
Use of Ontology in Identifying Missing Artefact Links

Foziah Gazzawe
Department of Computer Science

Loughborough
United Kingdom

f.gazzawe@lboro.ac.uk

Russell Lock
Department of Computer Science

Loughborough
United Kingdom

R.Lock@lboro.ac.uk

Christian Dawson
Department of Computer Science

Loughborough
United Kingdom

C.W.Dawson1@lboro.ac.uk

ABSTRACT
The techniques of requirement traceability have evolved over
recent years. However, as much as they have contributed to the
software engineering field, significant ambiguity remains in many
software engineering processes. This paper reports on an
investigation of requirement traceability artefacts, stakeholders,
and SDLC development models. Data were collected to gather
evidence of artefacts and their properties from previous studies.
The aim was to find the missing link between artefacts and their
relationship to one another, the stakeholders, and SDLC models.
This paper undertakes the first phase of the main research project,
which aims to develop a framework for guiding software
developers to actively manage traceability. After inquiring into
and examining previous research on this topic, the links between
artefacts and their functions were identified. The analysis resulted
in the development of a new model for requirement traceability,
defined in the form of an ontology portraying the contributively
relations between software artefacts using common properties
with the aid of Protégé Software. This study thus provides an
important insight into the future of the requirement artefacts
relation, and thereby lays an important foundation towards
increasing our understanding of their potential and limitations.

KEYWORDS
Requirements Traceability; Requirement Artefacts; Artefacts
Link; Mapping the Requirement Artefacts

ACM Reference format:
F. Gazzawe, R. Lock, and C. Dawson. 2018. 7th International Conference
on Software and Computer Applications (ICSCA 2018) -- Ei Compendex,
Scopus and ISI, Kuantan, Malaysia, Feb 2018, (ICSCA’7), 5 pages.
DOI:

1. INTRODUCTION
Requirement traceability is one of the most important aspects in
determining the success of a project. It is through traceability that
the correlation that exists between software, artefacts and their
link to requirements is identified and managed effectively in
software development. The association between these artefacts
and the way they depend on each other is understood through the
process of software development called Requirements
Traceability (Requirements.com, 2017). Previous research on
requirement traceability has not sufficiently defined the full range

of artefacts potentially involved in traceability, nor has it
considered the relationships between them. It can be argued that
this missing link frequently leads to mistakes and
misunderstandings when developing systems, thereby resulting in
failure, as issues in software planning, design and implementation
cannot be detected efficiently. This issue necessitated the
development of traceability tools, however current tools are
limited in their scope. Requirement traceability artefacts link to
each other in many different ways.

According to De Lucia et al. (2011), when it comes to the
management and control of the whole evolution of a software
system, requirement traceability is especially useful. One aspect
of this is in the identification of missing requirements in a
software development process. Most importantly, traceability
involves identification of the links between the requirement
traceability artefacts and relating them to each other. Therefore,
the relationships existing between artefacts can be defined as
links. One example of a created link is when an artefact is
embedded into a document to facilitate traceability (Levy, 2010).
Examples of artefacts available and commonly encountered
include specifications, diagrams, and code. There are different
classifications of artefacts based on architecture, technology-
based decisions, modelling language, technical orientation and
user-oriented elements. Some types of artefacts include container,
generic document, individual element, user-oriented element,
solution models, concrete models, abstract models, modeling
language, and architectural models. These are different types of
artefacts all aimed at assisting in software development and
identification of requirements in software development (Olga,
2015).

The aim of identifying missing links between requirement is to
ensure that the quality of a software solution is enhanced,
resulting in better functionality and understanding of the system.
The research objective is to determine whether a common model
for requirement artefacts can be constructed. In the next section,
software requirements, development, and traceability and artefacts
will be defined and explained.

1.1 Literature Review

Traceability is achieved through links as they enable checking

and verification of whether requirement information is traced
through project documentation. A traceability link is a
representation of the relation between two objects. Consistent
traceability in a given project enables developers to trace back the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288366741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:f.gazzawe@lboro.ac.uk
mailto:f.gazzawe@lboro.ac.uk
mailto:f.gazzawe@lboro.ac.uk

ICSCA’7, Feb 2018, Kuantan, Malaysia
 F. Gazzawe et al.

