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Structural aspects of crystal nucleation in undercooled liquids are explored using a nonlinear
hydrodynamic theory of crystallization proposed recently [G. I. Tóth et al., J. Phys.: Condens.
Matter 26, 055001 (2014)], which is based on combining fluctuating hydrodynamics with the phase-
field crystal theory. We show that in this hydrodynamic approach not only homogeneous and
heterogeneous nucleation processes are accessible, but also growth front nucleation, which leads to
the formation of new (differently oriented) grains at the solid-liquid front in highly undercooled
systems. Formation of dislocations at the solid-liquid interface and interference of density waves
ahead of the crystallization front are responsible for the appearance of the new orientations at the
growth front that lead to spherulite-like nanostructures.

PACS numbers: 64.60.qe, 64.70.dm, 68.08.Bc, 68.08.De, 71.15.Mb

Crystal nucleation, i.e., stochastic formation of crys-
tal grains via fluctuations that are able to grow plays
an essential role in the making of polycrystalline and
nanostructured matter [1, 2], including the formation
of polycrystalline growth forms such as disordered den-
drites [3], and spherulites [4]. The latter structures ap-
pear via the formation of new grains at the solidification
front, a process termed growth front nucleation (GFN
[5]). This phenomenon has been successfully addressed
by conventional phase-field methods relying on coarse
grained fields [5]. Unfortunately, these works cannot pro-
vide details on the micromechanism of GFN. Although
molecular simulations and theory recently shed light on
many details of nucleation and liquid ordering preceding
nucleation [6], GFN seems to be out of scope for such
studies. Continuum theories working on the molecular
scale offer a complementary approach to molecular sim-
ulations, and may deliver additional information on the
relevant nanoscale processes, such as the mechanism of
polycrystalline growth.

A fairly successful continuum approach, termed the
Phase-Field Crystal (PFC) model, was developed re-
cently to address the microscopic aspects of crystalliza-
tion [7, 8]. The majority of the PFC studies were done
assuming diffusive dynamics, which approximates reason-
ably crystalline aggregation in suspensions of micron size
colloidal particles. In a recent work, we have proposed
a hydrodynamic theory of freezing (HPFC) [9] that ap-
plies for solidification in normal liquids. Our approach
relies on fluctuating nonlinear hydrodynamics[10], and
employs the free energy functional of the PFC model in
determining the reversible stress tensor. This model re-
covers the proper dispersion relation for long wavelength
acoustic phonons, a steady state front velocity, which
is inversely proportional to the viscosity (as opposed to
the time dependent front velocity observed in the case of
diffusive dynamics), and describes the stress relaxation
reasonably [9]. It is thus expected to be able to capture

defect formation, and therefore polycrystalline growth on
the nanoscale.

Herein, we first employ the HPFC model for describ-
ing homogeneous and heterogeneous crystal nucleation,
and then to the formation of new grains at the solidifi-
cation front (GFN). While there were other PFC-based
hydrodynamic models put forward recently [11], it is only
the HPFC for which steady state growth, v ∝ µ−1S , and
proper capillary wave spectrum were demonstrated.

In the HPFC model, we start from momentum trans-
port and continuity equations used in fluctuating nonlin-
ear hydrodynamics [10]:

∂p

∂t
+∇ · (p⊗ v) = ∇ ·

[
R(ρ) + D(v) + S

]
, (1)

∂ρ

∂t
+∇ · p = 0. (2)

Here p(r, t) is the momentum, ρ(r, t) the mass density,

v = p/ρ the velocity, ∇·R = −ρ∇ δF [ρ]
δρ ≈ −ρ0∇

δF [ρ]
δρ the

divergence of the reversible stress tensor, δF [ρ]
δρ the func-

tional derivative of the free energy with respect to den-
sity, ρ0 a reference density, and D = µS{(∇⊗ p) + (∇⊗
p)T }+[µB− 2

3µS ]I(∇·v) the dissipative stress tensor, µS
and µB are the shear and bulk viscosities, respectively,
while the fluctuation-dissipation theorem yields the fol-
lowing covariance tensor for the momentum noise S:
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Here kB is Boltzmann’s constant and T the temperature.
We adopt the free energy functional of the PFC model

with parameters used in Ref. [9]:

F
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FIG. 1. (color online) Snapshots of density, Voronoi, orien-
tation, and disorder maps for a HPFC simulation performed
with noise slightly backward from the liquid stability limit
(ε = 0.1158, and ψ = −0.1982) on a 20482 square lattice.
The local orientations corresponding to coloring in (c) are
also shown. The whole simulation box is shown in panels (c)–
(d), and the central quarter in (a). The color scale of panel
(a) was chosen so that it enhances the visibility of the density
waves at the solid-liquid interface.

where the local free energy density is

f(n) = (1− C0)
n2

2
−
(a

2

) n3
3

+

(
b

3

)
n4

4
. (5)

The order parameter is the normalized mass density:
n = ρ̃ − 1, where ρ̃ = ρ/ρ0 (ρ0 = m0n0 is the refer-
ence density, where m0 is the atomic mass and n0 the
number density of the reference liquid). C0 can be re-
lated to the bulk modulus of the reference liquid via
K0 = (1 − C0)(n0kBT ), while C2 and C4 are responsi-
ble for elasticity [9]. This formalism transforms into the
usual Swift-Hohenberg formalism as follows [8]: the re-
duced temperature and reduced density are expressed as
ε = −(r−t2/3) and ψ = φ+t/3, where r = 4(1−C0)Z−1,
φ = n/X, t = −a

√
3Z/b, X =

√
3/4bZ, and Z =

|C4|/C2
2 . The HPFC model differs from the original PFC

model in only the dynamic equations.
The combination of fluctuating hydrodynamics with

atomic scale theory is supported by recent results, which
indicate that fluctuating hydrodynamics remains valid
down to the nanoscale [12]. To avoid interatomic flows
in the crystal owing to the large density gradients, we em-
ploy coarse-grained momentum and density fields when
computing the velocity field: v = p̂/ρ̂, an approximation
used in the advective and viscous dissipation terms [9].
While the HPFC model is not restricted to two dimen-
sions (2D), an extensive testing was performed so far in
2D (see Ref. [9]).

Following Ref. [9], the properties of liquid iron were

FIG. 2. (color online) Section of the phase diagram, in which
the HPFC simulations were performed without noise (circles).
The heavy red, blue lines and the black dotted lines stand
for the liquidus, solidus curves, and the linear stability limit
of the liquid. ε is the reduced temperature (distance from
the critical point), whereas ψ is the reduced particle density.
The blue inserts show the variation of growth shapes (density
maps) along the ε = const. and ψ = const. lines.

used to fix the model parameters for the 2D simulations.
The kinetic equations were solved in 2D, using a pseudo-
spectral scheme with a second order Runge–Kutta time
stepping, while employing periodic boundary conditions
on square grids of sizes ranging from 20482 to 81962.
Accordingly, the presented results refer to a hypothetical
2D iron, which can in principle be realized in molecular
dynamics simulations, and are expected to be relevant
to crystallization in thin metal films. The melting point
corresponds to εL = 0.0923, whereas the scaled liquid
density is ψL = −0.1982. The linear stability limits taken
at constant density or at constant temperature are εc =
0.1178 and ψc = −0.1754. The reduced temperature,
and thus the undercooling, was tuned by varying C0.

The structure of the solid phase is characterized by
the number density map, whose peak positions are ana-
lyzed in terms of Voronoi polygons, and the bond-order
parameter, g6 =

∑
j exp{i6θj}, where θj is the angle cor-

responding to the j-th neighbor in the laboratory frame.
The crystal grains in polycrystalline cases were identi-
fied on the basis of the orientation map obtained as the
phase angle of the complex hexatic bond-order param-
eter g6. The Voronoi polygons were colored gray, blue,
yellow and red, when having 4, 5, 6, and 7 neighbors, re-
spectively. |g6| characterizes the degree of disorder, and
its phase specifies the local crystallographic orientation.
Examples of these fields are displayed in Fig. 1.

