This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.Iboro.ac.uk/) under the following Creative Commons Licence conditions.

(c) creative

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY Attribution. You must attribute the work in the manner specified by the author or licensor

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer $\left.{ }^{[}\right]$

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY AUTHOR/FILING TITLE	
accissoiovicoiv	biro.
Vot . .0.	040013084
- 5 JV1999	
3^{3} JUL 1992	4 APP 2000
-2 Ju/1993	-60ct 2000
-40071998	
18 MAR 1997	

RETENTION PREDICTION IN RP-HPLC

by

CHRISTINA MARY BURR

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of
DOCTOR OF PHILOSOPHY
of
Loughborough University of Technology

October 1988

Supervisor Dr. R.M. Smith, B.Sc., M.Sc.,Ph.D., C.Chem. F.R.S.C
Department of Chemistry
Loughborough University of Technology

C.
by Christina M. Burr 1988

Loughborough Untuersty
of Technology Litbrary
Dow Och. 89
)
040013084

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. R.M. Smith for all his advice and encouragement throughout the period of the study.

I would also like to thank the technical staff for their assistance in particular John Kershaw and John Swithenbank.

I am also grateful for the help and companionship of my friends and colleagues in particular Rajani Shrestha and Paul Scullion. And special thanks to Dave.

Finally I would like to thank SERC for my grant, Phase Separations, U.K. for the gift of the stationary phase and Dr. L.R. Snyder of LCResources for the Drylab I program.

A method of calculating the RP-HPLC retention indices, based on the alkylarylketone scale, has been developed. The retention indices are calculated from the molecular structure of a compound as the sum of the parent contribution, the parent index, the substituent contributions, the substituent indices, and terms to account for the interactions between substituents, the interaction indices.

The substituent contributions have been determined for 12 aliphatic functional groups and 14 aromatic functional groups over a range of methanol and acetonitrile eluents. Interactions have been studied in 73 disubstituted aromatic compounds to obtain empirical interaction indices.

The changes, with the proportion of modifier in the mobile phase, of the parent contribution, the substituent contributions and the interaction terms have been fitted to quadratic equations. The corresponding index values used for the prediction of retention indices are obtained from these equations. The calculated retention indices can therefore be described by quadratic regression equations. Using the relationship between capacity factor and carbon number for the alkylarylketone standards it is also possible to estimate a capacity factor from the retention index of a compound. This enables the expected resolution between two compounds to be determined.

An expert system program, CRIPES, Chromatographic Retention Index Prediction Expert System, has been written to implement the prediction system. This was extended to calculate the retention between two compounds. The accuracy
of the prediction system was examined by comparing the experimental and calculated retention indices of a number of compounds.

A commercial retention prediction/ optimisation program (Drylab-I) was also briefly examined.

CONTENTS

Title Page
Acknowledgements Abstract
Contents

CHAPTER 1
Introduction and literature survey 1
1.1 Introduction 1
1.2 Retention prediction in RP-HPLC 2
1.2.1 Prediction based on size and shape parameters 3
a Carbon number 3
b Topological indices 5
c Size and shape parameters of
polynuclear aromatic hydrocarbons (PAH)

7
d Van der Waals volume or radius 8
e Other size and shape parameters 9

1.2.2	Prediction based on octanol-water
	partition coefficients

1.2 .3	Prediction based on aqueous
	solubility

1.2.4 Prediction based on solvatochromic		
	parameters	14

1.2.5 Prediction methods using group
contributions
a Group contributions using capacity factors 17
b Group contributions using retention indices 22
c Prediction based on interaction indices23
1.2.6 Miscellaneous retention prediction
methods 24
a Mobile phase relationships 24
b Prediction based on thermodynamic
parameters 25
c Prediction using the electronic
interaction index 25
d Computer based prediction methods 26
1.3 Use of retention indices in RP-HPLC 26
1.3.1 Retention indices in retention
prediction 29

1. 4 Introduction to current work 30
CHAPTER 2 Experimental 33
2.1 Chemicals 33
a Mobile phase components 33
b Retention index standards 33
c Model and test compounds 33
d Void volume marker 33
2.2 HPLC equipment 34
2.3 Computing 34
2.4. Experimental procedure 35
2.4.1 Mobile phase preparation 35
2.4.2 Solute preparation 35
2.4.3 Void volume solution 36
2.4.4 Column testing 36
2.4.5 Experimental method 37
2.5 Calculations 37
2.5.1 Capacity factors 37
2.5.2 Retention indices 38
2.5.3 Parent indices 38
2.5.4 Substituent indices 38
2.5.5 Interaction increments 39
2.5.6 Retention prediction 39
CHAPTER 3
Reproducibility and robustness of
Reproducibility and robustness of capacity factors and retention indices 40
3.1 Method protocols 42
a Temperature 42
b Buffer pH 43
c Stationary phase 44
d Experimental procedure 44
e Calculations 45
3.2 The determination of column void volume and the effect on capacity factors and retention index 46
3.2.1 Investigation of the dependence of the retention of sodium nitrate on its concentration 47
3.2.2 Investigation of the dependence of the retention time of sodium nitrate on the eluent composition 48
3.2.3 Calculation methods for the determination of column void volume 51a Calculation of column void volumeusing the Berendson method52
b Calculation of column void volume using an iterative method 53
3.2.4 Reproducibility of measured retention time of sodium nitrate 56
3.2.5 Effect of changes in the column void volume value on capacity factors and retention indices 57
3.3 Dependence of capacity factors and
retention indices on the buffer
concentration of the aqueous
component of the mobile phase 64
3.4 Reproducibility of capacity factors 68
3.4.1 Short term reproducibility of
capacity factors693.4.2 Long term reproducibility of capacityfactors 71
a capacity factors on each column 72b Capacity factors of benzene,phenol and toluene72
3.5 Calculation of retention indices 763.5.1 Linearity of $\log k^{\prime-}$ carbon numberrelationships for thealkylarylketones77
3.5.2 Relationship between slope and intercept of correlation curves and eluent composition 83
3.6 Reproducibility of retention indices 86
3.6.1 Short term reproducibility 86
3.6.2 Long term reproducibility 88
CHAPTER 4 Parent index and substituent indicesfor single substituents on aliphaticside chains91
4.1 Definition and calculation of parent
index values 92
4.2 Retention behaviour of aliphatic substituted benzenes 93
4.2.1 Capacity factors of model compounds 96
4.2.2 Retention indices of model compounds 100

increment and structural parameters 144
5.2 Examination of the retention of isomeric phenylpropanols 145
5.2.1 Retention Increments calculated for hydroxyl groups 147
5.3CHAPTER 66
6.1 Retention indices of mono-substitutedmodel compounds155
6.2 Substituent indices for single aromatic substituents 161
6.3 Relationship between substituent index and physico-chemical properties 165
6.3 .1 Relationship between $S I$ and octanol- water partition coefficients 168
CHAPTER 7Retention behaviour of disubstitutedbenzenes172
7.1 Retention indices of disubstituted benzenes 175
7.2 Interaction increments for pairs of aromatic substituents 186
7.2 .1 Interaction indices 195
7.2.2 Interactions in disubstituted compounds 195a Interactions with hydroxyl andcarbonyl containing compounds200
hydroxyl-amino compounds 200c Interactions in hydroxyl-nitrocompounds201d Interactions in compounds withouthydrogen bonding groups 202
7.3Relationship between interactionindices and studies on octanol-waterpartition coefficients204
7.3 .1 Possible application of the above approach to the current study 209
a Relationship between interaction
increments and Hammett constants for
hydroxyl substituted compounds 209
b Relationship between Leo method ofcorrecting for interaction andinteraction increments211
Application of interaction indices 214
CHAPTER 8Implementation of the predictionmethod using an expert system216
Use of computer prediction methods in HPLC 216
Introduction to expert or knowledge based information systems 219
Use of expert systems in chromatography 221
8.4 Introduction to VP-expert 225
8.5 Implementation and development of CRIPES 229
8.6 Calculation of resolution 237
8.7 Testing of CRIPES 241
a Phenacyl halides 247
b Compounds with amino groups 247
c Amide test compounds 248
d Secondary amine 249
e Aliphatic substituted compounds 249
£ Other compounds 249
8.8 Comparison of a commercial retentionprediction system, Drylab-I andCRIPES 250
Extending the prediction system using published data 257
Comparison of retention indicesdetermined previously with valuescalculated in this study259
Retention indices calculated from published data 261
Substituent increments usingretention indices calculated frompublished data262
9.4 Interaction increments using retention indices calculated from published data 266
9.5 Use of octanol-water partition data 268
9.6 Use of group contribution data 270
9.7 Expanding CRIPES 270
CHAPTER 10 Conclusion 271
Future work 273
REFERENCES 274
Appendix 1 Preliminary studies on the use of retention indices in tetrahydrofuran (THF) 287Published work295

CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION

The aim of this study was to develop a method to calculate the reversed-phase high performance liquid chromatography (RP-HPLC) retention index of a compound from its molecular structure. If the retention of two (or more) compounds could be calculated, the separation of the compounds could then be optimised.

Most current optimisation procedures require the retention of a compound to be measured at a minimum of two eluent compositions, or in two organic modifiers, and frequently at considerably more than two eluent compositions. From this information the retention at another eluent composition can be obtained by interpolation between the eluent compositions or extrapolation beyond the values. It has also been possible to "predict" the retention of a compound from a gradient elution run although this is also a form of extrapolation or interpolation. These essentially empirical methods do not require a knowledge of the molecular structure of the compounds being separated.

However, the structures of the compounds to be chromatographed are frequently known. Relationships between the retention in RP-HPLC and the structure of compounds have been noted for many different structural descriptors. These quantitative structure-retention relationships (QSRR) have recently been reviewed by Kaliszan². A literature survey of the prediction methods using structural parameters is
presented here.
One of the problems with RP-HPLC retention prediction is the dependence of the absolute retention on the column used. Although the most frequently used measure of retention, the capacity factor, can compensate for differences in flowrate and column dimensions there can be considerable differences between nominally equivalent stationary phases and even different batches of the same stationary phase. Various workers have therefore suggested the use of interpolated retention index scales in which the retention is expressed relative to a set of standards. These scales have been shown to be robust to changes in the HPLC system. Relatively few prediction methods have been developed using retention indices but their use should result in more generally applicable prediction methods. A survey of the use of retention indices in RP-HPLC is also given in this chapter.

1.2 RETENTION PREDICTION IN RP-HPLC

There have been many different approaches to retention prediction in RP-HPLC the simplest of which are those in which the retention is calculated by extrapolation or interpolation between experimental data, these methods will not be discussed in this section. More useful prediction methods have been based on additive structural properties of the solute. These prediction methods generally excluded any specific interactions of a compound with the hydrocarbonaceous stationary phase, assuming that the mobile phase has a dominant role in the retention process. This
solvophobic theory of retention was proposed by Horvath $=\boldsymbol{a}$ and has been widely used. Other retention mechanisms have also been proposed but few have been used in retention prediction because of the more complex parameters which would be required.

Although all the methods discussed below have been suggested for retention prediction, few of the methods have actually been used to predict the retention of "unknown" compounds. In each case there was an empirical, usually linear, relationship between the structural parameter and retention in reversed-phase high performance liquid chromatography. In most cases the system was calibrated using a set of standards to obtain a regression equation and the retention of an "unknown" compound was calculated from the structural feature either by extrapolation or interpolation. Frequently multi-parameter equations have been used based on combinations of different structural properties.

1.2.1 Prediction Based on Size and Shape Parameters

Many prediction methods have been based on the relationship between retention and size or shape descriptors. The different size and shape descriptors which have been used will be discussed in this section.
a) Carbon Number

The simplest descriptor of size is the carbon number. A linear relationship between carbon number and log capacity factor (k') for the members of a homologous series has been
described for many different homologous series4. ${ }^{4}$. This relationship has also formed the basis of most retention index scales in both LC and GC (see Section 1.3). Prediction based purely on this parameter is limited to the members of the same homologous seriesa-9. To predict the retention of a compound it is necessary to measure the retention of two or more members of the same homologous series and calculate the retention either by extrapolation or interpolation. Dufek $\boldsymbol{7} \boldsymbol{=}$ described a method to calculate the retention of any member of a homologous series at any temperature and any eluent composition from the retention of two other members of the same homologous series. Viseras et al. extended the prediction method proposed by Dufek to gradient elution chromatography ${ }^{20}$.

The carbon number alone was found to be insufficient to account for the retention of 54 alkylbenzenes and polymethylbenzenes ${ }^{22}$, the number of hydrogen atoms was also not successful in describing the retention. Schabron ${ }^{12}$ combined the use of the carbon number with the number of double bonds to calculate the capacity factors of a number of alkylphenols. Schronk et al. ${ }^{19}$ also combined carbon number with the number of double bonds and rings to describe the retention of nitrogen heterocyclic compounds. A number of multi-parameter regression equations were derived but they were not used for prediction. Golovnya et al.14,15 proposed a "universal" equation (1.1) for calculating the retention (Z) based on the number of a compound in a homologous series (m) rather than the carbon number.

$$
Z=\alpha+\beta_{m}+(\gamma \log m) m^{-1}+\varepsilon\left[(m-2)^{2}+0.1\right]^{-1}
$$

Each of the coefficients was determined experimentally for a homologous series. The equation was used for the calculation of the retention of 2,4-dinitrophenylhyarazone derivatives of carbonyl compounds. As with the carbon number this equation could only be used for members of a homologous series.
b) Topological Indices

A more useful and more general size and shape descriptor which has been suggested for retention prediction is the molecular connectivity index (X). Molecular connectivity indices are based on graph theory and provide a description of the shape of the molecule. Various degrees of molecular connectivity indices have been described by Kier and Hallis, who also very briefly discussed on the possibility of their use in chromatography. The most commonly used X, the first order molecular connectivity index, ${ }^{2} X$, is based on the relationship of the nearest member in the molecule and is calculated for each bond according to the equation ${ }^{17}$:-

$$
\left.{ }^{2} X=\Sigma\left(\delta_{2} \delta_{1}\right)\right)^{-0.0}
$$

where δ_{1} and δ_{j} were the number of atoms to which the atoms at either end of the bond, s, were attached. Attachment to hydrogen atoms is ignored. However, this first order molecular connectivity index would not account for the different properties of heteroatoms because it counts only the number of atoms attached, not the type of atoms to which they are attached. Linear relationship between molecular
connectivity index and log k ' has been reported by several workers ${ }^{2 e-z z a}$. However, few workers have extended the approach to predicting the retention of compounds from their calculated X values ${ }^{19-21}$. Molecular connectivity indices have been found to be insufficient to account for the elution order of branched chain alkanes ${ }^{29}$, alkylbenzenes ${ }^{12,24}$, and diols ${ }^{25}$. The problem of predicting the elution orders of isomeric compounds has led to the use of combinations of molecular connectivity indices with other topological indices and structural parameters. Burke et al. $2 e$ used combinations of 11 different topological indices to predict the retention of a range of liquid coal
components. The relative contribution of each index was determined by a multi-parameter regression equations and the results were reasonably successful.

Funasaki et al. 27 combined the use of molecular connectivity indices with the octanol-water partition coefficients. Molecular connectivity indices have been used by Jinno and co-workers 2 emos in combination with octanolwater partition coefficients (log P) and Van der Waals radii or volumes. The approach by these workers will be discussed later.

An alternative topological index, the Weiner Index, has also been used to predict retention. The Weiner Index is a descriptive parameter based on molecular graph theory which was used by Adler for the calculation of HPLC retention of polynuclear aromatic hydrocarbons ${ }^{31}$. Adler observed a nonlinear relationship between \log capacity factor and the Weiner Index which contrasted with the linear relationships reported for other topological indices. Noel reported a higher correlation between the \log capacity factor and the

Weiner Index than between the capacity factor and the molecular connectivity index ${ }^{25}$. A combination of the Weiner index and octanol-water partition coefficients was suggested to predict the capacity factors of diols=0.
c) Size and Shape Parameters of Polynuclear Aromatic Hydrocarbons (PAH)

Abstract

The retentions of PAH have been shown to be predominantly determined by the size and shape of the molecule ${ }^{32}$. Various workers have suggested the use of a length/breadth ratio to predict the retention of these compounds. The definition and method of calculating the length/breadth ratio has differed among the different groups but success has been reported by several workers, Jinno and Kawasakiss. ${ }^{34}$, Rohrbaugh and Jurs ${ }^{53}$, and Wise ${ }^{34}$, Jinno and Kawasaki ${ }^{9}$ combined the length/breadth parameter with the Chromatographic Correlation Parameter (F) proposed by Schabron ${ }^{37}$. This chromatographic correlation parameter was calculated using the equation 2×34.37.


```
F = (no. of double bonds) + (no. of 10 and 20 carbon atoms)
    - 0.5 for each non-aromatic ring
```

Jinno and Kawasakisa reported that the correlation between retention and F was better than the correlation between retention and molecular connectivity indices. Hasan and Jurs ${ }^{\text {an }}$ have also described a method of calculating the retention indices of $P A H$ based on a multiple parameter equation containing a number of terms describing the
molecular structure.
d) Van der Waals Volume or Radius

The Van der Waals radius or volume has been used by several groups for retention prediction, although usually as one of several parameters rather than as a single descriptor. Linear relationships between log capacity factor and Van der Waals volume were reported by Hanai et al.. Although the slopes were different for different groups of compounds. They attempted to predict the retention of a variety of compounds by combining the Van der Waals volume with delocalisation energy effectssэ-41.

Van der Waals volumes were also used by Jinno and coworkers in combination with other structural parameters (X and octanol-water partition coefficients) to calculate the capacity factors of isomeric alkylbenzenes $29,29,33$. The Van der Waals volume was also used as the basis of a prediction method by Yugi et al.42. Firstly a contribution of solute hydrophobicity ($\log k$ 'o) to retention was calculated from the Van der Waals volume using the equation.

$$
\log k^{\prime} 0=\alpha V_{w}+\gamma
$$

A hydrophilic parameter (D) for a solute was then calculated as the difference between the measured capacity and the calculated $\log k$ 'o. A linear relationship between D and the mobile phase composition was used to calculate an extrapolated value (D_{w}) at 0% organic modifier. Overall an equation was proposed to calculate the retention of a solute at a specified eluent composition.
where D_{1}, were the hydrophilic group contributions calculated as above. The method was successful in calculating the retention of 4 substituted benzenes in which the substituents did not interact but was not successful in calculating the retentions when substituents interacted.
e) Other Size and Shape Parameters

A few other size and shape parameters have been used to predict the retention of compounds. The General Index of Molecular Complexity (GIMC) was suggested by D'Amboise ${ }^{43}$. The GIMC was another parameter which attempts to account for branching, size, the degree of branching and the presence of heteroatoms but the method was only found to be applicable to members of a single homologous series.

Mockel et al.4-47 related the retention of various classes of compounds to the total surface area of the solute. It was suggested that this could provide a method of calculating the retention of other compounds although it was not used for this purpose but to rationalise the different retention characteristics of classes of compounds.

1.2.2 Prediction Based on Octanol-Water Partition Coefficients

The octanol-water partition coefficient (log P) of a compound is the distribution coefficient of that compounds between an octanol phase and an aqueous phase. It has
frequently described as the "lipophilicity" or "hydrophobicity" of a molecule and is dependent on the molecular structure. Traditionally octanol-water partition coefficients have been obtained using the "shake-flask" method in which a known amount of the compound is shaken in an octanol-water mixture for a fixed period of time and the concentration determined in one or both of the phases. Hansch ${ }^{49}$ proposed a method of calculating the octanol-water partition coefficient of a compound as the sum of the parent $\log P$ plus the substituent contributions (π).

$$
\log P=\log P_{\text {fanーH }}+\Sigma \pi
$$

A large number of π values have been tabulated ${ }^{49}$. In this form the calculation does not account for any interactions occurring between substituents in a multiply substituted molecule. More recently methods to account for the interactions have been described $40-5=$. An alternative calculation method has been proposed by Rekker ${ }^{3}$ in which the $\log P$ was calculated as the sum of fragmental constants, f, which were derived in a different manner to the Hansch constants. The Hansch method has probably been more widely used.

The similarity between the distribution processes in an octanol-water system and the RP-HPLC column led to suggestions that the HPLC retention could be related to the value of the octanol-water partition coefficientres. Linear relationships between $\log k$ ' and $\log P$ have been reported for many groups of compounds ${ }^{2}=4, E 0$. However, it has been noted that hydrogen bonding and non-hydrogen bonding species need to be treated separately ${ }^{\mathbf{B E} . ⿹ 7}$.

The use of $\mathrm{RP}-\mathrm{HPLC}$ retention to calculate $\log P$ values has been the subject of much work. Kaliszan ${ }^{1}$ listed over 100 references in which $\log p$ was calculated using either RPHPLC or TLC retention. Using the observed linear relationship, it should therefore be possible to calculate the capacity factor of a compound from its known log P. However complications have arisen as the slope of the relationship between $\log p$ and $\log k$ ' was dependent on the column make, the eluent composition and the type of compounds being studied. Braumann ${ }^{-4}$ has suggested that at 0% organic modifier there should be unit slope between log k ' and $\log P$ as at this composition the system was very close to the octanol-water system. He also suggested that at 0\% organic modifier the values obtained should be independent of the stationary phase ${ }^{5 \theta}$. However, it was not usually practical to use eluents containing 100% water due to the long retention times of most compounds and these values were obtained by linear extrapolation of the retention data. However, as the change in capacity factor with eluent composition has been best described using quadratic regression equations, 5 , eo the linear extrapolation could result in considerable errors in the 100% water value of capacity factor. The use of quadratic equations to extrapolate the data might also result in considerable problems because of the volume of data which would be required for an accurate result.

Hanai et al. have used the observed linear relationship between $\log k$ ' and $\log p$ to predict the retention of a variety of compounds including nitrogen containing compounds ${ }^{61}$, phenols 62.63 and in combination with dissociation constants and Van der Waals radii to predict
the retention of acids*i.ca-cs. In each case the column/eluent system was calibrated using a set of compounds structurally related to the "unknown" test compounds. The retention was then calculated by substituting the $\log P$ (usually calculated as the sum of Rekkersa fragmental constants) of the "unknown" compound into the regression equation. Shalaby et al. $57 . \infty$ have used the measured $\log p$ values of nitrogen bridged compounds to calculate their retention.

Baker et al. $69 \rightarrow 73$ developed a prediction method in which the retention index of a compound was calculated from the measured retention index of a "parent" compound and a multiple of the substituent Hansch substituent constants ($\pi)^{4 \pi}$. The method was used to calculate retention indices of a number of drug compounds including barbiturates ${ }^{71}$, anthranilic acid analogses, glucuronide metabolites ${ }^{6 \pi}$ and steroids ${ }^{73}$.

Jinno and co-workers have used π constants to predict the retention of alkylbenzenes 74,79 . A combination of molecular connectivity index values, hydrogen donating and accepting terms (HA-HD), Van der Waals volume, Hammett constants and π values have been used to calculate retention of a number of different compounds $\approx \mathrm{En} \boldsymbol{2 9}, 76,77$. Multiple regression analysis was used to determine which parameters were most significant and the contribution of each for a particular type of compound. The choice of which of the parameters to use was found to depend on the class of the compound and also the length of the bonded phase of the column. This prediction system was written to run on a microcomputer and communicate with a database containing the regression equations relating k ' to the structural
parameters $29,30,77$.78. The different equations required for phenyl, C_{z}, C_{9}, and $C_{i g}$ columns were contained within the database. The user was required to input the type of compound either as a name, using the molecular formula or by selecting the functional groups. As the retention prediction method was based on capacity factors the regression equations were only strictly valid for a single column. The user entered information on the retention of a set of standards run on the column to calibrate the system.

A similar approach to predicting the retention of phenols was used by Li and Lee ${ }^{79}$ in ternary eluents but unlike Jinno et al. the relationship derived did not use linear combinations of the parameters. The final equation involved Hansch substituent constants to the power of 4 , cubed, and squared plus a multiple of the Hansch substituent constant and Hammett constant for the compound. The accuracy of the prediction ranged from $+/-2 \%$ to +/- 12\% depending on the complexity of the molecule. This method not only requires the retention times at a minimum of seven eluent compositions to obtain the regression coefficients but considerable computing power to perform the stepwise multiple regression equations. It is unlikely that the derived equations are generally applicable to different classes of compounds or different columns.

1.2.3 Prediction Based on Aqueous Solubility

Hafkenscheid and Tomlinson ${ }^{50-9}$ have reported a linear relationship between RP-HPLC retention data and aqueous solubility parameters. Acids and alcohols had to be treated separately from basic and neutral moleculesex. Although the

RP-HPLC capacity factors were useful to calculate aqueous solubility \quad o-ma the use of the Hildebrand solubility parameter to calculate retention resulted in an overestimation of the retention by 4-5 timesers. Tijssen et al.en also suggested that aqueous solubility could be used to predict the selectivity and solubility in chromatography.

An alternative "retention-solubility parameter", R, was suggested by Jinnoss to predict the retention of phenylthiohydantoin amino acid derivatives. The solubility of these compounds was expressed relative to that of phenylthiohydantoin lysine which had the smallest aqueous solubility. There was a linear relationship between R and $\log k$ ' which was used to predict the retention of other derivatives. A separate regression equation was required at every eluent composition.

1.2.4 Prediction based on Solvatochromic Parameters

Two groups of workers have suggested the use of solvatochromic parameters for retention prediction. The solvatochromic parameters were described by Kamlet and coworkersmas the "solvent" effects which cause shifts in UV/VIS spectroscopy. The parameters described include a measure of the solvent-solute dipole interactions and the hydrogen bonding interactions of the solute.
 the solvent polarity parameter, $E_{r}(30)$, to describe the change in retention of a variety of compounds as an alternative to organic modifier concentration. A linear relationship was observed for acetonitrile eluents but not for methanol eluents. The solvent polarity was also used to
obtain methylene group selectivity values for different series of compounds and columns.

Kamlet and co-workersem, 90 have used a number of polarity and other solvatochromic parameters to describe the retention of a number of compounds. The method was suggested to calculate either the adjusted retention time or the capacity factor using a combination of a measure of the molar volume (V_{1}), the solute polarity $\left(\pi^{*}\right)$, which was related to the solute dipole moment, and the hydrogen bond acceptor strength (β). These factors were suggested as being the dominant ones in determining the retention of a solute 91. 9 . It was also suggested that the results could be used for both prediction and characterisation of the stationary phase. The regression equations depended on both the eluent composition and the column although it was suggested that the signs and relative size of the different contributions are always the same. A typical equation is shown belowo:-

```
log k'=-(0.49\pm0.03)+(1.207\pm0.026)V V / /100
    -(0.110\pm0.038)\pi*-(0.764\pm0.085)B1.7
```

However these relationships have not been used to calculate the retention of unknown compounds.

Recently the method has been extended to examine the retention of a number of classes of compounds on different stationary phasesso. An equation similar to equation 1.7 was derived, although the coefficients differed. The equation (1.8) was used to calculate the retention for a number of substituted benzenes, polynuclear aromatic hydrocarbons and polychlorinated biphenyls.
$\log k^{\prime}=(-0.58 \pm 0.04)+(1.88 \pm 0.04) V_{1} / 100$
$-(0.45 \pm 0.04) \pi^{*}-(1.47 \pm 0.08) \beta_{m}-(0.46 \pm 0.13) \alpha_{m}$.
1.8
where V_{1} is a measure of the molar volume, π^{*} the solute polarity, β_{m} the hydrogen bonding acceptor strength of the solute and α_{m} the hydrogen bonding donator strength of the solute.

1.2.5 Prediction Methods using Group Contributions

In the prediction methods using group contributions, the retention of a compound is calculated as the contribution from a parent molecule plus contributions from the substituents. This approach is very similar to that used by Hansch4e to calculate octanol-water partition coefficients described in a previous section (Section 1.2.2). The major difference between these prediction methods and those described previously was the direct use of retention parameters rather than the use of structural parameters of the molecule.

Two approaches have been used to develop retention prediction methods by this method. The first used capacity factors which have been shown to be very dependent on the chromatographic conditions used for their determination. The second used group contributions based on retention indices in which the retention of a compound was expressed relative to a set of standards. The use of retention indices in reversed-phase high performance liquid chromatography will be discussed in a later section (Section 1.3). Although the general approach was similar, the data obtained cannot be
directly compared and there were differences in the calculation methods. The two approaches will therefore be discussed separately.
a) Group Contributions using Capacity Factors

The group contribution (T) for most of these methods was defined using equation 1.9 :

$$
T=\log \left(k_{j}^{\prime}-k_{p}^{\prime}\right)
$$

where T was the group contribution, k 'y was the capacity factor of a substituted compound and k 's the capacity factor of a "parent" compound. Alternative definitions of the group contribution have been used and will be discussed below. From the equation above the capacity factor of a compound (X) was calculated using the equation

$$
\log k^{\prime} \times=\log k_{p}^{\prime}+\Sigma T
$$

The papers differed in the choice of parent used for the initial calculation of the group contributions. These included benzene and substituted benzenes ${ }^{95-99}$, esters ${ }^{99}$, coumarins ${ }^{100}$, catecholaminess.4,101, 2-phenylethylamine ${ }^{102}$, purine ${ }^{103}$, chromone and isoflavone ${ }^{104}$, and steroids ${ }^{200}$. There were complications in the use of complex parents, in that it was not always possible to derive group contributions in the absence of interactions with substituents integral to the parent structure. The values were therefore specific to that system. Two methods for calculating the group contributions
have been suggested. Firstly, the straightforward subtraction of the values for two compounds and secondly, calculation of the group contributions by solving sets of linear equations. These latter equations express the capacity factors as the sum of the group contributions for the different substituents and were probably more readily automated.

The papers described below reported calculated group contributions and suggested that they could be used for retention prediction. However, relatively few have actually used the values for calculating capacity factors of "unknown" compounds.

Molnar and Horvath ${ }^{94}$ proposed one of the earliest group contribution methods in which the parent was either an acid or catecholamine. T values were obtained for hydrogen, hydroxyl, methoxy, and amino substituents. A larger range of substituents were examined by Chen and Horvath ${ }^{101}$ and sets of linear equations were solved to obtain values for the substituents and also for the interactions occurring between the substituents. The values were obtained on three columns and reasonable correlations between the different columns were observed, but again the values were not used for retention prediction. Horvath and co-workersios have adopted a similar approach to benzoquinones and hydroquinones to obtain T values. These were used in combination with molecular connectivity indices to calculate the capacity factors of five benzoquinones.

Tomlinson et al. Gill et al. ${ }^{102}$, and Glowniak and Bieganowski ${ }^{00}$ calculated T values by subtraction. Tomlinson et al. examined a series of substituted alkyl benzoates with $\mathrm{OCH}_{3}, \mathrm{NO} z$ or Cl in various positions on the aromatic ring ${ }^{9}$.

The experimental data suggested that the relationship between the carbon number of the ester chain and log capacity factor was non-linear. The methylene group contribution increased with increasing chain length up to an ester chain of five carbon atoms. The group contributions were dependent on the position relative to the ester group, the eluent composition and the column but were apparently not dependent on which alkyl benzoate was parent. The derived T values were correlated with thermodynamic properties but were not used for prediction.

Gill et al. examined 30 substituted phenylethylamines to derive T values for methyl, hydroxyl, methoxy, amino and N-oxide in a number of positions and combinations ${ }^{202}$. With these compounds the group contributions were dependent on the substituted compound and its "parent" because of interactions occurring with the other substituents. The group contribution of a methyl group on an aromatic ring (T $=0.54)$ differed significantly from the values for methyl substituents on the side chain ($T=0.36-0.44$).

Glowniak and Bieganowska100 examined a set of 29 coumarins, furocoumarins and pyranocoumarins including three parent species coumarin, psoralen and xanthyletin. A number of substituents were examined either singly or in combinations. The group contributions were found to depend on both the position and the parent compound, again this was probably due to substituent interactions.

One of the few papers which has used the group contributions for prediction was by Assenza and Brown ${ }^{203}$. Using purine as the parent the contributions were calculated by solving sets of linear equations to obtain the values from 24 substituted compounds with a range of substituents,
methyl, oxo, amino, methylamino, dimethylamino, thio, imino and ribonucleosides in various positions. Group contributions were obtained on four columns using a single eluent composition. The values obtained differed on the different columns although there was a high correlation between two $C_{i m}$ columns. The data were then used to calculate the retention of an additional 62 purines with reported high correlation.

Bylina et al. 207 used the "group contribution" approach to calculate values for molecular fragments which could then be used to predict retention. Eight alkyl fragments were defined, six of which described the presence of an aromatic ring and the other two to describe the alkyl portion of a molecule. Using this method the capacity factor would be calculated from the equation

$$
\ln k=\Sigma \ln k y+\text { constant }
$$

the value of the constant was taken as the \log of the phase ratio of the volumes of the stationary and mobile phases. The method was used to calculate the capacity factors of polynuclear aromatic hydrocarbons but it was suggested that the values could be extended to other compounds.

Borda et al. examined a set of chromones and isoflavones to derive group contributions for methyl, methoxy, and hydroxyl groups ${ }^{204}$. However the definition of the group contribution differed from that described earlier. The group contribution was based on the "separation factor" (α) which was defined in terms of the capacity factor rather then \log capacity factor $\left(\alpha=k^{\prime} * / k^{\prime} y^{\prime}\right)$. The size of the separation factor was dependent on the other
substituents present.
A slightly different definition of the substituent contribution (kr) was proposed by Sadek et al. 95 using the equation:-

$$
\delta \Gamma=-R T \ln \left(k^{\prime} \times / k^{\prime} \circ\right)
$$

where R is the gas constant, T the temperature, and k ' x and k 's the capacity factors of the substituted benzene and benzene. The substituent contributions were derived on a number of stationary phases and it was that suggested that they could be used to characterise the stationary phases but the values were again not used for prediction.

A different approach was taken by Tsantili-Kakoulidou et al ${ }^{36}$. Log k ' values were extrapolated to 0% organic modifier, to obtain $\log k$ 'w values. In an analogy with previous work on the use of the use of $\log k_{w}$ values to calculate $\log p=4.00 .100 .100$, (see section 1.2.3) the group contributions were termed π^{*}. A range of monosubstituted compounds were used to obtain the π^{*} values and 43 disubstituted benzenes were examined to investigate substituent interaction effects (T^{*}), using the equation:-

$$
\log k^{\prime} m \times \infty=\log k^{\prime}+\mathrm{T}^{*}
$$

The values were used to calculate the retention, at 0% organic modifier, of some polysubstituted compounds with a high correlation between the calculated and extrapolated retention values. Braumann and Jastorffios also used this definition of the group contribution to calculate the capacity factor at 0% organic for a number of cyclic nucleotides, although the aim was to predict the
quantitative structure-activity relationships not the retention.

A related method was previously described in the section on Van der Wals volumes (see Section 1.2.1 d) in which a hydrophobic group contribution was derived and used for calculating retention*2.
b) Group Contributions using Retention Indices

A number of papers have calculated group contributions based on retention indices using the equation

$$
\Delta_{R I}=\left(R I_{m}-R I_{p}\right)
$$

where $A_{R I}$ is the retention index group contribution, $R I_{m}$ the retention index of the substituted compound and $R I_{p}$ the retention index of the parent. The papers described in this section have again used a number of parents, benzene ${ }^{110}$, nitrobenzene ${ }^{111}$, antioxidants ${ }^{112}$, ergopeptides ${ }^{123}$ and alkylbenzenes ${ }^{114}$. As the group contributions were often based on different retention indices scales the resulting values cannot be readily transferred from one study to another.

Popl et al. calculated substituent contribution to retention index based on a set of monosubstituted benzenes ${ }^{110}$. Substituent contributions were calculated using a single column and a single eluent composition. These were then used to calculate retention indices of polysubstituted benzenes. Significant differences between the calculated and measured values were observed if there were interactions between substituents, for example with nitrophenols,
polyphenols and compounds containing carboxylic acid groups. Good agreement was found for halogens, phenols and nitro compounds other than those mentioned previously. A set of substituted nitrobenzenesi11 was used to examine substituent interactions but the values were not used for prediction. An extension of the study also derived substituent contributions from phenolic antioxidantsix. These were extrapolated to 0% methanol and the regression equations used for prediction at other eluent compositions. Several standards were used to calibrate the system but the use was limited to a few groups, including secondary carbon groups, tertiary carbon groups, alkyl carbons, aromatic rings and hydroxyl groups.

Magg and Ballschmiter ${ }^{213}$ derived substituent contributions on four columns at a single eluent composition using an ergopeptide parent. For the substituents examined methyl, i-butyl, benzyl, ethyl, i-propyl and s-butyl the group contributions were virtually unchanged on the different columns although the actual retention indices varied considerably. It was suggested that the values could be used for retention prediction but no results were given. Retention index substituent contributions have also been determined by Morishita et al. 124 for a single column and eluent composition. They measured values for methyl, hydroxyl, amino and nitro groups using benzene as the parent. Positional increments were also obtained for the pairs of substituents. These were then used to calculate the retention index of some polysubstituted benzenes.

As an alternative to retention indices an interaction index scale has been proposed 125110 . The interaction index was defined as a measure of the polar interaction occurring in the mobile phase and was calculated using a calibration line and five standards. It was suggested that the interaction index of a compound could be used to predict its $\log k '$ using the calibration line ${ }^{120}$. Jandera ${ }^{127-121}$ proposed another prediction method which was also based on the model of interaction indices. The retention of a compound was divided into two contributions, a non-polar (n_{c}) and a polar contribution (q). The polar contribution was found to be different for different substituents but was independent of the parent compound while the non-polar contribution was found to be dependent on the parent. The resulting values were used to calculate the capacity factors a range of substituted benzenes ${ }^{110.119}$ and phenylurea and triazine herbicides ${ }^{121}$.
1.2.6 Miscellaneous Retention Prediction Methods
a) Mobile Phase Relationships

Many optimisation methods use mobile phase relationships to predict the behaviour of compounds on changing eluent compositions. These methods are interpolation or extrapolation methods rather than "prediction". However two methods have been suggested by Baty and Sharp ${ }^{12 m}$ and Cooper ${ }^{120}$ that also use the molecular structure of the compound. In these a set of calibration
standards structurally closely related to the analyte were used to obtain equations describing the change in retention with eluent composition. Using the calibration line it was possible to calculate the retention of an "unknown" compound from a single measured capacity factor. These methods are also therefore extrapolation or interpolation methods rather than prediction solely from molecular structure.

Another retention prediction method based on mobile phase relationships was recently suggested by Marengo et al. ${ }^{2 \pi 4}$. The aim in this paper was to calculate the retention time in gradient elution from initial isocratic data. The velocity at which a solute moved through the column was calculated from the isocratic data. This was then used to predict how the solute would behave under gradient conditions.
b) Prediction Based on Thermodynamic Parameters

Jaroniec ${ }^{12 \pi} \boldsymbol{2 1 2 e}$ described the retention of solutes in terms of their thermodynamic properties such as activity coefficients and suggested that these could be used for prediction. Petrovik et al. 127 also suggested the use of activity coefficients for prediction of retention in terms of a functional group contribution in which the retention was expressed as the sum of the activity coefficients plus a constant. These workers also suggested a method for calculating the activity coefficient in mixed mobile phases.
c) Prediction using the Electronic Interaction Index
electronic interaction index for describing the retention in GC, HPLC and TLC. The electronic interaction index was calculated from the ionisation potentials, molecular polarizability and dipole moments and it was suggested that the values could be useful for predicting the retention properties of solutes ${ }^{129130}$.
d) Computer Based Prediction Methods

A number of prediction methods have been based on computer systems. These will be discussed more fully in a later section (Chapter 8) but have included the database system of Jinno and co-workers 29.77 .79 and the many optimisation systems.

1.3 USE OF RETENTION INDICES IN RP-HPLC

In RP-HPLC the commonest method of reporting retention is the capacity factor (k ') calculated according to the equation $k^{\prime}=\left(t_{k}-t_{0}\right) / t_{0}$. Although capacity factors are independent of the column dimensions and the flowrate they have been shown to be very dependent on the value of to, the temperature and the column packing material. This makes the comparison of data from different sources very difficult. In attempting to find a more robust method of reporting retention various workers have suggested the use of retention indices. Most retention index scales are based on the linear relationship, for a homologous series, between the carbon number and log capacity factor. HPLC retention indices are therefore analogous to Kovats indices, which have frequently been used to standardise retention in gas-
liquid chromatography ${ }^{131}$, in which the retention of a compound is expressed relative to the retention of $n-a l k a n e$ standards. One of the problems in LC is the choice of suitable standards, n-alkanes are not generally applicable due to the problems of the lack of a UV chromophore and the limited polarity range. A successful standard homologous series should have a reasonably strong UV chromophore, preferably at the most commonly used wavelength of 254 nm . The standards should be widely available and should cover the polarity range of typical analytes. Under the experimental conditions the standards should also not be ionised. Many homologous series have been suggested as suitable standards, these have been described in a recent review by Smithma and include n-alkanes, n-alkylbenzenes, alkan-2-ones, alkylarylketones, esters and polycyclic hydrocarbons. Of these the alkan-2-one scale proposed by Baker ${ }^{133}$ and the alkylarylketone scale proposed by Smith ${ }^{134}$ have been most widely used.

An additional scale has recently been proposed by Boguszisa using the n-nitroalkanes as standards. Although these last compounds have a reasonable chromophore at about 230 nm their absorption is very small at 254 nm . Bogusz suggested that as the early members of the series have short retention times, they could therefore be used as an alternative to the alkan-2-one scale to determine the retention indices of poorly retained drug species. These compounds often elute before the first member of the alkylarylketone scale and the curve would have to be tome extrapolated.

Bogusziac-13e has also published work describing the use of "corrected "retention indices. In these papers the
retention indices, based on alkylarylketones, were corrected to account for differences between columns and laboratories. These differences arise from the use of different columns and/or slightly different conditions and eluents. Although retention indices are considerably less sensitive to the exact experimental conditions they do still show some dependence.

In his review which covered the literature up to mid 1987 Smith ${ }^{23}$ as identified areas of use of retention indices as the identification of "unknown" compounds, retention prediction and structure-activity relationships, and characterisation of selectivity and stationary phases in a manner similar to McReynolds constants and Rohrschneider constants used to characterise GLC columns.

Since publication of the review two compilations of retention index values have been reported, in both of these compounds are identified by a combination of their retention indices, using alkylarylketones standards, and UV/VIS spectrum. The first of these by Hill and Langner ${ }^{13}$ was a database of 157 drug compounds measured under acidic conditions and 144 drug compounds under basic conditions. The second by Frisvad and Thrane 140 contained data on mycotoxins and fungal metabolites.

Other recent papers which have appeared include those of Mockel $44-47$ using the n-alkane scale. The retention properties of various compounds were related to structural and physical properties. Although it was suggested that this might provide a method of predicting retention this was not actually done. Recent work by Dimovi4i on retention indices has also suggested a method to calculate the n-alkane retention index of alkylbenzenes on the basis of the carbon
number and branching terms.

1.3.1 Retention Indices in Retention Prediction

Of the many retention prediction systems which have been discussed in this chapter the majority have been based on capacity factors with relatively few using retention indices. One of the major problems of basing the retention prediction on capacity factors was the high degree of dependence on the column, temperature and eluent composition which may limit the applicability of the scheme or require recalibration for every column used. Retention indices have been shown to be robust to small changes in the experimental conditions although they do change over wider eluent ranges. Retention indices were also sensitive to selectivity changes between columns but again the change was considerably less than in the capacity factor ${ }^{142}$. Retention prediction schemes based on retention indices should therefore prove more robust than schemes based on capacity factors. Despite these apparent advantages very few retention prediction schemes have been based on retention indices. Most of these have already been discussed in the different sections of this chapter.

Among the prediction schemes based on retention indices a variety of scales have been used. The alkan-2-one retention index scale was used by Bakereman, using the retention index of a parent plus a multiple of the octanolwater partition coefficient (see Section 1.2.3). Using the same retention index scale Shalabys calculated retention index scales directly from the octanol-water partition coefficient of the "unknown" compound. The n-alkane scale
was used by Mockel et al.44-47 in describing the relationship between retention and molecular surface area (Section 1.2.1 e).

Several workers have suggested the use of a group contribution approach using different scales (see Section 1.2.5). The n-alkane scale was used by Morishita ${ }^{144}$. Popli12. used the $P A H$ scale and the alkan-2-one scale has been used by Magg and Ballschmiterin.

Finally Dimov ${ }^{140}$ has recently described a method of calculating the retention indices, on the n-alkane scale, of alkanes and alkylbenzenes based on the chain length and branching of alkylbenzenes.

1.4 INTRODUCTION TO CURRENT WORK

The aim of the current study was to develop a method to predict the retention index of a compound from its molecular structure. The approach taken was a group contribution (see Section 1.2.6) approach in which the retention index has been calculated from the contributions of the parent, the substituents and interactions between substituents using the equation

$$
R I=P I+\Sigma S I_{A R-x}+\Sigma S I_{A 1-x}+S I_{R}+\Sigma I I_{\gamma-z} 1.15
$$

```
where PI = Retention index of a parent
    SIAr-x = Substituent index of the aromatic
        substituent
    SIA1-x = Substituent index of aliphatic substituents
    SIR = Substituent index of saturated alkyl chain
    IIr-z = Interaction indices to account for
        interactions between substituents

The retention index scale used was based on the linear relationship between log capacity factor and carbon number of the alkylarylketones.

Each term in the above equation was related to the organic modifier concentration of the eluent using a quadratic equation. This enabled the retention index to be calculated at any eluent composition and therefore by calculating the retention of two compounds their separation can be optimised.

The first stage in developing the prediction scheme was to obtain numerical values for each term in the equation. Each of these terms was calculated from the retention index increment which was the difference between the experimental retention indices of the substituted compound and the unsubstituted parent at the same eluent composition.

For example, the retention index increment used to calculate the substituent index, of an aromatic substituent X would be calculated using the equation
\[
\delta R I=R I_{p n-x}-R I_{p n-H}
\]

Where the substituent was a single functional group the retention index increments can then be used to determine regression equation describing the change with eluent composition. This equation can then be used to calculate the substituent index at any eluent composition. A single parent, benzene, was used throughout the study and substituent indices were calculated for 14 aromatic substituents and 12 substituents on aliphatic side chains. Substituent indices have been obtained for a range of substituents using model compounds which were
monosubstituted benzenes or alkylbenzenes.
The interaction indices were calculated from compounds in which more than one substituent was present (e.g. \(\left.\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Y}\right)\). The interaction increments ( \(\delta I\) ) were calculated from the difference between the measured retention index of this compound and the sum of the parent retention index and substituent indices for \(X\) and \(Y\).
\[
\delta I=R I_{\times P n Y}-\left(P I+S I_{X}+S I_{Y}\right)
\]

As with the substituent indices these have been obtained using a number of model disubstituted benzenes over a range of eluent compositions.

It was important that the increments were reproducible and as robust as possible. To ensure this and that the observed changes in retention index were due to changes in the substituents or eluent selectivity a single batch of column packing material was used throughout the study and the experimental conditions were carefully controlled.

Having obtained the set of equations the next stage was to develop a method to calculate the retention index of a compound from its molecular structure. This has been done using an expert system to access the database of regression equations. The success of the approach in calculating retention indices has been tested using a set of test compounds.

A commercial prediction / optimisation system was also examined by comparison with the experimental data obtained during this study.

\section*{CHAPTER}

\section*{EXPERIMENTAL}

\subsection*{2.1 CHEMICALS}
a) Mobile Phase Components

Methanol, acetonitrile and tetrahydrofuran were HPLC grade (FSA Laboratory Supplies, Loughborough). Sodium dihydrogen orthophosphate and disodium hydrogen orthophosphate were AR grade (FSA Laboratory Supplies, Loughborough).
b) Retention Index Standards

Acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone and heptanophenone were from various sources.
c) Model and Test Compounds

The model compounds, except phenylacetamide and 3phenylpropionamide, and the test compounds were laboratory grade purchased from various sources.

3-phenylpropionamide and phenylacetamide were prepared from the corresponding acid chlorides by reaction with ammonia.
d) Void Volume Marker

Sodium nitrate AR grade (FSA Laboratory Supplies,

Loughborough).

\subsection*{2.2 HPLC EQUIPMENT}

All experimental work was performed using a HPLC system consisting of a Pye-Unicam PU 4010 pump and a Pye Unicam PU 4025 UV detector set at 254 nm . Separations were carried out using a \(100 \times 5 \mathrm{~mm}\) I.D. column slurry packed in the laboratory with \(5 \mu \mathrm{~m}\) Spherisorb ODS2 (batch 23/151, Phase Separations, Queensferry, U.K.). Injections were made using a Rheodyne 7125 injection valve fitted with a \(20 \mu \mathrm{loop}\). The column was maintained at \(30^{\circ} \mathrm{C}\) by circulating water, from a water bath thermostatted to \(30^{\circ} \mathrm{C}\), through a glass jacket surrounding it. Retention times were recorded using a Shimadzu Chromatopac CR-3A integrator.

\subsection*{2.3 COMPUTING}

Calculations of retention indices were performed on an APPLE II computer and later on an OPUS PC II personal computer, Opus Technology, using a least squares program written in BASIC. Regression curves were fitted using a curve fitting program, Curve Fitter, Interactive Microware Inc., on the APPLE II. Retention prediction was performed using an expert system shell VP-Expert, Paperback Software, and a: spreadsheet package VP-Planner, Paperback Software, on the OPUS PC II. An optimisation package ,Drylab I, LC Resources inc. was also used.

The OPUS PC II had 1024 K RAM, dual \(51 / 4 " 360 \mathrm{~K}\) disk
drives and monochrome monitor. It was fitted with a Hercules type monochrome graphics card and was attached to a printer (Panasonic KX-P1081).
2.4 EXPERIMENTAL PROCEDURE

\subsection*{2.4.1 Mobile Phase Preparation}

The aqueous phase was a pH 7 buffer prepared from 1.5 g of sodium dihydrogen orthophosphate and 1.3 g of disodium hydrogen orthophosphate dissolved in 1 of di-distilled or deionised and scrubbed water. The buffer was used undiluted except at \(90 \%\) organic modifier where it was necessary to dilute the buffer 10 fold to prevent precipitation of the buffer salts.

Mobile phases containing 40 to \(90 \%\) methanol and 30 to 90\% acetonitrile at \(10 \%\) increments were prepared by volume from the measured volume of the organic modifier and adding a measured volume of the aqueous buffer solution. The same mobile phase compositions were used on different occasions. The eluents were degassed under vacuum using a water pump before use.

\subsection*{2.4.2 Solute Preparation}

The retention index and solute solutions were prepared by dissolving sufficient of the compound in 10 ml of mobile phase to enable detection using the UV detector set at 0.08 aufs.

\subsection*{2.4.3 Void Volume Solution}

The void volume marker solution was prepared by dissolving sodium nitrate in water at a concentration of 6 \(\mathrm{mg} \mathrm{ml}^{-1}\). The void volume was taken as the peak maximum as recorded by the integrator.

\subsection*{2.4.4 Column Testing}

During the study four columns packed in the laboratory from the same batch of packing material were used in sequence. A column was repacked with fresh stationary phase when the peak shape deteriorated.

The columns were packed using an upward slurry packing method at a pressure of 4000 - 6000 psi. The packing material (1.8g) was suspended in 5 ml of propan-2-ol and packed in propan-2-ol. Methanol-water (50:50) was used to condition the column.

After packing the columns were tested for efficiency and peak symmetry using an eluent containing 70:30 methanol - water and a test solution containing benzamide, acetophenone, benzophenone and biphenyl. The efficiency was measured on the biphenyl peak and was in the range 5000 6000 for each 100 mm column.

To ensure that the retentive capacity of the different columns was comparable each column was tested using a set of model compounds (see later Chapter 3, Section 3.4) at a single eluent composition (MeOH-buffer 60:40 ). On a daily basis the column performance was monitored using three model compounds, phenol, benzene and toluene.

The column was allowed to equilibrate with mobile phase for at least 1 hour at \(1 \mathrm{ml} \mathrm{min}^{-1}\) flowrate with the effluent going to waste. After this the eluent was recycled to the solvent reservoir.

The flowrate was altered as necessary between 0.5 and \(3 \mathrm{ml} \mathrm{min}^{-1}\), depending on the eluent composition, to maintain reasonable retention times.

An injection (10 \(\mu \mathrm{l}\) ) of the retention index standards, acetophenone to heptanophenone, as a mixture was made followed by an injection of each model and test compound individually and the void volume marker. This sequence was repeated three times for each eluent composition. Where possible the three sets were completed on a single day however where this was not possible a single batch of the mobile phase was used over a two day period to complete the set.

\subsection*{2.5 CALCULATIONS}

Mean retention times were calculated as the arithmetic mean of the three retention times measured for a solute and this value was used for all subsequent calculations.

\subsection*{2.5.1 Capacity Factors}

\section*{Capacity factors were calculated according to the} equation
\[
k^{\prime}=\left(t_{r}-t_{0}\right) / t_{0}
\]
and expressed to two decimal places.

\subsection*{2.5.2 Retention Indices}

Retention Indices were calculated as described by Smith \({ }^{134}\). A linear least squares regression equation was obtained for \(\log k^{\prime}\) vs. 100 x carbon number for the alkylarylketone standards run as part of the same sequence of injections. The retention indices are obtained for the test solutes by substitution of their capacity factors into the regression equation. A computer program was written in BASIC to carry out the calculation initially on an APPLE II computer and later on an OPUS II.

\subsection*{2.5.3 Parent indices}

The parent indices were calculated from the quadratic regression equations relating the change in the retention index of the parent (benzene) to the methanol or acetonitrile proportion of the eluent over the range 30 80\% MeCN or \(40-80 \% \mathrm{MeOH}\).

\subsection*{2.5.4 Substituent Indices}

Retention index increments for a substituent were calculated from the equation
where \(R I_{x}\) was the retention index of a substituted compound and \(P I\) was the calculated parent index. Substituent indices (SI) were calculated from quadratic regression equations relating the change in the retention index increments to eluent composition (over the ranges \(30-80 \%\) acetonitrile and 40-80\% methanol).

\subsection*{2.5.5 Interaction Increments}

Interactions between substituents were measured using disubstituted compounds. The interaction increments were calculated from the difference between the measured retention index of these compounds and the sum of the parent index and the substituent indices of the substituents present.
\[
\delta I=R I_{\text {pnxy }}-\left(P I+S I_{\times}+S I_{\curlyvee}\right) 2.3
\]

\subsection*{2.5.6 Retention Prediction}

Retention indices of "unknown" compounds were calculated using the expert system VP-Expert on an OPUS II personal computer as will be discussed in a later section.

\section*{CHAPTER 3}

\section*{REPRODUCIBILITY AND ROBUSTNESS OF CAPACITY FACTORS AND RETENTION INDICES}

The aim of the study was to develop a method of calculating the retention of a compound based on its molecular structure. The proposed method to do this was based on the summation of the contributions to the retention index from the parent structure, the substituents and any interactions between the substituents. The retention index, at a particular eluent composition, can therefore be calculated from the equation introduced earlier:-

