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Abstract

This thesis analyses the structure, phase behaviour and dynamics of two dimen-

sional (2D) systems of interacting soft-core particles, focussing in particular on

how these can solidify and the properties of the resulting crystalline structures.

Classical density functional theory (DFT) and dynamical density functional the-

ory (DDFT) is used in the analysis, and an introduction to these is given. The first

systems studied are particles interacting via the generalised exponential model

of index n (GEM-n) pair potential, including binary mixtures of different types

of GEM-n particles. We confirm that a simple mean-field approximate DFT (the

RPA-DFT) provides a good approximation for the structure and thermodynam-

ics. We study how solidification fronts advance into the unstable liquid after a

temperature quench. We find that the length scale of the density modulations

chosen by the front is not necessarily the length scale corresponding the equi-

librium crystal structure. This results in the presence of defects and disorder in

the structures formed. We analyse how these evolve over time, after the front

has passed. We also find that for the binary mixtures, the defects and disorder

persists for much longer and in-fact can remain indefinitely.

In the final part of this thesis we analyse the Barkan-Engel-Lifshitz (BEL)

model, which consists of particles interacting via a soft core potential that is more

complicated than the GEM-n potential and can include a minimum in the poten-

tial and soft repulsion over several competing length scales. The form of the BEL

potential gives good control over the shape of the dispersion relation, which al-

lows it to be tuned to the regime where the system forms quasicrystals. In this

regime, we study in detail the nature of the liquid state pair correlations and in

particular the form of the asymptotic decay as the distance between the particles

r → ∞. The usual approach used for fluids in three dimensions has to be gener-

alised, in order to be applicable in 2D. It is found that there is a line in the phase

diagram at which the asymptotic decay crosses over from being oscillatory with

one wavelength to oscillatory with a different wavelength. We expect this to be a
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general characteristic of systems that form quasicrystals.
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Chapter 1

Introduction

An important focus of material science and physics is to understand as much

as possible about the way different substances behave whether in gas, liquid or

solid form. There are many experiments we can do in the 21st century to ob-

serve, even at the microscopic level, this behaviour. However it is not always

cost effective (in money or time) to do this, which is why the study of accurate

theoretical models and computer simulations is very important; they allow us to

determine material properties with comparatively little expenditure. There are a

variety of different modelling and simulation techniques designed to study the

gas, liquid and solid phases of materials. In this thesis we focus on using classical

density functional theory (DFT) and dynamical density functional theory (DDFT)

to study "soft-core" systems in their liquid and solid phases and in particular how

the solid forms from the uniform liquid. Both of these techniques and what we

mean by "soft-core" systems, are discussed in more detail below and in subse-

quent chapters. DFT [1, 2, 3, 4] is a theoretical tool, that can be used to model

a variety of natural phenomena, for example: the way liquids behave next to a

wall, to determine the effective interactions between larger particles in a solvent

made up from much smaller molecules [5] and the structures formed as a liquid

is frozen [6]. We present an overview of DFT in Sec 2.2, but first we discuss the

nature of the interactions between particles in a fluid and how different fluids are

modelled via different pair potentials.
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1.1 Pair potentials

The pair potential v(r), where r is the distance between the pair of particles, de-

fines the energy from the interaction between a pair of particles in the system. The

form of the pair potential, whether to input into theory or simulation, depends

heavily on the type of molecules being studied. An important piece of informa-

tion is to know how they interact with each other. In colloid and soft matter

science the potential used is often an effective or coarse grained potential [7]. In

this section we discuss a few of the different models that are often considered,

ranging from hard core to soft core potientials. In Fig 1.1 we see two examples

of widely known and used potentials; On the left of Fig 1.1 is displayed the 12-6

potential of Lennard-Jones [3]:

v(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (1.1)

where r = |r| is the distance between the centres of the particles and on the right

of Fig 1.1 is the generalised exponential model of index n (GEM-n) potential [7],

v(r) = εe−(r/R)n , (1.2)

with n = 8. In both potentials ε determines the interaction energy. An important

distinction between these two pair potentials is that in the hard-core cases, such

as the Lennard-Jones, there is a strong repulsion between the molecules that pre-

vent them from occupying the same space i.e. they cannot come any closer than

one molecular diameter from each other at all reasonable values of the pressure.

Studying the Lennard-Jones potential in Fig 1.1 this distinction is realised when

noting that generally the potential v(r)/kBT >> 1 for r < σ, where σ is the diam-

eter of the particles and kBT is the thermal energy of a typical particle collision; T

is the temperature and kB is the Boltzmann’s constant. The part of the potential

with the positive gradient, for r
σ
≥ 21/6, is an attractive region of this particular
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FIGURE 1.1: Examples of potentials for modelling the interactions
between fluid particles. In the top left is displayed the Lennard-
Jones potential and in the top right the GEM-8 potential. Two
sketches of typical configurations of the molecules are shown below.

potential i.e. the molecules want to cluster around each other. In comparison the

GEM-n potential in Fig 1.1 (right) is purely repulsive but does allow for molecules

to occupy the same space. Note that the value of v(r → 0) = ε, means that the

energy remains finite when the particles of radius R are completely overlapping,

with value ε.

Such soft-core pair potentials typically arise as the effective potentials be-

tween the centres of mass of large polymeric molecules in solution. In Fig. 1.2 we

sketch a pair of polymer chains in solution. Due to the string-like nature of the

molecules, the centres of mass can be close or even coincide in space. To model

this kind of system the polymers can be treated as soft ’blobs’ that can penetrate

one another with effective potential similar to the potential in Eq. (1.2).
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FIGURE 1.2: Sketch to show (left) an example of a pair of poly-
mer chains in solution and (right) the approximation we make in
the model for these, as soft penetrable ’blobs’. The points mark the

locations of the centres of mass.

1.1.1 Generalised exponential model

In this thesis we consider two dimensional (2D) systems of soft-core particles in-

teracting via the GEM-n pair-potential Eq. (1.2) where the parameter 0 < ε < ∞

determines the energy penalty for a pair of particles to overlap as they approach

one another, R is the radius of the particles and the exponent n determines the

‘softness’ of the potential. When n = 2, the potential varies slowly. In contrast,

when n is large, as the separation distance r between a pair of particles is de-

creased, the potential increases rapidly from ≈ 0 to a value ≈ ε over a short

distance at r = R - see Fig 1.3. Here, we consider the cases when n = 4 and n = 8.

There is an extensive literature showing how such soft potentials arise as the ef-

fective interaction potential between polymers or other such soft macromolecules

in solution [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

The GEM-n potential in Eq. (1.2) with n = 4, 8 is a simple effective pair po-

tential used to model the effective potentials between the centres of mass of den-

drimers in solution [7, 19], which are branched polymers having a tree-like struc-

ture. We also expect this potential to roughly mimic the effective potential be-

tween certain star polymers. In Fig. 1.3 we plot the potential [Eq. (1.2)] for sev-

eral different values of n. Note that when n = 2 the GEM is instead called the

Gaussian Core model (GCM) and is a good model for simple linear polymers in

solution [20, 21]. The lower the index n, the "softer" the molecules in the system.
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Fig 1.3 shows the progression of how these potentials change with n. The param-

eter 0 < ε < ∞ determines the energy penalty for a pair of particles to overlap

completely, when r < R. The GEM-n potiential with larger n is a model for poly-

meric molecules that are more compact [17, 19], as can be seen in Fig. 1.3; the blue

line is GEM-4, with n = 4 and βε = 1 in Eq. (1.2), where β = 1/kBT . In this case,

the soft repulsion becomes sizeable at r
R
≈ 1.5. The red line is GEM-8 where the

soft particles begin repulsing each other at r
R
≈ 1.25 and the green line shows the

trend as n→∞, in this case the particles exert the full overlap energy v(r) = ε, as

soon as they come into contact with each other, for r < R. Before discussing the

structure, phase behaviour and dynamics of the GEM-n model for soft, we first

explain the principles of equilibrium DFT and its origins in thermodynamics.

0

0.2

0.4

0.6

0.8

1
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v
(r
)

r/R
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GEM-4
GEM-8
n→ ∞

FIGURE 1.3: GEM-n pair potential for βε = 1 where n = 4, n = 8 and
the n → ∞ limit. We also show the Gaussian Core Model (GCM),

i.e. the GEM-n, when n = 2.
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Chapter 2

Theory for the equilibrium system

2.1 Laws of thermodynamics

We approach Density Functional Theory (DFT) from thermodynamic principles.

The more standard presentation via statistical mechanics can be found in Refs.

[1, 2]. The first law of thermodynamics is a statement that energy is conserved in

a system. Thus it can be expressed as:

dU = dQ+ dW, (2.1)

where dU is the change in the internal energy, which depends on the heat transfer

to the system, dQ, and the work done on the system, dW . In order to continue

this explanation, we must consider the ensemble we are working within. The

thermodynamic state of a system can be determined via statistical mechanics i.e.

determining the average state of the system. This averaging can be performed

by considering an ensemble of copies of the system and averaging over the en-

semble. There are various ensembles within which it is possible to study a sys-

tem. The three of most relevance here are the micro-canonical, canonical and

grand canonical emsembles. The micro-canonical ensemble is a closed system

with fixed volume V , energy U and a fixed number of molecules N . The canoni-

cal ensemble is a system which also has fixed V and N , however it can exchange

energy with a heat bath leading to it having a fixed temperature T . The Grand

canonical ensemble is a system which has fixed T and can exchange both energy
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System SystemSystem

Bath Bath

FIGURE 2.1: Sketch of the three ensembles mentioned above: Left
the micro-canonical ensemble. Middle: The canonical ensemble.
Right: The grand canonical ensemble. The thick black line denotes
the boundary through which neither heat nor particles can pene-
trate. The thin solid line denotes a boundary through which heat can
be exchanged, but not particles. The dashed line defines a boundary

through which both can pass.

and particles with the heat bath-see Fig.2.1. That it can exchange particles means

the chemical potential µ is fixed equal to that in the bath. In this thesis we largely

work within the grand canonical ensemble, in which Eq. (2.1) becomes:

dU ≤ T dS − p dV + µ dN (2.2)

where the volume V , temperature T and the chemical potential µ are all fixed.

The term TdS ≥ dQ is the heat supplied to the system, where S is the entropy.

Since we have fixed V , therefore dV = 0 so:

0 ≥ dU − T dS − µ dN

0 ≥ dΩ.

(2.3)

We now have an expression for the change in the grand potential dΩ where Ω is

defined as:
Ω = U − TS − µN

Ω = F − µN,
(2.4)

where F = U − TS is the Helmoltz free energy. Thus, from Eq. (2.3) we see that

in a grand canonical system, Ω is minimised at equilibrium. We now introduce

the number density ρ, which for a uniform system ρ = N
V

, is the average number
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of particles per unit volume. We can now rewrite Eq. (2.4) as:

Ω =

∫
V

dr f −
∫
V

drµρ (2.5)

where r is a continuous vector representing the coordinates of the system. When

we consider an inhomogeneous fluid, the density throughout the system varies

in space, therefore the number density ρ becomes a function of r. Hence Eq. (2.6)

becomes:

Ω[ρ(r)] =

∫
dr f [ρ(r)]− µ

∫
dr ρ(r) (2.6)

or

Ω[ρ(r)] = F [ρ(r)]− µ
∫
dr ρ(r). (2.7)

This equation is known as the grand potential functional. With a suitable expres-

sion for the Helmholtz free energy functional F [ρ] we can use this equation to

find the density profile ρ(r) that minimises Ω[ρ] and so is the density profile of

the equilibrium system.
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2.2 Density Functional Theory

Density Functional Theory (DFT) is a theoretical framework that provides a method

for calculating the one-body density profile ρ(r) of an inhomogenous system

of classical particles and also thermodynamic quantities such as the pressure

and interfacial tension. The quantity ρ(r)dr is the probability of finding a par-

ticle in small volume dr at position r in the system and is obtained by minimis-

ing the grand potential functional Ω[ρ] with respect to variations in ρ(r) [3, 13].

The Grand potential functional is given in Eq. (2.7). The first term F [ρ(r)] is the

Helmholtz free energy and the second term is the contribution due to the system

being coupled to a reservoir with chemical potential µ (the energy required for a

particle to enter the system). The Helmholtz free energy can be written as:

F [ρ(r)] = kBT

∫
drρ(r)(ln[Λdρ(r)]− 1) + Fex[ρ(r)] +

∫
drρ(r)Vext(r). (2.8)

The first term is the ideal gas free energy, the second term is the excess free energy

and the third term is the energy due to the external potential Vext(r), for example

due to container walls, etc. Other terms are the thermal de Broglie wavelength

Λ and the dimensionality of space d. Substituting Eq. (2.8) into Eq. (2.7) we get

(with d = 2):

Ω[ρ(r)] = kBT

∫
drρ(r)(ln[Λ2ρ(r)]− 1) + Fex[ρ(r)] +

∫
drρ(r)(Vext − µ). (2.9)

The equilibrium density profile is obtained by minimising Eq. (2.9). So, we need

to find the density profile ρ∗(r) such that it minimises Ω, i.e. it satisfies the Euler

Lagrange equation:
δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρ∗(r)

= 0 (2.10)

Thus, combining Eq. (2.9) and Eq. (2.10) we obtain:

kBT ln[Λ2ρ(r)] +
δFex
δρ

+ Vext(r)− µ = 0. (2.11)
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The excess free energy in Eq. (2.11) is in general an unknown quantity, however,

there are a great many approximations that have been developed and the one

used depends heavily on the system being modelled. We are here interested in

soft macromolecules such as polymers, star-polymers and dendrimers. There

are different approaches to approximating the excess free energy, two such ap-

proaches are detailed below in section 2.2.1. Once an appropriate approximation

for the excess free energy has been found, we then substitute this into Eq. (2.11)

and rearrange for the density ρ(r). For example, one of the approximations from

section 2.2.1 below [Eq. (2.18)] gives:

δFex
δρ
≈ µex − kBT

∫
dr′c(2)(r, r′)(ρ(r′)− ρ0), (2.12)

where c(2)(r) is the (Ornstein-Zernike) pair direct correlation function (this is

treated as an input to the theory) and ρ0 is a reference density and µex is the

excess chemical potential of the bulk fluid with density ρ0. Thus:

µex = µ− kBT ln Λ2ρ0. (2.13)

Once an appropriate approximation for the excess free energy has been chosen,

we then substitute this into Eq (2.11) and Eq. (2.9), and we can then use this to

calculate, via Picard iteration, the density profile ρ(r) and the grand potential

energy Ω[ρ(r)], respectively. Using Eq. (2.12) together with Eq. (2.11), we obtain:

kBT ln[Λ2ρ(r)]− kBT
∫
dr′c(2)(r, r′)(ρ(r′)− ρ0) + Vext(r) + µex − µ = 0 (2.14)

Rearranging this expression for the density ρ(r) and using Eq. (2.13) we get:

ρ(r) = ρ0e
∫
dr′c(2)(r,r′)(ρ(r′)−ρ0)−βVext(r). (2.15)

This equation is the basis for solving the DFT via Picard iteration. Picard iteration

is a process which starts by choosing a suitable initial approximation for ρ(r),
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then using the right hand side of Eq. (2.15) we obtain a new approximation for

ρ(r). We iteratively solve to find the equilibrium density profile, generally with

some mixing of the new and the old profile at each iteration, see Appendix A

[22, 23].

2.2.1 Approximations for the excess free energy

Approximating the excess free energy Fex accurately is an important focus of clas-

sical DFT. One possible approach is to approximate the excess free energy using

a Taylor expansion in powers of ρ̃(r) = ρ(r)− ρ0, where ρ0 is a reference density:

Fex[ρ(r)] = Fex[ρ0] +

∫
drρ̃(r)

δFex[ρ(r)]

δρ(r)

∣∣∣∣
ρ0

+
1

2

∫ ∫
drdr′ρ̃(r)ρ̃(r′)

δF 2
ex[ρ(r)]

δρ(r)δρ(r′)

∣∣∣∣
ρ0

+O(ρ̃3).