The section of the phase diagram, where HPFC sim-
ulations were performed is shown in Fig. 2. First, we
studied growth initiated by a small (atom size) poten-
tial well. Close to the liquidus circular crystals grow,
whereas approaching the stability limit, the growth form
becomes hexagonal first with rounded corners, evolving
into hexagons with pointed corners and concave edges.
This behavior is attributed to a change of the interface
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FIG. 3. (color online) The solid-liquid interface (a) near the
liquidus, and (b) close to the liquid stability limit. (c) Inter-
facial density profile (to enhance the visibility of the density
waves, a different coloring is used here.); (d) average radius
of the crystal vs. time. In (c) and (d), the upper curves cor-
respond to the hexagonal crystal grown at the stability limit,
whereas the lower ones refer to the circular crystal developed
near the liquidus. The color scale of panels (a) and (b) was
chosen so that it enhances the visibility of the density waves
at the solid-liquid interface.

structure: The respective density distributions are dis-
played in Fig. 3. Panels (a) and (b) show a closeup of
the growth fronts, whereas panels (c) and (d) present the
respective density profiles, and the time dependencies of
the average crystal radius. Near equilibrium, the solid-
liquid interface extends to 6-7 interatomic distances, be-
coming considerably sharper, when approaching the sta-
bility limit. The respective change in anisotropy is ex-
pected to be responsible for the different crystal shapes.
Apart from an initial transient, the crystals display es-
sentially linear growth as predicted in [9].

Crystallization kinetics: The momentum noise in Eq.
1 gives rise to density fluctuations, which together with
molecular scale density waves from the reversible stress
tensor, lead to the formation of crystal-like fluctuations
(homogeneous nucleation), followed by crystal growth,
yielding to polycrystalline freezing. We investigated this
in the metastable liquid domain slightly backward from
liquid instability: ε = 0.1158 and ψL = −0.1982. The

(a) (b)

(c) (d)
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FIG. 4. (color online) Crystallization kinetics predicted by the
HPFC model: (a) – (f) Snapshots of the density field taken at
dimensionless times t − t0 = 800, 1100, 1700, 2300, 3000, and
3500, where t0 = 3490 is the incubation time of nucleation.
Note the nucleation and growth of crystal grains. (g) Number
of atoms in the crystalline phase vs dimensionless time (h) the
Avrami plot is nearly linear, yielding p = 3.32 ± 0.01. Here
X/Xmax = Nat/Nmax = Y .

results are summarized in Fig. 4. The Johnson-Mehl-
Avrami-Kolmogorov expression, Y (t) = 1 − exp{−[(t −
t0)/τ ]p} [2] was fitted to the temperature dependent crys-
talline fraction evaluated from the number of density
peaks. Here t0 is the incubation time, τ a characteris-
tic time related to the nucleation and growth rates, and
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FIG. 5. (color online) Particle induced freezing: Long-time
crystal shapes formed on top of a square substrate as a func-
tion of undercooling: (a)-(c) Voronoi maps for the central
8002 domain of 20482 simulations made at ψ = −0.1982, and
reduced temperatures ε = 0.0932, 0.0941, 0.970, and 0.1017,
respectively are shown.

p is the Avrami-Kolmogorov exponent indicative to the
mechanism of crystallization [2]. In our case, from the
average slope of the ln{−ln(1 − Y )} vs. ln(t − t0) plot,
we obtained a p = 3.31 ± 0.03 [Fig. 4] implying linear
growth with slightly increasing nucleation rate. This re-
sult differs considerably from the p strongly decreasing
with increasing Y reported for diffusive dynamics [13].

Particle induced ’nucleation’: To model a foreign parti-
cle (substrate), an extra term, V (r)ψ(r, t), was added to
the free energy density, where V (r) = 0 outside the sub-
strate, whereas it is a periodic potential inside that deter-
mines the crystal lattice of the substrate. To test whether
the free growth limited model of Greer and coworkers [14]
remains valid in the presence of hydrodynamics, we em-
ploy a square shape substrate of made of a square lattice,
whose lattice constant coincides with that of the forming
triangular crystal. This approximates the ideal wetting
Greer and coworkers assumed between the substrate and
the crystal. The undercooling has been increased by mul-
tiplying C0 by factors ξ = 0.999, 0.998, 0.995, and 0.990.
In Fig. 5, we present long-time solutions as a function of
ξC0. In the HPFC model (as well as in the PFC model
with diffusive dynamics [15]), there exists a critical un-
dercooling for a given particle size, beyond which free
growth takes place.