```

where RI = retention index of compound
PI = retention index value of a parent compound
SIar-x = substituent index values for aromatic
substituents
SIAI-x = substituent index values for aliphatic
substituents
SIR = retention index contribution of saturated
aliphatic carbons
IIr-z = interaction index values due to the
interactions between the substituents

```

Schoenmakers et al.09. 50 have described the relationship between retention expressed as log k' (which is directly related to the retention indices) and the organic
modifier concentration as quadratic within the eluent range 10-90\% organic modifier. In eluents containing less than 10\% organic an additional term was required to describe the behaviour. However, it was suggested that for many compounds, over a more limited range the quadratic term was not significant and a linear relationship could be valid. This assumption has been used by several workers in prediction and optimisation schemes. It has also been used to obtain \(k\) ' values at \(0 \%\) organic modifier by extrapolation, these have been used in the calculation of octanol-water partition coefficients (Section 1.2.3) and were also used by Testa and co-workersse in their retention prediction method. In the present study a quadratic relationship was generally assumed for the change in retention index increments and related functions with eluent composition, unless the change with composition was very small.

The initial stages of the study have involved the accumulation of a database of substituent indices and interaction indices based on experimental data from model compounds over the eluent ranges 30-80\% acetonitrile and 4080\% methanol. The changes in the parent index, the substituent indices and the interaction indices with organic modifier concentration are described by quadratic regression equations. The regression equations can then used to predict the retention indices of other compounds. The experimental determination of these values will be discussed in the following chapters.

The accuracy of any retention prediction using the above equation will be dependent on the reproducibility and robustness of the index values to small changes in conditions. The values need to be reproducible over the
period of the study and also it must be possible to reproduce the values in other laboratories and on other columns. To ensure that any changes observed were not due to changes in the experimental conditions a number of parameters were carefully controlled throughout the study. These included temperature, the mobile phase and the column. A description of the methods used throughout the study is given in this Chapter (Section 3.1). The effect of the inevitable small variations in the experimental conditions on the capacity factor and retention indices have been investigated. The results have been used to establish the uncertainty which would be expected in any experimental or predicted retention index value.

\subsection*{3.1 METHOD PROTOCOLS}

To ensure that the changes in the measured index values were a result of changes in the substituent and not due to changes in the separation conditions a number of experimental conditions were controlled. By following a constant experimental procedure it should be possible to reproduce the values both on the same equipment and on other systems.
a) Temperature

Capacity factors ( \(k^{\prime}\) ) have been shown to be inversely proportional to the absolute temperature \({ }^{3,143}\) and temperature has also been shown to effect the retention indices \({ }^{144}\) of some compounds. Despite these observations
many workers still work at ambient temperature but in this laboratory the ambient temperature varied considerably over even a short period. The temperature of the column was therefore maintained at \(30^{\circ} \mathrm{C}\) by circulating water from a thermostatted water bath through a glass jacket surrounding the column. This temperature was above the usual maximum ambient temperature of the laboratory and could therefore be readily maintained. Previous work using retention indices on the alkylarylketone scale had also used this as the standard temperature \({ }^{144-14 \pi}\).

\section*{b) Buffer pH}

The retentions of ionisable compounds have been shown to be dependent on the pH and ionic strength of the mobile phase as the extent of ionisation varies \({ }^{144}\). The aqueous component of the mobile phase was therefore standardised as a pH 7 buffer prepared by weight from sodium dihydrogen orthophosphate and disodium hydrogen orthophosphate. Although using a pH 7 buffer ensured that the majority of compounds studied would not be ionised, it was not possible to examine carboxylic or sulphonic acids which would be fully ionised at this pH . The results also suggested that the primary aliphatic amines might be partially protonated at this pH. The ionic strength of the aqueous phase was kept constant by preparing the buffer by weight. However, it was necessary to dilute the buffer tenfold for eluents containing \(90 \% \mathrm{MeCN}\) or \(90 \% \mathrm{MeOH}\) to prevent precipitation of the buffer salt components. The pH of the buffer was not altered by this action and the effect of changing the buffer concentration of the aqueous phase on the retention of a
selection of compounds has been studied (see section 3.3).
c) Stationary Phase

Changes in capacity factor and retention index have been reported where different makes and batches of column packing material have been used \({ }^{142}\). To ensure that any changes in different index values throughout the study were not caused by changes in the packing material a single batch of Spherisorb ODS2 packing material was used throughout the study. Four columns, packed in the laboratory, with the same batch of packing material were used in turn. A column was replaced when the peak shape deteriorated.
d) Experimental Procedure

The experimental procedure followed throughout the study was kept constant. The injection procedure for a set of runs was an injection of the alkylarylketones (acetophenone to heptanophenone) as a mixture followed by the individual test and model compounds and finally the column void volume marker solution. This procedure was repeated three times for each set of compounds. Where possible the three runs were completed on a single day, however with eluents containing low organic modifier concentrations this was not possible. The three runs were completed using a single batch of eluent which was recycled. The column void volume was measured from the retention time of the UV maximum absorption peak, as recorded by the integrator, of a constant injection volume (10 \(\mu \mathrm{l}\) ) and concentration ( \(6 \mathrm{mg} \mathrm{ml}{ }^{-1}\) ) of an aqueous solution of sodium
nitrate. However the retention time of this compound was very short and small variations in the measured retention time could significantly alter the capacity factors. Alternative methods of obtaining a value of the column void volume by calculation were therefore investigated (see Section 3.2).

The flowrate was varied between \(0.5 \mathrm{ml} \mathrm{min}-1\) and 3 ml min \(n^{-1}\) depending on the eluent composition to maintain reasonable retention times for the model compounds.
e) Calculations

Although the integrator recorded retention times to 0.001 minute as the injections were all made manually the accuracy cannot be expressed to this precision. Capacity factors were therefore calculated to two decimal places and retention indices were expressed as integers.

The capacity factors were calculated from the arithmetic mean of the three retention times ( \(t_{R}\) ) of the solutes. The retention indices were calculated as described previously by Smith \({ }^{294}\) from a linear regression line describing the relationship between \(\log\) capacity factor and carbon number of the alkylarylketones, the correlations were usually high (see Section 3.5). Retention indices of the model compounds can then be calculated by substitution into the equation. In each eluent the retention indices were calculated using the capacity factors of the alkylarylketones included within the same set of infections as the model compounds.

Despite following the experimental procedure described

\begin{abstract}
above and controlling as many factors as feasible experimental errors cannot be totally eliminated. This will be reflected in the uncertainty in any determined value and therefore in the accuracy which could be expected from the predicted retention indices. To examine the success of the precautions taken in producing reproducible retentions and to determine the uncertainty in an individual retention index several investigations of the reproducibility were undertaken. These have included a study of the short term reproducibility of the measurements on a single day and the long term reproducibility over the period of the study. The linearity of the \(\log\) capacity factor vs. carbon number ( \(\mathrm{C}_{\mathrm{nos}}\) ) relationship for the alkylarylketones, which was used to calculate the retention indices was also investigated.
\end{abstract}

\subsection*{3.2 THE DETERMINATION OF COLUMN VOID VOLUME AND THE EFFECT ON CAPACITY FACTORS AND RETENTION INDEX}

Capacity factors were calculated from the equation \(k^{\prime}=\) ( \(\left.t_{R}-t_{0}\right) / t_{0}\), they were therefore dependent on the values used for the column void volume. It was therefore necessary to use a reproducible measurement of the column void volume. Despite the importance of the column void volume there is no agreed standard method for determining its value. The suggested methods of determining the column void volume have been the subject of considerable work which has been discussed recently by Smith et al. \({ }^{250}\) and Djerki and Laub \({ }^{251.252}\). Various methods have been suggested including the injection of unretained species, the injection of mobile phase components or deuterated mobile phase components, the
volume of the "accessible" pore space and calculation methods. Smith \({ }^{150}\) recommended the use of an injection of uracil, however, other workers \({ }^{183-10=}\) have recommended using the retention time of an injection of a fixed volume and concentration of a sodium nitrate solution.

Although capacity factors were very dependent on the column void volume Smith \({ }^{14=}\) reported that retention indices, as an interpolated scale, were virtually independent of the column void volume value. In previous studies on the use of retention indices, based on the alkylarylketones, an injection of sodium nitrate has been used to determine the column void volume, this method was also used in this study. The dependence of the retention of sodium nitrate on the eluent composition and concentration injected has been studied below. The reproducibility of the measured column void volume has also been examined.

Because of the uncertainty in the measurement of the retention time of the unretained species it has been suggested that calculations could be used to estimate the column void volume. Two possible calculation methods were examined and will be discussed below.

The effect of using different column void volume values on the capacity factor and retention index of a selection of test compounds has been examined (Section 3.2.5).

\subsection*{3.2.1 Investigation of the Dependence of the Retention of Sodium Nitrate on its Concentration}

Several workers have studied the retention characteristics of inorganic salts, including potassium nitrate, potassium dichromate, sodium nitrite and sodium
nitrate which have been used for the determination of the column void volume \({ }^{250,154}\). Sodium nitrate has probably been used most frequently as it has a strong UV absorption at 254 nm . Jinno et al. \({ }^{150}\), and Hennion and Rosset \({ }^{103}\) have found that in methanol and acetonitrile eluents the retention depended on the injection concentration and injection volume \({ }^{2=5}\). However, Wells et al.154 found that provided the concentration was greater than \(3 \times 10^{-6} \mathrm{M}\) the retention of sodium nitrate was independent of the injection concentration.

In the present study the dependence of the retention time of sodium nitrate on the injection concentration was investigated using \(10 \mu 1\) injections of aqueous sodium nitrate solutions containing 1 to \(24 \mathrm{mg} \mathrm{ml}^{-1} \mathrm{NaNO}_{\mathrm{s}}\). These concentrations correspond to molar concentrations of 0.01 to 0.28 M NaNO . For all the injections the retention time was taken as the maximum of the UV absorption peak as recorded by the integrator and the mean of three injections were calculated (Table 3.1). The study was carried out in two eluents, methanol-buffer (70:30) and acetonitrile-buffer (70:30), at a constant flowrate of \(1 \mathrm{ml} \mathrm{min}^{-1}\).

In both eluents the retention time of sodium nitrate was dependent on the injection concentration (in methanol the retention times ranged from 0.843 minutes for a 11 mg \(\mathrm{ml}^{-1}\) injection to 0.922 for a \(24 \mathrm{mg} \mathrm{ml}{ }^{-1}\) injection, in acetonitrile 0.749 for a \(1 \mathrm{mg} \mathrm{ml}{ }^{-1}\) injection to 0.818 for a \(24 \mathrm{mg} \mathrm{ml}^{-1}\) injection). This agreed with the findings of Jinno et al. \({ }^{255}\) and Hennion and Rosset \({ }^{25}\). Consequently for all subsequent work a constant injection volume, \(10 \mu \mathrm{l}\), of a constant concentration, \(6 \mathrm{mg} \mathrm{ml}^{-1}\), of sodium nitrate was used to determine the column void volume.
3.2.2 Investigation of the Dependence of the Retention Time of Sodium Nitrate on the Eluent Composition

The dependence of the retention time of sodium nitrate on the ionic strength of the aqueous phase at a constant organic modifier concentration and the concentration of organic modifier in the mobile phase have also been examined. The retention time of sodium nitrate, 0.863 minutes in methanol-water (70:30) to 0.875 minutes in methanol-buffer 0.02 M , was almost independent of the ionic strength of the aqueous phase (Table 3.2). The changes being within the range of experimental variation which were measured for MeOH-buffer 70:30 and MeCN-buffer 70:30 in the study (see Section 3.2.4, Table 3.9).

However, the retention was dependent on the proportion of organic modifier in the eluent. There was a decrease in retention time with increasing modifier concentration 0.880 minutes in \(30 \%\) acetonitrile to 0.790 in \(80 \%\) and 0.942 minutes in \(40 \%\) methanol to 0.883 in \(80 \%\) methanol) (Table 3.3). There was a marked change with the decrease in buffer concentration particularly with 90\% acetonitrile 10.834 minutes) (Table 3.3).

Table 3.1: Mean retention times of sodium nitrate with different injection concentrations

Mean of triplicate \(10 \mu \mathrm{l}\) injections;
modifier-buffer ( pH 7 ) 70:30, flowrate \(1 \mathrm{ml} \mathrm{min}^{-1}\).
\begin{tabular}{lllllll} 
Organic & \multicolumn{6}{l}{\begin{tabular}{l} 
Retention time (min) \\
Sodifier
\end{tabular}} \\
& 1 & 3 & 6 & 12 & 18 & 24 \\
& & & & & \\
& 0.843 & 0.847 & 0.856 & 0.897 & 0.917 & 0.922 \\
methanol & 0.749 & 0.768 & 0.778 & 0.793 & 0.803 & 0.818
\end{tabular}

Table 3.2: Retention times of sodium nitrate with different concentrations of buffer as aqueous phase

Mean of triplicate \(10 \mu l\) injections; modifier-buffer ( pH 7 ) 70:30, flowrate \(1 \mathrm{ml} \mathrm{min}^{-1}\).
\begin{tabular}{lllllll} 
Organic & \multicolumn{6}{l}{\begin{tabular}{l} 
Retention time (min) \\
Bodifier
\end{tabular}} \\
& 0.000 & 0.001 & 0.002 & 0.005 & 0.01 & 0.02 \\
& & & & & & \\
& 0.863 & 0.869 & 0.850 & 0.846 & 0.901 & 0.875 \\
methanol & 0.763 & 0.766 & 0.762 & 0.773 & 0.774 & 0.776
\end{tabular}

Table 3.3: Retention times of sodium nitrate with different organic modifier proportions
\begin{tabular}{|c|c|c|}
\hline Modifier-buffer ( pH 7 ) v/v & Retention Modifier Methanol & \begin{tabular}{l}
e (min) \\
Acetonitrile
\end{tabular} \\
\hline 30:70 & - & 0.880 \\
\hline 40:60 & 0.942 & 0.844 \\
\hline 50:50 & 0.911 & 0.782 \\
\hline 60:40 & 0.884 & 0.769 \\
\hline 70:30 & 0.866 & 0.782 \\
\hline 80:20 & 0.833 & 0.790 \\
\hline 90:10** & 0.826 & 0.834 \\
\hline
\end{tabular}
3.2.3 Calculation Methods for the Determination of Column Void Volume

The problem of accurately measuring the retention time of an unretained solute and the dependence of the measured retention time on the injection concentration have led to various workers suggesting alternative calculation methods, to obtain a value for the void volume. The calculation methods are based on the linear relationship between \(\log k\) ' and \(C_{\text {no }}\) for a homologous series \(150,1=1,156-1.61\). It has been suggested that these estimated to values should be more reproducible than measured values. Although in most studies the use of a homologous series to determine the column void volume would be a disadvantage as it would require the measurement of additional retention times of a homologous series, this is not true if retention indices are used as the retention times of a series of homologues would already be known. It would also be possible to incorporate a routine to calculate the column void volume into the program used to calculate retention indices.

The choice of the members of the homologous series to include may be important. Van Tulder \({ }^{2}\) es recommended that the first two members of a homologous series should not be used due to possible non-linearity. A discontinuity in the log \(\mathrm{k}^{\prime}\) vs. Cno curve has been reported where the carbon chain length was approximately equal to the length of the bonded phase \({ }^{16 z}\), in this case \(C_{1 \varepsilon}\). The largest member of a homologous series should therefore be less than the length of the bonded stationary phase. Two calculation methods have been examined, the first a method proposed by Berendson et al. \({ }^{161}\) and the second a procedure developed by Smith \({ }^{146}\).

Both of these calculation methods were previously examined by Smith and Garside studying retention indices on polymer columns \({ }^{14 e}\). Three lengths of the homologous series of alkylarylketones (acetophenone to heptanophenone, propiophenone to heptanophenone, and valerophenone to heptanophenone) were used to calculate column void volume values.
a) Calculation of Column Void Volume using the Berendson Method

\begin{abstract}
Berendson et al. \({ }^{161}\) derived an equation relating the retention times of adjacent homologues to a calculated column void volume using the equation
\end{abstract}
\[
t_{R_{n} n+1}=A t_{R_{n} n}-(A-1) t_{0}
\]

Where \(t_{A}\) was the retention time of the \(n^{t h}\) or \((n+1)^{t h}\) member of the homologous series. By using a least squares regression equation for \(t_{R_{n}+\infty}\) against \(t_{R, n}\) the slope (A) and intercept [(A-1)tol could obtained and used to calculate to. This method was applied to the retention times (Table 3.4) of alkylarylketones determined in a range of eluents. The retention times of the alkylarylketones used for calculation were typical values collected on a single column.

For all the eluents and sets of homologues used the correlations for the relationship were high (0.9990 to 0.9999). The calculated to values (Table 3.5) were dependent on the set of homologues used and were generally higher than the values measured using sodium nitrate, for example in
methanol-buffer 50:50 the retention time of sodium nitrate was 0.678 minutes and the calculated values ranged from 1.558 to 1.990 minutes. In many cases the values were so high that they were greater than the retention times of poorly retained model compounds and it would therefore be impossible to calculate capacity factors and retention indices for these compounds. In particular the column void volume value derived from the series butyrophenone to heptanophenone in \(40 \%\) methanol was clearly erroneous at 5.040 minutes as it was greater than the retention time of acetophenone (3.132 minutes). Similar high values and results have been found by Smith and Garsidewe in a study of retention indices on polymer columns.
b) Calculation of Column Void Volume using an Iterative Method

In this method an estimated value of the column void volume equal to half the shortest retention time was chosen and used in a least squares regression equation for log \(k\) ' vs. Cmo. The estimated to value was then changed systematically and the regression repeated until further iterations did not improve the linearity within a defined interval. The retention times and sets of alkylarylketones used previously (Table 3.4) for the calculation by the Berendson method were used to calculate to values (Table 3.6). The correlations observed were again high ranging from 0.9990 to 1.0000 . As with the values calculated using the Berendson method the to values were generally larger than the corresponding measured values and the often similar to those calculated previously. Again the calculated values

Table 3.4: Retention times of alkylarylketones used for calculation of column void volume

Mean of triplicate \(10 \mu \mathrm{l}\) injections.

methanol-buffer
\begin{tabular}{llrrrrrl}
\(\mathrm{C}_{\boxed{3}}\) & -- & 3.132 & 2.251 & 2.317 & 1.664 & 1.357 & 2.368 \\
\(\mathrm{C}_{9}\) & -- & 6.610 & 3.883 & 3.463 & 2.159 & 1.567 & 2.535 \\
\(\mathrm{C}_{10}\) & -- & 14.035 & 6.838 & 5.297 & 2.843 & 1.813 & 2.715 \\
\(\mathrm{C}_{11}\) & -- & 32.955 & 13.348 & 8.951 & 4.053 & 2.206 & 2.986 \\
\(\mathrm{C}_{12}\) & -- & 82.444 & 27.530 & 15.645 & 6.119 & 2.796 & 3.350 \\
\(\mathrm{C}_{13}\) & -- & 215.505 & 58.470 & 29.529 & 9.622 & 3.688 & 3.849
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrrrrrrr}
\(\mathrm{C}_{\mathrm{a}}\) & 2.792 & 2.173 & 2.179 & 1.679 & 1.394 & 1.238 & 2.371 \\
\(\mathrm{C}_{5}\) & 5.927 & 3.791 & 3.224 & 2.204 & 1.680 & 1.395 & 2.550 \\
\(\mathrm{C}_{10}\) & 12.074 & 6.447 & 4.706 & 2.885 & 2.026 & 1.577 & 2.748 \\
\(\mathrm{C}_{12}\) & 26.078 & 11.550 & 7.201 & 3.922 & 2.518 & 1.827 & 3.013 \\
\(\mathrm{C}_{12}\) & 58.424 & 21.405 & 11.460 & 5.577 & 3.301 & 2.186 & 3.371 \\
\(\mathrm{C}_{13}\) & 131.769 & 40.126 & 18.662 & 8.172 & 4.448 & 2.700 & 3.854
\end{tabular}

Table 3.5: Column void volume values calculated using the Berendson method

Calculated from retention times of alkylarylketones in Table 3.4..
```

Series used Calculated column void volume (min)
for calculation Modifier proportion (%)
30

```
methanol-buffer
\begin{tabular}{llllllll} 
sodium nitrate & -- & 0.488 & 0.678 & 0.851 & 0.912 & 0.826 & 1.784 \\
\(\mathrm{C}_{\S}-\mathrm{C}_{13}\) & -- & 2.408 & 1.558 & 1.234 & 1.149 & 0.970 & 1.922 \\
\(\mathrm{C}_{9}-\mathrm{C}_{13}\) & -- & 3.137 & 1.871 & 1.403 & 1.257 & 1.049 & 2.086 \\
\(\mathrm{C}_{20}-\mathrm{C}_{13}\) & -- & 5.040 & 1.990 & 1.329 & 1.197 & 1.014 & 2.022
\end{tabular}
acetonitrile-buffer
\begin{tabular}{llllllll} 
sodium nitrate & 0.424 & 0.531 & 0.764 & 0.774 & 0.765 & 0.770 & 1.698 \\
\(\mathrm{C}_{8}-\mathrm{C}_{13}\) & 0.783 & 0.642 & 0.880 & 0.872 & 0.887 & 0.894 & 1.872 \\
\(\mathrm{C}_{9}-\mathrm{C}_{13}\) & 1.052 & 0.838 & 1.099 & 1.034 & 1.003 & 0.975 & 2.005 \\
\(\mathrm{C}_{10}-\mathrm{C}_{23}\) & 0.974 & 0.783 & 1.108 & 0.996 & 1.030 & 1.000 & 1.990
\end{tabular}

Table 3.6: Column void volumes values calculated using an iterative process

Calculated from retention times of alkylarylketones in Table 3.4.

Series used Calculated column void volume (min)
for calculation Modifier proportion (\%)
\(\begin{array}{lllllll}30 & 40 & 50 & 60 & 70 & 80 & 90\end{array}\)
methanol - buffer
\begin{tabular}{llllllll} 
sodium nitrate & -- & 0.488 & 0.678 & 0.851 & 0.912 & 0.826 & 0.892 \\
\(\mathrm{C}_{\boldsymbol{9}}-\mathrm{C}_{13}\) & -- & 0.754 & 1.088 & 1.080 & 1.091 & 0.944 & 0.900 \\
\(\mathrm{C}_{9}-\mathrm{C}_{13}\) & -- & 1.146 & 1.723 & 1.453 & 1.305 & 1.051 & 0.985 \\
\(\mathrm{C}_{10}-\mathrm{C}_{13}\) & -- & 6.378 & 1.789 & 1.321 & 1.149 & 1.026 & 1.015
\end{tabular}
acetonitrile - buffer
\begin{tabular}{llllllll} 
sodium nitrate & 0.424 & 0.531 & 0.764 & 0.774 & 0.765 & 0.770 & 1.698 \\
\(\mathrm{C}_{8}-\mathrm{C}_{13}\) & 0.447 & 0.492 & 0.698 & 0.774 & 0.839 & 0.832 & 1.760 \\
\(\mathrm{C}_{9}-\mathrm{C}_{13}\) & 1.192 & 0.903 & 1.121 & 1.016 & 1.011 & 0.970 & 1.896 \\
\(\mathrm{C}_{10}-\mathrm{C}_{13}\) & 1.214 & 0.844 & 1.121 & 1.071 & 1.124 & 1.023 & 1.986
\end{tabular}
were dependent on both the eluent composition and the set of homologues.

The calculated to values did not give consistent results. The differences between the values calculated using the different sets of homologues suggests that the assumption of linearity may not be entirely true but dependent on the column void volume value used. The high calculated values would present problems with poorly retained species which might elute before the void volume and therefore give negative capacity factors. Overall neither of these methods offered any advantage over the use of the retention time of a standard sodium nitrate solution. Therefore for the rest of the study the retention time of 10 \(\mu l\) sodium nitrate ( \(6 \mathrm{mg} \mathrm{ml}^{-1}\) ) was used as the void volume marker. At this concentration the retention time was less than the retention time of the least retained model compound and the peak could be detected spectroscopically from a 10 \(\mu 1\) injection.

\subsection*{3.2.4 Reproducibility of Measured Retention Time of Sodium Nitrate}

The overall study has extended over approximately two years using four columns packed from the same batch of packing material. The variation of the measured column void volume over this period has been investigated, for each eluent this represents between twenty and thirty individual determinations.

The retention times of sodium nitrate varied by up to
\(20 \%\) from the mean retention times (Table 3.7). A change of only 2 seconds in the measured retention time would correspond to a change of 2 to \(7 \%\) depending on the flowrate and eluent composition.

\subsection*{3.2.5 Effect of Changes in the Column Void Volume Value on Capacity Factors and Retention Indices}

As measured values of the retention time of sodium nitrate varied by up to \(20 \%\) from the mean value (Section 3.2.4), the effects of using to values of \(\pm 5 \%\) and \(\pm 15 \%\) from the mean, on the calculated capacity factors and retention indices, have been examined. Using the typical retention times of a set of alkylarylketones and a variety of compounds eluting before and after acetophenone the capacity factors were recalculated using the different to values (Table 3.8 and 3.9). Two methanol and two acetonitrile containing eluents have been examined, to check whether capacity factors and retention indices were more sensitive to changes in column void volume when the retention time was small.

The calculated capacity factors (Tables 3.8 and 3.9) were very dependent on the column void volume value used in their calculation. The results show the sensitivity of capacity factors to column void volume and therefore the low reliability of capacity factors due to the difficulties of measuring to.

These calculated capacity factors have been used to calculate retention indices (Tables 3.10 and 3.11 ) using the linear relationship between \(\log k\) ' and \(100 \times C_{n o}\) for the

Table 3.7: Reproducibility of retention time of sodium nitrate

Mean of 20-30 \(10 \mu \mathrm{l}\) injections of \(\mathrm{NaNO}_{3}\left(6 \mathrm{mg} \mathrm{ml}^{-1}\right)\).
\begin{tabular}{lll} 
Eluent & \begin{tabular}{ll} 
Flowrate \\
\(\left(m l \min ^{-1}\right)\)
\end{tabular} & \begin{tabular}{l} 
Retention time (min) \\
\end{tabular}
\end{tabular}
methanol-buffer ( pH 7 )
\begin{tabular}{llllll}
\(40: 60\) & 2.0 & 0.401 & 0.044 & 0.481 & 0.367 \\
\(50: 50\) & 1.5 & 0.607 & 0.091 & 0.678 & 0.586 \\
\(60: 40\) & 1.0 & 0.884 & 0.022 & 0.942 & 0.853 \\
\(70: 30\) & 1.0 & 0.866 & 0.029 & 0.912 & 0.817 \\
\(80: 20\) & 1.0 & 0.833 & 0.020 & 0.857 & 0.798 \\
\(90: 10\) & 0.5 & 1.652 & 0.073 & 1.673 & 1.598
\end{tabular}
acetonitrile-buffer(pH7)
\begin{tabular}{llllll}
\(30: 70\) & 2.0 & 0.440 & 0.047 & 0.573 & 0.382 \\
\(40: 60\) & 2.0 & 0.400 & 0.026 & 0.428 & 0.350 \\
\(50: 50\) & 2.0 & 0.393 & 0.008 & 0.404 & 0.382 \\
\(60: 40\) & 1.0 & 0.769 & 0.022 & 0.826 & 0.745 \\
\(70: 30\) & 1.0 & 0.784 & 0.016 & 0.820 & 0.765 \\
\(80: 20\) & 0.5 & 1.580 & 0.060 & 1.698 & 1.513 \\
\(90: 10\) & 0.5 & 1.669 & 0.050 & 1.698 & 1.618
\end{tabular}

Table 3.8: Effect of changes in the value used for column void volume on calculated capacity factors in methanol eluents

Compound
Calculated capacity factor
Column void volume value
\(-15 \% \quad-5 \% \quad\) Mean
\(-15 \%\)
methanol-buffer 40:60
\begin{tabular}{lrrrrr} 
to (min) & 0.341 & 0.381 & 0.401 & 0.421 & 0.461 \\
acetophenone & 9.29 & 8.21 & 7.75 & 7.34 & 6.61 \\
propiophenone & 20.77 & 18.49 & 17.52 & 16.64 & 15.11 \\
butyrophenone & 51.19 & 45.71 & 43.38 & 41.27 & 37.61 \\
valerophenone & 107.56 & 96.16 & 91.32 & 86.93 & 79.30 \\
hexanophenone & 270.04 & 241.59 & 229.49 & 219.54 & 199.49 \\
heptanophenone & 693.67 & 619.54 & 589.73 & 561.67 & 512.85 \\
phenylacetamide & 2.37 & 2.02 & 1.87 & 1.73 & 1.49 \\
benzy1 alcohol & 3.74 & 3.24 & 3.03 & 2.84 & 2.50 \\
2-phenylethanol & 6.31 & 5.55 & 5.22 & 4.92 & 4.41 \\
3-phenyl-1-propanol & 12.67 & 11.23 & 10.62 & 10.07 & 9.11 \\
4-phenylbutyronitrile & 22.22 & 19.78 & 18.74 & 17.81 & 16.17 \\
toluene & 93.85 & 83.89 & 79.66 & 75.82 & 69.16
\end{tabular}
methanol-buffer 90:10
\begin{tabular}{llllll} 
to (min) & 1.404 & 1.569 & 1.652 & 1.735 & 1.900 \\
acetophenone & 0.75 & 0.56 & 0.48 & 0.41 & 0.29 \\
propiophenone & 0.89 & 0.69 & 0.61 & 0.53 & 0.40 \\
butyrophenone & 1.03 & 0.82 & 0.73 & 0.65 & 0.50 \\
valerophenone & 1.24 & 1.00 & 0.90 & 0.81 & 0.65 \\
hexanophenone & 1.52 & 1.26 & 1.15 & 1.04 & 0.87 \\
heptanophenone & 1.90 & 1.60 & 1.47 & 1.35 & 1.15 \\
phenylacetamide & 0.51 & 0.35 & 0.28 & 0.22 & 0.12 \\
benzyl alcohol & 0.57 & 0.40 & 0.33 & 0.27 & 0.16 \\
2-phenylethanol & 0.61 & 0.44 & 0.37 & 0.31 & 0.19 \\
3-phenyl-1-propanol & 0.67 & 0.50 & 0.42 & 0.35 & 0.24 \\
methyl 3-phenylpropionate & 0.94 & 0.74 & 0.65 & 0.57 & 0.43 \\
toluene & 1.31 & 1.06 & 0.96 & 0.87 & 0.70
\end{tabular}

Table 3.9: Effect of changes in the value used for column void volume on calculated capacity factors in acetonitrile eluents

Compound
Calculated capacity factor
Column void volume value
\(-15 \% \quad-5 \% \quad\) Mean \(\quad+5 \% \quad+15 \%\)
acetonitrile-buffer 30:70
\begin{tabular}{lrrrrr} 
to (min) & 0.374 & 0.418 & 0.444 & 0.462 & 0.506 \\
acetophenone & 6.47 & 5.68 & 5.29 & 5.04 & 4.52 \\
propiophenone & 14.85 & 13.18 & 12.35 & 11.83 & 10.71 \\
butyrophenone & 31.28 & 27.89 & 26.19 & 25.13 & 22.86 \\
valerophenone & 68.73 & 61.39 & 57.73 & 55.45 & 50.54 \\
hexanophenone & 155.21 & 138.77 & 130.59 & 125.46 & 114.46 \\
heptanophenone & 351.32 & 314.24 & 295.78 & 284.21 & 259.41 \\
phenylacetamide & 1.19 & 0.97 & 0.85 & 0.77 & 0.62 \\
benzyl alcohol & 2.12 & 1.79 & 1.63 & 1.53 & 1.31 \\
2-phenylethanol & 3.21 & 2.76 & 2.54 & 2.40 & 2.11 \\
3-phenyl-1-propanol & 5.69 & 4.99 & 4.64 & 4.42 & 3.94 \\
4-phenylbutyronitrile & 21.00 & 18.68 & 17.53 & 16.81 & 15.26 \\
toluene & 32.86 & 29.30 & 27.52 & 26.41 & 24.03
\end{tabular}
acetonitrile-buffer 90:10
\begin{tabular}{llllll} 
to (min) & 1.419 & 1.586 & 1.669 & 1.753 & 1.919 \\
acetophenone & 0.67 & 0.49 & 0.42 & 0.35 & 0.24 \\
propiophenone & 0.80 & 0.61 & 0.53 & 0.45 & 0.33 \\
butyrophenone & 0.94 & 0.73 & 0.65 & 0.57 & 0.43 \\
valerophenone & 1.12 & 0.90 & 0.80 & 0.72 & 0.57 \\
hexanophenone & 1.38 & 1.13 & 1.02 & 0.92 & 0.76 \\
heptanophenone & 1.72 & 1.40 & 1.31 & 1.20 & 1.01 \\
phenylacetamide & 0.49 & 0.33 & 0.27 & 0.21 & 0.10 \\
benzyl alcohol & 0.56 & 0.40 & 0.33 & 0.26 & 0.15 \\
2-phenylethanol & 0.60 & 0.43 & 0.36 & 0.29 & 0.18 \\
3-phenyl-1-propanol & 0.65 & 0.48 & 0.41 & 0.34 & 0.22 \\
methyl 3-phenylpropionate & 0.81 & 0.55 & 0.54 & 0.47 & 0.34 \\
toluene & 1.07 & 0.85 & 0.76 & 0.67 & 0.53
\end{tabular}

Table 3.10: Effect of changes in the value used for column void volume on retention indices in methanol eluents

Calculated from capacity factors in Table 3.8.
\begin{tabular}{lllll} 
Compound & \begin{tabular}{l} 
Retention index \\
Column void volume value
\end{tabular} & \\
& \(-15 \%\) & \(-5 \%\) & Mean & \(+5 \%\)
\end{tabular}
methanol-buffer 40:60
\begin{tabular}{lrrrrr} 
acetophenone & 804 & 804 & 804 & 803 & 803 \\
propiophenone & 898 & 898 & 898 & 898 & 899 \\
butyrophenone & 1003 & 1004 & 1004 & 1004 & 1004 \\
valerophenone & 1090 & 1090 & 1090 & 1090 & 1090 \\
hexanophenone & 1197 & 1197 & 1197 & 1197 & 1197 \\
heptanophenone & 1307 & 1307 & 1307 & 1307 & 1307 \\
phenylacetamide & 645 & 640 & 638 & 636 & 631 \\
benzyl alcohol & 698 & 696 & 694 & 693 & 691 \\
2-phenylethanol & 759 & 758 & 758 & 757 & 756 \\
3-phenyl-1-propanol & 840 & 840 & 840 & 840 & 840 \\
4-phenylbutyronitrile & 906 & 906 & 906 & 906 & 906 \\
toluene & 1074 & 1074 & 1074 & 1074 & 1075
\end{tabular}
methanol-buffer 90:10
\begin{tabular}{lrrrrr} 
acetophenone & 810 & 807 & 804 & 802 & 795 \\
propiophenone & 906 & 907 & 907 & 908 & 910 \\
butyrophenone & 987 & 989 & 991 & 993 & 998 \\
valerophenone & 1084 & 1087 & 1089 & 1091 & 1095 \\
hexanophenone & 1196 & 1197 & 1197 & 1198 & 1199 \\
heptanophenone & 1317 & 1313 & 1311 & 1308 & 1303 \\
phenylacetamide & 605 & 578 & 560 & 536 & 455 \\
benzyl alcohol & 665 & 647 & 635 & 620 & 574 \\
2-phenylethanol & 705 & 692 & 683 & 673 & 643 \\
3-phenyl-1-propanol & 755 & 747 & 741 & 736 & 719 \\
methyl 3-phenylpropionate & 808 & 806 & 803 & 801 & 794 \\
toluene & 1113 & 1115 & 1117 & 1118 & 1122
\end{tabular}

Table 3.11: Effect of changes in the value used for column void volume on retention indices in acetonitrile eluents

Calculated from capacity factors in Table 3.9.

Compound
Retention index
Column void volume value
\(-15 \% \quad-5 \%\) Mean \(+5 \% \quad+15 \%\)
acetonitrile-buffer 30:70
\begin{tabular}{lrrrrr} 
acetophenone & 799 & 799 & 798 & 798 & 798 \\
propiophenone & 904 & 904 & 904 & 905 & 905 \\
butyrophenone & 998 & 998 & 999 & 999 & 999 \\
valerophenone & 1097 & 1097 & 1097 & 1097 & 1098 \\
hexanophenone & 1199 & 1199 & 1199 & 1199 & 1199 \\
heptanophenone & 1302 & 1302 & 1302 & 1302 & 1301 \\
phenylacetamide & 587 & 576 & 569 & 564 & 551 \\
benzyl alcohol & 659 & 654 & 651 & 649 & 643 \\
2-phenylethanol & 711 & 708 & 707 & 706 & 703 \\
3-phenyl-1-propanol & 783 & 782 & 782 & 782 & 781 \\
4-phenylbutyronitrile & 948 & 948 & 948 & 948 & 949 \\
toluene & 1004 & 1004 & 1005 & 1005 & 1005
\end{tabular}
acetonitrile-buffer 90:10
\begin{tabular}{lrrrrr} 
acetophenone & 810 & 806 & 803 & 800 & 792 \\
propiophenone & 903 & 904 & 904 & 905 & 908 \\
butyrophenone & 989 & 993 & 995 & 997 & 1003 \\
valerophenone & 1087 & 1090 & 1092 & 1094 & 1100 \\
hexanophenone & 1196 & 1197 & 1197 & 1198 & 1198 \\
heptanophenone & 1315 & 1311 & 1308 & 1305 & 1298 \\
phenylacetamide & 642 & 618 & 602 & 580 & 501 \\
benzyl alcohol & 714 & 701 & 692 & 680 & 644 \\
2-phenylethanol & 747 & 738 & 731 & 723 & 700 \\
3-phenyl-1-propanol & 796 & 791 & 787 & 783 & 772 \\
methyl 3-phenylpropionate & 913 & 914 & 915 & 917 & 920 \\
toluene & 1061 & 1064 & 1066 & 1068 & 1074
\end{tabular}
alkylarylketones (this relationship will be discussed in more detail in Section 3.5).

In the eluents containing \(30 \%\) acetonitrile and \(40 \%\) methanol the linearity of the log \(k\) ' vs. Cno relationship for the alkylarylketones was not significantly affected by the to value with a correlation coefficient ranging from 0.9994 to 0.9995 in methanol and 0.9998 to 0.9999 in acetonitrile. For well retained species falling within the calibrated region of the retention index scale (i.e. RI > 800), e.g. toluene, 4-phenyl-1-butyronitrile, the retention indices were virtually independent of the value of to used in the calculation, changing by only 1 unit. In these eluents compounds eluting before the calibrated region (i.e. RI ( 800), benzyl alcohol and phenylacetamide) had retention indices which were more dependent on to the effect increasing as the degree of extrapolation increased. However, even with a compound requiring considerable extrapolation (phenylacetamide, RI about 550 in methanol) the retention index changed by only 15 units in methanol and 35 units in acetonitrile.

In the eluents containing \(90 \%\) organic modifier the correlation coefficients obtained for the relationship between \(\log k\) ' and \(C_{n o}\) for the alkylarylketones were more sensitive to the value of the column void volume. In methanol the correlation ranged from 0.9977 to 0.9993 and in acetonitrile from 0.9980 to 0.9997 . The apparent effect on the linearity in these eluents was also noticeable in the deviations of the retention indices of the alkylarylketones from the nominal values. The well retained species again showed only a small dependence on the to value with typical changes in the retention index value of less than 10 units
(toluene in methanol). However, the change in the retention indices of the poorly retained species was in some cases quite large e.g. phenylacetamide 501 to 642 in \(90 \%\) acetonitrile and increased with the degree of extrapolation. The capacity factors of these compounds were typically less than 0.5 which may suggest that at this level the retention index values may be less robust than at higher retentions although the relative changes were still smaller than for the capacity factors.

Retention indices thus compensate for many of the problems associated with determining the column void volume, if the compound is eluted within the calibrated region, but do not totally overcome the problems when the capacity factors are very small (< 0.5 ) and the retention index scale extrapolated.

\subsection*{3.3 DEPENDENCE OF CAPACITY FACTORS AND RETENTION INDICES ON THE BUFFER CONCENTRATION OF THE AQUEOUS COMPONENT OF THE MOBILE PhASE}

On increasing the organic modifier content of the eluents from 80\% to \(90 \%\) it was necessary to reduce the buffer concentration of the aqueous phase to prevent precipitation of the buffer salt components (sodium dihydrogen orthophosphate and disodium hydrogen orthophosphate). The pH of the buffer was not significantly altered, pH range 6.95-7.05, by reducing the concentration. With some model compounds (e.g. aniline, benzyl alcohol, benzyl bromide, benzyl chloride,
nitrobenzene, phenol, phenylacetamide, 4-phenyl-1butyronitrile, 3-phenyl-1-propanol and 3-phenyl-1propionitrile) relatively large changes in retention index were observed between 80 and \(90 \%\) methanol and acetonitrile, as will be discussed in the following chapters. To determine whether the observed changes were due to the enforced change in the buffer concentration and therefore to decide whether the \(90 \%\) values should be included in the data set, the effect of changing the buffer concentration on the capacity factor and retention index was examined. It was also intended to examine whether the abnormal retention patterns of benzyl amine, 2-phenylethylamine and 3-phenyl-1propylamine (see Chapter 4) were due to ionic interactions with the stationary phase by examining the effect of the change in ionic strength on the retention of 3 -phenyl-1propylamine in acetonitrile eluents. The full discussion of the retention behaviour of the model compounds will follow in Chapters 4, 5, 6 and 7.

The effects of ionic strength were examined in methanol -buffer (70:30) and acetonitrile-buffer (70:30) eluents in which buffer insolubility should not complicate the observations. The capacity factors of a selection of model compounds and the alkylarylketones were determined using methanol-water, acetonitrile-water, methanol-buffer and acetonitrile-buffer with concentration from 0.001 M to 0.02 M (Table 3.12). The capacity factors were used to calculate retention indices (Table 3.13).

The capacity factors and retention indices of all the compounds, except 3-phenyl-propylamine, appeared to be effectively independent of the buffer concentration. The small changes in observed \(k\) ' were less than the variations

Table 3.12: Capacity factors obtained using different buffer concentrations as aqueous phases
\begin{tabular}{llllll} 
Compound & \begin{tabular}{lllll} 
& Capacity factor \\
& Buffer concentration & \((M)\) & & \\
& 0.00 & 0.001 & 0.002 & 0.005
\end{tabular} & 0.010 & 0.020
\end{tabular}
methanol-buffer 70:30
\begin{tabular}{lrrrrrr} 
benzamide & 0.31 & 0.28 & 0.30 & 0.31 & 0.28 & 0.27 \\
1,2-dihydroxybenzene & 0.32 & 0.30 & 0.32 & 0.32 & 0.30 & 0.30 \\
aniline & 0.49 & 0.46 & 0.47 & 0.48 & 0.45 & 0.43 \\
phenol & 0.54 & 0.51 & 0.53 & 0.54 & 0.50 & 0.49 \\
m-toluidine \(^{\text {acetophenone }} \quad\) & 0.73 & 0.79 & 0.72 & 0.73 & 0.68 & 0.68 \\
benzene \(^{\text {heptanophenone }} \boldsymbol{\text { an }}\) & 1.00 & 0.96 & 0.98 & 1.01 & 0.96 & 0.94 \\
& 2.09 & 2.00 & 2.04 & 2.10 & 2.01 & 2.03 \\
& 11.54 & 10.98 & 11.17 & 11.77 & 11.31 & 11.49
\end{tabular}
acetonitrile-buffer 70:30
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline benzamide & 0.29 & 0.30 & 0.29 & 0.29 & 0.29 & 0.29 \\
\hline 1,2-dihydroxybenzene & 0.46 & 0.41 & 0.41 & 0.41 & 0.45 & 0.45 \\
\hline phenol & 0.51 & 0.51 & 0.50 & 0.50 & 0.50 & 0.50 \\
\hline aniline & 0.59 & 0.58 & 0.57 & 0.58 & 0.58 & 0.57 \\
\hline m-toluidine & 0.76 & 0.74 & 0.74 & 0.74 & 0.73 & 0.74 \\
\hline acetophenone** & 0.82 & 0.85 & 0.86 & 0.86 & 0.86 & 0.85 \\
\hline enzene & 1.53 & 1.49 & 1.48 & 1.49 & 1.51 & 1.48 \\
\hline heptanophenone** & 5.20 & 5.26 & 5.25 & 5.37 & 5.52 & 5.22 \\
\hline 3-phenyl-1-propylamine & b & 24.23 & 13.04 & 8.79 & 5.52 & 4.44 \\
\hline
\end{tabular}
* the full set of alkylarylketones were examined in the study
ts not eluted from column.

Table 3.13: Retention indices obtained using different buffer concentrations as aqueous phase

Compound Retention index
Buffer concentration (M)
\(\begin{array}{llllll}0.00 & 0.001 & 0.002 & 0.005 & 0.010 & 0.020\end{array}\)
methanol-buffer 70:30
\begin{tabular}{lllllll} 
benzamide & 562 & 555 & 558 & 561 & 552 & 546 \\
1,2-dihydroxybenzene & 571 & 568 & 573 & 573 & 567 & 573 \\
aniline & 656 & 654 & 653 & 654 & 651 & 645 \\
phenol & 677 & 674 & 674 & 676 & 667 & 670 \\
m-toluidine & 740 & 738 & 738 & 738 & 733 & 736 \\
benzene & 954 & 954 & 954 & 953 & 953 & 955
\end{tabular}
acetonitrile-buffer 70:30
\begin{tabular}{llrrrrr} 
benzamide & 499 & 504 & 501 & 498 & 499 & 494 \\
1,2-dihydroxybenzene & 622 & 590 & 594 & 599 & 621 & 621 \\
phenol & 651 & 650 & 650 & 651 & 647 & 647 \\
aniline & 690 & 688 & 689 & 691 & 689 & 687 \\
m-toluidine & 759 & 756 & 761 & 757 & 755 & 757 \\
benzene & 951 & 951 & 953 & 953 & 952 & 952 \\
3-phenyl-1-propylamine & & 1733 & 1558 & 1440 & 1320 & 1259 \\
& & & & & &
\end{tabular}

Figure 3.1: Change in capacity factors of 3-phenyl-1propylamine and aniline with aqueous phase buffer concentration


Figure 3.2: Change in retention index of 3-phenyl-1propylamine and aniline with aqueous phase buffer concentration

observed in a day to day reproducibility study.
3-phenyl-1-propylamine showed a large decrease in both capacity factor (24.33 to 4.44) and retention index (1733 to 1259) with increasing buffer concentration (Figures 3.1 and 3.2). In the eluent containing no buffer this compound was. not eluted from the column. This behaviour of 3-phenyl-1propylamine which has a pKa of \(10.39^{1 e \exists}\) would appear to confirm that in this case the retention mechanism was an ion exchange separation which has previously been suggested for protonated amines \({ }^{164}\). These results contrast with those of
 would be expected to be un-ionised at this pH and whose retention was not influenced by the buffer concentration.

\subsection*{3.4 REPRODUCIBILITY OF CAPACITY FACTORS}

During the study four columns were used and each was packed in the laboratory from the same batch of packing material. To check that the procedures described at the beginning of this chapter were sufficient to produce reproducible capacity factors and to establish the extent of experimental variation the long and short term reproducibility of \(k^{\prime}\) and \(R I\) have been examined. The short term reproducibility has been examined using the retention data obtained over a range of eluent compositions for three separate injections on a single day using the same batch of eluent. The long term reproducibility has been studied using two different methods. When each new column was packed the capacity factors and retention indices of a set of test compounds were determined at a single eluent composition
(methanol-buffer 60:40). As part of the main study the retention times of benzene, toluene and phenol were measured on a daily basis and the variations in the observed capacity factors and retention indices calculated.

\subsection*{3.4.1 Short Term Reproducibility of Capacity Factors}

The short term reproducibility on a single column has been examined by comparing the results of the three separate determinations on a single day. The capacity factors (Tables 3.14 and 3.15 ) were determined from a single injection whereas normally they were calculated from the mean of three injections. The study used the same batch of eluent for each eluent composition. The short term reproducibility of the capacity factors was very good, the relative standard deviation from the mean was usually less than \(1 \%\).

\subsection*{3.4.2 Long Term Reproducibility of Capacity Factors}

The long term reproducibility has been determined using two sets of data, the first of these was for selected compounds which were determined at a single eluent composition on each new column. The second approach was to determine the range, mean and standard deviations from the mean of the \(k\) ' of benzene, toluene and phenol which were determined on a daily basis.
a) Capacity Factors Measured on Each New Column

The test compounds were chosen to represent the range of strengths of retention on the columns and included poorly

Table 3.14: Reproducibility of capacity factors calculated for a single day in methanol eluents

Mean and standard deviations for three \(10 \mu 1\) injections.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & Meth 40 \(k^{\prime}\) & S.D. & \[
\begin{aligned}
& \text { rti } \\
& 50 \\
& k^{\prime}
\end{aligned}
\] & (\%)
S.D. & \[
\begin{aligned}
& 60 \\
& k^{\prime}
\end{aligned}
\] & S.D. \\
\hline acetophenone** & 6.12 & 0.04 & 2.74 & 0.01 & 1.65 & 0.00 \\
\hline hexanophenone** & 195.12 & 2.02 & 44.80 & 0.26 & 18.08 & 0.04 \\
\hline benzene & 12.13 & 0.06 & 5.92 & 0.02 & 3.67 & 0.01 \\
\hline phenol & 2.25 & 0.02 & 1.14 & 0.00 & 0.79 & 0.01 \\
\hline toluene & 29.60 & 0.16 & 12.40 & 0.10 & 6.54 & 0.06 \\
\hline
\end{tabular}
\begin{tabular}{llllllll} 
& \multicolumn{7}{l}{} \\
& \(k^{\prime}\) & S.D. & \(k^{\prime}\) & S.D. & \(k^{\prime}\) & S.D. \\
& & & & & & \\
acetophenone & 0.95 & 0.00 & 0.58 & 0.01 & 0.43 & 0.01 \\
hexanophenone & 6.29 & 0.05 & 2.24 & 0.00 & 1.03 & 0.01 \\
benzene & 1.98 & 0.02 & 1.08 & 0.01 & 0.67 & 0.00 \\
phenol & 0.52 & 0.01 & 0.34 & 0.01 & 0.24 & 0.00 \\
toluene & 3.33 & 0.02 & 1.58 & 0.01 & 0.89 & 0.00
\end{tabular}
m the full set of alkylarylketones were examined, these are shown as examples

Table 3.15: Reproducibility of capacity factors calculated on a single day in acetonitrile eluents

Mean and standard deviations for three \(10 \mu 1\) injections.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Compound} & \multicolumn{8}{|l|}{Acetonitrile proportion (\%)} \\
\hline & 30 & & 40 & & 50 & & 60 & \\
\hline & \(k^{\prime}\) & S.D. & \(k^{\prime}\) & S.D. & \(k^{\prime}\) & S.D. & \(k^{\prime}\) & S.D. \\
\hline acetophenone* & 6.04 & 0.03 & 3.32 & 0.01 & 1.96 & 0.03 & 1.19 & 0.01 \\
\hline hexanophenone** & 163.43 & 0.93 & 46.87 & 0.02 & 16.14 & 0.30 & 6.59 & 0.05 \\
\hline benzene & 14.59 & 0.05 & 7.66 & 0.00 & 3.99 & 0.02 & 2.26 & 0.02 \\
\hline phenol & 2.60 & 0.01 & 1.60 & 0.09 & 1.00 & 0.03 & 0.67 & 0.01 \\
\hline toluene & 31.75 & 0.08 & 14.23 & 0.00 & 6.57 & 0.01 & 3.37 & 0.02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 70 \\
& k^{\prime}
\end{aligned}
\]} & & \multicolumn{2}{|l|}{80} & \multicolumn{2}{|l|}{90} \\
\hline & & S.D. & \(k^{\prime}\) & . D. & \(k^{\prime}\) & . D. \\
\hline acetophenone* & 0.79 & 0.01 & 0.53 & 0.01 & 0.33 & 0.03 \\
\hline hexanophenonem & 3.29 & 0.02 & 1.55 & 0.02 & 0.81 & 0.02 \\
\hline benzene & 1.37 & 0.01 & 0.83 & 0.01 & 0.47 & 0.01 \\
\hline phenol & 0.45 & 0.01 & 0.37 & 0.01 & 0.20 & 0.00 \\
\hline toluene & 1.93 & 0.02 & 1.08 & 0.02 & 0.60 & 0.01 \\
\hline
\end{tabular}
* the full set of alkylarylketones were examined, these are shown as examples
retained species (phenylacetamide) and well retained species (toluene). The alkylarylketones were also included to enable the calculation of retention indices. Although the columns were packed under the same conditions using the same batch of packing material there were differences in the capacity factors obtained on the four columns (Table 3.16). The relative standards deviations ranged from about 2\% to 8\% depending on the size of the mean capacity factors, the largest percentage standard deviations from the mean being observed for the longest retained compound (heptanophenone).
b) Capacity Factors of Benzene, Phenol and Toluene

The retentions of benzene, toluene, phenol and the alkylarylketones were measured on a daily basis. At each eluent composition capacity factors were determined for between 20 and 30 individual measurements, on at least two and usually three columns and the mean, range and S.D. calculated (Table 3.17). The results show that there were considerable variations for these compounds across the columns with the maximum and minimum differing by up to \(40 \%\) from the mean. The variation in capacity factors over the four columns (A to D) is shown clearly for toluene in Figure 3.3 in acetonitrile-buffer 40:60. As with the retention of the selected test compounds described above the largest percentage changes were observed with the strongly retained species (e.g. heptanophenone in \(40 \%\) methanol).

Table 3.16: Capacity factors of a selection of compounds determined at the same eluent composition on the each of the four columns used in the study

Mobile phase, methanol-buffer(pH7) 60:40.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & Capa Colu 1 & \begin{tabular}{l}
fa \\
2
\end{tabular} & 3 & 4 & Mean & S.D. \\
\hline acetophenone & 1.59 & 1.59 & 1.54 & 1.60 & 1.58 & 0.02 \\
\hline propiophenone & 2.88 & 2.96 & 2.74 & 2.91 & 2.87 & 0.08 \\
\hline butyrophenone & 4.93 & 5.18 & 4.64 & 4.98 & 4.93 & 0.19 \\
\hline valerophenone & 8.94 & 9.62 & 8.40 & 9.11 & 9.02 & 0.44 \\
\hline hexanophenone & 16.61 & 18.23 & 15.57 & 17.01 & 16.86 & 0.95 \\
\hline heptanophenone & 31.70 & 34.85 & 29.38 & 32.18 & 32.03 & 1.94 \\
\hline phenylacetamide & 0.52 & 0.46 & 0.47 & 0.47 & 0.48 & 0.02 \\
\hline phenol & 0.83 & 0.74 & 0.74 & 0.79 & 0.78 & 0.04 \\
\hline benzyl alcohol & 0.82 & 0.79 & 0.78 & 0.82 & 0.80 & 0.02 \\
\hline benzyl cyanide & 1.21 & 1.20 & 1.15 & 1.21 & 1.19 & 0.02 \\
\hline methyl phenylacetate & 2.53 & 2.30 & 2.15 & 2.27 & 2.31 & 0.14 \\
\hline benzene & 3.57 & 3.63 & 3.36 & 3.53 & 3.52 & 0.10 \\
\hline benzyl bromide & 5.74 & 6.01 & 5.44 & 5.84 & 5.76 & 0.21 \\
\hline toluene & 6.52 & 6.76 & 6.08 & 6.57 & 6.48 & 0.25 \\
\hline
\end{tabular}

Table 3.17: Reproducibility and range individual measurement of capacity factors of the alkylarylketones and benzene, toluene and phenol in methanol eluents
Compound \begin{tabular}{l} 
Methanol \\
proportion (\%) Mean k' S.D.
\end{tabular} \begin{tabular}{l} 
Capacity factor \\
Max.
\end{tabular}
acetophenone \({ }^{*}\)
\begin{tabular}{lllll}
40 & 6.22 & 0.47 & 6.69 & 4.92 \\
50 & 3.02 & 0.13 & 3.28 & 2.87 \\
60 & 1.70 & 0.10 & 1.84 & 1.52 \\
70 & 0.96 & 0.04 & 1.02 & 0.89 \\
80 & 0.63 & 0.03 & 0.65 & 0.57 \\
90 & 0.44 & 0.01 & 0.46 & 0.38
\end{tabular}
hexanophenone
\begin{tabular}{rrrrr}
40 & 189.24 & 14.10 & 212.58 & 155.73 \\
50 & 54.49 & 4.65 & 60.26 & 50.30 \\
60 & 19.44 & 2.40 & 22.49 & 15.42 \\
70 & 6.26 & 0.34 & 6.96 & 5.29 \\
80 & 2.47 & 0.13 & 2.69 & 2.30 \\
90 & 0.99 & 0.03 & 1.04 & 0.96
\end{tabular}
benzene
\begin{tabular}{rrrrr}
40 & 12.27 & 0.60 & 13.22 & 11.38 \\
50 & 6.56 & 0.50 & 6.99 & 5.91 \\
60 & 3.55 & 0.15 & 3.86 & 3.22 \\
70 & 1.97 & 0.07 & 2.09 & 1.75 \\
80 & 1.11 & 0.04 & 1.21 & 1.06 \\
90 & 0.65 & 0.02 & 0.68 & 0.61
\end{tabular}
phenol
\begin{tabular}{lllll}
40 & 2.24 & 0.21 & 2.80 & 2.02 \\
50 & 1.26 & 0.10 & 1.29 & 1.14 \\
60 & 0.71 & 0.02 & 0.83 & 0.75 \\
70 & 0.59 & 0.02 & 0.57 & 0.50 \\
80 & 0.34 & 0.02 & 0.39 & 0.33 \\
90 & 0.25 & 0.01 & 0.27 & 0.25
\end{tabular}
toluene
\begin{tabular}{rrrrr}
40 & 29.83 & 1.07 & 31.80 & 27.25 \\
50 & 13.92 & 0.90 & 16.07 & 12.32 \\
60 & 7.13 & 0.84 & 7.81 & 5.54 \\
70 & 3.24 & 0.28 & 3.46 & 2.40 \\
80 & 1.66 & 0.07 & 1.80 & 1.56 \\
90 & 0.86 & 0.03 & 0.89 & 0.81
\end{tabular}
* the complete set of alkylarylketones were measured, these are shown as examples

Table 3.18: Reproducibility and range of individual measurement of capacity factors of the alkylarylketones and a limited group of test compounds in acetonitrile eluents

m the complete set of alkylarylketones were measured, these are shown as examples

Figure 3.3: Variation in capacity factor of toluene and phenol on the four columns used in the study


Despite the precautions noted earlier to ensure that conditions remained as constant as possible the variation of the capacity factors in this long term study was considerably larger than the variation on a single day. The results show that this "absolute" method of reporting retention needs to be used with care when the study is a long term, one in particular where more than one column has to be used.

\subsection*{3.5 CALCULATION OF RETENTION INDICES}

The study discussed in the previous sections showed that the use of capacity factors for the long term collection of data may present problems. This was particularly significant when more than one column was used to collect the retention data. Previous work using retention indices has shown that they were considerably more robust to the column void volume value, the exact experimental conditions and small changes in eluent composition than capacity factors as they provided an interpolated scale in which the retention of a compound was expressed relative to the standard alkylarylketones. In the following sections the linearity of the assumed \(\log k^{\prime}\) vs. Cmo relationship which forms the backbone of the calculation of retention indices will be investigated and the reproducibility of retention indices will also be studied.

Retention indices were calculated as described by Smith \({ }^{134}\) from the least squares regression equation obtained for \(\log k '\) vs. \(100 \times \mathrm{C}_{\text {mo }}\) for the alkylarylketone standards (acetophenone - heptanophenone, \(\mathrm{C}_{\boldsymbol{m}}-\mathrm{C}_{1}\) ). The retention
indices on a particular day were calculated using the capacity factors for the alkylarylketones included in that set of runs of the test compounds. The calculations below were for a typical set of capacity factors (Table 3.19), these were not related to the values used previously in the calculation of the column void volume (Section 3.2). The differences again emphasise the problems of using \(k\) ' to report retention.

\subsection*{3.5.1 Linearity of \(\log\) Capacity Factor - Carbon Number Relationship for Alkylarylketones}

The correlations for the regression equations relating \(\log k^{\prime}\) and \(100 \times C_{n o}\) were high for all the eluent compositions and showed a good linearity (Table 3.20, Figures 3.4 and 3.5). Correlation coefficients between 0.9994 and 0.9999 were observed for the eluents containing 30 to 80 \% organic modifier. There was a reduction in the correlation coefficient for the eluent containing 90\% methanol to 0.9985 suggesting the possibility of some curvature at this eluent composition. The capacity factors at this eluent composition have been shown to be sensitive to the to value used in their calculation. The possibility of curvature was also shown in the systematic deviations of the calculated retention index values for the alkylarylketones standards from their nominal values (Table 3.21).

The slope of the log \(k\) ' vs. Cno relationship is a measure of the methylene group selectivity of the system. Theoretically the slope should be the same for different homologous series although the intercept will vary depending
on the functional groups present. However, some workers have suggested that the methylene group selectivity differs between different homologous series* due to the influence of the functional group.

It has been suggested that the lines for \(\log k\) ' vs. carbon number at different eluent compositions should converge to a single point in methanol and 2 points in acetonitrile \({ }^{16 \approx}\). The single convergence point in methanol was seen as an indication of a linear relationship between the slope and methanol concentration. The dual convergence points in acetonitrile have been interpreted as representing a two stage curve with a discontinuity at 50\% acetonitrile. Previous work has found that the \(x\) axis co-ordinate of the convergence point, that is the carbon number, was dependent on the homologous series but that the \(y\) co-ordinate (log k') was independent \({ }^{162}\). The possibility of a convergence point has been examined by extrapolating the data for \(\log k\) ' vs. \(100 \times C_{n o}\) for the alkylarylketones to an equivalent of 0 carbon atoms. The results (Figures 3.6 and 3.7 ) showed that in methanol all the lines except \(40 \%\) methanol appear to converge to a single point at a carbon number equivalent of approximately 4.2. In acetonitrile all the curves except the 90\% one converge to a single point at 3.4-3.6 carbon numbers although 30 and \(40 \%\) lines may converge to a slightly higher value. From this data it was not possible to identify two definite convergence points.

\author{
3.5.2 Relationship Between Slope and Intercept of Correlation Curves and Eluent Composition
}
concentration, and intercept and modifier concentration is a useful measure which will be used to back-calculate capacity factors from the calculated retention indices in the prediction system (Chapter 8). The mean slope and intercept calculated for the 20-30 individual determinations at each eluent composition over the period of the study (Tables 3.17 and 3.18) were determined (Table 3.22). The values used therefore differ from those in Table 3.20 which were based on the values determined on a single column in a single set of runs (at each eluent composition). The relationship between mean slope and methanol concentration was approximately linear, however the equivalent for acetonitrile showed definite curvature (Figure 3.8). Jandera and co-workersizo.mes have also found the relationship between slope and methanol concentration was linear with alkylbenzenes but curved for n-alkanes. In acetonitrile the slope - eluent composition curves were found to be nonlinear for both homologous series. In the present study the curves for intercept and eluent composition were also found to be approximately linear for methanol eluents but curved for acetonitrile (Figure 3.9).

The change in slope with eluent composition and the change in intercept with eluent composition can be described by quadratic regression equations (Table 3.23). In this Table the coefficients have been calculated taking the mean slope and intercept values from Table 3.22.

Figure 3.4: Linearity of the log capacity factor - carbon number relationship for the alkylarylketone standards in methanol eluents


Figure 3.5: Linearity of the log capacity factor - carbon number relationship for the alkylarylketone standards in acetonitrile eluents


Table 3.19: Capacity factors of a typical set of alkylarylketone standards on a single column
\(\begin{array}{llllllll}\text { Compound } & \begin{array}{lllllll}\text { Capacity } & \text { factor }\left(k^{\prime}\right) \\ \text { Modifier } & \text { proportion } & (\%) & & & \\ & 30 & 40 & 50 & 60 & 70 & 80\end{array} & 90\end{array}\)
methanol-buffer
\begin{tabular}{lrrrrrrr} 
acetophenone & -- & 6.79 & 3.23 & 1.63 & 0.99 & 0.58 & 0.42 \\
propiophenone & -- & 15.74 & 6.61 & 2.93 & 1.58 & 0.83 & 0.52 \\
butyrophenone & -- & 34.56 & 12.92 & 5.01 & 2.40 & 1.12 & 0.62 \\
valerophenone & -- & 82.41 & 27.25 & 9.16 & 3.86 & 1.57 & 0.79 \\
hexanophenone & -- & 206.6 & 59.44 & 16.76 & 6.35 & 2.26 & 1.00 \\
heptanophenone & -- & 536.1 & 132.4 & 32.52 & 10.61 & 3.30 & 1.30
\end{tabular}
acetonitrile-buffer
acetophenone propiophenone butyrophenone valerophenone hexanophenone heptanophenone
\begin{tabular}{rrrrrrr}
5.25 & 2.91 & 1.69 & 1.10 & 0.74 & 0.57 & 0.36 \\
11.94 & 5.71 & 2.89 & 1.71 & 1.07 & 0.75 & 0.45 \\
25.06 & 10.31 & 4.57 & 2.49 & 1.47 & 0.96 & 0.55 \\
55.00 & 19.18 & 7.42 & 3.69 & 2.04 & 1.24 & 0.68 \\
124.04 & 36.42 & 12.27 & 5.59 & 2.90 & 1.64 & 0.85 \\
282.27 & 69.47 & 20.44 & 8.55 & 4.17 & 2.21 & 1.09
\end{tabular}

Table 3.20 : Coefficlents and correlation of regression equations for log \(k^{\prime}-100 \times\) carbon number for alkylarylketones

Based on capacity factors in Table 3.19.
\[
\log k^{\prime}=a\left(100 \times C_{n a}\right)+b
\]
\begin{tabular}{|c|c|c|}
\hline Modifier & Coefficients of regression & Correlation \\
\hline proportion & equations & coefficient \\
\hline (\%) & a b & \\
\hline & ( \(\times 109\) ) & \\
\hline
\end{tabular}
methanol-buffer
\begin{tabular}{llll}
40 & 3.778 & -2.132 & 0.9994 \\
50 & 3.214 & -2.080 & 0.9995 \\
60 & 2.581 & -1.865 & 0.9995 \\
70 & 2.053 & -1.658 & 0.9995 \\
80 & 1.492 & -1.434 & 0.9994 \\
90 & 0.985 & -1.179 & 0.9985
\end{tabular}
acetonitrile-buffer
\begin{tabular}{llll}
30 & 3.441 & -2.033 & 0.9999 \\
40 & 2.734 & -1.718 & 0.9999 \\
50 & 2.143 & -1.481 & 0.9998 \\
60 & 1.757 & -1.359 & 0.9998 \\
70 & 1.478 & -1.308 & 0.9997 \\
80 & 1.164 & -1.179 & 0.9994 \\
90 & 0.955 & -1.213 & 0.9994
\end{tabular}

Table 3.21: Calculated retention indices for the alkylarylketone standards

Based on capacity factors in Table 3.19 .
Compound
RIm \(\quad\)\begin{tabular}{l} 
Retention index \\
\\
\\
Modifier proportion (\%)
\end{tabular} Modifier proportion (\%) \(\begin{array}{lllllll}30 & 40 & 50 & 60 & 70 & 80 & 90\end{array}\)
methanol-buffer
\begin{tabular}{lrlrrrrrr} 
acetophenone & 800 & - & 806 & 805 & 805 & 805 & 802 & 810 \\
propiophenone & 900 & - & 902 & 902 & 903 & 904 & 907 & 905 \\
butyrophenone & 1000 & - & 993 & 993 & 993 & 993 & 994 & 983 \\
valerophenone & 1100 & - & 1093 & 1094 & 1095 & 1093 & 1092 & 1091 \\
hexanophenone & 1200 & - & 1198 & 1199 & 1197 & 1199 & 1198 & 1197 \\
heptanophenone & 1300 & - & 1308 & 1307 & 1308 & 1307 & 1308 & 1313
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrrrrrrrr} 
acetophenone & 800 & 800 & 798 & 797 & 797 & 797 & 803 & 806 \\
propiophenone & 900 & 904 & 905 & 906 & 906 & 905 & 906 & 907 \\
butyrophenone & 1000 & 997 & 999 & 999 & 999 & 998 & 998 & 998 \\
valerophenone & 1100 & 1097 & 1098 & 1097 & 1096 & 1094 & 1093 & 1095 \\
hexanophenone & 1200 & 1199 & 1199 & 1199 & 1199 & 1198 & 1197 & 1196 \\
heptanophenone & 1300 & 1303 & 1302 & 1303 & 1304 & 1305 & 1308 & 1309 \\
\\
& nominal retention index values
\end{tabular}

Figure 3.6: Extrapolation of log capacity factor vs. carbon number relationship to show convergence point in methanol eluents


Figure 3.7: Extrapolation of \(\log\) capacity factor vs. carbon number relationship to show convergence point in acetonitrile eluents


Table 3.22: Reproducibility and linearity of the log \(k\) ' vs. carbon number relationship for the alkylarylketones
\[
\log k^{\prime}=a\left(100 \times C_{n o}\right)+b
\]

Modifier-buffer Coefficients of regression equations Slope (a) Intercept (b) Mean S.D. Mean S.D. \(\times 10^{3} \times 10^{3}\)
methanol-buffer
\begin{tabular}{lllll}
\(40: 60\) & 3.762 & 0.04 & -2.239 & 0.05 \\
\(50: 50\) & 3.160 & 0.08 & -2.074 & 0.04 \\
\(60: 40\) & 2.665 & 0.09 & -1.914 & 0.04 \\
\(70: 30\) & 2.045 & 0.06 & -1.657 & 0.04 \\
\(80: 20\) & 1.514 & 0.06 & -1.434 & 0.06 \\
\(90: 10\) & 0.964 & 0.07 & -1.154 & 0.08
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lllll}
\(30: 70\) & 3.500 & 0.05 & -2.045 & 0.02 \\
\(40: 60\) & 2.776 & 0.06 & -1.729 & 0.03 \\
\(50: 50\) & 2.184 & 0.07 & -1.484 & 0.03 \\
\(60: 40\) & 1.778 & 0.04 & -1.361 & 0.02 \\
\(70: 30\) & 1.482 & 0.04 & -1.298 & 0.04 \\
\(80: 20\) & 1.235 & 0.05 & -1.248 & 0.07 \\
\(90: 10\) & 0.960 & 0.02 & -1.234 & 0.04
\end{tabular}

Table 3.23: Relationship between slope and intercept of log \(k^{\prime}\) vs. carbon number of alkylarylketones (Table 3.32) and organic modifier concentration
\[
y=a x^{2}+b x+c \quad x=q \operatorname{modifier}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline Modifier & ```
Coefficients of
Slope
a b
(x 10 %) (x 10:=)
``` & \[
\begin{aligned}
& \mathrm{c} \\
& (\mathrm{x} \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
regre \\
Inter \\
a \\
(x 10
\end{tabular} & on eq t b (x10 & tions c \\
\hline methanol & \(0.136-5.776\) & 6.043 & 1.521 & 0.201 & -2.563 \\
\hline acetonitrile & \(0.637-11.471\) & 6.354 & 3.675 & 5.586 & -3.381 \\
\hline
\end{tabular}

Figure 3.8: Relationship between mean slope and organic modifier proportion

Figure 3.9: Relationship between mean intercept and organic modifier proportion

\subsection*{3.6 REPRODUCIBILITY OF RETENTION INDICES}

\begin{abstract}
Using the data reported previously (Section 3.4) the retention indices of the test compounds were calculated from the linear relationship between \(\log k\) ' and \(100 \times C_{n o}\) for the alkylarylketones. The reproducibility of the retention indices on a long and short term basis has been examined as described for the capacity factors in Section 3.4. The intention was to examine whether retention indices could be used to provide a more reproducible method of reporting retention than the capacity factors.
\end{abstract}

\subsection*{3.6.1 Short Term Reproducibility of Retention Indices}

The short term reproducibility of the retention indices was very good (Table 3.24 and 3.25). As with the capacity factors these retention indices were calculated on the basis of single injections rather than the mean of three injections and would therefore be expected to represent the worst possible reproducibility on a single day. The observed standard deviations from the mean were higher for the \(90 \%\) methanol and acetonitrile values for which the absolute capacity factors were small and would therefore be very dependent minor measurement errors. With the exception of the \(90 \%\) values the relative standard deviations are less than \(1 \%\) showing the reproducibility of the method and suggest an expected uncertainty in a single retention index value of less than \(\pm 4\) units.

