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Abstract

Grain boundaries in graphene are inherent in wafer-scale samples prepared by chem-

ical vapor deposition. They can strongly influence the mechanical properties, and elec-

tronic and heat transport in graphene. In this work, we employ extensive molecular

dynamics simulations to study thermal transport in large suspended polycrystalline
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graphene samples. Samples of different controlled grain sizes are prepared by a recently

developed efficient multiscale approach based on the phase field crystal model. In con-

trast to previous works, our results show that the scaling of the thermal conductivity

with the grain size implies bimodal behaviour, with two effective Kapitza lengths asso-

ciated with thermal conductance along and perpendicular to the graphene plane. The

scaling is dominated by the out-of-plane phonons with a Kapitza length that is an or-

der of magnitude larger than that of the in-plane phonons. We also show that in order

to get quantitative agreement with the most recent experiments, quantum corrections

need to be included for heat transport both in pristine and polycrystalline graphene.

Chemical vapor deposition, currently the only practical approach to grow wafer-scale

graphene necessary for industrial applications, produces polycrystalline graphene contain-

ing grain boundaries1 acting as extended defects that may influence electrical and thermal

transport.2,3 The influence of grain boundaries on heat conduction in graphene has been theo-

retically studied using various methods, including molecular dynamics (MD) simulations,4–10

Landauer-Büttiker formalism,11,12 and Boltzmann transport formalism.13 Although it is

well known that graphene samples prepared by chemical vapor deposition14 have

smaller thermal conductivity than those prepared by micromechanical exfolia-

tion,15 experimental measurements of the Kapitza conductances of individual

grain boundaries in bicrystalline graphene samples16 and thermal conductivities

of polycrystalline graphene samples with controlled grain sizes17,18 have only
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been attempted recently.

A central issue for polycrystalline samples is how does the thermal conductivity scale with

the grain size d. Previous MD studies have focused on individual grain boundaries4–6 or have

only considered relatively small grain sizes, typically of a few nanometers.7–10 However, due

to the broad distribution of phonon mean free paths that extend well beyond one micron

in pristine graphene, accurate determination of the scaling properties requires considering

relatively large grains and sample sizes.

Recently, an efficient multiscale approach19,20 for modelling large polycrystalline graphene

samples has been developed within the phase field crystal framework.21–26 This method,

combined with a newly developed highly efficient MD code for thermal conductivity cal-

culations,27–29 allows for direct atomistic simulations of the heat transport properties of

large-scale realistic polycrystalline graphene samples (cf. Fig. 1). In this Letter, we compare

thermal conductivity values obtained by MD simulations from samples up to 192 nm in lin-

ear size to recent experimental data,17 resolving the discrepancy between the small Kapitza

conductance (3.8 GW m−2 K−1) as extracted from the experimental data17 and the larger

values predicted from nonequilibrium MD4,5 (15−47 GWm−2K−1) and Landauer-Büttiker12

(≈ 8 GWm−2K−1) simulations. Further, we show that to obtain quantitative agreement with

experiments quantum corrections need to be applied to all the MD simulation data.

Figure 1: A typical polycrystalline graphene sample after MD relaxation at 300 K and zero
in-plane pressure. This is the smallest sample size (24×24 nm2) considered here (see Methods
for details). Different colors based on bond orientations are used to indicate different grains.

We use the equilibrium Green-Kubo method30,31 within classical MD simulations to cal-
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Figure 2: Running thermal conductivity at 300 K as a function of the correlation time
for (a) the in-plane component, (b) the out-of-plane component, and (c) the cross term in
polycrystalline graphene samples with different grain sizes d = 8− 50 nm.

culate the spatially resolved components, κin (for in-plane phonons), κout (for out-of-plane,

or flexural phonons), and κcross (a cross term), of the thermal conductivity in polycrystalline

graphene, as explained in Methods. Its running components with different grain sizes d are

shown in Fig. 2. The first main result here is that time scale (which roughly corresponds

to an average phonon relaxation time) for κout is reduced from ≈ 1 ns in pristine graphene

(see Fig. 2 of Ref. 32) to ≈ 10 ps in polycrystalline graphene. Thus in polycrystalline

graphene κout < κin in contrast to pristine graphene. This shows that the influence of grain

boundaries is much stronger on the out-of-plane than the in-plane component. Another
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remarkable difference is that the cross term κcross does not converge to zero as in pristine

graphene, although its contribution is still relatively small. This is due to enhanced coupling

between the out-of-plane and in-plane phonon modes to surface corrugation.
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Figure 3: (a) Thermal conductivity κ(d) at 300 K as a function of the effective grain size d
for the various components (in-plane, out-of-plane, and total). Markers are data from MD
simulations and lines are fits. The green dotted line corresponds to Eq. (1) and the others
to Eqs. (2) - (3). (b)-(c) Normalized inverse conductivity κ0/κ(d) as a function of inverse
grain size 1/d for the various components. For clarity, the in-plane component κin0 /κin(d)
has been multiplied by a factor of ten. See text for details.