Growth Front Nucleation (GFN): Formation of new
grains at the solidification front has been identified as
the mechanism by which complex polycrystalline growth
forms appear [3–5]. This phenomenon has been success-
fully modeled by phase-field methods employing orienta-
tion fields to monitor the local crystallographic orienta-
tion. In these models, new grains form either by quench-
ing orientational defects (bundles of dislocations) into the

FIG. 6. (color online) Density waves, and the formation of de-
fects and new crystallographic orientations beyond the linear
stability limit of the liquid in the PFC model with diffusive dy-
namics [16]. The amplitude of the noise was set to zero, while
the other parameters were chosen as follows: ψ0 = −0.45,
ε = 0.75. The reduced density corresponding to linear stabil-
ity at this ε is ψc = −0.5. The upper left quarter of a 20482

simulation is shown. The color scale was chosen so that it
enhances the visibility of the density waves at the solid-liquid
interface.

crystal (at large undercoolings), or via branching in di-
rections of low grain-boundary energies (at small under-
coolings). The orientation field approach, became fairly
successful in capturing complex growth structures [5].
Yet it is desirable to clarify the microscopic background
of GFN. It is suspected that in substances of different
molecular structures/interactions different GFN mecha-
nisms may occur. Herein, we employ the HPFC model
to study the formation of new grains at the solid-liquid
interface of 2D hexagonal crystals at high undercoolings.

We made our first attempts to model GFN years ago
[16] using the original PFC model. At supersaturations
beyond the liquid stability limit [ψ > ψc = −(ε/3)1/2], we
observed that without noise crystal seeds evolved into or-
dered polycrystalline structures. The growing crystal was
surrounded by concentric density waves, which initiated
crystallization accordingly: in six directions these waves
helped the growth of the original crystal, whereas in other
directions a large number of defects formed and new ori-
entations appeared that fitted better to the local direc-
tion of the density waves (Fig. 6). Later works performed
without noise in the unstable liquid regime indicate the
transition of a flat single crystal front into polycrystalline
growth and eventually into glassy freezing with increas-
ing driving force [17]. These findings could be regarded as
signs of elementary processes of GFN. However, when a
noise term obeying the fluctuation-dissipation theorem is
added to the equations of motion in the unstable regime,
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FIG. 7. (color online) Polycrystalline growth in the
metastable liquid of scaled density ψ0 = −0.1982, close to
the liquid stability limit (ε = 0.1158 < εc = 0.1178). Two
mechanisms of GFN are observed: (i) Formation of disloca-
tion chains (chains of blue-red pairs) due to the interaction of
local stresses with density fluctuations, and (ii) formation of
nuclei close to the growth front due to density waves emanat-
ing from the rough solid-liquid interface: (a)-(c) Orientation
map vs. time (t = 2100, 2900, and 3900; 20482 grid); (d)-(l)
density, Voronoi, and orientation maps showing the two GFN
modes (6002 segment). The color scale of panels (d), (g), and
(h) was chosen so that it enhances the visibility of the density
waves at the solid-liquid interface. (For computer animations
see http://phasefield.hu/pages/2017pre/)

these solutions are suppressed by explosive nucleation.
Inside the metastable regime, we were unable to observe
GFN, probably owing to the lack of an extended layer of
molecular scale density waves ahead of the front.

In the HPFC model, we were able to observe polycrys-
talline growth forms in the metastable liquid (see Fig. 7).
The kinetic equations were solved on a 20482 rectangu-
lar grid. A shallow molecular size potential well was used
to initiate freezing. It induced concentric density waves
(akin to the ’onion structures’ predicted in [18], then a
small hexagonal single crystal formed, but as it grew new
orientations appeared gradually via two mechanisms of
GFN: (i) Dislocations entered in the growing crystallites
at cusps centers. These appear due to the interaction of
the stress field of the growing nanoscale crystallite with
density fluctuations. (ii) Small crystallites nucleate in

FIG. 8. (color online) Crystal nucleation initiated by the in-
terference of density waves ahead of the solidification front on
the right hand side of the crystal shown in Fig. 7: Snapshots
of the particle density field were taken at dimensionless times
t = 1900, 2000, and 2100. omit ”that show” The color scale
was chosen so that it enhances the visibility of the density
waves at the solid-liquid interface. (For computer animations
see http://phasefield.hu/pages/2017pre/)

the close vicinity of the solid-liquid interface, which ap-
parently originate from the interference of the density
waves ahead of the the rough solid-liquid interface (see
Fig. 8). The two mechanisms are clearly visible in the
snapshots of the density, orientation and Voronoi maps
(Figs. 7 and 8).