Table 3.24: Reproducibility of retention indices determined on a single day for methanol eluents
```

Compound Retention index
Methanol proportion (%)



| acetophenone | 805 | 0.5 | 805 | 1.2 | 804 | 0.0 | 804 | 0.0 | 804 | 0.0 | 805 | 0.0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| propiophenone | 902 | 0.5 | 902 | 0.5 | 903 | 0.0 | 904 | 0.0 | 905 | 0.0 | 907 | 0.8 |
| butyrophenone | 993 | 0.0 | 993 | 0.8 | 993 | 0.0 | 993 | 0.0 | 992 | 0.5 | 990 | 0.5 |
| valerophenone | 1094 | 0.0 | 1095 | 0.7 | 1094 | 0.0 | 1094 | 0.5 | 1092 | 0.0 | 1090 | 0.5 |
| hexanophenone | 1199 | 0.0 | 1201 | 0.8 | 1199 | 0.0 | 1199 | 0.0 | 1198 | 0.0 | 1197 | 0.0 |
| heptanophenone | 1303 | 0.1 | 1307 | 0.0 | 1307 | 0.0 | 1307 | 0.0 | 1309 | 0.5 | 1311 | 0.5 |
| benzene | 8833 | 0.5 | 915 | 1.4 | 935 | 0.5 | 955 | 0.5 | 983 | 2.6 | 999 | 3.7 |
| phenol | 692 | 0.5 | 681 | 3.3 | 684 | 2.5 | 671 | 1.3 | 651 | 5.7 | 5899 | 5.2 |
| toluene | 984 | 0.5 | 1009 | 2.2 | 1038 | 0.8 | 1062 | 0.5 | 1094 | 0.9 | 1132 | 4.5 |

```

Table 3.25: Reproducibility of retention indices determined on a single day for acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Compound & \begin{tabular}{l}
Reten \\
Aceto \\
30 \\
RI
\end{tabular} & S.D. & dex
prop
40
RI & S.D. & (\%)
50
RI & S.D. & 60
\(R I\) & S.D. \\
\hline acetophenone & 798 & 0.0 & 797 & 0.0 & 796 & 0.0 & 795 & 0.0 \\
\hline propiophenone & 904 & 0.0 & 905 & 0.0 & 906 & 0.0 & 907 & 0.5 \\
\hline butyrophenone & 999 & 0.0 & 1000 & 0.0 & 1000 & 0.5 & 1000 & 0.0 \\
\hline valerophenone & 1098 & 0.0 & 1098 & 0.0 & 1098 & 0.5 & 1097 & 0.0 \\
\hline hexanophenone & 1201 & 0.0 & 1199 & 0.0 & 1199 & 0.0 & 1198 & 0.0 \\
\hline heptanophenone & 1301 & 0.1 & 1301 & 0.0 & 1300 & 0.5 & 1302 & 0.0 \\
\hline benzene & 908 & 3.9 & 926 & 4.4 & 937 & 2.9 & 949 & 2.2 \\
\hline phenol & 695 & 2.2 & 688 & 3.2 & 672 & 4.4 & 660 & 1.2 \\
\hline toluene & 1003 & 2.9 & 1019 & 3.8 & 1031 & 4.4 & 1043 & 2.6 \\
\hline & 70 & & 80 & & 90 & & & \\
\hline & RI & S.D. & RI & S.D. & RI & S.D. & & \\
\hline acetophenone & 797 & 0.0 & 803 & 0.5 & 801 & 5.9 & & \\
\hline propiophenone & 907 & 0.0 & 905 & 0.8 & 905 & 6.0 & & \\
\hline butyrophenone & 1000 & 0.5 & 995 & 0.5 & 997 & 0.5 & & \\
\hline valerophenone & 1096 & 0.0 & 1092 & 0.8 & 1092 & 0.9 & & \\
\hline hexanophenone & 1198 & 0.0 & 1197 & 0.0 & 1197 & 0.5 & & \\
\hline heptanophenone & 1303 & 0.0 & 1308 & 0.0 & 1307 & 1.6 & & \\
\hline benzene & 955 & 3.5 & 962 & 3.8 & 971 & 6.5 & & \\
\hline phenol & 641 & 2.1 & 618 & 1.8 & 589 & 4.9 & & \\
\hline toluene & 1051 & 3.5 & 1061 & 3.2 & 1077 & 2.9 & & \\
\hline
\end{tabular}

The data reported for the long-term reproducibility of capacity factors (Section 3.4.2) was used to calculate retention indices and therefore to examine the reproducibility over the period of the study.

The retention indices for the set of compounds used to test the four columns are given in Table 3.26 and for benzene, toluene and phenol in Tables 3.27 and 3.28. The results suggest that the retention indices can be expressed as the measured value \(\pm 10\) units (twice the standard deviation, the \(90 \%\) confidence limits). This would account for most of the observed vaxiations in retention index. Where the capacity factors are very small (80 and 90\% MeOH and MeCN) and in particular where the retention index scale was extrapolated, i.e. phenol, a slightly larger uncertainty in the value might be expected. The size of the uncertainty in any retention index can be used to determine whether differences between predicted and experimental retention indices were significant.

The results suggest that retention indices were considerably more reproducible than capacity factors even when the experimental parameters were carefully controlled. However, a direct comparison of the relative standards deviations of the two scales would not be appropriate as the scales involved were considerably different. The retention indices were more robust to the uncertainty in the column void volume and differences in the overall retention of the column.

Table 3.26: Reproducibility of retention indices of a selection of compounds determined at a single eluent composition on the four columns used in the study

Mobile phase, methanol-buffer 60:40.
\begin{tabular}{llllllll}
Compound & \multicolumn{7}{l}{\begin{tabular}{l}
Retention index \\
Column
\end{tabular}} \\
& 1 & 2 & 3 & 4 & Mean & S.D. \\
& \multicolumn{7}{l}{} \\
& 605 & 600 & 604 & 598 & 602 & 2.9 \\
phenylacetamide & 680 & 678 & 680 & 685 & 681 & 2.6 \\
phenol & 694 & 689 & 690 & 692 & 691 & 1.9 \\
benzyl alcohol & 758 & 756 & 756 & 757 & 757 & 0.8 \\
benzyl cyanide & 861 & 863 & 862 & 862 & 862 & 0.7 \\
methyl phenylacetate & 904 & 937 & 938 & 936 & 938 & 1.5 \\
benzene & 1041 & 1038 & 1039 & 1040 & 1040 & 1.1 \\
toluene & 1020 & 1019 & 1020 & 1020 & 1020 & 0.4
\end{tabular}

Table 3.27: Reproducibility of retention indices of the benzene toluene and phenol determined on four columns over the period of the study, in methanol eluents
\begin{tabular}{llllll}
Compound & \begin{tabular}{l}
Methanol \\
proportion (\%)
\end{tabular} & \multicolumn{5}{l}{\begin{tabular}{l}
Retention index \\
Mean
\end{tabular}} & Max. & Min. & S.D. \\
benzene & & 885 & 891 & 883 & 5.6 \\
& 40 & 913 & 917 & 909 & 4.0 \\
& 50 & 936 & 941 & 933 & 2.0 \\
& 60 & 956 & 962 & 952 & 2.0 \\
& 70 & 980 & 986 & 977 & 2.8 \\
& 80 & 1001 & 1004 & 995 & 5.4 \\
& 90 & & & & \\
phenol & & 691 & 704 & 685 & 5.4 \\
& 40 & 689 & 694 & 681 & 7.0 \\
& 50 & 683 & 689 & 679 & 2.7 \\
& 60 & 673 & 679 & 669 & 3.2 \\
& 70 & 584 & 663 & 648 & 5.4 \\
& & & 594 & 561 & 7.1 \\
& & & & & \\
& 90 & 986 & 989 & 979 & 5.7 \\
& 90 & & 1015 & 1022 & 1012 \\
& & 1036 & 1045 & 1031 & 4.7 \\
& & 1063 & 1065 & 1059 & 1.3 \\
& 40 & 1091 & 1097 & 1088 & 2.9 \\
& 50 & 1128 & 1136 & 1122 & 7.6
\end{tabular}

Table 3.28: Reproducibility of retention indices of benzene, toluene and phenol determined on the four columns used for the study in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Acetonitrile proportion (\%) & \multicolumn{4}{|l|}{Retention index} \\
\hline \multicolumn{6}{|l|}{benzene} \\
\hline & 30 & 905 & 910 & 899 & 3.9 \\
\hline & 40 & 926 & 932 & 923 & 4.4 \\
\hline & 50 & 939 & 941 & 931 & 2.9 \\
\hline & 60 & 949 & 952 & 944 & 2.2 \\
\hline & 70 & 956 & 959 & 951 & 3.5 \\
\hline & 80 & 962 & 969 & 958 & 3.8 \\
\hline & 90 & 971 & 979 & 964 & 6.5 \\
\hline \multicolumn{6}{|l|}{phenol} \\
\hline & 30 & 695 & 697 & 688 & 2.2 \\
\hline & 40 & 688 & 696 & 682 & 3.2 \\
\hline & 50 & 672 & 682 & 664 & 4.4 \\
\hline & 60 & 660 & 661 & 658 & 1.2 \\
\hline & 70 & 641 & 642 & 638 & 2.1 \\
\hline & 80 & 625 & 652 & 611 & 11.6 \\
\hline & 90 & 589 & 595 & 582 & 4.9 \\
\hline \multicolumn{6}{|l|}{toluene} \\
\hline & 30 & 1003 & 1008 & 999 & 2.9 \\
\hline & 40 & 1019 & 1026 & 1017 & 3.8 \\
\hline & 50 & 1031 & 1037 & 1024 & 4.4 \\
\hline & 60 & 1043 & 1047 & 1039 & 2.6 \\
\hline . & 70 & 1051 & 1057 & 1049 & 3.5 \\
\hline & 80 & 1061 & 1065 & 1055 & 3.2 \\
\hline & 90 & 1077 & 1083 & 1074 & 2.9 \\
\hline
\end{tabular}

\section*{PARENT INDEX AND}

\section*{SUBSTITUENT INDICES FOR SINGLE SUBSTITUENTS} ON ALIPHATIC SIDE CHAINS

In the retention prediction method described in this work the intention was to calculate retention indices from molecular structure as the sum of the parent contribution (PI), the contribution of the aliphatic substituents (SIA2-x), the contribution of the aromatic substituents (SIm-x), the contribution of an alkyl chain (SIre) and terms to account for any interactions between substituents (IIY-z), according to the equation:-
\(R I=P I+S I_{B P}+\Sigma S I_{A I-X}+\Sigma S I_{A M-X}+\Sigma I_{Y-z}\)

Each term in this equation has been described using a quadratic equation to describe the change with eluent composition. The following four chapters are concerned with collecting the data which will be used as the basis of the retention prediction method.

Throughout the study a single parent compound, benzene, has been used. The substituted derivatives of this compound could be readily determined by UV absorption and a large number of derivatives were readily available. The use of the UV detector prevented the substituent indices being obtained for purely aliphatic compounds. Substituted alkylbenzenes with substituents as terminal substituents on the alkyl chain have therefore been used to obtain the \(S I\) values for aliphatic substituents. In the absence of any long range interactions with the aromatic ring it would be expected
that these values should be similar to those obtained from substituents on purely aliphatic compounds but this has not been studied. The substituent indices have also been determined for a range of model compounds with single substituents an aromatic ring (Chapter 6).

The retentions of all these compounds were measured over the eluent compositions methanol-buffer 40:60 to 90:10 \(\mathrm{v} / \mathrm{v}\) and acetonitrile-buffer \(30: 70-90: 10 \mathrm{v} / \mathrm{v}\). In some of the later studies the retentions were not measured with \(90 \%\) organic modifier due to the problems of uncertainty of the determined values (discussed later in this Chapter).

In this chapter the determination of the parent index values and the substituent index values for aliphatic substituents will be described. Whenever possible substituents have been examined as terminal substituents on more than one length of alkyl chain so that any interactions with the ring could be investigated. The three alkylbenzenes on which the functional groups were substituted were toluene, ethylbenzene and n-propylbenzene. In all subsequent studies the standardised procedure described in the previous chapter was adopted.

\subsection*{4.1 DEFINITION AND CALCULATION OF PARENT INDEX VALUES}

Throughout the study benzene has been used as the parent compound. The parent index value in the above equation (4.1) was defined as the value calculated from a quadratic equation relating the change in retention index to \% organic modifier of the mobile phase.

The capacity factors of benzene over the eluent ranges
methanol (40-90\%) and acetonitrile (30-90\%) were therefore measured (Table 4.1). The capacity factors were used to calculate retention indices (Table 4.2) using the linear relationship between \(\log k\) ' and \(100 \times\) carbon number of the alkylarylketone standards (Section 3.5.1). Rather than use the individual empirical retention index values as the basis of the study it was decided to fit the points to a quadratic equation and use the calculated, and therefore smoothed, values as the basis of the study (Table 4.3). The change in the retention index in each eluent range (up to \(80 \%\) organic modifier) was found to be well described using quadratic regression equations (Table 4.2, Figure 4.1). As described later in this chapter it was decided to restrict the study to this range of modifier. These regression equations were important in the prediction scheme as they provide the reference values for the parent retention index which can then be used to calculate the substituent index.

\subsection*{4.2 RETENTION BEHAVIOUR OF ALIPHATIC SUBSTITUTED ALKYLBENZENES}

The retention of three alkylbenzenes, toluene, ethylbenzene and n-propylbenzene was measured for two purposes, firstly to determine whether the methylene increment, which in the alkylaryiketones is defined as 100, was also valid for the alkylbenzene homologous series. Secondly the alkylbenzenes would be the parent compound for the aliphatic substituted model compounds. By comparing the three sets of model compounds with different chain lengths

Table 4.1: Capacity factors for benzene in different eluents Typical sets of data determined on a single column
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Modifier & \multicolumn{7}{|l|}{Capacity factor
Organic modifier} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline methanol & - & 12.33 & 7.38 & 3.58 & 2.01 & 1.08 & 0.64 \\
\hline acetonitrile & 14.17 & 6.53 & 3.87 & 2.26 & 1.33 & 0.93 & 0.45 \\
\hline
\end{tabular}

Table 4.2: Retention indices of benzene determined in different eluents

Empirical values
\begin{tabular}{llllllll}
methanol & - & 883 & 915 & 938 & 958 & 983 & 999 \\
acetonitrile & 910 & 927 & 940 & 951 & 960 & 963 & 962
\end{tabular}

Parent index values
\begin{tabular}{llllllll}
methanol & - & 885 & 913 & 938 & 961 & 982 & - \\
acetonitrile** & 910 & 927 & 940 & 951 & 958 & 963 & -
\end{tabular}
- Parent index values calculated from regression equations in rable 4.3

Table 4.3: Regression equations for the change in retention index of benzene with eluent composition.

These equations were used to calculate PI
\[
P I=a x^{2}+b x+c \quad x=\% \text { modifier }
\]
Modifier \begin{tabular}{cc}
Range & Coefficients of \\
& (\%) \\
a & PI equations \\
\(c\)
\end{tabular}
\begin{tabular}{lllll}
MeOH & \(40-80\) & -0.0121 & 3.887 & 748 \\
MeCN & \(30-80\) & -0.0154 & 2.761 & 841
\end{tabular}

Figure 4.1: Comparison of experimental retention indices of benzene and calculated parent indices

The points are the experimental values (Table 4.2) and the lines are the values calculated from the regression equations for parent index in Table 4.3.

any interactions between the substituent and the aromatic ring could be observed. The retentions of the substituents hydroxyl, bromide, chloride, nitrile, and methyl carboxylate were measured on all three homologues. However, the amide, aldehyde and ether functional groups could only be measured on one or two of the alkylbenzenes.

\subsection*{4.2.1 Capacity Factors of Model Compounds}

The capacity factors (Table 4.4 and 4.5) of the alkylbenzenes and a wide range of substituted model compounds were determined. These values may have been obtained on different days and or on different columns and close and direct comparisons are not therefore possible. With the exception of the three amines, benzylamine, 2phenylethylamine and 3-phenyl-1-propylamine, capacity factors decreased systematically with increasing organic modifier concentration. The unusual behaviour of these amines will be discussed in Section 4.3 .3 . The change in capacity factor with eluent composition was examined for a selection of the compounds (Figures 4.2 and 4.3). For some compounds (e.g. 3-phenyl-1-propyl bromide), the curve between \(\log k^{\prime}\) and \% methanol was approximately linear (Figure 4.2) in agreement with the findings of Schoenmakers \(=9\) but in acetonitrile (Figure 4.3) all the curves were definitely non-linear. Smith et al. \({ }^{145}\) found similar relationships in acetonitrile however Snyder and coworkers report the successful use of linear relationships in acetonitrile \(167,1 \in \pi, 16 \%\) for retention prediction.

Table 4.4: Capacity factors for compounds with an aliphatic substituent on the alkyl chain in eluents containing methanol
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Capacity factor (k') \\
Methanol proportion (\%)
\end{tabular}} \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline toluene & 29.51 & 14.02 & 7.37 & 3.37 & 1.74 & 0.84 \\
\hline benzyl alcohol & 2.31 & 1.31 & 0.84 & 0.56 & 0.41 & 0.23 \\
\hline benzylamine & 4.64 & 2.42 & 1.50 & 0.87 & 0.60 & 0.36 \\
\hline benzyl bromide & 31.54 & 13.40 & 6.52 & 2.85 & 1.56 & 0.49 \\
\hline benzyl chloride & 24.56 & 10.90 & 5.51 & 2.38 & 1.24 & 0.49 \\
\hline benzyl cyanide & 4.79 & 2.28 & 1.31 & 0.73 & 0.48 & 0.26 \\
\hline methyl phenylacetate & 10.39 & 4.68 & 2.53 & 1.25 & 0.74 & 0.40 \\
\hline phenylacetaldehyde & 5.35 & 2.01 & 1.13 & 0.70 & 0.56 & -- \\
\hline phenylacetamide & 1.36 & 0.79 & 0.52 & 0.38 & 0.30 & 0.18 \\
\hline 1-phenyl-2-butanone & 13.16 & 5.23 & 2.67 & 1.41 & 0.74 & \\
\hline ethylbenzene & 65.28 & 27.38 & 13.73 & 5.02 & 2.35 & 1.00 \\
\hline methyl phenylethyl ether & 18.39 & 7.63 & 3.88 & 2.00 & 1.07 & -- \\
\hline methyl 3-phenylpropionate & 24.04 & 9.58 & 4.64 & 1.99 & 1.06 & 0.52 \\
\hline 4-phenyl-2-butanone & 12.60 & 5.24 & 2.42 & 1.35 & 0.75 & \\
\hline 2-phenylethanol & 4.11 & 2.42 & 1.28 & 0.74 & 0.50 & 0.27 \\
\hline 2-phenylethylamine & 2.42 & 1.69 & 1.62 & 1.66 & 1.63 & 0.84 \\
\hline 2-phenylethyl bromide & 62.88 & 25.08 & 11.31 & 4.30 & 1.73 & 0.82 \\
\hline 2-phenylethyl chloride & 45.99 & 18.81 & 8.30 & 3.49 & 1.66 & 0.71 \\
\hline 3-phenylpropionamide & 2.65 & 1.38 & 0.83 & 0.51 & 0.36 & 0.23 \\
\hline 3-phenyl-1-propionitrile & 6.38 & 2.99 & 1.58 & 0.83 & 0.52 & 0.28 \\
\hline n-propylbenzene & 165.50 & 59.57 & 24.60 & 8.19 & 3.38 & 1.29 \\
\hline methyl 4-phenylbutyrate & 51.00 & 17.98 & 7.78 & 2.88 & 1.40 & 0.63 \\
\hline 4-phenyl-1-butyronitrile & 15.22 & 6.13 & 2.94 & 1.32 & 0.72 & 0.37 \\
\hline 3-phenyl-1-propanol & 8.55 & 3.84 & 2.06 & 1.03 & 0.62 & 0.31 \\
\hline 3-phenyl-1-propylamine & 4.80 & 3.15 & 2.73 & 2.43 & 2.35 & --10 \\
\hline 3-phenyl-1-propyl bromide & 163.37 & 56.07 & 22.12 & 7.21 & 2.92 & 1.10 \\
\hline 3-phenyl-1-propyl chloride & 121.95 & 42.36 & 15.69 & 5.86 & 2.45 & 0.95 \\
\hline n-butylbenzene & 420.37 & 130.97 & 46.25 & 13.55 & 4.94 & 1.69 \\
\hline
\end{tabular}

Table 4.5: Capacity factors of compounds with aliphatic substituents on an alkyl side chain in eluents containing acetonitrile
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{7}{|l|}{```
Capacity factor (k`)
Acetonitrile proportion (%)
```} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline toluene & 28.86 & 12.74 & 6.08 & 3.24 & 1.97 & 1.23 & 0.75 \\
\hline benzyl alcohol & 1.75 & 1.14 & 0.80 & 0.57 & 0.46 & 0.39 & 0.32 \\
\hline benzylamine & 4.95 & 2.86 & 1.76 & 1.42 & 5.94 & 4.63 & 0.44 \\
\hline benzyl bromide & 34.10 & 13.07 & 5.69 & 2.84 & 1.66 & 1.10 & 0.62 \\
\hline benzyl chloride & 27.63 & 11.04 & 4.97 & 2.53 & 1.50 & 0.93 & 0.42 \\
\hline benzyl cyanide & 6.87 & 3.50 & 1.92 & 1.13 & 0.75 & 0.52 & 0.35 \\
\hline methyl phenylacetate & 10.63 & 4.99 & 2.59 & 1.47 & 0.95 & 0.65 & 0.43 \\
\hline phenylacetaldehyde & 5.30 & 2.56 & 1.81 & 1.17 & 0.77 & 0.47 & \\
\hline phenylacetamide & 0.93 & 0.61 & 0.45 & 0.34 & 0.31 & 0.28 & 0.26 \\
\hline 1-phenyl-2-butanone & 15.38 & 5.89 & 3.24 & 1.85 & 1.10 & 0.62 & \\
\hline ethylbenzene & 59.53 & 22.38 & 9.46 & 4.66 & 2.67 & 1.58 & 0.91 \\
\hline methyl phenylethyl ether & 16.39 & 6.38 & 3.76 & 2.19 & 1.37 & 0.79 & \\
\hline methyl 3-phenylpropionate & 20.39 & 8.26 & 3.85 & 2.04 & 1.26 & 0.81 & 0.53 \\
\hline 4-phenyl-2-butanone & 13.05 & 5.05 & 3.16 & 1.66 & 1.01 & 0.58 & \\
\hline 2-phenylethanol & 2.71 & 1.56 & 1.00 & 0.68 & 0.53 & 0.43 & 0.35 \\
\hline 2-phenylethylamine & 1.45 & 1.36 & 1.41 & 1.47 & 7.54 & 7.81 & 0.44 \\
\hline 2-phenylethyl bromide & 61.35 & 20.70 & 8.18 & 3.83 & 2.13 & 1.23 & 0.72 \\
\hline 2-phenylethyl chloride & 47.24 & 16.74 & 6.85 & 3.28 & 1.86 & 1.09 & 0.61 \\
\hline 3-phenylpropionamide & 1.61 & 0.90 & 0.60 & 0.43 & 0.36 & 0.32 & 0.29 \\
\hline 3-phenyl-1-propionitrile & 9.47 & 4.40 & 2.27 & 1.27 & 0.82 & 0.55 & 0.38 \\
\hline \(n\)-propylbenzene & 137.23 & 42.52 & 15.83 & 7.17 & 3.88 & 2.15 & 1.17 \\
\hline methyl 4-phenylbutyrate & 38.09 & 13.35 & 5.63 & 2.79 & 1.64 & 1.01 & 0.62 \\
\hline 4-phenyl-1-butyronitrile & 18.40 & 7.38 & 3.41 & 1.78 & 1.08 & 0.69 & 0.46 \\
\hline 3-phenyl-1-propanol & 4.90 & 2.39 & 1.38 & 0.87 & 0.64 & 0.50 & 0.39 \\
\hline 3-phenyl-1-propylamine & 3.54 & 2.06 & 1.40 & 1.88 & 10.11 & 11.61 & 0.60 \\
\hline 3-phenyl-1-propyl bromide & -- & 39.98 & 14.04 & 6.10 & 3.23 & 1.76 & 1.01 \\
\hline 3-phenyl-1-propyl chloride & 106.66 & 31.94 & 11.60 & 5.14 & 2.76 & 1.53 & 0.85 \\
\hline n-butylbenzene & 308.86 & 79.97 & 26.33 & 11.02 & 5.63 & 2.94 & 1.5 \\
\hline
\end{tabular}

Figure 4.2: Change in capacity factors of a selection of compounds with methanol concentration


Figure 4.3: Change in capacity factors of a selection of compounds with acetonitrile concentration


Katz et al. 170 have suggested that at \(80 \%\) methanol there is a change in selectivity due to changes in the nature of the mobile phase. A number of eluent modifier molecules would be aligned at the bonded phase surface and the change in the nature of this aligned "phase" would cause changes in the accessibility of the stationary phase for some compounds. It might be expected that this would be apparent in the \(\log k\) ' vs. eluent composition curves, however no such discontinuity was observed. The effects may be hidden as the capacity factors at \(80 \%\) and \(90 \%\) organic modifier were very small.

\subsection*{4.2.2 Retention Indices of Model Compounds}

Retention indices of the model compounds (Tables 4.6 and 4.7) have been calculated from the linear relationship between \(\log k\) ' and \(C_{r o}\) for the alkylarylketone standards. In each case the retention indices were determined using the calibration line derived from the set of alkylarylketones measured in the same run as the model compounds. As a consequence in these and equivalent tables in later chapters there may apparently be inconsistencies, in the relative order of elution, between the capacity factor and retention index tables. This comes about because capacity factors for different compounds, at particular eluent compositions may have been derived on different days and/or different columns.

For all the compounds the change in retention index was not as marked as the change in capacity factor. The retention indices of all the compounds showed some dependence on the eluent composition. Even the compounds

Table 4.6: Retention indices of aliphatic compounds in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Retention index \\
Methanol proportion (\%)
\end{tabular}} \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline toluene & 983 & 1010 & 1038 & 1063 & 1090 & 1120 \\
\hline benzyl alcohol & 689 & 691 & 698 & 684 & 675 & 610 \\
\hline benzylamine & 770 & 774 & 785 & 778 & 784 & 781 \\
\hline benzyl bromide & 991 & 1004 & 1019 & 1030 & 1059 & 917 \\
\hline benzyl chloride & 962 & 976 & 992 & 992 & 994 & 915 \\
\hline benzyl cyanide & 773 & 766 & 763 & 738 & 722 & 658 \\
\hline methyl phenylacetate & 863 & 862 & 853 & 853 & 846 & 837 \\
\hline phenylacetaldehyde & 790 & 752 & 745 & 734 & 782 & \\
\hline phenylacetamide & 627 & 623 & 591 & 598 & 582 & 519 \\
\hline 1-phenyl-2-butanone & 884 & 885 & 883 & 877 & 867 & \\
\hline ethylbenzene & 1075 & 1100 & 1126 & 1151 & 1177 & 1204 \\
\hline methyl phenylethyl ether & 923 & 934 & 945 & 955 & 968 & \\
\hline methyl 3-phenylpropionate & 960 & 959 & 954 & 953 & 948 & 942 \\
\hline 4-phenyl 2-butanone & 888 & 883 & 879 & 871 & 863 & \\
\hline 2-phenylethanol & 756 & 774 & 759 & 741 & 729 & 667 \\
\hline 2-phenethylamine & 694 & 726 & 798 & 915 & 1073 & 1134 \\
\hline 2-phenylethyl bromide & 1072 & 1088 & 1107 & 1118 & 1090 & 1126 \\
\hline 2-phenylethyl chloride & 1033 & 1049 & 1066 & 1074 & 1077 & 1058 \\
\hline 3-phenylpropionamide & 705 & 698 & 667 & 663 & 640 & 602 \\
\hline 3-phenyl-1-propionitrile & 806 & 802 & 793 & 766 & 742 & 68 \\
\hline n-propylbenzene & 1182 & 1204 & 1227 & 1256 & 1282 & 1308 \\
\hline methyl 4-phenylbutyrate & 1046 & 1043 & 1040 & 1033 & 1029 & 1020 \\
\hline 4-phenylbutyronitrile & 907 & 899 & 892 & 866 & 842 & 799 \\
\hline 3-phenyl-1-propanol & 840 & 835 & 835 & 813 & 793 & 733 \\
\hline 3-phenyl-1-propylamine & 774 & 809 & 881 & 997 & 1178 & \\
\hline 3-phenyl-1-propyl bromide & 1181 & 1196 & 1214 & 1229 & 1240 & 1244 \\
\hline 3-phenyl-1-propyl chloride & 1147 & 1159 & 1175 & 1184 & 1190 & 1185 \\
\hline n-butylbenzene & 1290 & 1310 & 1331 & 1364 & 1392 & 1419 \\
\hline
\end{tabular}

Table 4.7: Retention indices of aliphatic compounds in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{7}{|l|}{Retention Index} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline toluene & 1005 & 1021 & 1033 & 1042 & 1050 & 1056 & 1067 \\
\hline benzyl alcohol & 654 & 640 & 630 & 624 & 636 & 645 & 690 \\
\hline benzylamine & 784 & 785 & 787 & 845 & 1366 & 1527 & 836 \\
\hline benzyl bromide & 1026 & 1025 & 1020 & 1011 & 1002 & 986 & 985 \\
\hline benzyl chloride & 999 & 999 & 993 & 983 & 973 & 956 & 813 \\
\hline benzyl cyanide & 825 & 817 & 804 & 789 & 774 & 751 & 741 \\
\hline methyl phenylacetate & 879 & 873 & 864 & 853 & 843 & 829 & 830 \\
\hline phenylacetaldehyde & 781 & 784 & 781 & 790 & 790 & 782 & - \\
\hline phenylacetamide & 575 & 540 & 516 & 504 & 522 & 535 & 599 \\
\hline 1-phenyl-2-butanone & 912 & 910 & 904 & 898 & 888 & 874 & - \\
\hline ethylbenzene & 1095 & 1110 & 1121 & 1130 & 1137 & 1144 & 1153 \\
\hline methyl phenylethyl ether & 919 & 925 & 932 & 937 & 945 & 957 & - \\
\hline methyl 3-phenylpropionate & 961 & 952 & 942 & 932 & 922 & 907 & 915 \\
\hline 4-phenyl-2-butanone & 896 & 889 & 880 & 869 & 864 & 855 & - \\
\hline 2-phenylethanol & 708 & 689 & 675 & 667 & 676 & 682 & 730 \\
\hline 2-phenethylamine & 630 & 668 & 743 & 852 & 1434 & 1713 & 831 \\
\hline 2-phenylethyl bromide & 1099 & 1098 & 1092 & 1083 & 1073 & 1056 & 1053 \\
\hline 2-phenylethyl chloride & 1066 & 1064 & 1057 & 1045 & 1034 & 1013 & 975 \\
\hline 3-phenylpropionamide & 643 & 602 & 573 & 557 & 568 & 574 & 648 \\
\hline 3-phenyl-1-propionitrile & 865 & 853 & 837 & 818 & 799 & 771 & 767 \\
\hline n-propylbenzene & 1200 & 1212 & 1223 & 1233 & 1244 & 1253 & 1264 \\
\hline methyl 4-phenylbutyrate & 1039 & 1029 & 1018 & 1007 & 997 & 984 & 988 \\
\hline 4-phenylbutyronitrile & 948 & 935 & 918 & 898 & 879 & 851 & 851 \\
\hline 3-phenyl-1-propanol & 782 & 756 & 739 & 728 & 731 & 735 & 787 \\
\hline 3-phenyl-1-propylamine & 700 & 733 & 806 & 912 & 1518 & 1855 & 969 \\
\hline 3-phenyl-1-propyl bromide & & 1202 & 1200 & 1194 & 1191 & 1182 & 1202 \\
\hline 3-phenyl-1-propyl chloride & 1168 & 1167 & 1162 & 1153 & 1147 & 1132 & 1126 \\
\hline n-butylbenzene & 1302 & 1313 & 1325 & 1337 & 1350 & 1365 & 1377 \\
\hline
\end{tabular}
which would be expected to belong to the same snyder selectivity group \({ }^{1.71}\) as the alkylarylketones, e.g. methyl 4phenylbutyrate, show some changes in retention index across the eluent ranges. Smith and co-workers \(3.34,4.44,4,44\) have found that the largest changes in retention index were found with compounds which are considerably more polar than the alkylarylketone standards. The same effect was also found in this work with the polar compounds showing a large decrease in retention index with increasing modifier proportion and the non-polar compounds showing a gradual increase in retention index.

The changes in the retention indices in the eluents containing up to \(80 \%\) organic were linear for only a few of the compounds (Figures 4.4 and 4.5). However, with the exception of the amines, the changes were systematic and could probably be described using quadratic regression equations (although this was not done).

For several compounds, benzyl alcohol, benzyl bromide, benzyl chloride, benzyl cyanide, phenylacetamide, and 3-phenyl-1-propanol, the changes between 80 and \(90 \%\) organic are considerably larger than those observed over the rest of the eluent ranges. These observations suggest that the selectivity change which was described by katz et al. \({ }^{170}\), in eluents containing \(90 \%\) methanol may be having an influence in the present study. Katz et al. reported that the change in selectivity was only significant in methanol eluents, however, relatively large changes in \(R I\) have been observed in both methanol and acetonitrile. At this modifier concentration the capacity factors were often small ( \(k^{\prime}<\) 0.5, Tables 4.4 and 4.5 ) and therefore very susceptible to uncertainties in the column void volume. The retention

Figure 4.4: Change in retention index of a selection of compounds with methanol concentration


Figure 4.5: Change in retention index of a selection of compounds with acetonitrile concentration

indices have been shown to be more sensitive to the column void volume where the capacity factors were small (Chapter 3, Section 3.2.5). The relatively large changes in \(R I\) could therefore also be a reflection of the errors associated with the small \(k\) ' values. Because of these marked changes in the retention indices and their uncertainty and corresponding changes seen later for some aromatic compounds (Chapter 6), it was decided to limit the the study eluent ranges up to \(80 \%\) organic modifier. The validity of the prediction system was therefore also limited to the same ranges and as seen earlier the regression equation for benzene was only determined for this range.
4.2.3 Retention Behaviour of benzylamine, 2-phenylethylamine and 3-phenyl-1-propylamine

Benzylamine, 2-phenylethylamine and 3-phenyl-1propylamine wexe not discussed in the previous sections as the changes in their capacity factors and retention indices across the eluent range were very different to the those of the other compounds. The capacity factors of these compounds (Table 4.4 and 4.5) were either virtually unchanged or increased with increasing organic modifier concentration (Figures 4.6 and 4.7). In methanol eluents the capacity factors of 2 -phenylethylamine and 3-phenyl-1-propylamine were virtually constant between 50 and \(80 \%\) modifier while in acetonitrile an increase was observed between 60 and \(80 \%\) modifier. This suggests that the retention mechanism was probably more complicated than the usual reversed phase partition mechanism. The retention indices (Tables 4.6 and 4.7, Figures 4.8 and 4.9) also showed different patterns to

Figure 4.6: Change in capacity factors of benzylamine, 2phenylethylamine and 3-phenyl-1-propylamine with methanol concentration


Figure 4.7: Change in capacity factors of benzylamine, 2phenylethylamine and 3-phenyl-1-propylamine with acetonitrile concentration

those observed with other compounds. The retention index of 3-phenyl-1-propylamine increased from 700 in \(30 \%\) acetonitrile to 1855 in \(80 \%\) acetonitrile, in methanol the change was from 774 in \(40 \%\) to 1178 in \(80 \%\) and it was not eluted in \(90 \%\) methanol.

Anomalous behaviour of basic compounds in RP-HPLC has been discussed by several workers and various patterns have been observed including changes which gave minima in the log \(k^{\prime}\) against eluent composition relationshipien. 17 . The observed behaviour was attributed to a mixed retention mechanism, of a combination of ion exchange chromatography and partition chromatography. The basic amines can interact strongly with the highly acidic silanol groups and are retained by an ion-exchange mechanism. The extent of this interaction depends on the nature of the stationary phase, in particular the amount of coverage i.e. the number of reacted and unreacted silanol groups \({ }^{164}\). Various workers have suggested the addition of competing amines to the mobile phase to preferentially bind to the silanols, this has succeeded in improving the peak shape and reproducibility of retention of basic compounds \({ }^{173}\). It should be noted that these compounds were not determined in a single injection so there will be no competition between the compounds for access to the silanol groups. In previous studies Smith et al. \({ }^{149}\) have studied \(N\)-alkylanilines under conditions in which the eluent pH was controlled. In eluents of pH 8.2 the compounds would not be expected to be ionised and no abnormal behaviour was observed. The retention index was also not affected by the ionic strength of the mobile phase. However, in a study using conditions where the amines would be expected to be ionised the retention indices were

Figure 4.8: Change in retention indices of benzylamine, 2phenylethylamine and 3-phenyl-1-propylamine with methanol concentration


Figure 4.9: Change in retention indices of benzylamine, 2phenylethylamine and 3-phenyl-1-propylamine with acetonitrile concentration

considerably more dependent on the eluent conditions even though an aliphatic amine was added to the eluentin.

In the present case a form of ion-exchange retention mechanism was also supported by the study on the effect of ionic strength on the retention of 3-phenyl-1-propylamine (Chapter 3, Section 3.3). The retention indices and \(k\) ' showed characteristic increases with decreasing the ionic strength of the eluent. The pKa values of the benzylamine, 2-phenylethylamine and 3-phenyl-1-propylamine are 9.35, 9.83 and \(10.39^{16}\) respectively, therefore under the conditions of the study ( pH 7 ) they would be expected to be protonated to a large extent. The difference in pka does not explain why benzyl amine behaves differently to the other amines across the methanol range and in low acetonitrile, eluents although the observations were probably related to the extent of ionisation.

An unusual effect was observed on going from 80 to \(90 \%\) acetonitrile when the reduction in the ionic strength of the aqueous phase would be expected to increase the retention index, however, there was actually an observed reduction in the retention index.

As the retention indices of the amines would be very dependent on the eluent composition and the retention was not a simple partition process any substituent indices derived from this data would probably be highly irreproducible. The substituent indices would also probably not be applicable to other compounds where the degree of ionisation would differ. The retention indices of these compounds were not used to calculate substituent increments and substituent indices, it was not therefore possible to include a term for an aliphatic amino group into the
database used for retention prediction.

\subsection*{4.3 SUBSTITUENT INDICES FOR ALIPHATIC SUBSTITUENTS}

The parent compound throughout the study was benzene (Section 4.1) and the retention index increments for the presence of substituents were calculated with reference to the smoothed parent index values rather than the experimental retention indices. As the substituents in this section were terminal substituents on an alkyl chain the retention index can be described using the relationship
\[
R I_{\text {FH COHZッn-x }}=P I+n S I_{\text {(OHz) }}+S I_{x} 4.2
\]

Before calculating the substituent indices the methylene group increment (SIcomz?)must therefore be known.

In the alkylarylketone homologous series this was defined as 100. The use of this value for the homologous alkylbenzene series has therefore been investigated.
4.3.1 Methylene Group Increments for Alkyl Side Chains

It has been suggested that the methylene group increments for different homologous series", 1.74 may differ, however, this could lead to complications in the prediction system and the aim was therefore to establish whether the defined value of 100 could be used for other homologous series.

Using the parent index of benzene the retention increment for the alkyl side chain can be calculated using
the equation:-
\(\delta R I=R I_{\text {FHOMHER+1 }} \sim P I\)
4.3

The increment for a single methylene group can therefore be calculated as the difference between the retention indices of consecutive members of the homologous series (Table 4.8). Although the results all deviated from the defined value of 100, (the values ranged from 87 to 112), they were usually within the expected experimental uncertainty of \(+/-10\) (see Section 3.6). The exception was the increment obtained for increasing the chain length from toluene to that of ethylbenzene which had mean value in each modifier system of 88. Although there does not appear to be any reason for this methylene to be different from the subsequent carbons, a similar anomaly has also been observed in other physicochemical properties. The octanol-water partition coefficient substituent constants ( \(\pi)^{48}\) of the alkyl chain fragments (Table 4.9) also showed an abnormal pattern. The increment between benzene and toluene was 0.56 , the increment between ethylbenzene and \(n\)-propylbenzene was 0.53 , and between \(n-\) propylbenzene and n-butylbenzene was 0.58 . However the increment between toluene and ethylbenzene was 0.46 .

In calculating the retention index increment for an alkyl side chain ( \(S I_{\text {re }}\) ) a correction of -12 (IIpmon-re) for this abnormal behaviour of the second carbon has therefore been incorporated into the prediction system. For all other primary saturated carbon atoms the increment was taken as the defined value of 100 .

Table 4.8: Retention index increments calculated for an alkyl chain
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Members of series} & \multicolumn{6}{|l|}{Retention index increment Organic modifier proportion (\%)} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{7}{|l|}{methanol-buffer} \\
\hline toluene - benzene & -- & 98 & 97 & 100 & 102 & 108 \\
\hline ethylbenzene - toluene & -- & 92 & 90 & 88 & 88 & 87 \\
\hline propylbenzene- ethylbenzene & -- & 107 & 104 & 101 & 105 & 105 \\
\hline butylbenzene - propylbenzene & -- & 108 & 106 & 104 & 105 & 105 \\
\hline \multicolumn{7}{|l|}{acetonitrile-buffer} \\
\hline toluene - benzene & 95 & 94 & 93 & 91 & 92 & 95 \\
\hline ethylbenzene - toluene & 90 & 89 & 88 & 88 & 87 & 88 \\
\hline propylbenzene- ethylbenzene & 105 & 102 & 102 & 103 & 107 & 109 \\
\hline butylbenzene - propylbenzene & 102 & 101 & 103 & 107 & 106 & 112 \\
\hline
\end{tabular}

Table 4.9: Octanol-water partition coefficient substituent constants ( \(\pi\) ) for alkyl side chains

From reference 48
\begin{tabular}{ll} 
side chain & \(\pi\). \\
& \(\pi\) \\
\(\mathrm{CH}_{3}\) & 0.56 \\
\(\mathrm{CH}_{2} \mathrm{CH}\) & 1.02 \\
\(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\) & 1.55 \\
\(\mathrm{CH}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{5}\) & 2.13
\end{tabular}
4.3.2 Substituent Indices of Substituents on the Aliphatic Side Chain

The retention index increments (Tables 4.10 and 4.11) for the aliphatic substituents were calculated as the difference between the retention index of the model compound and the sum of the parent index and alkyl chain contribution at each eluent composition.

For all the substituents there were differences in the retention index increments calculated from the different parents, suggesting that there was some interaction with the aromatic ring in all cases. Any interactions, such as hyperconjugation or resonance effects, with the aromatic ring would be expected to be very short range and not significant after the alkyl chain was greater than about two carbon atoms. The substituent index equations (Table 4.12) have therefore been calculated using the retention index increments derived from the substituent on the longest available alkyl chain, in most cases this was for substitution on n-propylbenzene. The results suggest that there may be a problem with the substituent index equations for the aldehyde and ether groups which were based on a single example substituted on the benzylic carbon atom. The amide substituent index equation was also calculated from a substituent on a shorter alkyl chain. The substituent index equations for the aldehyde, amide and ether have been included in the database as the best information available but may need to be updated when examples in which the

Table 4.10: Retention index increments calculated in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent} & \multicolumn{5}{|l|}{Retention index increment Methanol proportion (\%)} \\
\hline & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{6}{|l|}{Substituted toluene} \\
\hline \begin{tabular}{l}
Parent RI \\
( \(\mathrm{PI}+\mathrm{SICH}_{\mathrm{Cl}}\) )
\end{tabular} & 985 & 1013 & 1039 & 1061 & 1082 \\
\hline \(\mathrm{CONH}_{2}\) & -358 & -390 & -447 & -463 & -500 \\
\hline OH & -296 & -322 & -340 & -377 & -407 \\
\hline CN & -212 & -247 & -275 & -323 & -360 \\
\hline - CHO & -195 & -261 & -293 & -327 & -300 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -122 & -151 & -185 & -208 & -236 \\
\hline \(\left(\mathrm{CO}_{2} \mathrm{R}{ }^{\text {a }}\right.\) & -222 & -251 & -285 & -308 & -336) \\
\hline \(\mathrm{COC}_{2} \mathrm{H}_{5}\) & -101 & -128 & -155 & -184 & -215 \\
\hline ( \(C O R{ }^{\text {b }}\) & -301 & -328 & -355 & -384 & -415) \\
\hline Cl & -23 & -37 & -46 & -69 & -88 \\
\hline Br & 6 & -9 & -19 & -31 & -23 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{llllll} 
Substituted ethylbenzene \\
Parent RI & 1073 & 1101 & 1126 & 1149 & 1170 \\
\(\left(P I+2 S_{\mathrm{CH}}+I_{\text {PncHz-R }}\right)\)
\end{tabular}} \\
\hline \({ }^{-} \mathrm{CONH}_{2}\) & -368 & -403 & -459 & -486 & -530 \\
\hline OH & -317 & -327 & -367 & -408 & -441 \\
\hline CN & -267 & -299 & -333 & -383 & -428 \\
\hline \(\mathrm{COCH}_{3}\) & -189 & -216 & -243 & -272 & -303 \\
\hline * \({ }^{\text {COR }}{ }^{\text {a }}\) & -289 & -316 & -343 & -372 & -403) \\
\hline \(\mathrm{OCH}_{3}\) & -150 & -167 & -181 & -194 & -202 \\
\hline * \(10 \mathrm{R}{ }^{*}\) & -250 & -267 & -281 & -294 & -302) \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -113 & -142 & -172 & -196 & -222 \\
\hline \(\left(\mathrm{CO}_{2} \mathrm{R}^{\text {a }}\right.\) & -213 & -242 & -272 & -296 & -322) \\
\hline Cl & -40 & -52 & -60 & -75 & -93 \\
\hline Br & -1 & -13 & -19 & -31 & -80 \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{llllll}
\begin{tabular}{c} 
Substituted propylbenzene \\
Parent RI \\
\(\left(\mathrm{PI}+3 S I_{\mathrm{CHz}}+\right.\) I \(\left._{\text {PnCHz-R }}\right)\)
\end{tabular} & 1173 & 1201 & 1226 & 1249 & 1270
\end{tabular}} \\
\hline *OH & -333 & -366 & -391 & -436 & -477 \\
\hline \({ }^{-\mathrm{CN}}\) & -266 & -302 & -334 & -383 & -428 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -127 & -158 & -186 & -216 & -241 \\
\hline * \(\mathrm{CO}_{2} \mathrm{R}{ }^{\text {a }}\) & -227 & -258 & -286 & -316 & -341) \\
\hline \({ }^{*} \mathrm{Cl}\) & -26 & -42 & -51 & -65 & -80 \\
\hline * Br & & -5 & -12 & -20 & -70 \\
\hline
\end{tabular}
* values used for the calculation of substituent index equations
* 100 subtracted for the methyl group contribution
- 200 subtracted for the ethyl group contribution

Table 4.11: Retention index increments calculated for aliphatic substituents in eluents containing acetonitrile

* values used for the calculation of substituent index equations
- 100 subtracted for the methyl group contribution
- 200 subtracted for the ethyl group contribution
substituent is on a longer alkyl chain can be examined.
A number of the functional groups, \(\mathrm{CO}_{3} \mathrm{CH}_{3}, \mathrm{OCH}_{3}\), and \(\mathrm{COCH} a\), contain saturated alkyl groups not directly attached to the aromatic ring. In these compounds the retention index increments for the alkyl group have been calculated based on the definition of the methylene increment equal to 100 and can be subtracted from the value of the whole group. The values for the functional groups \(C O R, O R\) and \(C O R\) have therefore been listed in the tables and these values were used to calculate the substituent index equations.

For all the substituents the fitted quadratic equations were a good description of the experimentally determined retention index increments (Figures 4.10 and 4.11 , the points were the experimentally determined retention index increments and the lines the fitted regression equations).

The intercept (c) values in the two modifiers should be equal to the substituent index at \(100 \%\) water and therefore the same in both methanol and acetonitrile. However, considerable differences were observed, for example in methanol the intercept for the bromide was -99 and in acetonitrile 63, for the aldehyde the intercept was +337 in methanol and -184 in acetonitrile. These differences emphasise the importance of not extrapolating the quadratic equations outside of the calibrated region. The coefficients of the fitted equations were also found to be very sênsitive to the small changes in the values used in their calculation.

It was interesting to note that the coefficients for the aldehyde group ( CHO ), which should be the first member of the series COR, and the ketone substituent (COR) differed greatly in both eluents although the contribution of a

Table 4.12: Substituent index equations for aliphatic substituents on an alkyl side chain
\[
S I=a x^{2}+b x+c \quad x=q \operatorname{modifier}
\]

Substituent
Coefficients of substituent index equations
a b
b
methanol-buffer
\begin{tabular}{lrrr}
\(\mathrm{CONH}_{2}\) & 0.0079 & -5.013 & -178 \\
OH & -0.0257 & -0.494 & -273 \\
CN & -0.0250 & -1.050 & -185 \\
CHO & 0.1314 & -18.531 & 337 \\
\(\mathrm{CO}_{2} \mathrm{R}\) & 0.0071 & -3.717 & -90 \\
COR & -0.0086 & -1.851 & -201 \\
OR & 0.0136 & -2.939 & -154 \\
Cl & -0.0021 & -1.053 & 19 \\
Br & -0.0536 & 4.719 & -99
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrrr}
\(\mathrm{CONH}_{2}\) & 0.0855 & -11.786 & -179 \\
OH & 0.0561 & -8.139 & -223 \\
CN & 0.0002 & -2.997 & -160 \\
CHO & 0.0073 & -1.768 & -184 \\
CO 2 R & 0.0130 & -3.580 & -164 \\
COR & 0.0161 & -3.654 & -206 \\
OR & 0.0211 & -2.644 & -218 \\
Cl & 0.0018 & -1.962 & 27 \\
Br & 0.0064 & -2.161 & 63
\end{tabular}

Figure 4.10: Relationship between substituent index calculated from regression equation and substituent increment for a selection of aliphatic substituents in methanol eluents

Points are experimental retention increments and the lines the calculated substituent indices


Figure 4.11: Relationship between substituent index calculated from regression equation and substituent increment for a selection of aliphatic substituents in acetonitrile eluents

Points are experimental retention increments and the lines the calculated substituent indices

hydrogen to the retention index was defined as 0 . This may at least partially be due to the use of values derived from different lengths of homologous series, however, the retention indices of phenylacetaldehyde and 1-phenyl-2butanone did not differ by the 200 expected but by only just over 100.

These substituent index equations have been included in the database and can be used for the prediction of retention indices of other compounds (Chapter 8).

\subsection*{4.4 EFFECT OF UNSATURATION IN THE ALKYL CHAIN ON RETENTION INDEX}

The effect of introducing a double bond into an alkyl chain has been examined using two compounds 1-phenyl-1propene ( \(\mathrm{PhCH}=\mathrm{CHCH}\) ) and 3-phenyl-1-propene ( \(\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}=\) ). These compounds differed only in the position of the double bond. The capacity factors of these compounds (Table 4.13) were used to calculate retention indices (Table 4.14). If the double bond made no contribution to the retention of these compounds the side chain would be expected to contribute 288 to the retention index in both eluents.

\begin{abstract}
In practice the retention index increment due to the addition of the alkyl chain differed considerably from this value (Table 4.15) with the double bond causing a significant reduction in the retention compared to the unsaturated compound. The unsaturated chain was apparently
\end{abstract}

Table 4.13: Capacity factors of 3-phenyl-1-propene and 1-phenyl-1-propene
```

Compound Capacity factor
Modifier proportion (%)
30
methanol-buffer
3-phenyl-1-propene
1-phenyl-1-propene
91.64 31.68 12.03 5.41 2.39

```