2

related information on software development (SDL Forum &
Khendek, 2013). However, a missing link in artefact requirement
exists which has led to poor software development in terms of
requirement traceability. This paper argues that the use of
ontology would be an effective approach in improving the
visibility of traceability links.

2. SOFTWARE REQUIREMENTS,
DEVELOPMENT, TRACEABILITY AND
ARTEFACTS
2.1 Software Requirements
According to the IEEE standard 610.12-1990, IEEE (1990), a

software requirement is defined as “A condition or capability
needed by a user to solve a problem or achieve an objective”
(Requirements.com, 2017). As regards the importance of
gathering requirements, requirements may be seen as providing
the necessary basis for software development (Young, 2003). Not
defining requirements increases the risk of a project failing
because development teams cannot communicate effectively, and
consequently, they fail to explain what needs to be built, which
can lead to catastrophic consequences. Requirement artefacts on
the other hand, can be described as deliverables that are achieved
in a software process, or those deliverables that are categories in
certain tasks in software development. Their incorporation adds
value to a certain role that the software is meant to play (Miles et
al. 2012).

2.2 Software Development Lifecycle (SDLC)
It is important to have an understanding of different software

development lifecycle models. These can be categorized at a
coarse-grained level into two major contrasting types, namely
Waterfall and Agile Models. Formal requirements documentation
features more predominantly in the Waterfall Model. Importantly,
it is in this and other similar models in which development
commences with ascertaining requirements before starting work
on developing the system architecture, making a detailed software
design and undertaking the task of programming. Although
requirements are gathered at an early stage in the waterfall model,
requirement artefacts is a term that is present throughout the
lifecycle in the form of design documentation and so on.

These traditional requirements-based models stand in contrast
with models that guide the development of what is called agile
software development methods in which not all requirements are
gathered upfront or given the same level of importance, and an
iterative model is followed. In this way, the development of the
software and inclusion of functionality is incremental. The idea
behind agile development is to strike a balance between ensuring
satisfactory software quality, timely delivery and a reasonable
cost (Liu et al., 2013).

The general understanding is that detailed planning helps to
reduce uncertainty, provides clarity in project goals and
objectives, and overall, it improves efficiency (Wysocki, 2011).
Although planning before coding does consume extra time, the

rationale for doing so is that this planning pays off, as the initial
‘pain’ helps reduce the time spent on development. Such
traditional software development methods, which are typically
and heavily plan-driven rather than incremental, are usually
suitable for large-scale, critical and stable projects where the
technology is understood, and requirements can easily be
ascertained and are not expected to change or be added to
significantly. In contrast, since agile methods involve little or no
upfront planning, they are usually characterized by greater
uncertainty initially than traditional methods.

However, as Stamelos et al. (2007), pointed out, agile-type
developments make it difficult to estimate project costs.
Moreover, although agile methods may be suitable for smaller-
scale projects, they cannot be scaled easily to larger scale projects,
as can traditional methods. It is important to choose the most
effective approach to developing software as this can determine
the time it will take and costs that are likely to be incurred. When
it comes to traceability, Hoang (2015), states that the traceability
methods have major drawbacks because they can’t properly
support the agile methods and still have shortcomings when it
comes to waterfall methods, even though they are specifically
designed for them. Therefore, it is evident that traceability is
affected no matter whether the agile or waterfall method is
chosen. SDLC needs to be better understood to address the
traceability issue, as some aspects of the aforementioned SDLCs
make traceability more difficult. For example, in waterfall, the
steps are distinct and may be carried out by different teams
allowing ambiguity and confusion to occur

2.3 Requirement Traceability
Traceability can be described as a process used in a software

development project by stakeholders to identify the relationship
that exists between software artefacts. As mentioned earlier, the
association between these artefacts and the way they depend on
each other is understood through the process of software
development called Requirements Traceability
(Requirements.com, 2017). The ability to trace the evolution of an
artefact or requirement, in both forward and reverse directions
after the description of its links to its life cycle, can be defined as
software artefact traceability (Flynt & Salem, 2005). Forward
traceability is useful, for instance, when there is a need to
investigate the impact of a changed requirement, and backward
traceability for understanding a change and investigate the
information used to elicit it (Pinheiro & Francisco, 2004).

The process of linking requirements to the issues affecting a
project forms the relationship between requirements and
traceability. The two are treated separately and are then linked by
commonly desired factors (Jarke, 1998). The potential impacts on
a user’s broken functionality can then be identified through
traceability, as the process helps one to identify artefacts,
requirements, and links that fall on the matrix of the two (Levy,
2010).

