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SYNOPSIS 

Self-tuning Digital Controllers for Serve Systems. 

Adaptive self-tuning systems have been the subject of a great deal of 
research effort in recent years. Practical applications have lagged behind such 
work, in the main being applied in the process industries. Few serve applications 
have been reported, the wide bandwidths and demanding performance specifications 
raising problems not found in the process world. The research project described 
here is concerned with the use of self-tuning digital controllers applied to serve­
systems, specifically an electro-mechanical actuation unit. Practical limitations, 
such as stiction, friction and velocity saturation effects are taken into account. 

The following factors are considered within this thesis; 

* Plant identification and modelling using off-line identification techniques. 

* Plant identification and modelling using on-line methods. 

* Control strategies based on statistical and deterministic principles. 

~ * Mathematical methods to achieve optimal plant models through the use of model 
reduction techniques. 

a * Self-tuning strategy evaluation via simulation procedures. 

* Self-tuning strategy evaluation via plant testing. 

* Development and use of a mechanical simulator for the evaluation of control 
strategies. 

* Hardware design and development of a 16 bit microprocessor based digital 
controller. 

J>. * Software design of the identification, control and self-tuning algorithms. 

* The use of a PC based integrated work-station as a tool for the development of 
embedded control systems. 

Significant improvements in mathematical methods for model order reduction are 
presented, their validity being demonstrated in practical testing. 

The digital controller described here uses an Intel 8088 processor 
augmented by an 8087 Numeric Data Processor, plant interfacing being carried out 
using analogue to digital and digital to analogue converters. Controller software is 
written in ASM86 and Pascal/MT+, that for the simulation being produced in Fortran 
77. 
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1 INTRODUCTION 

1.1 CONTROL SYSTEMS 

1.1.1 General 

Control systems vary considerably. At one extreme are fast high 

performance systems such as weapon stabilisers. In such applications many 

aspects of the design are new and unique, the related control design effort being 

considerable. At the other end are process systems where the control engineer is 

asked merely to supply a three-term controller. Here the control design is minimal 

(though the system design may be considerable). 

The system described here, together with relevant research and design 

techniques, falls into the first category. Fig.1.1 shows the main objectives of the 

programme, these being the development of the target system controller and the 

development of appropriate control techniques. The target system ("plant") is a 

real as opposed to a simulated one, being described in section 1.2 

1.1.2 Control system design methods 

Numerous control techniques are available for use in the design of control 

systems [1.1]. These are divided into two major categories, optimal control 

techniques [1.2] and classical control techniques [1.3]. 

In optimal control, widely used in the aerospace industries, the objective is 

to minimise a specified cost function. These methods are highly mathematical. As a 

result most practical engineers do not understand optimal methods; neither can they 

specify their system performance requirements in a relatively straightforward 
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manner. Highly skilled and specialised engineers are needed in such situations. 

It is therefore not surprising that these techniques are not widely accepted in 

control system work. 

In contrast classical control techniques are widely used because; 

* they are relatively simple, 

* they are well understood by practical engineers, 

* performance criteria can be specified simply and unambiguously in both the 

time and frequency domains. 

Here the tuning of the controller is adjusted as required by the plant engineer, 

controller settings being based on both experience and trial and error techniques 

[1.4]. 

Self-tuning designs using classically specified performance criteria are 

serious contenders for use in modern control systems. In such systems the 

controller is adjusted automatically until (hopefully) the specified performance is 

achieved. Therefore tuning does not require operator experience or involvement, 

an added feature of self-tuning controllers. 

1.1.3 Self-tuning systems 

Adaptive self-tuning systems have been the subject of a great deal of 

research effort in recent years, a major review being given by Warwick [1.5]. 

Practical applications have lagged behind such work, in the main being applied in 

the process industr.ies (1.6,1.7,1.8,1.9). Few servo applications have been reported, 

though the 

[1.10] and 

advantages of self-tuners in these areas have been shown by Daley 

Hope (1,11], ~e wide bandwidths and demanding performance 

have lead researchers to develop alternative adaptive control techniques [1.12]. 
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1.2 THE CONTROLLED PLANT 

A block diagram of the "plant" used for control system development is 

shown in Fig.1.2, Fig.1.3 being a photo of the actual test rig, This is an 

electromechanical actuator (suitable for the use with process control valves) 

coupled to a mechnical load simulator, The actuator motor and associated 

control/power electronics are considered to be part of the plant itself, as is the load 

shaft position sensor. 

The drive unit of the actuator is a 1/6 horse power induction motor, 

originally designed for 115v, 60 Hz, 3 phase operation. It is powered from a static 

inverter which, when used with its controller, provides full linear speed control 

from zero to maximum speed in both directions. 

A gearbox is used to translate motor shaft rotary motion to linear motion of 

the load shaft. Both the load resilience and viscous forces can be varied by the rig 

operator. Further, the effect of valve loading is simulated using a coulomb damper . 

(actually a disc brake) on the motor shaft; this, too, is adjustable. Position sensing 

is carried out using a continuous track rectilinear potentiometer. 

Motor speed control is carried out by a pulse width modulated (PWM) 

controller in conjunction with a 3 phase static inverter [1.13]. Motor speed is 

determined by the analogue input signal to the controller. A detailed description of 

the plant is shown in Appendix-A. 