```

acetonitrile-buffer
3-phenyl-1-propene
83.52 29.08 10.38 5.0
2.63 1.28
1-phenyl-1-propene }\quad96.47 32.77 13.13 5.56 2.90 1.43

```

Table 4.14: Retention indices of 3-phenyl-1-propene and 1-phenyl-1-propene
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Retention index \\
Modifier proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{7}{|l|}{methanol-buffer} \\
\hline 3-phenyl-1-propene & & 1105 & 1133 & 1151 & 1166 & 1186 \\
\hline 1-phenyl-1-propene & & 1128 & 1156 & 1176 & 1194 & 1220 \\
\hline \multicolumn{7}{|l|}{acetonitrile-buffer} \\
\hline 3-phenyl-1-propene & 1119 & 1127 & 1132 & 1135 & 1135 & 1138 \\
\hline 3-phenyl-2-propene & 1136 & 1144 & 1149 & 1157 & 1163 & 1175 \\
\hline
\end{tabular}
more polar than the saturated chain. The effect on retention was dependent on the position of the double bond relative to the ring (Table 4.15). Conjugation with the aromatic ring increasing the retention index increment significantly. The two functional groups were therefore treated separately as an aliphatic unsaturated functional group (PhRCH:CHR) and an aromatic unsaturated functional group (PhCH:CHR). In each case the change across the eluent range was described by a quadratic regression equation (Table 4.16).

\subsection*{4.5 RELATIONSHIP BETWEEN SI AND STRUCTURAL PARAMETERS}

It was intended to examine whether the substituent index values calculated from the retention indices could be related to physico-chemical properties of the substituents.

\subsection*{4.5.1 Relationship between \(S I\) and \(\pi\)}

The relationship between octanol-water partition coefficient ( \(\log p\) ) and retention in RP-HPLC was discussed earlier. Briefly retention in RP-HPLC is governed by the solvophobic mechanism proposed by Horvath et al. \({ }^{2}\). \({ }^{3}\). In this retention mechanism the role of the stationary phase is seen as being that of a passive receptor with the mobile phase interactions playing a predominant role. The retention mechanism is therefore a liquid-liquid partition between a non-polar bonded phase and the polar eluent. The most common liquid-liquid partition values available are the octanolwater partition coefficient which are frequently used to model quantitative structure-activity relationships (QSAR)

Table 4.15: Retention index increments for alkene chains derived from 3-phenyl-1-propene and 1-phenyl-1-propene

Calculated from the equation \(\delta R I=R I-P I\)
Group Retention index increment Modifier proportion (\%)
\begin{tabular}{llllll}
30 & 40 & 50 & 60 & 70 & 80
\end{tabular}
methanol-buffer
\begin{tabular}{cccccc}
\(\mathrm{CH}_{2} \mathrm{CH}: \mathrm{CH}\) & 222 & 218 & 214 & 208 & 183 \\
(RCH:CH & 122 & 118 & 114 & 108 & \(83)\) \\
\(\mathrm{CH}: \mathrm{CHCH}_{2}\) & 245 & 241 & 239 & 236 & 211 \\
\(\left(\mathrm{CH}: \mathrm{CHR}^{\star}\right.\) & 145 & 141 & 139 & 136 & \(111)\)
\end{tabular}
acetonitrile-buffer
\begin{tabular}{crlrrrc}
\(\mathrm{CH}_{2} \mathrm{CH}: \mathrm{CH}\) & 209 & 200 & 192 & 184 & 175 & 178 \\
\(\left(\mathrm{RCH}: \mathrm{CH}^{*}\right.\) & 109 & 100 & 92 & 84 & 75 & \(78)\) \\
\(\mathrm{CH}: \mathrm{CHCH}_{2}\) & 226 & 217 & 209 & 206 & 203 & 215 \\
\(\left(\mathrm{CH}: \mathrm{CHR}^{\star}\right.\) & 126 & 117 & 109 & 106 & 103 & \(115)\)
\end{tabular}
- calculated as the effect of \(\mathrm{CH}: \mathrm{CH}\) by subtraction of 100 for the saturated methyl/methylene group

Table 4.16: Substituent index equations for aromatic alkene group and aliphatic alkene group
\[
S I=a x^{2}+b x+c \quad x=q \text { modifier }
\]

Functional group Coefficients of substituent
index equations
a b c
methanol - buffer
\(\begin{array}{llll}\text { aromatic } \mathrm{CH}: \mathrm{CH} & -0.0307 & 2.956 & 74\end{array}\)
aliphatic \(\mathrm{CH}: \mathrm{CH} \quad-0.0314 \quad 2.891 \quad 55\)
acetonitrile - buffer
\begin{tabular}{llll} 
aromatic \(\mathrm{CH}: \mathrm{CH}\) & 0.0223 & -2.741 & 189 \\
aliphatic \(\mathrm{CH}: \mathrm{CH}\) & 0.0100 & -1.780 & 154
\end{tabular}
studies in drug compounds. Many workers have found an approximately linear relationship between \(\log p\) and \(\log k '\) for related groups of compounds \({ }^{1,5}=17=\). Hansch \({ }^{49}\) and Rekkers have both proposed methods of calculating log \(P\) as the sum of the contributions of the substituents and the parent. Of the two methods proposed the Hansch approach has probably been mere frequently used and a large number of substituent contributions ( \(\pi\) ) have been tabulated**. If a linear relationship between \(\pi\) and \(S I\) exists it could be useful for several reasons. Firstly, it would confirm that the predominant retention mechanism is a liquid-liquid partition and secondly, it would highlight any functional groups for which a more complex mechanism is present which might cause problems in prediction. In addition if a linear relationship could be found it would be provide a method to estimate \(S I\) for a substituent not included in the original data set, e.g. un-ionised aliphatic amines and carboxylic acids.

The group contributions to octanol-water partition coefficients ( \(\pi\) ) (Table 4.17) have been used to obtain linear regression equations between \(\pi\) and substituent indices. The correlations coefficients obtained (Table 4.18) show that there was an approximately linear relationship between \(S I\) and \(\pi\) with the correlations ranging from 0.925 to 0.956 in methanol and 0.918 to 0.954 in acetonitrile. In neither methanol (Figure 4.12, for \(40 \%\) methanol) or acetonitrile (Figure 4.13, for 40\% acetonitrile) can any definite outliers be identified. Although in both cases the OH has a substituent index considerably more negative than would be predicted from the Hansch substituent constant. Various workers have suggested that hydrogen bonding and
non-hydrogen bonding species should treated separately when correlations of \(\log p\) against \(\log k\) ' were consideredac. \(=7\).

There did not appear to be any significant improvement in the correlation coefficient with decreasing organic modifier concentration. This contrasted with previous reports which have suggested that the HPLC system more closely resembles that of octanol-water when the organic content was lowest \({ }^{54}\). The correlation between \(S I\) and \(\pi\) was lower in acetonitrile than methanol suggesting that the octanol-water partition coefficient was a better descriptor of the processes occurring in methanol than acetonitrile, Braumann \({ }^{-4}\) also suggested that this could be the case. From this work it would appear that the use of \(\pi\) would at best provide only a very rough estimate of the SI for a given substituent.

\subsection*{4.5.2 Relationship between \(S I\) and aqueous solubility}

An alternative structural property which has been used to describe retention in \(R P\) HPLC is the aqueous solubility. Hafkenscheid et al. \(\log k '\) and the Hildebrand solubility parameter. This parameter is a measure of the solubility of the whole molecule. There were difficulties in using the relationship because of problems in either obtaining reliable published data or calculating the values from thermodynamic properties. Wakita et al. \({ }^{17 e}\) have recently proposed a method of calculating aqueous solubility as the sum of the contributions of the different substituents. The derived \(\mathrm{f}_{\mathrm{m}}\). values (substituent contributions to solubility) have been calculated for a number of aliphatic and aromatic

Table 4.17: Hansch (r) values and Wakita solubility fragment (f.) for aliphatic substituents
\begin{tabular}{lccc} 
Substituent & \(\pi^{49}\) & R group & \(\mathrm{f}^{1775}\). \\
\(\mathrm{CO}_{2} \mathrm{R}\) & \((-0.64)\) & \(\left(\mathrm{CH}_{3}\right)\) & -1.90 \\
OH & -1.12 & & -2.65 \\
CHO & -0.91 & & -1.82 \\
OR & \((0.03)\) & \(\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)\) & -2.51 \\
Cl & 0.39 & & -0.12 \\
Br & 0.60 & & 0.05 \\
CN & -0.84 & & -1.29 \\
COR & \((-0.62)\) & \(\left(\mathrm{CH}_{3}\right)\) & -2.43 \\
\(\mathrm{CH}_{3}\) & 0.5 & & 0.73 \\
CONH & -1.71 & & -
\end{tabular}
the values in brackets are the alkyl substituents (i.e. R) for which the \(\pi\) value was available in the reference 48

Table 4.18 Regression equations obtained for least squares fit of \(S I\) vs. \(\pi\).
\[
S I=a \pi+b
\]
Eluent \begin{tabular}{lll} 
Coefficients of regression \\
equation \\
a
\end{tabular}\(\quad\)\begin{tabular}{l} 
Correlation \\
coefficient
\end{tabular}
methanol-buffer
\begin{tabular}{lrrr}
\(40: 60\) & -65.85 & 183 & 0.9470 \\
\(50: 50\) & -83.31 & 203 & 0.9563 \\
\(60: 40\) & -101.58 & 218 & 0.9537 \\
\(70: 30\) & -120.64 & 229 & 0.9447 \\
\(80: 20\) & -140.83 & 237 & 0.9250
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrlr}
\(30: 70\) & -77.90 & 217 & 0.9540 \\
\(40: 60\) & -95.35 & 233 & 0.9466 \\
\(50: 50\) & -110.80 & 243 & 0.9397 \\
\(60: 40\) & -119.78 & 251 & 0.9383 \\
\(70: 30\) & -136.53 & 248 & 0.9270 \\
\(80: 20\) & -146.11 & 243 & 0.9183
\end{tabular}

Figure 4.12: Relationship between substituent index and substituent \(\pi\) values in methanol eluents


Figure 4.13: Relationship between substituent index and substituent \(\pi\) values in acetonitrile eluents

substituents (Table 4.17). In an manner analogous to that using \(\pi\) the correlation between \(S I\) and \(f_{m}\) has been calculated using a linear least squares regression equation (Table 4.19).

As with the \(\pi\) values the correlations showed a linear trend in the relationship but the correlations were again not high. As the \(f_{m}\) values were \(1 / s o l u b i l i t y ~ t h i s ~ s u g g e s t s ~\) an increase in retention index with a decrease in water solubility. In the methanol eluents a single outlier was identifiable (Figure 4.14 in \(40 \%\) methanol), this was the CN group. It appears that the behaviour of \(O H\) was well described by the water solubility probably because the method more accurately portrayed the interactions occurring than the octanol-water coefficients. In acetonitrile eluents there was an increase in linearity with decreasing acetonitrile content, the nitrile group also appears to be an outlier in this modifier system (Figure 4.15 at \(40 \% \mathrm{MeCN}\) ).

Neither \(\log P\) or aqueous solubility was a perfect descriptor. of the processes occurring in RP-HPLC, however, they could prove useful for identifying substituents where the retention process was more complex, e.g. nitrile, and possibly where the assumption of a simple partition process was not valid. The correlations were not high but it might be possible to use the derived equations to estimate the \(S I\) for a substituent for which the \(S I\) was unknown but the confidence in the calculation would be low.

Table 4.19: Regression equations obtained for least squares fit of \(S I\) vs. \(f=\)
\[
S I=a f_{m}+b
\]
Eluent \begin{tabular}{lll} 
Coefficients of regression \\
equation \\
a
\end{tabular}\(\quad\) b \(\quad\)\begin{tabular}{l} 
Correlation \\
coefficient
\end{tabular}
methanol-buffer
\begin{tabular}{llll}
\(40: 60\) & -10.57 & 116 & 0.9580 \\
\(50: 50\) & -21.95 & 126 & 0.9552 \\
\(60: 40\) & -34.94 & 133 & 0.9456 \\
\(70: 30\) & -49.25 & 139 & 0.9341 \\
\(80: 20\) & -65.82 & 143 & 0.9148
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrll}
\(30: 70\) & -4.66 & 129 & 0.9700 \\
\(40: 60\) & -23.97 & 137 & 0.9597 \\
\(50: 50\) & -37.67 & 140 & 0.9493 \\
\(60: 40\) & -49.99 & 142 & 0.9371 \\
\(70: 30\) & -61.29 & 141 & 0.9257 \\
\(80: 20\) & -42.49 & 154 & 0.9095
\end{tabular}

Figure 4.14: Relationship between substituent index and substituent aqueous solubility constant in methanol


Figure 4.15: Relationship between substituent index and substituent aqueous solubility constant in acetonitrile


\subsection*{4.6 INTERACTIONS OF SUBSTITUENTS WITH THE AROMATIC RING}

Where possible \(\delta R I\) values were calculated for functional groups on more than one length of alkyl chain enabling of any interactions between the substituent and ring to be identified. Any interactions between the substituents and the aromatic ring would be expected to depend on the type of substituent present, the distance from the ring and also the eluent composition. As the interactions would be expected to be electronic, for example electron withdrawing effects, they would be expected to be stronger with substituents positioned on the benzylic carbon. The size of the interactions were expressed as interaction indices (II). Using these values the retention index of an aliphatic substituted compound would be calculated using the equation
\[
R I=P I+S I_{x}+n S I_{\text {(EHz) }}+I I_{\text {Fnonaix }}
\]

The effect of the aromatic ring would also be expected to be fairly short range and consequently not significant at \(\mathrm{C}_{\mathrm{n}}\) ( \(>\) about 2. The extent of the interaction (Table 4.20 and 4.21) has been examined by calculating the difference between the substituent index derived from the longest chain substituted compounds (from Table 4.12) and the retention index increment (from Tables 4.11 and 4.12) of the other substituents (Table 4.20 and 4.21 ) using equation 4.7.
\[
\delta I=\delta R I_{x}-S I_{x}
\]

Table 4.20: Interaction increments for interaction of aliphatic substituents with the aromatic ring in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent} & \multicolumn{5}{|l|}{Interaction increment Methanol proportion (\%)} \\
\hline & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{6}{|l|}{\(\delta I=\delta R I_{\text {PhCHz-x }}-S I\)} \\
\hline \(\mathrm{CONH}_{2}\) & 11 & 19 & 3 & 27 & 28 \\
\hline OH & 38 & 40 & 55 & 67 & 70 \\
\hline CN & 55 & 53 & 53 & 58 & 69 \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & 5 & 7 & 2 & 7 & 6 \\
\hline COR & -12 & -13 & -12 & -13 & -12 \\
\hline Cl & 3 & 2 & 5 & -4 & -9 \\
\hline Br & 2 & -11 & -10 & 0 & 41 \\
\hline \multicolumn{6}{|l|}{\(\delta I=\delta R I_{\text {PnCHzOHz-x }}-\) SI} \\
\hline OH & 17 & 35 & 28 & 26 & 36 \\
\hline CN & 0 & -1 & -5 & 2 & 1 \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & 14 & 16 & 15 & 19 & 20 \\
\hline Cl & -14 & -13 & -8 & -10 & -14 \\
\hline Br & -5 & -10 & -10 & -0 & -15 \\
\hline
\end{tabular}

Table 4.21: Interaction increments for interaction of aliphatic substituents with the aromatic ring in acetonitrile eluents
-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Substituent & \multicolumn{6}{|l|}{\begin{tabular}{l}
Interaction increment \\
Acetonitrile proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{7}{|l|}{\(\delta I=\delta R I_{\text {PhCHz-X }}-S I\)} \\
\hline \(\mathrm{CONH}_{2}\) & 19 & 27 & 30 & 31 & 49 & 47 \\
\hline OH & 61 & 72 & 80 & 82 & 96 & 97 \\
\hline CN & 65 & 70 & 73 & 77 & 85 & 86 \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & 29 & 32 & 35 & 34 & 36 & 33 \\
\hline COR & 3 & 9 & 12 & 14 & 13 & 6 \\
\hline Cl & 19 & 21 & 20 & 16 & 17 & 11 \\
\hline Br & 12 & 11 & 9 & 4 & 1 & -8 \\
\hline
\end{tabular}
```

\deltaI = \deltaRIPHCNZOHz-x - SI

```
\begin{tabular}{llllrrr}
OH & 27 & 33 & 37 & 37 & 48 & 46 \\
CN & 17 & 18 & 18 & 18 & 22 & 18 \\
\(\mathrm{CO}_{2} \mathrm{R}\) & 23 & 23 & 25 & 25 & 27 & 23 \\
Cl & -2 & -2 & -4 & -10 & -10 & -20 \\
Br & -3 & -4 & -5 & -12 & -16 & -26
\end{tabular}
single length of alkyl chain it was not possible to derive their interaction increments. As with the calculation of substituent indices the interaction indices will be calculated from the regression equations relating the change in interaction increment to eluent composition (Tables 4.22 and 4.23). If the interaction increment was less than 10 it was regarded as being not significant and if the change across the eluent range was less than 10 a mean value was used rather than a fitted regression equation.

The largest interaction increments ( \(\delta I+55\) to +97 ) were observed for the nitrile group on the first carbon where there was a large increase in retention relative to the substituent index i.e. the nitrile group has a considerably less negative effect on the retention index than would be expected. In methanol the effect was very short range with the interaction increment being insignificant at \(C_{n o}>1\) (Table 4.20). However, in acetonitrile the interaction increments were significant for both positions of the substituent (Table 4.21 ) but there was a rapid decrease in the interaction increment as the distance from the ring increased. The interaction increment for the substituent on ethylbenzene was approximately \(25 \%\) that of the first.

A similar reduction in interaction increment was also observed with the hydroxyl group although in this case the reduction was less rapid with the value at \(\mathrm{C}_{\mathrm{n}}=2\) being about \(50 \%\) of the value that for \(C_{n s}=1\) in both methanol and acetonitrile. Unlike the nitrile substituent a significant interaction increment was observed in both methanol and acetonitrile for \(\mathrm{C}_{\text {no }}=2\).

The ester group differed from the previous substituents in that the difference in the interaction increment between

Table 4.22: Regression equations relating interaction increments to methanol concentration
\[
I I=a x^{2}+b x+c \quad x=\% \text { modifier }
\]

Substituent
Coefficients of interaction
index equations
\(a \quad b\)

IIfnchz-x
\begin{tabular}{lrcr}
\(\mathrm{CONH}_{2}\) & 0.0186 & -1.809 & 56 \\
OH & -0.0007 & 0.996 & -3 \\
CN & 0.0221 & -2.327 & 113 \\
CO R & 0 & 0 & 0 \\
COR & 0 & 0 & -12 \\
Cl & -0.0143 & 1.414 & -31 \\
Br & 0.0836 & -9.139 & 235
\end{tabular}

\begin{tabular}{lclr}
OH & -0.0079 & 1.233 & -16 \\
CN & 0 & 0 & 0 \\
\(\mathrm{CO}=\mathrm{R}\) & 0 & 0 & 17 \\
Cl & 0 & 0 & -12 \\
Br & -0.0071 & 0.757 & -26
\end{tabular}

Table 4.23: Regression equations relating interaction increments to acetonitrile concentration
\begin{tabular}{|c|c|c|c|c|}
\hline Substituent & \multicolumn{3}{|l|}{```
    II = ax }\mp@subsup{}{}{2}+bx+
Coefficients of interaction
index equations
a
    b
        c
```} & \[
x=\% \operatorname{modifier}
\] \\
\hline \multicolumn{5}{|l|}{I \(I_{\text {phin }}\) - \(\times\)} \\
\hline \(\mathrm{CONH}_{2}\) & 0.0018 & 0.395 & 6 & \\
\hline OH & -0.0046 & 1.236 & 29 & \\
\hline CN & 0 & 0.440 & 52 & \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & 0 & 0 & 33 & \\
\hline COR & 0 & 0 & 10 & \\
\hline Cl & 0 & 0 & 17 & \\
\hline Br & -0.0079 & 0.479 & 5 & \\
\hline \multicolumn{5}{|l|}{} \\
\hline OH & -0.0021 & 0.636 & 10 & \\
\hline CN & 0 & 0 & 19 & \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & 0 & 0 & 24 & \\
\hline Cl & -0.0075 & 0.482 & -10 & \\
\hline Br & -0.0101 & 0.668 & -14 & \\
\hline
\end{tabular}
the two lengths of alkyl chain was only very small. In methanol the interaction increment was actually larger for the substituent further from the ring, contrary to the expected sequence. When compared to the hydroxyl and nitrile group the interaction increments were considerably smallex and so any longer range effects would probably not have a significant effect on the retention index. However, in acetonitrile the interaction increments were sufficiently large to be significant.

Smaller effects were observed with the amide group, however, as the longest chain examined contained only 2 carbon atoms this may be at least partially due to the interaction increment, which would be expected for the second carbon.

The halides (Br and Cl) behaved very similarly to each other. In methanol and acetonitrile the interaction increments were less than those discussed previously and were probably not significant beyond the first carbon.

The final group for which it was possible to derive interaction increments was the aliphatic ketone group (COR), in acetonitrile there were only very small differences between the second and first carbon group. This functional group would be expected to behave in a manner similar to the ester functional group and the interaction increments derived were very similar to the difference between the interaction increments for the ester on the first and second carbons. At this time insufficient information was available to conclude that, at least in acetonitrile the same interaction index could be used for both functional groups. In methanol the situation was very different, the interaction increment was considerably larger than the ester
term and also negative. This was clearly very different to the previously observed values and suggests that a much larger interaction or combinations of interactions was occurring in the methanol eluents with low organic modifier content.

Although general comments on the size of the interactions have been made, it was difficult to correlate these with any properties of the substituents. Few substituent parameters attempt to account for differences which can occur in compounds containing both aromatic and aliphatic groups. In extending the concept of calculating \(\log P\) by summation of \(\pi\) Leose recently suggested a method to account for the various interactions. Interactions due to multiple substitution on a ring will be discussed in a later chapter but it was noted that a term, \(\mathrm{Fix}_{\mathrm{x}}\), was required to account for the difference between aliphatic compounds and aromatic compounds, and compounds containing both aromatic and aliphatic groups. It was suggested that the upper limit of this term was at \(C_{n o}=3\) and this agrees with the assumptions made in this chapter. No attempt was however made to quantify the \(F_{x}\) in terms of the substituents but a single overall value was applied to all compounds. It would appear that this approach was not valid as in this work considerable variation in the interaction increments was observed for different substituents.

Although further study might lead to the possibility of quantifying these interaction increments using non-empirical properties of the substituents or at least generalised interaction terms for different classes of compounds, this was not possible with this current set of data.
4.7 USE OF THE SUBSTITUENT INDEX EQUATIONS AND INTERACTION INDEX EQUATIONS

\author{
The substituent index equations and the interaction index equations described in this chapter will be used in the prediction system to predict the retention indices of compounds.
}

\section*{CHAPTER 5}

\title{
INVESTIGATION OF THE RETENTION BEHAVIOUR OF \\ ALIPHATIC COMPOUNDS WITH ISOMERIC SUBSTITUENTS AND DISUBSTITUTED ALIPHATIC COMPOUNDS
}

\begin{abstract}
The retention behaviour isomeric alkylbenzenes and phenylpropanols were examined to determine whether chain branching had an effect on the retention index and whether the hydroxyl substituent index was the same for primary, secondary and tertiary isomers. Two disubstituted alkylbenzenes were also studied to determine the importance of substituent interactions in disubstituted aliphatic compounds.
\end{abstract}

\subsection*{5.1 EXAMINATION OF THE EFFECT OF CHAIN BRANCHING ON THE RETENTION OF ALKYLBENZENES}

The capacity factors (Table 5.1) and retention indices (Table 5.2) of six isomeric alkylbenzenes (listed below) were determined over the eluent ranges \(40-80 \%\) methanol and \(30-80 \%\) acetonitrile. In \(40 \%\) methanol the isomeric butylbenzenes were omitted due to the excessive retention times.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{n-propylbenzene} & \multicolumn{2}{|l|}{i-propylbenzene} \\
\hline & \(\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH} 3\) & & \(\mathrm{CH}_{3}\) PhCHCH \\
\hline \multirow[t]{2}{*}{n-butylbenzene} & & i-butylbenzene & \\
\hline & \(\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) & & \[
\underset{\mathrm{PhCH}=\mathrm{CH}_{\mathrm{CH}}}{\mathrm{CH}}
\] \\
\hline \multirow[t]{3}{*}{t-butylbenzene} & & s-butylbenzene & \\
\hline & \[
\underset{\text { PhCCH3 }}{\mathrm{CH}_{3}}
\] & & \[
\underset{\mathrm{PhCHCH}}{\mathrm{CH}} \mathrm{CH}
\] \\
\hline & CH . & & \\
\hline
\end{tabular}

Table 5.1: Capacity factors of isomeric alkylbenzenes
\begin{tabular}{llllll}
Compound & \begin{tabular}{l}
Capacity factor \\
Organic modifier proportion
\end{tabular} & (\%) & & \\
& 30 & 40 & 50 & 60 & 70
\end{tabular}
methanol-buffer
\begin{tabular}{lrrrrr}
ethylbenzene & 65.28 & 27.28 & 13.73 & 5.02 & 2.35 \\
i-propylbenzene & 130.97 & 51.64 & 19.16 & 7.41 & 3.08 \\
n-propylbenzene & 165.50 & 59.57 & 24.60 & 8.19 & 3.38 \\
& - & 76.08 & 27.61 & 9.69 & 3.81 \\
t-butyibenzene & - & 95.77 & 32.85 & 11.16 & 4.38 \\
s-butylbenzene & - & 123.12 & 38.89 & 12.84 & 4.72 \\
i-butylbenzene & - & 130.97 & 41.20 & 13.37 & 4.95 \\
n-butylbenzene & & & & \\
acetonitrile - buffer & & & & &
\end{tabular}
\begin{tabular}{lrlrrrr}
ethylbenzene & 59.53 & 22.38 & 9.46 & 4.66 & 2.67 & 1.58 \\
i-propylbenzene & 131.26 & 35.92 & 14.36 & 6.70 & 3.50 & 2.06 \\
n-propylbenzene & 137.23 & 42.42 & 15.83 & 7.17 & 3.88 & 2.15 \\
& & & & & & \\
t-butylbenzene & 216.36 & 53.09 & 19.57 & 8.77 & 4.07 & 2.50 \\
s-butylbenzene & 290.89 & 65.43 & 23.39 & 10.28 & 4.69 & 2.82 \\
i-butylbenzene & 334.41 & 73.41 & 25.71 & 11.01 & 5.38 & 3.02 \\
n-butylbenzene & 308.86 & 79.97 & 27.39 & 11.81 & 5.63 & 2.94
\end{tabular}

Table 5.2: Retention indices of isomeric alkylbenzenes
Compound Retention index
Organic modifier proportion (\%) \(\begin{array}{lllllll}30 & 40 & 50 & 60 & 70 & 80\end{array}\)
methanol-buffer
\begin{tabular}{llllll}
ethylbenzene & 1075 & 1100 & 1126 & 1151 & 1177 \\
i-propylbenzene & 1154 & 1179 & 1202 & 1224 & 1246 \\
n-propylbenzene & 1182 & 1204 & 1227 & 1256 & 1282 \\
& - & & & & \\
t-butylbenzene & - & 1251 & 1269 & 1290 & 1313 \\
s-butylbenzene & - & 1280 & 1298 & 1320 & 1341 \\
i-butylbenzene & - & 1296 & 1317 & 1341 & 1362 \\
n-butylbenzene & - & 1317 & 1334 & 1358 & 1384
\end{tabular}
acetonitrile - buffer
\begin{tabular}{lllllll}
ethylbenzene & 1095 & 1110 & 1121 & 1130 & 1137 & 1144 \\
i-propylbenzene & 1169 & 1186 & 1196 & 1203 & 1211 & 1215 \\
n-propylbenzene & 1200 & 1212 & 1223 & 1233 & 1244 & 1253 \\
& & & & & & \\
t-butylbenzene & 1230 & 1248 & 1256 & 1264 & 1212 & 1280 \\
s-butylbenzene & 1266 & 1281 & 1291 & 1302 & 1312 & 1325 \\
i-butylbenzene & 1283 & 1299 & 1310 & 1322 & 1333 & 1344 \\
n-butylbenzene & 1302 & 1313 & 1322 & 1335 & 1346 & 1361
\end{tabular}

If chain branching had no effect on retention then the retention index of the branched chain isomers would be expected to be the same as the straight chain isomer but in each case a wide range of retention index values were found. The branched compounds were eluted more rapidly than the isomeric n-alkyl chains and the elution time decreased as the degree of branching increased. Small differences might be expected to arise with i-propylbenzene and \(s\) - and tbutylbenzene, where a methyl group has been substituted on the carbon adjacent to the ring. Studies on the normal alkylbenzenes suggested that replacement of a hydrogen on the benzylic methyl group with a methyl group contributed a smaller retention increment than subsequent additions of methylene groups (Section 4.3).

\subsection*{5.1.1 Substituent Contributions of the Methyl/Methylene Groups in Isomeric Alkylbenzenes}

To examine the effects of the addition of a secondary methyl group or a tertiary methyl group to the alkyl chain, a parent alkylbenzene has been defined, in each case based on the longest possible straight chain. Ethylbenzene has been used as the parent for \(i\)-propylbenzene and \(t\) butylbenzene and n-propylbenzene has been used for ibutylbenzene and s-butylbenzene. The retention index increments (\(\delta R I\)) (Table 5.3) were calculated by subtracting the calculated retention index (Tables 4.10 and 4.11) of the parent alkylbenzene from the corresponding branched alkylbenzene (from Table 5.2).

The increments for the secondary and tertiary methyl groups substituted on the benzylic carbon (C-1 in

Table 5.3: Retention index increments for methyl substituents on alkyl chains
Parent Alkylbenzene \begin{tabular}{l}
Carbon \begin{tabular}{l}
Retention increment \\
Substituted Organic modifier proportion
\end{tabular}
\end{tabular}
\begin{tabular}{llllll}
30 & 40 & 50 & 60 & 70 & 80
\end{tabular}
methanol-buffer
ethylbenzene
\begin{tabular}{ccccrrrc}
i-propylbenzene & 1 & - & 81 & 78 & 76 & 75 & 76 \\
t-butylbenzene & 1 & - & - & 150 & 143 & 141 & 143 \\
for each methyl
\end{tabular}
acetonitrile-buffer
ethylbenzene
\begin{tabular}{ccrrrrrr}
i-propylbenzene & 1 & 71 & 71 & 68 & 64 & 65 & 64 \\
t-butylbenzene & 1 & 132 & 133 & 128 & 122 & 124 & 129 \\
(hence for each methyl & & 66 & 67 & 64 & 61 & 62 & 65)
\end{tabular}
n-propylbenzene
\begin{tabular}{llllllll}
s-butylbenzene & \(\mathbf{1}\) & 68 & 66 & 63 & 63 & 66 & 74 \\
i-butylbenzene & 2 & 85 & 84 & 82 & 83 & 87 & 93
\end{tabular}

Table 5.4: Interaction increments calculated for secondary and tertiary methyl groups substituted on the benzylic carbon or subsequent carbon calculated taking into account the interaction index for the second carbon of an alkyl chain

Carbon chain
Interaction increment
Organic modifier proportion (8)
30 \begin{tabular}{llllll}
40 & 50 & 60 & 70 & 80
\end{tabular}
methanol-buffer
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\)
\(\begin{array}{llllll}- & -7 & -10 & -12 & -13 & -12\end{array}\)
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3} \quad-\quad-\quad-26 \quad-33-35-33\)
(for 1 group \(\quad-\quad-\quad-13-17 \quad-18 \quad-17)\)
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} \quad-\quad-\quad-9 \quad-16 \quad-17 \quad-17\)
\(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \quad-\quad-\quad-5 \quad-9 \quad-8 ~-8 ~\)
\(\begin{array}{lllllll}\text { mean } & - & -7 & -9 & -14 & -14 & -14\end{array}\)
acetonitrile- buffer
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\)
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\)
(for 1 group
\(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}\)
\(-24\)
\(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\)
mean
\begin{tabular}{llllll}
-17 & -17 & -20 & -24 & -23 & -24 \\
-44 & -43 & -48 & -54 & -52 & -47 \\
-22 & -22 & -24 & -27 & -26 & \(-24)\) \\
-20 & -22 & -25 & -25 & -22 & -14 \\
-15 & -16 & -18 & -17 & -13 & -7 \\
-19 & -19 & -22 & -23 & -21 & -17
\end{tabular}
i-propylbenzene, s-butylbenzene and t-butylbenzene) were very similar (71 to 81 in methanol and 61 to 74 in acetonitrile). This suggested that the relative retentions of the isomers were not determined purely on steric grounds as the effect each of the two tertiary methyl groups in \(t\) butylbenzene might be expected to be greater than the secondary methyl group. The other superimposed effects may be due to hyperconjugation of the alkyl groups with the ring, where the electron releasing effects of the tertiary methyl group would be greater than the equivalent primary group. The polarity of these compounds would therefore be expected to be larger than the corresponding secondary and primary carbons and \(t\)-butylbenzene had the smallest retention index of the three isomers. The retention index increment of the methyl group substituted onto the second carbon (91 to 95 in methanol and 82 to 93 in acetonitrile) was always larger than the effect of substitution on the benzylic carbon but was still less than the defined methylene increment of 100 .

Previously in studying the retention increments for \(n\) alkyl chains it had been found that substituting a methyl group onto the benzylic carbon caused a reduction in the retention index (as compared to the defined value of 100) of -12. The interaction increments to account for the difference between primary methyl \((S I=100)\) and secondary and tertiary methyl groups have therefore been calculated allowing for this interaction index (IImmenmp for each methyl/methylene group substituted on the benzylic carbon and assuming a nominal value of 100 for each group (e.g. Equation 5.1 for \(i\)-propylbenzene or s-butylbenzene and 5.2 for \(t\)-butylbenzene).
\[
\begin{aligned}
& \delta I=\delta R I-\left(S I_{\text {にHa }}+I I_{\text {Fnchーer }}\right) \\
& \delta I=\delta R I-\left(2 S I_{\text {ans }}+2 I I_{\text {pmoh-m }}\right)
\end{aligned}
\]

The values obtained for the different compounds（Table 5．4） were similar and the differences are probably not significant．The mean values，at each eluent composition， have therefore been used to calculate the interaction indices for a non－primary methyl groups．As the change across the eluent ranges was less than 10 units（ -7 to－14 in methanol and -17 to -23 in acetonitrile）the mean values have been used rather than fitted quadratic equations（Table 5．5）．These corrections have been subsequently applied to compensate for the effect of branching an alkyl side chains．

\section*{5．1．2 Relationship between retention increment and structural parameters}

The octanol－water substituent constants（ \(\pi\) ）have been reported for most of the isomeric alkylbenzene chains（Table 5．6）．In all cases the \(\pi\) value for the straight chain isomer was higher than for the branched chains which agrees with the sizes of the retention increments．There are insułficient values available to determine whether the \(\pi\) values could predict the order of elution of the branched isomers．However，the values available for t－butyl and s－ butyl would correctly predict the relative size of the retention increments of these alkyl chains．

It is also possible to calculate the molecular connectivity indices for the alkyl chains as described by

Kiex \({ }^{27}\) (Table 5.6). The molecular connectivity indices for the straight chain isomers were again higher than the corresponding branched chains and would correctly predict a larger retention increment for these chains. However, the relative order of elution of the sec and iso branched isomers would not have been predicted from the molecular connectivity indices. This agreed with previous findings of Smith \({ }^{2} 4\) in which molecular connectivity indices could not predict the elution order of isomeric alkylbenzenes on an ODS-Hypersil column.

\subsection*{5.2 EXAMINATION OF RETENTION OF ISOMERIC PHENYLPROPANOLS}

Five isomeric phenylpropanols (listed below) were examined to discover whether the contribution of the nonprimary hydroxyl groups to the retention index was the same as a primary hydroxyl and also whether the effects of alkyl chain branching observed with the alkylbenzenes applied to these compounds.

3-phenyl-1-propanol

2-phenyl-2-propanol

2-phenyl-1-propanol

1-phenyl-2-propanol

1-phenyl-1-propanol
\(\mathrm{PhCH}=\mathrm{CH}_{2}=\mathrm{CH}=\mathrm{OH}\)
\(\mathrm{CH}_{5}\)
PhCOH
\(\mathrm{CH}_{3}\)
\(\mathrm{PhCHCH}=\mathrm{OH}\)
\(\mathrm{CH}_{3}\)
\(\mathrm{PhCH}_{2} \mathrm{CHCH}_{5}\) OH
\(\mathrm{PhCHCH}_{2 \mathrm{z}} \mathrm{CH}_{5}\) OH

Table 5.5: Interaction index equations for secondary and tertiary methyl groups
\[
\text { IIbranch }=a x^{2}+b x+c \quad x=8 \text { modifier }
\]
\begin{tabular}{lll}
Modifier & \multicolumn{3}{l}{ Coefficients of regression equations } \\
& a & b \\
& c \\
methanol & 0 & 0 \\
acetonitrile & 0 & 0 \\
\hline
\end{tabular}

Table 5.6: Structural parameters of isomeric alkylbenzenes
\begin{tabular}{lll}
Chain & \(\pi^{48}\) & \({ }^{18} \chi^{17}\) \\
& & \\
\(-\mathrm{CH}_{3}\) & 0.56 & 0.410 \\
\(-\mathrm{CH}_{2} \mathrm{CH}_{3}\) & 1.05 & 0.971 \\
\(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) & 1.55 & 1.411 \\
\(\left.-\mathrm{CH}_{3} \mathrm{CH}_{3}\right)_{2}\) & 1.53 & 1.354 \\
\(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) & 2.13 & 1.971 \\
\(\left.-\mathrm{CH}_{3} \mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) & 2.04 & 1.892 \\
\(\left.-\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{CH}_{3}\right)_{2}\) & - & 1.827 \\
\(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\) & 1.98 & 1.661
\end{tabular}

The different compounds can be divided into groups depending on their structure, 3-phenyl-1-propanol, 1-phenyl-2-propanol and 1-phenyl-1-propanol have straight alkyl chains with hydroxyl groups substituted on different carbon atoms. 2-phenyl-1-propanol has a branched alkyl chain with a primary hydroxyl substituent as a terminal substituent on a carbon atom. The final compound, 2-phenyl-2-propanol, has a branched chain with a tertiary hydroxyl group.

The capacity factors of these compounds (Table 5.7) have been used to calculate retention indices (Table 5.8). There were differences between the retention indices of the đifferent isomers. Unlike the alkylbenzenes the isomeric compounds did not all elute earlier than the straight chain isomer (3-phenyl-1-propanol) which was perhaps not unexpected. In the previous chapter (Chapter 4) it has been seen that primary hydroxyl groups closer to the ring had a smaller effect on retention index than those further from the ring. It appeared that a similar effect was also true for the secondary hydroxyl groups. The order of elution was also different in the two eluents probably due to selectivity differences.
5.2.1 Retention increments calculated for hydroxyl groups

The hydroxyl retention index increments have been calculated from the retention indices using the Equations 5.3 to 5.6 . In these equations it has been assumed that the interactions of hydroxyl groups with the aromatic ring (\(I I_{1-0 H}\) and \(I I_{\text {-om, }}\) from Table 4.23 and 4.24) were not dependent on the "type" of hydroxyl group but only on the distance from the ring (i.e \(\mathrm{C}-1\) and \(\mathrm{C}-2\) from phenyl). When

Table 5.7: Capacity factors of isomeric phenylpropanols
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{6}{|l|}{Capacity factor} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline methanol - buffer & & & & & & \\
\hline 2-phenyl-2-propanol & - & 7.83 & 3.31 & 1.70 & 1.01 & 0.54 \\
\hline 2-phenyl-1-propanol & - & 8.15 & 3.48 & 1.72 & 1.02 & 0.55 \\
\hline 1-phenyl-2-propanol & - & 8.18 & 3.52 & 1.75 & 1.02 & 0.57 \\
\hline 3-phenyl-1-propanol & - & 9.12 & 3.75 & 1.78 & 1.03 & 0.56 \\
\hline 1-phenyl-1-propanol & - & 9.81 & 4.04 & 1.95 & 1.11 & 0.60 \\
\hline acetonitrile - buffer & 4.61 & 2.23 & 1.41 & 0.92 & 0.64 & 0.43 \\
\hline 2-phenyl-2-propanol & 4.73 & 2.29 & 1.48 & 0.97 & 0.66 & 0.42 \\
\hline 2-phenyl-1-propanol & 4.96 & 2.35 & 1.45 & 0.94 & 0.63 & 0.42 \\
\hline 3-phenyl-1-propanol & 5.18 & 2.37 & 1.42 & 0.91 & 0.62 & 0.41 \\
\hline 1-phenyl-1-propanol & 6.00 & 2.79 & 1.74 & 1.10 & 0.73 & 0.47 \\
\hline
\end{tabular}

Table 5.8: Retention indices of isomeric phenylpropanols
\begin{tabular}{llllllll}
Compound & \multicolumn{8}{l}{\begin{tabular}{l}
Retention index \\
Organic modifier
\end{tabular}} & proportion & \((8)\) & \\
& 30 & 40 & 50 & 60 & 70 & 80 \\
methanol - buffer & & & & & & \\
& & & & & & \\
3-phenyl-1-propanol & - & 840 & 835 & 828 & 813 & 793 \\
2-phenyl-2-propanol & - & 825 & 823 & 819 & 809 & 789 \\
2-phenyl-1-propanol & - & 830 & 827 & 821 & 812 & 792 \\
1-phenyl-2-propanol & - & 830 & 829 & 824 & 812 & 797 \\
1-phenyl-1-propanol & - & 851 & 847 & 842 & 830 & 812 \\
acetonitrile - buffer & & & & & & \\
& & & & & & \\
3-phenyl-1-propanol & 782 & 756 & 739 & 728 & 731 & 735 \\
1-phenyl-2-propanol & 769 & 755 & 740 & 734 & 734 & 748 \\
2-phenyl-2-propanol & 772 & 760 & 750 & 745 & 742 & 746 \\
2-phenyl-1-propanol & 778 & 763 & 746 & 738 & 733 & 740 \\
1-phenyl-1-propanol & 801 & 791 & 780 & 775 & 773 & 777
\end{tabular}
the alkyl chain was branched (2-phenyl-2-propanol and 2-phenyl-1-propanol) the interaction index for branched alkyl chains (IIm-ロッa) has been applied as well as the interaction index for the substitution of methyl groups on the benzylic carbon (Iphon-ri) if appropriate.

For the compound 2-phenyl-1-propanol which has a primary hydroxyl group and a branched chain the hydroxyl retention index increment was calculated from equation 5.3:-

The retention increments (Table 5.9) were very similar to those obtained previously for primary hydroxyl groups on straight chains and the values for 3-phenyl-1-propanol included for comparison (Tables 4.10 and 4.11).

The two compounds 1-phenyl-2-propanol and 1-phenyl-1propanol both contain straight alkyl chains with secondary hydroxyl groups substituted on different carbon atoms. The retention increments have been calculated from equation 5.4 for 1-phenyl-2-propanol and equation 5.5 for 1-phenyl-1propanol.
\[
\begin{aligned}
& \delta R I=R I-\left(P I+3 S I_{\text {IOHz }}+I I_{\text {PhOHz-R }}+I I_{\text {Z-OH }}\right) \\
& 5.4 \\
& \delta R I=R I-\left(P I+3 S I_{\text {OHz }}+I I_{\text {FhOHz-R }}+I I_{2-O H}\right)
\end{aligned}
\]

The final phenylpropanol, 2-phenyl-2-propanol, contains a branched chain and a tertiary hydroxyl group. The retention increment can be calculated from equation 5.6.

The calculated retention index increments for the two secondary and the tertiary hydroxyl groups were very similar but differed significantly from those for the primary hydroxyl group in 2-phenyl-l-propanol. The similarity of the results for these compounds confirms the assumption that the use of the interaction terms for the phenyl group is valid. A single substituent index (in each organic modifier) has therefore been calculated from the mean retention increments for the secondary and tertiary hydroxyl groups (Table 5.10) and will be used in the prediction of non-primary hydroxyl groups.

\subsection*{5.3 RETENTION BEHAVIOUR OF SELECTED COMPOUNDS WITH TWO SUBSTITUENTS ON THE ALKYL CHAIN}

Two compounds (listed below) were examined in which the adjacent aliphatic substituents might be expected to undergo hydrogen bonding to test the extent of the effect of the interactions. However, the number of compounds studied was not sufficient to allow any conclusions about interactions to be made and the results have not been incorporated into the retention prediction system at this stage.

1-phenyl-1,2-ethanediol \(\quad \mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}=(\mathrm{OH})\)

Table 5.9: Retention index increments calculated for hydroxyl groups
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{Retention index increment Organic modifier proportion (\%)} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \multicolumn{7}{|l|}{methanol - buffer} \\
\hline 3-phenyl-1-propanol & & -335 & -366 & -391 & -436 & -477 \\
\hline 2-phenyl-1-propanol & & -342 & -378 & -413 & -447 & -500 \\
\hline 1-pheny1-1-propanol & & -358 & -399 & -438 & -482 & -530 \\
\hline 1-phenyl-2-propanol & & -364 & -398 & -432 & -469 & -517 \\
\hline 2-phenyl-2-propanol & & -362 & -401 & -439 & -451 & -531 \\
\hline \(\delta\) RI \(=\)-он (mean) & & -361 & -399 & -436 & -467 & -526 \\
\hline \multicolumn{7}{|l|}{acetonitrile - buffer} \\
\hline 3-phenyl-1-propanol & -416 & -459 & -489 & -511 & -515 & -516 \\
\hline 2-phenyl-1-propanol & -417 & -454 & -489 & -512 & -527 & -528 \\
\hline 1-phenyl-1-propanol & -459 & -503 & -500 & -551 & -556 & -572 \\
\hline 1-phenyl-2-propanol & -456 & -492 & -514 & -546 & -556 & -550 \\
\hline 2-phenyl-2-propanol & -458 & -496 & -527 & -551 & -567 & -573 \\
\hline ¢RI.-on (mean) & -458 & -497 & -514 & -549 & -560 & -565 \\
\hline
\end{tabular}

Table 5.10: Substituent index equations for secondary and tertiary hydroxyl groups

Calculations from the mean values in Table 5.9.
\[
S I_{=-c-a H}=a x^{2}+b x+c \quad x=\% \operatorname{modifier}
\]
\begin{tabular}{|c|c|c|c|}
\hline Modifier & \multicolumn{3}{|l|}{Coefficients of regression equation a b c} \\
\hline methanol & -0.0257 & -0.894 & -286 \\
\hline acetonitrile & 0.0346 & -5.979 & -310 \\
\hline
\end{tabular}

The capacity factors of these compounds (Table 5.11) have been used to calculate the retention indices (Table 5.12). The anticipated retention indices of these compounds, if there was no hydrogen bonding effect, can be calculated as the sum of the contributions of the different parts using the equations given below.

1-phenyl-1,2-ethanediol
ethyl DL-mandelate
\[
\begin{align*}
& +I I_{1-0+1}+I I_{1-C O E R}
\end{align*}
\]

The difference between calculated retention indices obtained using these equations and the experimental retention indices, the interaction increments (Table 5.13), were a measure of the size of the interactions. These hydrogen bonding effects differed between the two sets of substituents and were also dependent on the organic modifier and organic modifier concentration. It may be possible to generalise these results to other similar pairings for example other carbonyl-hydroxyl pairings, or cases in which the hydroxyl is replaced by a amino group. The values are comparable to those determined for aromatic hydrogen bonding (100 to 300 units, Chapter 7.3.2).

However insufficient compounds have been examined to apply these interactions in the prediction system and a

Table 5.11: Capacity factors of 1-phenyl-1;2-ethanediol and ethyl DL-mandelate
\begin{tabular}{llllll}
Compound & \begin{tabular}{lllll}
Capacity factor \\
Organic modifier & & \\
& 30 & 40 & 50 & 60 \\
& & 70 & 80
\end{tabular}
\end{tabular}
methanol - buffer
\begin{tabular}{lllllll}
1-phenyl-1,2-ethanediol & & 1.20 & 0.72 & 0.48 & 0.35 & 0.23 \\
ethyl DL-mandelate & 5.45 & 2.30 & 1.15 & 0.69 & 0.41 \\
& & & & & & \\
acetonitrile-buffer & & & & & & \\
& & & & & & \\
1-phenyl-1,2-ethanediol & 0.77 & 0.54 & 0.41 & 0.32 & 0.26 & 0.25 \\
ethyl DL-mandelate & 4.33 & 1.98 & 1.38 & 0.83 & 0.56 & 0.36
\end{tabular}

Table 5.12: Retention indices of disubstituted compounds
\begin{tabular}{llllll}
Compound & Retention index & \\
& Organic modifier & proportion (\%) \\
& 30 & 40 & 50 & 60 & 70
\end{tabular}
methanol-buffer
\begin{tabular}{lllllll}
1-phenyl-1,2-ethanediol & --- & 620 & 612 & 601 & 583 & 546 \\
1-phenyl-1,2-ethanediol & --- & 431 & 416 & 388 & 347 & 293 \\
ethyl DL mandelate & --- & 792 & 773 & 754 & 728 & 696 \\
ethyl DL mandelate & --- & 669 & 643 & 613 & 574 & 531
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lllllll}
1-phenyl 1,2 ethanediol & 548 & 531 & 496 & 481 & 480 & 569 \\
1-phenyl-1,2-ethanediol & 333 & 280 & 243 & 224 & 222 & 237 \\
ethyl DL-mandelate & 761 & 741 & 723 & 710 & 696 & 694 \\
ethyl DL-mandelate* & 628 & 592 & 561 & 535 & 529 & 518
\end{tabular}
- value calculated as the sum of \(P I\) and \(S I\)

Table 5.13: Interaction increments for disubstituted aliphatic compounds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent Pairs} & \multicolumn{6}{|l|}{Interaction increment Organic modifier proportion (\%)} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline OH-OH (MeOH:Buffer) & --- & 158 & 157 & 182 & 221 & 232 \\
\hline \(\mathrm{OH}-\mathrm{OH}\) (MeCN:Buffer) & 191 & 223 & 224 & 232 & 218 & 298 \\
\hline \(\mathrm{OH}-\mathrm{CO}_{2} \mathrm{CH}_{3}\) (MeOH:Buffer) & --- & 123 & 130 & 141 & 154 & 165 \\
\hline \(\mathrm{OH}-\mathrm{CO}_{2} \mathrm{CH}_{3}\) (MeCN:Buffer) & 133 & 149 & 162 & 175 & 167 & 176 \\
\hline
\end{tabular}
larger number of disubstituted compounds would have to be examined to obtain meaningful interaction indices. Consequently interaction index equations have not been calculated or included in the the database as insufficient information was available to ensure that they were generally reliable.

\section*{CHAPTER 6}

\section*{SUBSTITUENT INDICES OF AROMATIC SUBSTITUENTS}

In this chapter the determination of substituent indices of aromatic substituents will be described. The indices have been calculated using 13 mono-substituted benzenes to give values in the absence of interactions with other substituents. The model compounds contained the same functional series of groups as have been examined in the study of aliphatic substituents with the addition of the nitro and groups. The substituent index equations derived in this chapter have then been used to calculate the interaction indices for disubstituted benzenes (Chapter 7).

\subsection*{6.1 RETENTION INDICES OF MONO-SUBSTITUTED MODEL COMPOUNDS}

The capacity factors of the model compounds (Table 6.1 measured over the eluent ranges described previously (40\(90 \%\) methanol and \(30-90 \%\) acetonitrile) were used to calculate retention indices (Table 6.2). Acetophenone, which is one of the retention index standards, has also been included as a model compound to derive a substituent index for the aromatic ketone group. As with the aliphatic substituted model compounds the changes in retention indices were generally not linear but appeared to be systematic between 30 and \(80 \%\) acetonitrile and 40 and \(80 \%\) methanol (Figure 6.1 and 6.2). However with a few model compounds (e.g. aniline, phenol, benzamide) there were relatively large changes in the retention index in the eluents

Table 6.1: Capacity factors of monofunctional aromatic test compounds in eluents containing different proportions of methanol and acetonitrile

Compound Capacity factor (\(k\) ')

methanol-buffer
\begin{tabular}{lrrrrlc}
aniline & 1.73 & 1.09 & 0.68 & 0.49 & 0.33 & 0.25 \\
anisole & 12.23 & 6.08 & 3.33 & 1.85 & 1.05 & - \\
benzaldehyde & 4.65 & 2.42 & 1.37 & 0.86 & 0.56 & - \\
benzamide & 1.18 & 0.68 & 0.42 & 0.33 & 0.25 & 0.21 \\
benzonitrile & 5.01 & 2.83 & 1.37 & 0.86 & 0.50 & 0.35 \\
biphenyl & 204.00 & 62.30 & 22.21 & 8.29 & 3.26 & - \\
bromobenzene & 41.82 & 19.74 & 7.67 & 3.70 & 1.67 & 0.88 \\
chlorobenzene & 32.52 & 15.79 & 6.44 & 3.16 & 1.46 & 0.79 \\
methyl benzoate & 14.16 & 6.69 & 2.94 & 1.61 & 0.85 & 0.53 \\
nitrobenzene & 8.12 & 4.67 & 2.32 & 1.35 & 0.74 & 0.46 \\
phenol & 2.27 & 1.27 & 0.78 & 0.49 & 0.34 & 0.25 \\
toluene & 29.57 & 13.66 & 6.81 & 3.38 & 1.68 & 0.86
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrrrrrrc}
& 2.21 & 1.63 & 1.01 & 0.73 & 0.52 & 0.43 & 0.22 \\
aniline & 13.43 & 6.85 & 3.43 & 1.98 & 1.17 & 0.81 & - \\
anisole & 5.28 & 3.10 & 1.79 & 1.16 & 0.77 & 0.44 & - \\
benzaldehyde & 0.83 & 0.61 & 0.43 & 0.35 & 0.28 & 0.33 & 0.20 \\
benzamide & 5.86 & 3.27 & 1.82 & 1.15 & 0.74 & 0.55 & 0.28 \\
benzonitrile & 154.50 & 46.07 & 14.89 & 6.49 & 3.10 & 1.82 & - \\
biphenyl & 35.34 & 14.60 & 6.34 & 3.38 & 1.97 & 1.24 & 0.63 \\
bromobenzene & 28.58 & 12.32 & 5.51 & 3.01 & 1.77 & 1.13 & 0.57 \\
chlorobenzene & 2.72 \\
methyl benzoate & 10.72 & 5.19 & 2.81 & 1.63 & 1.03 & 0.73 & 0.38 \\
nitrobenzene & 9.08 & 4.70 & 2.43 & 1.45 & 0.89 & 0.62 & 0.30 \\
phenol & 2.54 & 1.47 & 0.99 & 0.63 & 0.44 & 0.35 & 0.20 \\
toluene & 30.63 & 11.95 & 6.29 & 3.02 & 1.86 & 1.23 & 0.58
\end{tabular}

Table 6.2: Retention indices of model mono-substituted aromatic compounds in methanol and acetonitrile eluents
\begin{tabular}{llllll}
Compound & \begin{tabular}{l}
Retention index \\
\\
Organic modifier
\end{tabular} & & \\
& 30 & 40 & 50 & 60 & 70
\end{tabular}
methanol-buffer
\begin{tabular}{llrrrrrr}
parent index (benzene) & - & 885 & 913 & 938 & 961 & 982 & 1000 \\
& & & & & & & \\
acetophenone & - & 805 & 806 & 803 & 803 & 804 & 809 \\
aniline & - & 650 & 658 & 657 & 659 & 639 & 579 \\
anisole & - & 884 & 904 & 917 & 934 & 954 & - \\
benzaldehyde & - & 774 & 777 & 777 & 775 & 784 & - \\
benzamide & - & 605 & 589 & 578 & 570 & 551 & 514 \\
benzonitrile & - & 776 & 788 & 775 & 774 & 760 & 736 \\
biphenyl & - & 1205 & 1222 & 1231 & 1247 & 1270 & - \\
bromobenzene & - & 1027 & 1051 & 1065 & 1088 & 1110 & 1139 \\
chlorobenzene & - & 998 & 1021 & 1036 & 1051 & 1072 & 1090 \\
methyl benzoate & - & 899 & 904 & 904 & 910 & 914 & 917 \\
nitrobenzene & - & 851 & 857 & 864 & 874 & 874 & 853 \\
phenol & - & 680 & 683 & 680 & 671 & 650 & 582 \\
toluene & - & 987 & 1019 & 1039 & 1065 & 1095 & 1132
\end{tabular}
acetonitrile-buffer
\begin{tabular}{lrrrrrrc}
parent index (benzene) & 910 & 927 & 940 & 951 & 958 & 963 & 966 \\
& & & & & & & \\
acetophenone & & 800 & 798 & 798 & 798 & 799 & 803 \\
aniline & 691 & 706 & 694 & 695 & 691 & 696 & 656 \\
anisole & 900 & 908 & 912 & 915 & 917 & 913 & - \\
benzaldehyde & 781 & 786 & 786 & 788 & 788 & 779 & - \\
benzamide & 568 & 549 & 521 & 511 & 509 & 593 & 636 \\
benzonitrile & 814 & 817 & 813 & 808 & 799 & 788 & 749 \\
biphenyl & 1201 & 1198 & 1196 & 1195 & 1194 & 1195 & - \\
bromobenzene & 1041 & 1054 & 1065 & 1074 & 1084 & 1093 & 1109 \\
chlorobenzene & 1014 & 1027 & 1037 & 1045 & 1053 & 1058 & 1070 \\
methyl benzoate & 890 & 890 & 900 & 894 & 894 & 897 & 894 \\
nitrobenzene & 869 & 874 & 871 & 864 & 853 & 836 & 797 \\
phenol & 695 & 687 & 674 & 660 & 639 & 645 & 671 \\
toluene & 1005 & 1022 & 1036 & 1046 & 1054 & 1061 & 1072
\end{tabular}
- From Table 4.2
- calculated for \(k\) ' taken from alkylarylketone test mixture, nominal value 800

Figure 6.1: Change in retention indices of a selection of aromatic compounds with proportion of methanol

Figure 6.2: Change in retention indices of a selection of aromatic compounds with proportion of acetonitrile

containing \(90 \%\) organic modifier. Because of the sudden change and the uncertainty in the capacity factor at \(90 \%\) organic modifier these results were excluded from subsequent calculations and will be disregarded in the discussion.

The aromatic amine (aniline) did not show any of the "odd" behaviour patterns observed with the more basic aliphatic amines (Chapter 4, Section 4.2). Aniline is weakly basic and has a pKa of \(4.63^{2 \epsilon s}\) and would therefore not be expected to be ionised at the pH of the mobile phase and should not be retained by an ion exchange mechanism.

In previous studies on the use of retention indices on the alkylarylketone scale smith and co-workersism, 140.146 found that the retention index of methyl benzoate was virtually unchanged across the eluent ranges and was independent of the column packing material. This was consistent with this compound belonging to the same Snyder \({ }^{171}\) selectivity group as the alkylarylketones. Although the values reported here differ slightly from those previously reported by Smith \({ }^{294.145}\) on a Hypersil-ODS column (\(R I=916-963\) in methanol \({ }^{1504}\) and \(R I=880-903\) in acetonitrile \({ }^{1.4}\)) the change in retention index across the eluent range up to \(80 \%\) modifier was only small (\(R I=899\) to 914 in methanol - buffer and RI = 890 to 897 in acetonitrile - buffer).

Benzaldehyde might be expected to behave as the zeroth member of the alkylarylketone homologous series and therefore have a retention index approximately 100 less than that defined for acetophenone. The experimental retention index was found to be in the range \(R I=774\) to 784 in methanol and \(R I=779\) to 788 in acetonitrile containing eluents. These values were similar to those found previously
by Smith \({ }^{13-4}\) in eluents containing methanol \((R I=758\) to 776 on a Hypersil-ODS column).

\subsection*{6.2 SUBSTITUENT INDICES FOR SINGLE AROMATIC SUBSTITUENTS}

Retention index increments (\(\delta R I\)) for the substituents were earlier defined as the difference between the retention index of the substituted compound and the parent index. For the aromatic substituents they were therefore calculated using the equation.
\[
\delta R I=R I_{\text {Fnx }}-P I
\]

Where \(P I\) is the parent index calculated from the regression equation described earlier (Table 6.2). Between 30 and \(80 \%\) acetonitrile and 40 and 80 \% methanol the changes in the retention index increments for all the functional group were systematic although not linear (Tables 6.3 and 6.4).

The experimental values for the methyl group, from toluene, were close to the defined value of 100 and were usually within the experimental error of \(+/-10\). The only exception was at \(80 \%\) methanol, where there was an increased uncertainty in the calculated values and the defined value of 100 has therefore been used as the substituent index.

Among the substituents were several mixed alkyl-aryl functional groups (COCH: \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) and \(\mathrm{OCH}_{3}\)) and as with the aliphatic functional groups in each case the methyl group was defined as having a substituent index of 100 and this was subtracted from the calculated retention index increment to obtain the values for the COR group etc.