2.4 Issues with Artefacts

The Missing Link in Artefact Management ICSCA’7, Feb 2018, Kuantan, Malaysia

3

Liskin (2015), shows a lack of information about the types of
artefacts available, and that there are no widely-agreed types of
artefacts defined. It is evident that there is insufficient research on
artefact types, so there is a gap in the knowledge of requirement
traceability. Therefore, one of the potential contributions of this
research is in modelling artefacts and the relationships between
them, and to develop a framework which could guide software
developers to manage traceability.

3 STUDY DESIGN (METHODOLOGY)
The aim of this paper is to model artefacts and the

relationships between them, the people, and SDLC, which would
guide software developers to manage traceability. In previous
research studies, the problem was that artefacts were mentioned
but not linked with the other concepts in the software or discussed
in detail. The adopted methodology involves analysis of
secondary research to identify types of relationships and the
factors that influence them. An ontological analysis using Protégé
software, which was chosen for its applicability in managing
terminology as well as reasoning Rubin et al. (2007), helped to
structure this information on the relationships between the
different artefacts using common properties. Such data models
ultimately make it easier to understand the elements, relationships,
and properties, in this case, the artefacts and the relationships
between them, to help develop a new model for requirements
traceability

4 RESULTS AND FINDINGS
As indicated previously, data were gathered using over 20

previous studies on artefacts and traceability. For clarity, the
results gathered are tabulated (Table 1), which shows the current
links and the missing link between requirement traceability
artefacts, stakeholders, and SDLC models. The table is designed
to show artefact connections, and whether there are any missing
and current links.

Table 1: Indications from previous studies

Artefacts Missing
links

Research Current
Links

Requirement to
Requirement

 [17]
[18]

Requirement Artefacts
to Stakeholder

 [19]

Requirement to SDLC [18]
[20]

Requirement Artefacts
to each other

 [21]

Requirement to
Artefacts

 [20]

As shown in table 2, examples of technical artefacts available

and commonly encountered include specifications, diagrams, and
code. Some types of artefacts include container, generic

document, individual element, user-oriented element, solution
models, concrete models, abstract models, modelling language,
and architectural models. These are different types of artefacts all
aimed at assisting in software development and identification of
requirements in software development. There are different
classifications of artefacts based on architecture, technology-
based decisions, modelling language, technical orientation and
user-oriented elements (Olga, 2015). The above categorization of
the artefacts is the first step in linking them, which forms one of
the novel contributions of this paper.

As part of achieving the primary objective of this paper, the
basis for the evaluation of the relationships was derived from
valid academic research. As an example, Olga (2015), derived a
model that categorized requirement artefacts, and although it
wasn’t very clear and there was some repetition, it did have some
ideas that were supportive when building a much more detailed
model of the relationships between artefacts. Although handling
multiple requirement artefacts can be challenging, the results
justified the need to not rely on only a single artefact, and further
to ensure the selected artefacts are integrated. The study also
showed the possibility of linking multiple different artefacts by
constructing a single artefact relating to multiple other artefacts,
as when creating specification documents from several elements
and models. Moreover, the use of abstract models for mapping the
artefacts has considerable potential, such as in identifying
dependencies, and helping to make concrete models and thereby
improving communication with end users.

Table 2: New categorization of artefact types

Type of Artefacts Examples
Technical
requirements
artefacts

specifications, diagrams, code,
user-oriented elements, solution
models, concrete models, abstract
models, modelling language, and
architectural models

Business requirement
artefacts

Generic document, individual
element (user requirement, use
cases, user story, and requirement
specification

Thus, it can be concluded that contribution of the artefact is an

important factor that influences the relationships, but knowledge
of the artefacts is a major key player, which requires further
investigation in future studies. According to Swathine et al.
(2017), “They [the artefacts] are always incomplete and
inconsistent due to lack of knowledge”.

4.1 Ontology and DL Queries
The ontological structure developed and types of artefacts

identified and classified with the help of Olga (2015), previous
research, as mentioned in section 4 are discussed in this section.
These artefacts include burndown charts, business model
diagrams, data models, epic user stories, interaction code, mock-
up prototypes, sprint backlogs, task estimations, unit tests, and

ICSCA’7, Feb 2018, Kuantan, Malaysia
 F. Gazzawe et al.

