complete absence of the 2.2-fold increase in FSR observed during saline 

infusion. From this finding, the authors conclude that lipid-induced insulin resistance blunts 
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the anabolic response to insulin and amino acid stimulation. However, an alternative model 

of investigating the progression of insulin resistance is through the consumption of a high-fat 

diet for several days/weeks, and it is unclear as to whether diet-induced alterations in glucose 

metabolism influence MPS. Thus, in the present study we have investigated the effect of 7-

days of high-fat overfeeding on skeletal muscle FSR in young, healthy, non-obese 

individuals. In contrast to the findings reported by Stephens et al. (2015), we observed 

impairments in postprandial glycaemic control, whereas fed-state skeletal muscle FSR was 

seemingly unaffected.  

 

The differences between the results reported in the present study and those of Stephens et al. 

(2015) are likely attributable to the different models of insulin resistance utilised (i.e. iv lipid 

heparin infusion and high-fat overfeeding). It has previously been shown that iv lipid heparin 

infusion can rapidly (within 3-4 h) induce insulin resistance in healthy individuals, which is 

associated with a supraphysiological rise in circulating NEFA concentrations (Boden, & 

Jadali, 1991; Roden et al., 1996; Szendroedi et al., 2014). This method was developed based 

on early observations that enlarged adipose tissue mass results in elevated plasma NEFA 

levels (Opie, & Walfish, 1963), and has thus provided a hypothetical mechanistic link 

between obesity and insulin resistance (Eckel et al., 2005). However, a recent systematic 

review by Karpe et al. (2011) demonstrates that plasma NEFA concentrations are not simply 

determined by increased adiposity, and even severe obesity-induced insulin resistance can 

occur without elevations in circulating NEFA levels. Moreover, our data demonstrate 

impaired glycaemic control despite a reduction in fasting and postprandial NEFA 

concentrations, a finding which is in accordance with previous observations from our 

laboratory (Parry et al., 2017), and other short-term overfeeding studies (Brons et al., 2009; 

Cornford et al., 2013). Combined, these findings cast doubt on the NEFA hypothesis of 

insulin resistance and the physiological relevance of lipid infusion protocols. Furthermore, 

intravenous infusion of fatty acids has previously been demonstrated to reduce MPB 

(Gormsen et al., 2008; Keller et al., 2002). Increased circulating insulin concentrations are 

also known to reduce MPB (Fryburg et al., 1990; Gelfand, & Barrett, 1987; Greenhaff et al., 

2008). Thus, it is possible that the reduction in fed-state MPS observed by Stephens et al. 

(2015) is attributable to a decrease in intracellular amino acid availability resulting from the 

combined suppressive effects of elevated concentrations of NEFA (from the iv lipid heparin 

infusion) and insulin (from the hyperinsulinemic-euglycaemic clamp) on MPB. Indeed, the 

reduction in postprandial plasma phenylalanine concentrations observed in that study during 
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the lipid infusion trial are indicative of reduced MPB. However, this hypothesis cannot be 

confirmed as the authors did not present intracellular amino acid concentrations, although 

intracellular tracer enrichment (which would be influenced by changes in amino acid 

concentration) were similar between the lipid and saline infusion trials.  

 

Notably, our choice of experimental cohort may have influenced findings. In the present 

study we chose to investigate the impact of 7-days of high-fat overfeeding in young, healthy, 

lean participants who were recreationally active (performing moderate to vigorous intensity 

exercise at least 3 times per week for more than 30 minutes at a time). It has previously been 

demonstrated that a potent inhibitor of MPS is immobility (Ferrando et al., 1996; Ferrando et 

al., 2010; Ferrando et al., 1997; Gibson et al., 1987; Kortebein et al., 2007; Symons et al., 

2009), and increased physical activity levels would appear to be protective of sarcopenia in 

the elderly (Mijnarends et al., 2016; Park et al., 2010; Ryu et al., 2013). Taken together these 

findings indicate that habitual physical activity levels per se are a key regulator of MPS. 

Therefore the physical activity status of our participants may have had a protective effect. 

Similar findings have previously been reported regarding whole-body insulin sensitivity (i.e. 

physical activity blunts the deleterious effects of overfeeding) (Krogh-Madsen et al., 2014; 

Walhin et al., 2013), and human muscle satellite cells donated from active individuals appear 

to be more protected from palmitate-induced insulin resistance than those from sedentary 

donors (Green et al., 2013). It would be of interest to repeat this experiment in combination 

with a model of reduced physical activity, or in cohorts who are characterised by sedentary 

lifestyles.  

 

Alongside elevating circulating NEFA levels, iv lipid heparin infusions also increase 

intramyocellular lipid (IMCL) concentrations (Bachmann et al., 2001). Indeed, while IMCL 

content was not measured in Stephens et al. (2015), the increase in intramuscular long-chain 

acyl-CoA and acetylcarnitine concentrations observed in that study suggests augmented lipid 

content in skeletal muscle. Thus, the findings of Stephens et al. (2015) may not be 

attributable to reductions in insulin sensitivity per se, but rather the direct effect of specific 

lipid subspecies (i.e. ceramide and diacylglycerol) on the mechanisms responsible for MPS. 

The findings regarding alterations in IMCL content after short-term overfeeding interventions 

are inconclusive, with both increases (Adochio et al., 2009), and no change (Cornford et al., 

2013) previously reported; and the impact of our  model of high-fat overfeeding on IMCL 

content is still unknown. Interestingly, the accumulation of IMCL is a characteristic 
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metabolic feature of obesity (Goodpaster et al., 1999), insulin resistance (Perseghin et al., 

1999), and aging (Rivas et al., 2012); all conditions which have previously been postulated to 

reduce anabolic sensitivity. Furthermore, in vitro evidence suggests treating cultured skeletal 

muscle cells with a cell-permeable ceramide attenuates mTOR and P70S6K1 phosphorylation 

and impairs the cellular protein synthesis response to nutrient stimulation (Hyde et al., 2005). 

The hypothesis that IMCL accumulation impairs MPS may explain the findings seen in 

obese, insulin-resistant individuals (Chevalier et al., 2005; Guillet et al., 2009; Murton et al., 

2015; Pereira et al., 2008), who are likely to demonstrate increased IMCL compared to their 

healthy-weight counterparts. However, this is speculative as none of the above mentioned 

studies compared IMCL content between their study cohorts. Therefore, while it is possible 

that increased IMCL accumulation impairs MPS, further investigations and direct 

measurements of IMCL content are required.  

 

The stimulation of MPS following nutrient ingestion is reliant upon increased ribosomal 

activity (also referred to as “translational efficiency”). Central to this increase in ribosomal 

activity is the activation of the mTOR signalling pathway, which increases translation 

initiation and elongation through the phosphorylation of downstream signalling intermediates 

(namely 4EBP1 and P70S6K1) (Drummond et al., 2009). The suppression of postprandial 

MPS in response to lipid infusion (Stephens et al., 2015), skeletal muscle disuse (Wall et al., 

2016), and aging (Cuthbertson et al., 2005), have previously been characterised by a 

reduction in 4EBP1 phosphorylation, suggesting that impairments in intracellular signalling 

underpin reductions in anabolic sensitivity in a variety of circumstances. In the present study, 

7-days of high-fat overfeeding was associated with reductions in 4EBP1 phosphorylation. 

However, this reduction in phosphorylation status was relatively minor (~9%), and did not 

seem to impact upon postprandial MPS, with similar skeletal muscle protein FSR observed 

before and after overfeeding. It is unclear why the observed reductions in 4EBP1 did not 

translate into differences in MPS in this study, although a potential explanation comes from 

Masgrau et al. (2012) who, when investigating the chronological changes in MPS induced by 

overnutrition in rodents, demonstrate a time-course response whereby MPS was only 

impaired after prolonged overfeeding/obesity. To elaborate, Masgrau et al. (2012) compared 

MPS rates in rats fed a 16 week control diet, to those fed a high-fat, high-sucrose diet for 

either 16 or 24 weeks. The results of that study demonstrate that despite significant increases 

in body weight and fat mass after 16 weeks of dietary intervention, mixed muscle protein 

FSR were well maintained. However, when feeding was continued until 24 weeks, a 26% 
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reduction in mixed muscle protein FSR was observed. Intriguingly, in line with the 

discussion point above this reduction in FSR coincided with a significant increase in IMCL 

content. Thus, it is possible that the reduction in 4EBP1 phosphorylation observed in the 

present study represents an early-phase response to short-term high-fat overfeeding; a 

response which could be augmented if the dietary intervention was continued for a longer 

duration, and may eventually lead to impairments in MPS.  