Table 6.3: Retention index increments of aromatic functional groups in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent} & \multicolumn{5}{|l|}{Retention index increment Methanol proportion (\%)} \\
\hline & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{CONH}_{2}\) & -280 & -324 & -360 & -391 & -431 \\
\hline \(\mathrm{NH}_{2}\) & -235 & -255 & -281 & -302 & -343 \\
\hline OH & -205 & -230 & -258 & -290 & -332 \\
\hline СНо & -111 & -136 & -161 & -186 & -198 \\
\hline CN & -109 & -133 & -163 & -187 & -222 \\
\hline \(\mathrm{COCH}_{3}{ }^{\text {a }}\) & -80 & -107 & -135 & -158 & -178 \\
\hline \(\mathrm{COCH}^{\circ}\) & -85 & -113 & -138 & -162 & -182 \\
\hline (\(\mathrm{COR}^{*}\) & -185 & -213 & -238 & -262 & -282) \\
\hline \(\mathrm{NO}_{2}\) & - 34 & - 56 & - 74 & -87 & -108 \\
\hline \(\mathrm{OCH}_{3}\) & -1 & -9 & -20 & -27 & -28 \\
\hline (08* & -101 & -109 & -120 & -127 & -128) \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 14 & -9 & -34 & -51 & -68 \\
\hline \(\left(\mathrm{CO}=\mathrm{R}^{*}\right.\) & -86 & -109 & -134 & -151 & -168) \\
\hline H & 0 & 0 & 0 & 0 & - \\
\hline \(\mathrm{CH}_{3}{ }^{-}\) & 102 & 106 & 101 & 104 & 113 \\
\hline \(\mathrm{CH}_{3}{ }^{\circ}\) & 100 & 100 & 100 & 100 & 100 \\
\hline Cl & 113 & 108 & 98 & 90 & 90 \\
\hline Br & 142 & 138 & 127 & 127 & 128 \\
\hline Ph & 320 & 309 & 293 & 286 & 288 \\
\hline
\end{tabular}
- based on experimental values of retention indices
- based on defined value (\(-\mathrm{COCH}_{3} \mathrm{RI}=800,-\mathrm{CH}_{3} \delta R I=100\)) and used for substituent index calculation
* calculated by subtracting 100 for methyl contribution

Table 6.4: Retention index increments for aromatic functional groups in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Retention index increment \\
Acetonitrile proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{CONH}_{2}\) & -342 & -378 & -419 & -440 & -449 & -370 \\
\hline \(\mathrm{NH}_{2}\) & -219 & -221 & -246 & -256 & -267 & -267 \\
\hline OH & -215 & -240 & -266 & -291 & -319 & -318 \\
\hline CHO & -129 & -141 & -154 & -163 & -170 & -184 \\
\hline COCHsa & -110 & -129 & -142 & -153 & -159 & -160 \\
\hline \(\mathrm{COCH}_{3}{ }^{\circ}\) & -110 & -127 & -140 & -151 & -158 & -163 \\
\hline (\(\mathrm{COR}^{*}\) & -210 & -227 & -240 & -251 & -258 & -263) \\
\hline CN & -96 & -110 & -127 & -143 & -151 & -175 \\
\hline \(\mathrm{NO}_{2}\) & -41 & -53 & -69 & -87 & -105 & -127 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}\) & -20 & -37 & -40 & -57 & -64 & -66 \\
\hline \(\left(\mathrm{CO}_{2} \mathrm{R}^{*}\right.\) & -120 & -137 & -140 & -157 & -164 & -166) \\
\hline OCH: & -10 & -19 & -28 & -36 & -41 & -50 \\
\hline (\(\mathrm{OR}^{*}\) & -110 & -119 & -128 & -136 & -141 & -150) \\
\hline H & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}{ }^{*}\) & 95. & 95 & 96 & 94 & 95 & 95 \\
\hline \(\mathrm{CH}_{3}{ }^{\circ}\) & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Cl & 104 & 100 & 97 & 94 & 95 & 95 \\
\hline Br & 131 & 127 & 125 & 123 & 126 & 130 \\
\hline Ph & 291 & 271 & 256 & 244 & 236 & 232 \\
\hline
\end{tabular}
* based on experimental values of retention indices
- based on defined value \(\left(-\mathrm{COCH}_{3} \mathrm{RI}=800,-\mathrm{CH}_{3} \delta R I=100\right)\) and used for substituent index calculation
* calculated by subtracting 100 for methyl contribution

Table 6.5: Substituent index equations for aromatic substituents in methanol eluents (40-80 \%)
\(S I=a x^{2}+b x+c \quad x=\% \operatorname{modifier}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Substituent & \[
\underset{\pi}{\text { Hansch }}
\] & \[
\underset{a}{\text { Coefficie }}
\] & \[
\begin{aligned}
& \text { of res } \\
& \mathrm{b}
\end{aligned}
\] & \begin{tabular}{l}
sion equation \\
c
\end{tabular} \\
\hline \(\mathrm{CONH}_{2}\) & -1.49 & 0.0093 & -4.804 & -104 \\
\hline \(\mathrm{NH}_{2}\) & -1.23 & -0.0264 & 0.541 & -215 \\
\hline OH & -0.67 & -0.0271 & 0.117 & -167 \\
\hline С CH & -0.65 & 0.0186 & -4.469 & 39 \\
\hline CN & -0.57 & -0.0114 & -1.429 & -34 \\
\hline COR & -0.55 & 0.0114 & -3.791 & -52 \\
\hline \(\mathrm{NO}_{2}\) & -0.28 & 0.0050 & -2.390 & 53 \\
\hline OR & -0.02 & 0.0129 & -2.263 & -30 \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & -0.01 & 0.0143 & -3.774 & 43 \\
\hline \(\mathrm{CH}_{3}\) & 0.56 & 0 & 0 & 100* \\
\hline Cl & 0.71 & 0.0086 & -1.669 & 167 \\
\hline Br & 0.86 & 0.0150 & -2.190 & 207 \\
\hline Ph & 1.96 & 0.0250 & -3.870 & 436 \\
\hline
\end{tabular}

Table 6.6: Substituent index equations for aromatic substituents in acetonitrile eluents (30-80 \%)
```

SI= ax 2 + bx + c x = q modifier

```
\begin{tabular}{|c|c|c|c|c|}
\hline Substituent & \[
\begin{aligned}
& \text { Hansch }^{48} \\
& \pi
\end{aligned}
\] & \begin{tabular}{l}
Coeffici \\
a
\end{tabular} & \[
s_{b} \text { of } r e
\] & \[
\begin{gathered}
\text { sion } \\
c
\end{gathered}
\] \\
\hline \(\mathrm{CONH}_{2}\) & -1.49 & 0.1260 & -14.878 & 2 \\
\hline \(\mathrm{NH}_{2}\) & -1.23 & 0.0118 & -2.405 & -153 \\
\hline OH & -0.67 & 0.0218 & -4.616 & -93 \\
\hline CHO & -0.65 & 0.0025 & -1.335 & -92 \\
\hline CN & -0.57 & -0.0025 & -1.251 & -57 \\
\hline COR & -0.55 & 0.0150 & -2.704 & -143 \\
\hline \(\mathrm{NO}_{2}\) & -0.28 & -0.0104 & -0.586 & -14 \\
\hline OR & -0.02 & 0.0029 & -1.097 & -80 \\
\hline \(\mathrm{CO}_{2} \mathrm{R}\) & -0.01 & 0.0105 & -2.096 & -67 \\
\hline \(\mathrm{CH}_{3}\) & 0.56 & 0 & - & 100* \\
\hline Cl & 0.71 & 0 & 0 & 98 \\
\hline Br & 0.86 & 0 & 0 & 127 \\
\hline Ph & 1.96 & 0.0193 & -3.299 & 372 \\
\hline
\end{tabular}
* by definition

Although there was a small systematic error in the retention index of acetophenone compared to the nominal value the difference was less than the experimental uncertainty (+/- 10 units). Therefore the retention index increments and hence substituent indices have been calculated based on the defined value of \(R I=800\) rather than the experimental values.

Quadratic regression equations were fitted to the experimental data or defined values to calculate the coefficients of substituent index (SI) equations (Tables 6.5 and 6.6). For the bromide and chloride substituents the change in retention increment across the range of acetonitrile concentrations was less than the experimental uncertainty (Br \(\delta R I 131\) - 123 and \(C l(\delta R I 104-94)\). For these two substituents the mean value was therefore used as the substituent index. The fitted curves were a good description of the experimental data for all the substituents as shown in Figures 6.3 and 6.4, for a selection of the functional groups, where the lines represent the calculated substituent indices and the points are the experimental retention index increments.

The coefficients of the substituent index equations have been written into a spreadsheet and will be used for retention prediction (see Chapter 8).

\subsection*{6.3 RELATIONSHIP BETWEEN SUBSTITUENT INDICES AND PHYSICOCHEMICAL PROPERTIES}

In a previous chapter (Chapter 4) there was found to be an approximately relationship between the substituent

Figure 6.3: Comparison of experimental substituent increments and calculated substituent indices in methanol

Figure 6.4: Comparison of experimental substituent increments and calculated substituent indices in acetonitrile

contribution to the octanol-water partition coefficients and the substituent indices for aliphatic substituents. In that chapter the relationship between the substituent index and solubility constants was also investigated. However, a full study of the relationship between aqueous solubility and SI cannot be carried out for the aromatic substituents because of a lack of reliable contributions, for the aromatic substituents, to aqueous solubility.

\subsection*{6.3.1 Relationship between \(S I\) and octanol-water partition coefficient}

As was discussed earlier, within groups of closely related compounds \(\log k^{\prime}\) of analytes in reversed phase HPLC has frequently been linearly correlated with the octanolwater partition coefficient (log \(P\)) as both processes represent a liquid-liquid partition mechanism. The aliphatic substituent indices were found to be linearly related with the Hansch substituent contributions \({ }^{n+1}\) to the octanol-water partition coefficient (\(\pi\)) (Chapter 4). A similar study was carried out with the axomatic substituents to determine whether the substituent indices of aromatic substituents varied linearly with \(\pi\) values. As \(\pi\) values were also available for benzylic functional groups (\(\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CN}\), \(\mathrm{CH}_{2} \mathrm{Cl}\) and \(\mathrm{CH}=\mathrm{Br}\)) these have been included in the correlation to investigate whether these groups could be treated as aromatic substituents. The retention increments for these. compounds (Table 6.7) were calculated from the retention indices listed previously (Chapter 4, Table 4.6 and 4.7). These were used to obtain substituent index equations and substituent indices were used in the regression
calculations.
As with the aliphatic substituents a generally linear relationship was found between the \(\pi\) values (Tables \(6.5,6.6\) and 6.7) and the substituent indices with correlation coefficients ranging from 0.970 to 0.985 in methanol and 0.960 to 0.968 in acetonitrile containing eluents (Table 6.8). An examination of the curve for \(S I\) vs \(\pi\) in methanol eluents (Figure 6.5) identified a single outlier the phenolic hydroxyl group. Differences in the relationship between \(\log P\) and \(\log k '\) between hydrogen bonding species and non-hydrogen bonding species have been noted previously \({ }^{\text {ses }}\). The equivalent comparison of aromatic substituents in acetonitrile suggested two possible outliers, the phenolic hydroxyl and the amide again both are hydrogen bonding species (Figure 6.6).

In neither modifier system were the \(\mathrm{CH}=-\mathrm{X}\) groupings outliers, suggesting that the \(\pi\) values for these groups were a good guide to the chemical properties. However, it is not intended to include their substituent indices in the database for aromatic substituents, rather they have been included as aliphatic substituents on an alkyl side chain and an interaction increment used to account for the proximity of the phenyl group (see Chapter 4).

The substituent \(\pi\) values could be used to estimate substituent indices of other substituents, however, as with the aliphatic substituents, there would be considerable uncertainty in the calculated values.

Table 6.7: Retention increments for benzyl substituents \(\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}\) and \(\mathrm{CH}_{2} \mathrm{Br}\)
\begin{tabular}{lllllll}
Functional & Hansch \\
group & \(\pi\) & Retention increment & & \\
& Organic modifier & proportion & \((\%)\) & \\
& & 30 & 40 & 50 & 60 & 70
\end{tabular}\(\quad 80\)
methanol - buffer
\begin{tabular}{rrrrrrrr}
\(\mathrm{CH}_{2} \mathrm{OH}\) & -1.03 & - & -196 & -222 & -240 & -277 & -307 \\
\(\mathrm{CH}_{2} \mathrm{CN}\) & -0.57 & - & -113 & -147 & -175 & -233 & -260 \\
\(\mathrm{CH}_{2} \mathrm{Cl}\) & 0.17 & - & 77 & 63 & 54 & 31 & 12 \\
\(\mathrm{CH}_{2} \mathrm{Br}\) & 0.79 & - & 106 & 91 & 81 & 69 & 77
\end{tabular}
acetonitrile - buffer
\begin{tabular}{rrrrrrrr}
\(\mathrm{CH}_{2} \mathrm{OH}\) & -1.03 & -256 & -287 & -310 & -327 & -322 & -318 \\
\(\mathrm{CH}_{2} \mathrm{CN}\) & -0.57 & -85 & -110 & -136 & -162 & -184 & -212 \\
\(\mathrm{CH}_{2} \mathrm{Cl}\) & 0.17 & 89 & 72 & 53 & 32 & 15 & -7 \\
CH 2 Br & 0.79 & 116 & 98 & 80 & 60 & 44 & 23
\end{tabular}

Table 6.8: Regression coefficients for \(\pi\) vs substituent interaction index in methanol eluents
\[
S I=a \times \pi+b
\]

Modifier-
buffer

\section*{Coefficients of regression equation \\ Correlation coefficient} \(a \quad b\)
methanol-buffer
\begin{tabular}{lrrr}
\(40: 60\) & -7.97 & 178 & 0.9849 \\
\(50: 50\) & -26.63 & 186 & 0.9839 \\
\(60: 40\) & -44.53 & 195 & 0.9816 \\
\(70: 30\) & -62.00 & 207 & 0.9789 \\
\(80: 20\) & -70.58 & 223 & 0.9607
\end{tabular}
acetonitrile-buffer
\begin{tabular}{llll}
\(30: 70\) & -18.96 & 180 & 0.9739 \\
\(40: 60\) & -35.32 & 189 & 0.9661 \\
\(50: 50\) & -55.55 & 194 & 0.9573 \\
\(60: 40\) & -58.92 & 200 & 0.9588 \\
\(70: 30\) & -70.04 & 197 & 0.9622 \\
\(80: 20\) & -77.64 & 194 & 0.9627
\end{tabular}

Figure 6.5: Relationship between \(\pi\) values and substituent indices in methanol eluents

Figure 6.6: Relationship between \(\pi\) and substituent indices in acetonitrile eluents

\section*{RETENTION BEHAVIOUR OF DISUBSTITUTED BENZENES}

In the previous chapters (Chapter 4 and 6) the retention behaviour of mono-substituted alkylbenzenes and benzenes was examined to obtain substituent index equations. In this chapter the retention behaviour of disubstituted aromatic compounds will be examined as interactions between substituents may occur which will influence the polarity and therefore the retention of the compounds. The experimental retention indices may therefore differ from those calculated as the sum of the individual substituent contributions. In the proposed model interaction indices based on these differences will be used to account for these effects.

In most cases the substituents would not have an isolated effect on the retention index, the observed retention will be the result of the combined effects of the two substituents on the overall polarity of the molecule. The effect of each substituent will be influenced the other substituents on the ring therefore interactions terms may not be simply additive. There are various interactions which can occur between substituents on an aromatic ring, including hydrogen bonding and electronic effects involving electron donating and accepting groups. The size of these interactions will depend on both the position of substituents and their type. When substituents are in ortho positions steric interactions can occur and if one of the substituents is a hydroxyl group (or an amino group) there is the possibility of intra-molecular hydrogen bonding. These "through space" interactions in ortho substituted
compounds may be superimposed on electronic interactions but it may not be possible to separate the two effects and therefore an overall correction term will have to be derived.

The experimental interactions have been measured using two sets of model compounds. The first set of 35 compounds had a methyl group as the "fixed" substituent (i.e. \(\mathrm{H}_{9} \mathrm{CC}_{e} \mathrm{H}_{4} \mathrm{X}\)) and in the second set of 38 compounds the fixed substituent was a phenolic hydroxyl group (HOCe \(\mathrm{H}_{4} \mathrm{X}\)). In the former set of compounds only small, relatively insignificant electronic interactions between substituents would be expected, however, steric effects could be significant with ortho substituted compounds. In the latter group of compounds electronic effects between substituents may have a more significant effect on the retention indices and also for appropriate functional groups intramolecular hydrogen bonding would be expected to have a major effect.

The second, variable substituents (X), were chosen from those for which individual substituent indices had previously been calculated (Chapter 6). The substituents include examples of both electron withdrawing and electron donating groups (Table 7.1). The substituents were examined in the ortho, meta and para positions relative to the fixed substituent, unless one isomer was not available (i.e. methylanisole ortho and meta only, and hydroxybenzamide ortho and para only).

The 73 compounds examined were only a small fraction of the number which would be required to study all the possible interactions between substituents. They have been used to give some idea of the size and extent of the interactions in two cases when small effects and large effects would be

\title{
Table 7.1: Classification of substituents used to obtain interaction indices according to their electron accepting and electron donating ability
}

From reference 177

Electron donating substituents
\(\mathrm{OH} \quad \mathrm{OCH}_{\mathrm{a}} \quad \mathrm{CH} a\)
\(\mathrm{NH}=\quad \mathrm{Ph}\)

Electron accepting substituents
\begin{tabular}{lll}
\(\mathrm{NO}=\) & CN & CHO \\
COR & Br & Cl \\
\(\mathrm{CO}=\mathrm{R}\) & \(\mathrm{CONH}=\) &
\end{tabular}

\subsection*{7.1 RETENTION INDICES OF DISUBSTITUTED BENZENES}

The capacity factors of the disubstituted model
compounds (Tables 7.2 to 7.5) across the eluent ranges have been used to calculate the retention indices (Tables 7.6 to 7.9). For several compounds the capacity factors were less than 0.15 (marked with brackets in the tables) and the retention indices of these compounds would be expected to have a large uncertainty due to the closeness of the peak to the column void volume (Chapter 3, Section 3.2.5). Although the retention indices of these compound were calculated the values have been omitted from the regression equations used to calculate interaction indices and the analysis of results. As in the earlier chapter the retention indices with \(90 \%\) organic modifier were recorded for some compounds but have been excluded form the discussion.

When the "fixed" substituent was a methyl group there were often only small differences between the retention indices of the isomers, e.g. for the bromotoluenes the difference between the isomers ranged from 3 to 15 units. In most cases the retention indices of the meta and para isomers were very similar with typical differences being less than 10 units. A difference in retention index between the meta and para isomers, and the ortho isomer was observed for several substituents (i.e. ester, nitro, nitrile, amide, methyl, methoxy, and phenyl) probably due to steric effects. The largest differences in retention index between isomers, with a fixed methyl group, were observed with the toluamides with a difference in retention index of up to 60 units.

Table 7.2: Capacity factors of disubstituted compounds with methyl as the fixed substituent in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & \begin{tabular}{l}
Capacit \\
Methano
\end{tabular} & factor propor & \[
\begin{aligned}
& \left(k^{\prime}\right) \\
& \text { ion (\%) }
\end{aligned}
\] & & & \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-bromotoluene & 105.99 & 39.60 & 15.27 & 6.54 & 2.63 & 1.29 \\
\hline 3-bromotoluene & 106.98 & 39.79 & 15.39 & 6.48 & 2.59 & 1.25 \\
\hline 4 -bromotoluene & 104.87 & 38.94 & 15.02 & 6.34 & 2.54 & 1.22 \\
\hline 2-chlorotoluene & 83.81 & 32.24 & 12.82 & 5.48 & 2.31 & 1.16 \\
\hline 3-chlorotoluene & & 31.77 & 12.72 & 5.42 & 2.27 & 1.20 \\
\hline 4-chlorotoluene & 76.31 & 32.55 & 12.47 & 5.26 & 2.20 & 1.09 \\
\hline 1,2-dimethylbenzene & 60.72 & 26.61 & 11.34 & 5.11 & 2.25 & 1.15 \\
\hline 1,3-dimethylbenzene & 70.30 & 29.85 & 12.57 & 5.53 & 2.38 & 1.19 \\
\hline 1,4-dimethylbenzene & 72.19 & 30.35 & 13.17 & 5.63 & 2.41 & 1.20 \\
\hline 2-methylacetophenone & 13.35 & 5.76 & 2.92 & 1.55 & 0.87 & \\
\hline 3 -methylacetophenone & 15.04 & 5.81 & 2.98 & 1.56 & 0.84 & \\
\hline 4-methylacetophenone & 14.81 & 5.82 & 2.94 & 1.54 & 0.83 & \\
\hline 2-methylanisole & 34.63 & 14.72 & 7.06 & 3.43 & 1.68 & \\
\hline 3-methylanisole & 28.90 & 11.76 & 5.80 & 2.92 & 1.47 & \\
\hline methyl 2-methylbenzoate & 28.70 & 11.62 & 5.02 & 2.47 & 1.22 & 0.70 \\
\hline methyl 3-methylbenzoate & 32.83 & 12.72 & 5.37 & 2.58 & 1.24 & 0.71 \\
\hline methyl 4-methylbenzoate & 32.90 & 12.58 & 5.35 & 2.58 & 1.24 & 0.72 \\
\hline 2-nitrotoluene & 16.72 & 7.60 & 3.53 & 1.83 & 0.94 & 0.56 \\
\hline 3 -nitrotoluene & 19.99 & 8.93 & 4.24 & 2.14 & 1.08 & 0.62 \\
\hline 4 -nitrotoluene & 18.53 & 8.45 & 3.96 & 2.02 & 1.05 & 0.61 \\
\hline 2-phenyltoluene & - & 105.96 & 34.17 & 14.71 & 4.21 & \\
\hline 3 -phenyltoluene & - & 125.14 & 38.49 & 13.72 & 4.87 & \\
\hline 4-phenyltoluene & - & 141.24 & 42.17 & 11.65 & 5.37 & \\
\hline 2-tolualdehyde & 10.70 & 4.87 & 2.47 & 1.41 & 0.84 & \\
\hline 3-tolualdehyde & 11.00 & 4.88 & 2.47 & 1.37 & 0.83 & \\
\hline 4-tolualdehyde & 10.16 & 4.57 & 2.33 & 1.32 & 0.81 & \\
\hline 2-toluamide & 1.43 & 0.97 & 0.49 & 0.39 & 0.28 & 0.23 \\
\hline 3-toluamide & 2.40 & 1.19 & 0.67 & 0.48 & 0.33 & 0.25 \\
\hline 4-toluamide & 2.44 & 1.14 & 0.66 & 0.47 & 0.33 & 0.25 \\
\hline 2-toluidine & 3.39 & 1.91 & 1.09 & 0.72 & 0.45 & 0.35 \\
\hline 3-toluidine & 3.52 & 1.98 & 1.10 & 0.71 & 0.44 & 0.34 \\
\hline 4-toluidine & 3.77 & 2.04 & 1.12 & 0.70 & 0.45 & 0.34 \\
\hline 2-tolunitrile & 10.81 & 5.28 & 2.32 & 1.29 & 0.71 & 0.48 \\
\hline 3-tolunitrile & 11.88 & 4.82 & 2.52 & 1.36 & 0.73 & 0.47 \\
\hline 4-tolunitrile & 11.39 & 5.04 & 2.43 & 1.31 & 0.70 & 0.46 \\
\hline
\end{tabular}

Table 7.3: Capacity factors of disubstituted compounds with methyl as the fixed substituent in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & \begin{tabular}{l}
Capaci \\
Aceton
\end{tabular} & \[
\begin{aligned}
& \text { ity fac } \\
& \text { nitrile }
\end{aligned}
\] & \[
\begin{aligned}
& \text { tor }{ }^{\prime} k \\
& \text { propo }
\end{aligned}
\] & \[
\begin{aligned}
& \left.k^{\prime}\right) \\
& \text { ortion }
\end{aligned}
\] & (\%) & & \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-bromotoluene & 72.19 & 24.95 & 10.61 & 5.24 & 2.88 & 1.67 & 0.90 \\
\hline 3-bromotoluene & 75.32 & 25.59 & 10.59 & 5.20 & 2.83 & 1.62 & 0.86 \\
\hline 4-bromotoluene & 74.98 & 25.27 & 10.53 & 5.16 & 2.80 & 1.61 & 0.85 \\
\hline 2-chlorotoluene & 64.45 & 21.19 & 9.16 & 4.73 & 2.56 & 1.50 & 0.81 \\
\hline 3-chlorotoluene & 65.48 & 21.29 & 9.13 & 4.68 & 2.51 & 1.45 & 0.79 \\
\hline 4-chlorotoluene & 65.56 & 21.45 & 9.07 & 4.64 & 2.48 & 1.44 & 0.77 \\
\hline 1,2-dimethylbenzene & 54.74 & 18.27 & 8.16 & 4.16 & 2.34 & 1.37 & 0.75 \\
\hline 1,3-dimethylbenzene & 63.40 & 20.43 & 8.99 & 4.54 & 2.52 & 1.47 & 0.79 \\
\hline 1,4-dimethylbenzene & 63.64 & 20.73 & 9.11 & 4.60 & 2.56 & 1.47 & 0.79 \\
\hline 2-methylacetophenone & 12.59 & 6.02 & 2.96 & 1.77 & 1.07 & 0.76 & \\
\hline 3 -methylacetophenone & 12.5 & 5.91 & 2.89 & 1.73 & 1.05 & 0.75 & \\
\hline 4-methylacetophenone & 11.70 & 5.56 & 3.04 & 1.66 & 1.02 & 0.74 & \\
\hline 2-methylanisole & 33.85 & 14.67 & 7.01 & 3.32 & 1.82 & 1.18 & \\
\hline 3-methylanisole & 26.81 & 11.94 & 5.84 & 2.84 & 1.58 & 1.04 & \\
\hline methyl 2-methylbenzoate & 25.82 & 8.29 & 4.10 & 2.29 & 1.37 & 0.88 & 0.52 \\
\hline methyl 3-methylbenzoate & 27.57 & 8.60 & 4.19 & 2.35 & 1.40 & 0.89 & 0.53 \\
\hline methyl 4-methylbenzoate & 26.78 & 8.44 & 4.16 & 2.32 & 1.40 & 0.90 & 0.53 \\
\hline 2-nitrotoluene & 21.20 & 7.15 & 3.49 & 1.94 & 1.14 & 0.71 & 0.41 \\
\hline 3-nitrotoluene & 24.82 & 8.41 & 3.92 & 2.14 & 1.25 & 0.77 & 0.43 \\
\hline 4-nitrotoluene & 21.72 & 7.67 & 3.74 & 2.06 & 1.21 & 0.75 & 0.42 \\
\hline 2-phenyltoluene & & 77.11 & 22.18 & 9.09 & 4.12 & 2.31 & \\
\hline 3-phenyltoluene & & 83.16 & 23.70 & 9.60 & 4.32 & 2.40 & \\
\hline 4-phenyltoluene & & 87.94 & 24.83 & 10.02 & 4.49 & 2.49 & \\
\hline 2-tolualdehyde & 10.73 & 5.43 & 2.89 & 1.70 & 1.11 & 0.58 & \\
\hline 3-tolualdehyde & 11.26 & 5.62 & 2.98 & 1.73 & 1.14 & 0.58 & \\
\hline 4-tolualdehyde & 10.18 & 5.15 & 2.77 & 1.65 & 1.10 & 0.57 & \\
\hline 2-toluamide & 1.35 & 0.74 & 0.52 & 0.41 & 0.33 & 0.34 & 0.25 \\
\hline 3-toluamide & 1.70 & 0.92 & 0.62 & 0.46 & 0.36 & 0.33 & 0.27 \\
\hline 4-toluamide & 1.90 & 1.01 & 0.61 & 0.47 & 0.36 & 0.35 & 0.28 \\
\hline 2-toluidine & 4.65 & 2.30 & 1.44 & 0.97 & 0.65 & 0.48 & 0.32 \\
\hline 3-toluidine & 4.87 & 2.33 & 1.43 & 0.96 & 0.64 & 0.47 & 0.29 \\
\hline 4-toluidine & 4.85 & 2.30 & 1.43 & 0.96 & 0.66 & 0.48 & 0.33 \\
\hline 2-tolunitrile & 11.43 & 5.08 & 2.67 & 1.58 & 0.98 & 0.65 & 0.40 \\
\hline 3-tolunitrile & 13.03 & 5.65 & 2.91 & 1.68 & 1.04 & 0.66 & 0.40 \\
\hline 4-tolunitrile & 12.21 & 5.33 & 2.77 & 1.61 & 0.99 & 0.65 & 0.39 \\
\hline
\end{tabular}

Table 7.4: Capacity factors of disubstituted compounds with hydroxyl as the fixed.substituent in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Capacity factor (\(k^{\prime}\)) \\
Methanol proportion (\%)
\end{tabular}} \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-aminophenol & 0.78 & 0.66 & 0.42 & 0.30 & 0.26 & 0.25 \\
\hline 3-aminophenol & 0.35 & 0.28 & 0.25 & 0.19 & 0.18 & 0.20 \\
\hline 4-aminophenol & 0.25 & 0.22 & 0.19 & 0.16 & 0.21 & 0.21 \\
\hline 2-bromophenol & 6.12 & 3.34 & 1.70 & 0.86 & 0.45 & 0.26 \\
\hline 3-bromophenol & 9.38 & 4.82 & 2.17 & 1.11 & 0.56 & 0.32 \\
\hline 4-bromophenol & 8.80 & 4.56 & 2.14 & 1.10 & 0.57 & 0.34 \\
\hline 2-chlorophenol & 4.86 & 2.72 & 1.36 & 0.74 & 0.42 & 0.25 \\
\hline 3-chlorophenol & 7.38 & 3.95 & 1.85 & 0.93 & 0.51 & 0.30 \\
\hline 4-chlorophenol & 6.94 & 3.65 & 1.76 & 0.91 & 0.51 & 0.32 \\
\hline 1,2-dihydroxybenzene & 0.96 & 0.64 & 0.43 & 0.31 & 0.25 & 0.26 \\
\hline 1,3-dihydroxybenzene & 0.53 & 0.37 & 0.27 & 0.19 & 0.18 & 0.21 \\
\hline 1,4-dihydroxybenzene & 0.31 & 0.27 & 0.20 & 0.18 & 0.18 & 0.22 \\
\hline 2-hydroxyacetophenone & 9.02 & 4.33 & 2.21 & 1.25 & 0.84 & 0.55 \\
\hline 3-hydroxyacetophenone & 2.02 & 1.02 & 0.58 & 0.39 & 0.34 & 0.30 \\
\hline 4-hydroxyacetophenone & 1.55 & 0.78 & 0.44 & 0.29 & 0.19 & (0.11) \\
\hline 2-hydroxybenzaldehyde & 4.99 & 2.52 & 1.41 & 0.83 & 0.53 & \\
\hline 3-hydroxybenzaldehyde & 1.64 & 0.89 & 0.54 & 0.37 & 0.25 & \\
\hline 4-hydroxybenzaldehyde & 1.00 & 0.51 & 0.27 & (0.14) & (0.07) & \\
\hline 2-hydroxybenzamide & 1.57 & 0.84 & 0.50 & 0.31 & 0.20 & \\
\hline 4-hydroxybenzamide & 0.32 & 0.22 & 0.16 & (0.13) & (0.11) & \\
\hline 2-hydroxybenzonitrile & 1.31 & 0.74 & 0.34 & 0.18 & - & - 10.10 \\
\hline 3-hydroxybenzonitrile & 2.17 & 1.26 & 0.68 & 0.42 & 0.21 & (0.10) \\
\hline 4-hydroxybenzonitrile & 1.48 & 0.89 & 0.47 & 0.26 & (0.07) & - \\
\hline 2-methoxyphenol & 2.95 & 1.49 & 0.92 & 0.59 & 0.37 & \\
\hline 3-methoxyphenol & 2.63 & 1.29 & 0.78 & 0.50 & 0.31 & \\
\hline 4-methoxyphenol & 1.93 & 0.99 & 0.63 & 0.42 & 0.29 & \\
\hline methyl 2-hydroxybenzoate & 19.60 & 10.09 & 4.65 & 4.66 & 1.16 & 0.70 \\
\hline methyl 3-hydroxybenzoate & 3.72 & 1.96 & 0.99 & 0.58 & 0.34 & 0.25 \\
\hline methyl 4-hydroxybenzoate & 3.39 & 1.88 & 0.88 & 0.49 & 0.25 & (0.13) \\
\hline 2-methylphenol & 4.75 & 2.76 & 1.42 & 0.78 & 0.47 & 0.33 \\
\hline 3-methylphenol & 4.41 & 2.44 & 1.29 & 0.72 & 0.44 & 0.32 \\
\hline 4-methylphenol & 4.86 & 2.51 & 1.31 & 0.73 & 0.45 & 0.32 \\
\hline 2-nitrophenol & 3.56 & 1.96 & 0.91 & 0.40 & (0.08) & \\
\hline 3-nitrophenol & 3.38 & 1.96 & 1.00 & 0.53 & 0.23 & (0.09) \\
\hline 4-nitrophenol & 1.27 & 0.69 & 0.29 & (0.13) & - & \\
\hline 2-phenylphenol & 33.87 & 10.73 & 4.48 & 1.97 & 0.90 & \\
\hline 3 -phenylphenol & 35.87 & 11.35 & 4.53 & 1.92 & 0.92 & \\
\hline 4-phenylphenol & 35.74 & 11.52 & 4.12 & 1.98 & 0.96 & \\
\hline
\end{tabular}

Table 7.5: Capacity factors of disubstituted compounds with hydroxyl as the fixed substituent in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & \begin{tabular}{l}
Capac \\
Aceto
\end{tabular} & ity \(f\) nitri & pro & \begin{tabular}{l}
') \\
rtion
\end{tabular} & & & \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-aminophenol & 1.08 & 0.79 & 0.63 & 0.54 & 0.42 & 0.44 & 0.35 \\
\hline 3-aminophenol & 0.63 & 0.52 & 0.38 & 0.30 & 0.23 & 0.26 & 0.18 \\
\hline 4-aminophenol & 0.40 & 0.38 & 0.29 & 0.24 & 0.20 & 0.26 & 0.22 \\
\hline 2-bromophenol & 5.82 & 3.06 & 1.6 & 0.97 & 0.61 & 0.45 & 0.27 \\
\hline 3-bromophenol & 7.85 & 3.77 & 1.84 & 1.08 & 0.66 & 0.48 & 0.30 \\
\hline 4-bromophenol & 7.49 & 3.60 & 1.77 & 1.05 & 0.65 & 0.49 & 0.30 \\
\hline 2-chlorophenol & 4.69 & 2.75 & 1.43 & 0.89 & 0.56 & 0.44 & 0.26 \\
\hline 3-chlorophenol & 6.98 & 3.26 & 1.64 & 0.99 & 0.61 & 0.47 & 0.28 \\
\hline 4-chlorophenol & 6.39 & 3.04 & 1.57 & 0.94 & 0.59 & 0.45 & 0.29 \\
\hline 1,2-dihydroxybenzene & 0.85 & 0.78 & 0.53 & 0.42 & 0.31 & 0.41 & 0.25 \\
\hline 1,3-dihydroxybenzene & 0.55 & 0.55 & 0.38 & 0.29 & 0.22 & 0.25 & (0.14) \\
\hline 1,4-dihydroxybenzene & 0.35 & 0.43 & 0.32 & 0.25 & 0.21 & 0.24 & (0.14) \\
\hline 2-hydroxyacetophenone & 7.57 & 4.51 & 2.16 & 1.52 & 0.84 & 0.65 & 0.42 \\
\hline 3-hydroxyacetophenone & 1.70 & 1.31 & 0.67 & 0.55 & 0.29 & 0.32 & 0.20 \\
\hline 4-hydroxyacetophenone & 1.15 & 0.88 & 0.53 & 0.46 & 0.27 & 0.29 & 0.23 \\
\hline 2-hydroxybenzaldehyde & 6.86 & 5.56 & 2.39 & 1.34 & 0.94 & 0.56 & \\
\hline 3-hydroxybenzaldehyde & 1.77 & 1.11 & 0.74 & 0.50 & 0.35 & 0.19 & \\
\hline 4-hydroxybenzaldehyde & 1.20 & 0.78 & 0.54 & 0.40 & 0.29 & 0.16 & \\
\hline 2-hydroxybenzamide & 1.52 & 0.95 & 0.76 & 0.47 & 0.35 & 0.21 & \\
\hline 4-hydroxybenzamide & 0.27 & 0.23 & 0.19 & 0.17 & (0.14) & (0.01) & \\
\hline 2-hydroxybenzonitrile & 1.51 & 1.02 & 0.66 & 0.48 & 0.30 & 0.22 & 0.19 \\
\hline 3-hydroxybenzonitrile & 2.50 & 1.47 & 0.87 & 0.58 & 0.38 & 0.33 & 0.23 \\
\hline 4-hydroxybenzonitrile & 1.74 & 1.18 & 0.73 & 0.49 & 0.34 & 0.26 & (0.15) \\
\hline 2-methoxyphenol & 3.12 & 1.90 & 1.12 & 0.77 & 0.51 & 0.41 & \\
\hline 3-methoxyphenol & 2.73 & 1.62 & 0.97 & 0.64 & 0.42 & 0.32 & \\
\hline 4-methoxyphenol & 2.05 & 1.30 & 0.82 & 0.56 & 0.38 & 0.29 & \\
\hline methyl 2-hydroxybenzoate & 14.59 & 7.29 & 3.41 & 2.00 & 1.18 & 0.82 & 0.45 \\
\hline methyl 3-hydroxybenzoate & 3.10 & 1.67 & 0.95 & 0.61 & 0.41 & 0.36 & 0.23 \\
\hline methyl 4-hydroxybenzoate & 2.44 & 1.48 & 0.88 & 0.61 & 0.40 & 0.33 & 0.18 \\
\hline 2-methylphenol & 5.26 & 2.55 & 1.41 & 0.89 & 0.58 & 0.41 & 0.26 \\
\hline 3-methylphenol & 4.45 & 2.28 & 1.28 & 0.81 & 0.53 & 0.25 & 0.25 \\
\hline 4-methylphenol & 5.10 & 2.28 & 1.28 & 0.82 & 0.54 & 0.24 & 0.27 \\
\hline 2-nitrophenol & 5.27 & 2.59 & 1.57 & 1.07 & 0.65 & 0.36 & 0.29 \\
\hline 3-nitrophenol & 4.23 & 2.03 & 1.12 & 0.71 & 0.45 & 0.35 & 0.24 \\
\hline 4-nitrophenol & 2.12 & 1.06 & 0.67 & 0.49 & 0.28 & 0.19 & 0.17 \\
\hline 2-phenylphenol & 31.39 & 10.51 & 4.15 & 1.98 & 1.04 & 0.67 & \\
\hline 3-phenylphenol & 27.91 & 9.01 & 3.63 & 1.76 & 0.93 & 0.62 & \\
\hline 4-phenylphenol & 27.59 & 8.86 & 3.36 & 1.72 & 0.99 & 0.63 & \\
\hline
\end{tabular}

Table 7.6: Retention indices of disubstituted compounds with methyl as the fixed substituent in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Retention index \\
Methanol proportion (\%)
\end{tabular}} \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-bromotoluene & 1134 & 1157 & 1179 & 1205 & 1244 & 1296 \\
\hline 3-bromotoluene & 1135 & 1157 & 1180 & 1203 & 1240 & 1282 \\
\hline 4-bromotoluene & 1132 & 1154 & 1176 & 1199 & 1235 & 1270 \\
\hline 2-chlorotoluene & 1107 & 1129 & 1150 & 1174 & 1207 & 1248 \\
\hline 3-chlorotoluene & & 1127 & 1149 & 1172 & 1202 & 1232 \\
\hline 4-chlorotoluene & 1098 & 1130 & 1144 & 1166 & 1192 & 1223 \\
\hline 1,2-dimethylbenzene & 1071 & 1103 & 1130 & 1159 & 1199 & 1245 \\
\hline 1,3-dimethylbenzene & 1088 & 1118 & 1147 & 1179 & 1215 & 1262 \\
\hline 1,2-dimethylbenzene & 1091 & 1121 & 1155 & 1180 & 1219 & 1264 \\
\hline 2-methylacetophenone & 894 & 896 & 895 & 898 & 902 & \\
\hline 3-methylacetophenone & 900 & 900 & 899 & 900 & 903 & \\
\hline 4-methylacetophenone & 898 & 900 & 897 & 896 & 899 & \\
\hline 2-methylanisole & 1003 & 1026 & 1044 & 1063 & 1090 & \\
\hline 3-methylanisole & 974 & 996 & 1011 & 1030 & 1055 & \\
\hline methyl 2-methylbenzoate & 984 & 991 & 997 & 999 & 1019 & 1025 \\
\hline methyl 3-methylbenzoate & 1000 & 1003 & 1008 & 1008 & 1025 & 1029 \\
\hline methyl 4-methylbenzoate & 1000 & 1001 & 1007 & 1009 & 1025 & 1033 \\
\hline 2-nitrotoluene & 922 & 933 & 938 & 942 & 945 & 923 \\
\hline 3-nitrotoluene & 942 & 955 & 969 & 976 & 985 & 970 \\
\hline 4-nitrotoluene & 934 & 948 & 957 & 963 & 977 & 965 \\
\hline 2-phenyltoluene & & 1296 & 1303 & 1318 & 1340 & \\
\hline 3-phenyltoluene & & 1322 & 1336 & 1352 & 1379 & \\
\hline 4-phenyltoluene & & 1334 & 1351 & 1367 & 1397 & \\
\hline 2-tolualdehyde & 869 & 873 & 877 & 881 & 894 & \\
\hline 3-tolualdehyde & 872 & 873 & 876 & 876 & 890 & \\
\hline 4-tolualdehyde & 863 & 865 & 866 & 868 & 883 & \\
\hline 2-toluamide & 628 & 655 & 617 & 609 & 589 & 524 \\
\hline 3-toluamide & 688 & 682 & 668 & 654 & 638 & 575 \\
\hline 4-toluamide & 689 & 677 & 664 & 651 & 639 & 567 \\
\hline 2-toluidine & 728 & 747 & 747 & 742 & 730 & 710 \\
\hline 3-toluidine & 732 & 751 & 748 & 739 & 731 & 701 \\
\hline 4-toluidine & 740 & 755 & 750 & 745 & 722 & 700 \\
\hline 2-tolunitrile & 871 & 872 & 870 & 863 & 860 & 856 \\
\hline 3-tolunitrile & 882 & 884 & 884 & 873 & 869 & 849 \\
\hline 4-tolunitrile & 877 & 878 & 878 & 865 & 857 & 831 \\
\hline
\end{tabular}

Table 7.7: Retention indices of disubstituted compounds with methyl as the fixed substituent in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & Reten Aceto & nitrion & \begin{tabular}{l}
index \\
le pr
\end{tabular} & proport & & (\%) & \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-bromotoluene & 1140 & 1152 & 1168 & 1183 & 1202 & 1223 & 1260 \\
\hline 3-bromotoluene & 1145 & 1156 & 1167 & 1181 & 1197 & 1211 & 1242 \\
\hline 4-bromotoluene & 1145 & 1154 & 1166 & 1178 & 1194 & 1208 & 1236 \\
\hline 2-chlorotoluene & 1115 & 1126 & 1138 & 1151 & 1168 & 1182 & 1215 \\
\hline 3-chlorotoluene & 1117 & 1126 & 1137 & 1149 & 1162 & 1171 & 1201 \\
\hline 4-chlorotoluene & 1117 & 1128 & 1136 & 1146 & 1159 & 1168 & 1192 \\
\hline 1,2-dimethylbenzene & 1085 & 1102 & 1115 & 1125 & 1141 & 1150 & 1179 \\
\hline 1,3-dimethylbenzene & 1104 & 1120 & 1134 & 1147 & 1163 & 1174 & 1201 \\
\hline 1,4-dimethylbenzene & 1104 & 1122 & 1137 & 1150 & 1168 & 1176 & 1204 \\
\hline 2-methylacetophenone & 888 & 887 & 886 & 889 & 892 & 892 & \\
\hline 3-methylacetophenone & 887 & 884 & 881 & 883 & 886 & 887 & \\
\hline 4-methylacetophenone & 879 & 875 & 873 & 874 & 879 & 882 & \\
\hline 2-methylanisole & 1014 & 1024 & 1030 & 1037 & 1043 & 1046 & \\
\hline 3-methylanisole & 985 & 992 & 996 & 1001 & 1003 & 1002 & \\
\hline methyl 2-methylbenzoate & 976 & 974 & 976 & 977 & 985 & 985 & 1009 \\
\hline methyl 3-methylbenzoate & 984 & 980 & 980 & 984 & 991 & 991 & 1018 \\
\hline methyl 4-methylbenzoate & 981 & 977 & 979 & 980 & 990 & 993 & 1020 \\
\hline 2-nitrotoluene & 952 & 950 & 943 & 935 & 932 & 905 & 898 \\
\hline 3-nitrotoluene & 971 & 976 & 967 & 960 & 959 & 937 & 929 \\
\hline 4-nitrotoluene & 955 & 961 & 957 & 950 & 949 & 926 & 919 \\
\hline 2-phenyltoluene & & 1274 & 1273 & 1274 & 1276 & 1277 & \\
\hline 3 -phenyltoluene & & 1286 & 1286 & 1287 & 1289 & 1291 & \\
\hline 4-phenyltoluene & & 1294 & 1295 & 1297 & 1300 & 1304 & \\
\hline 2-tolualdehyde & 868 & 871 & 870 & 880 & 893 & 879 & \\
\hline 3-tolualdehyde & 873 & 877 & 876 & 884 & 901 & 877 & \\
\hline 4-tolualdehyde & 861 & 863 & 862 & 873 & 890 & 872 & \\
\hline 2-toluamide & 621 & 584 & 561 & 550 & 568 & 631 & 683 \\
\hline 3-toluamide & 650 & 619 & 594 & 581 & 597 & 625 & 706 \\
\hline 4-toluamide & 664 & 633 & 592 & 582 & 594 & 642 & 724 \\
\hline 2-toluidine & 765 & 766 & 764 & 762 & 769 & 761 & 785 \\
\hline 3-toluidine & 771 & 769 & 763 & 761 & 762 & 754 & 746 \\
\hline 4-toluidine & 770 & 767 & 763 & 761 & 770 & 760 & 799 \\
\hline 2-tolunitrile & 898 & 895 & 889 & 884 & 886 & 874 & 887 \\
\hline 3-tolunitrile & 914 & 912 & 906 & 900 & 905 & 880 & 890 \\
\hline 4-tolunitrile & 906 & 903 & 897 & 890 & 891 & 871 & 874 \\
\hline
\end{tabular}

Table 7.8: Retention indices of disubstituted compounds with hydroxyl as the fixed substituent in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Compound & & \[
\begin{aligned}
& \text { tion } \\
& \text { nol }
\end{aligned}
\] & ndex oport & on (\% & & \\
\hline & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-aminophenol & 576 & 592 & 580 & 562 & 569 & 561 \\
\hline 3-aminophenol & 483 & 477 & 492 & 467 & 474 & 476 \\
\hline 4-aminophenol & 446 & 446 & 449 & 429 & 515 & 487 \\
\hline 2-bromophenol & 813 & 810 & 809 & 777 & 734 & 592 \\
\hline 3-bromophenol & 862 & 860 & 849 & 830 & 793 & 680 \\
\hline 4-bromophenol & 855 & 852 & 847 & 829 & 799 & 703 \\
\hline 2-chlorophenol & 786 & 783 & 772 & 753 & 708 & 562 \\
\hline 3-chlorophenol & 834 & 833 & 823 & 803 & 767 & 643 \\
\hline 4-chlorophenol & 827 & 822 & 815 & 798 & 768 & 683 \\
\hline 1,2-dihydroxybenzene & 599 & 589 & 583 & 570 & 568 & 582 \\
\hline 1,3-dihydroxybenzene & 531 & 516 & 506 & 483 & 476 & 493 \\
\hline 1,4-dihydroxybenzene & 469 & 474 & 461 & 451 & 467 & 502 \\
\hline 2-hydroxyacetophenone & 853 & 860 & 867 & 875 & 888 & 917 \\
\hline 3-hydroxyacetophenone & 679 & 661 & 641 & 619 & 614 & 612 \\
\hline 4-hydroxyacetophenone & 649 & 624 & 594 & 551 & 428 & (118) \\
\hline 2-hydroxybenzaldehyde & 782 & 783 & 783 & 769 & 771 & \\
\hline 3-hydroxybenzaldehyde & 656 & 641 & 623 & 600 & 571 & \\
\hline 4-hydroxybenzaldehyde & 600 & 565 & 507 & (396) & (243) & \\
\hline 2-hydroxybenzamide & 651 & 636 & 605 & 563 & 518 & \\
\hline 4-hydroxybenzamide & 463 & 454 & 418 & (384) & (350) & \\
\hline 2-hydroxybenzonitrile & 634 & 608 & 547 & 447 & & \\
\hline 3-hydroxybenzonitrile & 693 & 678 & 658 & 625 & 510 & (186) \\
\hline 4-hydroxybenzonitrile & 649 & 632 & 599 & 529 & (196) & \\
\hline 2-methoxyphenol & 715 & 711 & 705 & 698 & 682 & \\
\hline 3-methoxyphenol & 701 & 692 & 678 & 663 & 635 & \\
\hline 4-methoxyphenol & 666 & 656 & 643 & 628 & 606 & \\
\hline methyl 2-hydroxybenzoate & 947 & 959 & 975 & 989 & 1006 & 1027 \\
\hline methyl 3-hydroxybenzoate & 755 & 738 & 720 & 700 & 654 & 565 \\
\hline methyl 4-hydroxybenzoate & 744 & 733 & 701 & 666 & 565 & (281) \\
\hline 2-methylphenol & 783 & 785 & 779 & 766 & 746 & 695 \\
\hline 3-methylphenol & 775 & 768 & 764 & 748 & 725 & 672 \\
\hline 4-methylphenol & 777 & 772 & 766 & 752 & 733 & 682 \\
\hline 2-nitrophenol & 750 & 739 & 706 & 622 & (228) & \\
\hline 3-nitrophenol & 744 & 739 & 721 & 685 & 543 & (83) \\
\hline 4-nitrophenol & 631 & 597 & 519 & (379) & & \\
\hline 2-phenylphenol & 992 & 981 & 969 & 947 & 922 & \\
\hline 3-phenylphenol & 1007 & 989 & 973 & 943 & 918 & \\
\hline 4-phenylphenol & 1006 & 991 & 970 & 949 & 929 & \\
\hline
\end{tabular}

Table 7.9: Retention indices of disubstituted compounds with hydroxyl as the fixed substituent in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & & \[
\begin{aligned}
& \text { tion } \\
& \text { nitry }
\end{aligned}
\] & \begin{tabular}{l}
ndex \\
e pr
\end{tabular} & & & & \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 2-aminophenol & 586 & 589 & 600 & 618 & 635 & 711 & 830 \\
\hline 3-aminophenol & 519 & 522 & 496 & 474 & 468 & 519 & 520 \\
\hline 4-aminophenol & 463 & 471 & 445 & 423 & 424 & 516 & 610 \\
\hline 2-bromophenol & 821 & 805 & 786 & 765 & 749 & 723 & 712 \\
\hline 3-bromophenol & 859 & 838 & 815 & 792 & 772 & 743 & 752 \\
\hline 4-bromophenol & 853 & 831 & 807 & 785 & 765 & 747 & 749 \\
\hline 2-chlorophenol & 786 & 788 & 764 & 744 & 724 & 714 & 681 \\
\hline 3-chlorophenol & 836 & 815 & 792 & 769 & 749 & 731 & 724 \\
\hline 4-chlorophenol & 825 & 804 & 783 & 758 & 739 & 717 & 733 \\
\hline 1,2-dihydroxybenzene & 577 & 587 & 565 & 558 & 553 & 687 & 671 \\
\hline 1,3-dihydroxybenzene & 522 & 532 & 498 & 467 & 453 & 495 & (409) \\
\hline 1,4-dihydroxybenzene & 467 & 492 & 461 & 433 & 435 & 493 & (394) \\
\hline 2-hydroxyace tophenone & 849 & 867 & 853 & 854 & 855 & 857 & 878 \\
\hline 3-hydroxyacetophenone & 663 & 669 & 616 & 605 & 588 & 597 & 499 \\
\hline 4-hydroxyacetophenone & 615 & 606 & 569 & 562 & 556 & 562 & 462 \\
\hline 2-hydroxybenzaldehyde & 862 & 875 & 834 & 822 & 845 & 867 & \\
\hline 3-hydroxybenzaldehyde & 648 & 630 & 610 & 592 & 571 & 510 & \\
\hline 4-hydroxybenzaldehyde & 600 & 577 & 550 & 537 & 513 & 462 & \\
\hline 2-hydroxybenzamide & 629 & 608 & 616 & 577 & 568 & 540 & \\
\hline 4-hydroxybenzamide & 420 & 393 & 356 & 336 & (324) & (251) & \\
\hline 2-hydroxybenzonitrile & 648 & 630 & 608 & 589 & 542 & 463 & 554 \\
\hline 3-hydroxybenzonitrile & 711 & 688 & 665 & 639 & 610 & 606 & 630 \\
\hline 4-hydroxybenzonitrile & 463 & 471 & 445 & 423 & 424 & 516 & 610 \\
\hline 2-methoxyphenol & 720 & 712 & 697 & 693 & 682 & 678 & \\
\hline 3-methoxyphenol & 704 & 688 & 668 & 653 & 625 & 593 & \\
\hline 4-methoxyphenol & 668 & 654 & 636 & 622 & 601 & 565 & \\
\hline methyl 2-hydroxybenzoate & 931 & 944 & 940 & 945 & 941 & 940 & 943 \\
\hline methyl 3-hydroxybenzoate & 738 & 707 & 681 & 652 & 633 & 635 & 629 \\
\hline methyl 4-hydroxybenzoate & 708 & 688 & 667 & 649 & 622 & 608 & 524 \\
\hline 2-methylphenol & 788 & 776 & 761 & 745 & 732 & 714 & 691 \\
\hline 3-methylphenol & 772 & 758 & 741 & 722 & 708 & 691 & 665 \\
\hline 4-methylphenol & 774 & 758 & 741 & 723 & 713 & 700 & 707 \\
\hline 2-nitrophenol & 781 & 778 & 783 & 789 & 766 & 641 & 739 \\
\hline \(3-\) nitrophenol & 754 & 739 & 716 & 688 & 659 & 623 & 409 \\
\hline 4-nitrophenol & 669 & 635 & 611 & 598 & 518 & 395 & 394 \\
\hline 2-phenylphenol & 984 & 973 & 939 & 916 & 884 & 847 & \\
\hline 3-phenylphenol & 985 & 950 & 914 & 888 & 854 & 822 & \\
\hline 4-phenylphenol & 984 & 947 & 910 & 879 & 853 & 816 & \\
\hline
\end{tabular}

When the "fixed" substituent was the phenolic hydroxyl there were many more differences between the retention indices of isomers and the effects were often very large. For a few combinations the meta and para isomers were similar (phenyl, chloro, bromo, and methyl) but in these the cases the ortho isomer usually differed by a larger amount than in substituted toluene compounds (e.g. the bromotoluenes had no significant difference between isomers but the bromophenol, ortho isomer was 40-65 less than the meta and para isomers). The largest differences between isomers were observed when intra-molecular hydrogen bonding could occur in the ortho substituted compounds, such as phenols substituted with carbonyl containing groups (\(-\mathrm{CH}=0\), \(-C(R)=0,-C(O R)=0\), and \(\left.C\left(N_{z}\right)=0\right)\). In these compounds the retention index of the ortho isomer was considerably larger than that of the other isomers (e.g. the retention index of methyl 2-hydroxybenzoate was about 200 - 300 units higher than the 3- and 4- isomers, Figure 7.1 which contrasts the methyl methylbenzoate and methyl hydroxybenzoate isomers).

In a few cases there appear to be specific cross-ring electronic effects in which the para isomer differed considerably from the meta isomer. This was particularly apparent with the hydroxybenzonitriles, where the para isomer was eluted considerably earlier than the meta isomer (90-250 units in acetonitrile and 50-90 units in methanol). A similar effect may be present in the nitrophenols, however, as the pKa of 4-nitrophenol is 7.15.s", this compound may be partially ionised at the working pH which would result in large differences between the isomers.

Figure 7.1: Retention indices of isomers of methyl methylbenzoate and methyl hydroxybenzoate in acetonitrile eluents

\subsection*{7.2 INTERACTION INCREMENTS FOR PAIRS OF AROMATIC SUBSTITUENTS}

To calculate the size of any interactions between substituents the summation of the parent index and substituent indices (\(R I_{\text {sum }}=P I+\Sigma S I+S I_{\text {e }}\)) was calculated (Table 7.10 and 7.11). The difference between the experimental retention indices and the summation has been used to calculate the interaction increments (OI) using the equation
\[
\delta I=R I_{a \times \infty}-\left(P I+\Sigma S I+S I_{B E}\right)
\]
at each eluent composition (Tables 7.12 to 7.15). The substituent index equations and parent index equations cannot reliably be used for extrapolation (see Chapter 4 and 6), therefore the calculated values were limited to the eluent ranges \(40-80 \%\) methanol and \(30-80 \%\) acetonitrile. Like the substituent retention index increments these increments can be converted into interaction index equations and the coefficients for the effect of modifier determined (see later). However, as each pair of substituents will generate a separate equation the very large number of potential combinations will present problems for a database. Any attempt to use an expert system to access the data will be complicated as each substituent combination will also require a specific rule for its recognition.