To study scaling of κ with d, we first plot κin, κout, and the total κtot = κin +κout against

d in Fig. 3 (we have included the small cross term κcross into κin as they have similar time

scales). Previously, the scaling of κtot with d has been modelled by the following simple
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formula both in theoretical4,9,10 and experimental works:17

1/κtot(d) = 1/κtot0 + 1/(Gtotd), (1)

where κtot0 is the total thermal conductivity of pristine graphene (i.e., polycrystalline graphene

in limit of infinite d) and Gtot is the Kapitza conductance (or grain boundary conductance),

which characterises the influence of the grain boundaries on the heat flux across them.

In our previous MD simulations for pristine graphene32 we have obtained κtot0 = 2 900±

100 Wm−1K−1. Thus the only unknown quantity in Eq. (1) is Gtot, which can be treated as

a fitting parameter. In Fig. 3(a) it can been seen that the fit is not adequate. The reason is

that the in-plane and out-of-plane components have very different properties, resulting in a

nonlinear behavior of 1/κtot(d) with respect to 1/d. Following Ref. 32 we conclude that this

bimodal behavior must be taken into account by separating the two components as

1/κin(d) = 1/κin0 + 1/(Gind); (2)

1/κout(d) = 1/κout0 + 1/(Goutd), (3)

with κtot(d) = κin(d) + κout(d), and κin0 ≈ 850 Wm−1K−1 and κout0 ≈ 2 050 Wm−1K−1 from

Ref. 32. As it can be seen in Fig. 3, Eqs. (2) - (3) give accurate fits yielding Gin ≈ 21

GWm−2K−1 and Gout ≈ 5 GWm−2K−1.

The scaling parameter Li = κi0/G
i (i = in, out) in the equations above has the di-

mension of a length and it defines the Kapitza length.33 In terms of the Kapitza length,

the conductivity ratios κi(d)/κi0 can be written as κi(d)/κi0 = 1/(1 + Li/d). This shows

that when the grain size equals the Kapitza length, κi(d) reaches half of κi0. The Kapitza

lengths for the in-plane and out-of-plane components from our MD data are Lin ≈ 40 nm

and Lout ≈ 400 nm, differing by an order of magnitude which reflects the difference in the

scaling of the corresponding conductivity components with d (cf. Fig. 3).

6



10 0 10 1 10 2 10 3 10 4

d (nm)

0

0.2

0.4

0.6

0.8

1

(d
)/

0

in

out

tot

corrected-1

corrected-2

Ma et al.

Hahn et al.

Wang et al.

Figure 4: Components of the normalized thermal conductivity κ(d)/κ0 at 300 K as a function
of the effective grain size d. The solid and dashed lines represent the results for κin(d)/κin0
and κout(d)/κout0 as predicted by Eqs. (2) and (3), respectively. The diamonds, squares, and
circles represent the results for κtot(d)/κtot0 without quantum corrections, with the mode-to-
mode quantum correction to G (corrected-1), and with quantum corrections to both G and
κ (corrected-2), respectively. The purple triangles are the experimental data from Ma et
al.17 The cross and plus symbols represent the theoretical predictions by Hahn et al.10 and
Wang et al.,9 respectively. See text for details.

In Fig. 4 we compare our MD data for the scaling of the components of κ(d)/κ0 vs. d with

previous theoretical predictions.9,10 They are closer to our results for the in-plane component

indicating that κout(d) was not properly accounted for due to either an incorrect definition of

the heat current or unconverged size scaling. The calculations in Ref. 9 were based on the

heat current formula in LAMMPS34 which is incorrect for many-body potentials.28 Indeed,

κtot0 in Ref. 9 was estimated to be about 720 Wm−1K−1, which is smaller than our κin0 . The

calculations in Ref. 10 were based on the approach-to-equilibrium MD method35,36 with a

fixed sample length of 200 nm, which also significantly underestimates the contribution from

the out-of-plane component. The Kapitza lengths for the data from Refs. 9 and 10 can be

estimated to be ≈ 15 nm and 25 nm, respectively, in stark contrast with our results.