 

We must acknowledge certain limitations within our study, the first of which is the decision 

to limit our comparisons to fed-state skeletal muscle protein FSR. For practical reasons, we 

did not include an assessment of basal/fasting protein FSR, meaning we may have missed 

potential diet-induced differences at this time. Conversely, available evidence would suggest 

that the impairments in MPS seen in obesity and/or insulin resistance are limited to 

postprandial responses, whereas basal/fasting rates of MPS are unaffected (Murton et al., 

2015; Pereira et al., 2008; Stephens et al., 2015). Based on this information we are therefore 

confident that 7-days of high-fat overfeeding did not influence basal/fasting muscle protein 

FSR in this cohort. In addition, the lack of basal/fasting muscle protein FSR measurements in 

this study mean we are unable to categorically determine the ability of our carbohydrate and 

protein beverage to upregulate postprandial MPS. However, with reference to the literature 

(Kumar et al., 2009; Stephens et al., 2015; Volpi et al., 2001), we can reasonably assume that 

the fed-state FSR observed in this study are increased above fasting/postabsorptive levels. 

Further support for this assumption comes from the observation that phosphorylation of 

Aktser473, mTORSer2488, and P70S6K1Thr389 was increased in the postprandial period after 

carbohydrate and protein ingestion, and phosphorylation of eEF2Thr56 was decreased; 

responses which are consistent with the nutritional stimulation of human MPS (Drummond et 

al., 2009).  

 

In conclusion, 7-days of high-fat overfeeding impaired postprandial glycaemic control in 

young, healthy, non-obese individuals. Furthermore, high-fat overfeeding also led to a 

reduction in the phosphorylation status of 4EBP1Thr37/46. However, this attenuation in 4EBP1 

phosphorylation did not influence postprandial MPS responses, with similar fed-state skeletal 

muscle protein FSR observed before and after the overfeeding intervention. These findings 

suggest that diet-induced impairments in glycaemic control do not affect the MPS response to 

nutrient stimulation in young, healthy, non-obese individuals. However, the reduction in 
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4EBP1 phosphorylation noted in the current study possibly suggests that reductions in fed-

state FSR may be induced had the dietary intervention been continued for a longer duration. 
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 CHAPTER 6 

 

General discussion.
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6.1 Reiteration of aims and objectives 

Short-term (3-28 days) high-fat overfeeding is associated with negative alterations in glucose 

metabolism in healthy, lean subjects, including reductions in whole-body insulin sensitivity 

and impairments in glycaemic control (Hulston et al., 2015; Samocha-Bonet et al., 2010; 

Tam et al., 2010; Wulan et al., 2014), increased EGP (Brons et al., 2009) and defects in 

skeletal muscle insulin signalling (Adochio et al., 2009). However, the mechanisms 

underpinning these impairments and the time course of development are still unknown. There 

is particular contention as to which tissues are the first to demonstrate diet-induced 

impairments, with some reports implicating changes in hepatic insulin sensitivity and 

increased endogenous glucose production (EGP) (Brons et al., 2009; Cornier et al., 2006), 

whereas others suggest that skeletal muscle is the primary site of metabolic dysfunction 

(Adochio et al., 2009; Knudsen et al., 2012). Additionally, evidence suggests that obese 

insulin resistant individuals also demonstrate “anabolic resistance” (i.e. a reduced muscle 

protein synthetic response to anabolic stimuli) (Chevalier et al., 2005); Guillet et al. (2009); 

(Murton et al., 2015; Pereira et al., 2008). A response which has been attributed to the onset 

of insulin resistance (Stephens et al., 2015). However, the impact of diet-induced 

impairments in whole-body insulin sensitivity on skeletal muscle protein metabolism has not 

been addressed. With this in mind, the overall aim of this thesis was to address current gaps 

in the literature regarding the impact of short-term high-fat overfeeding on whole-body and 

tissue-specific metabolic control. This aim was to be achieved by successful completion of 

the following objectives:  

 

1. To corroborate and further characterise a model of short-term, high-fat overfeeding, 

previously shown by our laboratory to reduce whole-body insulin sensitivity in young, 

healthy, lean individuals. 

 

2. To investigate tissue-specific insulin sensitivity in response to diet-induced 

impairments in glycaemic control.  

 

3. To delineate the developmental time-course of diet-induced impairments in whole-

body insulin sensitivity. 

 

4. To determine whether diet-induced impairments in glycaemic control impair the 

anabolic response to nutrient stimulation in young, healthy, lean individuals. 
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6.2 Summary of findings 

This section will summarise the key findings from the studies described in Chapters 2,3,4, 

and 5 of this thesis, and how they relate to the objectives outlined above.  

 

6.2.1 Chapter 2. Short-term, high-fat overfeeding impairs glycaemic control but does 

not alter gut hormone responses to a mixed meal tolerance test in healthy, normal 

weight individuals.  

This chapter demonstrates that 7-days of high-fat (65% total energy), overfeeding (+50% 

energy) impairs glycaemic control in healthy, lean individuals as evidenced by a significant 

increase in postprandial glucose and insulin area under the curve (AUC). This confirms a 

previous finding from our laboratory (Hulston et al., 2015), thus completing objective 1, and 

validating the use of this model in future mechanistic investigations. In addition, this chapter 

also demonstrates that the postprandial plasma ghrelin, and glucagon-like peptide-1 (GLP-1) 

and gastric inhibitory polypeptide (GIP) responses were unaffected by the diet intervention. 

Indicating that these orexigenic, and anorexigenic/insulintropic hormones are not major 

regulators of the early adaptive responses to overnutrition. 

 

6.2.2 Chapter 3. Short-term, high-fat overfeeding impairs glycaemic control in young, 

healthy, lean individuals by altering the coordinated processes regulating plasma 

glucose flux. 

In an attempt to investigate the mechanisms underpinning the early, diet-induced impairments 

in glycaemic control, dual-glucose tracer methodology was combined with the 7-day model 

of high-fat overfeeding utilised in chapter 2. This chapter again demonstrates that our model 

of high-fat overfeeding impairs glycaemic control in young, healthy, lean individuals. 

Furthermore, the use of the dual-glucose tracer in this study enabled us to investigate the 

individual processes which contribute to whole-body glycaemic control (i.e. intestinal 

absorption of glucose following carbohydrate ingestion, endogenous glucose production 

(EGP), and peripheral uptake of glucose), and thus meet objectives 1 and 2. Our data 

demonstrate no significant differences in any of these individual processes, but did reveal a 

postprandial imbalance between the rate of glucose appearance and disappearance which 

would favour the accretion of plasma glucose. This suggests that the observed impairments in 

glycaemic control are attributable to subtle alterations in the coordinated processes regulating 



108 

 

plasma glucose flux, rather than overt tissue-specific alterations in glucose metabolism which 

have previously been reported (Brons et al., 2009; Cornier et al., 2006; Knudsen et al., 2012).  

 

6.2.3 Chapter 4. A single day of excessive dietary fat intake impairs whole-body insulin 

sensitivity in healthy, non-obese, young men. 

Chapters 2 and 3 demonstrate that 7-days of high-fat overfeeding impair glycaemic control in 

young, healthy, non-obese individuals. This finding is in accordance with a number of other 

short-term (3-14 day) overfeeding studies (Cornford et al., 2013; Hulston et al., 2015; 

Lagerpusch et al., 2012; Olefsky et al., 1975; Tam et al., 2010). However, the developmental 

time-course of these impairments is currently unknown. Therefore, in an attempt to complete 

objective 3, we herein investigated glucose tolerance in healthy, non-obese males before, and 

after a 1-day, high-fat (73%), high-energy (+80%) diet. Our data demonstrate that 1-day of 

high-fat overfeeding significantly reduced whole-body insulin sensitivity (assessed by the 

Matsuda insulin sensitivity index) in this cohort by 24%. A further important finding from 

this study is that, in line with the observations from our 7-day model, the reduction in whole-

body insulin sensitivity occurred alongside an insufficient compensatory increase in insulin 

secretion, indicating some degree of β-cell dysfunction. These alterations occurred alongside 

reduced fasting, and unchanged postprandial non-esterified fatty acid (NEFA) concentrations. 

This finding highlights potential mechanistic differences between intravenous (iv) lipid 

infusion protocols and dietary models of insulin resistance, which along with the recent 

change in consensus that obesity and elevated NEFA concentrations may in fact not be 

directly related (Karpe et al., 2011), advocates the future use of dietary models in 

investigations aimed at enhancing our understanding of human metabolic disease. 

 

6.2.4 Chapter 5. Diet-induced impairments in glycaemic control do not influence the 

muscle protein synthetic response to carbohydrate and protein ingestion in young, 

healthy, lean individuals.  

It has recently been demonstrated that iv lipid heparin infusions can induce insulin resistance 

and impair the muscle protein synthesis (MPS) response to anabolic stimuli in healthy 

individuals (Stephens et al., 2015). However, as demonstrated in chapters 2, 3, and 4, short-

term high-fat, overfeeding impairs glycaemic control and reduces insulin sensitivity 

independently of changes in circulating NEFA concentrations, potentially highlighting 

distinct mechanistic differences between dietary models of insulin resistance and iv lipid 

infusion protocols. It is currently not known if diet-induced alterations in glucose metabolism 
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influence MPS responses. In this chapter we investigated whether 7-days of high-fat (65% 

total energy), overfeeding (+50% energy), which can be considered a more 

physiological/applied model of insulin resistance, impaired the MPS response to a mixed 

carbohydrate and protein beverage in young, healthy, lean individuals. Our findings 

demonstrate that the fed-state MPS response is maintained in response to diet-induced 

impairments in glycaemic control, thus completing objective 4.  