4

user interfaces. The subclasses of two of them are shown as the
results of a query. For epic user stories, the subclasses are key
requirements, mock-up prototypes, other requirements, and task
estimation, and the subclasses of user interfaces are data model,
main requirement, other requirement, system requirement, task
estimation, and itself. The latter has a direct superclass of
requirement artefact. The subclasses for both examples show that
the requirement artefacts are interlinked because they contain
other artefacts to a greater or lesser degree, and a possible
reflexive connection in the case of user interfaces.

Some queries were written to show the results on what the
researchers had tested regarding the relationship between
requirement artefacts. For example, the query for the main
ontology structure was: "Person and manages some Testing_
stage". The results shown were End_ user, Individual,
organization, service receiver, stakeholder, and tester_
system_integration. This means there are subclasses and multiple
relationships between people who deal with the system and the
requirement artefacts.

Another example of the DL query that was done shows the
role of each requirement artefact, user stories for example. The
query for the Subclasses of the Artefact Epic User Stories is
“Requirement_ artefact and MakeUseOf some
Epic_User_stories". The subclasses of the query were
Main_Requirement, Mock-up_prototype, other_requirement, and
Task_estimation, this demonstrated how some requirement
artefacts depends on others.

Lastly, as to the direct Subclasses of the Artefact User
Interfaces and which ones are interrelated, the query is
“isPartOfsomeTesting_Stage”. The result is then Data_Model,
Main_Requirement, System_ Requirement, Task_estimation, and
User_Interfaces. Therefore, all of these needs to be tested in the
Testing stage of the SDLC.

4.2 Discussion of Results
In this study, the people who deal with the software were first

classified, and the requirement artefacts were identified in detail
based on the SDLC. Subsequently, they were structured and then
connected. The connections were made explicit based on how
they contributed to each other or the system, i.e. on whether or not
there were any relationships between them. Examples of these
relationships are as follows:
• A People-to-Artefact relationship exists where a

stakeholder validates user interfaces whereas developers
normally implement them.

• An Artefact-to-Artefact relationship exists where user
interfaces rely on requirement specifications whereas the
mock-up prototype normally represents user stories.

• An Artefact-to-SDLC relationship exists where the
designing enables user interfaces to be developed, whereas
requirements gathering normally aids user stories.

The links are naturally transitive; therefore, they could show
the effects of issues such as when early errors creep into earlier
requirements artefacts through poor handling or potentially

through the omission of an important step which prevents
information from being effectively linked from one artefact into
another. A solution for this would be to come up with a tool which
can help people analyze the state of their requirements artefacts,
therefore detection of errors can be made and fixed without the
software failing.

5 CONCLUSIONS AND FUTURE WORD
In this paper, we proposed a novel design for identifying links

between requirement artefacts that could allow software
developers to solve traceability problems more efficiently. The
motivation for this research was provided by our comparison
between the previous studies to find different missing links
between requirement artefacts, people dealing with the software,
and the SDLC. Previous studies were used due to their academic
validity. This paper provides an important foundation towards
understanding the relationships between requirement artefacts,
people controlling the software, the SDLC, and draws important
insights into their future. The main research project works towards
building a framework that manages traceability and aids software
developers.

REFERENCES
[1] Requirements.com. (2017). An Introduction to

Requirements Traceability Requirements.com -
Business Requirements, System Requirements,
Software Requirements, Requirements Engineering
Requirements Wall - Requirements.com.
[online] Available at:
http://requirements.com/RequirementsWall/tabid/66/
articleType/ArticleView/articleId/51/An-Introduction-
to-Requirements-Traceability.aspx [Accessed 24
Sep. 2017]

[2] De Lucia, A., Marcus, A., Oliveto, R., & Poshyvanyk,
D. (2011). Information Retrieval Methods for
Automated Traceability Recovery. Software and
Systems Traceability, pp.71-98. Doi:10.1007/978-1-
4471-2239-5_4.

[3] Levy, Darren. (2010). Why is requirements
traceability so important? Gatherspace. Available at
http://www.gatherspace.com/static/requirements_tra
ceability.html (accessed February 2017)

[4] Liskin, Olga. (2015). How artefacts support and
impede requirements communication. Requirements
Engineering Foundation for Software Quality, vol.
9013 of the series Lecture Notes in Computer
Science, pp. 132-147.