We found that mechanism (i) occurs in a relatively
broad range of undercoolings or densities, however, the
formation rate of dislocations decreases with decreas-
ing driving force, a finding that might be associated
with a decreasing growth velocity (see the discussion
below). In contrast, mechanism (ii) can only be ob-
served in the close vicinity of the linear stability limit
of the liquid. For example, at the reduced temperature
ε = 0.0923, mechanism (ii) appears in the scaled den-
sity range −0.1778 < ψ0 < ψc = −0.1754; whereas at
fixed scaled density of ψ0 = −0.1982, nucleation ahead
of the front occurs in the reduced temperature range
0.1158 < ε < εc = 0.1178. This observation correlates
with the finding that in the HPFC model, the thickness
of the liquid layer, in which liquid ordering in the form of
density waves takes place, increases towards the stability
limit.

Although our simulations are on the nanoscale, we
observe spherulite-like structures (Fig. 9) similar to
those seen on larger scales. We note that polycrystalline
growth structures can form spontaneously on this scale
as shown by molecular dynamics simulations [19] and ex-
periments on organic and metallic nanospherulites [20].
Our work might be directly relevant to them and to car-
bon nanostructures.

An intriguing question is, why the HPFC model recov-
ers GFN in the metastable liquid domain, whereas the
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FIG. 9. (color online) Snapshot of the orientation field in a
larger scale (81922) simulation of GFN for ε = 0.1111 and
ψ = −0.1982. Note the spherulite-like morphology.

diffusive PFC model does not. This might be related to
either the differences in the interface structure or defect
dynamics, or in both. For example, in the case of diffu-
sive PFC, a fast diffusionless growth mode characterized
by a broad interface occurs at large driving forces (still
in the metastable liquid) [21], in which healing of the
defects can be relatively easy, avoiding the formation of
dislocations at the perimeter of the growing crystal, pre-
venting thus GFN. In the HPFC model, the relatively
sharp inter face may be unable to do this. We discuss
these issues below.

The original PFC model incorporates elastic interac-
tions as well as crystal plasticity combined with diffusive
dynamics, however without hydrodynamic modes of the
evolution of the density field. Defect dynamics, includ-
ing vacancy motion, dislocation glide, climb, and anni-
hilation, and grain boundary melting were studied ex-
tensively on the diffusive time scale [7, 8, 22]. A few
studies went beyond this approximation by incorporat-
ing faster processes enabled by the inclusion of a sec-
ond order time derivative into the equation of motion
(see the MPFC model in Ref. [23]), or via linearizing
the Navier-Stokes equations [24]. In both of these quasi-
hydrodynamic models the atomic positions are relaxed
rapidly at early times in a manner consistent with elas-
ticity theory, while the late time defect motion, including
vacancy diffusion, grain boundary kinetics, and disloca-
tion climb, is governed by diffusive dynamics. This sug-
gests that defect dynamics alone may not be responsible
for the observed differences in GFN.

A work by Majaniemi et al. [24] explored differences
between dynamics of mass distribution in the MPFC
model (they termed it Type-2 model) and a more sophis-
ticated linearized hydrodynamic model (termed Type-

(a) (b)

FIG. 10. (color online) Single crystal growing without fluctu-
ations at ε = 0.1158 and ψ = −0.1982. (a) Snapshot of the
central 10242 section of the orientation field in a 20482 simu-
lation, taken at dimensionless time t = 4000. (b) Snapshot of
coarse grained (FIR filtered) density for the same area.

(a) (b)

FIG. 11. (color online) Crystallite growing in the presence
of momentum fluctuations at ε = 0.1158 and ψ = −0.1982,
in a 20482 simulation. (a) Snapshot of coarse grained (FIR
filtered) density, taken at dimensionless time t = 2900. (b)
Snapshot of the Voronoi map at the same time.

3 model) in the non-equilibrium case of a crack relax-
ation under stress. They found that the dynamic mass
distribution the two models predict can be quite differ-
ent, which they attributed to the transport differences
of the quasi-phonons appearing in the MPFC model and
the acoustic phonons of the Type-3 model. Remarkably,
in the Type-3 linearized hydrodynamics model, which is
close to the present full hydrodynamic model, the system
relaxed to a multigrain structure, as opposed to the sin-
gle crystal solution from the MPFC model. The behavior
predicted by the Type-3 model appears to be similar to
what we observed in our full hydrodynamic HPFC simu-
lations, in which, after engulfing low density fluctuations
into the solid, dislocations and new grains were formed
at the interface. This phenomenon is more frequent in
the cusps of the interface, and the dislocations may be of
misfit origin.