The simple approach of an equation for each pair of substituents will not therefore be practical in the long term and it will be important in future work to try and discover the underlying rules which govern the effects so

Table 7.10: Retention indices calculated as the sum of parent index and substituent indices

SUM
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1128 & 1147 & 1167 & 1188 & 1209 \\
\hline PItSIchatSIcr & 1098 & 1117 & 1136 & 1153 & 1170 \\
\hline & 1084 & 1112 & 1138 & 1161 & 1182 \\
\hline PItSIema+SIcor + Sİena & 899 & 899 & 899 & 899 & 899 \\
\hline PItSIchs+SIortSİms & 984 & 1001 & 1018 & 1036 & 1053 \\
\hline & 99 & 1002 & 1006 & 1010 & 1014 \\
\hline PIt SI \(_{\text {cha }}+\) SI \(_{\text {noz }}\) & 950 & 958 & 965 & 971 & 975 \\
\hline PItSICmatSIph & 1305 & 1317 & 1332 & 1348 & 1368 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {chat }}+\mathrm{SI}_{\text {cho }}\) & 874 & 874 & 876 & 878 & 882 \\
\hline PItSIChatSiconhz & 703 & 691 & 679 & 666 & 653 \\
\hline PI + SI \({ }_{\text {cha }}+\) SI \(_{\text {nhz }}\) & 748 & 758 & 760 & 755 & 741 \\
\hline PItSIematSIion & 875 & 878 & 877 & 871 & 860 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {oha }}+\mathrm{SI}_{\text {Ni+ } 2}\) & 443 & 429 & 403 & 363 & 310 \\
\hline PI + SIontSIar & 822 & 818 & 810 & 796 & 778 \\
\hline PItSIon+Sİa & 792 & 788 & 778 & 762 & 739 \\
\hline PItSIoh+SIon & 473 & 454 & 423 & 378 & 319 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {on }}+\) SI \(\mathrm{cono}^{\text {a }}\) & 568 & 545 & 518 & 487 & 451 \\
\hline PItSIon+SIcortSIema & 593 & 570 & 542 & 508 & 468 \\
\hline PItSIth+SIconhz & 397 & 362 & 321 & 275 & 222 \\
\hline PItSIoh+Sİen & 569 & 549 & 519 & 479 & 429 \\
\hline PItSIon+SIor+Sİma & 679 & 672 & 661 & 644 & 622 \\
\hline \(\mathrm{PI}+\) SIar+SIcozr+SIEH3 & 693 & 673 & 648 & 618 & 583 \\
\hline PI+SIon+Sİн & 778 & 783 & 780 & 769 & 750 \\
\hline \(\mathrm{PI}+\mathrm{SIOH}_{\text {+ }} \mathrm{SI}_{\text {noz }}\) & 644 & 629 & 608 & 579 & 544 \\
\hline PI+SIon+SIp, & 1000 & 988 & 974 & 957 & 937 \\
\hline
\end{tabular}

Isum Methanol proportion (\%)
\begin{tabular}{lllll}
40 & 50 & 60 & 70 & 80
\end{tabular}
937

Table 7.11: Retention Indices calculated as sum of parent index and substituent indices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SUM} & \multicolumn{6}{|l|}{\begin{tabular}{l}
RIsum \\
Acetonitrile proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {chab }}+\mathrm{SI}_{\text {br }}\) & 1137 & 1154 & 1168 & 1178 & 1186 & 1190 \\
\hline PI + SImatSIor & 1108 & 1125 & 1139 & 1149 & 1157 & 1161 \\
\hline & 1110 & 1127 & 1141 & 1151 & 1159 & 1163 \\
\hline PI+Sİns+SİdrtSIcha & 900 & 900 & 900 & 900 & 900 & 900 \\
\hline PI +SIcha+SIor + SÍra & 1000 & 1008 & 1013 & 1016 & 1016 & 1014 \\
\hline PItSIfatSIfoze + SIfen & 990 & 993 & 995 & 996 & 997 & 996 \\
\hline & 970 & 973 & 971 & 964 & 953 & 936 \\
\hline PItSImas+SIpn & 1300 & 1298 & 1296 & 1295 & 1294 & 1295 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {cma }}+\) SItmo & 880 & 885 & 888 & 888 & 886 & 881 \\
\hline & 682 & 637 & 614 & 614 & 636 & 679 \\
\hline PItSIenistSICn & 913 & 916 & 915 & 910 & 902 & 890 \\
\hline PI +SIIN+SINHZ & 484 & 454 & 428 & 405 & 386 & 371 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {DH }}+\mathrm{SI}_{\text {br }}\) & 825 & 811 & 798 & 787 & 777 & 768 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {chat }}+\mathrm{SI}_{\text {cier }}\) & 796 & 782 & 769 & 758 & 748 & 739 \\
\hline PItSIon+SIon & 486 & 441 & 402 & 368 & 340 & 318 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {ont }}\) SIfomo & 568 & 543 & 519 & 497 & 476 & 458 \\
\hline PItSIon+SICortSIens & 588 & 557. & 531 & 509 & 492 & 479 \\
\hline PI + SIon+SIronhz & 367 & 293 & 245 & 223 & 228 & 259 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {DH }}+\mathrm{SI}_{\text {cN }}\) & 601 & 573 & 546 & 519 & 493 & 468 \\
\hline & 688 & 665 & 644 & 624 & 607 & 591 \\
\hline PItSIan+SIcozr \({ }^{\text {SICHa }}\) & 678 & 650 & 626 & 605 & 587 & 573 \\
\hline PItSIon+SIcha & 798 & 784 & 771 & 760 & 750 & 741 \\
\hline \(\mathrm{PI}+\mathrm{SI}_{\text {de }}+\mathrm{SI}_{\text {maz }}\) & 657 & 630 & 602 & 573 & 543 & 513 \\
\hline \(\mathrm{PI}+\mathrm{SIOH}_{\text {+ }}+\mathrm{SI}_{\text {pm }}\) & 989 & 955 & 927 & 903 & 885 & 872 \\
\hline
\end{tabular}

Table 7.12: Interactions between substituents with the fixed substituent as methyl in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent pairs} & \multicolumn{5}{|l|}{Interaction increment Methanol proportion (\%)} \\
\hline & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{Br}\) & 6 & 10 & 12 & 17 & 35 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Br}\) & 7 & 10 & 13 & 15 & 31 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Br}\) & 4 & 7 & 9 & 11 & 26 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{Cl}\) & 9 & 12 & 14 & 21 & 37 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Cl}\) & 4 & 10 & 13 & 19 & 32 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Cl}\) & -2 & 13 & 8 & 13 & 22 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CH}_{3}\) & -13 & -9 & -8 & -2 & 17 \\
\hline \(\mathrm{CH}+3-\mathrm{CH}_{3}\) & 4 & 6 & 9 & 18 & 33 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CH}_{3}\) & 7 & 9 & 17 & 19 & 37 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{COCH}_{3}\) & -6 & -4 & -5 & -2 & 2 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{COCH}_{3}\) & 0 & 0 & -1 & 0 & 3 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{COCH}_{3}\) & -2 & 0 & -3 & -4 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{OCH}_{3}\) & 19 & 25 & 26 & 27 & 37 \\
\hline \(\mathrm{CH}_{3}+3-0 \mathrm{CH}_{3}\) & -10 & -5 & -7 & -6 & 2 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -15 & -11 & -9 & -11 & 5 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 1 & 1 & -2 & -2 & 11 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 1 & -1 & -1 & -1 & 11 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NO}_{2}\) & -28 & -25 & -27 & -29 & -30 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NO}_{2}\) & -8 & -3 & 4 & 5 & 10 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NO}_{2}\) & -16 & -10 & -8 & -14 & 2 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{Ph}\) & & -21 & -29 & -30 & -28 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Ph}\) & & 5 & 4 & 4 & 11 \\
\hline \(\mathrm{CH}+4-8 \mathrm{~h}\) & & 17 & 19 & 19 & 29 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CHO}\) & -5 & -1 & 1 & 3 & 12 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CHO}\) & -2 & -1 & 0 & -2 & 8 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CHO}\) & -11 & -9 & -10 & -10 & 1 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CONH}_{2}\) & -75 & -36 & -62 & -57 & -64 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CONH}_{2}\) & -15 & -9 & -11 & -12 & -15 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CONH}_{2}\) & -14 & -14 & -9 & -15 & -14 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NH}_{2}\) & -20 & -11 & -12 & -13 & -11 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NH}_{2}\) & -16 & -7 & -12 & -14 & -9 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NH}_{2}\) & -8 & -3 & -10 & -10 & -19 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CN}\) & -4 & -6 & -7 & -8 & 0 \\
\hline \(\mathrm{CH} 3+3-\mathrm{CN}\) & 7 & 6 & 7 & 2 & 9 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CN}\) & 2 & 0 & 1 & -6 & -3 \\
\hline
\end{tabular}

Table 7.13: Interactions between substituents with the fixed substituent as methyl in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent pairs} & \multicolumn{6}{|l|}{Interaction increment Acetonitrile proportion (\%)} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{CHz}+2-\mathrm{Br}\) & 3 & -2 & 0 & 5 & 16 & 33 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Br}\) & 8 & 2 & -1 & 3 & 13 & 21 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Br}\) & 8 & 0 & -2 & 0 & 8 & 18 \\
\hline CH3 + 2-Cl & 7 & 1 & -1 & 2 & 11 & 21 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Cl}\) & 9 & 1 & -2 & 0 & 5 & 10 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Cl}\) & 9 & 3 & -3 & -3 & 2 & 7 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CH}_{3}\) & -25 & -25 & -26 & -26 & -18 & -13 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CH}_{3}\) & -6 & -7 & -7 & -4 & 4 & 11 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CH} 3\) & -6 & -5 & -4 & -1 & 9 & 13 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{COCH}_{3}\) & -12 & -13 & -14 & -11 & -8 & -8 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{COCH}_{3}\) & -13 & -16 & -19 & -17 & -14 & -13 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{COCH}_{3}\) & -21 & -25 & -27 & -26 & -21 & -18 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{OCH}_{5}\) & 14 & 16 & 17 & 21 & 27 & 32 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{OCH}_{3}\) & -15 & -16 & -17 & -15 & -13 & -12 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -14 & -19 & -19 & -19 & -12 & -11 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CO}_{2} \mathrm{CH}\) & -6 & -13 & -15 & -12 & -6 & -5 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CO}_{2} \mathrm{CH}\) & -9 & -16 & -16 & -16 & -7 & -3 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NO}_{2}\) & -18 & -23 & -28 & -29 & -21 & -31 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NO}_{2}\) & 1 & 3 & -4 & -4 & 6 & 1 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NO}_{2}\) & -15 & -12 & -14 & -14 & -4 & -10 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{Ph}\) & & -24 & -23 & -21 & -18 & -18 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Ph}\) & & -12 & -10 & -8 & -5 & -4 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Ph}\) & & -4 & -1 & 2 & 6 & 9 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CHO}\) & -12 & -14 & -18 & -8 & 7 & -2 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CHO}\) & -7 & -8 & -12 & -4 & 15 & -4 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CHO}\) & -19 & -22 & -26 & -15 & 4 & -9 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CONH}_{2}\) & -61 & -53 & -53 & -64 & -68 & -48 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CONH}_{2}\) & -32 & -18 & -20 & -33 & -39 & -54 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CONH}_{2}\) & -18 & -4 & -22 & -32 & -42 & -37 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NH}_{2}\) & -31 & -31 & -33 & -34 & -26 & -32 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NH}_{2}\) & -25 & -32 & -34 & -35 & -33 & -49 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NH}_{2}\) & -26 & -30 & -34 & -35 & -25 & -33 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CN}\) & -15 & -21 & -26 & -26 & -16 & -16 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CN}\) & 1 & -4 & -9 & -10 & 3 & -10 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CN}\) & -7 & -13 & -18 & -20 & -11 & -19 \\
\hline
\end{tabular}

Table 7.14: Interactions between substituents where the fixed substituent was phenolic hydroxyl in methanol eluents

Table 7.15: Interactions between substituents where the fixed substituent was phenolic hydroxyl in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substituent pairs} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Interaction increment \\
Acetonitrile proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{OH}+2-\mathrm{NH}_{2}\) & 102 & 135 & 172 & 213 & 249 & 340 \\
\hline \(\mathrm{OH}+3-\mathrm{NH}_{2}\) & 35 & 68 & 68 & 69 & 82 & 148 \\
\hline \(\mathrm{OH}+4-\mathrm{NH}_{2}\) & -21 & 17 & 17 & 18 & 38 & 145 \\
\hline \(\mathrm{OH}+2-\mathrm{Br}\) & -4 & -6 & -12 & -22 & -28 & -45 \\
\hline \(\mathrm{OH}+3-\mathrm{Br}\) & 34 & 27 & 17 & 5 & -5 & -25 \\
\hline \(\mathrm{OH}+4-\mathrm{Br}\) & 28 & 20 & 9 & -2 & -12 & -21 \\
\hline \(\mathrm{OH}+2-\mathrm{Cl}\) & -10 & 6 & -5 & -14 & -24 & -25 \\
\hline \(\mathrm{OH}+3-\mathrm{Cl}\) & 40 & 33 & 23 & 11 & 1 & -8 \\
\hline \(\mathrm{OH}+4-\mathrm{Cl}\) & 29 & 22 & 14 & 0 & -9 & -22 \\
\hline \(\mathrm{OH}+2-\mathrm{OH}\) & 91 & 146 & 163 & 190 & 213 & 346 \\
\hline \(\mathrm{OH}+3-\mathrm{OH}\) & 36 & 91 & 96 & 99 & 113 & 177 \\
\hline \(\mathrm{OH}+4-\mathrm{OH}\) & -19 & 51 & 59 & 65 & 95 & 175 \\
\hline \(\mathrm{OH}+2\) - CHO & 294 & 332 & 315 & 325 & 369 & 409 \\
\hline \(\mathrm{OH}+3-\mathrm{CHO}\) & 80 & 87 & 91 & 95 & 95 & 52 \\
\hline \(\mathrm{OH}+4-\mathrm{CHO}\) & 32 & 34 & 31 & 40 & 37 & 4 \\
\hline \(\mathrm{OH}+2-\mathrm{COCH}_{3}\) & 261 & 312 & 326 & 349 & 365 & 374 \\
\hline \(\mathrm{OH}+3-\mathrm{COCH}_{3}\) & 75 & 114 & 88 & 100 & 98 & 114 \\
\hline \(\mathrm{OH}+4-\mathrm{COCH}_{3}\) & 27 & 51 & 41 & 57 & 66 & 79 \\
\hline \(\mathrm{OH}+2-\mathrm{CONH}_{2}\) & 262 & 315 & 371 & 354 & 340 & 281 \\
\hline \(\mathrm{OH}+4-\mathrm{CONH}_{2}\) & 53 & 100 & 111 & 113 & (96) & (-8) \\
\hline \(\mathrm{OH}+2-\mathrm{CN}\) & 47 & 57 & 62 & 70 & 49 & -5 \\
\hline \(\mathrm{OH}+3-\mathrm{CN}\) & 110 & 115 & 119 & 120 & 117 & 138 \\
\hline \(\mathrm{OH}+4-\mathrm{CN}\) & -138 & -102 & -101 & -96 & -69 & 48 \\
\hline \(\mathrm{OH}+2-\mathrm{OCH}_{3}\) & 32 & 47 & 53 & 69 & 75 & 87 \\
\hline \(\mathrm{OH}+3-\mathrm{OCH}_{3}\) & 22 & 23 & 24 & 29 & 18 & \\
\hline \(\mathrm{OH}+4-\mathrm{OCH}_{3}\) & -14 & -11 & -8 & -2 & -6 & -26 \\
\hline \(\mathrm{OH}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 253 & 294 & 314 & 340 & 354 & 367 \\
\hline \(\mathrm{OH}+3-\mathrm{CO}_{2} \mathrm{CH}\) & 60 & 57 & 55 & 47 & 46 & 62 \\
\hline \(\mathrm{OH}+4-\mathrm{CO}_{2} \mathrm{CH}\) & 30 & 38 & 41 & 44 & 35 & 35 \\
\hline \(\mathrm{OH}+2-\mathrm{CH}_{3}\) & -10 & -8 & -10 & -15 & -18 & -27 \\
\hline \(\mathrm{OH}+3-\mathrm{CH}_{3}\) & -26 & -26 & -30 & -38 & -42 & -50 \\
\hline \(\mathrm{OH}+4-\mathrm{CH}_{3}\) & -24 & -26 & -30 & -37 & -37 & -41 \\
\hline \(\mathrm{OH}+2-\mathrm{NO}_{2}\) & 124 & 148 & 181 & 216 & 223 & 128 \\
\hline \(\mathrm{OH}+3-\mathrm{NO}_{2}\) & 97 & 109 & 114 & 115 & 116 & 110 \\
\hline \(\mathrm{OH}+4-\mathrm{NO}_{2}\) & 12 & 5 & 9 & 25 & -25 & -118 \\
\hline \(\mathrm{OH}+2-\mathrm{Ph}\) & -5 & 18 & 12 & 13 & -1 & -25 \\
\hline \(\mathrm{OH}+3-\mathrm{Ph}\) & -4 & -5 & -13 & -15 & -31 & -50 \\
\hline \(\mathrm{OH}+4-\mathrm{Ph}\) & -5 & -8 & -17 & -24 & -32 & -56 \\
\hline
\end{tabular}
that interaction index factors can be derived for individual substituents. The interactions of substituents are mutual i.e. each substituent will influence the contribution of each other substituent. The overall term would need to account for the changes in polarity and the modifying effects of substituents on each other. Before any approach of this kind can be followed the sources of interactions must be recognised. The major effects were expected to be due to hydrogen bonding, electron donating-accepting effects and dipole formation (and its extreme case ionisation). The situation with aromatic substituents is complicated by the possibility of cross ring interactions which would not be expected to occur in aliphatic disubstituted compounds.

For some substituent pairs (e.g. \(\mathrm{CH}_{3}+\mathrm{COCH}_{3}\) in methanol) the \(R I_{\text {sum }}\) was within the anticipated error margin (+/-10) of the experimental retention index (Table 7.12) suggesting that no interactions were occurring. In addition for several substituent pairs there was a close match except at a single value, usually at \(80 \%\) organic modifier concentration (e.g. \(\mathrm{CH}+3-\) and \(4-\mathrm{CO}_{2} \mathrm{CH}\)) . At this modifier composition the capacity factors would be very small and a larger uncertainty in the results would be expected (see Chapter 3). The degree of the interaction depended on the organic modifier and pairs of substituents might show no significant interactions in methanol but larger interactions in acetonitrile.

The substituent pairs in eluents containing methanol (Tables 7.12 and 7.14) for which the interaction increment was less than \(+/-10\) units (or less than \(+/-20\) units in 80\% methanol) were:-
```

CH:5 + 2-,3-,4-COCH: CH:3 + 3-OCH3
CH: + 3-,4-CO=CH;}\quad\mp@subsup{\textrm{CH}}{3}{
CHs+3-Ph CHa + 2-,3-CHO
CH3}+\mp@subsup{\textrm{NH}}{3}{
CH5}+2-,3-,4-C
OH + 2-CHs. OH + 2-Ph

```

In eluents containing acetonitrile fewer substituent pairs (Table 7.13 and 7.15) had interaction terms which were less than \(+/-10\) units across the eluent range:-
\begin{tabular}{ll}
\(\mathrm{CH}_{3}+4-\mathrm{Br}\) & \(\mathrm{CH}+3-, 4-\mathrm{Cl}\) \\
\(\mathrm{CH}_{3}+3-4-\mathrm{CH}_{3}\) & \(\mathrm{CHa}_{3}+3-\mathrm{NO}_{2}\) \\
\(\mathrm{CH}_{3}+4-\mathrm{Ph}\) & \(\mathrm{CH}_{3}+3-\mathrm{CN}\)
\end{tabular}

The interaction increments for the other substituent pairs varied considerably in size from -200 to +400 units depending on the substituents and eluents. The largest interaction increments were found for compounds in which intramolecular hydrogen bonding would be expected (retention indices typically increased by between 200 and 400 units). The smallest interaction increments were found for the substituents in which the fixed substituent was the methyl group.

\subsection*{7.2.1 Interaction Indices}

The change in the interaction increments across the eluent range could be described by quadratic regression equations to give interaction index equations (Table 7.16
and 7.19). This is probably not the approach which will have to be taken in the long term however due to the amount of data currently available this approach has been adopted as an interim measure to enable the prediction of retention indices. If the change in interaction increment across the eluent range was less than 10 a mean value has been used (a and \(\mathrm{b}=0\)). Where there was only a small difference between the isomers (e.g. bromotoluenes and chlorotoluenes) a single common interaction index equation has been derived for the isomers. For the substituent pairs, listed above, with interaction increments < 10 it was assumed that no interactions were occurring and the coefficients of the interaction index equations were set to 0 .

\subsection*{7.2.2 Interactions in Disubstituted Compounds}

In an analysis of the interactions a number of factors can be considered. It should be noted that it was not possible to fully separate the electronic and other effects such as hydrogen bonding. The observed interaction increments were therefore a combination of the electronic and other effects. However, some of the dominant interactions can however be identified and these can be examined and will be discussed. Although the intra-molecular hydrogen bonding interactions will be discussed as though they were the only interactions occurring in these compounds this is unlikely. A more accurate situation would be to regard the interaction has being in addition to electronic factors in an ortho position. Further study may enable a hydrogen bonding term to be calculated in addition to the electronic term, possibly by assuming that the size of the

Table 7.16: Regression equations relating change in interaction increment to methanol concentration for interactions with methyl substituents
\begin{tabular}{rl}
& \(I I=a x^{2}+b x+c \quad \cdot\) \\
Substituent Pairs & Coefficients of regression equation
\end{tabular}
a
b
c
\(\left.\begin{array}{l}\mathrm{CH}_{3}+2-\mathrm{Br} \\ \mathrm{CH}_{3}+3-\mathrm{Br} \\ \mathrm{CH}_{3}+4-\mathrm{Br} \\ \mathrm{CH}_{3}+2-\mathrm{Cl} \\ \mathrm{CH}_{3}+3-\mathrm{Cl} \\ \mathrm{CH}_{3}+4-\mathrm{Cl}\end{array}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{CH}_{3}+2-\mathrm{CH}_{3}\) & 0.0221 & -1.967 & 31 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CH} 31\) & 0.0207 & -1.796 & 45 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CH}_{3}\)) & & & \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{COCH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{COCH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}+4-\mathrm{COCH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{OCH}_{3}\) & 0.0057 & -0.306 & 23 \\
\hline \(\mathrm{CH}_{3}+3-0 \mathrm{CH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & -11 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NO}_{2}\) & 0 & 0 & -28 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NO}_{2}\) & 0.0036 & -0.119 & -2 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NO}_{2}\) & 0 & 0 & -12 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{Ph}\) & 0 & 0 & -27 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{Ph}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Ph}\) & 0 & 0 & 21 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CHO}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CHO}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CHO}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CONH}_{2}\) & -0.0429 & 5.203 & -208 \\
\hline \(\left.\mathrm{CH}_{3}+3-\mathrm{CONH}_{2}\right)\) & 0 & 0 & -13 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CONH}_{2}\)) & & & \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NH}_{2}\)) & & & \\
\hline \(\mathrm{CH}+3-\mathrm{NH}_{2}\)) & 0 & 0 & -13 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NH}_{2}\)) & & & \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CN}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CN}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CN}\) & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 7.17: Regression equations relating change in interaction increment to acetonitrile concentration for interactions with methyl substituents
\[
I I=a x^{2}+b x+c \quad x=\% \text { modifier }
\]

Substituent Pairs
\begin{tabular}{|c|c|c|c|}
\hline & a & b & c \\
\hline \multicolumn{4}{|l|}{\(\left.\mathrm{CH}_{3}+2-\mathrm{Br}\right)\)} \\
\hline \(\left.\mathrm{CH}_{3}+3-\mathrm{Br}\right)\) & 0.0232 & -2.182 & 50 \\
\hline \(\left.\mathrm{CH}_{3}+4-\mathrm{Br}\right)\) & & & \\
\hline \multicolumn{4}{|l|}{\(\left.\mathrm{CHa}_{3}+2-\mathrm{Cl}\right)\)} \\
\hline \(\left.\mathrm{CH}_{3}+3-\mathrm{Cl}\right)\) & 0.0180 & -1.875 & 48 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CH}_{3}+4-\mathrm{Cl}\))} \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CH}_{3}\) & 0 & 0 & -22 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CH} 3\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{COCH}_{3}\) & 0 & 0 & -11 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{COCH}_{3}\)) & 0 & 0 & -19 \\
\hline \multicolumn{4}{|l|}{\(\left.\mathrm{CH}_{3}+4-\mathrm{COCH}_{3}\right)\)} \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{OCH}\) & 0.0062 & -0.325 & 18 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{OCH}_{3}\) & 0 & 0 & -15 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & -16 \\
\hline \(\mathrm{CH} 3+3-\mathrm{CO}_{2} \mathrm{CH}_{3}\)) & 0 & 0 & -10 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CH}_{3}+4-\mathrm{CO}_{2} \mathrm{CH}_{3}\))} \\
\hline \(\mathrm{CH}+2-\mathrm{NO}_{2}\) & 0 & 0 & -25 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NO}_{2}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{NO}_{2}\) & 0 & 0 & -12 \\
\hline \(\mathrm{CH} 3+2-\mathrm{Ph}\) & 0 & 0 & -21 \\
\hline CHs \(+3-\mathrm{Ph}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{Ph}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+2\) - CHO & 0.0073 & -0.454 & -7 \\
\hline \(\mathrm{CH} 3+3-\mathrm{CHO}\) & -0.0025 & 0.400 & -14 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CHO}\) & -0.0075 & -0.428 & -16 \\
\hline \(\mathrm{CH3}+2-\mathrm{CONH}_{2}\) & 0 & 0 & -58 \\
\hline \(\left.\mathrm{CH}_{3}+3-\mathrm{CONH}_{2}\right)\) & -0.0288 & 2.631 & -82 \\
\hline \(\mathrm{CHs}_{3}+4-\mathrm{CONH}_{2}\) & 0 & 0 & -29 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CH}_{3}+2-\mathrm{NH}_{2}\))} \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NH}_{2}\)) & 0 & 0 & -27 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CH}_{3}+4-\mathrm{NH}_{2}\))} \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{CN}\) & 0 & 0 & -20 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{CN}\) & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CN}\) & 0 & 0 & -15 \\
\hline
\end{tabular}

Table 7.18: Regression equations relating change in interaction increment to methanol concentration for interactions with hydroxyl substituents
\[
I I=a x^{2}+b x+c \quad x=\% \text { modifier }
\]

Substituent Pairs Coefficients of regression equation
\begin{tabular}{|c|c|c|c|}
\hline & a & b & c \\
\hline \(\mathrm{OH}+2-\mathrm{NH}_{2}\) & 0.0471 & -2.577 & 161 \\
\hline \(\mathrm{OH}+3-\mathrm{NH}_{2}\) & 0.0543 & -3.274 & 78 \\
\hline \(\mathrm{OH}+4-\mathrm{NH}_{2}\) & 0.1707 & -15.756 & 363 \\
\hline \(\mathrm{OH}+2-\mathrm{Br}\) & -0.0550 & 5.790 & -155 \\
\hline \(\mathrm{OH}+2-\mathrm{Cl}\) & -0.0343 & 3.574 & -96 \\
\hline \(\mathrm{OH}+3-\mathrm{Br})\) & & & \\
\hline \(\mathrm{OH}+4-\mathrm{Br})\) & -0.0170 & 1.777 & -7 \\
\hline \(\mathrm{OH}+3-\mathrm{Cl})\) & & & \\
\hline \(\mathrm{OH}+4-\mathrm{Cl}\)) & & & \\
\hline \(\mathrm{OH}+2-\mathrm{OH}\) & 0.0736 & -5.439 & 216 \\
\hline \(\mathrm{OH}+3-\mathrm{OH}\) & 0.0621 & -4.787 & 142 \\
\hline \(\mathrm{OH}+4-\mathrm{OH}\) & 0.0779 & -5.493 & 87 \\
\hline \(\mathrm{OH}+2-\mathrm{CHO}\) & 0.0129 & 1.017 & 154 \\
\hline \(\mathrm{OH}+3-\mathrm{CHO}\) & -0.0021 & 1.067 & 49 \\
\hline \(\mathrm{OH}+4-\mathrm{CHO}\) & 0 & -2.150 & 122 \\
\hline \(\mathrm{OH}+2-\mathrm{COCH}_{3}\)) & 0.0321 & 0.253 & 193 \\
\hline \(\left.\mathrm{OH}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)\) & & & \\
\hline \(\mathrm{OH}+3-\mathrm{COCH}_{3}\) & 0.0420 & -3.627 & 159 \\
\hline \(\mathrm{OH}+4-\mathrm{COCH}_{3}\) & -0.1240 & 12.914 & -274 \\
\hline \(\mathrm{OH}+2-\mathrm{CONH}_{2}\) & -0.0214 & 3.551 & 147 \\
\hline \(\mathrm{OH}+4-\mathrm{CONH}_{2}\) & 0 & 1.550 & 8 \\
\hline \(\mathrm{OH}+2-\mathrm{CN}\) & -0.1230 & 10.445 & -161 \\
\hline \(\mathrm{OH}+3-\mathrm{CN}\) & 0.0150 & -0.730 & 125 \\
\hline \(\mathrm{OH}+4-\mathrm{CN}\) & -0.0725 & 7.205 & -97 \\
\hline \(\mathrm{OH}+2-\mathrm{OCH}_{3}\) & 0.0079 & -0.313 & 36 \\
\hline \(\mathrm{OH}+3-\mathrm{OCH}_{3}\) & 0 & 0 & 18 \\
\hline \(\mathrm{OH}+4-\mathrm{OCH}_{3}\) & 0 & 0 & -16 \\
\hline \(\mathrm{OH}+3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -0.0179 & 2.493 & -11 \\
\hline \(\mathrm{OH}+4-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -0.1057 & 11.186 & -231 \\
\hline \(\mathrm{OH}+2-\mathrm{CH}_{3}\) & 0 & 0 & 0 \\
\hline \(\mathrm{OH}+3-\mathrm{CH}_{3}\)) & 0.0114 & -1.811 & 51 \\
\hline \(\mathrm{OH}+4-\mathrm{CH}_{3}\)) & & & \\
\hline \(\mathrm{OH}+2-\mathrm{NO}_{2}\) & 0 & -2.000 & 200 \\
\hline \(\mathrm{OH}+3-\mathrm{NO}_{2}\) & 0 & 0.210 & 96 \\
\hline \(\mathrm{OH}+4-\mathrm{NO}_{2}\) & 0 & -3.800 & 145 \\
\hline \(\mathrm{OH}+2-\mathrm{Ph}\) & 0 & 0 & -9 \\
\hline \(\mathrm{OH}+3-\mathrm{Ph})\) & 0.0076 & -1.313 & 46 \\
\hline \(\mathrm{OH}+4-\mathrm{Ph})\) & & & \\
\hline
\end{tabular}

Table 7.19: Regression equations relating change in interaction increment to acetonitrile concentration for interactions with hydroxyl substituents
\[
I I=a x^{2}+b x+c \quad x=q \text { modifier }
\]

Substituent Pairs Coefficients of regression equation
\begin{tabular}{lrrr}
\(\mathrm{OH}+2-\mathrm{NH}_{2}\) & 0.0511 & -1.124 & 94 \\
\(\mathrm{OH}+3-\mathrm{NH}_{3}\) & 0.0388 & -2.525 & 88 \\
\(\mathrm{OH}+4-\mathrm{NH}_{3}\) & 0.0759 & -5.794 & 103 \\
\(\mathrm{OH}+2-\mathrm{Br}\) & -0.0134 & 0.670 & -12 \\
\(\mathrm{OH}+2-\mathrm{Cl}\), & -0.0018 & -0.798 & 66 \\
\(\mathrm{OH}+3-\mathrm{Br})\) & -0.0052 & -0.490 & 53 \\
\(\mathrm{OH}+4-\mathrm{Br})\) & & & \\
\(\mathrm{OH}+3-\mathrm{Cl})\) & & &
\end{tabular}
\begin{tabular}{lrrr}
\(\mathrm{OH}+2-\mathrm{OH}\) & -0.0386 & 6.737 & -72 \\
\(\mathrm{OH}+3-\mathrm{OH}\) & 0.0145 & 0.620 & 20 \\
\(\mathrm{OH}+4-\mathrm{OH}\) & 0.0246 & 0.455 & -36 \\
\(\mathrm{OH}+2-\mathrm{CHO}\) & 0.0454 & -3.000 & 355 \\
\(\mathrm{OH}+3-\mathrm{CHO}\) & -0.0100 & 1.380 & 48 \\
\(\mathrm{OH}+4-\mathrm{CHO}\) & -0.0313 & 3.089 & -37 \\
\(\mathrm{OH}+2-\mathrm{COCH}_{\Im}\), & -0.0311 & 5.598 & 121
\end{tabular}
\(\mathrm{OH}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\))
\begin{tabular}{lrrr}
\(\mathrm{OH}+3-\mathrm{COCH}_{3}\) & 0.0059 & 0.128 & 65 \\
\(\mathrm{OH}+4-\mathrm{COCH}_{3}\) & 0.0071 & 0.171 & 20 \\
\(\mathrm{OH}+2-\mathrm{CONH}_{2}\) & -0.1500 & 16.937 & -114 \\
\(\mathrm{OH}+4-\mathrm{CONH}\) & 0 & 1.910 & 8 \\
\(\mathrm{OH}+2-\mathrm{CN}\) & -0.0757 & 7.540 & -117 \\
\(\mathrm{OH}+3-\mathrm{CN}\) & 0.0092 & -0.604 & 122 \\
\(\mathrm{OH}+4-\mathrm{CN}\) & 0.0909 & -7.044 & 10 \\
& & & \\
\(\mathrm{OH}+2-\mathrm{OCH}_{3}\) & -0.0027 & 1.366 & -6 \\
\(\mathrm{OH}+3-\mathrm{OCH}_{3}\) & -0.0100 & 1.380 & 48 \\
\(\mathrm{OH}+4-\mathrm{OCH}_{3}\) & -0.0309 & 3.373 & -95
\end{tabular}
\(\mathrm{OH}+3-\mathrm{CO}_{2} \mathrm{CH}_{3} \quad 0.0177-2.033108\)
\(\mathrm{OH}+4-\mathrm{CO}_{2} \mathrm{CH}_{3} \quad-0.0157 \quad 1.783-9\)
\begin{tabular}{llll}
\(\mathrm{OH}+2-\mathrm{NO}_{2}\) & -0.0486 & 7.877 & -88 \\
\(\mathrm{OH}+3-\mathrm{NO} 2\) & -0.0350 & 4.356 & -16
\end{tabular}
\(\mathrm{OH}+3-\mathrm{NO}_{2}\)
\(\mathrm{OH}+2-\mathrm{CH} 3 \quad-0.0105 \quad 0.816-25\)
\(\left.\mathrm{OH}+3-\mathrm{CH}_{3}\right) \quad-0.0030-0.109-18\)
\(\mathrm{OH}+4-\mathrm{CH})\)
\begin{tabular}{llll}
\(\mathrm{OH}+2-\mathrm{Ph}\) & -0.0477 & 4.799 & -104 \\
\(\mathrm{OH}+3-\mathrm{Ph}\) & -0.0198 & 1.266 & -26
\end{tabular}
\(0 \mathrm{H}+4-\mathrm{Ph}\))
ortho electronic interactions was similar to that of the para isomer although the validity of such an approach might be difficult to assess.

\section*{a) Interactions in Hydroxyl and Carbonyl Containing Compounds}

Four compounds were examined in which there were ortho hydroxyl and carbonyl groups \(\left(\mathrm{OH}+\mathrm{CHO}, \mathrm{OH}+\mathrm{CO}=\mathrm{CH}_{3}, \mathrm{OH}+\right.\) \(\mathrm{COCH}_{3}\), and \(\left.\mathrm{OH}+\mathrm{CONH}_{2}\right)\). These compounds can undergo strong intra-molecular hydrogen bonding and in all these compounds the interaction can be clearly seen in the much higher interaction increments for the ortho isomer when compared with the meta and para isomers. In each case an increase in retention index, relative to the \(R I_{\text {sum }}\), of between 200 and 450 retention index units (Figure 7.1, Tables 7.14 and 7.15), was found. Although a single interaction index expression may not be sufficient to account for all these interactions a common term has been used for ortho \(\mathrm{OH}+\mathrm{CO}=\mathrm{R}\) and \(\mathrm{OH}+\mathrm{COR}\), it should be remembered that electronic interactions also occur in addition to hydrogen bonding which may account for differences between the different substituent pairings.
b) Interactions in Hydroxyl - Hydroxyl and Hydroxyl - Amino Compounds

Hydrogen bonding can also occur between \(\mathrm{OH}+\mathrm{OH}\) and OH \(+\mathrm{NH}_{2}\). In these compounds the difference in retention index between the different isomers was not as large as with the carbonyl containing compounds. For \(\mathrm{OH}+2-\mathrm{OH}\) and \(\mathrm{OH}+2-\mathrm{NH}_{2}\)
the interactions caused an increase in retention index of between 100 and 250 units compared with 200 - 450 units in carbonyl containing compounds. The change in the increment across the eluent range was greater than the corresponding change with hydrogen bonding carbonyl groups which may reflect the influence of electronic effects.

To a first approximation it might probably be possible to use a single interaction index equation for the hydrogen bonding ortho amino and hydroxyl substituents. However, this was not done as in both pairs of substituents the meta and para isomers had fairly large and significant interaction increments which were different for the different positions showing that these substituents were susceptible to electronic interactions.
c) Interactions in Hydroxyl - Nitro compounds

In ortho substituted nitrophenol intramolecular hydrogen bonding may occur \({ }^{177}\) but this would be expected to be balanced by electronic effects and also intermolecular hydrogen bonding with the eluent. In acetonitrile the interaction of the ortho nitro containing compound was of a similar magnitude to that observed for the the ortho amino and hydroxyl compounds suggesting that intramolecular hydrogen bonding may be occurring, however, the interaction in methanol was smaller and at high methanol concentrations the compound was unretained on the column.

In both organic modifiers the meta isomer also showed a large interaction but the para isomer had a much smaller interaction. The possibility of ionisation of the para isomer was discussed previously and may be reflected in the
negative interaction increments observed for the para isomer.
d) Interactions in Compounds Without Hydrogen Bonding Groups

The other interactions which could occur between the ortho substituents were electronic interactions and steric interactions. The two effects would probably be superimposed and the resulting interaction increments would be the sum of the two interactions.

If the fixed substituent was a methyl group (Table 7.12 and 7.13) the ortho interaction increment was frequently found to differ from the other two isomers, which usually had similar interaction indices. This was also found by Morishita \({ }^{114}\) : studying group contribution effects for the pairs \(\mathrm{CH} s+\mathrm{CH} a\) and \(\mathrm{CH}: \mathrm{OH}\). The major exception to this effect was the methyl + halides and amines in which the three isomers had very similar interaction increments, although these were small and considerably less than the electronic effects observed for other substituent pairs. In most cases there was a reduction in the retention index of the ortho isomers when compared to the other isomers although the size of the interaction (-70 to +7 units) depended on the substituent pairs and the eluent composition. The largest effects were observed with the bulkier amide, nitro and ester group in which steric effects would reduce co-planarity with the ring.

The meta and para isomers with a methyl substituent had similar interaction indices with most substituent pairs. As the methyl group would not be expected to contribute significantly to any electronic interactions this would be
expected again. The size of the interaction varied considerably (-30 to +20 units), in most cases the value was almost constant across the eluent range.

If the fixed substituent was a hydroxyl group and hydrogen bonding interactions would not be expected the interaction increments (0 - 50 units, Tables 7.14 and 7.15) were considerably smaller than the hydrogen bonding interactions. The interactions between ortho substituents other than hydrogen bonding would be expected to be a combination of electronic interactions between the substituents and proximity effects.

For substituents meta or para to each other electronic interactions would be expected to occur these would depend on both the nature of the two substituents (the electron donating / accepting strength) and the positions. Generally the smallest interaction increments (within a single set of compounds i.e. with a fixed hydroxyl group) occurred when the two substituents were electron donating e.g. hydroxy + methoxy. However, hydroxy-hydroxyl and hydroxyl-amine pairings were exceptions and in most cases there were large changes with eluent composition. In most cases the absolute value of the interactions was higher than the methyl meta and para isomers, probably due to the interactions involving the hydroxyl group. Consequently it is not possible to make any generalisations about the groupings which produce the largest interactions.
7.3 RELATIONSHIP BETWEEN INTERACTION INCREMENTS AND STUDIES ON OCTANOL-WATER PARTITION COEFFICIENTS

The substituent indices calculated for individual aromatic and aliphatic substituents were found to be linearly related to the Hansch substituent contributions (\(\pi\)) to the octanol-water partition coefficients (Chapter 4 and 6). The compilation of \(\pi\) values \({ }^{* \epsilon}\) mainly contains values derived for single substituents on benzene. However, a simple summation of the \(\pi\) terms to calculate \(\log P\) was not successful for compounds in which interactions between substituents occurred. Initially this led to the development of different sets of \(\pi\) values \({ }^{17 \%}\), for example with aniline or phenol, as the parent. This approach was clearly unsatisfactory, as in the present study (see earlier), because it involved a large proliferation of data. Alternative approaches have only been made relatively recently49-52. Initially the methods for \(\log p\) "correction" ignored ortho substituents as it was recognised that these compounds could show complex interactions and these have only been included very recently. The aims of Fujita**, 50 and Leosi, \({ }^{-1}\) have been to develop methods to calculate \(\log P\) values for poly-substituted compounds using a set of ground rules to account for the interactions. As many interactions in the octanol-water and RP-HPLC system would be expected to be similar, this approach will be discussed in some detail to see whether it would be possible to apply a similar method to the current interaction increments in order to replace what would be a long list of empirical values by generally applicable parameters.

Fujita*जm attempted to describe the substituent
interactions in octanol-water partition coefficients using Hammett-type relationships. Initially he \({ }^{49}\) examined only meta and para isomers. He found that the difference between the \(\pi\) value derived with benzene as the parent and that with phenol as the parent could be described using the equation
\[
\delta \pi=\pi \times \text { ©FBOH })-\pi \times \text { ©FHH })=0.82 \sigma_{x}+0.06
\]
in which \(\sigma\) was the Hammett constant of the substituent \(X\). Effectively the Hammett constant was being used as a measure of the change in the polarity of the molecule relative to the mono-substituted compounds. Several compilations of Hammett constants exist so their use may be possible. Although equations of the type shown above were found to hold true for systems in which the parent was phenylacetic acid, phenoxyacetic acids or benzyl alcohol, it could not be used for systems in which the parent was either benzoic acid or nitrobenzene. Fujita's reported that this was due to a "change" in the relative importance of the two substituents in the molecule and that in the latter two systems the acid group or nitro group dominated the interactions and therefore the determination of \(\log P\). This led to a more general equation which attempted to "quantify" the effect of one group on another across the aromatic ring in terms of a "susceptibility" constant (p) and Equation 7.3:-
\(p_{x}\) and \(p_{y}\) are the susceptibilities of \(X\) and \(Y\) to the modifying effects of \(Y\) and \(X\), respectively. Separate Hammett constants (\(\sigma\)) were used for the meta and para isomers, ortho
isomers were not considered. The observed changes in the octanol-water partition coefficient were explained in terms of the the effect of the substituent on the ability of the compound to hydrogen bond with the solvent. Consequently the p term for a non-hydrogen bonding substituent (\(\mathrm{CH}_{\mathrm{a}}, \mathrm{H}\), Halogen, \(\mathrm{Ph}, \mathrm{CFs}\) and SFs) was zero, although the Hammett constant was not zero. With these substituents as the \(Y\) substituent the equation became:
\[
\pi \times\langle p m \times r)-\pi_{\times(p h r t)}=p_{\times} \sigma_{y}
\]

The other term dominated when the substituent \(X\) hydrogen bonded with the solvent. If neither substituent hydrogen bonded with the solvent the interaction term would be negligible. The susceptibility constants were derived experimentally using multiple regression analysis on a set of compounds with fixed substituents and variable substituents.

In this approach ortho substituents were not initially considered. However, the approach has now been extended to ortho substituents although these are treated separately from meta and para substituents. The ortho substituent effects were divided into two terms an electronic effect equivalent to that in para isomers and an additional term to account for the proximity effects (Equation 7.5):

```

    + \deltaE X + \deltaE K + c
    ```

Where \(a \pi=\) the additive \(\pi, E=\) Taft steric effect value, \(F=\) Swain-Lipton field effect constant, \(f=\) the susceptibility
for the \(F\) constant and \(\delta\) the susceptibility for the Taft \(E\) value. The \(E\) term was found to be insignificant for phenols and anilines (in the absence of intramolecular hydrogen bonding). The susceptibility constants were derived from a limited set of data.

Leo \(54 .=\) has also examined the interactions which occurred between substituents and their effect on octanolwater partition coefficients. \(\mathrm{He}^{51,}=2\) recognised that the interactions were not purely electronic but also involved other factors such as hydrogen bonding, steric interactions, interactions in mixed alkyl-aryl compounds and the electronic interactions. He attempted to simplify the approach to electronic interactions taken by Fujita to facilitate rapid estimation of the interaction terms. The electronic effects were calculated using a similar approach to that of Fujita (described above). The contribution was calculated as the product of the susceptibility and Hammett type constants In this case the constant was not the actual Hammett constant but a "hydrophobic" \(\sigma / p\) value calculated from a set of model compounds with well defined interactions. Several assumptions were made to obtain the electronic interaction term, firstly the value was assumed to be the same for meta, ortho, and para isomers, and a single \(\sigma\) and \(p\) value was used for each member of a class of substituents. The substituents were divided into three classes either inducers with \(p=0(e . g . C N, B r)\), responders with \(\sigma=0(e . g . O H, N H z)\) or bi-directional with \(p\) and \(\sigma>0\) (e.g. CHO, \(\mathrm{CO}_{2} \mathrm{CH}_{3}\)). For the bi-directional substituents the overall effect was governed by the second substituent present in the compound. In addition to the ortho effects of hydrogen bonding a "negative" ortho effect was also observed
with some substituent pairs, this was observed to occur with hydroxyl substituted compounds but not amino substituted.

The octanol water partition coefficient was then calculated from the sum of the components of the individual interactions. Multiple regression equations were again used to examine the significance of the different parameters and an overall equation was derived \(=2\).
\[
\log P=A L P+F_{\sigma}-0.29 F_{0}+0.63 F_{H B}-0.15 F_{\infty}
\]

The terms were \(A L P=\) additive \(\log P\), electronic interactions (\(F_{\sigma}\)), ortho effects (\(F_{o}\)), hydrogen bonding (\(F_{H B}\)) and alkylaryl effects (\(F_{x}\)). With the exception of the electronic effects each of the terms was quantized taking values 0,1 , 2 etc. The ortho effect was considered to be in addition to the other electronic effects and was not present in all ortho substituents. Its presence was determined experimentally in the set of data used to calculate the interactions. The electronic term was the same for all isomers of a compound and was initially calculated as the mean of the meta and para substituent terms. Although a single intra-molecular hydrogen bonding term was suggested this was found to be insufficient to account for the observed hydrogen bonding effects of ortho hydroxyl and amide groups. The hydrogen bonding term was not used for substituent pairs such as ortho \(\mathrm{OH}+\mathrm{OH}\) and ortho \(\mathrm{OH}+\mathrm{NH}_{2}\) but the interaction terms were assumed to be equal to that of the meta and para substituents. The final term in the equation (\(F_{\infty}\)) was used to account for differences between the additive \(\log P\) and the experimental values for compounds with alkyl groups. These included compounds such as
dimethylbenzenes. In these compounds the multiplier was calculated as 1 less than the number of methyl groups (up to a maximum of 3).

\subsection*{7.3.1 Possible Application of the Above Approach to the Current study}
 the derived susceptibility constants have been listed by Fujitaso and Leosi an attempt was made to determine whether this approach would be applicable to the current work. The interactions between the substituents would be expected to be similar to those occurring in the octanol-water partition coefficient although significant differences might be expected for some substituents. For example the hydroxyl group has been shown to be an outlier in the substituent index- \(\pi\) relationship and the example interactions used here may therefore not be the ideal test as to whether the values could be applied directly.
a) Relationship between Interaction Increments and Hammett Constants for Hydroxyl Substituted Compounds

Initially a study was carried out using the Hammett constants for phenol substituted compounds, these were 179
listed by Barlin and Perrin: This method was similar to the approach first used by Fujita et al. \({ }^{4 \exists}\). Apparent values of the Hammett constants were also listed for ortho substituents on phenols and these were used for the ortho substituted compounds. These Hammett constants do not measure the "interaction" as such but were the difference

Figure 7.2: Relationship between apparent Hammett constant for phenol substituted compounds and substituent increment

Figure 7.3: Relationship between apparent Hammett constant for phenol substituted compounds and substituent increment

between the measured values and that of phenol. They would therefore be expected to be related not to the interaction increments tabulated in this chapter (Tables 7.16 to 7.19) but to increments calculated using phenol as the parent. These values were therefore calculated as :-
\[
\delta I_{\text {oH }}=R I_{\times \text {Phon }}-R I_{\text {Phon }}
\]

However, no relationship between the Hammett constants and substituent effects was observed (Figure 7.2 in \(50 \%\) methanol and Figure 7.3 in \(50 \%\) acetonitrile). On their own these values are not sufficient to account for any interactions. A simple direct application of the Hammett constants does not therefore appear appropriate.
b) Relationship between Leo method of correcting for interaction and interaction increments

Leosz listed a number of susceptibility values and "hydrophobicity" \(\sigma\) values. A brief study was carried out to see whether the interaction terms calculated by Leo's equation (below) could be correlated with the interaction increments calculated in this study. The interaction terms for the substituent terms were calculated as
\[
I T=p_{\times} \sigma_{Y}+p_{V} \sigma_{x}-0.29 F_{O}+0.63 F_{H B}-0.15 F_{\triangle x}
\]

Using the values suggested by Leownem (Table 7.20) the interaction terms for the substituent pairs were calculated (Table 7.21). The interaction terms would be expected to be related to the interaction increments obtained in this

Table 7.20: Terms suggested by Leo to calculate interactions (taken from References 52 and 51)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Substituent & \(\sigma\) & \(p\) & \(F_{\text {He }}\) & \[
\begin{aligned}
& \mathrm{Fr} \\
& \mathrm{OH}
\end{aligned}
\] & \(\mathrm{CH}_{3}\) & F \({ }_{\alpha}\) \\
\hline CN & 0.65 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{NO}_{2}\) & 0.60 & 0 & 0 & 0 & 0 & 0 \\
\hline Br & 0.28 & 0 & 0 & 1 & 0 & 0 \\
\hline C1 & 0.28 & 0 & 0 & 1 & 0 & 0 \\
\hline CHO & 0.58 & 0.44 & 1 & - & 0 & 0 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}\) & 0.51 & 0.27 & 1 & - & 0 & 0 \\
\hline \(\mathrm{COCH}_{3}\) & 0.51 & 0.27 & 1 & - & 0 & 0 \\
\hline \(\mathrm{CONH}_{2}\) & 0.32 & 0.72 & 1 & - & 2 & 0 \\
\hline \(\mathrm{OCH}_{3}\) & 0.17 & 0.50 & 0 & 1 & 0 & 0 \\
\hline OH & 0 & 1.06 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{NH}_{2}\) & 0 & 1.08 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}\) & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

Table 7.21: Interaction terms calculated using equation 7.8 and the values listed in Table 7.20.
\[
I T=p_{X} \sigma_{Y}+p_{Y} \sigma_{X}-0.29 F_{\sigma}+0.63 F_{H B}-0.15 F_{\alpha} .
\]
(Compound XPhY)
\begin{tabular}{|c|c|c|c|}
\hline Y & Position & \[
{ }_{\mathrm{XT}}^{\mathrm{X}}=\mathrm{OH}
\] & \(\mathrm{X}=\mathrm{CH}_{3}\) \\
\hline CN & 2 & 0.689 & 0 \\
\hline CN & 3 & 0.689 & 0 \\
\hline CN & 4 & 0.689 & 0 \\
\hline \(\mathrm{NO}_{2}\) & 2 & 0.636 & 0 \\
\hline \(\mathrm{NO}_{2}\) & 3 & 0.636 & 0 \\
\hline \(\mathrm{NO}_{2}\) & 4 & 0.636 & 0 \\
\hline Br & 2 & 0.007 & 0 \\
\hline Br & 3 & 0.297 & 0 \\
\hline Br & 4 & 0.297 & 0 \\
\hline Cl & 2 & 0.007 & 0 \\
\hline Cl & 3 & 0.297 & 0 \\
\hline Cl & 4 & 0.297 & 0 \\
\hline с CO & 2 & 1.020 & 0 \\
\hline CHO & 3 & 0.573 & 0 \\
\hline CHO & 4 & 0.573 & 0 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 2 & 1.171 & 0 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 3 & 0.541 & 0 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 4 & 0.541 & 0 \\
\hline \(\mathrm{COCH}_{3}\) & 2 & 1.171 & 0 \\
\hline \(\mathrm{COCH}_{3}\) & 3 & 0.541 & 0 \\
\hline \(\mathrm{COCH}_{3}\) & 4 & 0.541 & 0 \\
\hline \(\mathrm{CONH}_{2}\) & 2 & 0.969 & -0.241 \\
\hline CONH2 & 3 & 0.339 & 0 \\
\hline \(\mathrm{CONH}_{2}\) & 4 & 0.339 & 0 \\
\hline \(\mathrm{OCH}_{3}\) & 2 & -0.110 & 0 \\
\hline \(\mathrm{OCH}_{3}\) & 3 & 0.180 & 0 \\
\hline \(\mathrm{OCH}_{3}\) & 4 & 0.180 & 0 \\
\hline OH & 2 & 0 & 0 \\
\hline OH & 3 & 0 & 0 \\
\hline OH & 4 & 0 & 0 \\
\hline \(\mathrm{NH}_{2}\) & 2 & 0 & 0 \\
\hline \(\mathrm{NH}_{2}\) & 3 & 0 & 0 \\
\hline \(\mathrm{NH}_{2}\) & 4 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}\) & 2 & 0 & -0.15 \\
\hline \(\mathrm{CH}_{3}\) & 3 & 0 & 0 \\
\hline \(\mathrm{CH}_{3}\) & 4 & 0 & 0 \\
\hline
\end{tabular}
study, therefore the interaction increments and interaction terms have been plotted in the two eluents methanol-buffer 50:50 and acetonitrile-buffer 50:50 (Figure 7.4 and 7.5). In this case there appears to be a general trend although the correlation would not be high. One of the main areas where the Leo model failed to account for the interaction was with the methyl substituents for which no interactions terms could be calculated but differences between the experimental \(R I\) and RIwn were observed. The assumption of equal electronic interactions for all three positions could also present problems. The terms derived by Leo could not be directly applied to the current system although there is the possibility of deriving similar interaction terms using HPLC systems. The values used by Leo were based on 400 - 500 substituted compounds so in the present study insufficient interaction increments may have been collected to derive reliable values.

\subsection*{7.4 APPLICATION OF INTERACTION INDICES}

As only a limited number of compounds have been studied it was not possible to do an analysis similar to that of Leo (described above) for the HPLC data. It is therefore necessary to include the individual empirical interaction index equations to predict the retention indices of unknown compounds. This approach is not satisfactory and has only been adopted as an interim measure until an improved method of accounting for interactions can be derived.

Figure 7.4: Relationship between interaction increment and Hansch interaction terms

Figure 7.5: Relationship between interaction increment and Hansch interaction terms

\section*{CHAPTER 8}

\title{
IMPLEMENTATION OF THE PREDICTION METHOD USING AN EXPERT SYSTEM
}

\begin{abstract}
In the preceding chapters the collection of the data required to predict retention indices has been discussed. The changes in the parameters, with eluent composition, have been described using quadratic regression equations. These have been collected together to into a set of spreadsheets which form the basis of the retention prediction system. The next stage in developing the prediction system was to devise a method by which the data can be easily recalled from the spreadsheet. Although it would be perfectly possible to do this manually using pen, paper and a calculator this task would be extremely time consuming and inefficient because it would be easy to miss some interactions which should be included. An expert system program, Chromatographic Retention Index Expert System, CRIPES, has therefore been used to provide a "user-friendly" interface with the spreadsheet. In this chapter a brief description of how an expert system works and a summary of its use in chromatography will be given. Following this the expert system used for this work will be discussed together with a description of the testing of the system.
\end{abstract}

\subsection*{8.1 USE OF COMPUTER PREDICTION METHODS IN HPLC}

Attempts to automate the development of separation methods have led to the use of various automatic
optimisation packages. In these the program attempts to optimise a predefined criteria, for example the resolution or chromatographic response factor \({ }^{180-184 .}\). In most cases the programs require a considerable input of experimental data at a minimum of two eluent compositions or in two organic modifiers. Frequently the programs work on a "trial and error" or iterative approach with the user performing separations at the proposed optimum conditions and then inputting the information back into the program to search for a new optimum. Although the process can be automated the amount of chromatographic data required can be quite large.

Alternatively there have been methods which use the retention based on a gradient elution profile to estimate isocratic retention of the analytesw. None of these methods can be said to be true prediction but rather extrapolation or interpolation between experimental points. Frequently an assumption of a linear relationship between the retention (log capacity factor) has been used as the basis of the systems. As was shown earlier (Chapter 4, Section 4.2) this assumption was not valid for all compounds particularly over a large eluent range. An automated system, Drylab, based purely on the linear relationship between log \(k\) ' and the eluent composition has been proposed by Snyder. This has been investigated briefly and a description will be given in a later section.

None of the optimisation systems of the types described above make any use of the structure of the analytes in determining the optimum separation conditions. A method proposed by Jinno et al.man 30.77 .79 attempted to use structural parameters to predict retention and to optimise
the separation. Regression equations relating different compound types to structural parameters were held in a spreadsheet. The structural parameters used depended on the type of compound and multiple regression analysis was used to obtain the equations for the individual column being used. A computer program was then used to extract data from the spreadsheet. The user was required to input information on the compound classes e.g. phenol, alkylbenzene or polynuclear aromatic hydrocarbon. Using this data the program would extract the retention parameters and the user would then be required to input structural information on the compounds to be separated. The retention (log \(k^{\prime}\)) of the compounds could then be calculated and the separation optimised without any further experimental work. There are several limitations of this work, firstly it requires the user to know several structural parameters for all the solutes (log p parameters, Hammett constants, Van der Waals radius/volume, the number of hydrogen bonding and accepting groups etc.) with different parameters being applied for different types of compounds and on different stationary phases. As the method is based on capacity factors some initial experimental work with reference compounds must be performed on every column to obtain the initial regression equations before any prediction can be carried out.

Several other prediction methods described in Chapter 1 have been developed using computers but none of these has been developed as extensively as that of Jinno and coworkers. A recent development has been a number of proposals which have used computer based expert systems for retention prediction and these will be discussed in a later section of this chapter (Section 8.3).

\subsection*{8.2 INTRODUCTION TO EXPERT OR KNOWLEDGE BASED INFORMATION SYSTEMS}

The aim of this section is not to provide a detailed explanation of the workings of an expert system or even to define what is meant by the term expert system. Indeed the term "expert system" is probably a great misnomer but it is considerably easier to use than the alternative "Knowledge Based Information systems", which would probably be a more accurate description of all the systems discussed in this chapter. The aim is to give a very brief description of how an expert system works and to provide a definition of the various terms which will be used in the chapter. Further information on the workings of expert systems can be found in many books on artificial intelligence including

There is no consensus as to what constitutes an expert system, however, there appear to be several common features. Primarily an expert system is a piece of computer software. The expert system can be divided into two parts the "inference engine" and the "knowledge base". The knowledge base contains the information about a particular well defined "domain" and provides the basis for any consultation using the expert system. The inference engine contains the mechanism by which the computer can extract and interpret data contained within the knowledge base. The form of the knowledge base can differ but the commonest type of expert system is the "rule based" system which consists of a number of "Rules", of the form "If \(X=Y\) then \(W=\) true", and statements of facts. It has also been suggested that an expert system needs to contain an explanation facility by
which the reasoning behind any answer can be discovered. The complexity of the explanation facility appears to vary greatly between different expert systems.

Within the description of an expert system a few other distinctions need to be made. An expert system may be of two types, either a totally purpose built system designed for a specific application or a program written for a "shell". An expert system "shell" consists of a generally applicable inference engine to which the user adds a knowledge base. An expert system shell provides a flexible approach to expert systems in that the same inference engine can then be used for several completely separate problems by choosing the appropriate knowledge base. It is also often possible to write the knowledge base without specific knowledge of the computer language in which the inference engine is written. The advantage of a purpose written expert system is that it can contain all the features that the user thinks will be required for interpretation of the particular problem. The use of a shell is a compromise which may require the user to rethink an approach to a problem. The program which was used in this work, which will be discussed later, is an example of the use of a shell (Vp-Expert). Many similar shells are available in a variety of sizes, degrees of sophistication and price.

Different types of expert systems exist although to date most of the systems used in the analytical chemistry domain are rule-based systems. The programs work by one of two methods, either backward chaining or forward chaining. In the backward chaining mode the program is given a goal which it attempts to achieve by examining the rules. The program identifies each rule which contains the goal as its
conclusion and checks to find if the conditions stated in the rule are satisfied. If the conditions are true then the goal is achieved and the program moves onto its next goal. In a forward chaining system a conclusion is obtained from the facts and rules presented to the system. Many expert systems, including VP-Expert, can to some extent use both methods of chaining.

\subsection*{8.3 USE OF EXPERT SYSTEMS IN CHROMATOGRAPHY}

Expert systems have been used in chemistry for many years, one of the earliest applications was the Dendral project started in 1965 which was concerned with the interpretation of mass spectra dataes. The application of artificial intelligence techniques and expert systems to chemistry, and in particular analytical chemistry has been the subject of several recent articles \({ }^{3 \boldsymbol{a r - i m e}}\). There appears to be a consensus of opinion that this is an area where expert systems can play an increasingly important role. Chromatography has been identified by several workers as a suitable "domain" for the application of expert systems. There are two distinct approaches to the use of expert systems in HPLC, these are to develop systems that attempt to take into account every possibility and eventuality in the domain or to restrict the application to small well defined problem areas.

An introduction to the use of expert systems in analytical chemistry was presented in a series of tutorials published in Analytical Chemistry in 198419s.196. In this article Karnicky explained the aims of the group at Varian in developing ECAT, Expert Chromatographic Assistance Team.

The aim appeared to provide a complete coverage of the field of chromatography choosing between gas and liquid chromatography, the experimental conditions and the detectors. Although descriptions of the work have appeared Erequently at conferences (e.g HPLC 87a゙ッ) relatively little has appeared in press \(190,196,190\). It is not clear whether there is a real possibility of the program appearing commercially.

Lu Peichang and co-workers have discussed the possibility of developing a chromatograph with "artificial
 as method of selection of mobile phase conditions and column systems as well as instrumental factors such as detectors and contains information on GC and HPLC separation. No details on the implementation of the expert system are available.

Tischler and Fox:sim described an expert system whose aim was to aid the "inexperienced analytical chemist in choosing a separation method for HPLC". The program, ESP, Expert Separation Program, was a rule based system with the rules being drawn from a standard textbook.

A specific application of an expert system program was discussed by Gunasinghameos. A program was written to plan the separation of steroids. The user was required to enter details about the sample, such as the polarity of the steroids, the class and the origin of the sample. The program would then detail any sample preparation required and the separation conditions. The same workers have recently described another approach to HPLC optimisation using an expert system. The structure of the program was given but there was no indication of the success of the
method: \(=0 \cdot\)
Bridges et al. expert system for eluent optimisation using a diode array detector. The method was similar to automated optimisation systems in that information from a gradient run and isocratic runs was required to determine the separation conditions. The optimisation routine was based on a method of simplex optimisation.

Musch et al. \(207, \infty \infty\) have written an expert system to decide between UV and amperometric detection for HPLC separation of pharmaceutical compounds. This program was written for an expert system shell, KES. The same workers have suggested how an expert system could be used for automated method development although no details were given \(=0\). These workers are also involved with the EEC sponsored project which will be discussed below.

An indication of the current interest in expert systems is the EEC sponsored project, ESCA, Expert Systems for Chemical Analysis, being studied under the ESPRIT program by groups in U.K. Netherlands, and Belgium. An overview of the aims of the project was recently published by Schoenmakers and Mulholland \(=10\). Four possible areas for the application of expert systems to method development for pharmaceutical analysis were identified. These were selection of the initial HPLC conditions, selection of the criteria for selectivity optimisation, optimisation of the chromatographic parameters and method validation. Further details of the approach being taken in each of the application areas were presented at a recent conference=1.1\(21=\). Contained within the first application area (the initial selection of chromatographic conditions) is an
attempt to predict the separation conditions based on the presence or absence of structural units in a particular drug molecule \({ }^{2 \pi}\). Each area is being implemented using a different expert system shell to compare the applicability of different approaches. The project is not currently seen as a commercial package but more an evaluation of the possible scope for the use of expert systems.

Other expert systems have been described in an article by Glajch: but no details of the specific programs were given. The applications described included a program to model the HPLC profile of protein digests (HIPERCALC) by Hodges and a program to simulate peptide separations was also described by Sasagawa. In this article the Drylab program by Snyder et al. \({ }^{167-169}\) was also described as an expert system. This software does not fit the description of an expert system detailed in the first section of this chapter although it is described as such in the manualne. The use of this program will be described later in this chapter.

With the exception of the Drylab software none of the expert systems for optimisation are commercially available. One example of a commercially available expert system for chromatography is HPLC Doctor, LC Resources. This system is aimed at diagnosing malfunctions occurring in HPLC systems but it has not been possible to examine it directly. This area of fault diagnosis has been developed in fields other than chromatography and is one area in which an expert system is useful in enabling a "novice" user to tap the experience of "experts".

\subsection*{8.4 INTRODUCTION TO VP-EXPERT}

The prediction system, CRIPES (Chromatographic
Retention Index Prediction Expert System) has been
implemented using the expert system shell VP-Expert. A brief description of some of the facilities of VP-Expert will be given prior to a discussion of CRIPES.

VP-Expert is an expert system development tool written in Microsoft \(C\) to run on an IBM compatible PC with a minimum of 300 K of memory. It is a rule based system which operates mainly in the backward chaining mode. There are several features which make it suitable for use with this particular application, the most important of which is probably its capability to handle mathematical routines. The mathematical facilities within Vp-Expert include many arithmetic and trigonometric functions. In contrast many other shells are not capable of doing even the simplest calculations unless external high level subroutines are used and appended to the program. VP-Expert can also communicate with compatible external spreadsheets and databases, which meant that the regression coefficients could be held outside the main program and therefore were easily updated. This facility also enables data to be transferred between sections of the program with ease.

The rules are of a standard format:-

RULE N
If \(Y=Z\)
AND \(\mathrm{Z}>\mathrm{W}\)
OR Z < Z1
THEN X = true;

In which \(W, Y, Z\) and \(Z 1\) are variables or defined values. The consultation is run from an ACTIONS block which contains the goals which the program must satisfy (e.g. Figure 8.1, Action block for CRIPES). The goals are given using the terminology FIND var. Sub-goals can also be given in the conclusion of the rules or buried within the Rules such that they need to be satisfied before the rule can be evaluated (examples of the form of the Rules in CRIPES are given in Figure 8.2). Variables can be of several types single, plural, or dimensioned. An element of a dimensioned variable may also be defined as a plural variable. The type of variable determines the type of search that VP-Expert undertakes to produce an answer.

During a consultation VP-Expert attempts to satisfy a goal by looking at each rule in turn to find one containing that goal in its conclusion. If the conditions of a rule are satisfied and the variable is a single variable then the goal is satisfied and the consultation moves onto the next goal. If the conditions are not satisfied then the program looks for the next rule containing the goal in its conclusion. The order of the rules in the knowledge base can therefore have a significant influence on the path and results of a consultation because once a goal is satisfied the search for a single variable stops and the consultation moves onto the next goal even if later rules are also satisfied. If after all the rules have been examined and a goal has still not been satisfied then the program checks whether there is an instruction to ask the user for a value (an ASK var:"", Figure 8.1) and then, if such an instruction is found, asks the user to input a value via the keyboard. If no value can be found for the goal, it remains unknown

Figure 8.1: Extract of knowledge base of CRIPES showing ACTIONS block and a selection of ASK and CHOICES statements

\section*{ACTIONS}

PRINTOFF
Display "

\section*{CRIPES}

Chromatographic Retention Index Prediction Expert system

This knowledge base will calculate the retention index of a single compound from its molecular structure at either a single or multiple eluent compositions"
wks rpl,ROW= Benzene, B:Benzmecn
wks rp2,ROW = Benzene, B:Benzmeoh
FIND COLUMN_READ
FIND name
FIND num_aro
FIND check_num
FIND num_ali
FIND subali
FIND SIIaro
FIND SIIali
FIND print
FIND single_eluent
FIND RI;
ASK num_ali: "How many aliphatic substituents present in \{name\} ?";
ASK num_aro:"How many aromatic substituents are present in \{name\} ?";
ASK subalil:"Which of these aliphatic substituents are present?";
ASK subali2:"Which of these aliphatic substituents are present?";
ASK subarol:"Which, if any, of these aromatic substituents are present";
ASK subaro2:"Which, if any, of these aromatic substituents are present";

CHOICES subali2:OH,CONH2, Br, \(\mathrm{Cl}, \mathrm{CN}\);
CHOICES subalil:CHO, CO2R,OR, COR, CH_CH, ALKYL_CHAIN, ANOTHER; CHOICES subarol:COR, \(\mathrm{CHO}, \mathrm{OR}, \mathrm{CO} 2 \mathrm{R}, \mathrm{CH} 3, \mathrm{CONH} 2, \mathrm{OH}, \mathrm{CH} _\mathrm{CH}, \mathrm{ANOTHER}\); CHOICES subaro2: NH2,NO2, CN,Cl, Br, Ph;

PLURAL:subalil, subali2,subarol, subaro2, position, positionl;

Figure 8.2: Examples of rules used in the knowledge base of CRIPES
```