 

6.3 Limitations 

There are a number of limitations of the work contained in this thesis, some of which have 

been briefly discussed in the relevant experimental chapters. However, there are also a 

number of limitations which are common across studies, the first of which being the lack of a 

diet control. It is challenging to determine what the most appropriate experimental design for 

a control diet/group would be, as a change in any dietary component ultimately results in 

changing the composition of the diet in its entirety, and altering the energy content makes it 

difficult to disentangle the influence of macronutrients per se. It is plausible that any dietary 

change may elicit unknown alterations in metabolism. Based on this we chose to compare our 

experimental diet against subjects’ habitual diet. We are therefore unable to determine 

whether the findings outlined in this thesis are attributable to the high-energy content of the 

diet, the high-fat content, or the high-saturated fat content. It would be of interest to 

investigate the influence of each specific dietary component on glycaemic control and whole-

body insulin sensitivity and this has been outlined in the future directions section below.  

 

A further limitation is that the physical activity levels of our participants was not measured 

before or during the dietary intervention phase. It has previously been demonstrated that 

physical activity level is a prime determinant of the deleterious effects of overfeeding, and 

those with increased physical activity levels are able to somewhat maintain whole-body 

insulin sensitivity in response to an overfeeding intervention compared to those who are 

sedentary (Krogh-Madsen et al., 2014; Walhin et al., 2013). This protective effect of physical 

activity is associated with changes in body-fat distribution and adipose tissue lipogenic gene 

expression. Furthermore, it would appear that skeletal muscle satellite cells maintain this 

metabolic phenotype ex vivo (Green et al., 2013). Green et al., (2013) demonstrated that even 

after multiple passages, myotubes from physically active donors are protected from 

palmitate-induced insulin resistance compared to those from sedentary donors. Furthermore, 

physical activity seems to be a key mediator of skeletal muscle protein metabolism 
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(Mijnarends et al., 2016; Park et al., 2010; Ryu et al., 2013). It is therefore possible that the 

physical activity status of our participants (who were classed as recreationally active and 

performed moderate to vigorous intensity exercise at least 3 times per week for more than 30 

minutes at a time) may have influenced the findings of all experimental chapters in this 

thesis, but in particular those of chapters 3 and 6 where we have demonstrated that short-term 

high-fat overfeeding does not influence whole-body glucose uptake (which is predominantly 

governed by skeletal muscle glucose uptake) or mixed muscle fractional protein synthesis 

rate. It remains unclear as to whether our findings would hold true for those who are less 

active. Unfortunately, as no quantifiable measures of physical activity were obtained we are 

unable to investigate this notion in any detail. It would be of interest to investigate whether 

differences in physical activity within our experimental cohort influence findings (i.e. do 

those who are more active display a different response to those who are less active), or 

whether our dietary intervention independently influences physical activity levels, which 

could be a contributing factor to our findings. 

 

A number of methodological tools have also been used in this thesis to investigate glycaemic 

control/whole-body insulin sensitivity (e.g. meal tolerance test, oral glucose tolerance test, 

dual-glucose tracer method). While these methodological tools were chosen to answer 

specific questions regarding the influence of short-term high-fat overfeeding, they make 

comparisons between experimental chapters difficult, as altering the amount of ingested 

glucose has previously been shown to cause a dose-dependent increase in postprandial insulin 

response (de Nobel, & van't Laar, 1978; Mosora et al., 1981; Pan et al., 1982), and ingesting 

carbohydrates with other macronutrients, particularly protein, typically potentiates the insulin 

response in humans (Bock et al., 2007). Furthermore, the difference in solid and liquid 

feeding of test meals would have implications for gastric emptying (Achour et al., 2001) and 

the resulting postprandial substrate and hormonal milieu with which changes in gastric 

emptying are associated. Nevertheless, it is notable that a similar pattern of response was 

observed in all chapters, i.e. an insufficient compensatory insulin response resulting in 

increased postprandial glucose levels. This finding would suggest some form of impaired β-

cell function. This response was observed irrespective of the testing method utilised. No 

direct measures of β-cell function were performed in this thesis.  
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6.4 Future directions 

Alongside the findings of the experimental chapters above, samples obtained in this thesis 

have been provided to collaborators at Loughborough University, Liverpool John Moores 

University, and The University of Sheffield in order to determine hepatokine secretion, lipid 

droplet formation, microvascular function and immune cell-derived microvesicle production, 

responses to a severe lipid overload. However, there are still a number of questions which 

remain to be answered; 

 

6.4.1 Does 7 days of high-fat overfeeding influence ectopic lipid accumulation?  

In the experimental chapters of this thesis we have demonstrated that short-term, high-fat, 

overfeeding impairs glycaemic control. However, what is not known is the fate of the 

ingested dietary fat. Previous research has hypothesised that dietary interventions of this 

nature increase the deposition of lipids in ectopic sites such as the liver and skeletal muscle; a 

response which may be critical in the development of metabolic disorders. Conversely, data 

outlining the influence of short-term overfeeding protocols on liver, and/or skeletal muscle 

lipid accumulation is relatively sparse. Whilst our collaborators from Liverpool John Moores 

University may be able to provide some insight into this area, future research should focus on 

establishing whether there is a relationship between the site of lipid deposition and whole-

body glucose metabolism.   

 

6.4.2 Blood lipids and lipoproteins: Dietary adaptations and clinical implications? 

Where dietary interventions have been performed in this thesis, we have seen consistent 

alterations in lipid and lipoprotein metabolism. However, the nature of these alterations are 

somewhat surprising, with high-fat, overfeeding associated with reductions in fasting plasma 

NEFA, and triglyceride (TG), and increased high-density lipoprotein (HDL) concentrations, 

and reduced, or unchanged postprandial NEFA concentrations (Chapters 2,3, and 4); all 

responses which would typically be considered clinically favourable. However, the fact these 

responses have been observed in the presence of impaired glycaemic control questions this 

favourable assumption. Elucidating both the mechanisms underpinning these responses, and 

their clinical relevance, was beyond the scope of this thesis and would require in depth 

investigations that are currently beyond the capabilities of our laboratory. Nevertheless, these 

are important questions that should be addressed in order to further our knowledge regarding 

the development of metabolic disease.  
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6.4.3 Is it high-energy intake per se that impairs glycaemic control, or excessive fat 

intake? 

All the experimental chapters of this thesis involved the provision of experimental diets 

aimed at impairing glycaemic control/reducing insulin sensitivity. These diets were 

characterised by being both high in total energy and fat content and achieved their intended 

aim. In future work, it would be particularly interesting to determine if it is excess energy 

intake, or excess dietary fat intake, which negatively impacts glucose metabolism; and if 

similar effects can be elicited when overfeeding other macronutrients (e.g. carbohydrates and 

added sugars in particular). Furthermore, our model of high-fat overfeeding consisted of 

realistic experimental foods that were representative of typical Western dietary habits (i.e. 

high in saturated fat), and it is unclear if the observed responses were driven by high intakes 

of total fat, or saturated fat per se. Alongside investigating the effects of specific dietary 

macronutrients, attention should be given to the composition of the dietary fat and the 

specific contributions of saturated, polyunsaturated, and monounsaturated fat to impairments 

in glycaemic control.  

 

6.4.4 Metabolic responses to short-term high-fat overfeeding: Population specific 

differences?  

In this thesis, all experimental chapters involved the recruitment of young, healthy, lean 

individuals who engaged in regular physical activity. These individuals were chosen to allow 

for investigation into the early metabolic responses to short-term high-fat overfeeding which 

may provide information regarding the onset of insulin resistance. It is therefore unclear as to 

how short-term high-fat overfeeding would impact populations who a characterised by 

existing metabolic derangements, such as those who are obese and/or insulin resistant, 

individuals with type 2 diabetes mellitus (T2DM), or those who exhibit sedentary lifestyles. It 

is plausible that these individuals may demonstrate a more exaggerated deleterious response 

to high-fat overfeeding than the individuals examined in this thesis. Delineating the response 

to high-fat overfeeding in these individuals may reveal important information about the 

progression of metabolic disease. 