(2.16)

By definition [1, 2] the first and second derivatives of the excess free energy can

be expressed as follows:

δFex[ρ(r)]

δρ(r)
= −kBTc(1)(r)

δF 2
ex[ρ(r)]

δρ(r)δρ(r′)
= −kBTc(2)(r, r′),

(2.17)

where c(1) and c(2) are the one and two body direct correlation functions respec-

tively. So Eq. (2.16) is a Taylor expansion with respect to the direct correlation

functions. If we substitute in Eq. (2.17) and neglect third- and higher order terms

in Eq. (2.16) we get:

Fex[ρ(r)] = Fex[ρ0] + µex

∫
drρ̃(r)

− kBT

2

∫ ∫
drdr′ρ̃(r)c(2)(r, r′)ρ̃(r′).

(2.18)

Where µex = −kBTc(1)(∞) is the bulk excess chemical potential. As discussed

above, the aim of DFT is to calculate the density profile ρ(r). This can be done

using the approximation in Eq. (2.18) as long as a suitable expression for c(2)(r, r′)
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is supplied. This can be done by connecting with integral equation theory for

the liquid state structure which is explained in the following section. We also

consider a second approximation for the free energy for which the methodology

is outlined in [2]. The functional derivative of the free energy with respect to the

pair potential v(r) yields [2]

δF [ρ]

δv(r, r′)
=

1

2
ρ(2)(r, r′), (2.19)

where ρ(2)(r, r′) is the inhomogeneous fluid two-body density distribution func-

tion. Suppose we now split the pair potential as follows into two parts:

vα(r) = v1(r) + αv2(r), (2.20)

where the parameter 0 ≤ α ≤ 1 is used to ’turn on’ the second part of the pair

potential. When α = 1, Eq. (2.20) gives the full potential i.e. vα=1(r) = v(r). If we

then consider the reference fluid with the same temperature and density profile

ρ(r), we can then integrate Eq (2.8) to obtain:

F [ρ] = Fr[ρ] +
1

2

∫ 1

0

dα

∫
dr

∫
dr′ρ(2)(r, r′)v2(r, r′), (2.21)

where Fr[ρ] is the intrinsic free energy of the reference fluid, in which the po-

tential between the particles is v1(r). The exact expression in Eq. (2.21) can be

approximated as:

F [ρ] ≈ Fr[ρ] +
1

2

∫
dr

∫
dr′ρ(r)ρ(r′)v(r− r′). (2.22)

This can be justified recalling that we can express the two body density distribu-

tion via

ρ(2)(r, r′) = ρ(r)ρ(r′)g(r, r′) (2.23)
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where g(r, r′) is the inhomogeneous fluid pair distribution function. Assuming

g(r, r′) = 1 we can approximate the two body density with ρ(2)(r, r′) ≈ ρ(r)ρ(r′).

This approximation is true for |r−r′| → ∞, but not necessarily so for small |r−r′|.

The usual approach is to select v1(r) to be the pair-potential of a well understood

model fluid; for example hard spheres. Given the soft-core nature of the potential

v(r) that we study here, that is clearly inappropriate. Here, we use the ideal gas

as a reference system, i.e. we set v1(r) = 0, so that v2(r) = v(r). Eq. (2.22) then

gives:

Fex[ρ] ≈ 1

2

∫
dr

∫
dr′ρ(r)ρ(r′)v(|r− r′|) (2.24)

We refer to this as the RPA-DFT approximation since this is the functional that

generates the random phase approximation (RPA) for the direct pair correlation

function, [1, 2, 3]:

c(2)(r, r′) = −β δ2Fex
δρ(r)ρ(r′)

= −βv(|r− r′|). (2.25)
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2.3 The Ornstein-Zernike equation

In matter, the structure of particles i.e how they are arranged is connected to the

physical state, whether that be solid, liquid or vapour. The particles in a solid usu-

ally have long ranged structural order i.e. a unit lattice structure that is repeated

throughout the crystalline region. Liquid molecules have some short range or-

dering with the correlations between the particles decreasing as the distance in-

creases. A vapour has almost no order at all and the particles can be anywhere

(except overlapping if they have strongly repelling cores). The degree of ordering

in a fluid is characterised by two-point correlation functions [3]. One of the most

important is the radial distribution function g(r). The radial distribution function

is calculated (in 2D) by counting the number of particles lying within concentric

discs of increasing radius r centred on one particle. These results are then binned

in a histogram and normalised relative to the overall bulk density, ρ0, as illus-

trated in Fig.2.3. If we consider the radial distribution in 2D as shown in Fig. 2.3

then any molecules within the area between the two red circles is part of the dis-

tribution of molecules at distance r away from the reference molecule. g(r) is

r+dr

r

dr

FIGURE 2.2: Sketch of the construction used to define the radial
distribution function g(r).
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FIGURE 2.3: An example of the radial distribution function for a
fluid of LJ particles, where βε = 0.5 and ρ0σ

3 = 0.8.

defined (in 2D) so that 2πrρ0g(r)dr is the average number of particles in the area

2πrdr a distance r from the particle at the centre. If the particles are uncorrelated

(i.e. an ideal gas) then g(r) = 1 ∀r. It is possible to measure g(r) in experiments

[3]. Some nice microscopy experiments, in which g(r) was measured for colloidal

(hard core) particles in a 2D environment were done in Ref. [24]. On the other

hand, in a dense liquid, g(r) can be highly structured, exhibiting oscillations - see

for example the g(r) displayed in Fig 2.3 for a Lennard-Jones (LJ) fluid.

One can calculate the radial distribution function via the Ornstien-Zernike

equation [3]:

h(r) = c(2)(r) + ρ0

∫
dr′c(2)(|r− r′|)h(|r′|), (2.26)

where h(r) = g(r) − 1 is the total correlation function. Defining the total corre-

lation in this way splits the correlations within the fluid into a direct part given

by c(2)(r), which describes the ‘direct’ correlations between pairs of particles that

occur over a distance comparable to that of the interaction range in the pair po-

tential, and the ‘indirect’ correlations, that are mediated by intermediary other
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particles in the fluid. The contribution to h(r) from these is described by the con-

volution integral [25]. Note that in fluids as r → ∞, g(r) → 1 i.e. as we consider

particles further and further away from the reference particle the particles are

less likely to be correlated. In this thesis, we calculate g(r) using the so called

’test-particle’ method of Percus [26] described below in Sec. 2.5. Once the radial

distribution function is known, in addition to the advantages mentioned above

we can use it to calculate thermodynamic quantities. For example, the isothermal

compressibility χT can be found using a relation between the radial distribution

function and the static structure factor:

S(k) = 1 + ρ0

∫
(g(r)− 1)e−ik·rdk. (2.27)

If we consider the Ornstein-Zernike equation in Fourier space:

ĥ(k) = ĉ(k) + ρ0ĉ(k)ĥ(k) (2.28)

whereˆdenotes the Fourier transform and where the Fourier transform of a func-

tion f̂(q) is defined as:

f̂(q) =

∫
dreiq·rf(r). (2.29)

The inverse of the Fourier transform is then:

f(r) =

(
1

2π

)d ∫
dqeiq·rf̂(q). (2.30)

Rearranging Eq. (2.28) we are able to get an expression for the Fourier transform

of the two body direct correlation function:

ĉ(k) =
ĥ(k)

1 + ρ0ĥ(k)
. (2.31)

In principle, the total correlation function can be obtained experimentally or nu-

merically from molecular dynamics or Mote Carlo simulations. This, together
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with the expression above is one way to obtain c(2)(r). However, another ap-

proach is to consider the closure relation [3]:

c(2)(r) = −βv(r) + h(r)− ln(h(r) + 1) + b(r), (2.32)

where b(r) is the bridge function. This closure relation is formally the exact so-

lution to the Ornstein-Zernike equation. However the bridge function b(r) is un-

known for most systems. Nonetheless, there are many approximations for this

quantity [3]. We will focus on two such approximations. The first is the Hyper-

Netted Chain approximation (HNC):

c
(2)
HNC(r) = −βv(r) + h(r)− ln(h(r) + 1), (2.33)

which consists of setting b(r) = 0 and the Random Phase Approximation (RPA):

c
(2)
RPA(r) = −βv(r) (2.34)

Which is accurate when h(r) is small, since then ln(1 + h(r)) ≈ h(r). The RPA

is known to provide a good approximation for the fluid structure and thermody-

namics for soft core particles i.e when the effective interactions between molecules

is finite for all values of r and when interactions are not too strong and the density

is sufficiently high [7].
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2.4 Test particle method to calculate g(r)

Introduced by Percus [26] this method of calculating g(r) for a fluid consists of

fixing one particle within the fluid and then calculating the density profile ρ(r)

around this particle. The radial distribution function is then:

g(r) =
ρ(r)

ρ0

. (2.35)

The required density profile is that which minimises the grand free energy i.e. the

profile satisfies the Euler-Lagrange equation (section section 2.2):

δΩ[ρ(r)]

δρ(r)
= 0. (2.36)

Using Eq. (2.9) and the RPA DFT approximation Eq. (2.24) we get:

kBT ln[Λ2ρ(r)] +
1

2

∫
dr′v(|r− r′|)ρ(r′) + v(r)− µ = 0, (2.37)

where, within the test particle method, we consider the external potential to be

the pair potential, i.e. Vext(r) = v(r). In this case as r → ∞, Vext(r) = v(r) → 0

and ρ(r)→ ρb, so Eq. (2.37) becomes for r →∞:

kBT ln[Λ2ρb] +
1

2
ρb

∫
dr′v(|r− r′|)− µ = 0. (2.38)

Rearranging for µ and substituting back into Eq. (2.37) we get:

kBT ln

[
ρ(r)

ρb

]
+

∫
dr′(ρ(r′)− ρb)v(|r− r′|) + v(r) = 0 (2.39)

which we then rearrange for ρ(r):

ρ(r) = ρbe
−

∫
dr′(ρ(r′)−ρb)βv(|r−r′|)−βv(r) (2.40)
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This equation can then be solved via Picard iteration. Using this test particle

method and the above equation, we are able to obtain a good deal of information

about the structure of a fluid around this particle. Using Eq. (2.40) to calculate

the density profile about the test particle, we can calculate the radial distribution

function g(r) via Eq. (2.35).
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2.5 RPA DFT and HNC for the GEM-4 fluid

In this section we compare the accuracy of the RPA DFT and the HNC approxi-

mations for g(r) for the GEM-4 model. We use the ‘test-particle’ method of Sec-

tion 2.4 to calculate the radial distribution function g(r) which is displayed in

Fig. 2.4. The density profile of the fluid phase is calculated by solving the Euler-

Lagrange equation via a simple iterative algorithm on a 2D discretised grid with

periodic boundary conditions and then g(r) is obtained via Eq (2.35). The HNC

approximation, which comes from setting the bridge function in the closure to

the OZ equation Eq. (2.32) to zero, is in principle more accurate than the simpler

RPA DFT approximation, which loses accuracy at low density [7]. Results from

the HNC are also displayed in Fig. 2.4. The radial distribution function g(r) is

calculated at three state points, of decreasing bulk density from top to bottom

(βε, ρbR2) = (1, 0.36), (5, 0.14) and (10, 0.088). We can see that at the higher den-

sity there is very good agreement between the two approximations, at lower den-

sity however, there is some disagreement as we expected, but nonetheless is sur-

prisingly good. Note that for the two higher density state points that g(r = 0) 6= 0,

indicating there is some overlap of these soft particles. This is also due to the fact

that these are for lower βε, or equivalently for higher temperatures.
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FIGURE 2.4: The radial distribution function g(r) for a GEM-4 fluid
with bulk chemical potential µ = 0 obtained from the HNC closure
to the OZ equation (dashed lines) and from the RPA DFT via the test
particle method (solid lines), for several values of βε. The results
correspond to the state points (top to bottom) (βε, ρbR2) = (1, 0.36),
(5, 0.14) and (10, 0.088). As βε increases, the RPA approximation
becomes less good; nevertheless, even for these fairly low density
state points and with repulsion strength such as such as βε = 10 the
agreement is surprisingly good – recall that the RPA approximation

improves as the density is increased.
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2.6 Phase Coexistance

In the previous sections we have focused on the theory and structure of liq-

uids. In this section we now consider the conditions for coexistence between two

phases, namely the liquid and solid phases. Coexistence between a liquid and

solid phase occurs when the temperature T , pressure p and chemical potential

µ of both phases are equal, and of course, when both density profiles minimise

the Euler-Lagrange equation. If we let ρl be the density of the liquid and ρx(r)

be the density of the solid crystalline phase then coexistence can occur when the

following conditions are met:

Tl = Tx µl = µx pl = px, (2.41)

where subscript l and x denote the properties of the liquid and crystal phases

respectively. This last condition is equivalent to Ω[ρ0] = Ω[ρx(r)], where:

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρl

= 0
δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρx(r)

= 0. (2.42)

An example of coexistence between the solid and liquid phases can be seen in

Fig. 2.5. On the left are the density peaks which correspond the crystal structure

and on the right is the flat uniform density of the liquid. The structure of these

density peaks is important to the properties of the crystal. Note that in Fig. 2.5

the crystal structure does not advance into the liquid and visa versa for the liq-

uid. The interface between the crystal and liquid is sometimes called a front. If

it were advancing into the liquid we would consider it a solidification front. We

will discuss such fronts in further detail later in this thesis. In Fig. 2.6 we show

the phase diagram for the GEM-4 and GEM-8 models (see also [27]) where we

have calculated the binodals and spinodals for both systems. The binodals show

the average densities of the coexisting liquid and solid phases, the solid being

the higher density phase. The spinodals indicate the density value where the
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uniform liquid becomes linearly unstable which is discussed in the next chap-

ter. The binodals are calculated using the approximation in Eq. (2.24), which we

use to calculate the grand potential for each phase. From this we can then lo-

cate where the grand free energies for both the liquid and solid phases are the

same. The bulk phase diagrams displayed in Fig 2.6 exhibit a liquid phase at low

densities and/or high temperatures which freezes to form a novel cluster crystal

phase as the temperature decreases or the density increases. The density profile

for the crystal phase is calculated in much the same way as the test particle liquid

density profiles discussed in the previous section. An initial guess for the density

profile containing density peaks is taken by the model, Picard iteration is then

applied to find the density profile that satisfies the Euler-Lagrange equation. In

the one component models with pair potentials GEM-4 and GEM-8 we see long

range ordering of the peaks throughout the density profiles. These peaks signify

the high density of particles at these locations within the crystal structure. Note

that the soft nature of the GEM-n potentials allows for complete overlap of par-

ticles and so these density peaks can indicate many particles overlapping each

other. If we consider the different equilibrium crystal structures that are obtained

by moving throughout the lower right half of the GEM-4 and GEM-8 phase di-

agram Fig. 2.6 we find that the hexagonal crystal structure frequently minimises

the free energy i.e. the density profile which corresponds to an hexagonal crystal

structure satisfies the Euler-Lagrange equation.