In Fig. 4 we also plot the data from the most recent experimental measurements (purple

triangles).17 Although our new data are much closer to the experiments than the previous

theoretical results, there is still a quantitative difference. The only possible reason left for
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Figure 5: Spectral conductance g(ω) in the 24 × 24 nm2 system at 300 K as a function of
phonon frequency for the in-plane and out-of-plane components before (labeled as “classical”)
and after (labeled as “quantum”) quantum correction.

the discrepancy must be the use of classical statistics in view of the high Debye temperature

(≈ 2000 K) of graphene.37 Using classical statistics can grossly overestimate the Kapitza

conductance. Indeed, quantum mechanical calculations based on the Landauer-Büttiker

formalism11,12 predict graphene grain boundary conductance several times smaller than that

from classical non-equilibrium MD simulations.4,5 While there is no universal way to include

all the quantum effects within the present calculations, we can gauge their importance by

applying the mode-by-mode quantum correction in Ref. 38 to the spectral conductance.

In Fig. 5 we show our data for the in-plane and out-of-plane components of the spectral

conductance gi(ω) (i = in, out) for the 24× 24 nm2 polycrystalline system, calculated using

the spectral decomposition method in Ref. 32. The mode-to-mode quantum corrections can

be incorporated by multiplying gi(ω) (i = in, out) by the factor x2ex/(ex−1)2 (x = h̄ω/kBT ),

which yields the dotted and dot-dashed lines in Fig. 5. The influence of these corrections

is significant; the integrated conductance is reduced by a factor of three for the in-plane

component and by a factor of two for the out-of-plane component. Therefore, our estimates

for Gin and Gout are modified to 7 GWm−2K−1 and 2.5 GWm−2K−1, respectively. The

corresponding Kapitza lengths are changed to Lin ≈ 120 nm and Lout ≈ 800 nm, respectively.
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The results for the modified conductivity ratio κtot(d)/κtot0 are plotted in Fig. 4 with green

squares. The agreement with the experiments is better, but still not at a quantitative level.

To fully resolve the discrepancy between our data and the experiments we need to revisit

the case of pristine graphene. Classical statistics can underestimate the thermal conductiv-

ity in the pristine case, too, by overestimating the phonon-phonon scattering rates of the

low-frequency phonon modes,39,40 the major heat carriers in pristine graphene. This explains

why the thermal conductivity of pristine graphene calculated by our previous MD simula-

tions (2 900 Wm−1K−1) is significantly smaller than the prediction from lattice dynamics

calculations41 (5 450 Wm−1K−1) and most recent experimentals on high-quality monocrys-

talline graphene17 (5 200 Wm−1K−1) . Unfortunately, unlike in the case of grain boundary

conductance, there is so far no feasible quantum correction method for classical MD thermal

conductivity calculations in the diffusive regime where phonon-phonon scattering dominates.

In view of the fact that the differences between the results from classical MD and quantum

mechanical lattice dynamics methods mainly concern the out-of-plane component,32,41 we

can resolve this issues here by scaling κout0 such that κtot0 equals the experimental reference

value17 of 5 200 Wm−1K−1. Combining this with the mode-to-mode quantum corrections to

the Kapitza conductance above, the final revised Kapitza lengths for the two components

now become Lin ≈ 0.12 µm and Lout ≈ 2 µm, respectively, differing by more than an order of

magnitude. With quantum corrections to both G and κ, the scaling of κ(d)/κ0 (blue circles

in Fig. 4) finally agree with the experiments at a fully quantitative level.

Finally, we note that in the experimental work,17 the grain size scaling was interpreted

in terms of a single Kapitza conductance of 3.8 GWm−2K−1, which is much smaller than

that from Landauer-Büttiker calculations12 (8 GWm−2K−1). In contrast, our bimodal grain

size scaling with the two quantum corrections gives Gtot = Gin + Gout = 9.5 GWm−2K−1,

which is a reasonable value considering that the harmonic approximation used in Ref. 12

can somewhat underestimate the Kapitza conductance at room temperature.

In summary, by using high-accuracy MD simulations of large polycrystalline graphene
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samples generated by a multiscale modeling approach, we have demonstrated that the in-

verse thermal conductivity does not scale linearly with respect to the inverse grain size but

shows a bimodal behavior. The Kapitza lengths for the grain boundaries associated with

the in-plane and out-of-plane phonon branches differ by more than one order of magnitude.