 

6.5 General conclusions 

Based on the results of this thesis, it is clear that even extremely brief periods (1-7 days) of 

high-fat overfeeding negatively impact glucose metabolism, as demonstrated by impairments 

in glycaemic control and reductions in whole-body insulin sensitivity. Our data suggest that 
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these impairments are attributable to subtle changes in the coordinated processes regulating 

plasma glucose flux. Intriguingly a common finding of the experimental chapters seen in this 

thesis was an insufficient compensatory insulin response resulting in increased postprandial 

glucose levels after high-fat overfeeding. This would suggest that short-term high-fat 

overfeeding reduces β-cell function which would have severe implications for the 

development of T2DM. Conversely, our data also demonstrate that whilst short-term high-fat 

overfeeding impairs glycaemic control, it does not influence the MPS response to nutrient 

stimulation. Therefore, while it would appear that short-term high-fat overfeeding negatively 

impacts whole-body glucose and lipid metabolism, skeletal muscle protein synthetic 

responses appear to be relatively unaffected in young, lean, healthy humans.   
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 APPENDIX A  

 

Western blotting: an overview of the basic principles and 

the optimisation procedures specific to this thesis.  



137 

 

A.1 Abstract 

The use of western blotting (WB) techniques is now commonplace in life science and 

biochemistry laboratories. WB allows for the separation and analysis of specific proteins, and 

is therefore considered an extremely useful tool in physiological research, providing 

mechanistic insight into a diverse range of regulatory processes. However, while WB can be 

separated into a number of simple theoretical steps, each of these steps can be performed in a 

variety of ways. Furthermore, variation in each of these steps may dramatically impact upon 

the standard of the analysis. Thus, each step of the WB procedure must be carefully 

considered and tailored for the individual proteins of interest. In this thesis WB has been 

utilised to investigate the phosphorylation status of proteins postulated to be involved in the 

anabolic signalling cascade (i.e. the Akt/mTOR signalling pathway). This chapter outlines 

any optimisation work that was undertaken to improve the quality and repeatability of blots 

presented in Chapter 5. 
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A.2 Introduction 

Although it was not named until 1981 (Burnette, 1981), Western blotting (WB) evolved from 

DNA (Southern) blotting and RNA (Northern) blotting and was first described by Towbin et 

al. (1979). This multistep technique allows for the transfer of proteins, separated by their 

molecular mass through electrophoresis, from polyacrylamide gels to a solid support 

membrane. This creates a replica of the original gel pattern, from which a wide variety of 

analytical procedures can then be applied to the immobilised proteins. This includes the 

investigation of protein abundance, kinase activity, cellular localisation, and protein-protein 

interactions (Bass et al., 2017), alongside post-translational modifications such as 

phosphorylation (Nairn et al., 1982), ubiquitinylation (Paul et al., 2012), glycosylation (Pere-

Brissaud et al., 2015), methylation (Voelkel et al., 2013), and sumoylation (Park-Sarge, & 

Sarge, 2009). This diverse range of applications has led to the widespread use of WB in life 

science and biochemistry laboratories. In the context of this thesis, the WB technique has 

been employed in order to investigate the phosphorylation status of proteins postulated to be 

involved in the anabolic signalling response to both nutrient and exercise stimulation (i.e. the 

Akt/mTOR signalling pathway). Of particular interest is the question of whether these 

anabolic signalling responses differ following acute or chronic (obesity) periods of 

overnutrition. 

 

The basic principles of WB can be separated into a number of general steps: (i) sample 

preparation, including the extraction and quantification of cellular proteins from tissues and 

cells etc.; (ii) separation of proteins by gel electrophoresis; (iii) transfer of proteins to a solid 

support (membrane); (iv) “blocking” of the membrane to reduce non-specific binding; (v) 

initial detection of target(s) of interest by incubation with a specific (primary) antibody; (vi) 

detection of primary antibodies by incubation with a secondary antibody conjugated to a label 

(e.g. horseradish peroxidase [HRP]); (vii) production and detection of a signal, which is 

proportional to the degree of antibody binding, through catalysing an interaction with the 

conjugated label (e.g. chemiluminescent); and (viii) imaging and quantification of the 

resulting signal (bands). However, while almost all WB procedures adhere to these basic 

steps, each individual protein/target of interest has its own inherent considerations that must 

be addressed in order to provide reproducible and reliable results. Thus, each aspect of the 

WB process must be carefully considered and tailored for the individual targets of interest. 

This chapter describes the principles and objectives of each step in the WB procedure and 

outlines any optimisation work undertaken to improve the quality and repeatability of blots. 
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This chapter is not an exhaustive list of all potential considerations and avenues for 

optimisation, rather a specific list of the key steps undertaken by our laboratory with regards 

to our targets of interest. The reader is directed to a number of relevant papers for a more 

comprehensive overview of possible technical considerations (Bass et al., 2017; Kurien, & 

Scofield, 2006; Mahmood, & Yang, 2012). 

 

A.3 Sample preparation 

In this thesis, sample preparation concerns the extraction and quantification of cellular 

proteins from skeletal muscle tissue samples. This occurs via the lysis and disruption of cell 

membranes using homogenisation techniques, for which possible options are sonication, 

manual grinding with a pestle and mortar and mechanical grinding. While manual grinding 

with a pestle and mortar is considered the most flexible and cost effective method (Size et al., 

2011), it is also time consuming, and therefore, mechanical homogenisation with a 

TissueLyser II (Qiagen, Hannover, Germany) was explored whilst undertaking this PhD. In 

this method, homogenisation occurs as a result of stainless steel beads being “thrown” against 

the tissue by mechanical shaking of an Eppendorf containing the beads, skeletal muscle 

sample and lysis buffer. Samples are separated as a result of the impact force of the 

accelerated beads grinding the tissue (Goldberg, 2008). As can be seen in figure A.1, 

performing a WB with tissue homogenised by manual grinding vs. the TissueLyser II results 

in blots which are remarkably similar. Therefore, due to the ability of the TissueLyser II to 

homogenise up to 36 samples at once, this method was chosen for subsequent analysis based 

on its time effectiveness. 

 

 

Figure A.1 Representative image of p-P70S6K1Thr389 blots produced from manual tissue 

grinding using a pestle and mortar with the tissue submerged in liquid nitrogen (A) or using 

stainless steel ball bearings and the TissueLyser II (Qiagen, Hannover, Germany) (B). Lanes 

1 and 3 are from a resting/fasted (unstimulated) muscle biopsy, whereas lanes 2 and 4 are 

following 3 hours of cycling exercise with co-ingestion of carbohydrate and protein 

(stimulated). Each muscle biopsy was sectioned into two pieces for homogenisation via the 
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two different techniques. Tissue samples were obtained from a previous study (Hulston et al., 

2011).    

 

Protein lysates are complicated in their composition, containing contaminants such as cellular 

or tissue debris, fats, hydrophobic protein aggregates, nucleic acids, and proteases that can all 

affect the data obtained from WB (Taylor, & Posch, 2014). Thus, it is vitally important that 

an appropriate lysis buffer, which ensures efficient extraction of proteins but maintains the 

conformation of the target(s) of interest, is used in order to eliminate these effects (MacPhee, 

2010). Lysis buffer components used within this thesis can be seen in table A.1. While this 

buffer may differ from other variants described in the literature (e.g. 

radioimmunoprecipitation assay [RIPA] and Nonidet P-40 [NP-40] buffers), it does adhere to 

the recommended composition of variables laid out in Harlow, and Lane (1999) (e.g. salt 

concentrations 0-1 M, non-ionic detergents 0.1-2%, EDTA concentrations 0-5 mM and pH 6-

9). In addition, this buffer contains a protease and phosphatase inhibitor (table A.2) which is 

recommended for use in all lysis buffers (MacPhee, 2010). Based on advice and guidance 

from colleagues at the John Walls renal unit (University Hospitals of Leicester) and in an 

attempt to standardise protein concentrations between lysates, all samples were weighed and 

homogenised in 10 µL of lysis buffer for every mg of wet weight tissue.  

 

Table A.1 Lysis buffer components used for tissue homogenisation in this thesis. 

Component Purpose Concentration 

Phosphate buffered saline 

(PBS [0.01 M phosphate 

buffer, 0.0027 M potassium 

chloride and 0.137 M 

sodium chloride, pH 7.4]) 

Helps to disengage proteins 

whilst maintaining their 

conformation and prevents 

protein aggregation. 

97% 

Triton x-100 Increase the solubility of 

non-polar proteins. 

1% 

0.5 M EDTA Inhibit metalloproteases and 

prevent changes in protein 

phosphorylation. 

1% 
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Halt protease and 

phosphatase inhibitor 

cocktail (Thermo 

Scientific, Rockford, IL) 

Inhibit specific proteases 

and phosphatases (Table 

5.2). 

1% 

 

Table A.2 Protease and phosphatase inhibitors included in the protease and phosphatase 

inhibitor cocktail used within this thesis, and their targeted enzyme class. Data obtained from 

the manufacturer (Thermo Scientific, Rockford, IL). 