These results for the GEM-n system are based on the approximate free energy

in Eq. (2.24). Our main reason for considering this simple model centres on the

fact that the structure and phase behaviour (i.e. thermodynamics) of this model is

well described by a rather simple approximation for the excess free energy - that

in Eq. (2.24). This approximation has also been widely used elsewhere in studies

of the structure and phase behaviour of soft-core systems [28, 7, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
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FIGURE 2.5: Density profile at the free interface between the coexist-
ing liquid and solid phases, for βε = 1 and βµ = 17.0 for the GEM-4

model.
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FIGURE 2.6: Phase diagrams of the one component 2D GEM-4 and
GEM-8 model fluids. The solid lines are the binodals – i.e., the
loci of the coexisting liquid and solid phases. The dashed lines are
the spinodal-like instability lines along which the metastable liquid

phase becomes linearly unstable.
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Chapter 3

Theory for non-equilibrium

dynamics

3.1 Dynamical density functional theory

DFT is a useful and successful tool for studying (among many other things) a

variety of fluid and solid equilibrium phenomena. To be able to study non-

equilibrium situations we need to generalise DFT to study the dynamics. In par-

ticular, we assume the soft particles of interest here are Brownian particles with

over-damped stochastic equations of motion. The density distribution at time

t is ρ(r, t) and so the time evolution of this density distribution is given by the

continuity equation:
∂ρ

∂t
= −∇ · j. (3.1)

In order to solve this equation we need an expression for the current j = ρu,

where u is the local fluid velocity. In general, we only have formal expressions

for this quantity, and to actually calculate the fluid dynamics, approximations are

required. A reasonable approximation for our model is [50, 51]:

j = −Γρ∇δF [ρ]

δρ
, (3.2)

where F [ρ] is the equilibrium Helmholtz free energy functional, Γ = D/kBT is

the mobility coefficient and D is the diffusion coefficient. The result in Eq. (3.2)
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was originally derived by Marconi and Tarazona [50]. They presented a new-

time dependent “dynamical density functional theory" (DDFT). Starting from

the stochastic equations which describe the Brownian motion of N interacting

particles they derived a deterministic equation for the ensemble average density

ρ(r, t) = 〈ρ̂(r, t)〉:

∂ρ(r, t)

∂t
= Γ∇

[∫
kBT∇ρ(r, t) + ρ(r, t)∇Vext(r)

+

∫
dr′〈ρ̂(r, t)ρ̂(r′, t)〉∇v(r− r′)

]
,

(3.3)

where ρ̂(r, t) =
∑N

i=1 δ(r− ri) is the density operator and 〈·〉 denotes an ensemble

average, over all realisations of the stochastic noise [50]. Note that 〈ρ̂(r, t)ρ̂(r′, t)〉 =

ρ(2)(r, r′, t), is the two body density distribution in a system out of equilibrium

[50]. Equilibrium density functional theory, which is already a powerful and

widely used tool for investigating the equilibrium state of particle systems, can

provide an approximation for this quantity. An equilibrium state corresponds to

a minimum in the grand potential functional Eq. (2.9). From the general proper-

ties of the equilibrium functionals we have the following two exact equilibrium

relations between ρ(r) and Vext(r) (external potential): First, the local balance

of momentum at any point implies the Born-Bogolubov-Green-Kirkwood-Yvon

(BBGKY) relation [50]:

1

ρ(r)
∇ρ(r) + β∇Vext(r) = −β 1

ρ(r)

∫
dr′ρ(2)(r, r′)∇v(r− r′). (3.4)

Second, equilibrium implies that the functional derivative of F [ρ(r)] at any

point is equal to the chemical potential µ which is uniform in space. Taking the

gradient of Eq. (2.11) gives the equation [50]:

1

ρ(r)
∇ρ(r) + β∇Vext(r) = −∇ δ

δρ(r)
[βFex[ρ]]. (3.5)
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Comparing equations (3.4)-(3.5) they were able to express the last term in

Eq. (3.4) as:

∫
dr′〈ρ̂(r, t)ρ̂(r′, t)〉∇v(r− r′) = ρ(r, t)∇δFex[ρ(r)]

δρ(r, t)
. (3.6)

This is exact for an equilibrium system. Assuming this remain true out of equi-

librium is the central approximation made in deriving DDFT. Thus, with Eq. (2.9)

and Eq. (3.5) we are able to derive the main result of the dynamical density func-

tional approach, based of the use of the equilibrium functional F [ρ(r)]:

∂ρ(r, t)

∂t
= Γ∇ ·

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
. (3.7)

In using Eq. (3.6) to derive the DDFT we have made the approximation that

the non-equilibrium fluid two-body correlations are the same as those in the equi-

librium fluid with the same one-body density distribution [28]. Note that the

equilibrium solutions of Eq. (3.7) are solutions of the equilibrium DFT Eq. (2.9),

since at equilibrium ∂ρ
∂t

= 0, so Eq. (3.7) gives δF
δρ

= constant. The constant is

the chemical potential µ, so equilibria of Eq. (3.7) are solutions to Eq. (2.10) [c.f.

(2.11)]. Having Eq. (3.7) we are able to study the non-equilibrium dynamics of

the interacting Brownian particles. The dynamical processes that is of particular

interest here is to describe what occurs when a super-cooled liquid freezes and

how solidification fronts advance. In order to study such fronts we perform a

marginal stability calculation in order to gain important information about these

fronts, which we will use later within this chapter, but before doing this we must

first calculate the dispersion relation.
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3.2 Dispersion Relation

In this section we introduce the dispersion relation [52, 53, 28]. This is a quantity

that enables us to determine the regions of the phase diagram where the liquid is

unstable to periodic density fluctuations occurs where the crystal is the equilib-

rium state. We begin with the main DDFT Eq (3.7) and the functional derivative

of the Helmholtz free energy F [ρ(r)]:

δF [ρ(r, t)]

δρ(r, t)
= kBT ln(Λ2ρ(r, t)) +

δFex[ρ(r, t)]

δρ(r, t)
+ Vext(r, t) (3.8)

where Vext(r, t) is the external potential from a wall or other boundary. If we now

take the gradient of Eq. (3.8) we obtain:

∇δF [ρ(r, t)]

δρ(r, t)
=

kBT

ρ(r, t)
∇ρ(r, t)− kBT∇c(1) +∇Vext(r, t). (3.9)

Note that c(1) = δFex[ρ(r,t)]
δρ(r,t)

. Rearranging Eq (3.9) we obtain:

βρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)
= ∇ρ(r, t)− ρ(r, t)∇c(1) + ρ(r, t)∇βVext(r, t). (3.10)

Substituting Eq (3.10) into Eq. (3.7) we have:

1

D

∂ρ(r, t)

∂t
= ∇2ρ(r, t)−∇[ρ(r, t)∇c(1)] +∇[ρ(r, t)∇βVext(r, t)] (3.11)

where D = Γ
β

is the diffusion coefficient. To study the stability of the uniform liq-

uid we assume we have no contribution from a external potential Vext = 0 and we

also introduce the notation that ρ̃ = ρ− ρ0 i.e. ρ̃ is the density modulation around

a reference density, in this case the bulk fluid density ρ0. Eq. (3.11) becomes:

1

D

∂ρ(r, t)

∂t
= ∇2ρ̃(r, t)−∇

[
(ρ̃(r, t) + ρ0)∇[c(1)[ρ0]

+

∫
dr′ρ̃(r′, t)

δc(1)(r− r′)

δρ
+ ...]

] (3.12)
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where we have made a functional Taylor expansion of the term involving c(1).

Recalling that c(2)(r, r′) = δc(1)

δρ
is the pair direct correlation function from the

Ornstien-Zernike equation. Hence we have:

1

D

∂ρ(r, t)

∂t
= ∇2ρ̃(r, t)−∇

[
(ρ̃(r, t) + ρ0)∇

∫
dr′ρ̃(r′, t)c(2)(r− r′) + ...

]
(3.13)

consolidating powers of ρ̃(r, t) we have:

1

D

∂ρ(r, t)

∂t
= ∇2ρ̃(r, t)− ρ0∇2

∫
dr′ρ̃(r′, t)c(2)(|r− r′|) +O(ρ̃2). (3.14)

We now consider ρ̃ to be a sum of Fourier modes,

ρ̃(r, t) =
∑
k

ρ̃ke
ik·r+ω(k)t, (3.15)

where k = |k|. Substituting Eq. (3.15) into the parts of Eq. (3.14) that are linear in

ρ̃ and noting that:

∫
dr′eik·r

′
c(2)(|r− r′|) = eik·r

∫
dr′eik·(r

′−r)c(2)(|r− r′|) = eik·rĉ(k), (3.16)

where ĉ(k) denotes the Fourier transform of c(2)(r), and then dividing through by

ρ̃ leads us to the dispersion relation for the growth rate ω(k) of density fluctua-

tions with wavenumber k, namely:

ω(k) = −Dk2[1− ρ0ĉ(k)]. (3.17)
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3.3 Stability of the GEM-n fluid

Wether or not the uniform fluid is linearly stable is completely dependent upon

the dispersion relation Eq. (3.17). If we consider the density modes in Eq. (3.15),

it is clear that if the dispersion relation ω(k) is negative for all values of k, then all

small amplitude density perturbations will decrease in amplitude and the density

profile of the liquid will remain flat i.e. the liquid is in a linearly stable state. If

there are some values of k for which ω(k) is positive, then all density fluctuations

corresponding to these k modes will grow which can lead to solidification fronts

and to freezing i.e. the liquid is in a linearly unstable state. Note that we have

not addressed any situation where the solidification process starts via non-linear

means (i.e. large amplitude density perturbations), this scenario will be explained

in a later section. In Fig. 3.1 we see an example of the coexistence (binodal) lines

and also the linear stability threshold for the GEM-8 model. The dashed line

in Fig. 3.1 is the spinodal-like instability line at which the linearly stable liquid

become linearly unstable on moving to the right of this line. The inset plot in

the top left of Fig. 3.1 is an example of the dispersion relation for the upper half

region, where the liquid is linearly stable. Note that in this region of the phase

diagram the dispersion relation ω(k) < 0 for all k. The inset plot in the lower right

of Fig. 3.1 is an example of the dispersion relation for the lower half region, where

the liquid is linearly unstable. Here, the dispersion relation ω(k) > 0 for some k.

There is also the possibility that the liquid and crystalline phases are both linearly

stable states at the same time. When they have the same pressure, temperature

and chemical potiential, then as discussed in Sec 2.6 they are in phase coexistence.

The solid lines in the phase diagram Fig. 3.1 are the binodals and indicate such a

region of coexistence between the liquid and solid phases.

Within the present mean-field approximation Eq (2.24), the pair direct correla-

tion function is given by Eq (2.25) and so the dispersion relation Eq (3.17) has the
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following, very simple form:

ω(k) = −Dk2[1 + ρ0βv̂(k)], (3.18)

where v̂(k) is the 2D Fourier transform of the pair potential v(r). The threshold for

linear instability of the uniform fluid is determined by ω(k = q) = 0, where q 6= 0

is the wavevector at which ω(k) has a maximum, i.e., by 1 + ρ0βv̂(q) = 0. This

leads to a very simple linear density dependence of the onset temperature: kBT =

|v̂(k = q)|ρ0, where the marginally stable wavenumber q at onset is determined

by the condition
dv̂(k)

dk

∣∣∣∣
k=q

= 0. (3.19)

For the 2D GEM-8 system the onset wavenumber q ≈ 5.26/R. Since v̂(k =

q) ≈ −0.294εR2 is independent of the density, the linear instability threshold is a

straight line in the phase diagram:

kBT

ε
≈ 0.294ρ0R

2. (3.20)

This can also be seen in Fig. 2.6. In addition, the binodals along which the

liquid and crystal phases coexist in thermodynamic equilibrium also appear to

be straight lines in the phase diagram. This is not obvious because the binodal

calculation requires that one first obtains the crystal density profile, which is a

highly nonlinear problem. However, fitting the numerically obtained binodals

with a straight line proves to be an excellent approximation (Fig. 2.6). For exam-

ple, for the GEM-8 fluid we find that the binodal for the crystal state at coexis-

tence is given by kBT/ε ≈ 0.314ρ0R
2 and that of the liquid is kBT/ε ≈ 0.339ρ0R

2.

Thus, when the temperature kBT/ε = 1, the density of the liquid at coexistence is

ρ0R
2 ≈ 1/0.339 = 2.95 while that of the crystal is ρ0R

2 ≈ 1/0.314 = 3.18.

Having discussed above the linear stability and coexistence of a system, we

now consider how an unstable liquid state transforms into the solid state. In par-

ticular, we are interested in the situation where the stable solid phase invades the
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FIGURE 3.1: Linear instability line (dotted) for GEM-8 and typical
dispersion relations shown either side.

unstable liquid. Between the two phases is a solidification front that advances.

We study in detail the properties of these solidification fronts here and in later

sections. Solidification fronts occur when a liquid has been rapidly chilled. This

can induce a solidification front to move throughout the liquid leaving a crys-

tal/solid structure behind. Fig. 6 shows an advancing solidification front for the

GEM-4 model. The front is initiated by adding a small random value to the oth-

erwise uniform density profile along the line x/R = 25.6. This creates a pair of

fronts that then advances through the bulk fluid density profile creating density

peaks in their wake which corresponds to the crystal structure of the now frozen

liquid. The fronts can contain two distinct parts; one being the high density peaks

and the other the ’stripes’ where the density profile shows oscillation parallel to

the front.

The density profile in a crystalline phase is a collection of density peaks which

correspond to the location of the now frozen molecules. On the bottom right of

Fig. 3.2 we see an example of a density profile for a one-component fluid which

has been rapidly cooled (quenched). The yellow dots indicate density peaks and
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FIGURE 3.2: Solidification fronts moving through an unstable liquid
t∗ = 1.0 (top left), t∗ = 1.2 (top right), t∗ = 1.4 (bottom left) and
t∗ = 4.8 (bottom right). Note the above figures show the logarithm

of the density profiles (ln |ρ(r)|).

the darker regions showing lower density levels. It is desirable to study the de-

fects that are apparent in the structures formed. We now introduce two methods

we use throughout this thesis to analyse crystal structures and quantify the de-

gree of disorder: Delaunay triangulation and Voronoi diagrams - see Fig. 3.3. We

first identify the locations of all the density maxima above a certain threshold

value, which give us discrete points within the density profile. A Delaunay tri-

angulation is then done by connecting all nearest neighbouring peaks, the result

can be seen on the bottom left in Fig. 3.4 which shows a Delaunay triangulation

which has been done on the density profile on the left. Using this method can be

useful in identifying defect regions within the crystal structure. This statement
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can also hold true for the Voronoi Diagram seen of the bottom right of Fig. 3.4.

Both the Delaunay and Voronoi diagrams mentioned above are done on the same

set of density profile maxima. We now explain in more detail how Delaunay and

Voronoi diagrams are created. All of the density peaks in a profile are consid-

ered to be points on a 2D plane. For the Delaunay triangulation we connect all

of these points to their nearest neighbours, an example sketch of this is in Fig. 3.3

(left). Note that none of the other points is allowed within a triangle and that in

a Delaunay triangulation, the minimum angles of all the triangles, is maximised.

Once a Delaunay triangulation has been done on a profile, it can be used to create

a Voronoi diagram. We start by drawing a perpendicular line through the mid

point of every line in the Delaunay triangulation. Comparing Fig 3.3 we notice

that if we were to place each of the sketches on top of one another, every line in the

left sketch would have an intersecting line through its mid point. These methods

created the diagrams we see at the bottom of Fig 3.4. There are several advantages

that come from using multiple methods of studying the same crystal structure. If

we consider the diagrams at the bottom of Fig 3.4 we can clearly see that that the

larger defects in the profile are more easily spotted in the Delaunay triangulation

(bottom left) whereas the Voronoi diagram (bottom right) can be used more eas-

ily to see defects on a small scale. From the Delaunay triangulation, we have also

the angles of the corners in all of the triangles. Putting these in a histogram gives

a very illuminating quantity. For example, for the perfect structure in Fig 3.3 the

Histogram has a single sharp peak at 60◦. However for structures having disor-

der the peak becomes broader. If there are other structures, the peaks appear at

different angles.

In this section we have introduced DDFT and shown how it can be used to

study the linear stability of the liquid phase via a dispersion relation. We derived

this dispersion relation and used it to study the linear stability for the GEM-n

model. Using the dispersion relation we show how to generate stability and co-

existance conditions in the form of wavenumber q for the GEM-8 model. We have

also considered a particular case of instability which results in a solidification
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front and a crystalline structure, and discussed different methods of analysing

this structure. Before analysing GEM-n systems in detail we consider a simpli-

fied model, from which much insight can be gained.