While the grain size scaling is dominated by the out-of-plane phonons with a much larger

Kapitza length, the in-plane phonons contribute more to the Kapitza conductance. We

have also demonstrated that in order to obtain quantitative agreement with the most recent

experiments of heat conduction in polycrystalline and pristine graphene samples, quantum

corrections to both pristine and polycrystalline graphene must be included and the corre-

sponding in-plane and out-of-plane Kapitza conductances must be renormalized accordingly.

Methods. Realistic polycrystalline samples are constructed with the phase field crystal

model by starting with small random crystallites that grow in a disordered density field.

We grow the polycrystalline samples akin to chemical vapor deposition by assuming non-

conserved dynamics. The relaxed density field is converted into a discrete set of atomic

coordinates suited for the initialization of MD simulations. To investigate the scaling prop-

erties, we construct polycrystalline samples with various characteristic grain sizes, d, defined

as d = (A/n)1/2, where A is the total planar area, and n is the number of grains comprising

it. We consider systems of four sizes: 24× 24 nm2, 48× 48 nm2, 96× 96 nm2, and 192× 192

nm2. Each case was initialized with 16 randomly placed and oriented crystallites. The fi-

nal number of grains in a sample is typically smaller than 16 and the effective grain sizes,

averaged over a few realizations for each sample size, are found to be 8 nm, 14 nm, 26 nm,

and 50 nm, respectively. Figure 1 shows a typical structure of our smallest 24 × 24 nm2

polycrystalline sample after MD relaxation.

We use the Green-Kubo method,30,31 with equilibrium MD, to calculate the thermal

conductivities. In this method, one can calculate the running thermal conductivity tensor

κµν(t) (µ and ν can be x or y for two-dimensional materials) as a function of the correlation

time t as κµν(t) =
∫ t
0
〈Jµ(0)Jν(t

′)〉dt′, where 〈Jµ(0)Jν(t
′)〉 is the heat current autocorrelation
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function evaluated as the time average 〈 〉 of the product of two heat currents separated by t′.

A decomposition of the heat current, Jµ = J in
µ + Jout

µ , which is required for two-dimensional

materials, was introduced in Ref. 32. We stress that the decomposition is in terms of the

velocity, and the out-of-plane heat current Jout
µ is not a heat current perpendicular to the

graphene basal plane (taken as the xy plane), but a heat current in the basal plane (µ di-

rection) contributed by the out-of-plane vibrational modes. With this decomposition, the

thermal conductivity decomposes into three terms, κinµν(t), κoutµν (t), and κcrossµν (t), associated

with the autocorrelation functions 〈J in
µ (0)J in

ν (t′)〉, 〈Jout
µ (0)Jout

ν (t′)〉, and 2〈J in
µ (0)Jout

ν (t′)〉, re-

spectively. As our systems can be assumed statistically isotropic, the conductivity in the

basal plane can be treated as a scalar κ = (κxx + κyy)/2.

We perform the equilibrium MD simulations using an efficient GPUMD code.27–29 The

Tersoff potential42 optimized for graphene43 is used here. The velocity-Verlet method44 is

used for time integration, with a time step of 1 fs for all the systems. All the simulations

are performed at 300 K and a weak coupling thermostat (Berendsen)45 is used to control

temperature and pressure during the equilibration stage (which lasts 2 ns for all the systems).

The production stage (in which heat current is recorded) lasts 2 ns and 10 independent

simulations are performed for each sample. Periodic boundary conditions are applied on

the xy plane. Although the magnitude of the out-of-plane deformation can exceed 1 nm in

some cases, we assume a uniform thickness of 0.335 nm for the monolayer when reporting

the effective three-dimensional thermal conductivity values.

The spectral conductance gi(ω) (i = in, out) is calculated in the framework of nonequilib-

riumMD simulation. The system is divided into a number of blocks along the transport direc-

tion, with the two outermost blocks being taken as heat source and sink, maintained at 320 K

and 280 K, respectively, using the Nosé-Hoover chain thermostat.46–48 The transverse direc-

tion is treated as periodic and the two edges in the transport direction are fixed. After achiev-

ing steady state, we calculate the correlation function Ki
A→B(t) (i = in, out) defined in Ref.

32. Then the spectral conductance is calculated as32 gi(ω) =
∫ +∞
−∞ dteiωt [2Ki

A→B(t)/(S∆T )],

11



where S is the cross-sectional area and ∆T is the temperature difference between the source

and sink.
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Graphical TOC Entry

I tried to put the toc figure here, but there are compiling errors. Anyone
has experience on this?
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