Inhibitor Target 

Sodium fluoride Serine/Threonine and Acidic Phosphatases 

Sodium orthovanadate Tyrosine and Alkaline Phosphatases 

β-glycerophosphate Serine/Threonine Phosphatases 

Sodium pyrophosphate Serine/Threonine Phosphatases 

Aprotinin Serine Proteases 

Bestatin Amino-peptidases 

E64 Cysteine Proteases 

Leupeptin Serine/Cysteine Proteases 

 

Following the extraction of proteins from skeletal muscle, it is vitally important to determine 

the concentration of the protein yield in order to standardise the amount of protein loaded per 

gel well, and thus the amount of total protein being compared between samples. 

Quantification of protein content in this thesis was determined by the Pierce 660 nm protein 

assay (Thermo Scientific, Rockford, IL, USA). This assay utilises a colorimetric change 

caused by deprotonation of a dye-metal complex (polyhydroxybenzenesulfonephthalein-type 

dye and a transition metal) in acidic conditions. As this interaction is facilitated by positively 

charged amino acids groups in proteins, the dye mainly interacts with amino acids such as 

Histidine, Arginine and Lysine and to a lesser extent Tyrosine, Tryptophan and 

Phenylalanine. The colorimetric change produced by the assay is measured at 660 nm, and 

increases relative to increases in protein concentration. This assay was chosen due to its 

compatibility with a wide range of detergents (e.g. Triton x-100), and its reported linear 

detection range of 25-2000 µg/mL (Antharavally et al., 2009). However, experimental 

observations revealed that the assay absorbance becomes saturated at a protein concentration 

of ~1000 µg/mL, leading to a plateau in values irrespective of increasing protein 
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concentrations (Figure A.2). Therefore, standards for this assay were prepared by serially 

diluting a 1 mg/mL BSA stock 5 times in PBS to produce standards ranging from 31.25-1000 

µg/mL (31.25, 62.5, 125, 250, 500 and 1000 µg/mL), and a standard curve was generated by 

measuring standards in duplicate and plotting the average blank-corrected 660 nm 

measurement for each standard against its concentration in µg (Figure A.2). However, 

following homogenisation, skeletal muscle tissue samples typically display protein 

concentrations 5-20 fold greater than the working range of the standard curve. Thus, 

homogenised samples were diluted 1:5, 1:10 and where necessary 1:20, in 1 x PBS in order to 

allow for detection (Figure A.3). Typical protein yields per skeletal muscle sample observed 

in this thesis were 5-9 µg/µL. 
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Figure A.2 Comparison of standard curve linearity using the Pierce 660 nm assay when 

using a top standard of 4000 µg/mL (A), 2000 µg/mL (B), and 1000 µg/mL (C). 
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Figure A.3 Example of skeletal muscle tissue samples and their interaction with a standard 

curve. In this instance, samples were diluted to 1:20 in 1 x PBS. Final concentrations of 

lysates will be corrected according to their dilution. Filled triangles denote protein standards, 

while empty squares denote protein lysates from 6 separate muscle biopsies. All samples fall 

within the range of the standard curve.  

 

After protein determination, samples were diluted to the desired concentration in sample 

buffer, β-mercaptoethanol and distilled water (Table A.3), before being vortexed and heated 

at 95˚C for 5 minutes in order to denature the proteins. The ratio of lysate to distilled water 

was amended for each sample to ensure a final protein concentration of 1.5 µg/µL. It is 

commonplace in the literature to see laboratories loading between 10-80 µg of protein per 

sample (Taylor et al., 2013). There is no scientific basis for choosing an appropriate loading 

volume other than ensuring it is sufficient to allow detection of the target of interest and does 

not lead to oversaturation of images. Therefore, each target of interest may require different 

loading volumes dependent upon their expression and/or performance of the primary 

antibody. In our laboratory, a final protein concentration of 1.5 µg/µL allows for a sufficient 

amount of protein (15 µg or 10 µL of gel sample) to be loaded onto gels for analysis of 

phosphorylated (p) AktSer473, p-eEF2Thr56, p-4EBP1Thr37/46, and p-mTORSer2448. However, as 

demonstrated in figure A.4, due to the lower expression of p-P70S6K1Thr389, it has been 

requisite to increase the amount of protein loaded onto gels to 40 µg to ensure adequate 

detection of all samples. Thus, due to the maximum well capacity of the gel system utilised 

(20 µL), more concentrate gel samples of 2.5 µg/µL were needed for analysis of p-
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P70S6K1Thr389. It is vitally important that the concentration of gel samples is consistent to 

ensure the total amount of protein loaded into each well is standardised; this factor will be 

covered in more detail in the analysis section below. 

 

Table A.3 Buffer components used in gel samples. 

Component Purpose Concentration 

LDS sample buffer 

(Containing; 141 mM Tris base 

106 mM Tris HCl 

2% LDS 

10% Glycerol 

0.51 mM EDTA 

0.22 mM SERVA Blue G 

0.175 mM Phenol Red 

pH 8.5) 

To denature proteins making 

them negatively charged, to 

increase the density of the 

sample relative to the 

surrounding buffer for ease 

of loading into gel wells 

(glycerol), and to allow for 

visualisation of the run 

progression (SERVA Blue G 

and Phenol Red) 

25% 

β-mercaptoethanol Cleavage of disulphide 

bonds and protein 

denaturation 

5% 

Distilled water Dilute sample to desired 

concentration. 

Dependent on protein 

concentration of skeletal 

muscle sample and 

desired sample 

concentration. 

 

 

 

Figure A.4 Representative image of the same sample blotted for p-P70S6K1Thr389, when 

loading 22.5 µg of protein (A) and 40 µg of protein (B) onto gels. As can be seen with the 

lower loading condition it becomes difficult to quantify unstimulated samples (lanes 1 and 2).  
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A.4 Polyacrylamide gel electrophoresis (PAGE) 

Following preparation, samples are loaded onto polyacrylamide gels and separated by 

electrophoresis. The SDS-polyacrylamide gel electrophoresis (PAGE) procedure has been 

documented in detail elsewhere (Burnette, 1981). Briefly, following the denaturing process 

protein samples become anionic and thus migrate toward a positive electrode as an electrical 

current is applied. Polyacrylamide gels contain a matrix through which pores are formed 

between polymer chains (Ornstein, 1964). The ability of proteins to migrate through these 

pores is dependent on protein size (molecular weight), meaning smaller proteins migrate 

more rapidly than larger proteins leading to separation. Altering the bis-acrylamide 

concentration of the gel regulates pore size. Therefore, increasing the acrylamide 

concentration of the gel reduces the pore size and increases the frictional resistance applied 

on proteins slowing their migration. The choice of gel type (composition) and concentration 

was determined by the molecular weight of the target(s) of interest. Commercial pre-cast gels 

have been reported to be more consistent than hand-cast gels (Bass et al., 2017), and were 

therefore utilised in this thesis for ease of use, and in an attempt to remove some of the 

variability in gel quality seen by other members of our laboratory when casting gels in-house. 

 

Electrophoretic separation of protein samples requires a discontinuous buffer system 

(Ornstein, 1964). The discontinuous buffer system is designed to improve the focus and 

resolution of proteins, and works by utilising gels separated into two regions; a “stacking” gel 

and a “resolving” gel. Initially, protein samples are loaded onto the large pore “stacking” gel, 

where differences in buffer ions and pH between the gel and the electrode reservoirs results 

in an ion gradient. Ions present within the gel (e.g. chloride or acetate) display a high affinity 

to the anode relative to the denatured proteins and therefore migrate faster, forming a lead ion 

boundary. Ions present within the running buffer (e.g. 3-[N-morpholino]propanesulfonic acid 

[MOPS] or Tricine) serve as the trailing ion as they display reduced affinity/mobility. Thus, 

migrating protein samples are compressed between the two ion boundaries, concentrating the 

proteins into sharp bands. Due to the large pore size of the stacking gel, all proteins are 

migrating at the same speed at this stage. However, the “resolving” gel consists of smaller 

pores which lead to the sieving effect (regulated by protein size) previously described. The 

higher pH of the resolving gel also leads to ionization of the trailing ions, increasing their 

mobility to the point where they will migrate past the protein samples, liberating the proteins 

from their focused bands allowing their unimpeded separation (Bass et al., 2017). Thus, in 

addition to the acrylamide concentration of the gels, the efficiency of protein migration and 
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resolution is also governed by the pH and ionic strength of the buffers in the electrode 

reservoir (running buffers), and those used to cast gels (Sambrook, & Russell, 2001). 

 

Taking the above points and manufacturer recommendations into consideration, and in an 

attempt to run multiple proteins on the same gel minimising time and cost, NuPAGE 10% 

Bis-Tris Gels (Invitrogen, UK) with MOPS running buffer were used for analysis of p-

AktSer473, p-eEF2Thr56, p-4EBP1Thr37/46, and p-P70S6K1Thr389. Whereas NuPAGE 3-8% Tris-

Acetate Gels (Invitrogen, UK) with Tris-Acetate running buffer were utilised for analysis of 

p-mTORSer2448 (Figure A.5). 