FIGURE 3.3: Sketches to show Delaunay triangulation (left) and
Voronoi (right) diagrams. Note the same density peak structure

(black dots), but different structure of lines.
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FIGURE 3.4: Example of a density profile for a one-component fluid
which has be rapidly frozen (top). The bottom two diagrams are a
Delaunay triangulation (bottom left) and a Voronoi diagram (bottom

right) both done on the density profile (top).
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Chapter 4

Solidification fronts and a minimal

model

4.1 Phase field crystal: a minimal model for freezing

Phase field crystal (PFC) models were first introduced [54, 55, 56] as a minimal

DFT-like model capable of describing the freezing transition. The main difference

between the PFC and regular phase-field models being that microscopic details

are included in the model by including periodic ground state solutions. We de-

scribe this model and discuss its linear stability and solidification fronts in order

to gain insight from this simple model for the more complex GEM-n model of

interest later in this thesis.

In the following derivation we follow closely the arguments laid out in [57].

The governing equations of the PFC model are formulated from DDFT by per-

forming a gradient expansion of the approximation for the excess free energy Fex

in Eq. (2.18) and expanding the free energy in powers of a order parameter (i.e. a

scaled density) φ. In order to derive the PFC free energy we first need an approx-

imation for the two body direct correlation function c(2)(r, r′) which we obtain by

considering a gradient expansion truncated at the forth order term:

c(2)(r, r′) ≈ −β(Â0(ρ(r)) + Â2∇2 + Â4∇4)δ(r− r′). (4.1)

Although in principle all the coefficients Âi are functions of ρ(r), we assume that
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the coefficients Â2 and Â4 are constants [58]. Substituting this approximation for

the two body direct correlation function into the expression for the excess free

energy Eq. (2.18), we get:

Fex[ρ(r)] = Fex[ρ0] + µex

∫
drρ̃(r)

+
1

2

∫ ∫
drdr′ρ̃(r)

[
(Â0(ρ(r)) + Â2∇2 + Â4∇4)δ(r− r′)

]
ρ̃(r′).

(4.2)

Recall that ρ̃ = ρ(r) − ρ0. This expression for the excess free energy can be com-

bined with the ideal-gas term to write the total intrinsic Helmholtz free energy

as:

F [ρ(r)] =

∫
dr

[
f0[ρ(r)] +

1

2
ρ̃(r)(Â2∇2 + Â4∇4)ρ̃(r)

]
(4.3)

where

f0(ρ(r)) = kBTρ(r)(ln(ρ(r))− 1) + fex[ρ0] + µexρ̃(r) +
1

2
ρ̃(r)Â0(ρ(r)). (4.4)

The first term is the ideal gas contribution. We now make a further approximation

by Taylor expanding the function f0(ρ) about the bulk density ρ0, giving:

f0(ρ(r)) ≈ f0(ρ0) + f ′0(ρ0)ρ̃(r) +
f ′′0 (ρ0)

2
ρ̃(r)2 +

f
(4)
0 (ρ0)

4!
ρ̃(r)4. (4.5)

Note that in the Taylor expansion above we have chosen the reference density

ρ0 such that f (3)
0 (ρ0) = 0. We now introduce a change of variables using a non-

dimensional variable φ(r) = ρ̃(r)
ρ1

where ρ1 is some chosen constant density. Incor-

porating this non-dimensional φ into equations (4.3) and (4.5) we obtain:

F [φ(r)] =

∫
dr

[
f0[φ(r)] +

1

2
φ(r)(A2∇2 + A4∇4)φ(r)

]
(4.6)

where A2 = Â2/ρ
2
1, A4 = Â4/ρ

2
1 and

f0(φ(r)) ≈ a1 + a2φ(r) +
a3φ(r)2

2
+
a4φ(r)4

4
, (4.7)
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where a1, a2, a3, and a4 are constant. We now derive the dynamical model for

PFC, starting with the DDFT equation Eq. (3.7) and consider the case when ρ1φ is

small. In this limit we can make the approximation Γρ(r, t) = Γ(ρ0 + ρ1φ) ≈ Γρ0

and Eq. (3.7) becomes:

∂ρ(r, t)

∂t
= Γρ0∇2 δF [ρ(r, t)]

δρ(r, t)
. (4.8)

This is known as "model B" dynamics in the classification of Hohenberg and

Halperin [59]. Substituting in our original change of variable φ(r) = ρ̃(r)
ρ1

into

Eq. (4.8) we gain the time evolution of the order parameter φ(r, t):

∂φ(r, t)

∂t
= α∇2 δF [φ(r, t)]

δφ(r, t)
(4.9)

where α = Γρ0
ρ21

. We now need an expression for the functional derivative of the

free energy with respect to the order parameter, which is give by:

δF

δφ
= a3φ+ a4φ

3 +
A2

2
∇2φ+

A4

2
∇4φ+∇2

(
A2

2
φ

)
+∇4

(
A4

2
φ

)
= a3φ+ a4φ

3 + A2∇2φ+ A4∇4φ

= a4

(
a3

a4

φ+ φ3 +
A2

a4

∇2φ+
A4

a4

∇4φ

) (4.10)

If we now choose ρ1 such that A4

a4
= 1 and rewrite the other parameter values as

A2

a4
= 2q2 and a3

a4
= r + q4, we get the commonly used PFC free energy:

F [φ(r)] =

∫
drf(φ(r)), (4.11)

where

f(φ) =
φ

2

[
r + (q2 +∇2)2

]
φ+

φ4

4
. (4.12)

When we insert those same parameter values in Eq. (4.10) we get:

δF

δφ
= (r + q4)φ+ φ3 + 2q2∇2φ+∇4φ. (4.13)
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Now we consider the linear stability of the uniform state with φ = φ0 to obtain

the dispersion relation for the PFC model. We make the following substitutions:

φ = φ0 + δφ δφ = χeikr+ωt. (4.14)

Where the constant χ is the amplitude of the mode with wave number k. This

is equivalent to Eq. (3.15) but since we will linearise the equation we need only

consider one Fourier mode at a time. Eq. (4.13) now becomes:

δF

δφ
=
(
r + 3φ2

0 +
(
q2 − k2

)2
)
δφ+O(δφ2). (4.15)

From Eqs. (4.9) and (4.15) we then obtain the following expression for the disper-

sion relation:

ω = −k2α
[
r + 3φ2

0 +
(
q2 − k2

)2
]
. (4.16)

If we now consider Eq. (4.16), note that if ω < 0 then the system is linearly stable

and there is no solidification front or freezing via the spontaneous growth of any

small amplitude density modulations - i.e. the system is linearly stable. The

condition for the system to be linearly unstable is ω > 0 and is conditional on

r > 3φ2 + (q2 − k2)
2. Note that the right side of this condition will always be a

positive number. To minimise it we must have q ≈ k. Choosing the value for q

effectively picks the wave number (i.e. wavelength) of the density modulations

which will grow in amplitude. In Fig. 4.1 we display a plot of the dispersion

relation showing the typical behaviour of the system. The curves are for φ0 = 0

and varying r. We see that as r is increased, the peak at k = q moves up and at

r = 0 the system becomes marginally unstable -i.e. ω(k = q) = 0 for r = φ0 = 0.

For r > 0 the system is linearly unstable to periodic density modulations with

wave number k = q. It is in this regime that a localised density perturbation

grows and then advances into the unstable liquid with a well defined front speed

[53].
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FIGURE 4.1: Dispersion relation for the PFC as the parameter r is
varied.
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4.2 Solidification Fronts

As mentioned in section 3.3 we define a solidification front as a front that ad-

vances through a bulk fluid leaving behind crystalline structure. Solidification

fronts occur in unstable systems where the fluid has been deeply quenched into a

region of the phase diagram where crystal is the equilibrium phase. By introduc-

ing a sufficient density disturbance into these non-equilibrium systems we can

create a solidification front which advances through the fluid. The characteristics

of the advancing fronts; the speed, shape and the structure of the solid phase left

behind, are all dependant on the properties of the system. In Fig 4.2 we can see an

example of the density profile for a solidification front advancing into an unstable

bulk fluid of GEM-4 particles. This example shows how a structured crystalline

region is left behind the front, in the form of density peaks.

FIGURE 4.2: Density profile across a solidification front advancing
from left to right into an unstable GEM-4 liquid with bulk density

ρR2 = 8 and temperature kBT/ε = 1, calculated from DDFT.

When the system is linearly unstable, any localised density modulation will

grow and advance into the unstable uniform liquid phase. In Refs. [60, 53], a

marginal stability analysis was used to calculate the speed of such a front for

the PFC model. Such a calculation allows one to obtain the speed of a front that

has advanced sufficiently far for all initial transients to have decayed, so that the

front attains a stationary front velocity. In 1D the speed c with which the front

advances into the unstable liquid may be obtained by solving the following set of
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equations [61, 62, 60, 53]:

ic+
dω(k)

dk
= 0 (4.17)

Re[ick + ω(k)] = 0, (4.18)

where k = kr + kim is a complex wavenumber. This pair of equations come from

considering the system in a frame of reference moving with speed c, the speed of

the front. In that frame the front solution moving with speed c that is marginally

stable to infinitesimal perturbations in its frame of reference. In such a front the

density profile has travelling component of the form ρ̃(r, t) = ρfront(x− ct), where

ρfront(x−ct) ∼ exp(−kimx) sin(kr(x−ct)+Im[ω(k)]t) and in this expression we have

also included the time periodic component. Thus kr determines the wavelength

of the density modulations in the front and kim determines the width of the front

i.e. decay envelope of the front. More importantly, if no phase slips take place,

then the wavenumber of the density modulations left behind by the front is [62,

60, 53]:

k∗ = kr +
1

c
Im[ω(k)]. (4.19)

Thus, at this stage we can make an important observation: k∗ is determined by the

form of ω(k), which is obtained by linearising Eq. (3.1). Therefore the wavelength

2π/k∗ of the density modulation created behind the advancing front is in general

different from the equilibrium crystal lattice spacing `, just like the wavelength

associated with the fastest growing mode.

Thus even if the length scale determined by the maximum in ω(k) is the same

as the equilibrium lattice spacing for the crystal, as is the case in the simple

PFC theory for the crystal, solidification fronts advancing into a deeply super-

cooled liquid will still generate density modulations with a distinct wavelength,

requiring substantial subsequent rearrangements of the system in order to form

a defect-free crystal without strain. An example of using the above equations to

calculate these wave numbers for a simple model is detailed in the next section.
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4.3 Marginal stability calculation for simple model

In this section we perform the marginal stability calculation to obtain the front

speed c and wavenumber k∗ of the density modulations created behind the front

to show how these quantities depend on the dispersion relation. We approximate

the dispersion relation by making a Taylor expansion around the wavenumber

corresponding to the principal peak and truncating after the k3 term,

ω(k) ≈ ωm − a(k − q)2 − b(k − q)3, (4.20)

where ωm = ω(k = q) is the maximum growth rate. The coefficient a > 0 is

related to the width of the principal peak while bmeasures its asymmetry around

the peak wavenumber k = q. Substituting Eq. (4.20) into Eq. (4.17) we obtain:

ic− 2a(d+ ikim)− 3b(d+ ikim)2 = 0, (4.21)

where we have written d = kr − q. Separating the real and imaginary parts of

this equation, we obtain the following expressions for the front speed and the

imaginary part of k:

c = 2(a+ 3bd)kim (4.22)

kim =

√
2ad

3b
+ d2. (4.23)

Substituting Eq. (4.20) into Eq. (4.18) we obtain:

Re[ic(kr + ikim) + ωm − a(d+ ikim)2 − b(d+ ikim)3] = 0 (4.24)

giving

−ckim + ωm − a(d2 − k2
im)− b(d3 − 3dk2

im) = 0. (4.25)
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Inserting Eqs. (4.22) and (4.23) into Eq. (4.25) we obtain a cubic equation to be

solved for d. However, for present illustrative purposes it is instructive to proceed

analytically on the assumption that d is a small quantity. In this case Eqs. (4.22)

and (4.23) become

c ≈ 2akim (4.26)

kim ≈
√

2ad

3b
. (4.27)

Linearization of Eq. (4.25) in d now leads to d = 3bωm/2a
2, i.e. to

kr ≈ q +
3bωm
2a2

. (4.28)

This result shows that the wavenumber kr of the density modulation in the ad-

vancing solidification front is not equal to the wavenumber of the fastest growing

mode for the quenched uniform fluid, q, unless the peak of the dispersion relation

is symmetric, i.e. unless b = 0. We also see that the difference between these two

wave numbers grows with ωm, the magnitude of which is related to the degree of

undercooling. The deeper the quench, the larger is ωm. Moreover, inserting these

results into Eq. (4.19) we obtain the wavenumber k∗ of the modulations deposited

behind the front:

k∗ ≈ q +
bωm
2a2

. (4.29)

Thus the wavenumber k∗ differs in general from the fastest growing wavenumber

q, and neither of these wave numbers is in general equal to 2π/` and so defects

and disorder must be present shortly after a deep quench. Some systems are

subsequently able to rearrange, but others are not, as we show in the subsequent

sections for a particular model fluid composed of soft-core particles.
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4.4 Length scales in liquids and solids

In the previous section we have seen how a wave number is selected by a solidi-

fication front for a simple model. Even for this simple model the wave number k∗

is not equal to the wave number of the fastest growing mode of the front q. This

is true more generally,. Recall that the thermodynamic and structural properties

of these two phases can in principle be found using classical DFT [1, 2, 4, 3]. In

DFT it is shown that there exists a functional Ω[ρ], together with the minimisa-

tion principle in Eq. (2.10). The density profile ρ∗(r) that minimises Ω[ρ], is the

density distribution of the system at equilibrium. Furthermore, Ω[ρ∗] is the ther-

modynamic grand potential of the system. Solving Eq. (2.10) for state points in

the phase diagram where the crystal is the equilibrium phase yields a density

profile that exhibits a regular array of peaks. From this density profile, quantities

such as the crystal lattice spacing ` can be determined.

The functional Ω[ρ] is highly nonlinear, and quantities characterising the crys-

tal, such as `, depend on all terms in the functional. In contrast, quantities such

as the static structure factor S(k) Eq. (2.27) of the liquid only depend on the

linear response of the liquid and so only depend on the terms in Ω[ρ] that are

quadratic in the density fluctuation ρ̃ ≡ ρ− ρ0. Related to the static structure fac-

tor is the Fourier transform of the linear density response function χ(r− r′), viz.,

χ̂(k) = −(ρ0/kBT )S(k), that relates the change in the density δρ(r) to a change

δVext(r) in the external potential [1]:

δρ(r) = −
∫
dr′χ(r, r′)δVext(r

′). (4.30)

This formula applies for both uniform and non-uniform fluids; in particular, in

the case of a uniform fluid with density ρ0 and Vext = 0 perturbed by a small

amplitude external potential δVext(r), Eq. (4.30) determines the resulting change
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in the density profile: δρ ≡ ρ− ρ0 = ρ̃.1

The main point of the above comments is to emphasise that quantities per-

taining to the crystal, such as `, depend on all terms in Ω[ρ], but quantities such

as S(k) and the dispersion relation ω(k) [52, 53, 28], only depend on the quadratic

terms in ρ̃. We emphasise this point because when a uniform liquid is deeply

quenched, the length scales of the density modulations that initially grow after

the quench are determined by ω(k) and so only depend on the quadratic terms

in ρ̃. In particular, the principal peak in the dispersion relation ω(k) determines

the wavenumber of the density fluctuation that grows the fastest. The fact that

this wavenumber is determined by a quantity that only depends on the quadratic

terms in ρ̃ shows that these fastest growing modes need not have the equilibrium

wavenumber 2π/`, i.e. they do not necessarily generate the correct density modu-

lations for a perfect equilibrium crystal. From these considerations, one can infer

that a deeply quenched liquid may well produce a disordered solid, because the

length scale of the fastest growing modes is not in general equal to `. This ar-

gument does not address whether, as solidification proceeds, the system can re-

arrange and subsequently anneal all the defects generated in the initial stages of

the solidification process to produce a perfect crystal. Nonetheless, the observa-

tion that the initial dynamics after the quench do not in general produce density

fluctuations of the correct length scale is an important observation.