RULE I
IF column <> unknown
THEN wks coll,ROW = (column),B:MeCNcol
wks col2,ROW = (column),B:MeOHcol
column_read = done;
RULE 2
IF num_aro <= 6
THEN FIND subs
check_num = ok;
RULE 2d
IF printer = yes
THEN PRINTON
PRINT = done
ELSE
PRINTOFF
PRINT = done;
RULE 3
IF num_aro > 0
THEN FIND r_a
FIND S1 find sla
y=0
WHILEKNOWN sub2[y]
y=(y+1)
find sub3
FIND S3
FIND naro
num = (num + n1)
FIND check
FIND rest_alkyl
FIND pos1
FIND pos2
cg1 = (cgl + (n1 *coeff1[1])+ctl +CU1)
cg2 = (cg2 + (n1 *coeff1{2])+ct2 + CU2)
cg3 = (cg3 + (nl *coeff1[3]) +ct3 + CU3 + R1)
cg4 = (cg4 + (n1 *coeff2[1])+ct4+ CU4)
cg5 = (cg5 + (nl *coeff2[2])+ct5 + CU5)
cg6 = (cg6 + (n1 *coeff2[3]) +ct6 + CU6 + R2)
RESET coeffl[1] RESET coeffil2] RESET coeffl[[3]
RESET coeff2[1] RESET coeff2[2] RESET coeff2[3]
RESET cf[l] RESET cf[2] RESET cf[3] RESET cf2[1]
RESET cf2[2] RESET cf2[3] RESET ct1 RESET ct2
RESET ct3 RESET ct4 RESET ct5 RESET ct6
RESET cU1 RESET cu2 RESET cu3 RESET cu4 RESET cu5
RESET cu6 RESET c_f RESET w1 RESET position
RESET position1 RESET pos RESET sub3 RESET posl
RESET pos2 RESET pos3
RESET pos4 RESET pos5 RESET pos6 RESET pos7
RESET naro Reset n1 RESET s3 RESET w1 RESET cl
RESET c2 RESET c3 RESET c4 RESET IT
RESET num_check RESET r_chain RESET rest_alkyl
RESET r1 RESET r2
END
SIIaro = done

```

ELSE SIIaro=0;
and the consultation moves onto the next goal.
If the variable is a plural variable the search is basically the same as for a single variable, except that the program does not stop after the first value of the goal is found but continues to search for as many values as possible.

An ASK statement may be accompanied by a CHOICES var: statement (Figure 8.1). This produces a menu of possible responses from which user selects the required value (or if the variable is a plural variable) values.

The rule base can be written using any text editor such as Wordstar in non-document mode, and VP-Expert also contains a built-in text editor. The program also contains a trace facility which enables the path of a consultation to be monitored and subsequently displayed either as a text file or a graphic decision tree. It is also possible to discover which rule provided a value and why the consultation wants to know a particular value. It is also possible to check the value of any variable at the end of the consultation.

\subsection*{8.5 IMPLEMENTATION AND DEVELOPMENT OF CRIPES}

In the previous section a brief description of the facilities and method of working of VP-Expert was given. This shell has been used to implement the retention prediction method, CRIPES, Chromatographic Retention Index Prediction Expert System, using the approach outlined in this section.

The retention index of a compound can be calculated
\[
R I=P I+\Sigma S I_{\text {Ar-x }}+\Sigma S I_{A I-X}+S I_{R}+\Sigma I I_{Y Z}
\]
where the terms are as defined earlier (Chapter 3).
The collection of these terms has been described in the previous chapters. Each term in the equation can be described using a quadratic equation. If these are summed they lead to the following equation to describe the retention index
\[
R I=x=\Sigma a+x \Sigma b+\Sigma c \quad(x=\% \text { modifier }) \quad 8.2
\]
enabling the calculation of retention index at any eluent composition.

The approach used to obtain the coefficients of Equation 8.3 is shown in the flowchart in Figure 8.3. Two equations are obtained for each compound, one describing the change with methanol proportion and the other with acetonitrile proportion. All the regression coefficients of the regression equations for \(P I, S I\), and \(I I\) were held in the external spreadsheets and accessed through the expert system. A summary of the values of the coefficients of the equations used within CRIPES and held in the spreadsheets is given in Tables 8.1 to Table 8.6.

The aromatic and aliphatic substituents were treated separately. The user first enters the aromatic substituents selected from menus presented by CRIPES, then the aliphatic substituents. Then taking each aromatic substituent in turn the program asked the user to input the number of that substituent present in the compound and in turn the

position/positions relative to a hydroxyl, amino or alkyl group if these are present. This enabled CRIPES to extract the coefficients for the substituent indices and to identify any interactions and extract the appropriate coefficients for these. The coefficients are summed to provide an overall equation describing the aromatic contribution. Having emptied the list of aromatic substituents the program then repeats the process for the aliphatic substituents. The program prompts the user for information on the branching of an alkyl chain, positions of aliphatic substituents relative to the aromatic ring and for the length of the alkyl chain in mixed alkyl-aryl groups such as PhCOR and PhCOzR.

The coefficients for the aromatic contribution, the aliphatic contribution and the parent contribution are then summed to give two equations relating the retention index of the compound to eluent composition. One equation describing changes in methanol and the other in acetonitrile. Using the equations the program then calculates the retention index values over the ranges 40 - \(80 \%\) methanol and \(30-80 \%\) acetonitrile at \(10 \%\) intervals. Using the program it is therefore possible to calculate the retention index of any substituted benzene directly from its molecular structure.

The final stage of the program is to calculate an approximate capacity factor. This enables an estimated retention time to be obtained to give an indication of the length of an analysis. This calculation is based on the relationship:-
\[
\log k^{\prime}=a^{\prime} R I+b^{\prime}
\]

The coefficients \(a^{\prime}\) and \(b^{\prime}\) in Equation 8.3 are known from

Table 8.1: Coefficients of regression equations for parent index equations held in spreadsheet and accessed by CRIPES
\[
\mathrm{PI}=\mathrm{ax} \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c} \quad \mathrm{x}=\% \operatorname{modifier}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline Parent & Organic modifier & \multicolumn{3}{|l|}{Coefficients of parent index equations a b \(\qquad\)} \\
\hline benzene & methanol & -0.0121 & 3.887 & 748 \\
\hline benzene & acetonitrile & -0.0154 & 2.761 & 841 \\
\hline
\end{tabular}

Table 8.2: Coefficients of regression equations for substituent index equations for aliphatic substituents (\(S I_{\text {al-x }}\)) held in the spreadsheet accessed by CRIPES
\[
S I=a x^{2}+b x+c \quad x=\% \operatorname{modifier}
\]

Substituent Coefficients of substituent index equations Methanol
a b
\(a \quad b\)
c
c
\begin{tabular}{lrrrrrr}
\(\mathrm{CONH}_{2}\) & 0.0079 & -5.013 & -178 & 0.0855 & -11.786 & -179 \\
\(\mathrm{prim}-\mathrm{OH}\) & -0.0257 & -0.494 & -273 & 0.0561 & -8.139 & -223 \\
\(\mathrm{sec}-\mathrm{OH}\) & -0.0257 & -0.894 & -286 & 0.0346 & -5.979 & -310 \\
CN & -0.0250 & -1.050 & -185 & 0.0002 & -2.997 & -160 \\
CHO & 0.1314 & -18.531 & 337 & 0.0073 & -1.768 & -184 \\
\(\mathrm{CO} \mathrm{R}_{2}\) & 0.0071 & -3.717 & -90 & 0.0130 & -3.580 & -164 \\
COR & -0.0086 & -1.851 & -201 & 0.0161 & -3.654 & -206 \\
OR & 0.0136 & -2.939 & -154 & 0.0211 & -2.644 & -218 \\
Cl & -0.021 & -1.053 & 19 & 0.0018 & -1.962 & 27 \\
Br & -0.0536 & 4.719 & -99 & 0.0325 & -4.792 & 121 \\
\(\mathrm{CH}: \mathrm{CH}\) & -0.0314 & 2.891 & 55 & 0.0100 & -1.780 & 154
\end{tabular}

Table 8.3: Coefficients of regression equations for substituent indices for aromatic substituents (SIAr-x) held spreadsheet and accessed by CRIPES
\[
S I=a x^{2}+b x+c \quad x=\% \text { modifier }
\]

Substituent Coefficients of substituent index equations Methanol Acetonitrile
\begin{tabular}{llllll}
a b & b & b & b
\end{tabular}
\begin{tabular}{lrrrrrr}
\(\mathrm{CH}_{3}\) & 0 & 0 & 100 & 0 & 0 & 100 \\
\(\mathrm{CONH}_{2}\) & 0.0093 & -4.804 & -104 & 0.1260 & -14.878 & 2 \\
NH 2 & -0.0264 & 0.541 & -215 & 0.0118 & -2.405 & -153 \\
OH & -0.0271 & 0.117 & -167 & 0.0218 & -4.616 & -93 \\
CHO & 0.0186 & -4.469 & 39 & 0.0025 & -1.335 & -92 \\
CN & -0.0114 & -1.429 & -34 & -0.0025 & -1.251 & -57 \\
COR & 0.0114 & -3.791 & -52 & 0.015 & -2.704 & -143 \\
\(\mathrm{NO}=\) & 0.0050 & -2.390 & 53 & -0.0104 & -0.586 & -14 \\
OR & 0.0129 & -2.263 & -30 & 0.0029 & -1.097 & -80 \\
CO 2 R & 0.0143 & -3.774 & 43 & 0.0105 & -2.098 & -67 \\
Cl & 0.0086 & -1.669 & 167 & 0 & 0 & 98 \\
Br & 0.015 & -2.190 & 207 & 0 & 0 & 127 \\
Ph & 0.025 & -3.870 & 436 & 0.0193 & -3.299 & 372 \\
\(\mathrm{CH}: \mathrm{CH}\) & -0.0307 & 2.956 & 74 & 0.0223 & -2.741 & 189
\end{tabular}

Table 8.4: Coefficients of interaction index equations held in spreadsheet and accessed by CRIPES - aliphatic interaction index equations

In the table I- represent substituents on a benzylic carbon (\(\mathrm{PhCH}_{z}-\mathrm{X}\)) and II- substituents on \(\mathrm{PhCH}_{2} \mathrm{CH}_{2}-\mathrm{X}\)
\[
I I=a x^{2}+b x+c \quad x=\% \operatorname{modifier}
\]

Substituent Coefficients of interaction index equations Methanol
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & a & b & c & a & b & c \\
\hline \(\mathrm{I}-\mathrm{CONH}=\) & 0.0186 & -1.809 & 56 & 0.0018 & 0.395 & 6 \\
\hline \(\mathrm{I}-\mathrm{OH}\) & -0.0007 & 0.996 & -3 & -0.0046 & 1.236 & 29 \\
\hline \(\mathrm{I}-\mathrm{CN}\) & 0.0221 & -2.327 & 113 & 0 & 0.440 & 52 \\
\hline \(\mathrm{I}-\mathrm{CO}_{2} \mathrm{CH}\) & 0 & 0 & 0 & 0 & 0 & 33 \\
\hline \(\mathrm{I}-\mathrm{COCH}_{3}\) & 0 & 0 & -12 & 0 & 0 & 10 \\
\hline Im Cl & -0.0143 & 1.414 & -31 & -0.0079 & 0.479 & 5 \\
\hline \(\mathrm{I}-\mathrm{Br}\) & 0.0836 & -9.139 & 235 & 0 & 0 & 17 \\
\hline \(\mathrm{II}-\mathrm{CO}_{2} \mathrm{CH}\) & 0 & 0 & 17 & 0 & 0 & 24 \\
\hline \(\mathrm{II}-\mathrm{OH}\) & -0.0079 & 1.233 & -16 & -0.0021 & 0.636 & 10 \\
\hline II-Cl & 0 & 0 & -12 & -0.0075 & 0.482 & -10 \\
\hline \(\mathrm{II}-\mathrm{Br}\) & -0.0071 & 0.757 & -26 & -0.0101 & 0.668 & -14 \\
\hline II-CN & & & & 0 & 0 & 19 \\
\hline branch & 0 & 0 & \(-12\) & 0 & 0 & -20 \\
\hline
\end{tabular}

Table 8.5: Coefficients of interaction index equations held in spreadsheet and accessed by CRIPES - aromatic interaction index equations for interactions in methanol eluents

In the table \(T\) represent the interaction with alkyl or methyl groups and \(P\) the interactions with phenolic hydroxyl groups.
2,3 , and 4 are the position of the substituent (relative to the methyl or phenol group) and if no number is listed the interaction index applies to all positions. Where the 3 - substituent is marked * the interaction index applies to both 3- and 4-positions.
\[
I I=a x^{2}+b x+c \quad x=\% \operatorname{modifier}
\]

Substituent
Coefficients of II equations
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & a & b & c & & a & b & c \\
\hline \(\mathrm{T}-\mathrm{Br}\) & 0.0150 & -1. 230 & 32 & \(\mathrm{T} 2^{-1} \mathrm{NO}_{2}\) & 0 & 0 & -28 \\
\hline \(\mathrm{T}-\mathrm{Cl}\) & 0.0150 & -1.230 & 32 & \(\mathrm{T} 3-\mathrm{NO}_{2}\) & 0.0036 & -0.119 & -2 \\
\hline \(\mathrm{T} 2-\mathrm{CH}_{3}\) & 0.0221 & -1.967 & 31 & T4-NO2 & 0 & 0 & -12 \\
\hline * \(\mathrm{T}^{\text {- }} \mathrm{CH}_{3}\) & 0.0207 & -1.796 & 45 & T2-Ph & 0 & 0 & -27 \\
\hline \(\mathrm{T} 2-\mathrm{OCH}_{3}\) & 0.0057 & -0.306 & 23 & T4-Ph & 0 & 0 & 21 \\
\hline \(\mathrm{T} 2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & -11 & T2-CONHz & -0.0429 & 5.203 & -208 \\
\hline \(\mathrm{T}-\mathrm{NH}_{2}\) & 0 & 0 & -13 & \({ }^{*} \mathrm{~T} 3-\mathrm{CONH}_{2}\) & 0 & 0 & -13 \\
\hline \(\mathrm{P} 2-\mathrm{NH}_{2}\) & 0.0471 & -2.577 & 161 & \(\mathrm{P} 2-\mathrm{CONH}_{2}\) & -0.0214 & 3.551 & 147 \\
\hline \(\mathrm{P} 3-\mathrm{NH}_{2}\) & 0.0543 & -3.274 & 78 & P4-CONH2 & 0 & 1.550 & 8 \\
\hline P4-NH2 & 0.1707 & -15.756 & 363 & P2-CN & -0.1230 & 10.445 & -161 \\
\hline P2-Cl & -0.0343 & 3.574 & -96 & P3-CN & 0.0150 & -0.730 & 125 \\
\hline *P3-Cl & -0.0171 & 1.777 & -7 & P4-CN & -0.0725 & 7.205 & -97 \\
\hline \(\mathrm{P} 2-\mathrm{Br}\) & -0.0550 & 5.790 & -155 & \(\mathrm{P} 2-\mathrm{OCH}_{3}\) & 0.0079 & -0.313 & 36 \\
\hline *P3-Br & -0.0171 & 1.777 & -7 & \(\mathrm{P} 3-\mathrm{OCH}_{3}\) & 0 & 0 & 18 \\
\hline \(\mathrm{P} 2-\mathrm{OH}\) & 0.0736 & -5.439 & 216 & P4-0CH3 & 0 & 0 & -16 \\
\hline P3-OH & 0.0621 & -4.787 & 142 & \({ }^{+} \mathrm{P} 3-\mathrm{CH}_{3}\) & 0.0114 & -1.811 & 51 \\
\hline \(\mathrm{P} 4-\mathrm{OH}\) & 0.0779 & -5.493 & 87 & \(\mathrm{P} 2-\mathrm{NO}_{2}\) & 0 & -2.000 & 200 \\
\hline P2-CH0 & 0.0129 & 1.037 & 154 & \(\mathrm{P} 3-\mathrm{NO}_{2}\) & 0 & 0.210 & 96 \\
\hline P3-CH0 & -0.0021 & 1.067 & 49 & \(\mathrm{P} 4-\mathrm{NO}_{2}\) & 0 & -3.800 & 145 \\
\hline P4-CH0 & 0 & -2.150 & 122 & \(\mathrm{P} 2 \sim \mathrm{Ph}\) & 0 & 0 & -9 \\
\hline P2-C0 & 0.0321 & 0.253 & 193 & *P3-Ph & 0.0076 & -1.313 & 46 \\
\hline \(\mathrm{P} 3-\mathrm{COCH}_{3}\) & 0.0420 & -3.627 & 159 & \(\mathrm{p} 3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -0.0179 & 2.493 & -11 \\
\hline P4-COCH3 & -0.1240 & 12.914 & -274 & P4- \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -0.1057 & 11.186 & -231 \\
\hline
\end{tabular}

Coefficients of II equations

Table 8.6: Coefficients of interaction index equations held in spreadsheet and accessed by CRIPES - aromatic interaction index equations for interactions in acetonitrile eluents

In the table \(T\) represent the interaction with alkyl or methyl groups and P the interactions with phenolic hydroxyl groups.
2,3 and 4 are the position of the substituent (relative to the methyl or phenol group) and if no number is listed the interaction index applies to all positions.
\[
I I=a x^{2}+b x+c \quad x=q \text { modifier }
\]

Substituent Coefficients of II equations
a b c
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{T}-\mathrm{Br}\) & 0.0232 & -2.182 & 50 & T2-CHO & 0.0073 & -0.454 & -7 \\
\hline T-Cl & 0.0180 & -1.875 & 48 & T3-CHO & -0.0025 & 0.400 & -14 \\
\hline \(\mathrm{T} 2-\mathrm{CH}_{3}\) & 0 & 0 & -22 & T4-CHO & 0.0075 & -0.428 & -16 \\
\hline T2-COCH:3 & 0 & 0 & -11 & \(\mathrm{T} 2-\mathrm{CONH}_{2}\) & 0 & 0 & -58 \\
\hline *T3-COCH3 & 0 & 0 & -19 & T3-CONH2 & -0.0288 & 2.631 & -82 \\
\hline T2-0CH3 & 0.0062 & -0.325 & 18 & T4-CONHz & 0 & 0 & -29 \\
\hline T3-0CH3 & 0 & 0 & -15 & \(\mathrm{T}-\mathrm{NH}_{2}\) & 0 & 0 & -27 \\
\hline \(\mathrm{T} 2-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & -16 & T2-CN & 0 & 0 & -20 \\
\hline \({ }^{+\mathrm{T}} 3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0 & 0 & -10 & T4-CN & 0 & 0 & -15 \\
\hline T2- \(\mathrm{NO}_{2}\) & 0 & 0 & -25 & T2-Ph & 0 & 0 & -21 \\
\hline T4- \(\mathrm{NO}_{2}\) & 0 & 0 & -12 & & & & \\
\hline \(\mathrm{P} 2-\mathrm{NH}_{2}\) & 0.0511 & -1.124 & 94 & P2-CN & -0.0757 & 7.540 & -117 \\
\hline \(\mathrm{P} 3-\mathrm{NH}_{2}\) & 0.0388 & -2.525 & 88 & P3-CN & 0.0092 & -0.604 & 122 \\
\hline \(\mathrm{P} 4-\mathrm{NH}_{2}\) & 0.0759 & -5.794 & 103 & P4-CN & 0.0909 & -7.044 & 10 \\
\hline P2-Br & -0.0134 & 0.670 & -12 & \(\mathrm{P} 2-\mathrm{OCH}_{3}\) & -0.0027 & 1.366 & -6 \\
\hline *P3-Br & -0.0052 & -0.490 & 53 & \(\mathrm{P} 3-\mathrm{OCH}_{3}\) & -0.0291 & 2.973 & -48 \\
\hline P2-Cl & -0.0018 & -0.798 & 66 & P4-0CH3 & -0.0309 & 3.373 & -95 \\
\hline *P3-Cl & -0.0052 & -0.490 & 53 & \(\mathrm{P} 2-\mathrm{NO}_{2}\) & -0.0486 & 7.877 & -88 \\
\hline \(\mathrm{P} 2-\mathrm{OH}\) & -0.0386 & 6.737 & -72 & \(\mathrm{P} 3-\mathrm{NO}_{2}\) & -0.0350 & 4.356 & -16 \\
\hline \(\mathrm{P} 3-\mathrm{OH}\) & 0.0145 & 0.620 & 20 & \(\mathrm{P} 4-\mathrm{NO}_{2}\) & -0.1314 & 12.646 & -278 \\
\hline P4-OH & 0.0246 & 0.455 & -36 & \(\mathrm{P} 2-\mathrm{CH}_{3}\) & -0.0105 & 0.816 & -25 \\
\hline P2-CHO & 0.0454 & -3.000 & 355 & \({ }^{*} \mathrm{P} 3-\mathrm{CH}_{3}\) & -0.0030 & -0.109 & -18 \\
\hline P3-CHO & -0.0100 & 1.380 & 48 & P2-ph & -0.0477 & 4.799 & -104 \\
\hline P4-CHO & -0.0313 & 3.089 & -37 & *P3-Ph & -0.0198 & 1.266 & -26 \\
\hline 22-CO & -0.0311 & 5.598 & 121 & \(\mathrm{P} 2-\mathrm{CONH}_{z}\). & -0.1500 & 16.937 & -114 \\
\hline \(\mathrm{P} 3-\mathrm{COCH}_{3}\) & 0.0059 & 0.128 & 65 & P4-CONHz & 0 & 1.910 & 8 \\
\hline \(\mathrm{P} 4-\mathrm{COCH}_{3}\) & 0.0071 & 0.171 & 20 & & & & \\
\hline \(\mathrm{P} 3-\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 0.0177 & -2.033 & 108 & & & & \\
\hline \(\mathrm{P} 4-\mathrm{CO}_{2} \mathrm{CH}\) & -0.0157 & 1.783 & -9 & & & & \\
\hline
\end{tabular}
the experimental regression equations for the alkylarylketone standards relating carbon number to \(\log \mathrm{k}^{\prime}\). The values of the coefficients \(a^{\prime}\) and \(b^{\prime}\) were dependent on the eluent composition and the change with organic modifier concentration was described by quadratic regression equations (Chapter 3, Table 3.23). Using the quadratic regression equations relating \(a^{\prime}\) and \(b^{\prime}\) to eluent composition it was possible to calculate k' at any eluent composition. One advantage of this facility is that as retention indices should be largely independent of the brand of column it should be possible to predict the capacity factors on any ODS-silica column if the retentions of the alkylarylketones on that column are known. So far CRIPES accesses a spreadsheet which contains details of \(a^{\prime}\) and \(b^{\prime}\) for both Spherisorb-ODS2, from this study, and Hypersil-ODS calculated from earlier work in this laboratory 0.4 .45 (in acetonitrile, intercept \(\mathrm{a}=2.36 \times 10^{-\cdots}, \mathrm{b}=0.0390\) and \(\mathrm{c}=\) 3.027, and slope \(a=0.36 \times 10^{-\epsilon}, b=-8.08 \times 10^{-m}\) and \(c=\) \(5.4 \times 10^{-3}\), in methanol, intercept \(a=1.98 \times 10^{-4}, b=-\) 0.0106 and \(\mathrm{c}=2.188\), and slope \(\mathrm{a}=3.3 \times 10^{-\mathrm{m}}, \mathrm{b}=4.5 \times\) \(10^{-m}\) and \(\mathrm{c}=5.58 \times 10^{\mathrm{m}}\)).

\subsection*{8.6 CALCULATION OF RESOLUTION}

Using the regression equations for calculating retention index, in different eluents, it should be possible to calculate the optimum separation between two compounds and therefore suggest suitable separation conditions. Although it is very easy to calculate the maximum difference in retention indices between two compounds, this value does not correspond with the maximum resolution calculated by

Equation 8.4.
\[
R_{\mathrm{tt}}=2\left(t_{\mathrm{rez}}-t_{\mathrm{R}, 1}\right) /\left(w_{1}+w_{z 2}\right) \quad 8.4
\]

Where \(R_{\text {wi }}\) is the resolution, \(t_{\text {fen }}\) and \(t_{\text {res }}\) the retention times of the first and second compounds and \(w_{1}\) and we the width at the base of the first and second peaks. The resolution varies linearly with the retention and the retention index logarithmically. It was therefore necessary to calculate the separation in terms of the capacity factors.

Using CRIPES the retention index is related to eluent composition using the equation
\[
R I=A X^{-1}+B X+C
\]

Where \(A=\Sigma a, B=\Sigma b\) and \(C=\Sigma c\).
The retention index is related to the capacity factor using Equation 8.3 at a particular eluent composition.
\[
\log k^{\prime}=a^{\prime} R I+b^{\prime} \quad 8.3
\]

The coefficients \(a^{\prime}\) and \(b^{\prime}\) are also related to eluent composition using the Equations 8.6 and 8.7:-
\[
\begin{align*}
& a^{\prime}=a_{1} x^{\prime \prime}+b_{1} x+c_{2} \\
& b^{\prime}=a_{2} x+b_{2} x+c_{2}
\end{align*}
\]

Combining the equations \(8.3,8.5,8.6\) and 8.7 the overall equation describing the change in \(k\), with eluent composition
is:-
\[
\begin{aligned}
\log k^{\prime}= & \left(a_{1} x^{2}+b_{1} x+c_{1}\right)\left(A x^{2}+B x+C\right) \\
& +a_{2} x=+b_{2} x+c_{2}
\end{aligned}
\]

This gives Equation 8.9:-
\[
\begin{aligned}
\log k^{\prime}= & a_{1} A x^{4}+\left(a_{1} B+A b_{1}\right) x^{9}+\left(a_{1} C+b_{11} B+c_{1} A\right. \\
& \left.+a_{11}\right) x^{2}+\left(b_{1} C+c_{1} B+b_{2}\right) x+\left(c_{1} C+c_{1}\right)
\end{aligned}
\]
8.9

Collecting the constants to simplify the equation we have:-
\[
\log k^{\prime}=A_{1} x^{4}+B_{11} x^{9}+C_{11} x^{2}+D_{11} x+E_{1}
\]

Previous work on capacity factors has suggested that the relationship between \(\log k^{\prime}\) and eluent composition was quadraticers, in this case we have derived a more complex polynomial. This suggests that even the quadratic equation may be a simplification of the true situation although in practice the \(x^{4}\) and \(x^{3}\) terms may prove insignificant.

By using the equation above it should be possible to calculate the capacity factor at any eluent composition, it should therefore be possible to calculate the resolution between two compounds by comparing the equations to calculate capacity factors.

The resolution (\(R_{\text {wt }}\)) of two closely eluting compounds (1 and 2) can be described using the equation
\[
R_{k}=1 / 4(\alpha / \alpha-1)\left(k^{\prime}=1+k^{\prime}=\gamma N\right.
\]
where \(\alpha=k_{2} / k_{1}\) and \(N\) the number of theoretical plates. Having obtained this equation the next stage was to
incorporate it into CRIPES.
CRIPES contains equations for \(\log k^{\prime}\), however resolution varies . \(\because\) with \(k\) not log:k'...... It was therefore necessary to take the antilog of the equation to obtain \(k^{\prime}\), although this should be straightforward the equation for \(\log k^{\prime}\) was in \(\log _{10}\) and Vp-Expert can only work with natural logs, \(k\) ' for the first compound was therefore calculated using the equation
\(k_{1}=\exp \left(\left(A_{2} x^{+}+B_{1} x^{\xi}+C_{1} x^{2}+D_{2} x+E\right) \times 2.30259\right) \quad 8.12\)
and an equivalent equation for compound 2. Substitution of these equations into the equation for resolution gives the equation for resolution at any eluent composition.

The aim in optimising the resolution should be to obtain the maximum resolution between the two compounds. This could be done by differentiating the equation and solving it to find the turning point where the resolution is a maximum. However, this presented problems as the solution is beyond the mathematical capabilities of VP -Expert. In addition, in practice the separation required may not be the maximum resolution but a separation which can be obtained within defined limits of eluent compositions and capacity factors.

It was therefore necessary to take a simpler more direct approach, consequently CRIPES calculates the retention index equations for the two compounds, in turn, and stores them in a database file. These equations are then used to calculate the capacity factors and resolution at 10\% intervals over the eluent ranges and the program then displays the change in resolution with eluent composition.

The user can select a range to be expanded if required, the resolution would then be calculated at \(1 \%\) intervals. The selection of optimum experimental conditions would then be made manually taking into account the length of analysis and the resolution required.

If it is found desirable to calculate the maximum resolution a possible approach would be to use a second equation solving program such as Eureka: the solver, Borland International, which could find the true optimum resolution. It would be possible to link this to the expert system by using spreadsheets to transfer the data between the programs.

\subsection*{8.7 TESTING OF CRIPES}

The program CRIPES has been tested in two ways. Firstly the retention indices of a number of model compounds have been calculated to check that the program was capable of extracting the appropriate data from the spreadsheets. These results matched in each case. Secondly, the retention of a number of, usually polysubstituted, test compounds containing the groups which have been studied previously, have been measured at selected eluent compositions and compared to those calculated by CRIPES both as retention indices (Tables 8.7 and 8.8) and capacity factors (Tables 8.9 and 8.10). These compounds were not included in the data used to calculate the substituent indices and interaction indices.

The compounds included in the trials include several which were selected to test specific aspects of the
retention prediction. Firstly, there were a number of compound including the grouping \(-\mathrm{COCH}=\mathrm{Br}\), including phenacylbromide. These were used to determine whether an aliphatic substituent on an aliphatic chain attached to an aromatic substituent had the same substituent index as when it was substituted on an alkylbenzene. Secondy a limited number of aromatic compounds were included in which there were amino groups plus another substituent. The retention indices of these compounds were calculated using the hydroxyl interaction terms to determine whether the interaction indices were closely related. The remaining compounds covered a range of possible interactions and each of these groups will be discussed in turn.

In all the compounds an assumption of additivity of the interaction indices has been made. All the possible interaction indices are summed and there is no judgement exercised as to whether one, or more, of the interactions would dominate to the exclusion of other interactions. Also the interaction terms used do not include any interactions between aliphatic substituents or interactions between substituents on an alkyl side chain and the aromatic substituents as so far these parameters have not yet been determined.

Generally the discussion will concentrate on the correlation between retention indices and the capacity factors given as examples. With the capacity factors when the value is small the errors in between the calculated and experimental values will also be small in absolute terms.

Table 8.7: Experimental retention indices (RI-) and retention indices calculated (\(R I_{n}\)) by CRIPES for a selection of test compounds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Compound} & \multicolumn{6}{|l|}{\begin{tabular}{l}
Retention index \\
Hethanol proportion (1)
\end{tabular}} \\
\hline & 10 & 50 & 60 & 70 & & 80 \\
\hline & RI. RIc & RI. RIc & RI. RIf & RI. RI & & RI. RIs \\
\hline phenacyl bromide & & 860802 & 859790 & 847 & 768 & 807735 \\
\hline a-bromo-p-phenylacetophenone & & & 11691081 & & & 11201056 \\
\hline a-p-dibromacetophenone & & 1009945 & 1005932 & 993 & 915 & 971892 \\
\hline 4 -nitrophenacyl bromide & & 858748 & 855718 & 834 & 678 & 78262 \\
\hline e-chloro-3, 1 -ditydroxy & & 547513 & 547180 & & & 161 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline o-bromoaniline & & & & 840 & 914 & 810 & 890 & 818 & 853 \\
\hline m-bromoaniline & & & & 814 & 828 & 804 & 815 & 752 & 794 \\
\hline o-nitroaniline & & & & 764 & 668 & 760 & 625 & 711 & 575 \\
\hline -nitroaniline & & & & 695 & 696 & 687 & 675 & 619 & 647 \\
\hline p -nitroaniline & & & & 618 & 505 & 612 & 444 & 556 & 376 \\
\hline benzylacetate & 891857 & 889 & 850 & 891 & 845 & 881 & 845 & 875 & 840 \\
\hline benzyl 2-bromoactate & & 956 & 857 & 948 & 841 & 934 & & 919 & 175 \\
\hline benzyl chloromethyl ether & & 935 & 806 & 901 & 805 & 909 & 803 & 969 & 801 \\
\hline 1-bromo-2-nitrobenzene & & 931 & 993 & 930 & 995 & 921 & 998 & & 1003 \\
\hline 2-bromo-4-methylphenol & & & & 895 & 922 & 874 & 916 & 830 & 908 \\
\hline t -batylhydroguinone & & & & 171 & 799 & & & 637 & 786 \\
\hline p -t-butylphenol & & & & 998 & 1003 & 970 & 980 & 933 & 950 \\
\hline 2-chlorowethyl-4-nitrophenol & & 427 & 695 & 507 & 662 & & & & \\
\hline 1,6-dichloro-1,3-dihydroxybenzen & & & & 695 & 687 & & & (307) & 594 \\
\hline 3,1-dimethoxyacetophenone & & & & 729 & 761 & & & 695 & 712 \\
\hline N,1-dimethylbenzamide & 717803 & 709 & 791 & 694 & 779 & 683 & 766 & 665 & 75 \\
\hline 2,6-dimethyl-4-nitrophenol & & 746 & 830 & 708 & 812 & 559 & 787 & & \\
\hline 2,4-dimethylphenol & & 863 & 872 & 838 & 864 & 818 & 849 & 792 & 829 \\
\hline 2,5-dimethylphenol & & 860 & 872 & 863 & 864 & 844 & 819 & 822 & 830 \\
\hline dimethyl phthalate & & & & 785 & 874 & 757 & 859 & 716 & 847 \\
\hline H-ethylaniline & & 875 & 858 & 886 & 860 & 891 & 854 & 879 & 841 \\
\hline ethyl benzoate & & & 1002 & & 1005 & & 1010 & 1004 & 1014 \\
\hline ethyl 3-phenylpropionate & & 1036 & 1059 & 1045 & 1055 & 1010 & 1050 & 1031 & \\
\hline ethylphenylacetate & & 947 & 951 & 947 & 950 & 930 & 945 & 907 & 940 \\
\hline ethyl phenylcyanoacetate & 860745 & 733 & 706 & 771 & 665 & 708 & 623 & 608 & 579 \\
\hline 2-hydroxybenzyl alcohos & & & & 605 & 139 & & & 554 & 346 \\
\hline 4-hydroxybenzyl alcohol & & & & 519 & 439 & & & 511 & 346 \\
\hline 2-hydroxy-5-nitrobenzyl bronide & & 429 & 720 & 510 & 690 & & & & \\
\hline N -methylbenzaxide & & 636 & 691 & 623 & 679 & 616 & 665 & 591 & 653 \\
\hline a-nitrobenzylalcohol & & & & 688 & 628 & 688 & 608 & 607 & 582 \\
\hline p-nitrobenzylalcohol & & & & 678 & 612 & 665 & 588 & 601 & 559 \\
\hline 4-phenyl-1-butanol & & & & 912 & 931 & 888 & 915 & 841 & 893 \\
\hline 5-phenyl-1-pentanol & & & & 1003 & & & & 937 & 993 \\
\hline n-propyl p-hydroxybenzoate & 940893 & & 873 & 882 & 818 & 841 & 818 & 809 & 783 \\
\hline thymol 102 & 10421013 & 1035 & & 1030 & & & & 965 & 984 \\
\hline
\end{tabular}

Table 8.7: Experimental retention indices (\(R I_{\text {a }}\)) and retention indices calculated (\(R I_{1}\)) by CRIPES for a selection of test compounds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Compound} & \multicolumn{9}{|l|}{\begin{tabular}{l}
Retention index \\
Acetonitrile proportion (3)
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{\[
10 \quad 50
\]} & \multicolumn{2}{|l|}{60} & \multicolumn{2}{|l|}{70} & \multicolumn{2}{|r|}{80} \\
\hline & RI. RIe & & & R1. & \(\mathrm{I}_{6}\) & & & & I. \(\mathrm{RI}^{2}\) \\
\hline phenacyl bromide & & 891 & 763 & 878 & 751 & 857 & 745 & & 32 \\
\hline a-bromo-p-phenylacetophenone & & & & 1135 & 994 & & & 10 & 75 \\
\hline a-p-dibrowoacetophenone & & 1028 & 888 & 1015 & 880 & 991 & 883 & & 72 \\
\hline 4 -nitrophenacyl browide & & 898 & 693 & 874 & 664 & 830 & 639 & & \\
\hline a-chloro-3,4-dihydroxy acetophenone & & 593 & 419 & & & 538 & 393 & & \\
\hline o-bromoaniline & & 866 & 939 & 860 & 930 & 855 & 919 & & 46 \\
\hline m-bromoaniline & & 841 & 839 & 828 & 828 & 820 & 816 & & \\
\hline o-nitioaniline & & 178 & 812 & 162 & 820 & 148 & 815 & & 20 \\
\hline \(m\)-nitroaniline & & 142 & 742 & 723 & 729 & 109 & 707 & & 68 \\
\hline p-nitroanilive & & 701 & 653 & 669 & 618 & 663 & 553 & & \\
\hline benzylacetate & 883873 & 877 & 863 & 869 & 852 & 859 & 811 & & 44 \\
\hline benzyl 2-bromoacetate & 990855 & & & & & 922 & 786 & & 86 \\
\hline benzyl chloromethyl ether & 645788 & & & & & 624 & 758 & & 29 \\
\hline 2-bromo-4-methylphenol & & 863 & 897 & 846 & 889 & 823 & 887 & & 12 \\
\hline 1-bromo-2-nitrobenzene & & 947 & 998 & 934 & 992 & 919 & 980 & & 99 \\
\hline t-butylhydroquinone & & & & 978 & 768 & & & & 14 \\
\hline p-t-batylphenol & & 943 & 974 & 924 & 958 & 905 & 913 & & 12 \\
\hline 2-chloromethyl-4-nitrophenol & & 132 & 612 & 567 & 592 & 332 & 540 & & 81) \\
\hline 1-chloro-2-nitroaniline & & & & 881 & 925 & 858 & 905 & & 16 \\
\hline 1,6-dichloro-1,3-dihydroxybenz & zene & & & 627 & 697 & 601 & 673 & & 71 \\
\hline 3,4-dimethoxyacetophenone & & & & 696 & 729 & & & & 97 \\
\hline N, H-dimethylbenzanide & 653735 & 631 & 711 & 633 & 714 & 613 & 737 & & 83 \\
\hline 2,4-dimethylphenol & & 831 & 830 & 771 & 811 & 803 & 799 & & 14 \\
\hline 2,5-dimethylphenol & & 829 & 830 & 817 & 811 & 195 & 799 & & 83 \\
\hline dimethyl phthalate & & 797 & 850 & 781 & 811 & 761 & 834 & & 50 \\
\hline 2,6-dimethyl-4-nitrophenol & & 770 & 791 & 743 & 759 & 699 & 724 & & 28 \\
\hline \%-ethylaniline & & 929 & 897 & 928 & 896 & 940 & 895 & & 25 \\
\hline ethyl benzoate & & 971 & 995 & 987 & 996 & 991 & 997 & & 91 \\
\hline ethyl 3-phenylpropionate & 10361052 & 1030 & 1042 & 1021 & 1031 & 1011 & 1020 & & 9910 \\
\hline ethylphenylacetate & & 947 & 963 & 940 & 952 & 921 & 941 & & 05 \\
\hline ethylphenylcyanoacetate & 914763 & & & & & 819 & 655 & & 51 \\
\hline 2-hydroxybenzylalcohol & & & & 796 & 350 & & & & 01 \\
\hline 4-hydroxybenzylalcohol & & & & 520 & 337 & & & & 63 \\
\hline 2-hydroxy-5-nitrobenzyl bronid & & 353 & 663 & 303 & 615 & 264 & 569 & & \(33)\) \\
\hline N -rethylbenzapide & 589635 & 560 & 614 & 552 & 614 & 549 & 631 & & 58 \\
\hline p-nitrobenzyl alcohol & & 638 & 549 & 628 & 530 & 624 & 516 & & 99 \\
\hline m-nitrobenzyl alcohol & & 668 & 561 & 643 & 542 & 511 & 528 & & 11 \\
\hline 4-phenyl-1-butanol & & 821 & 856 & 801 & 830 & 807 & 829 & & 97 \\
\hline 5-phenyl-1-pentanol & & 903 & 956 & 883 & 930 & 886 & 929 & & 79 \\
\hline n-propyl p-hydroxybenzoate & & 862 & 850 & & & 779 & 787 & & 75 \\
\hline thymol & 10011008 & 984 & 991 & 968 & 972 & 955 & 951 & & 11 \\
\hline
\end{tabular}

Table 8.8: Experimental capacity factors (k'm) and capaci ty factors estimated (\(k^{\prime}=\)) by CRIPES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Compound} & \multicolumn{9}{|l|}{Capacity factor} \\
\hline & & 50 & & 60 & & 70 & & 80 & \\
\hline & k'. k'c & 1. & \(k^{\prime}=\) & \(k \cdot\) & \(1{ }^{\prime}\) & \(\mathrm{k}^{\prime}\). & \(\mathbf{k}^{\prime}\) & \({ }^{\prime}\) '。 & \(\mathrm{k}^{\prime}\) \\
\hline phenacyl browide & & 3.94 & 2.99 & 2.48 & 1.52 & 1.13 & 0.82 & 0.69 & 0.48 \\
\hline a-bromo-p-phenylacetophenone & & & & 15.92 & 9.80 & & & 1.96 & 1.30 \\
\hline a-p-dibronoacetophenone & & 10.91 & 8.55 & 5.95 & 3.59 & 2.19 & 1.64 & 1.20 & 0.83 \\
\hline 4 -nitrophenacyl bromide & & 3.88 & 2.01 & 2.12 & 0.98 & 1.07 & 0.53 & 0.64 & 0.33 \\
\hline \[
\begin{aligned}
& \text { a-chloro-3,4-dihydroxy } \\
& \text { acetophenone }
\end{aligned}
\] & & 0.17 & 0.36 & 0.38 & 0.23 & 0.16 & 0.19 & 0.08 & 0.18 \\
\hline 0 -bromoaniline & & & & 2.21 & 3.21 & 1.10 & 1.45 & 0.72 & 0.72 \\
\hline -bromoaniline & & & & 1.89 & 1.91 & 0.91 & 1.02 & 0.57 & 0.59 \\
\hline o-nitroaniline & & & & 1.40 & 0.72 & 0.71 & 0.11 & 0.50 & 0.28 \\
\hline a-nitroaniline & & & & 0.93 & 0.86 & 0.55 & 0.52 & 0.11 & 0.35 \\
\hline p -nitroaniline & & & & 0.70 & 0.27 & 0.45 & 0.17 & 0.30 & 0.14 \\
\hline benzylacetate & 13.889 .52 & 5.51 & 4.38 & 2.76 & 2.18 & 1.41 & 1.18 & 0.76 & 0.69 \\
\hline benzyl 2-bromoacetate & & 8.71 & 4.18 & 3.64 & 2.07 & 1.81 & 1.02 & 0.89 & 0.55 \\
\hline benzyl chloromethyl ether & & 7.47 & 3.09 & 2.98 & 1.66 & 1.61 & 0.96 & 1.07 & 0.60 \\
\hline 1-bromo-2-nitrobenzene & & 6.38 & 12.18 & 3.79 & 5.24 & 1.58 & 2.14 & 0.91 & 1.22 \\
\hline 2-bromo-1-methylphenol & & & & 3.08 & 3.37 & 1.28 & 1.65 & 0.75 & 0.88 \\
\hline t-butylhydroquinone & & & & 1.16 & 1.61 & & & 0.39 & 0.57 \\
\hline p-t-batylphenol & & & & 5.72 & 5.49 & 1.96 & 2.24 & 1.05 & 1.02 \\
\hline 2-chioromethyl-4-nitrophenol & & 0.21 & 1.37 & 0.30 & 0.70 & & & & \\
\hline 4,6-dichloro-1,3-dihydroxybenzene & & & & 0.93 & 0.81 & & & 10.13 & 0.29 \\
\hline 3,1-dimethoxyacetophenone & & & & 1.13 & 1.27 & & & 0.18 & 0.19 \\
\hline \%, 4-dimethylbenzamide & 2.825 .97 & 1.46 & 2.76 & 0.85 & 1.42 & 0.55 & 0.81 & 0.36 & 0.51 \\
\hline 2,6-dimethyl-4-nitrophenol & & 1.82 & 3.68 & 1.00 & 1.73 & 0.30 & 0.89 & & \\
\hline 2,1-diaethylphenol & & 4.03 & 5.01 & 2.18 & 2.37 & 1.14 & 1.20 & 0.66 & 0.67 \\
\hline 2,5-dimethylphenol & & 3.91 & 5.01 & 0.73 & 2.37 & 1.12 & 1.20 & 0.73 & 0.67 \\
\hline dimethyl phthalate & & & & 1.58 & 2.52 & 0.76 & 1.25 & 0.51 & 0.71 \\
\hline H-ethylaniline & & 4.36 & 4.52 & 2.91 & 2.32 & 1.40 & 1.23 & 0.96 & 0.69 \\
\hline ethyl benzoate & & 11.76 & 13.01 & 4.80 & 5.60 & 2.41 & 2.58 & 1.27 & 1.27 \\
\hline ethyl 3 -phenylpropionate & & 16.81 & 19.75 & 6.41 & 7.55 & 2.99 & 3.13 & 1.38 & 1.41 \\
\hline ethylphenylacetate & & 7.11 & 9.14 & 4.21 & 4.00 & 1.65 & 1.90 & 0.97 & 0.98 \\
\hline ethyl phenylcyanoacetate & 9.923 .62 & 1.72 & 1.18 & 1.32 & 0.71 & 0.62 & 0.11 & 0.29 & 0.28 \\
\hline 2-hydroxybenzyl alcohol & & & & 0.54 & 0.18 & & & 0.30 & 0.12 \\
\hline 4-hydroxybenzyl alcohol & & & & 0.32 & 0.18 & & & 0.26 & 0.12 \\
\hline 2-hydroxy-5-nitrobenzyl bronide & & 0.21 & 1.64 & 0.30 & 0.83 & & & & \\
\hline 4-methylbenaaide & 1.162 .52 & 0.86 & 1.33 & 0.55 & 0.78 & 0.40 & 0.50 & 0.28 & 0.36 \\
\hline -nitrobenzyl alcohol & & & & 0.89 & 0.57 & 0.56 & 0.38 & 0.36 & 0.28 \\
\hline p-nitrobenzyl alcohol & & & & 0.83 & 0.52 & 0.50 & 0.35 & 0.35 & 0.26 \\
\hline 4-phenyl-1-butanol & & & & 3.10 & 3.55 & 1.36 & 1.64 & 0.78 & 0.83 \\
\hline 5-phenyl-1-pentanol & & & & 5.81 & 6.50 & 2.03 & 2.65 & 0.36 & 1.18 \\
\hline n-propyl p-hydroxybenzoate & 20.0213 .06 & 6.56 & 5.05 & 2.46 & 2.16 & 1.18 & 1.03 & 0.62 & 0.57 \\
\hline thymol & 62.2947 .53 & 12.99 & 16.97 & 6.91 & 6.37 & 2.26 & 2.56 & 1.17 & 1.11 \\
\hline
\end{tabular}

Table 8.9: Experimental capacity factors (\(k\) '...) and capacity factors estimated (\(k^{\prime}=\)) by CRIPES

The calculated retention indices (\(R I_{r}\)) of phenacyl bromides and chlorides were significantly smaller than the experimental values (\(R I_{\text {w }}\)). These phenacyl halogens are chemically different to the corresponding alkyl halides and generally much more reactive. These observations suggest that a constant interaction was occurring with the carbonyl and that probably an interaction index term could be included into the expert system.

Benzyl 2-bromoacetate may also be included in this section, in this compound the experimental retention indices were larger than the calculated values. The interaction was of a similar magnitude to that observed with the phenacyl halides although a separate term might be required.
b) Compounds with amino groups

Five substituted anilines were studied in which the hydroxyl interaction indices were assumed to apply to amino groups in the related position on the aromatic ring to determine whether the interactions were of the same magnitude. These compounds were ortho- and meta-bromoaniline and ortho, meta, and para~nitroaniline. In both methanol and acetonitrile containing eluents the retention indices of \(m\) bromoaniline and m-nitroaniline were close to the calculated values. However for the ortho and para isomers there was a poor correlation. The deviations of the ortho substituents from the calculated values suggests that the interactions with the amino group may be very different in magnitude to
those of the hydroxyl group when the substituents are in close proximity. In Chapter 7 the possibility of ionisation of the model compound used to calculate the interaction index for para hydroxy-nitro. The difference between the experimental and calculated \(R I\) for \(p\)-nitroaniline values may support this and suggests that the interaction index may not be reliable.
c) Amide test compounds

The secondary and tertiary amides, \(N\)-methylbenzamide and \(N, N\)-dimethylbenzamide showed relatively large deviations from the retention indices calculated on the basis of the primary amide, (about 80 units for \(N, N\)-dimethylbenzamide and 40 to 130 for \(N\)-methylbenzamide). A separate substituent index would be required to account for these substituents and substituent indices for the functional groups CONHR and CONHR,R' could be added to CRIPES.
d) Secondary amine

Unlike the secondary amide the calculated and experimental retention indices of the secondary amine, \(N\) ethylaniline, were fairly close (about 30 units difference). The secondary amine apparently behaves like the primary amine and a separate substituent index would probably not be required, although a small interaction term might be necessary.
e) Aliphatic substituted compounds

The two alcohols 4-phenyl-1-butanol and 5-pheny1-1propanol were included to test the validity of the assumption that the interaction with the ring was not significant at a carbon chain length greater than 2 . In both methanol and acetonitrile there were differences between the experimental and calculated retention indices of about 30 units. For these compounds the interactions with the ring may be significant over longer distances although further work would have to be done to confirm the significance of the interactions.

The aliphatic disubstituted compounds discussed earlier (Chapter 5) showed that interactions can occur between aliphatic substituents and that it will be necessary in future work to consider a range of disubstituted compounds to derive interaction index terms. The disubstituted compounds included in this data set (benzyl chloromethyl ether and ethyl phenylcyanoacetate) both showed large interactions although the size of the interactions would be expected to depend on the structure of the compounds. Included in the test compounds were several compounds with both aliphatic and aromatic substituents (e.g. 2hydroxybenzyl alcohol), these compounds also showed significant interactions, CRIPES currently contains no information on the interactions of these substituents.
f) Other compounds

It is difficult to define for which compounds the experimental and calculated retention indices can be
regarded as a close fit. The anticipated accuracy of an individual retention index value was determined as +/- 10 units (Chapter 3) but this uncertainty could therefore apply to each substituent and interaction value. The closeness of the fit between the experimental and calculated retention indices would therefore be expected to be a function of the number of substituents. A larger uncertainty was also anticipated with low retention indices and at \(80 \%\) organic modifier.

Some compounds, e.g thymol, 2,5-dimethylphenol and 3,4dimethoxyacetophenone, had calculated retention indices which were within \(+/-10\) (for each substituent) of the experimental values. However, for many compounds there were quite large differences between the experimental and calculated retention indices showing that the interactions are not accounted for by the interaction indices included in the database.

Clearly the present method of accounting for the interactions between substituents is not sufficient to enable the accurate calculation of retention indices. However, the results with some compounds suggest that this approach could provide a useful method of calculating retention. A comparison of the capacity factors suggested that in most cases a reasonable indication of the retention would be given. It should be possible to use the system to give separation conditions for retention within a reasonable time.

Although these compounds were examined as test compounds, in many cases together with suitably selected model compounds these polyfunctional compounds could be in used in future to to extend and refine the database of

\subsection*{8.8 COMPARISON OF A COMMERCIAL RETENTION PREDICTION SYSTEM, DRYLAB I AND CRIPES}

A copy of the commercial prediction system, Drylab I, was supplied by LC Resources Inc., USA. The aim of this section was to briefly examine the use of this system and to compare the determine how the results compared to those obtained using CRIPES.

Drylab \(I\) is described in the manualion as an expert system to simulate chromatographic separations, however, it does not appear to fulfil the criteria frequently quoted for expert systems. Its operation has been described extensively by Snyder and co-workers in a number of publications \({ }^{167-}\)

The user is required to input the retention times of the compounds using the information from two isocratic separations (using different proportions of the same modifier) or a single gradient elution run. Using this information the program should be able to calculate the resolution at fixed intervals and therefore the optimum separation conditions. Although the user is able to display a graph of the change in resolution with eluent composition, the program did not actually select or state the optimum separation conditions.

The user is not required to input a column void volume value but the program calculated a value using an expression describing the volume of the stationary phase and the
efficiency of the column. It is possible to recalculate the resolution using an efficiency value entered by the user. A linear relationship between the log capacity factor and mobile phase composition is assumed. However, as shown earlier in this study (Chapter 4) for many compounds this assumption is not valid and could lead to considerable problems with the extrapolation of data. The resolution in Drylab is calculated using an equation similar to that employed by CRIPES.

The results obtained from Drylab and CRIPES were compared for the simulated separation of three sets of two compounds, benzyl alcohol and benzamide, 2-phenylethanol and benzyl chloride, and 3-phenyl-1-propyl bromide and 3-phenyl-1-propyl chloride. Experimental retention times from the present study of these compounds (Table 8.10) were entered into Drylab as the values for two different isocratic eluents. It was not possible to input the retention times at 80\% methanol for benzamide and \(80 \%\) acetonitrile for \(2-\) phenylethanol as the retention times (1.067 and 1.104 minutes) were smaller than the calculated column void volume.

Using these values Drylab calculated capacity factors for intermediate and extrapolated eluent compositions. The capacity factors (Table 8.12) were different to those obtained experimentally (Table 8.11) due to the use of a different column void volume value. The results were very dependent on the initial values that were entered. Large differences were found if the if range was extrapolated to 30\% from 50\% for 2-phenylethyl bromide (46.32 from 30\% acetonitrile and 24.02 based on the retention times at \(50 \%\) acetonitrile) and 2-phenylethyl chloride (35.74 based on \(30 \%\)

Table 8.10: Retention times of compounds used to test Drylab and CRIPES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & \multirow[t]{2}{*}{Modifier} & Reten & tion tim
ic Modif & fier Pr & portion & (\%) & \\
\hline & & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline benzamide & MeOH & -- & 2.448 & 1.437 & 1.254 & 1.120 & 1.067 \\
\hline benzyl alcohol & MeOH & -- & 3.230 & 2.346 & 1.592 & 1.425 & 1.167 \\
\hline 2-phenylethanol & MeOH & -- & 4.988 & 3.483 & 1.939 & 1.584 & 1.236 \\
\hline benzyl cyanide & MeOH & -- & 5.650 & 3.336 & 1.967 & 1.575 & 1.226 \\
\hline 2-phenylethanol & MeCN & 3.146 & 2.040 & 1.532 & 1.302 & 1.173 & 1.104 \\
\hline benzyl cyanide & MeCN & 6.678 & 3.590 & 2.236 & 1.649 & 1.340 & 1.175 \\
\hline 2-phenylethyl bromide & MeCN & 52.696 & 17.289 & 7.019 & 2.975 & 2.401 & 1.724 \\
\hline 2-phenylethyl chloride & e MeCN & 40.908 & 14.130 & 6.003 & 3.313 & 2.194 & 1.614 \\
\hline
\end{tabular}

Table 8.11: Experimental capacity factors of compounds used to test drylab and CRIPES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound M & \multirow[t]{2}{*}{Modifier} & \multicolumn{6}{|l|}{capacity factor} \\
\hline & & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline benzamide & MeOH & - & 1.18 & 0.68 & 0.42 & 0.33 & 0.25 \\
\hline benzyl alcohol & MeOH & - & 2.31 & 1.31 & 0.84 & 0.56 & 0.41 \\
\hline 2-phenylethanol & MeOH & - & 4.11 & 2.42 & 1.28 & 0.74 & 0.50 \\
\hline benzyl cyanide & MeOH & - & 4.79 & 2.28 & 1.31 & 0.73 & 0.48 \\
\hline 2-phenylethanol & MeCN & 2.71 & 1.56 & 1.00 & 0.68 & 0.53 & 0.43 \\
\hline benzyl cyanide & MeCN & 6.87 & 3.50 & 1.92 & 1.13 & 0.75 & 0.52 \\
\hline 2-phenylethyl bromide & MeCN & 61.35 & 20.70 & 8.18 & 3.83 & 2.13 & 1.23 \\
\hline 2-phenylethyl chloride & e MeCN & 47.24 & 16.74 & 6.85 & 3.28 & 1.86 & 1.09 \\
\hline
\end{tabular}
acetonitrile and 20.07 from 50\% acetonitrile). Although Drylab puts up a warning when the extrapolation is excessive neither of these examples produced the warning. The capacity factors predicted by Drylab decrease very rapidly with increasing organic modifier proportion of the eluent, this was probably also due to the large column void volume value used. In all cases capacity factors were different to the experimental \(k\) ' values (Table 8.11). The results were also compared to those calculated by CRIPES (Table 8.13), in this case the calculated \(k\) ' were closer to the experimental values. The resolutions obtained by the different prediction methods were of a similar magnitude although they were not the same and would probably result in different optima.

Overall CRIPES appears to be useful where the molecular structure of the analytes was known as the calculation of capacity factor and resolution can be done without any prior experimental work. However if the molecular structure was not known an approach similar to that of Drylab would have to be used, experimental data on separations of the sample would be required and the accuracy of the predicted values depends very much on which experimental values were input.

Table 8.12: Capacity factors and resolution calculated using Drylab using retention times in Table 8.8
\begin{tabular}{llll}
Eluents for & Eluent & Calculated capacity factor & \\
which retention & \((\%)\) & \(k^{\prime} \ldots\) & \(k_{2}^{\prime}\) \\
times were & & benzamide benzyl alcohol &
\end{tabular} entered
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\(40 \& 70 \mathrm{MeOH}\)} & [40] & 1.20 & 1.90 & 6.89 \\
\hline & 50 & 0.20 & 1.00 & 12.49 \\
\hline & 60 & 0.03 & 0.53 & 9.66 \\
\hline & (70) & 0.01 & 0.28 & 5.99 \\
\hline & 80 & 0.00 & 0.15 & 3.42 \\
\hline \multirow[t]{5}{*}{\(40 \& 60 \mathrm{MeOH}\)} & [40] & 1.20 & 1.90 & 6.89 \\
\hline & 50 & 0.39 & 0.90 & 7.82 \\
\hline & [60] & 0.13 & 0.43 & 5.94 \\
\hline & 70 & 0.04 & 0.20 & 3.64 \\
\hline & *80 & 0.01 & 0.10 & 1.99 \\
\hline \multirow[t]{4}{*}{\(50 \& 70 \mathrm{MeOH}\)} & *40 & 2.06 & 2.20 & 1.13 \\
\hline & [50] & 0.29 & 1.11 & 12.02 \\
\hline & 60 & 0.04 & 0.56 & 9.92 \\
\hline & [70] & 0.01 & 0.28 & 5.99 \\
\hline
\end{tabular}

2-phenylethanol benzyl cyanide
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\(30 \& 70 \mathrm{MeCN}\)} & (30] & 1.83 & 5.00 & 17.98 \\
\hline & 40 & 0.75 & 2.24 & 14.90 \\
\hline & 50 & 0.31 & 1.01 & 10.48 \\
\hline & 60 & 0.13 & 0.45 & 6.27 \\
\hline & [70] & 0.05 & 0.20 & 3.32 \\
\hline & 80 & 0.02 & 0.09 & 1.64 \\
\hline \multirow[t]{7}{*}{\(40 \& 60 \mathrm{MeCN}\)} & 30 & 1.24 & 4.78 & 22.10 \\
\hline & [40] & 0.83 & 2.22 & 13.77 \\
\hline & 50 & 0.56 & 1.03 & 6.61 \\
\hline & [60] & 0.38 & 0.48 & 1.84 \\
\hline & 70 & 0.22 & 0.25 & 0.59 \\
\hline & * 80 & 0.17 & 0.10 & 1.45 \\
\hline & & \[
\begin{aligned}
& \text { 3-phenylethyl } \\
& \text { bromide }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3-phenylethyl } \\
& \text { chloride }
\end{aligned}
\] & \\
\hline \multirow[t]{6}{*}{\(30 \& 80 \mathrm{MeCN}\)} & [30] & 46.32 & 35.74 & 6.30 \\
\hline & 40 & 19.07 & 14.89 & 5.81 \\
\hline & 50 & 7.85 & 1.27 & 5.12 \\
\hline & 60 & 3.23 & 2.59 & 4.13 \\
\hline & 70 & 1.33 & 1.08 & 2.87 \\
\hline & [80] & 0.55 & 0.45 & 1.65 \\
\hline \multirow[t]{6}{*}{\(50 \& 80 \mathrm{MeCN}\)} & 30 & 24.02 & 20.07 & 4.28 \\
\hline & 40 & 11.28 & 9.39 & 4.17 \\
\hline & [50] & 5.30 & 4.39 & 3.87 \\
\hline & 60 & 2.49 & 2.05 & 3.31 \\
\hline & 70 & 1.22 & 1.17 & 2.50 \\
\hline & [80] & 0.55 & 0.45 & 1.65 \\
\hline
\end{tabular}

\footnotetext{
* extrapolated value warning that may not be reliable
}

Table 8.13: Retention indices, capacity factors and resolution calculated by CRIPES

2-phenylethyl 2-phenylethyl 2-phenylethyl 2-phenylethyl bromide chloride bromide chloride
\begin{tabular}{lrrrrr}
30 MeCN & 54.86 & 41.90 & 1101 & 1067 & 5.80 \\
40 & 20.54 & 16.41 & 1104 & 1069 & 4.79 \\
50 & 8.38 & 6.93 & 1104 & 1067 & 3.85 \\
60 & 3.77 & 3.21 & 1100 & 1060 & 2.95 \\
70 & 1.89 & 1.64 & 1092 & 1048 & 2.15 \\
80 & 1.06 & 0.94 & 1079 & 1031 & 1.55
\end{tabular}

\section*{CHAPTER 9}

\section*{EXTENDING THE PREDICTION SYSTEM USING PUBLISHED DATA}

The database accessed by CRIPES can be extended using purely experimental data, however, it may be also possible to make use of published data to reduce the amount of additional experimental work.

Substituent indices based on retention indices should be highly reproducible and the values should be transferable between columns of the same packing type and make of material. The work described in Chapter 3 showed that for a single batch of one packing material the retention indices were very reproducible, although the capacity factors differed between columns. Previous work has shown that retention indices were sensitive to selectivity changes between columns containing different brands of nominally equivalent packings (i.e. ODS-silicas) but the variations were considerably less than observed with capacity factors \({ }^{142}\). It should therefore be possible to use the values derived in the present work to calculate retention indices for separations on other ODS-silica columns. Conversely it should be possible to use retentions reported on other \(O D S\) columns to extend the database.

There are several possible sources of data which could be used to expand the prediction method by either providing additional information on substituent indices or interactions between substituents. The most immediately accessible data is that expressed using the retention index scale, for example previous studies done in this laboratory
on retention indices of test compounds and drugs \(194.144,140,149.1 .49\). The use of this data may present problems for direct comparison with the current work as none of the papers have included benzene, the parent used in this study, which meant that it is not possible to directly compare the substituent indices. However it is possible to compare the retention indices in both methanolis. \({ }^{134}\) and acetonitrile \({ }^{4.45}\) which have been measured across eluent ranges comparable to those in this study.

Secondy there are several compilations of capacity
 alkylarylketones and therefore enable retention indices to be calculated by interpolation or extrapolation. However, in these papers there was no indication as to whether the retentions were measured on a single day which may lead to uncertainties in the data.

Finally work by Smith \({ }^{242}\) has shown that the retention index of methyl benzoate was virtually constant on different ODS columns and across the eluent ranges, mean \(R I=905\) in methanol-water eluents and mean \(R I=886\) in acetonitrilewater eluents. It could therefore be used as a secondary retention index standard to estimate retention indices, provided that one of the alkylarylketones was present in the set of data. Methyl benzoate and acetophenone have frequently been included in compilations of dataza, \(29.97 .229-2 \pi s\) but because the retention indices are so close the use of this two point line may require quite large extrapolations resulting in an uncertainty in the calculated retention index values.

Two other sources of data could be used to pin-point compounds where significant interactions would occur. The
first of these was the group contribution papers described in Chapter 1, although the data contained in these papers could probably not be used for direct calculation of either substituent indices or interaction indices. By identifying compounds in which the calculated retention differed considerably from the experimental retention it should be possible to identify compounds or substituent combinations for further study. The further possible use of published data would be the use of octanol-water partition coefficient values. As described in a previous chapter (Chapter 7) there should be a relationship between the interaction increments observed for calculations of \(\log p\) by addition of \(\pi\) values and the interactions between substituent in RP-HPLC. The relationship is probably not sufficiently linear to allow the direct use of the relationship to calculate, RP-HPLC interactions, however it should be possible to use the data to identify substituent combinations for further study.

\subsection*{9.1 COMPARISON OF RETENTION INDICES DETERMINED PREVIOUSLY WITH VALUES CALCULATED IN THIS STUDY}

The retention indices of a number of test compounds
 9.1). The retention indices were measured at single eluent compositions. With most compounds there is quite good agreement between the retention indices on the different columns, the largest differences being observed with the most polax compounds 2-phenylethanol, benzyl alcohol and \(p\) cresol. These compounds were more sensitive to the changes in the stationary phase in previous studies by Smith \({ }^{14 \pi}\) and it has been suggested that they could be used to compare

Table 9.l: Retention indices determined at a single eluent composition on different columns

methanol-buffer 10:60
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{Prom reference \({ }^{148}\)} & \\
\hline 2-phenylethanol & 776 & 778 & 753 & 736 & 719 & 751 & - & - & 756 \\
\hline aitrobenzene & 828 & 828 & 838 & 823 & 818 & 823 & - & - & 851 \\
\hline p-cresol & 796 & 798 & 769 & 145 & 726 & 752 & - & - & 775 \\
\hline tolvene & 989 & 989 & 985 & 955 & 976 & 936 & - & - & 983 \\
\hline
\end{tabular}
methanol-vater \(70: 30\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Prow reference \({ }^{142}\)} & & & Ief \({ }^{18}\) & \\
\hline 2-phenylethanol & 691 & 694 & 692 & 697 & 673 & 696 & 691 & 681 & 675 \\
\hline nitrobenzene & 888 & 891 & 880 & 873 & 859 & 870 & 874 & 871 & 871 \\
\hline p-cresol & 766 & 760 & 751 & 745 & 119 & 120 & 147 & 751 & 741 \\
\hline toluene & 1030 & 1027 & 1019 & 1009 & 1027 & 984 & 1026 & 1021 & 1036 \\
\hline methyl benzoate & 888 & 881 & 890 & 889 & 887 & 881 & 890 & 886 & 900 \\
\hline \multicolumn{10}{|l|}{- ODS-H3, \(3 \mu \mathrm{~m}\) ODS Rypersil; ODS-H5, 5 俎 ODS Hypersil; ODS-T, Techsil 5 C-18;} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{ODS-S, Spherisorb ODS; ODS-Z, 2orbax ODS; ODS-P, Partisil 10 ODS; ODS-L,
Lichrosorb EP-18; ODS-S2, Spherisorb ODS2;}} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
column selectivity \({ }^{2+2}\). As the earlier studies were carried out at ambient temperature \({ }^{242}\) this may be another source of error resulting in differences in the retention indices between the previous studies and this study. The results suggest that not only could the substituent index equations derived in this study be used for prediction of retention indices on other columns (although obviously with a larger uncertainty in the value) but other retention index data could be used for determining interactions and other substituent indices.

\subsection*{9.2 RETENTION INDICES CALCULATED FROM PUBLISHED DATA}

The retention indices can be calculated from sets of data by either using the published capacity factors of two or more alkylarylketonessa, 5 s, 93,221 or the capacity factors of acetophenone and methyl benzoatems. 2 y . The retention indices calculated using these methods would be expected to have a larger experimental error than those calculated using the full set of alkylarylketones but the method may be useful to estimate retention indices.

Retention indices (Tables 9.2 and 9.3) have been calculated for a range of compounds on different columns and in different eluents. In many cases a single eluent composition has been studied and these enable a comparison of the different columns. For the purposes of this study the results have only been included if benzene was one of the compounds studied, some sources of calculated values have therefore been omitted \(=a, 20.224,=25\). In many cases the calculated values were close to the experimental values again the main exceptions were the very polar compounds.

\subsection*{9.3 SUBSTITUENT INCREMENTS USING RETENTION INDICES CALCULATED FROM PUBLISHED CAPACITY FACTORS}

The retention indices could be calculated over a range of eluent compositions in two of the papersca.2as. One of these sets of data has been selected for further study as this paper contained capacity factors measured in three eluent systems (methanol-water, acetonitrile-water and tetrahydrofuran-water) \({ }^{2}\). The retention index of benzene was included in this data set and this has been used to calculate substituent increments. No attempt has been made to calculate a fitted parent index equation but the calculations were carried out using the experimentally derived value (Tables 9.4 and 9.5).

There were differences between these values and those tabulated previously (Chapter 6) but in many cases the differences were quite small suggesting that if the change in the retention index of the parent was known then the substituent indices could be used to calculate retention indices for other columns. The results also suggest that it may be possible to extend the database by using the published data. For example several of the data sets contain information on the retention of naphthalene and its derivatives, these values could be used to calculate the substituent indices for this set of compounds (they would be expected to be very similar to the benzene substituent indices). The change in retention index of naphthalene across the eluent ranges would enable a parent index equation to be calculated and therefore this parent to be included in the database accessed by CRIPES. The retention indices of poly-substituted compounds could also be used to

Table 9.3: Retention indices calculated from published data in acetonitrile eluents

Compound Retention Index

Table 9.2: Retention indices calculated from published data in methanol eluents
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Compound} & \multicolumn{8}{|l|}{Retention index} \\
\hline & & & & & & & \multicolumn{2}{|l|}{This work} \\
\hline & \multicolumn{6}{|l|}{Coluan} & & \\
\hline & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Nacleosil \({ }^{225}\) Lichrosorb \({ }^{223}\) Methanol proportion (1)}} & \multirow[t]{2}{*}{Alltech \({ }^{222}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Spherisorb 0DS2}} \\
\hline & & & & & & & & \\
\hline & \(50 \quad 60\) & 50 & 50 & 50 & 50 & 55 & & 60 \\
\hline aniline & - - & - & - & - & - & 661 & & 657 \\
\hline anisole & 901909 & & 871 & 865 & 887 & 917 & & 904 \\
\hline benzaldehyde & 761714 & & 710 & 687 & 765 & - & 717 & 171 \\
\hline benzaside & - - & 579 & 583 & 590 & 612 & 568 & 589 & 578 \\
\hline benzene & 898911 & 900 & 875 & 857 & 895 & 925 & 915 & 938 \\
\hline benzonitrile & 772766 & 788 & 178 & 782 & 712 & 172 & 788 & 115 \\
\hline biphenyl & - 1233 & - & - & - & - & 1234 & 1222 & 1231 \\
\hline bromobenzene & - & - & - & - & - & 1054 & 1051 & 1065 \\
\hline chlorobenzene & 10231030 & 1005 & 986 & & 1009 & 1028 & 1021 & 1036 \\
\hline methyl benzoate & 905* 905* & \(905 *\) & 905* & 905* & 905* & 913 & & 904 \\
\hline nitrobenzene & 818860 & 835 & 835 & 834 & 839 & - & 857 & 864 \\
\hline phenol & 675684 & 726 & 696 & 679 & 711 & - & & \\
\hline toluene & 10111023 & 993 & 971 & 961 & - & 1034 & 1010 & 1038 \\
\hline \multirow[t]{6}{*}{Compound} & \multicolumn{8}{|l|}{Retention index} \\
\hline & & & & & & & \multicolumn{2}{|l|}{This vork} \\
\hline & \multicolumn{6}{|l|}{Coluna} & & \\
\hline & \multicolumn{2}{|l|}{Nacleosi1225 Pine} & \(\mathrm{SIL}^{28}\) & \multicolumn{3}{|l|}{Perkin-Blmer C18 \({ }^{221}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Spherisob Oos2}} \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Kethanol proportion (8) } \\
& 70 \\
& 70
\end{aligned}
\]}} & & & & & \\
\hline & & & & 75 & & & & 80 \\
\hline aniline & - - & 714 & & 645 & 15 & & & 639 \\
\hline anisole & 928 924 & 915 & & 913 & 13 & & & 914 \\
\hline benzaldehyde & 771791 & 741 & & 761 & 61 & & & 784 \\
\hline benzanide & - - & - & & 531 & 31 & & & 551 \\
\hline benzene & 931926 & - & & 916 & 16 & & & 983 \\
\hline benzonitrile & 760771 & 136 & & 762 & 62 & & 174 & 760 \\
\hline biphenyl & 12361146 & - & & & - & & 1247 & 1270 \\
\hline bromobenzene & - - & - & & 108 & & & 1088 & 1110 \\
\hline chlorobenzene & 10371000 & \(\bigcirc\) & & 1015 & & & 1051 & 1072 \\
\hline methyl benzoate & 905* 905* & \(905{ }^{\circ}\) & & 920 & 20 & & & 914 \\
\hline nitrobenzene & 869866 & 855 & & 86 & 66 & & & 874 \\
\hline phenol & 662679 & 616 & & 662 & 62 & & 671 & \\
\hline toluene & 10411013 & - & & 1069 & & & 1063 & 1090 \\
\hline
\end{tabular}

Table 9.4: Aromatic substituent increments calculated for Nucleosil column in methanol
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|l|}{This work} \\
\hline & & & & & \multicolumn{5}{|c|}{Column} \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Hucleosil 10-RP18226 Methanol proportion (\$)}} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Spherisorb ODS2}} \\
\hline & & & & & & & & & \\
\hline & 40 & 50 & 60 & 7080 & 40 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{OCH}_{3}\) & 13 & 3 & -2 & \(\begin{array}{ll}-3 & -2\end{array}\) & -1 & -9 & -20 & -27 & -28 \\
\hline CHO & -108 & -134 & -137 & -160-135 & -111 & -136 & -161 & -186 & -198 \\
\hline CH & -99 & -126 & -145 & -171-152 & -109 & -133 & -163 & -187 & -222 \\
\hline Ph & - & - & 322 & 305220 & 320 & 309 & 293 & 286 & 288 \\
\hline Cl & - & 125 & 119 & 10671 & 113 & 108 & 98 & 90 & 90 \\
\hline \(\mathrm{NO}_{2}\) & -34 & -50 & -51 & \(\begin{array}{lll}-62 & -96\end{array}\) & - 34 & - 56 & - 71 & - 87 & -108 \\
\hline OH & -192 & -223 & -221 & -259-247 & -205 & -230 & -258 & -290 & -332 \\
\hline \(\mathrm{CH}_{3}\) & - & 113 & 112 & 11087 & 102 & 106 & 101 & 104 & 113 \\
\hline \(\mathrm{COCH}_{3}\) & -69 & & -111 & -131-126 & -80 & -107 & -135 & -158 & -178 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & 36 & 7 & -6 & \(25 \quad 21\) & 14 & -9 & -31 & -51 & -68 \\
\hline
\end{tabular}

Table 9.5: Aromatic substituent increments calculated for a nucleosil column in acetonitrile
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Substituent} & \multicolumn{12}{|c|}{Substituent increment} \\
\hline & \multicolumn{12}{|c|}{\multirow[b]{2}{*}{Column Mis work}} \\
\hline & & & & & & & & & & & & \\
\hline & \multicolumn{6}{|c|}{Nacleosil 10-Rp18226} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{Spherisorb ODS2}} \\
\hline & & etonit & trile & propo & portion & & & & & & & \\
\hline & 30 & 10 & 50 & 60 & 70 & 80 & 30 & 10 & 50 & 60 & 70 & 80 \\
\hline \(\mathrm{OCH}_{3}\) & 2 & -10 & -9 & -12 & -20 & & -10 & \(-19\) & -28 & & -41 & -50 \\
\hline CHO & -105 & -127 & -135 & -125 & -128 & -132 & -129 & -141 & -154 & -163 & & -181 \\
\hline CN & -74 & -95 & -106 & -105 & -110 & -132 & -96 & -110 & -127 & -143 & -151 & -175 \\
\hline Ph & & 268 & 260 & 219 & 218 & 204 & 291 & 271 & 256 & 241 & 236 & 232 \\
\hline Cl & 105 & 96 & 95 & 86 & 87 & 87 & 104 & 100 & 97 & 91 & 95 & 95 \\
\hline \(\mathrm{NO}_{2}\) & & -33 & -12 & -50 & -69 & -71 & -41 & -53 & -69 & -87 & & -127 \\
\hline OH & -194 & -225 & -252 & -253 & -274 & -312 & -215 & -210 & -266 & -291 & & -318 \\
\hline \(\mathrm{CH}_{3}\) & 94 & 90 & 92 & 76 & 86 & 87 & 95 & 95 & 96 & 94 & 95 & 95 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -7 & -18 & -29 & -21 & -18 & -19 & -20 & -37 & -40 & -51 & -61 & -66 \\
\hline \(\mathrm{COCH}_{3}\) & -93 & -104 & -115 & -107 & -104 & -105 & -110 & -129 & -142 & -153 & -159 & -160 \\
\hline
\end{tabular}
calculate further interaction indices and to test any generalised theory (see Chapter 7) without extensive further experimental work. The results show that the substituent indices calculated in this work should provide a reasonable estimate of the retention indices on other columns with different brands of stationary phases. There would probably be larger errors than for prediction on the same packing material and the largest differences would be observed when the substituent increments were large (such as OH).

\subsection*{9.4 INTERACTION INCREMENTS USING RETENTION INDICES CALCULATED FROM PUBLISHED CAPACITY FACTORS}

The aim in calculating the interaction increments was to examine whether those calculated from experimental data (Chapter 7) were similar to those calculated from retention indices based on published capacity factors. Secondly it might be to possible identify other substituent pairs, not included in the present study, with large interaction. The interaction increments were calculated for one set of data in a single organic modifier system. The results were calculated in acetonitrile-buffer for the results published by Schoenmakers et al.zae.

The increments (Table 9.6) were calculated using the benzene and substituent increments given in Table 9.5. Large interaction increments were observed for the substituent pairs \(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+2-\mathrm{CO}_{2} \mathrm{C}=\mathrm{H}_{5}\), and \(\mathrm{CO}_{2} \mathrm{CH}_{3}+2-\mathrm{CO}_{2} \mathrm{CH}_{3}\). The value of the retention index of dimethyl phthalate calculated in this work (Chapter 8) also differed considerably from the experimental value, the differences in the Chapter 8 (about

Table 9.6: Interaction increments calculated from retention indices using published capacity factors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Substituents \\
(on benzene)
\end{tabular}} & \multicolumn{6}{|c|}{\begin{tabular}{l}
Interaction increment \\
Acetonitrile proportion (\%)
\end{tabular}} \\
\hline & 30 & 40 & 50 & 60 & 70 & 80 \\
\hline COR + Ph & - & -34 & -74 & -83 & -82 & -78 \\
\hline CHO \(+4-\mathrm{Cl}\) & -57 & -87 & - & - & 11 & 9 \\
\hline \(\mathrm{OH}+4-\mathrm{Cl}\) & 27 & 17 & 14 & 13 & -2 & -9 \\
\hline \(\mathrm{OH}+3-\mathrm{CH}_{3}\) & - & -8 & -6 & -18 & -22 & -37 \\
\hline \(\mathrm{OH}+2-\mathrm{CH}_{3}\) & 10 & -2 & -7 & -11 & -8 & 1 \\
\hline \(\mathrm{Cl}+2-\mathrm{Cl}\) & - & -25 & -20 & -24 & -36. & -13 \\
\hline \(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+2-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\) & -102 & -99 & -99 & -134 & -154 & -170 \\
\hline \(\mathrm{CO}_{2} \mathrm{CH}_{3}+\mathrm{CO}_{2} \mathrm{CH}_{3}\) & -45 & -48 & -48 & -66 & -154 & -98 \\
\hline \(\mathrm{NO}_{2}+3-\mathrm{NO}_{2}\) & 24 & 10 & 14 & 12 & 11 & -12 \\
\hline \(\mathrm{NO}_{2}+2-\mathrm{NO}_{2}\) & 44 & 19 & 11 & 2 & 3 & -20 \\
\hline \(\mathrm{NO}_{2}+4-\mathrm{NO}_{2}\) & 25 & 17 & 19 & 14 & 11 & -20 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NO}_{2}+4-\mathrm{NO}_{2}\) & 2 & -12 & -19 & -33 & -33 & -53 \\
\hline \(\mathrm{CH}_{3}+2-\mathrm{NO}_{2}+6-\mathrm{NO}_{2}\) & 3 & -9 & - & -29 & -33 & -53 \\
\hline \(\mathrm{CH}_{3}+3-\mathrm{NO}_{2}+4-\mathrm{NO}_{2}\) & 20 & -6 & -17 & -30 & -41 & -53 \\
\hline \(\mathrm{OR}+\mathrm{Ph}\) & - & 97 & 91 & 89 & 74 & 76 \\
\hline \(\mathrm{OH}+4\) - CHO & 43 & 24 & 19 & 15 & -25 & -51 \\
\hline OCH3 \(+4-\mathrm{CHO}\) & 9 & 3 & 1 & -8 & -17 & -51 \\
\hline \(\mathrm{CH}_{3}+4-\mathrm{CHO}\) & -23 & -15 & 76 & 70 & 64 & 71 \\
\hline \(\mathrm{NO}_{2}+4-\mathrm{COCH}_{3}\) & 63 & 59 & 59 & 54 & 53 & 31 \\
\hline \(\mathrm{NO}_{2}+4-\mathrm{CHO}\) & 39 & 44 & 38 & 38 & 24 & 7 \\
\hline \(\mathrm{OH}+3-\mathrm{NO}_{2}\) & 99 & 88 & 94 & 84 & 74 & 74 \\
\hline \(\mathrm{OH}+2-\mathrm{NO}_{2}\) & 157 & 169 & 191 & 196 & 222 & 254 \\
\hline \(\mathrm{OH}+4-\mathrm{NO}_{2}\) & 95 & 132 & 68 & 59 & 49 & 62 \\
\hline \(\mathrm{OH}+4-\mathrm{Ph}\) & - & -11 & -5 & -10 & -23 & 6 \\
\hline \(\mathrm{OH}+2-\mathrm{CH}_{3}+4-\mathrm{CH}\) & -38 & -36 & -26 & -40 & -36 & -14 \\
\hline
\end{tabular}

60-80 units) were comparable with those observed in this set of data. There are several substituent pairs which were also considered in the disubstituted compounds (Chapter 7). With the exception of the substituent pairs \(\mathrm{CH}+4-\mathrm{CHO}, \mathrm{OH}+3-\) \(N O=\), and \(\mathrm{OH}+4-\mathrm{NO}=\), where there was concern that these compounds might be ionised (Chapter 7), the interaction increments were very similar to those obtained in the present study showing that the interactions between substituents have a similar effect on the retention index on different columns.

\subsection*{9.5 USE OF OCTANOL-WATER PARTITION DATA}

In the study of substituent indices (Chapters 4 and 6) there was shown to be an approximately linear relationship between the substituent index and the Hansch substituent constant (\(\pi\)). This relationship might enable the \(\pi\) values to be used to estimate a value for a substituent index. However as the linearity was not high the value obtained would be only a rough guide to the true substituent increment.

Another possible application of the octanol-water partition data could be its use to pin-point compounds in which there were large interactions between substituents. For instance if the octanol-water partition coefficient calculated as the \(\Sigma \pi\) was very different to the experimental octanol-water partition coefficient this might suggest a substituent pair for further investigation. Although the results in Chapter 7 suggested that the proposed method of correcting \(\pi\) values for the interactions would not be directly applicable to the calculation of interaction
indices, the compounds which significantly deviate would be expected to be similar in both systems. The paper by Leosi which derived the interaction terms for log \(P\) listed the experimental and \(\Sigma \pi\) values for 400 compounds, from which it should be possible to extract particular substituent combinations for further study, for example o-nitroaniline or m-cyanobenzamide where the experimental octanol-water partition coefficients were 3 to 4 times the calculated values.

Conversely octanol-water partition values could also be used to be used to identify substituent combinations in which interactions were not significant. There might be some problems in using the data as some compounds do not show the same behaviour in the two systems, for example substituted phenols.

Another possible source of data would be the many log P, \(\log k^{\prime}\) sets of data. However, as these do not always make it clear whether the \(\log P\) values were the additive values or measured values, the use of this data to estimate interactions might not be possible. These papers could contain data which would highlight compounds in which the interactions were definitely not the same in HPLC as in octanol-water and would therefore need to be studied individually in the HPLC system individually.

No attempt has been made to use the octanol - water data for this purpose so far in the present study.

\subsection*{9.6 USE OF GROUP CONTRIBUTION DATA}

A number of papers have attempted to predict the retention of compounds based on a group contribution approach (see Chapter 1, Section 1.2.6). Although none of these papers used the alkylarylketone retention index scale it might be possible to use the calculated retentions to identify interactions although it will probably not be possible to use the data to derive numerical values.

\subsection*{9.7 EXPANDING CRIPES}

Using the sources of data discussed above it should be possible to extend the database from which CRIPES extracts the regression coefficients. In particular the database currently holds relatively little information on the interactions. It may be possible to obtain further information without extensive experimental work, although currently it would appear that a considerable number of experimental retention indices will need to be determined at least to confirm the validity of any proposed prediction. The interaction indices currently held in the spreadsheets are based purely on empirical values valid only for the particular pair of substituents. It is important that to improve the usefulness of the prediction system some underlying rules describing the interactions need to be developed. A system similar to that proposed by Leo \(=\) to account for the interactions between substituents in octanol-water systems may prove a useful method of calculating interactions (Chapter 7).

\section*{CHAPTER 10}

\section*{CONCLUSION}

Using values based on the retention indices of benzene and mono-substituted benzenes or alkylbenzenes it has been possible to derive parent index equations and substituent index equations. These quadratic equations relate the change in the parent index and substituent index to the methanol or acetonitrile proportion of the mobile phase. Using these equations it has been possible to calculate the effect, on the retention index, of interactions between substituents in a number of disubstituted compounds. These substituent index equations could also be used with parent compounds other than benzene, for example naphthalene, with a different parent index equation.

The proposed method of calculating retention indices of "unknown" compounds from their molecular structure as the sum of the parent index, the substituent indices and the interaction indices have been shown to be successful in some cases. However, with many compounds there is currently insufficient information to fully account for the interactions between substituents. In its present form the prediction method requires an empirical interaction index equation to for each interaction and assumes that the interactions are additive. Thus there is no judgement about whether one (or more) interactions would actually dominate in a particular molecule to the exclusion of other interactions. This approach to substituent interactions will not be satisfactory in the long term but a method of accounting for interactions based on a set of "ground rules"
needs to be developed and possible approaches have been considered for future work. Any rules for this purpose would have to be based on a recognition of the types of interactions and their relative size with different substituent combinations. To enable the formulation of such rules a considerably larger amount of data would need to be examined than that contained in this study

The expert system program, CRIPES, proved to be a convenient method of extracting the appropriate data from the spreadsheets. This enabled the easy calculation of retention indices based on molecular structure without the user having to "remember" the rules for the interactions. The method by which retention indices were expressed as quadratic equations relating the change in retention index to either methanol or acetonitrile proportion enabled the calculation of resolution between two peaks. Although the maximum resolution calculated by CRIPES may not be the final optimised separation conditions it should be possible to use the prediction to provide a starting point after which a further optimisation procedure could then be applied.

The commercial expert system, Drylab I, was straightforward to use, however, the results obtained were very dependent on the initial data entered. If the molecular structures of the components of a mixture are not known this approach to the calculation of resolution should prove valuable. However, if the molecular structures of the compounds are known an approach similar to that taken using CRIPES should reduce the time required to select the initial separation conditions.

\section*{FUTURE NORK}

CRIPES contains information on the change in the index values with proportion of methanol and acetonitrile. Similar equations need to be derived for tetrahydrofuran (THF) the third commonly used RP-HPLC solvent.

By using other aqueous phase buffer pHs it would be possible to calculate the substituent index equations for functional groups which could not be studied due to their ionisation, e.g. carboxylic acid groups and basic amines. It should also be possible to check that the substituent index equations are not dependent on the aqueous phase pH provided that the functional group is not ionised.

The main task is to study in more details interactions between substituents to try to discover any underlying rules about their size and significance. It may be possible to study these interactions without extensive further practical work using published data, although, any proposed rules would need to be validated by experimental work.

\section*{REEERENCES}

1 R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Chemical Analysis Vol. 93, Ed. J.D. Winefordner, Wiley, New York, 1987, Cs. Horvath, W. Melander \& I. Molnar, J. Chromatogr., 125 (1976) 129.

3 Cs. Horvath, W. Melander \& I. Molnar, Anal. Chem., 49 (1977) 142.
A. Tchapla, H. Colin \& G. Guiochon Anal. Chem., 56 (1984) 621

5 R.B. Sleight, J. Chromatogr., 83 (1973) 31
6 J. Kriz, L. Vodicka, J. Puncocharova \& M. Kuras, J. Chromatogr., 219 (1981) 53

7 P. Dufek \& E. Smolkova, J. Chromatogr., 257 (1983) 247
8 P. Dufek, J. Chromatogr., 281 (1983) 49
9 P. Dufek, J. Chromatogr., 299 (1984) 109
10 C. Viseras, R. Cela, C.G. Barroso \& J.A. PerezBustamante, Anal. Chim. Acta, 196 (1987) 115

11 J.H. Knox, J. Kriz \& E. Adamcova, J. Chromatogr., 447 (1988) 13

12 J.F. Schabron, R.J. Hurtubise \& H.F. Silver, Anal. Chem., 50 (1978) 1911

13 L.R. Schronk, R.D. Grisby \& A.R. Hanks, J. Chromatogr. Sci., 19 (1981) 490

14 R.V. Golovnya \& D.N. Grigoryeva, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 9 (1986) 584

15 N.I. Sveltova, D.N. Grigoryeva, L.I. Sokolova \& R.V. Golovnya, J. Chromatogr., 364 (1986) 203

16 L.B. Kier \& L.H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press

Ltd., Herts., England, 1986
17 L.B. Kier, L.H. Hall, W.J. Murray \& M. Randic, J. Pharm. Sci., 64 (1975) 1971

18 I.S. Lurie \& A.C. Allen, J. Chromatogr., 292 (1984) 283

19 P. Lehtonen, J. Chromatogr., 398 (1987) 143
20 M.J.M. Wells, C.R. Clark \& R.M. Patterson, J. Chromatogr., \(235(1982) 61\) M.J.M. Wells, C.R. Clark \& R.M. Patterson, Anal. Chem. 58 (1986) 1625
R.J. Hurtubise, T.W. Allen \& H.F. Silver, J. Chromatogr., 235 (1982) 517

23 J. Burda, M. Kuras, J. Kriz \& L. Vodicka, Fresnius Z. Anal. Chem., 321 (1985) 349

24 R.M. Smith, J. Chromatogr., 209 (1981) 1
25 D. Noel \& P. Vangheluwe, J. Chromatogr., 388 (1987) 75
K. Jinno \& K. Kawasaki, Chromatographia, 18 (1984) 90 K. Jinno \& K. Kawasaki, J. Chromatogr., 316 (1984) 1
K. Jinno \& M. Kuwajima, Chromatographia, 21 (1986) 541
N. Adler, D. Babic \& N. Trinajstic, Fresnius Z. Anal. Chem., 322 (1985) 426
K. Jinno, T. Nagoshi, N. Tanaka, M. Okamoto, J.C. Fetzer \& W.R. Biggs, J. Chromatogr., 386 (1987) 123 K. Jinno \& K. Kuwajima, Chromatographia, 22 (1986) 13
K. Jinno \& K. Kawasaki, Chromatographia, 17 (1983) 445 R.H. Rohrbaugh \& P.C. Jurs, Anal. Chem., 59 (1987) 1048 S.A. Wise, W.J. Bonnett, F.R. Guenther \& W.E. May, J. Chromatogr. Sci., 19 (1981) 457
J.F. Schabron, R.J. Hurtubise \& H.F. Silver, Anal. Chem., 49 (1977) 2253
M.N. Hasan \& P.C. Jurs, Anal. Chem., 55 (1983) 263
T. Hanai \& J. Hubert, J. Chromatogr., 290 (1984) 197
T. Hanai \& J. Hubert, J. Chromatogr., 302 (1984) 89
T. Hanai, J. Chromatogr., 332 (1985) 189

Feng Yugi, Zhu Pengling \& Hu Zhide, Chromatographia, 25 (1988) 382
M. D'Amboise \& M.J. Bertrand, J. Chromatogr., 361 (1986) 13
H.J. Mockel, G. Welter \& H. Melzer, J. Chromatogr., 388 (1987) 255
H.J. Mockel, H. Hofler \& H. Melzer, J. Chromatogr., 388 (1987) 267
H.J.Mockel, H. Hofler \& H. Melzer, ,J. Chromatogr. 388 (1987) 275
H.J. Mockel, F. Hofler and H. Melzer, J. Chromatogr., 388 (1987) 285
C. Hansch \& A. Leo, Substituent constants for correlation analysis in chemistry and biology, Wiley, New York, 1979
T. Fujito, J. Pharm. Sci., 72 (1983) 285
T. Fujita, Prog. Phys. Org. Chem., 14 (1983) 75
A. Leo, J. Chem. Soc. Perkin Trans. 2, (1983) 825
A.J. Leo, Partition Coefficient Determination and Estimation, Ed. W.J. Dunn III, J.H. Block and R.S. Pearlman, Pergamon Press Inc., New York, 1986

53 R.F. Rekker, The Hydrophobic fragmental constant, Elsevier Scientific Publishing Co., Amsterdam, 1977

54 T. Braumann, J. Chromatogr., (1986), 373,
55 . R. Kaliszan, CRC Crit. Rev. Anal. Chem., 16 (1986) 323
56 K. Miyake, N. Mizuno \& H. Terada, Chem. Pharm. Bull., 34 (1986) 4787

57 J.J. Sabatka, D.J. Minick, T.K. Shumaker, G.L. Hodgson Jr. \& D.A. Brent, J. Chromatogr., 384 (1987) 349

58 Th. Braumann, H.-G. Geneiser, C. Lullman \& B. Jastorff, Chromatographia, 24 (1987) 777

59 P.J. Schoenmakers, H.A. Billiet \& L. De Galan, J. Chromatogr., 185 (1979) 179

60 P.J. Schoenmakers, H.A. Billiet \& L. De Galan, J. Chromatogr., 282 (1983) 107

61 T. Hanai \& J. Hubert, J. Liq. Chromatogr., 8 (1985) 2463

62 T. Hanai \& J. Hubert, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 6 (1983) 20

63 T. Hanai, C. Tran \& J. Hubert, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 4 (1981) 454

64 T. Hanai, K.C. Tran \& J. Hubert, J. Chromatogr., 239 (1982) 385

65 T. Hanai \& J. Hubert, J. Chromatogr., 239 (1982) 527
66 T. Hanai \& J. Hubert, HRC CC, J. High Resolut. Chromatogr. Chromatogx. Commun., 7 (1984) 524

67 A. Shalaby, Zs. Budvari-Brany \& Gy. Szasz, J. Liq. Chromatogr., 7 (1984) 1133
A. Shalaby, Zs. Budvari-Barany, Gy. Szasz \& I. Hermecz, Acta Pharm. Hung., 55 (1985) 249
J.K. Baker, Anal. Chem., 51 (1979) 1693
J.K. Baker, G.J. Hite, M. Reamer \& P. Salva, Anal. Chem., 56 (1984) 2932

71 J.K. Baker, R.E. Skelton, T.N. Riley \& J.R. Bagley, J. Chromatogr. Sci., 18 (1980) 153 K. Jinno, Anal. Lett., 15(A19) (1982) 1533

80 T.L. Hafkenscheid \& E. Tomlinson, J. Chromatogr., 218 (1981) 409

81 T.L. Hafkenscheid \& E. Tomlinson, Int. J. Pharm., 17 (1983) 1

82 E. Tomlinson \& T.L. Hafkenscheid, partition Coefficient Determination and Estimation, Ed. W.J. Dunn III, J.H. Block and R.S. Pearlman, Pergamon Press Inc., New York, 1986

83 T.L. Hafkenscheid \& E. Tomlinson, J. Chromatogr., 264 (1983) 47 J.K. Baker, J. Liq. Chromatogr., 4 (1981) 271 J.K. Baker \& E.K. Fifer, J. Pharm. Sci., 69 (1980) 590 K. Jinno \& K. Kawasaki, Anal. Chim. Acta, 152 (1983) 25 K. Jinno \& K. Kawasaki, Chromatographia, 17 (1983) 337 K. Jinno \& M. Kuwajima, LC-GC, 5 (1987) 1038 S.F.Y. Li \& H.K. Lee, Chromatographia, 25 (1988) 515

84 R. Tijssen, H.A.H. Billiet \& P.J. Schoenmakers, J. Chromatogr., 122 (1976) 185
K. Jinno, Chromatographia, 20 (1985) 743
M.J. Kamlet, R.M. Doherty, J-L.M. Abboud, M.H. Abraham \& R.W. Taft, ChemTech, (1986) 566
J.G. Dorsey \& B.P. Johnson, Chim. Oggi, (1986) 23
B.P. Johnson, M.G. Khaledi \& J.G. Dorsey, J. Chromatogr., 384 (1987) 221
B.P. Johnson, M.G. Khaledi \& J.G. Dorsey, Anal. Chem.,
M.C. Spanjer \& C.L. De Ligny, J. Chromatogr., 253 (1982) 23

99 E. Tomlinson, H. Poppe \& J.C. Kraak, Int. J. Pharm., 7 (1981) 225

100 K. Glowniak \& M.L. Bieganowska, J. Chromatogr. 370 (1986) 281

101 B-K. Chen \& C. Horvath, J. Chromatogr., 171 (1979) 15 R. Gill, S.P. Alexander \& A.C. Moffat, J. Chromatogr., 218 (1981) 639

103 S.P. Assenza \& P.R. Brown, J. Chromatogr., 282 (1983) 477

104 J. Borda, V. Szabo \& J. Kelemen, J. Chromatogr., 286 (1984) 113

105 V.Ya. Davydov, J. Chromatogr., 365 (1986) 123
\& Cs. Horvath, J. Chromatogr., 330 (1985) 138
107 A. Bylina, L. Gluzinski, K. Lesniak, B. Radwanski \& P.A. Penczek, Chromatographia, 17 (1983) 132

108 T. Braumann, G. Weber \& L.H. Grimme, J. Chromatogr., 261 (1981) 329

109 T. Braumann \& B. Jastorff, J. Chromatogr., 350 (1986) 105

110 M. Popl, V. Dolansky \& J. Fahnrich, J. Chromatogr., 148 (1978) 195

111 F. Smejkal, M. Popl, A. Cinova \& M. Zazvorkova, J. Chromatogr., 197 (1980) 147

112 M. Popl, I. Vit \& F. Smejkal, J. Chromatogr., 213 (1981) 363

113 H. Magg \& K. Ballschmiter, J. Chromatogr., 331 (1985) 245

114 F. Morishita, H, Kakihana \& T. Kojima, Anal. Lett., 17(A20) (1984) 2385

115 H. Colin, G. Guiochon \& P. Jandera, Anal. Chem., 55 (1983) 442

116 H. Colin, G. Guiochon \& P. Jandera, Chromatographia, 17 (1987) 83

117 P. Jandera, J. Chromatogr., 314 (1984) 13
118 P. Jandera, J. Chromatogr., 352 (1986) 91
119 P. Jandera, J. Chromatogr., 352 (1986) 111
120 P. Jandera, Chromatographia, 19 (1984) 101
121 P. Jandera \& M. Spacek, J. Chromatogr., 366 (1986) 107
122 J.D. Baty \& S. Sharp, J. Chromatogr., 437 (1988) 13
123 H.A. Cooper \& R.J. Hurtubise, J. Chromatogr., 360 (1986) 313

124 E. Marengo, M.C. Gennaro, C. Baiocchi and P. Bertolo, Chromatographia, 25 (1988) 413

125 M. Jaroniec \& D.E. Martire, J. Chromatogr., 337 (1987) 55

126 M. Jaroniec \& D.E. Martire, J. Liq. Chromatogr., 10 (1987) 541

127 S.M. Petrovic, S. Lomic \& I. Sefer, J. Chromatogr., 348 (1985) 49

128 H. Lamparczyk \& A. Radecki, Chromatographia, 18 (1984) 615

129 H. Lamparczyk, Chromatographia, 20 (1985) 283
130 H. Lamparczyk, M. Atomura \& K. Jinno, Chromatographia, 23 (1987) 752

131 E. Kovats, Helv. Chim. Acta, 41 (1958) 1915
132 R.M. Smith, Adv. Chromatogr., 26 (1987) 277
133 J.K. Baker \& C.-Y. Ma, J. Chromatogr., 169 (1979) 107
134 R.M. Smith, J. Chromatogr., 236 (1982) 313
135 M. Bogusz \& R. Aderjan, J. Chromatogr. 435 (1988) 43
136 M. Bogusz, R. Aderjan, J.P. Franke \& R.A. de Zeeuw, z. Rechtsmedizin, 98 (1987) 263

137 M. Bogusz, J. Chromatogr., 387 (1987) 404
138 M. Bogusz and R. Aderjan, J. Anal. Toxicol.; 12 (1988) 67

139 D.W. Hill \& K.J. Langner, ,J. Liq. Chromatogr., 10 (1987) 377

140 J.C. Frisvad \& U. Thrane, J. Chromatogr., 404 (1987) 195

141 N. Dimov, Anal. Chim. Acta, 201 (1987) 217
142 R.M. Smith, Anal. Chem., 56 (1984) 256
143 E. Grushka, H. Colin \& G. Guiochon, J. Chromatogr., 248 (1982) 325

144 R.M. Smith, T.G. Hurdley, R. Gill \& A.C. Moffat, Chromatographia, 19 (1984) 401
```