 

 

Figure A.5 Protein migration chart outlining the separation of different molecular weight 

proteins by specific gel and buffer systems. Table taken from gel manufacturer (Invitrogen, 

UK). 

 

Selection of appropriate running conditions are also an important aspect of electrophoresis, as 

running at too high a voltage can distort bands, or running for too short or long a duration 
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may lead to inadequate protein separation or the running of proteins through the bottom of 

the gel, respectively. Protein migration displays a linear relationship with voltage. Thus, 

electrophoresis should occur at a constant voltage, as current is dependent on voltage and 

resistance. Therefore, as changes in resistance are possible during the process of 

electrophoresis (e.g. due to warming of buffers), the use of a constant current will cause the 

voltage to fluctuate leading to variability in protein migration (Bass et al., 2017). In this 

thesis electrophoresis was performed for 120 minutes with a constant voltage of 125 V for 

10% Bis-Tris gels with MOPS running buffer. This is based on the recommendations of other 

individuals within the department and was sufficient to give suitable separation of all targets 

of interest. However, due to the different gel and buffer system used to run p-mTORSer2448 (3-

8% Tris-Acetate gels with Tris-Acetate running buffer), electrophoresis was performed for 35 

minutes with a constant voltage of 150 V. The manufacturer recommends a run time of 1 h at 

150 V for the optimal use of this gel-buffer system. However, we have observed that running 

in accordance with these recommendations results in distorted bands. Therefore, the run time 

was reduced to 35 minutes, which was sufficient to allow for suitable separation in the region 

of interest (~ 250 kDa). This significantly improved the linearity and sharpness of bands 

(Figure A.6). 

 

 

Figure A.6 Example of typical p-mTORSer2448 blots following electrophoretic separation at a 

constant voltage of 150 V for 60 minutes (A) and 35 minutes (B). 

 

A.5 Membrane transfer 

Following separation of proteins, a replica of the gel can be made on a solid support structure 

(membrane). This occurs through construction of a “gel sandwich” (Figure A.7) and utilises 

the same methodological principles as gel electrophoresis; that is the negatively charged 

proteins in the gel are transferred onto the membrane when a lateral electrical current is 

applied while immersed in a buffered solution (wet transfer). Transfer efficiency can vary 

between proteins due to their characteristically differing ability to migrate from the gel and 

their propensity to bind to the membrane. In addition, factors such as gel composition, the 

gel-membrane contact, transfer duration, protein size, and the presence of detergents (e.g. 

Triton x-100) can all further effect protein transfer efficiency (Alegria-Schaffer et al., 2009). 
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While nitrocellulose membranes are commonly used, they are potentially disadvantageous 

since the proteins are not covalently bound and therefore only a small fraction of total protein 

actually binds. Furthermore, these membranes can be brittle and prone to damage when dry. 

Polyvinylidene fluoride (PVDF) membranes, on the other hand, exhibit a high binding 

capacity and are physically strong (Kurien, & Scofield, 2006). Additionally, PVDF 

membranes are amenable to coomassie staining while nitrocellulose membranes are not, a 

point which will become more pertinent in the analysis section (below). Therefore, in this 

thesis all proteins were transferred onto PVDF membranes. PVDF membranes bind proteins 

through hydrophobic interactions. This hydrophobic nature of PVDF membranes means an 

initial pre-soaking in methanol is required to allow the infiltration of the buffer and the 

binding of proteins (Mansfield, 1995). 

 

Optimal transfer of most proteins occurs in the presence of low-ionic strength buffers, under 

a low electrical current (Alegria-Schaffer et al., 2009). All proteins within this thesis were 

transferred using 1 x NuPAGE Transfer Buffer (Invitrogen, UK) at 30 V. The addition of 

methanol to the transfer buffer is known to improve the absorption of protein to the 

membrane, and prevent gel swelling and protein distortion during electro-transfer (Towbin, & 

Gordon, 1984). However, methanol also has the potential to shrink gels, reducing their pore 

size and inhibiting the transfer of higher molecular weight proteins. The inclusion of 

methanol to the transfer buffer is therefore not recommended for proteins >100 kDa 

(MacPhee, 2010). All proteins examined within this thesis were transferred with 1 x 

NuPAGE Transfer Buffer (Invitrogen, UK) containing 10% methanol, with the exception of 

p-mTORSer2448, for which no methanol was added as this protein possesses a molecular 

weight of approximately 289 kDa. Efficient transfer of p-AktSer473, p-eEF2Thr56, and p-

mTORSer2448 was achieved after 1 h. However, in an attempt to increase the signal intensity of 

p-4EBP1Thr37/46, and p-P70S6K1Thr389, by increasing the quantity of protein transferred from 

gels, transfer time was extended to 2 h for these proteins. 
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Figure A.7. Diagram of a gel “sandwich” used to transfer proteins from polyacrylamide gels 

to a solid support membrane. The entire gel sandwich is subsequently soaked in transfer 

buffer.  

 

A.6 Blocking of membranes 

Following transfer of proteins, membranes were incubated in blocking solution at room 

temperature for 1 h. Blocking refers to the incubation of membranes in an abundance of 

protein in an attempt to fill vacant membrane binding sites (i.e. sites which are not occupied 

by proteins transferred from the gel). Different reagents can be used to block membranes, and 

choosing an appropriate blocking buffer is essential in improving the clarity and sensitivity of 

the WB. Appropriate guidance on blocking conditions is provided by the commercial 

companies alongside the antibody specific information, and both non-fat dried milk (NFDM) 

and bovine serum albumin (BSA) diluted in tris-buffered saline with 1% Tween (TBST) are 

typically recommended as membrane-blocking reagents. However, not all blocking solutions 

are suitable for all targets of interest, and certain membranes may perform better with one 

blocking solution compared to another (i.e. the use of BSA has previously been reported to 

lead to inadequate blocking of PVDF membranes [Macphee et al., 2010]). Therefore, 

validation and testing of blocking reagents for any blots which exhibit high background noise 

is required. Figure A.8 demonstrates the impact a change in blocking reagent can have on 

image clarity. In this instance, blocking membranes in 5% BSA led to a large degree of non-

specific binding when analysing p-AktSer473. Simply changing the blocking solution to 5% 

NFDM significantly improved this issue and vastly improved the clarity of the blots. Table 

A.4 outlines the blocking reagents used for final analysis of all proteins of interest contained 

in this thesis. 
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Figure A.8 Representative image of a single sample blotted for p-AktSer473 with 5% BSA (A) 

and 5% NFDM (B) used as blocking solutions. 

 

Table A.4 Proteins analysed within this thesis and their respective blocking buffers. 

Protein of interest Blocking solution (w/v in TBST) 

p-AktSer473 5% NFDM 

p-mTORSer2448 5% BSA 

p-eEF2Thr56 5% BSA 

p-P70S6K1Thr389 5% NFDM 

p-4EBP1Thr37/46 5% NFDM 

 

A.7 Primary antibody incubation 

Following incubation in blocking solutions, membranes were incubated in primary antibodies 

overnight at 4˚C. Primary antibodies are a critical part of the WB procedure, as the affinity of 

the antibody to bind to the target of interest is a prime determinant of the assay (Burnette, 

1981). Therefore, validating the specificity and sensitivity of a primary antibody is vital to the 

success of WB. Both monoclonal and polyclonal antibodies can be used for WB analysis, 

with each variety having their own inherent advantages and disadvantages. Polyclonal 

antibodies (pAb) are produced from different -cell lineages, and therefore recognise 

multiple epitopes on any one antigen. This generally results in a stronger signal due to the 

greater number of antibody molecules available for binding to the target of interest, although 

a consequence of this may be an increase in non-specific binding (MacPhee, 2010). 

Monoclonal antibodies (mAb), on the other hand, are manufactured from a single cell line 

against an individual epitope and are therefore more specific and sensitive to their target of 
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interest. However, the binding affinity of mAb can be reduced if the antigenic site has been 

significantly altered through the denaturing process or electrophoretic separation (Lipman et 

al., 2005; MacPhee, 2010). Based on advice and guidance from others within the department 

and assessment of previous literature, both pAb and mAb were chosen for use in this thesis, 

(Table A.5), and early pilot work revealed these were appropriate in the majority of cases. 

However, initial investigations of p-P70S6K1Thr389 using a pAb (product #9205, Cell 

Signalling Tech, Danvers, MA, USA) revealed poor detection of samples in the region of 

interest, irrespective of the primary antibody concentration (Figure A.9). Therefore, a 

comparison was made with a mAb, which demonstrated an improved ability to detect both a 

positive control lysate, and our samples of interest (Figure A.10). This antibody was therefore 

used for future investigations (Table A.5). 

 

 

Figure A.9 Representative image of sequential primary antibody dilutions for p-

P70S6K1Thr389 with a polyclonal antibody (product #9205, Cell Signalling Tech, Danvers, 

MA, USA). ‘Markers’ refers to the molecular weight protein ladder run on the gel. 