1The result in Eq. (4.30) also applies to non-uniform liquids, i.e. to liquids initially at equilib-
rium with a density profile ρold(r) in an external potential Vold(r), disturbed by an infinitesimal
change to the external potential, Vold(r) → Vnew(r). The resulting change in the density profile
δρ(r) ≡ ρnew(r)− ρold(r) is then also given by Eq. (4.30), where δVext(r) ≡ Vnew(r)− Vold(r).
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Chapter 5

Solidification fronts in one

component system

5.1 The GEM-4 system

In this chapter we show results we have obtained for solidification fronts in the

GEM-4 system. As discussed in section 2.6, the theodynamic coexistence, at the

temperature T = Tcoex and the chemical potential µ = µcoex, a front between the

crystal and the liquid state is stationary. However, on decreasing the temperature

below T = Tcoex (or increasing µ above µ = µcoex), the liquid state is no longer

the equilibrium state. For a shallow quench, the liquid state remains linearly sta-

ble but a crystal can still grow if it is nucleated: only a crystal seed that is larger

than the critical size grows and the interface (front) between the two phases ad-

vances at a well-defined speed cnl determined by nonlinear processes [28, 63].

This (pushed) front propagation for the GEM-4 model is described now (see also

[28]). At T = Tcoex, the front speed cnl = 0; as the temperature T decreases below

Tcoex the speed cnl increases with increasing quench depth |T−Tcoex|. If the quench

is to a temperature T < Tsp, where Tsp is the temperature determined by Eq. (3.20)

at which the uniform liquid becomes linearly unstable (i.e. the spinodal), then

front propagation via linear processes is possible, with the speed c determined

by the marginal stability analysis described in section 4.3. However, as can be

seen from Eqs. (4.26), (4.27) and (4.28), c = 0 at T = Tsp since ωm = 0 at Tsp. As
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the temperature is decreased below Tsp, c increases but remains less than cnl for

small |T − Tsp|. In this regime the front remains a pushed front even though the

liquid is already unstable [28, 63, 64]. However, the speed c increases faster than

cnl with decreasing T resulting in a crossover in speeds at temperature T = Tx,

where Tx < Tsp < Tcoex. At Tx, the two speeds are equal, c = cnl, but for a suffi-

ciently deep quench c > cnl, and for these temperatures (T < Tx) it is the linear

process that determines how the crystal state advances into the unstable liquid

[28, 63, 64]. The variation of the speed of the crystallisation front with increasing

chemical potential µ (at fixed temperature) is analogous to that described above

for decreasing temperature (at fixed chemical potential). The metastable uniform

liquid becomes linearly unstable at µsp > µcoex and for µ > µsp front propagation

via linear processes is possible. However, it is only when µ > µx > µsp that linear

processes govern the propagation of the front and the front speed is determined

by the marginal stability result. In Fig. 5.1 (see also Fig. 4 of Ref. [28]) we show for

a GEM-4 fluid with temperature kBT/ε = 1 that for βµ > βµx ≈ 21 the front speed

obtained from solving the DDFT equations numerically in 2D does indeed agree

precisely with the speed c predicted by the marginal stability analysis. Figure 5.2

(see also Fig. 6 of Ref. [28]) compares the wavenumber k∗ deposited behind a front

generated by a deep quench (µ > µx, equivalently T < Tx) with the wavenumber

keq corresponding to the equilibrium crystal lattice spacing. Our aim below is to

explore the consequences of the dramatic difference between k∗ and keq revealed

in the figure for the subsequent evolution of the solid phase, and to demonstrate

that it is responsible for the inevitable presence of defects and disorder.
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FIGURE 5.1: The front speed c as a function of the chemical potential
µ for the GEM-4 fluid with temperature kBT/ε = 1. The solid line
is the result of the marginal stability calculation while the symbols
connected with a dashed line summarise the results from numerical

simulations of the 2D DDFT equations.
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FIGURE 5.2: The wavenumber kr of the density modulation se-
lected by the moving front, the wavenumber k∗ deposited behind
the front (both calculated from the marginal stability condition), and
the wavenumber keq of the equilibrium crystal. The difference be-
tween k∗ and keq implies that rearrangements behind the front are

inevitable as the system seeks to minimise its free energy.
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5.2 Solidification front speed
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FIGURE 5.3: (Color online) Density profile across a solidification
front advancing from left to right into an unstable GEM-4 liquid
with bulk density ρR2 = 8 and temperature kBT/ε = 1, calculated
from DDFT. The top panel shows the full 2D density profile ρ(x, y)
while the panel below shows the 1D density profile ρ(x) obtained
by averaging over the y-direction, perpendicular to the front. The
bottom panel shows ln(|ρ(x) − ρb|R2) in order to reveal the small

amplitude oscillations at the leading edge of the advancing front.

Using Eqs (4.17-4.19) we are able to calculate properties of a solidification

front, as shown in section 4.3. We show the results of these calculations in Fig. 5.2.

The speed calculated from this approach for the one-component GEM-4 model is

displayed as the solid red line in Fig. 5.1 as a function of the density of the unsta-

ble liquid and in Fig. 5.2 as a function of the chemical potential µ, both for βε = 1.

We also display the front speed calculated numerically using DDFT in 2D. Fig-

ure 5.3 shows typical 2D and 1D density profiles used for determining the front

speed c. The figure shows that the invasion of the metastable liquid state in fact

occurs via a pair of fronts, the first of which describes the invasion of the liquid

state by an unstable pattern of stripes, while the second describes the invasion of

the unstable stripe pattern by a stable hexagonal state. By “stripes” we mean a
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density profile with oscillations perpendicular to the front, but no density modu-

lations parallel to the front. This double front structure complicates considerably

the description of the invasion process in 2D – see Appendix in Ref. [28]. Figure

5.1 shows measurements of the speed of propagation of the hexagons-to-stripes

front, obtained by comparing profiles like that in Fig. 5.3 (top) at two successive

times and determining the speed of advance of the hexagonal state when it first

emerges from the unstable stripe state. The speed of the stripe pattern is harder

to measure since the pattern is itself unstable and so never reaches a substantial

amplitude. For this reason we measure the speed of the stripe-to-liquid front

from plots of the logarithm of the density fluctuations Fig. 5.3 (bottom) which

emphasizes the spatial growth of the smallest fluctuations at the leading edge of

the front.

For βε = 1 the uniform liquid is linearly stable for βµ . 19.6 and unstable for

βµ & 19.6. The marginal stability prediction, obtained by solving Eqs. (4.17) and

(4.18), predicts that the 1D speed increases with βµ (or with increasing density

ρ) in a square-root manner, as indicated by the solid red line in Fig. 5.1. Since

the theory is 1D this prediction applies to the invasion of the liquid state by the

stripe pattern. Despite this we find that the prediction correctly describes the

speed of the hexagons-to-stripes front for βµ & 21.5 (i.e. for ρR2 & 7), as mea-

sured in numerical simulations of the DDFT for the GEM-4 fluid, suggesting that

the two fronts are locked together and that the front speed is selected by lin-

ear processes at the stripe-to-liquid transition, i.e., the resulting double front is

a pulled front [65]. For smaller values of βµ the speed of the hexagonal state de-

parts substantially from the marginal stability prediction and the stripe section is

swallowed by the faster moving hexagons-to-liquid front. Indeed, for βµ . 19.6

(i.e. for ρR2 . 6.38) the stripe state is absent altogether, as can be verified by

performing a parallel study in one spatial dimension. The bifurcation to stripes

is therefore supercritical. The hexagons-to-liquid front present in the metastable

regime below the onset of linear instability of the liquid state is stationary at the
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Maxwell point at βµ ≈ 17.0, corresponding to the location of thermodynamic co-

existence between the liquid and hexagonal states. For βµ > 17.0 the hexagonal

state advances into the liquid phase (the opposite occurs for βµ < 17.0) and the

hexagons-to-liquid front is pushed [65]: in this regime the front propagates via a

nonlinear process since the liquid phase is linearly stable. The situation is more

subtle when plotted as a function of the liquid density ρR2: when the liquid den-

sity takes a value in the interval 5.48 . ρR2 . 5.73, i.e., between the densities of

the liquid and crystalline states at coexistence, one cannot define a unique front

speed. In this regime any front between these two states will slow down and,

in any finite domain, eventually come to a halt. This occurs because the density

ρ0 of the liquid state into which the front moves is less than the density ρs of the

crystal at coexistence but larger than the density ρl of the liquid at coexistence. In

this situation, the moving ‘front’ has a substructure consisting of two transitions:

one from ρs to a depletion zone of a density close to ρl and another one from the

depletion zone to the initial ρ0. As the depletion zone widens in time and limits

the diffusion from the region of density ρ0 to the crystalline zone of density ρs

the front slows down. In a finite system, the depletion zone moves and extends

until it reaches the boundary and the system equilibrates in a state partitioned be-

tween a liquid with density ρl and crystal with density ρs with a stationary front

between them. For a PFC model the role of the depletion zone in crystal growth

is discussed in Ref. [66].

The speed of the hexagons-to-liquid front in the regime 17.0 . βµ . 19.6

is determined uniquely (see Appendix in Ref. [28]). Refs. [63] and [67] predict

that this is no longer the case for βµ & 19.6, but in practice we find that the

front has a well-defined speed, possibly as a result of pinning of the stripes-to-

liquid front to the stripes behind it, and of the hexagons-to-stripes front to the

heterogeneity on either side. Both effects are absent from the amplitude equation

formulation employed in Refs. [63] and [67]. Moreover, when the hexagon speed

reaches the speed predicted by the marginal stability theory for the stripe state,

the two fronts appear to lock and thereafter move together. In the theory based
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on amplitude equations summarized in the Appendix in Ref. [28], the interval of

stripes between the two fronts appears to have a unique width, depending on

βµ, a prediction that is consistent with our DDFT results. We have not observed

the “unlocking” of the hexagons-to-stripes front from the stripes-to-liquid front

noted in Ref. [63] at yet larger values of βµ. Possible reasons for this are discussed

in the Appendix of Ref. [28].
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5.3 Consequences of wave number selection for the

structure formed

It is clear, therefore, that the 1D analysis based on Eqs. (4.17) and (4.18) allows us

to calculate the front speed when the unstable liquid is quenched deeply enough

so that fronts propagate via linear processes. In addition to the front speed c this

analysis gives kr, the wave number of the growing perturbation at the leading

edge of the front and kim, which defines the spatial decay length of the density

oscillations in the forward direction. Within the 1D description the pattern left

behind by the front is a large amplitude periodic state with wave number k∗,

say. When no phase slips take place, this wave number is given by Eq. (4.19). The

wave number k∗ differs in general from kr. Moreover, as demonstrated in Ref. [53]

and confirmed in Fig. 5.2 for a GEM-4 crystal with temperature βε = 1, the wave-

length 2π/k∗ of the density modulation that is created by the passage of the front

can be very different from the scale 2π/keq of the minimum free energy crystal

structure which corresponds here to hexagonal coordination. The propagation of

the solidification front therefore produces a frustrated structure that leads to the

formation of defects and disorder in the crystal. Thus, we identify two sources of

frustration: the wave number mismatch and the competition between the stripe

state deposited by the advancing front and its subsequent transformation into

a 2D hexagonal structure with a different equilibrium wavelength. Both effects

generate disorder behind the advancing front and significant rearrangements in

the structure of the modulation pattern occur as the system attempts to lower

its free energy via a succession of local changes in the wavelength of the density

modulation [53].

This ageing process can be rather slow [53]. We illustrate its properties in

Figs. 5.4 - 5.5. Figure 5.4 displays the density profile in a part of the domain as

computed from DDFT, and confirms the presence of substantial disorder in the
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FIGURE 5.4: (Color online) Density profiles obtained from DDFT
for an unstable GEM-4 fluid with bulk density ρ0R

2 = 8. To fa-
cilitate clear portrayal of the front structure we plot the quantity
ln(R2|ρ(r) − ρ0|). Solidification is initiated along the vertical line
x = 0 at time t∗ = 0. This produces two solidification fronts, one
moving to the left, the other to the right, moving away from the line
x = 0. The upper profile is for the time t∗ = 1 and the lower for
t∗ = 1.4. We see significant disorder as the front creates density
modulations that are not commensurate with the equilibrium crys-

tal structure.
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FIGURE 5.5: (cf. Fig. 5.4) computed from the triangles of a Delauney
triangulation on the density peaks of the profile from DDFT (left

panel: t∗ = 2.2, right panel: t∗ = 4.4).

crystalline structure close behind the advancing solidification front. There are ac-

tually two fronts in the profiles displayed in Fig. 5.4, moving to the left and to

the right away from the vertical line x = 0, where the fronts are initiated at time

t = 0. Although there is substantial disorder close behind the front, further back

the crystal has had time to rearrange itself into its equilibrium structure, thereby

reducing the free energy. Overall, the process is similar to that observed in the
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FIGURE 5.6: (Color online) Top panel: the angle distribution p(θ) at
times t∗ = 2.2, 3.2 and 4.4 after the initiation of a solidification front

for a GEM-4 fluid with bulk density ρ0R
2 = 8.

PFC model [53]. We quantify the rearrangement process using Delauney triangu-

lation [68], as shown in Fig. 5.5. Figure 5.6 displays the bond angle distribution

p(θ) obtained from Delauney triangulation on the peaks of the density profile at

various times after the solidification front was initiated. The distribution p(θ) has

a single peak centered near 60◦, which is not surprising since the triangulation

on a hexagonal crystal structure yields equilateral triangles. The initial structure

has a significant number of (penta-hepta) defects. Over time, the number of these

defects gradually decreases, as shown by the fact that the width of the peak in

p(θ) decreases over time, but the defects never completely disappear. These re-

sults show that the one-component GEM-4 system is able to rearrange itself after

solidification to form a reasonably well-ordered polycrystalline structure, albeit

with defects, but with the equilibrium scale 2π/keq present throughout the do-

main.
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Chapter 6

Solidification in binary systems

6.1 DDFT for binary systems

In this chapter we consider a binary mixture and the effect of having two types of

molecules - i.e. two length scales in the system. As discussed above – in particular

in Sec. 4.4, the length scale chosen by the solidification front is not always the one

corresponding to the equilibrium length scale. This creates a disordered crystal

structure that must rearrange over time, toward the equilibrium crystal structure.

When we consider a binary mixture, the presence of the second species can lead

to a glassy disordered structure, i.e. one which is a solid structure with density

peaks, but does not have the long range order of the crystal. We also observe how

changing the concentrations of the two species of molecules affects the structure

of the system. The equations we use for the binary system are similar to the DDFT

equations introduced in section 3.1. The two-component generalization of DDFT

takes the form [69, 70]

∂ρi(r, t)

∂t
= Γi∇ ·

[
ρi(r, t)∇

δΩ[{ρi(r, t)}]
δρi(r, t)

]
, (6.1)

where ρi(r, t) are the time-dependent non-equilibrium fluid one-body density

profiles, where i = 1, 2 labels the two different species of particles.