145 R.M. Smith, G.A. Murilla \& C.M. Burr, J. Chromatogr.,
388 (1987) 37
146 R.M. Smith \& D.R. Garside, J. Chromatogr., 407 (1987)
1 9
147 R.M. Smith, T.G. Hurdley, R. Gill \& A.C. Moffat, LC-GC,
4 (1986) 314
148 R.M. Smith, T.G. Hurdley, R. Gill \& A.C. Moffat,
Chromatographia, 19 (1984) 407
149 R.M. Smith, T.G. Hurdley, R. Gill \& A.C. Moffat, J.
Chromatogr., 351 (1986) 259
150 R.J. Smith, C.S. Nieass \& M.S. Wainwright, J. Liq.
Chromtogr., 9 (1986) 1387
151 R.A. Djerki \& R.J. Laub, J. Liq. Chromatogr., 10 (1987)
1 7 4 9
152 :R.A. Djerki \& R.J. Laub, J. Liq. Chromtogr., 11 (1988)
327
153 M.C. Hennion \& R. Rosset, Chromatographia, 25 (1988) 43
154 M.J.M. Wells \& C.R. Clark, Anal. Chem., 53 1981 1341
155 K. Jinno, N. Ozaki \& T. Sato, Chromatographia, 17
(1983) 3441
156 P.J.M. van Tulder, J.P. Franke, R.A. de Zeeuw, HRC CC,
J. High Resolut. Chromatogr. Chromatogr. Commun., 10
(1987) 191
157 R.J. Laub \& S.J. Maddon, J. Liq. Chromtogr., 8 (1985) 173
158 H. Colin, A. Krstulovic, G. Guiochon \& J.P. Bounine, Chromatographia, 17 (1983) 209
159 M.S. Wainwright, C.S. Nieass, J.K. Haken \& R.P. Chaplin, J. Chromatogr., 321 (1985) 287
160 H.J. Mockel \& T. Freyholdt, Chromatographia, 17 (1983) 215

```

161 G.E. Berendsen, P.J. Schoenmakers, L. de Galan, G. Vigh, z. Vargha-Puchony \& J. Inczedy, J. Liq. 'Chromatogr., 3 (1980) 1669

162 H. Colin, A.M. Krstulovic, M-F. Gonnord, G. Guiochon, Z. Yun \& P. Jandera, Chromatographia, 17 (1983) 9

163 Lange's Handbook of Chemistry, \(13^{\text {th }}\) Edition, Ed. J.A. Dean, M=Graw-Hill Inc., U.S.A. 1985

164 G.B. Cox \& R.W. Stout, J. Chromatogr., 384 (1987) 315
165 CRC Handbook of Chemistry and Fhysics \(68^{\text {th }}\) Edition 1987-1988, Ed. R.C. Weast, CRC Press Inc., Florida 1987
166 H. Colin, G. Guiochon, Z. Yun, J.C. Diez-Masa \& P. Jandera, J. Chromatogr. Sci., 21 (1983) 179

167 L.R. Snyder, J.W. Dolan \& M.A. Quarry, TrAC, Trends Anal. Chem., 6 (1987) 106

168 L.R. Snyder \& M.A. Quarry, J. Liq. Chromatogr., 10 (1987) 1789

169 M.A. Quarry, R.L. Grob \& L.R. Snyder, Anal. Chem., 58 (1986) 901

170 E.D. Katz, K. Ogan \& R.P.W. Scott, J. Chromatogr., 352 (1986) 67

171 L.R. Snyder, J. Chromatogr. Sci., 16 (1978) 223
172 H.J.C.F. Nelis \& A.P. de Leenheer, J. Chromatogr., 195 (1980) 35

173 R. Gill, S.P. Alexander \& A.C. Moffat, J. Chromatogr., 247 (1982) 39

174
H. Colin \& G. Guiochon, J. Chromatogr. Sci., 18 (1980)

54
175 R. Kaliszan, J. Chromatogr., 220 (1981) 71
K. Wakita, M. Yoshimoto, S. Miyamoto \& H. Watanabe, Chem. Pharm. Bull., 34 (1986) 4663

177 R.T. Morrison \& R.N. Boyd, Organic Chemistry, 3rd

Edition, Allyn and Bacon Inc., U.S., 1973
T. Fujita, J. Isawa and C. Hansch, J. Am. Chem. Soc., 86 (1964) 5177

179 G.B. Barlin and D.D. Perrin, Quarterly Reviews, 20 (1966) 75

180 Y. Baba, JAPC, 7 (1985) 119
181 E. Grushka \& I. Atamna, J. Chromatogr., 400 (1987) 5
182 G.A. Taylor, J. Chromatogr., 195 (1987) 375
183 J.C. Berridge, Techniques for the Automated Optimisation of HPLC Separations, Wiley, Chichester, 1985

184 G. D'Agnostino \& L. Castagnetta, J. Chromatogr., 338 (1985) 1

185 P. Jackson, Introduction to Expert Systems, International Computer Science Series, Addison-Wesley Publishing Company, 1986

186 I. Graham and P. Llewellyn-Jones, Expert Systems Knowledge, Uncertainty and Decision, Chapman-Hall Computing, London, 1988

187 P.B. Ayscough, S.J. Chinnick, R. Dybowski \& P. Edwards, Chem. Ind., 15 (1987) 515

188 T.P. Bridges, M.H. Williams \& A.F. Fell, Chem. Brit., 23 (1987) 1085

189 M-P Derde, L. Buydens, C. Guns, D.L. Massart \& P.K. Hopke, Anal. Chem., 59 (1987) 1868

190 J.L. Glajch, LC-GC 6 (1988) 30
191 J.W. Frazer, Mikrochimica Acta, II (1986) 163
G.J. Kleywegt, Lab. Microcomput., 6 (1987) 74

Artificial Intelligence in Chemistry, ACS Symposium Series 306, Ed. T.H. Pierce \& B.A. Hohne, ACS, Washington, 1986

194
195
S.S. William, J.-L. Excoffier, J.F. Karnicky \& S.R. Abbott, \(11 \%\) International Symposium on Column Liquid Chromatography, Amsterdam, 1988, Abstract No. F-P8, R. Bach, J. Karnicky \& S. Abbott Ch. 22 in, Artificial Intelligence Applications in Chemistry, Ed T.H. Pierce \& B.A. Hohne A.C.S. (1986), U.S.A.

Lu Peichang \& Lu Xiamong, J. Chromatogr., 292 (1984) 169

Lin Binsheng, Li Haochun, Lu Peichang LC-GC, 4 (1986) 1206

201 Zou Hanfa, Chen Long, Zhang Yukui \& Lu Peichang 17\% International Symposium on Chromatography, Vienna, 1988 Abstract No. Tue-B L5

202 M.A. Tischler \& E.A. Fox, Comput. Chem., 11 (1987) 235
H. Gunasingham, B. Srinivasan \& A.L. Ananda, Anal. Chim. Acta, 182 (1986) 193

204 A.L. Ananda, S.M. Foo and H. Gunasingham, J. Chem. Inf. Comput. Sci., 28 (1988) 82
T.P. Bridges, M.H. Williams \& A.F. Fell, Anal. Proc., 25 (1988) 43 T.P. Bridges, M.H.W. Williams, G.G.R. Seaton and A.F. Fell, Chromatographia, 24 (1987) 691 G. Musch, M. De Smet \& D.L. Massart, J. Chromatogr., 348 (1985) 97 M. De Smet and D.L. Massart, TrAC, Trends Anal. Chem., 6 (1987) 266

210 P.J. Schoenmakers \& M. Mulholland, Chromatographia, 25

211 D. Goulder, T. Blaffert, A. Blokland, L. Buydens, A. Chhabra, A. Cleland, N. Dunand, H. Hindriks, G. Kateman, H. van Leeuwen, D. Massart, M. Mullholland, G. Musch, P. Naish, A. Peeters, G. Postma, P. Schoenmakers, M. de Smet \& B. Vandeginste, 17 cm International Symposium on Chromatography, Vienna, 1988 Abstract No. Tue-B L9.

212 R. Hindriks, L. Butgarde, A. Peeters, M. de Smet, L. Massart, A. Blokland \& J. Vink, 17 m International Symposium on Chromatography, Vienna, 1988 Abstract No. I P87

213 L. Massart, L. Buydens, A. Peeters \& P.J. Schoenmakers, \(17^{\circ}\) International Symposium on Chromatography, Vienna, 1988 Abstract No. I P88

214 M. Mulholland, H. van Leexwen and B. Vandeginste, \(17^{*}\) International Symposium on Chromatography, Vienna, 1988 Abstract No. I P89

215 P.J. Schoenmakers, G. Musch, A. Cleland, N. Dunand, P.J. Naish \& P.K. de Bokx, \(17^{\circ} \mathrm{m}\) International Symposium on Chromatography, Vienna, 1988 Abstract No. I P93 Drylab I Users Manual, LCResources Inc., Lafayette, 1987

217 L.R. Snyder, J.W. Dolan \& M.P. Rigney, LC-GC, 4 (1986) 921
L.R. Snyder, M.A. Quarry \& J.L. Glajch, Chromatographia, 24 (1987) 970
J.W. Dolan \& L.R. Snyder, LC-GC, 5 (1987) 970
J.W. Dolan, L.R. Snyder \& M.A. Quarry, Chromatographia, 24 (1987) 261

221 F. Gago, J. Alvarez-Builla \& J. Elguero, J. Liq.
```

    Chromatogr., 10 (1987) 1031
    J.E. Haky & A.M. Young, J. Liq. Chromatogr., 7 (1984)
    6 7 5
    223 S.R. Bakalyar, R. McIlwrick \& E. Roggendorf, J.
Chromatogr., 142 (1977) 353
224 R. Kaliszan, K. Osmialowski, S.A. Tomellini, S.H. Hsu, S.D. Fazio \& R.A. Hartwick, Chromatographia, 20 (1985) 705
R. Kaliszan, K. Osmialowski, S.A. Tomellini, S-H. Hsu, S.D. Fazio \& R.A. Hartwick, J. Chromatogr., 352 (1986) 141
P.J. Schoenmakers, H.A. Billiet \& L. de Galan, J. Chromatogr., 218 (1981) 261 N. Tanaka, H. Goodell \& B.L. Karger, J. Chromatogr., 158 (1978) 233

```

\section*{APPENDIX 1}

\section*{PRELIMINARY STUDIES ON THE USE OF RETENTION INDICES IN TETRAHYDROFURAN (THF)}

\begin{abstract}
Prior to the main study on retention indices a preliminary study was carried out on the use of retention indices in tetrahydrofuran (THF) containing eluents. Previous work at Loughborough had examined the effects of changing the methanol and acetonitrile concentration on the retention indices of a selection of compounds \({ }^{1-3}\). Although studies had been carried out using eluents containing selected THF proportions"* or using THF as one component of a ternary eluent \({ }^{\text {F }}\) no comparative study had been carried out using a range of eluent compositions. The aims were therefore to confirm the linearity of the log capacity factor - carbon number relationship for the alkylarylketones, to study the robustness of retention index values and to study the selectivity as compared to methanol and acetonitrile, THF being the third corner of the selectivity triangle frequently used in optimisation. The experimental conditions were basically the same as those in described for the main study except that the aqueous phase was distilled water rather than a buffer. The column used was packed with a different batch (Spherisorb ODS batch 19/35) and loading (Spherisorb ODS rather than Spherisorb ODS2) to that used for the main study. The results obtained could therefore not be directly included in the retention prediction database.

Smith \(=\) has proposed a set of column test compounds which could be used to characterise column selectivity.
\end{abstract}

These compounds, methyl benzoate, p-cresol, 2-phenylethanol, nitrobenzene and toluene have been used in previous work on retention indices and were studied on the Spherisorb ODS column over the eluent ranges THF-HzO 20:80 to 60:40.

The longest retained test compound, toluene, eluted before valerophenone so that a limited set of alkylarylketone standards (acetophenone to valerophenone) was used to calibrate the system.
a) Linearity of \(\log k\) ' - Cno relationship for alkylarylketones

The capacity factors of the alkylarylketone standards (Table 1) were used to calibrate the retention index scale using the linear relationship between \(\log \mathrm{k}\) ' and 100 x Cro. At all the eluent compositions examined there is a linear relationship between \(\log k\) ' and carbon number (Table 2). The relationship between slope and THF concentration and intercept and THF concentration is not linear but can be described by the use of quadratic equations (Table 3), this was also found for acetonitrile in this study and has been reported for THF by Janderas.
b) Retention Indices of Test Compounds

The capacity factors (Table 1) were used to calculate the retention indices (Table 4) using the regression equations described above. The change in retention indices across the eluent range (Figure 1) was smaller than the change in capacity factors, however, all the compounds showed some change in retention index. The greatest changes
with eluent composition were observed with 2 -phenylethanol and p-cresol, which are considerably more polar than the alkylarylketones. Toluene, which is less polar than the alkylarylketones, showed a steady increase in retention index with increasing THF concentration. As had been observed in acetonitrile and methanol containing eluents the retention index of methyl benzoate was almost unchanged over the eluent range. The retention indices obtained differed from those obtained in methanol and acetonitrile eluents \({ }^{1.3 .5}\) confirming the selectivity differences obtained using the different organic modifiers.

From these results it appears that the alkylarylketone scale is also suitable for use in THF containing eluents and the prediction scheme could also be expanded to include THF containing eluents.

Table 1: Capacity factors of alkylarylketone standards and column test compounds
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & \multicolumn{5}{|l|}{Capacity factor Tetrahydrofuran} \\
\hline & 20 & 30 & 40 & 50 & 60 \\
\hline acetophenone & 8.36 & 4.06 & 1.85 & 1.36 & 0.84 \\
\hline propiophenone & 21.38 & 8.63 & 3.10 & 2.11 & 1.12 \\
\hline butyrophenone & 50.82 & 16.33 & 4.62 & 2.93 & 1.38 \\
\hline valerophenone & 128.97 & 31.16 & 6.81 & 4.00 & 1.66 \\
\hline p-cresol & 19.19 & 7.81 & 2.51 & 1.70 & 0.87 \\
\hline methyl benzoate* & 20.07 & 7.74 & --- & 1.70 & 1.07 \\
\hline nitrobenzene & 23.74 & 10.19 & 3.24 & 2.14 & 1.10 \\
\hline 2-phenylethanol & 6.21 & 2.95 & 1.31 & 0.97 & 0.60 \\
\hline toluene & 65.69 & 22.54 & 5.99 & 3.84 & 1.77 \\
\hline
\end{tabular}

Table 2: Relationship between \(\log k\) ' and \(100 \times\) carbon number in eluents containing tetrahydrofuran
\[
\log k^{\prime}=a\left(100 \times C_{n a}\right)+b
\]
\begin{tabular}{llll}
\begin{tabular}{ll}
Tetrahydrofuran \\
proportion (\%)
\end{tabular} & \begin{tabular}{l}
Coefficients of regression \\
equations \\
a
\end{tabular} & \begin{tabular}{l}
correlation \\
coefficient
\end{tabular} \\
& b & \\
20 & 3.943 & -2.23 & 0.9999 \\
30 & 2.931 & -1.72 & 0.9992 \\
40 & 1.867 & -1.21 & 0.9973 \\
50 & 1.540 & -1.08 & 0.9966 \\
60 & 0.977 & -0.85 & 0.9948
\end{tabular}

Table 3: Relationship between slope and eluent composition and intercept and eluent composition in tetrahydrofuran containing eluents
\[
\begin{aligned}
& \text { slope }=a x^{2}+b x+c \text { or } \\
& \\
& \text { intercept }=a x^{2}+b x+c
\end{aligned}
\]

Table 4 : Retention indices of test compounds in acetonitrile eluents
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compound} & \multicolumn{5}{|l|}{Retention index Tetrahydrofuran (\%)} \\
\hline & 20 & 30 & 40 & 50 & 60 \\
\hline p-cresol & 891 & 892 & 862 & 851 & 801 \\
\hline methyl benzoate & 901 & 896 & & 892 & 883 \\
\hline nitrobenzene & 914 & 931 & 921 & 917 & 907 \\
\hline 2-phenylethanol & 766 & 748 & 711 & 693 & 639 \\
\hline toluene & 1026 & 1049 & 1064 & 1081 & 1119 \\
\hline
\end{tabular}

Figure 1: Change in retention index of test compounds with tetrahydrofuran proportion

\section*{REFERENCES}

1 R.M. Smith, G.A. Murilla and C.M. Burr J. Chromatogr. 388 (1987) 37

2 R.M. Smith, T.G. Hurdley, R. Gill and A.C. Moffat Chromatographia 19 (1934) 401

3 R.M. Smith J. Chromatogr. 236 (1982) 313
4 R.M. Smith Anal. Chem. 56 (1984) 256
5 R.M. Smith J. Chromatogr. 324 (1985) 243
6 P. Jandera Chromatographia 19 (1984) 101

\section*{APPENDIX 2}

\section*{PUBLISHED WORK}
R.M. Smith, G.A. Murilla and C.M. Burr, J. Chromatogr., 388 (1987) 37
"Alkyl aryl ketones as a retention index scale with acetonitrile or tetrahydrofuran containing eluents in reversed-phase high performance liquid chromatography".
C.M. Burr and R.M. Smith, Anal. Proc. 25 (1988) 46 "Substituent interaction indices for retention prediction in reversed-phase high performance liquid chromatography".
C.M. Burr and R.M. Smith, Anal. Proc. submitted "Retention prediction in RP-HPLC using a functional group database and expert system (CRIPES)".
R.M. Smith and C.M. Burr, J. Chromatogr. submitted "Retention prediction of analytes in reversed-phase high preformance liquid chromatography based on molecular structure. Part 1. Monosubstituted aromatic compounds".
R.M. Smith and C.M. Burr, J. Chromatogr. submitted' "Retention prediction of analytes in reversed-phase high preformance liquid chromatography based on molecular structure. Part II. Long term reproducibility of capacity factors and retention indices".```