 

 

Figure A.10 Representative image of detection of p-P70S6K1Thr389 with both a monoclonal 

[A] (product #9234, Cell Signalling Tech, Danvers, MA, USA) and polyclonal [B] (product 

#9205, Cell Signalling Tech, Danvers, MA, USA) primary antibody. Lanes 1 and 2 (A) and 7 

and 8 (B) are muscle samples obtained after 3 hours cycling exercise with co-ingestion of 

carbohydrate and protein. Lanes 3 and 4 (A) and 9 and 10 (B) are muscle samples from the 

Derby laboratory of Dr Philip Atherton, but these did not provide a detectable signal, possibly 

due to the age of the samples. Lanes 5 (A) and 11 (B) are a negative control and lanes 6 (A) 

and 12 (B) are a positive control. The polyclonal antibody was only able to detect the positive 
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control sample, whereas the monoclonal antibody provided a clear signal for our muscle 

samples and the positive control.  

 

Alongside validating the type of primary antibody appropriate for analysis, a further key 

optimisation step involves determining the optimal concentration of primary antibodies in 

order to avoid issues such as weak signal, oversaturation, and high background presence 

(MacPhee, 2010). Guidelines for primary antibody concentrations are provided by the 

manufacturer. However, antibodies may differ in their performance dependent on the tissue 

being analysed or as a result of differences in sample preparation (Murphy, & Lamb, 2013). It 

is therefore essential to ascertain an appropriate primary antibody concentration for the 

samples of interest. Figure A.11 outlines the sequential analysis of primary antibody dilutions 

for p-AktSer473, p-mTORSer2448, p-eEF2Thr56, and p-4EBP1Thr37/46, and final antibody 

concentrations used during the analysis stage can be seen in table A.5. 

 

 

Figure A.11 Representative image of sequential primary antibody dilutions for p-AktSer473 

(A), p-mTORSer2448 (B), p-eEF2Thr56 (C), and p-4EBP1Thr37/46 (D) using the antibodies 

outlined in table A.5. 
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A further factor that can affect the performance of a primary antibody is the concentration of 

the primary antibody dilution buffer (diluent). It is commonplace in the literature to dilute 

primary (and secondary) antibodies in the same buffer used to block membranes; typically 

5% NFDM or BSA in TBST. However, while incubation in the blocking buffer may prevent 

non-specific binding of the antibody, we have observed that too high a concentrate of block 

reagent in the buffer solution can prevent efficient binding of the antibody, leading to a weak 

signal (faint bands). Therefore, during the optimisation phase, where targets of interest 

exhibited a weak signal the concentration of the blocking reagent in the antibody dilution 

buffer was reduced, leading to improved signal intensities (Figure A.12). Final antibody 

dilution buffer concentrations can be seen in table A.5. 

 

 

 

Figure A.12 Representative image of a single sample blotted for p-mTORSer2448 by 

incubation in a 1:2000 primary antibody dilution with a 2.5% BSA diluent (A) and a 5% BSA 

diluent (B). 

 

Table A.5 Antibody specific information for all targets of interest investigated within this 

thesis. All antibodies were purchased from Cell Signalling Tech (Danvers, MA, USA). 

Target of 

interest 

Antibody 

information 

Product 

number 

Antibody 

dilution (v/v) 

Antibody 

diluent (w/v)* 

p-AktSer473 Rabbit mAb 4060 1:5000 5% NFDM 

p-mTORSer2448 Rabbit mAb 5536 1:2000 2.5% BSA 

p-eEF2Thr56 Rabbit pAb 2331 1:1000 5% BSA 

p-P70S6K1Thr389 Rabbit mAb 9234 1:1000 2% NFDM 

p-4EBP1Thr37/46 Rabbit mAB 2855 1:1000 2% NFDM 

*Antibody diluents were used for both primary and secondary antibody incubations. 

 

A.8 Secondary antibody incubation 

Following primary antibody incubation, membranes were incubated in secondary antibody 

for 1 h at room temperature. As primary antibodies are generally not engineered with a 
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reporter function to allow detection, secondary antibodies are used as a means of detecting 

the target of interest. This antibody recognises and binds to the primary antibody and is 

conjugated to a specific label (e.g. horseradish peroxidase [HRP]) which allows for detection. 

The choice of secondary antibody is dependent upon the primary antibody isotype and the 

animal within which it was raised. Antibodies derived from mammals contain a variety of 

antibody (immuno-globulin [Ig]) molecules that differ in their target specificity and in vivo 

function as a result of variations in their heavy chain formations (Manning et al., 2012). 

These antibodies will constitute one of five classes, IgM, IgD, IgE, IgA, or the most 

predominant of the classes, IgG. Furthermore, certain mammals such as rats, mice and 

humans produce different subclasses of IgG, which would require secondary antibodies be 

selected for the specific isotype (Bass et al., 2017). However, as all primary antibodies used 

in this thesis were raised in rabbit, who produce only a single isotype of IgG {Manning, 2012 

#184, a single anti-rabbit IgG secondary antibody was suitable for all targets of interest 

(product #7074, Cell Signalling Tech, Danvers, MA, USA). 

 

Appropriate secondary antibody concentrations will depend upon the affinity for the primary 

antibody and expression levels of the targets of interest {Bass, 2017 #175}. In this thesis it 

was observed that a secondary antibody dilution of 1:2000 was sufficient to induce a 

detectable signal for all targets of interest following the optimisation procedures outlined 

above. All secondary antibodies were diluted in the same block buffer as the primary 

antibodies for which they were targeted towards (Table A.5). 

 

A.9 Chemiluminescent detection 

The principles of detection for WB are similar to those seen in traditional assays such as 

ELISA; as in the secondary antibody is conjugated with a labelled compound or enzyme that 

allows for detection. The principle of chemiluminescent detection is that HRP catalyses the 

oxidation of luminol in the presence of hydrogen peroxide. The luminol then forms an 

excited state product (3-aminophthalate) immediately following this reaction and emits light 

(at 425 nm) as it decays (Kurien, & Scofield, 2006). The chemiluminescent substrate is thus a 

limiting reagent and light production ends as the substrate is oxidised. Although a 

chemiluminescent signal can last for 6-24 h depending on the substrate used, all blots were 

imaged after 5 min of incubation with the substrate in line with manufacturer 

recommendations. The volume of substrate used was dependent on the size of the cut 

membrane being analysed, with sufficient volume to ensure that the blot is completely 
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covered with substrate. Blots were detected in this thesis through use of a Bio-Rad Chemi-

doc imaging system (Thermo Scientific, Rockford, IL). The use of an imaging system has a 

number of benefits over traditional film-based methods of detection, including a larger 

dynamic range, higher degree of exposure control, and the ability to use the accompanying 

software to perform densitometry analysis (Alegria-Schaffer et al., 2009) discussed in more 

detail below. Loading too much protein and/or chemiluminescent substrate can result in 

oversaturation of the image (Figure A.13). Furthermore, attention must be given to 

optimising detection parameters, as exposing for too short or long duration may lead to 

under- or overexposure, respectively. It is therefore advisable to take multiple images over an 

extended duration in order to obtain an optimal image for analysis. 

 

 

Figure A.13 Representative image of a sample blotted for GAPDH when loading 15 µg of 

protein. Red marking indicates the area is outside the range of detection (oversaturation). 

Furthermore, this image contains what are typically referred to as “ghost bands”, while not 

completely understood, these bands occur when the chemiluminescent substrate is depleted as 

a result of over-expression of the target of interest (Vattem, & Mathrubutham, 2005). 

 

A.10 Analysis 

Following chemiluminescent detection and image acquisition, quantification of WB data can 

be performed through computer-aided determination of the optical density of selected bands, 

allowing for the measurement of phosphorylation status of specific protein(s) between 

samples (e.g. comparison between specific time points in an experiment). However, there are 

a variety of densitometric methods available depending on the software package being 

utilised,  such as peak height, the integral, average band density and band volume (Gassmann 

et al., 2009). Unfortunately, there exists no scientific means of choosing a method of 

densitometry (Gassmann et al., 2009). Therefore band volume (intensity x mm2) was chosen 

for use in this thesis as early investigations suggested this method of quantification was the 

most representative of our visualised blots. 