62 Chapter 6. Solidification in binary systems

6.1.1 Stability of binary system

We now consider the stability properties of a uniform fluid binary mixture with

densities ρb1 and ρb2. We set the external potentials V i
ext = 0 and consider small

amplitude density modulations ρ̃i(r, t) = ρi(r, t)− ρbi about the bulk values. Sub-

stituting ρ̃i(r, t) into Eq. (6.1) and linearising, we get:

β

Γi

∂ρ̃i(r, t)

∂t
= ∇2ρ̃i(r, t)−

2∑
j=1

ρbi∇2[

∫
dr′c(2)

ij (|r− r′|)ρ̃j(r′, t)] +O(ρ̃2). (6.2)

Note that the above equations reduce to Eq. (3.14) if the desnity of one of the

species is set to zero. The quantities c(2)
ij are the pair direct correlation functions

between the different species i and j. If we now consider Eq. (6.2) in Fourier

space and ignore the terms of order ρ̃2 and higher, we have:

β

Γi

∂ρ̂i(k, t)

∂t
= −k2ρ̂i(k, t) + ρbi

2∑
j=1

k2 ĉij(k)ρ̂j(k, t), (6.3)

where ˆ denotes the Fourier transform. If we assume that the time dependence of

the Fourier modes follows ρ̂i(k, t) ∝ eω(k)t we obtain:

1ω(k)ρ̂ = M · Eρ̂, (6.4)

where ρ̂ ≡ (ρ̂1, ρ̂2) and the matrices M and E are given by

M =

−kBTΓ1ρ
b
1k

2 0

0 −kBTΓ2ρ
b
2k

2

 , (6.5)

E =


[

1
ρb1
− ĉ11(k)

]
−ĉ12(k)

−ĉ21(k)
[

1
ρb2
− ĉ22(k)

]
 . (6.6)

It follows that

ω(k) =
1

2
Tr(M · E)±

√
1

4
Tr(M · E)2 − |M · E|. (6.7)
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where |M · E| denotes the determinant of the matrix M · E. When ω(k) < 0 for

all wave numbers k, the system is linearly stable. If, however, ω(k) > 0 for any

wave number k then the uniform liquid is linearly unstable. Since M is a (nega-

tive definite) diagonal matrix its inverse M−1 exists for all nonzero densities and

temperatures, enabling us to write Eq. (6.4) as a generalised eigenvalue problem:

(E−M−1ω)ρ̂ = 0. (6.8)

As E is a symmetric matrix, all eigenvalues are real as one would expect for a re-

laxational system. It follows that the threshold for linear instability is determined

by |E| = 0, i.e., by the condition

D(k) ≡ [1− ρb1ĉ11(k)][1− ρb2ĉ22(k)]− ρb1ρb2ĉ2
12(k) = 0. (6.9)

6.1.2 Results for binary GEM-n mixtures

We use the GEM-n potential (section 1.1.1) generalised to a binary mixture as the

effective interaction between molecules. The pair potentials are:

vij(r) = εije
−(r/Rij)

n

. (6.10)

The parameter εij defines the energy for complete overlap of a pair of molecules of

species i and j andRij defines the range of interaction. In the following we obtain

results for various concentrations φ of the two species i and j, where φ = ρ1
ρ1+ρ2

,

and different total densities ρ = ρ1 + ρ2.

In Fig. 6.1 we display the linear instability threshold in the concentration φ ver-

sus total density ρ plane, for βεij = 1, for all i, j, R22/R11 = 1.5 and R12/R11 = 1.

For state points above the linear instability threshold line in Fig. 6.1 the uniform

fluid is unstable and the system freezes to form a periodic solid. This line is ob-

tained by tracing the locus defined by D(kc) = 0, where D(k) is given by Eq. (6.9)

and kc 6= 0 is the wave number at the minimum ofD(k) (i.e. d
dk
D(k = kc) = 0). The



64 Chapter 6. Solidification in binary systems

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

ρ
R

1
1

2

φ

FIGURE 6.1: The linear stability limit for a binary mixture of GEM-8
particles with βε = 1 and R22/R11 = 1.5 and R12/R11 = 1, plotted

in the total density ρ ≡ ρ1 + ρ2 vs concentration φ ≡ ρ1/ρ plane.

cusp in the linear instability threshold in Fig. 6.1 is a consequence of a crossover

from linear instability at one length scale to linear instability at a different length-

scale. At the cusp point, which is at ρR2
11 = 3.77 and φ = 0.708, the system is

marginally unstable at two length scales [49]. We now consider quenching the

uniform fluid to state points above the linear stability line in Fig. 6.1, and we

study the structures formed in the wake of a solidification front.

In Fig. 6.2 we can see results for φ = 0.5 – i.e. a 50:50 mix of the two species.

The plots in Fig. 6.2 are for two distinct times, one soon after a solidification front

has passed through the fluid (left) and one where the crystal structure has had

time to rearrange (right). These two crystal structures are displayed in three dif-

ferent ways. The top two panels are Voronoi diagrams (see section 3.3) – the

construction reveals the disorder created by the front. The hexagons and squares

correspond to two competing crystal structures. The middle panels show the

Delauney triangulation (see section 3.3) – domains of the hexagonal phase (equi-

lateral triangles) are highlighted in red, while the remainder, including the right-

angled triangles of the square phase, are shown in black. On the bottom panels in

Fig. 6.2 we display the density maxima in ρ(r). These are color-coded according
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to the nature of the local crystal structure around that point. The square crystal

regions are displayed as black circles, the hexagonal regions as red circles and the

density peaks with neither square nor hexagonal local coordination are plotted

as open circles. The criteria for deciding to which subset a given density peak

belongs is based on the Delauney triangulation: any given triangle with corner

angles θ1, θ2 and θ3 is defined as equilateral if |θi−θj| < 5◦ for all pairs i, j = 1, 2, 3.

The vertices of these triangles are colored black. Similarly, triangles are defined

as right-angled if for the largest angle θ1 we have |θ1 − 90◦| < 5◦ AND for the

other two angles |θ2 − θ3| < 5◦. The vertices of these triangles are colored red.

The remaining vertices which fall into neither of these categories are displayed as

open circles. We see that there are roughly equal-sized regions of both square and

hexagonal ordering. The typical size of these different regions increases with the

elapsed time after the solidification front has passed through the system. Like-

wise, the number of maxima that do not belong to either crystal structure (open

circles) decreases with elapsed time, as the system seeks to minimize its free en-

ergy. In Fig 6.3 we see how the change in the concentration φ effects the structure,

not only right after the solidification front has past, at t∗ = 1, but at a longer time

scales t∗ = 50 as well. When φ = 0.25 we see that the system prefers to form a

square structure, whereas when φ = 0.75 the system prefers the hexagonal struc-

ture. At φ = 0.5 the system forms both the square and hexagonal structure, with

portions of neither structure in between. To characterise and understand further

the rearrangements of the structure in further detail, we consider the bond angle

distributions over time.

For three different concentrations φ = 0.25, 0.5, 0.75 Fig. 6.4 through to Fig. 6.6

show the distribution function p(θ) for the different bond angles obtained from

Delauney triangulation, for three different times after the initiation of the solidi-

fication front. The distribution shown in Fig. 6.5 with φ = 0.5 has three maxima:

one near 45◦, another at 60◦ and the other near 90◦. The peak at 60◦ is the contri-

bution from the regions of hexagonal ordering (equilateral triangles) and the two
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peaks at 45◦ and 90◦ come from the regions of square ordering (right-angled trian-

gles in the Delauney triangulation). The peak at 45◦ is, of course, twice as high as

the peak at 90◦. We also observe that the peaks are much broader at short times,

t∗ = 1, 2, after the solidification front was initiated, than in the later structure from

time t∗ = 50. These results provide an indication of the degree of disorder and

number of defects in the system; the fact that the peaks become sharper over time

is a consequence of the fact that the amount of disorder in the system decreases

over time. Nonetheless, the peaks in p(θ) are still rather broad in the final state,

indicating that significant strain and disorder remain in the structure. This obser-

vation that broad peaks in the distribution function p(θ) indicates a higher level

of disorder is even more visible when we consider Fig 6.4 with φ = 0.25 i.e. where

the majority of particles are species two ρ2 > ρ1. We see at time t∗ = 1, 2 that the

peaks are very broad and at a later time t∗ = 50 the peaks have become sharper

and are localised around 45◦ and 90◦. These features indicate a large amount of

disorder just after the front has advanced through the fluid and after a rearrange-

ment period, the square structure is the preferred structure (see top right Fig 6.3).

In Fig. 6.6 where φ = 0.75 i.e. ρ1 > ρ2, we see a sharp peak at 60◦ indicating a dom-

inant hexagonal structure. This is not suprising if we compare Fig. 6.6 to Fig 5.5

which is the distribution for the single species model of the same particle. What

is particularly remarkable about these φ = 0.75 results is that the peak at 60◦ is

actually sharper at the early times (t∗ = 2) than at later times (t∗ = 50): over time

the peak broadens! This is due to the fact that in this case the solidification front

produces modulations with wavenumber k∗ that is close to the wavenumber for

the hexagonal crystal structure. However, these do not match exactly so that the

hexagonal crystal that is initially formed is strained. Over time, the system low-

ers the free energy by introducing defects which alleviate the strain. These defects

lead in turn to the broadening of the peak in p(θ) at 60◦.
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FIGURE 6.2: Analysis of the density peaks in the density profile in a
GEM-8 mixture with βεij = 1 for all i, j = 1, 2, R22/R11 = 1.5 and
R12/R11 = 1 and average total density ρR2

11 = 8 and concentration
φ = 0.5, formed by a solidification front initiated along the line x = 25
at time t = 0. The diagrams on the left correspond to time t∗ = 2,
shortly after the solidification front has exited the domain and before
the structure has had time to relax, while the diagrams on the right cor-
respond to time t∗ = 400, when the profiles no longer change in time
– the system has reached a minimum of the free energy. Top: Voronoi
diagrams – the construction reveals the disorder created by the front.
The hexagons and squares correspond to two competing crystal struc-
tures. Middle: Delauney triangulation – domains of the hexagonal
phase (equilateral triangles) are highlighted in red, while the remain-
der, including the right-angled triangles of the square phase, are shown
in black. Bottom: the density maxima are color-coded according to the
triangle type they belong to: right-angled triangles are black, equilat-
eral are red and scalene are open circles. Comparing the left and the
right diagrams, we see that over time there is an increase in the size of

the domains of the two different crystal structures.
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FIGURE 6.3: The peaks in the density profile formed by a solidification
front initiated along the line x = 25 at time t = 0. The system is a
GEM-8 mixture with βεij = 1 for all i, j = 1, 2, R22/R11 = 1.5 and
R12/R11 = 1 and average total density (ρ̄1 + ρ̄2)R2

11 ≡ ρ̄R2
11 = 8. The

top row are profiles from a mixture with concentration φ = 0.25, the
middle row with φ = 0.5 and the bottom row with φ = 0.75. In each
row the plot on the left is for an early time t∗ = 1, shortly after the
solidification front has exited the domain and before the structure has
had time to relax, while the middle profiles are at t∗ = 2 and the right
hand profiles are at a later time t∗ = 50. The density maxima are colour-
coded according what kind of triangle they belong to in a Delauney
triangulation: right-angled are black, equilateral are red and scalene
are open circles. Portions of the hexagonal crystal is red, whilst the

competing square crystal structure is black.
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FIGURE 6.4: Time evolution of the bond angle distribution function
from Delauney triangulation, corresponding to the top row of pro-

files in Fig. 6.3
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FIGURE 6.5: Time evolution of the bond angle distribution function
from Delauney triangulation, corresponding to the middle row of

profiles in Fig. 6.3
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FIGURE 6.6: Time evolution of the bond angle distribution function
from Delauney triangulation, corresponding to the bottom row of

profiles in Fig. 6.3
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6.2 Concluding remarks

In this chapter we have discussed a mechanism that results in the formation of

disordered structures, when a liquid is deeply quenched to temperatures where

the thermodynamic equilibrium state is a well-ordered crystal. This occurs be-

cause solidification fronts in deeply quenched liquids propagate via a mechanism

that generates periodic density modulations in the system with wavelength that

is not necessarily the same as the wavelength required for an equilibrium crystal.

The wavelength mismatch means that the formation of a well-ordered equilib-

rium crystal state requires significant rearrangements after the front has passed.

In monodisperse one-component systems, these rearrangements should gener-

ally be possible; this is certainly the case in the model fluid studied in chapter

4. However, for polydisperse systems or multi-component mixtures, such as the

binary mixtures studied here, these rearrangements are frustrated and in some

cases hindered by the fact that there is a variety of particle sizes in the system. We

should emphasise that the front propagation mechanism focused on in this chap-

ter operates only when the quench is sufficiently deep, to temperatures below the

crossover temperature Tx. Only for T < Tx do solidification fronts propagate via

the linear mechanism, with the speed v and wavenumber k∗ determined by linear

considerations. Above Tx the front speed is determined by nonlinear considera-

tions and in this regime the structure formed behind the front is generally much

better ordered.

The results presented in this section are for rather simple 2D model systems

composed of soft particles. Nevertheless, we believe that the mechanism that

we describe should be rather general, although much further work is required to

determine the nature of crystallisation fronts in other deeply quenched systems,

and in particular to determine whether one can reach the regime where the fronts

propagate via the linear mechanism that we describe. In other systems, it may be

the case that the speed c never overtakes cnl. For example, it is not known whether
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this regime is physically accessible for particles with a hard core; it may be that

this regime only arises at densities near or even beyond random close-packing.

We should also mention that the mechanism described here is not the only

means of introducing disorder as liquids solidify. Other mechanism include:

(i) Defects created by impurities. (ii) Different grains, with defects on the grain

boundaries, generated in the nucleation regime when growing crystals with dif-

ferent orientation nucleated at different points in the system collide. (iii) Defects

introduced by crystal growth under the influence of external forces or shear. (iv)

Disordered materials produced in shallow quenches where the growing crystal

forms dendritic type structures (diffusion limited growth), leading to the forma-

tion of crystal grains and defects.
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Chapter 7

Correlations in the liquid state of a

two–length scale model

7.1 BEL potential

In this chapter we study a two dimensional system of particles interacting via a

pair potential not considered previously in this thesis. We refer to this pair poten-

tial as the BEL potential, since it was introduced by Barkan, Engel and Lifshitz in

Ref. [71]. It combines a Gaussian envelope with a polynomial of order 8:

v(r) = εe−
1
2
σ2r2(1 + C2r

2 + C4r
4 + C6r

6 + C8r
8). (7.1)

As with the GEM-n systems, where the energy required for one particle to sit

directly on top of another is finite and is determined by the parameter ε, in the

BEL model the energy penalty for complete overlap is also determined by the

parameter ε. The parameter σ determines the diameter of the particles and the

coefficients Cn for n = 2, 4, 6 and 8 are constants. In Fourier space Eq. (7.1) be-

comes:

v̂(k) = εe−
k2

2σ2 (D0 +D2k
2 +D4k

4 +D6k
6 +D8k

8). (7.2)

It is because of this simple form that this potential is used – it gives a high level of

precision to control the shape and where minima occur in both real and Fourier
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space. This precision allows us to find solid phases that require very specific con-

ditions. One of the features of the BEL potential is that multiple length scales can

arise. This is a vital ingredient in the formation of Quasicrystals (QC) and the BEL

model does indeed form QC. They can be found in metals, colloidal systems and

soft matter systems, among others. Unlike crystals, which are regular ordered

arrangements of atoms or molecules with rotational and transitional symmetries,

QCs, discovered in 1982 [72], lack the periodic lattice structure [73]. The possi-

bility of designing soft-matter QCs that self assemble has generated considerable

interest. Due to their high degree of rotational symmetry such materials could

have useful applications owing to their novel optical properties [74, 75]. Some

important insights into the mechanisms for QC formation in soft matter were

gathered from understanding the mechanisms for the formation of quasipatterns

in Faraday wave experiments [76, 77]. A nice recent review drawing these con-

nections together is Ref. [78]. The insight of this work is that it is the coupling

of periodic modes with different length scales, that can give rise to QC. An im-

portant paper that helped make the connection to soft matter QC, was Ref. [79],

which generalised the Swift-Hohenberg equation (an equation akin to the phase

field crystal model in Chapter 4, but with a non-conserved dynamics) to include

two length scales. It is this interaction of modes at two length scales that we

observe using the BEL potential and describe in further detail below. While QC

structures can be stabilised under certain conditions, this does not necessarily

mean that QC structures correspond to the global minima of the free energy. In

fact, for the model studied in [73] it was shown that the QC is not the minimum

free energy state, but that nonetheless the QC forms for dynamical reasons.