Apparently, we have stress at the growth front already
in the early single crystal state, as reflected by the non-
uniform orientation field that indicates slight misorien-
tations (relative rotation of the Voronoi cells) between
the two sides of the corners of the crystallite and at the
central region of its sides. To see this clearly, we per-
formed simulations without momentum fluctuations for
the highly nonequilibrium liquid, starting crystallization
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with a small cluster that evolves due to a weak potential
of 2D hexagonal structure. The potential contains a cen-
tral well and 6 neighboring wells of equal depth given by
the single mode solution for the particle density for this
structure.

The orientation field of a crystallite, grown from such a
cluster, is shown in Fig. 10(a). The deformation and the
related stress that causes the inhomogeneity of the ori-
entation field appears to originate from a radial density
change shown in Fig. 10(b). The latter panel displays the
coarse grained particle density obtained by FIR (Finite
Impulse Response) filtering [25] from the particle density.
The spatial modulation of coarse grained density at the
interface might indicate a weakly oscillating growth ve-
locity. Despite the presence of the hydrodynamic mode
of density relaxation, density depletion is observed ahead
of the solidification front, which is probably responsible
for the curving of the sides of the crystal, yielding orien-
tation and stress fields antisymmetric to the lines across
the tips and centers of the opposite sides. An essentially
similar, though more noisy coarse grained distribution is
obtained in the presence of momentum fluctuations [see
Fig. 11(a)].

We observe the formation of dislocations at the inter-
face both with [Fig. 11(b)] and without momentum fluc-
tuations, however at a much later stage in the latter case:
In the simulations without noise, we do not observe dis-
locations below an equivalent radius (Rc = 2

√
2πN/3 ≈

450, where N is the number of particles in the crystallite,
see Figs. 10). Beyond this size the stress at the interface
is large enough to initiate the formation of cusps, and
the nucleation of dislocations in them. A possible mech-
anism for this can be the Asaro-Tiller-Grinfeld instability
[26, 27]. We find that these misfit dislocations appear at
a much smaller size in the presence of momentum noise
(Rc ≈ 150). These findings indicate that the fluctua-
tions play a key role in the formation of defects. This
conclusion is further supported by a recent PFC study,
which has shown that the formation of misfit dislocations
is helped by an increasing strength of the density fluctua-
tions [27]. We note furthermore, that the noise influences
the appearance of dislocations, which leads to symme-
try breaking [27]. Apparently, in the presence of density
fluctuations the dislocations appear fairly randomly, al-
though normally in cusps forming at the interface.

To test the role of fluctuations further, we have deter-
mined the wavenumber spectrum of the density fluctua-
tions in the HPFC model emerging from the momentum
fluctuations, and included the same noise in the equation
of motion of the diffusive PFC model under the same
ε and ψ0 values (under these conditions the diffusion-
less ’fast growth mode’, takes place in the diffusive PFC
model [21]). Despite these, no GFN was observed in the
diffusive PFC model. This observation suggests that un-
der equivalent conditions the diffusive PFC model is less
susceptible to defect formation than the HPFC model.

It appears that a combination of faceted growth, a
weak depletion at the interface, and the presence of den-
sity fluctuations is needed for initiating GFN. Work is
underway to investigate further the microscopic aspects
of these phenomena.

Summarizing, we applied the HPFC model to solidifi-
cation problems in 2D. We demonstrated that

(i) radial growth happens at a steady state rate,

(ii) crystallization takes place via homogeneous nu-
cleation and steady state growth, and the respective
Avrami-Kolmogorov exponent is p = 3.31± 0.03,

(iii) the free growth limited mode of particle induced
crystallization [14] remains valid down to the nanoscale
for simple liquids, and

(iv) the model predicts two modes for growth front
nucleation.

While (i) to (iii) are important demonstrations of
the capabilities of the model, the most significant re-
sult is (iv): The HPFC appears to be the first atomic
scale model that yields growth front nucleation in the
metastable liquid regime. The identification of the basic
mechanisms of growth front nucleation in simple liquids
might help to control microstructure evolution in such
systems.

This work has been supported by NKFIH, Hun-
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