 

Appropriate selection of a normalisation method must also be considered to assure that any 

responses observed between samples are not a result of experimental errors in sample 
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preparation or pipetting (loading) into the gel lanes (Taylor, & Posch, 2014). It is common to 

use antibodies targeted towards so called “housekeeping” proteins that are (supposedly) 

consistently expressed as internal loading controls; common examples of which are GAPDH, 

tubulin, β-actin and pan-actin. However, experimentation suggests the expression of these 

commonly used proteins is altered by certain experimental conditions, potentially masking 

results and eliminating their usefulness as loading controls. For example, figure A.14 

contains a representative image of skeletal muscle samples taken at rest, immediately post 

exercise and 3 h post cycling exercise with coingestion of protein and carbohydrate blotted 

for both p-mTORSer2448 and total pan-actin. As can be seen, the increased expression of p-

mTORSer2448 over time is matched by increased total pan-actin expression. In this instance, 

pan-actin is completely unsuitable as a loading control as its use would mask the increase in 

mTORSer2448 phosphorylation. This is a consistent observation from other laboratories 

(Taylor, & Posch, 2014). In addition we have seen that GAPDH is easily oversaturated when 

loading “typical” volumes of protein (e.g. 10-15 µg) (Figure A.13), and loading less protein 

may reduce the ability to detect the actual proteins of interest. In fact, it has previously been 

reported that loading more than 0.5 µg of protein leads to saturation of GAPDH, suggesting 

this protein is likely only suitable as a loading control for highly abundant proteins which 

require little sample loading (Taylor et al., 2013). Similar responses have been observed for 

both β-actin and tubulin which are also highly expressed in muscle samples, limiting their 

usefulness as loading controls (Aldridge et al., 2008; Dittmer, & Dittmer, 2006). 

 

 

Figure A.14 Representative image of p-mTORSer2448 (A) and pan-actin (B) at rest (R), 

immediately (post) and 3 hours post cycling exercise with co-ingestion of carbohydrate and 

protein. Tissue samples were obtained from a previous study (Hulston et al., 2011) 

 

Coomassie staining is a common, simple approach that has been demonstrated to be an 

unbiased method of total protein assessment with a high linear range of detection (Welinder, 

& Ekblad, 2011). Staining both gels and membranes with coomassie allows for evaluation of 

the overall WB process and transfer efficiency (Taylor et al., 2013). If this approach is taken, 

the quantification of a single random band that is consistent across each lane may be used for 
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normalisation (Bass et al., 2017). Unequal loading will be evident as noticeable differences 

between protein band(s)/lane(s) intensities. This variability may be due to errors in the 

loading of samples into gels (incorrect volumes), or errors in determination of protein 

quantification. For example, when comparing the p-mTORSer2448 blots presented in figure 

A.15 independently, they would appear to suggest that consuming a high-fat diet leads to 

reduced phosphorylation of mTORSer2448 at 120 minutes post carbohydrate and protein 

ingestion. However, as can be seen from the corresponding coomassie stain, it would appear 

as though there was a reduction in the amount of protein loaded for this specific sample; 

likely due to this sample being a particularly bloody biopsy, resulting in an overestimation of 

protein concentration due to the presence of haemoglobin interacting with the Pierce 660 nm 

assay (Table A.6). This example highlights the importance of utilising an appropriate method 

of correction. A further added benefit of using coomassie as a loading control relates to the 

expense of not having to purchase additional housekeeping antibodies. As already noted, this 

method is only applicable with PVDF membranes as nitrocellulose membranes react with the 

coomassie stain producing a dense background (Welinder, & Ekblad, 2011). 

 

 

Figure A.15 A representative image of p-mTORSer2448 and the corresponding coomassie stain 

in the fasted state (fast) and 30 and 120 min post carbohydrate and protein ingestion before 

(pre) and after (post) 7-days of high-fat overfeeding (HFD). 
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Table A.6 Protein concentration determined via the Pierce 660 nm protein assay and the 

standard curve presented in figure A.3. 

Sample Protein lysate 

concentration 

(µg/mL) 

Dilution 

correction * 

Protein 

concentration 

(µg/µL) 

Pre-0 396 7924 7.92 

Pre-30 354 7090 7.09 

Pre-120 369 7373 7.37 

Post-0 449 8986 8.99 

Post-30 408 8158 8.16 

Post-120 659 13184 13.18 

* samples were diluted 1:20 in order to determine protein concentration. 

 

During quantification, even blots which have been fully optimised may still display a visible 

background (Bass et al., 2017). Therefore, a decision regarding background correction must 

be made. However, methods of removing background may differ between software programs, 

and traditional methods, such as choosing a “representative background” may induce error as 

the selected background may differ from that associated with individual bands. Therefore, in 

this thesis sample boxes were manually fitted as tightly as possible and it was accepted that 

boxed bands will always contain both the band density and a small quantity of the associated 

background. 

 

A.11 Conclusions and final protocols 

In conclusion, while WB may be a useful tool in molecular physiology, important 

considerations must be made, and validation steps performed, for each individual target of 

interest in order to produce reliable and reproducible data. In theory, every aspect of the WB 

procedure has the potential to be amended, and the aim of this chapter was not to discuss all 

potential avenues for optimisation, but rather the specific alterations made during our 

optimisation phase which have improved the quality of blots. An outline of the entire WB 

process used for analysis of all targets of interest investigated within this thesis can be seen 

below. 
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Approximately 30-50 mg of frozen muscle tissue was homogenised in 10 µL/mg ice-cooled 

buffer (1 x PBS containing 1 % Triton X-100, 1% protease and phosphatase inhibitor cocktail 

(Thermo Scientific, Rockford, IL), and 1% 0.5 M EDTA (Thermo Scientific, Rockford, IL) 

using a TissueLyser II (Qiagen, Hannover, Germany). All samples were disrupted by the 

TissueLyser II for 2 x 2 min at 20 Hz. Homogenates were then centrifuged for 10 min at 

13,300 g. The resulting supernatant was removed and aliquoted into 1.5 mL Eppendorfs prior 

to being stored at -80˚C until analysis. Protein concentration was determined in aliquots of 

supernatant diluted 1:5, 1:10, and where necessary 1:20 in 1 x PBS using the Pierce 660 nm 

protein assay (Thermo Scientific, Rockford, IL, USA). After protein determination, 

homogenates were mixed in sample buffer containing 25% NuPAGE LDS sample buffer 

(Invitrogen, Carlsbad, CA), 5% β-mercaptoethanol and distilled water. The ratio of lysate to 

distilled water was amended for each sample to produce two distinct gel samples with protein 

concentrations of 1.5 µg/µL and 2.5 µg/µL. Samples were then vortexed, and heated at 95˚C 

for 5 minutes in order to denature proteins. 

 

For analysis of p-AktSer473, p-eEF2Thr56, and p-4EBP1Thr37/46, 15 µg (10 µL of the1.5 µg/µL 

gel samples) of protein was loaded onto NuPAGE 10% Bis-Tris Gels (Invitrogen, UK). Due 

to being lowly expressed, 40 µg (16 µL of the 2.5 µg/µL gel samples) of protein was loaded 

for analysis of p-P70S6K1Thr389.  Gels were then run for 2 h at 125 V in 1 x NuPAGE MOPS 

SDS running buffer (Invitrogen, UK) to allow for ample separation of proteins. For p-

mTORSer2448, 15 µg of protein was loaded onto NuPAGE 3-8% Tris-Acetate Gels (Invitrogen, 

UK), before being ran for 35 min at 150 V in 1 x NuPAGE Tris-Acetate SDS running buffer 

(Invitrogen, UK). Following separation, all proteins were transferred onto PVDF membrane 

(Invitrogen, UK) for 1 h (p-AktSer473, p-eEF2Thr56 and p-mTORSer2448) or 2 h (p-P70S6K1Thr389 

and p-4EBP1Thr37/46) at 30 V in 1 x NuPAGE Transfer Buffer (Invitrogen, UK) containing 

10% methanol, with the exception of p-mTORSer2448 for which no methanol was added. After 

transfer, membranes were blocked for 1 h at room temperature in Tris-buffered saline (TBS: 

50 mmol/L Tris base, 150 mmol/L NaCl, pH 7.6) containing 0.5 % Tween-20 (TBST), and 

either 5% BSA (p-eEF2Thr56 and p-mTORSer2448) or 5% NFDM (p-AktSer473, p-4EBP1Thr37/46 

and p-P70S6K1Thr389). Membranes were then incubated overnight at 4˚C in 1 x TBST and 2-

5% BSA or NFDM with commercially available primary antibodies (Table A.5). The next 

morning, membranes were serially washed in TBST (3 x 5 min and 1 x 15 min) before being 

incubated for 1 h at room temperature in 1 x TBST and 2-5% BSA or NFDM with a 

commercially available secondary antibody (anti-rabbit IgG product # 7074, Cell Signalling 
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Tech, Danvers, MA, USA). Following secondary antibody incubation, membranes were 

serially washed (3 x 5 min and 1 x 15 min) in TBST before being incubated in enhanced 

chemiluminescent substrate at room temperature in the dark for 5 minutes. Finally, 

membranes were blotted free of excess chemiluminescent and antibodies bound to target 

proteins were visualised on a Bio-Rad Chemi-doc imaging system. Membranes were exposed 

long enough to ensure clear, non-saturated bands for all samples. Bands apparent at expected 

molecular weights were manually defined with sample boxes fitted as tightly as possible and 

the volume of band densities were determined using Quantity One image-analysis software. 

All samples were normalised to coomassie staining of membranes to control for loading. The 

phosphorylation of target proteins was used as an indirect measure of their activity. 