Fig 7.1 shows the BEL potential for various values of C4 while C2, C6 and C8

remain constants – the values used are given in the caption of Fig. 7.1. The given

values of C2, C6 and C8, together with C4 = 0.439744 are the values proposed

by Barkan et. al. [71] because, as discussed below, this gives a system that is

marginally unstable at two particular wave numbers. By varying only C4 we get
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a potential that changes from having two minima to a potential with one mini-

mum. When C4 = 0.42 there are two minima, at r ≈ 1.5, 3.5, but when C4 = 0.55

there is only one minimum at r ≈ 1.2. The control over the shape of the po-

tential is important because its shape affects the length scales it produces. The

importance of these length scales is discussed below.
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FIGURE 7.1: The BEL potential in Eq. (7.1) where we show the ef-
fect of changing only C4 while the other parameters remain constant
with values: σ = 0.770746, C2 = −1.09456, C6 = −0.0492739 and

C8 = 0.00183183.
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FIGURE 7.2: Left: The Fourier transform of the BEL potential dis-
played in Fig 7.1 with C4 = 0.44. Right: The corresponding disper-
sion relation for when the fluid has density ρ0 = 1.3 and βε = 10.

The peaks in ω(k) are at k = k1 ≈ 1 and k = k2 ≈ 1.93.

In Fig. 7.2, we display the Fourier transform of the BEL potential (left). We see

that for this value of C4, the Fourier transform of the potential has two minima
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FIGURE 7.3: DDFT results for the time evolution of the density after
a quench with C4 = 0.44, ρ0 = 1.3 and βε = 10. We see 12 fold
Quasicrystal structure formation, although in the early stages, the
shorter length scale is more visible. The profiles are for the times
t∗ = 16 (top left), t∗ = 40 (top right), t∗ = 80 (bottom left) and

t∗ = 200 (bottom right).

at k1 ≈ 1 and k2 ≈ 1.93. On the right we display the dispersion relation ω(k),

defined in Eq. (3.17), for the uniform fluid with density ρ0 = 1.3. We see that at

this state point ω(k) has two maxima, at k1 ≈ 1 and k2 ≈ 1.93. Since the value

of ω(k) is positive for these two wave numbers, the fluid is linearly unstable, so

quenching the uniform fluid to this state point leads to solidification. The pres-

ence of two unstable wave numbers means that the system favours two distinct

length scales, 2π/k1 and 2π/k2. In Fig. 7.3 we show DDFT results [i.e. from solv-

ing Eq. (3.7)] for the time evolution of the density profile following a quench. The

t = 0 initial density profile is the uniform density plus a small amplitude random

value at each point in space. We observe the initial growth of both length scales,

as predicted by the dispersion relation. Note that since the peak in ω(k) at k2 is
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higher than the peak at k1, the density modulations with wave number k2 ini-

tially grow faster, as can be seen in the top left profile for t∗ = 16 in Fig. 7.3 where

the smaller length scale density modulations are more clear to see. However, the

subsequent non-linear evolution maintains both length scales to produce the QC

structure seen for t∗ = 200, which is the final equilibrium. The presence of these

two competing length scales and the ability to control their position in both real

and Fourier space is one of the main reasons this potential was created, as ex-

plained in [71]. In their paper, Barkan, Engel and Lifshitz find many different

crystal structures including regular hexagonal, stripe phase and QC’s.

7.1.1 Length scales

As discussed above in section 7.1, the length scales that arise from the pair po-

tential determine the structures formed during solidification, following a quench

of the uniform liquid. Initially, after the quench, the two different wavelength

density modes can grow. Subsequently, as the amplitudes grow, in the non-linear

regime it is possible for the density modes of varying wavelength to interact with

each other (i.e. become coupled), resulting in interesting non-uniform structures.

The structures created depend on how these density modes interact with each

other. QC formation is just one example of a structure that requires multiple

length scales.

The understanding of how modes at different wavenumbers couple was worked

out in Refs. [80, 79, 81, 82, 83, 84]. Following this initial work, there have been

several applications and extensions in the context of soft matter [71, 85, 86, 87, 88,

73, 76, 89]. The key ideas are as follows: By considering the dispersion relation

Eq. (3.17) we can determine the linear stability of a system, and its shape depends

on the pair potential. On the right hand side of Fig. (7.2) we see the dispersion

relation for the BEL potential, which is typical for these QC forming systems and

is unlike the dispersion relation in the GEM-n case because there are two maxima

i.e. two wave numbers k for which the liquid is linearly unstable. If we consider
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FIGURE 7.4: Plot showing wave vectors of density modes in the
(kx, ky) plane. The dispersion relation has two peaks, hence the
modes involved are in two rings: The inner ring is where |k| ≈ k1

and the outer ring where |k| ≈ k2. These are the wave numbers k of
the density modes that grow over time. All other wave numbers not
on or close to these rings decay. The blue and red vectors show the
initial two waves, the black vector shows the resultant wave created

by the interaction.

too, the time evolution – see Eq.(3.15) – we see that only wave numbers with

|k| ≈ k1, k2 will initially grow, which allows us to express the density perturba-

tions Eq. (3.17) as a sum over the leading order modes with wavenumbers k1 and

k2:

ρ̃(r, t) =
∞∑

j=1,|kj |=k1

ρ̃kje
ωteikj ·r +

∞∑
j=1,|kj |=k2

ρ̃kje
ωteikj ·r + ... (7.3)

where the initial (t = 0) amplitudes ρ̃kj are assumed to be small. In the subse-

quent non-linear evolution it is possible for these modes to combine. These wave

interactions creates a variety of different patterns and has a marked effect on the

density profiles.

When two waves interact with each other and create a third wave this is

known as a 3 wave interaction (3WI). For example, in the (kx,ky) plane displayed

in Fig. 7.4 we consider two outcomes of 3WIs. In one case two waves with small



7.1. BEL potential 79

wave numbers |k| ≈ k1 interact at a specific angle, and are able to create a wave

with |k| ≈ k2. The same is possible for two waves with larger wave number

|k| ≈ k2 which can combine to create a wave with |k| ≈ k1. In the cases in Fig. 7.4

we see an example of two ‘inner’ (short) wave vectors, the red and blue vectors of

length k1, summing (i.e. interacting) to produce a third wave (black) with wave

number k2. We also see a red and a blue ‘outer’ (long) wave vectors summing

to form an inner mode. QC arise when the non-linear interactions reinforce the

coupling between modes. It also requires the 3WIs to close - by this we mean that

the set of modes that are involved is finite. As illustrated in Fig. 7.4, we see two

inner modes coupling to create a mode on the outer circle and two outer modes

coupling to create an inner. In general, this process of creating new modes can

go on indefinitely. However, when the ratio of the radii of the inner and outer

circles are particular values, then this process ends – i.e. one can find only a finite

set of wave vectors. When k1/k2 = 2 cos(75◦) = 0.5176, then one finds a closed

set of 12 equally spaced vectors on the outer circle together with 12 others on the

inner circle [84]. These modes couple to reinforce on another and create a struc-

ture with 12-fold symmetry, a dodecagon. One cannot tile the plane with such a

shape, i.e. one can not form a regular crystal from a unit cell with this symme-

try. Instead, the system forms a QC. For more information on QC formation see

[71, 80, 79, 81, 82, 83, 84, 85, 86, 87, 88, 73, 76, 89] and references therein.
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7.2 Liquid state correlations

Having discussed how multiple length scales can create various solid structures

including QC’s, we now focus on the effect these length scales have on the liquid

state structure. Knowing the structure of the (linearly stable) equilibrium liquid,

is important for determining the thermodynamics of the system and gives in-

sight when considering how and why a liquid freezes. As in Section 2.4, we use

both the test particle method together with the RPA-DFT, Eq. (2.24), and also the

HNC approximation in the Ornstein Zernike equation (2.33) to calculate the ra-

dial distribution function g(r). Three examples, for C4 = 0.42 and bulk densities

ρ0 = 0.1, 0.5 and 1.0 are displayed in Fig. 7.5 and for C4 = 0.43 and the same three

densities in Fig. 7.6. If we compare Figs 7.5–7.6 to Fig 2.4 we can see the influ-

ence of the two length scales on g(r). If we consider the higher density plots in

Figs. 7.5–7.6 we see a split second peak emerging at about ρ0 ≈ 1. This is usually

attributed to freezing [90]. However, in the present case the state points where

this occurs are far in the phase diagram from where freezing occurs (and even fur-

ther from where the linear instability line is located) and therefore the split peak

can not be related to freezing. Here, the split peak come from the multiple length

scales in the pair potential. Also note that the agreement between the HNC ap-

proximation and the RPA-DFT is rather good, despite the highly complex liquid

structure. Since for such soft core systems the HNC is generally highly accurate

[7] the good agreement gives confidence that the RPA-DFT is accurate, so in the

remainder this is the theory that we use.

Important insight into the length–scales that dominate the correlations in the

liquid state can be obtained by studying the asymptotic r → ∞ decay of g(r), or

equivalently of h(r) (recall h(r) = g(r) − 1, see Sec. 2.3 for more details). Some

early work on the asymptotic decay of correlation functions was that of Fisher

and Widom [91], who considered a one dimensional system with only nearest

neighbour interactions. They found that at a certain line in the phase diagram
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FIGURE 7.5: The radial distribution function g(r), for C4 = 0.42,
βε = 10 and for the densities ρ0 = 0.1, 0.5 and 1. We see good
agreement between the HNC and the RPA-DFT test particle results.
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FIGURE 7.6: The radial distribution function g(r), for C4 = 0.43,
βε = 10 and for the densities ρ0 = 0.1, 0.5 and 1. We see good
agreement between the HNC and the RPA-DFT test particle results.
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(the Fisher-Widom line), the r →∞ asymptotic decay of h(r) changes from mono-

tonic and oscillatory decay [91]. This crossover can be understood by studying

the poles in the complex plane of a certain contour integral which we discuss

later in this chapter. The full theory of the asmptotic decay of h(r) was worked

out later by Evans et al. [92, 93]. In the BEL model, we do not observe a Fisher-

Widom line. However, we do observe a crossover from oscillatory decay with

one wavelength, to oscillatory decay with a different wavelength. This has been

observed once perviously for a system that forms clusters, where one of the oscil-

latory wavelengths is from the packing of the particles and the other is from the

cluster-cluster correlations [94]. What we observe here is different: both wave-

lengths are inter-particle length scales. These are the two length-scales required

for QC formation. In the following section we review the theory of the asymptotic

decay of h(r) for 3D fluids, before generalising to 2D, the case of interest here, in

order to understand the decay of g(r) for the BEL model liquid in more detail.
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7.3 Analysis of the asymptotic decay of h(r) in 3D

In the following we review the analysis of the asymptotic decay of h(r) for 3D flu-

ids, following the presentation in Ref. [93]. We then show how to extend the argu-

ments to a fluid in 2D. We begin by rearranging Eq. (2.28), the Ornstein-Zernike

equation in Fourier space, to obtain:

ĥ(k) =
ĉ(k)

1− ρ0ĉ(k)
. (7.4)

This gives us an expression for the total correlation function in Fourier space ĥ(k),

in terms of the Fourier transform of the pair direct correlation function ĉ(k). We

seek an expression for h(r) in real space, and in particular the asymptotic decay

form for r → ∞. Taking the inverse Fourier transform and noting that ĥ(k) is

even, it follows from Eq. (7.4) that [93]:

h(r) =
1

2π2

∫ ∞
0

dk
[
k sin(kr)ĥ(k)

]
=

1

4π2i

∫ ∞
−∞

dk

[
keikrĉ(k)

1− ρ0ĉ(k)

] (7.5)

The integral in Eq. (7.5) can be evaluated by performing a contour integral

in the complex plane. The contour used is illustrated in Fig. 7.7. It consists of

the semi-circle in the upper half of the complex plane and it gives the required

integral in the limit of the radius of the circle R → ∞, since the integral along

the arc of the circle contributes zero to the contour integration in this limit. Using

the residue theorem we can therefore transform the integral in Eq. (7.5) into a

sum of residues of poles in the upper half of the complex plane. The poles of the

integrand of the right hand side of Eq. (7.5) can be found by finding the zeros of

the denominator. The poles occur at complex k = q = α1 + iα0 satisfying:

1− ρ0ĉ(q) = 0. (7.6)
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Im(k)

Re(k)R-R

FIGURE 7.7: The contour integral in the complex-k plane used to
evaluate the integral in Eq. (7.5). The points indicate the typical lo-

cation of poles.

For many systems there are two kinds of solution to Eq. (7.6): there can be purely

imaginary poles, lying on the imaginary axis having α1 = 0, α0 6= 0. As we show

below, this leads to purely exponential asymptotic decay of h(r) [93]. The poles

can also be complex, where they occur as a pair q = ±α1 + iα0, with α1 6= 0

and α0 6= 0. These lead to oscillatory decay in h(r) [93, 95]. In general, there are

infinitely many poles. However, it is the pole(s) with the smallest imaginary part

α0 that determines the asymptotic decay of h(r) as r →∞.

This switching between purely exponential decay and oscillatory decay dom-

inating for r → ∞ marks the Fisher-Widom line since the value of α1, α0 is de-

termined by the location in the phase diagram. In the case of the BEL potential,

all the poles lie off the imaginary axis and so give rise to exponentially damped

oscillatory decay. In 3D the poles can be found by solving the following pair of

equations [93]:

1 = 4πρ0

∫ ∞
0

dr

[
r2c(r)

sinh(α0r)

α0r
cos(α1r)

]
(7.7)

and

1 = 4πρ0

∫ ∞
0

dr

[
r2c(r) cosh(α0r)

sin(α1r)

α1r

]
, (7.8)
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which follow by equating the real and imaginary parts in Eq. (7.6). Once the poles

have been found we can sum over the residues to obtain:

rh(r) =
1

2π

∑
n

eiqnrRn, (7.9)

where qn is the nth pole and Rn is the residue of qnĉ(k)
1−ρ0ĉ(k)

at k = qn. Thus we see

from Eq. (7.9) that for r → ∞ the largest contribution comes from the pole with

smallest imaginary part α0. When the pole with the smallest imaginary part is

purely imaginary then one finds the following monotonic asymptotic decay form

h(r) ∼ A

r
e−α0r, (7.10)

for r → ∞, where the amplitude A = −iα0/2πρ
2ĉ′(iα0) [93]. On the other hand,

when it is a pair of complex poles at q = ±α1 + iα0 that are the poles with the

smallest α0, then the residues sum together to give the following asymptotic de-

cay form for h(r):

h(r) ∼ 2|A|
r
e−α0r cos(α1r − θ), (7.11)

where α1 > 0 is the magnitude of the real part of the pair of poles and the ampli-

tude A and the phase θ can be obtained from Rn and are given in Ref. [93].
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7.4 Asymptotic decay in a 2D fluid

We now consider the same scenario but for a 2D system. The Fourier transform

f̂(k) of a function f(r) in 2D is defined as:

f̂(k) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−ik·rf(r). (7.12)

Note that we have assumed that f(r) = f(r) is a circularly symmetric function

that only depends on the magnitude |r| = r. Now consider Eq (7.12) in polar

coordinates:

f̂(k) =

∫ ∞
0

dr

∫ 2π

0

dθ re−ik·rf(r). (7.13)

We recall that J0(kr) =
∫ 2π

0
dθe−ik·r is the the zeroth Bessel function of the first

kind. The angular integral can be evaluated to give the zero-order Hankel trans-

form, also known as the Fourier-Bessel transform:

f̂(k) =

∫ ∞
0

dr rJ0(kr)f(r). (7.14)

The inverse transform is:

f(r) =
1

2π

∫ ∞
0

dk kJ0(kr)f̂(k). (7.15)

Thus, from Eqs. (7.4) and (7.15) we get:

h(r) =
1

2π

∫ ∞
0

dk

[
kJ0(kr)

ĉ(k)

1− ρ0ĉ(k)

]
. (7.16)

The integrand of Eq. (7.16) is odd, so we can not immediately extend the limits

and use the contour in Fig. 7.7 as we did to evaluate the integral in Eq. (7.5). To
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proceed we first recall the following asymptotic expansion for the Bessel function

J0(kr) =

√
2

πkr
sin
(
kr +

π

4

)
+O

(
1

r
3
2

)
=

√
2

πkr
<
[
−iei(kr+π

4
)
]

+O
(

1

r
3
2

)
=

1√
πkr
<
[
(1− i)eikr

]
+O

(
1

r
3
2

)
,

where <[z] denotes the real part of the complex number z. Substituting the above

into Eq. (7.16) we get:

h(r) =
1

2(π3r)
1
2

<
[
(1− i)