[5] IEEE. (1990). IEEE standard glossary of software
engineering terminology. Standards Coordinating
Committee of the Computer Society of the IEEE.
The Institute of Electrical and Electronics Engineers

http://requirements.com/RequirementsWall/tabid/66/articleType/
http://requirements.com/RequirementsWall/tabid/66/articleType/
http://www.gatherspace.com/static/requirements_traceability.html
http://www.gatherspace.com/static/requirements_traceability.html

The Missing Link in Artefact Management ICSCA’7, Feb 2018, Kuantan, Malaysia

5

[6] Young, Ralph R. (2003). Requirements Engineering
Handbook. Artech House Print.

[7] Miles, C.; M. Hart & M. Gupta. (2012). What does
the word artifacts mean in software engineering? –
Quora. Retrieved from
https://www.quora.com/What-does-the-word-
artifacts-mean-in-software-engineering (December
2016).

[8] Liu, Hsiang-Chuan; Wen-Pei Sung& Wenli Yao.
(2013). Information technology and computer
application engineering. Proceedings of the
International Conference on Information Technology
and Computer Application Engineering. CRC Press.

[9] Wysocki, Robert K. (2011). Effective project
management: traditional, agile, extreme. John Wiley
& Sons.

[10] Stamelos, Ioannis G. & Sfetsos, Panagiotis. (2007).
Agile software development quality assurance. Idea
Group Inc

[11] Schneider, Jean-Guy & Johnston, Lorraine. (2005).
eXtreme Programming––helpful or harmful in
educating undergraduates? Journal of Systems and
Software, vol. 74, issue 2, pp. 121-132

[12] Hoang Duc, V., 2015. Traceability in Agile software
projects

[13] Flynt, J. P., & Salem, O. (2005). Software
Engineering for Game Developers. Boston, MA:
Thomson Course Technology Ptr. – References –
Scientific Research Publish. [online] Available at:
http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))
/reference/ReferencesPapers.aspx?
ReferenceID=1368477 [Accessed 23 Sep. 2017].

[14] Pinheiro, Francisco A. C. (2004). Requirements
traceability. Perspectives on Software
Requirements, vol. 753 of the series ‘The Springer
International Series in Engineering and Computer
Science’, pp. 91-113

[15] Jarke, M. (1998). Requirements tracing.
Communications of the ACM, vol. 41, no. 12, pp.
32-36. Doi:10.1145/290133.290145.

[16] Rubin, D.L., Noy, N.F. and Musen, M.A., 2007.
Protégé: a tool for managing and using terminology
in radiology applications. Journal of digital
imaging, 20(1), pp.34-46

[17] Turban, B., Kucera, M., Tsakpinis, A. and Wolff, C.,
2009. Bridging the requirements to design
traceability gap. In Intelligent Technical

Systems (pp. 275-288). Springer Netherlands.

[18] Regan, G., Biro, M., Flood, D. and McCaffery, F.,
2015. Assessing traceability—practical experiences
and lessons learned. Journal of Software: Evolution
and Process, 27(8), pp.591-601.

[19] Sherba, S.A., Anderson, K.M. and Faisal, M., 2003,
October. A framework for mapping traceability
relationships. In Proceedings of the 2nd
International Workshop on Traceability in Emerging
Forms of Software Engineering (pp. 32-39).

[20] Hassnain, M. (2015), A Comparative Study on
Traceability Approaches in Software Development
Life Cycle. ITEE Journal Information Technology &
Electrical Engineering. Volume 4, Issue 2.

[21] Swathine, K., Sumathi, N. and Nadu, T. (2017).
Study on Requirement Engineering and Traceability
Techniques in Software Artefacts. International
Journal of Innovative Research in Computer and
Communication Engineering, [online] 5(1), p.114.
Available at: http://www.ijircce.com [Accessed 19
Mar. 2017].

[22] SDL Forum, & Khendek, F. (2013). SDL 2013:
Model-driven dependability engineering: 16th
International SDL Forum, Montreal, Canada, June
26-28, 2013: proceedings. Berlin: Springer.

https://www.quora.com/What-does-the-word-artifacts-mean-in-software-engineering
https://www.quora.com/What-does-the-word-artifacts-mean-in-software-engineering