∫ ∞
0

dk k
1
2 eikr

ĉ(k)

1− ρ0ĉ(k)

]
+O

(
1

r
3
2

)
. (7.17)

We want to know the form of the asymptotic decay of the correlation function

h(r) for r →∞. Thus, we seek to evaluate the integral

I =

∫ ∞
0

dk k
1
2 eikr

ĉ(k)

1− ρ0ĉ(k)
. (7.18)

To do this, we make the substitution k = χ2. This gives dk = 2χdχ and therefore

I = 2

∫ ∞
0

dχχ2eiχ
2r ĉ(χ2)

1− ρ0ĉ(χ2)
. (7.19)

Since the argument of the above integral is an even function of χ we can change

the limits and evaluate the integral as follows:

I =

∫ ∞
−∞

dχχ2eiχ
2r ĉ(χ2)

1− ρ0ĉ(χ2)
. (7.20)

We have now transformed the integral into a form that can be done in a manner

that is analogous to the case in 3D, i.e. along the contour in Fig. 7.7, which is a

semicircular contour in the upper half of the complex plane. Thus, the integral I

can be evaluated as a sum over residues of poles in the upper half of the complex

plane.
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The poles of the integrand on the right hand side of Eq. (7.20) can be found

by finding the zeros of the denominator, i.e. from Eq. (7.6) with χ2 = q. Again, it

is the pole(s) with the smallest imaginary part α0 that determine the asymptotic

decay form. If the pole is purely imaginary, and assuming it is a simple pole, then

the asymptotic decay form for the 2D fluid is [c.f. Eq. (7.10)]

h(r) ∼ A√
r
e−α0r, (7.21)

for r → ∞. On the other hand, when it is a pair of complex poles α = ±α1 + iα0

that are the poles with the smallest α0, then assuming they are simple poles we

obtain the following asymptotic decay form for h(r) [c.f. Eq. (7.11)]:

h(r) ∼ A√
r
e−α0r cos(α1r − θ). (7.22)

In the BEL model all the poles are complex, so it is the asymptotic decay form in

Eq. (7.22) that is relevant. As discussed in Sec. 7.1 modes with two distinct wave

numbers interact to form QC structures. We show below that these two distinct

wavelengths correspond to two distinct pairs of complex poles α(1) = ±α(1)
1 +iα

(1)
0

and α(2) = ±α(2)
1 + iα

(2)
0 with different α1’s, i.e. α(1)

1 6= α
(2)
1 , but with similar values

of α0, i.e. α(1)
0 ≈ α

(2)
0 so that they both contribute to the asymptotic decay of h(r).

When α
(1)
1

α
(2)
1

= k1
k2

= 0.5176, i.e. the ratio discussed in Sec. 7.1.1, then we have the

signature in the liquid state h(r) of a system that forms QC in the solid state.

To calculate the position of the poles we solve numerically using a Newton

Raphson method. This involves finding the solutions to the simultaneous equa-

tions <[1− ρ0ĉ(α)] = 0 and =[1− ρ0ĉ(α)] = 0 with α = α1 + iα0. A selection of the

lowest lying poles – those with smallest α0 – are displayed in Fig. 7.8, for various

different state points.
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FIGURE 7.8: In the first two rows we display the lowest lying poles
in the complex plane for various state points: (a)–(d) are are all for
C4 = 0.42 and for various densities: (a) ρ0 = 0.1, (b) ρ0 = 0.25, (c)
ρ0 = 0.65 and (d) ρ0 = 2. (e)–(h) are all for the density ρ0 = 0.744 and
for various values of C4: (e) C4 = 0.42, (f) C4 = 0.43, (g) C4 = 0.435
and (h) C4 = 0.44. At the bottom is the phase diagram in the density
ρ0 versus C4 plane, showing the location of state points (a)-(f) and
also the linear instability line (red) where the uniform fluid becomes
linearly unstable and the dashed line is where the two leading order
pairs of poles have the same value of α0, i.e. the same decay range.
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In Fig. 7.8 we see a selection of results showing how the pole structure changes

as we vary C4 and the density ρ0. In the figure at the bottom is the phase diagram

showing the linear instability line (red solid line) which is the line along which

the uniform fluid becomes linearly unstable. Thus, the solid phase(s) are the equi-

librium states of the system to the right of this line and also someway to the left

of this line too. The overall shape of the phase diagram is very similar to that of

the system studied in Refs. [44, 76], where the parameter C4 plays a role similar

to the parameter a in these works, i.e. a is the height of a shoulder in the pair

potential. To the left of the red line in Fig. 7.8 the uniform liquid is linearly stable

and sufficiently far from the line it is the thermodynamic equilibrium state. The

plots of the poles in the α1 versus α0 plane in Fig. 7.8(a)–(h) show that as we move

around the phase diagram the poles change their locations. In order to discuss

Fig. 7.9, we must first define the following terms: ‘inner’ as the pair of poles clos-

est to the α0 axis and ‘outer’ as the next closest pair of poles to the α0 axis. If

we consider a horizontal line across Fig. 7.8 at C4 = 0.42, the poles along this line

vary as we increase the density. This can be seen in Fig. 7.9. The inset of Fig. 7.9

shows the change in α1 and the main plot shows the change in α0 as we increase

the density along the line C4 = 0.42. We observe in Fig. 7.9 a crossover between

the ‘inner’ and ‘outer’ poles at ρ0 ≈ 0.35. The effect that this crossover has on

the arrangement of the poles can be seen if we compare (b) and (c) in Fig. 7.8.

Fig. 7.8 (b) shows the ‘inner’ poles have the lowest value of α0, however Fig. 7.8

(c) shows the ‘outer’ poles have the lowest value of α0. We see that the ‘outer’

poles have a value of α1 that is almost double that of the ‘inner’ poles. This ob-

servation is important because if we consider Eq. (7.22), doubling the value of

α1, corresponds to halving the wavelength in the oscillatory decay of h(r). In

Figs. 7.10 and Fig. 7.11 we see plots of ln[
√
rh(r)] which highlights the asymptotic

decay of h(r). This shows the ‘Full function’ (calculated using the RPA-DFT test

particle method) and compares with the ‘Leading pole’ [Eq. (7.22)]. The plots in

Fig. 7.10 show the decay of h(r) for two low density points within the region in

Fig. 7.8, where the ‘inner’ poles have the lowest value of α0 and so dominate the
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FIGURE 7.9: Plot showing the change in the value of α0 for the ‘in-
ner’ (red) and the ‘outer’ (green) poles as we increase the density for

C4 = 0.42. Inset: Plot showing the corresponding value of α1.

asymptotic decay. The plots in Fig. 7.11 show the decay of h(r) for two points

within the region in Fig. 7.8, where the ‘outer’ poles have the lowest value of α0.

In comparing these two figures, we can clearly see the change in the wavelength

of the oscillations. The initial disagreement in Figs. 7.10-7.11 is expected at small

values of r since the results in Eqs. (7.21) and (7.22) are asymptotic r →∞ results.

In the 0 < r < 20 region we expect that contributions from the second and higher

order poles will also effect the shape of the decay. For r > 20 we have gener-

ally good agreement between the full numerical result and the asymptotic form

determined by the leading order poles.



92 Chapter 7. Correlations in the liquid state of a two–length scale model

-12

-10

-8

-6

-4

-2

0

0 5 10 15 20 25 30 35

ln
|√

rh
(r
)|

r

Full function
Leading pole

-14

-12

-10

-8

-6

-4

-2

0

2

0 5 10 15 20 25 30 35

ln
|√

rh
(r
)|

r

Full function
Leading pole

FIGURE 7.10: Plots of ln[
√
rh(r)] vs r which highlights the asymp-

totic decay of h(r). This is compared with the form from the leading
order pole in Eq. (7.22), from solving (7.6) and matching the ampli-
tude and phase in (7.22) by eye. These plots are both from a region
of the phase diagram Fig. 7.8 where the ‘inner’ pole is leading order.
The left hand plot has βε = 10, C4 = 0.42, ρ0 = 0.09 and leading
order pole with values α0 = 0.2528 and α1 = 0.8535. The right hand
plot has βε = 10, C4 = 0.44, ρ0 = 0.08 and leading order pole with

values α0 = 0.2424 and α1 = 0.9037.
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FIGURE 7.11: Plots of ln[
√
rh(r)] vs r which highlights the asymp-

totic decay of h(r). This is compared with the form from the leading
order pole in Eq. (7.22), from solving (7.6) and matching the ampli-
tude and phase in (7.22) by eye. These plots are from a region of the
phase diagram Fig. 7.8 where the ‘outside’ pole is leading order. The
left hand plot has βε = 10, C4 = 0.42, ρ0 = 0.5 and leading order
pole with values α0 = 0.0888 and α1 = 1.996. The right hand plot
has βε = 10, C4 = 0.42, ρ0 = 1 and leading order pole with values

α0 = 0.1440 and α1 = 1.993.
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7.5 Concluding remarks

In this chapter we have introduced the BEL potential (7.1) and reviewed why it

forms QCs and other crystalline structures. The formation of a QC with 12-fold

symmetry was demonstrated using DDFT, illustrating the effect that competing

length scales can have in the creation of crystalline structures. These competing

length scales are generated by the structured shape of the BEL potential, whose

form gives a high level of control and precision over the length scales that emerge.

The leading order density modes that correspond to these length scales interact

with one another, reenforcing specific wave numbers.

The main interest here is in the liquid state structure of the BEL model. We

have compared the RPA-DFT and the HNC approximations for the liquid state

structure. There is good agreement between the two theories even though the

BEL potential is highly structured. The theory for the asymptotic decay of h(r)

is well understood and extensively studied for fluids in 3D. We have briefly re-

viewed this theory (see also Ref. [93]) before then generalising these results for

fluids in 2D. Our analysis shows that in 2D, like in 3D, the asymptotic decay

r →∞ of h(r) is determined by the contribution from the pole(s) with the small-

est value of α0. Applying this theory to the BEL model shows that the asymptotic

decay of h(r) can vary significantly, depending on the state point in the phase

diagram. There are two pairs of poles that can dominate the asymptotic decay.

We find that moving from one point in the phase diagram to another can lead to

a crossover in the asymptotic decay form of h(r) from oscillatory decay with one

wavelength to oscillatory decay with a very different wavelength, that is almost

double. Plotting ln[
√
rh(r)] we see that there is good agreement between the full

function and the leading order pole approximation when r > 20.

The two length scales that define the wavelength of the oscillations in the

asymptotic decay of h(r) are important, because it is the interplay of these two

length scales that leads to QC formation. The line in the portion of the phase
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diagram where the liquid is the stable phase (dashed black line in Fig. 7.8), where

these two decay forms contribute equally, leads directly to the state point where

the system becomes marginally unstable at two length scales. This is also the

point in the phase diagram where QC occur. Thus, our results show that a good

strategy for finding state points where QC form is to examine the liquid state

correlations and to seek for where the asymptotic decay contribution with the two

characteristic length-scales with ratio approximately 1:1.93 have decay lengths

that are equal and then to follow the line in the phase diagram towards where

the solid phase occurs, keeping these two asymptotic decay contribution with

the same decay length. Doing that will lead to state points where QC formation

is likely.
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Chapter 8

Final Remarks

In this thesis we have studied the dynamics of freezing of systems of interact-

ing soft-core particles. The particular situation we have discussed in detail is the

process of solidification in the aftermath of a quench. Much attention was given

to the solidification via a front advancing into the unstable uniform liquid. We

have shown how the front speed and wave number for the density modulations

in the particle density distribution created by the front can be calculated. We

have demonstrated that the wavelength of these may not match the length scale

corresponding to the equilibrium crystal structure. This discrepancy between the

length scale dynamically chosen by the front and the equilibrium crystal length

scale (i.e. the lattice spacing), can lead to disorder in the crystalline structure that

is formed. However, there are other ways competing length scales can be gen-

erated within a system that are also discussed: (i) in a binary system, compet-

ing length scales arise from the different sizes of the particles and the different

competing crystal structures that the system can potentially form. (ii) In a system

where the particle interactions exhibit more than one length scale, such as the BEL

model studied in Chapter 7, there can also be more than one competing length

scale. This manifests in a dispersion relation, which can have more than one max-

ima and possibly more than one simultaneously unstable wave numbers. These

different length-scales can lead to disorder in the crystalline structures that are

formed and so they contain no long range order, even after the system has finally
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finished evolving to equilibrium, which, due to the disorder and complex under-

lying free energy landscape, can take a long time to equilibrate. In some of these

systems, and under very specific conditions QC’s can be created and stabilised.

Our detailed study of solidification fronts in two particular systems, the first

a single component system and the second, a binary mixture, shows consider-

able differences in the crystal structure left behind by the front. There are also

crucial differences in both the short time and the long time evolution that are

immediately apparent. The crystal structure of the one component system has

some defects present immediately after the passage of the front, but most of these

defects disappear shortly after the front has passed through the system. In con-

trast, in the binary model the defects created by the front do not disappear and

remain prevalent through out the crystal structure, even at long times. The de-

fects in both cases arise from the front selecting a length scale not equal to that

corresponding to the equilibrium crystal structure. However, unlike in the sin-

gle species system, the defects in the binary systems remain long after the front

has passed and often even indefinitely. This can be attributed to competing low

energy structures that arise from the differing sizes in the particles.

We have also considered the structure of the liquid phase of these soft-core

systems. We have used the ‘test particle’ method together with the RPA-DFT in

order to calculate the correlation functions for the liquid state. Comparing the

accuracy of the RPA-DFT with the HNC approximation to the OZ equation, we

find that the RPA-DFT is remarkably accurate, even at low density and also for the

more complicated and highly structured BEL potential. This shows that it is not

only the crystal structure of the frozen system which is affected by the competing

length scales. The competing lengths scales are also present in the liquid state

particle correlations. This can most clearly be seen when we perform an asymp-

totic analysis of the total correlation function h(r), to understand the decay for

r → ∞. In order to do this we had to generalise to 2D the approach known for

3D. Studying the BEL potential model, we observed a crossover in the asymptotic

decay from damped oscillatory with one wavelength to damped oscillatory with
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a different wavelength. This is the first observed example of structural crossover

in a one-component fluid that is not of the type observed in systems that form

clusters and exhibit micro-phase separation [94]. This study has provided good

insight for what features to look for in the liquid state correlations if the goal is to

find new systems that exhibit QC formation.

The results presented in this thesis for a variety of different systems of soft core

particles show that in contrast to what one might initially assume, namely that

such systems can not exhibit much structure due to the soft penetrable cores and

fairly weak interactions, in actual fact these systems of particles act collectively to

form highly correlated complex structures, including QC.
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Appendix A

Picard iteration

The Picard iterative process is a numerical method for solving the equations of

equilibrium DFT. The method is discribed in Ref. [22, 23]. The basic idea is as

follows. We take the Euler-Lagrange equation, for example Eq. (2.15):

ρ(r) = ρ0e
∫
dr′c(2)(r,r′)(ρ(r′)−ρ0)−βVext(r), (A.1)

where ρ0 is the bulk fluid density. We make an initial guess for the density profile

ρn=0(r), which we label with the index n. In some circumstances this might be the

ideal gas profile i.e.

ρn=0(r) = ρ0e
−βVext(r), (A.2)

or in other circumstances we choose ρn=0(r) = ρ0 + ρr(r), where ρr(r) is a small

amplitude random field with |ρr|
ρ0

<< 1. We then insert this initial guess into the

right hand side of Eq. (A.1) in order to generate a density profile ρn=0
sub (r). We then

mix a little of this new profile together with a majority of the old density profile to

obtain our new guess. This is then iterated until convergence is achieved. Thus,

we iterate:

ρn+1(r) = mρnsub(r) + (1−m)ρn(r), (A.3)

where the mixing parameter m is typically 0.2 > m > 0.001. Convergence is

determined by requiring that the integral
∫
dr(ρn+1(r)−ρn(r))2 is a small quantity,

typically O(10−6).
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