1.3 SYSTEM DEVELOPMENT IN A PC ENVIRONMENT 

Computerised tools for the analysis, synthesis and development of control 

systems have generally been based on the use of Mainframe and Mini computers. 

Typical of such packages are CAD on PRIME [1.14] and MATRIXx on the VAX [1.15], 

Recently, however, much attention has been focussed on low cost alternatives using 
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personal computers (PCs). In many cases the emphasis has been on training, 

analysis and theoretical synthesis [1.16]. Little has been reported concerning 

their use in the development of practical embedded systems, typified by servo 

applications. Yet the PC can provide many facilities needed for all phases of the 

research and design activity. Central to this research work is a general purpose 

PC based work-station (Fig.1.4) which has been developed specifically for the 

design of microprocessor based control systems. The use of this forms a topic in its 

own right as it had a major impact on the design methods adapted during the 

research programme. 

1.4 THESIS OBJECTIVE AND ORGANISATION 

This thesis describes the development of a microprocessor-based self­

tuning controller. The performance of "conventional" self-tuning techniques 

applied to electro-mechanical systems in presence of stiction, friction and velocity 

saturation are evaluated with respect to fixed digital controllers. 

Off-line analysis is carried out to model the plant transfer function and 

determine the minimum model order. 

A digital computer simulation for the plant is carried out using the derived 

model to evaluate its performance under various control algorithms. 

In this thesis it is also shown how a PC based development environment 

satisfies the requirements of the control engineer, from hardware design to system 

testing. 

The thesis organisation is as follows: 

In Chapter 2 a brief general history of control is given, the development of 

adaptive control being described in more detail, An overview of adaptive control is 

given here. 
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Chapter 3 describes an off-line identification technique used as a means to 

determine the tansfer function of the controlled plant (via the PC). '1;;: number of 

mathematical techniques are presented which seek to improve the model order 

reduction technique proposed by Soderstrom. Further, a new mathematical method 

designed to improve reduced order model structures is also given in this chapter. 

In Chapter 4 implementation considerations in digital control systems such 

as computational delay, choice of sampling rate, practical constraints, and numerical 

accuracy sre discussed. This chapter also describes the design of the digital 

control algorithm using a number of different control criteria. 

r- Chapter 5 deals specifically with the implementation of self-tuning 

algorithms. It describes the basic structural blocks of self-tuning systems and 

evaluates the practical implementation aspects of self-tuners. The design of a 

Pole/Zero cancellation self-tuner and a PID self-tuner is shown in this chapter. 

Chapter 6 describes the electronic control system used as the target digital 

controller. The target board functions and facilities are explained. A detailed 

description of the electronic hardware is included in this chapter. 

Chapter 7 explains the software structure and the software design 

technique. The role of the PC in developing both the off-line (computing) and on-

line (plant controller) code is illustrated. In this chapter the implementation of the 

self-tuning controller ~) is shown, the functions of the software used on both the 

PC and the microprocessor being explained in detail. 

In Chapter 8 the advantages of using the improved transfer function 

reduction technique are shown using test results obtained for models of different 

order. The plant transfer functions used are for both real plants and simulated 

ones. 

In Chapter 9 both simulated and actual test results for the plant control 

system are presented, different control techniques being used in these tests. The 
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actual response of system under self-tuning control (STC) is compared with that 

under the fixed digital controller. The evaluation and implication of these results 

are discussed. 

In Chapter 10 the conclusions and comments arising from this work are 

outlined. 
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2 THE DEVELOPMENT OF THE THEORY OF CONTROL 

2.1 HISTORY OF CONTROL 

Fig.2.1 shows some events in the history of control. The basic concepts of 

automatic control and their analysis in terms of ordinary differential equations were 

well established by the beginning of the twentieth century [2.1]. These techniques 

were consolidated in review papers by Hort [2.2] and Von Mises [2.3], and in early 

textbooks on automatic control by Tolle [2.4] and Trinks [2.5]. Important studies 

carried out by Minorsky [2.6], and by Hazen [2.7] produced further development in 

the field. Minorsky proposed the use of a proportional-plus-derivative-plus-

integral control action in the automatic steering of ships. His work was of 

particular significance in being practically tested in a famous series of trials on the 

automatic steering of the USS New Mexico in 1922-23 [2.8], Hazen's studies were on 

shaft-positioning servomechanisms. Both Minorsky's and Hazen's work was 

explained in terms of ordinary differential equations, and their success with 
I 

practical devices led to the widespread use of this approach for the analysis of 

automatic control systems [2.1]. 

In 1936 Callender, Hartree, and Porter published the first paper [2.9] 

describing the application of the PID controller on an analogue computer [2.10]. 

Zieglar and Nichols [2.11] made an important study which led to simple rules for 

tuning the PID controller [2.22]. 

By the late 1930's there were thus two separate but well-developed methods 

of analysing feedback system behaviour [2.12]: 

(a) The "time-response approach" which involved ordinary differential 

equations and their associated characteristic algebraic equations. This 
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approach was much used in mechanical, naval, aeronautical, and chemical 

engineering studies of automatic control systems; and 

(b) the "frequency-response approach" which involved Nyquist and Bode plots, 

transfer functions, etc.. This approach was used in the studies of 

feedback amplifiers [2.12]. 

The frequency-response approach describes systems in terms of their 

input/output relationships in the frequency domain. In practice this proved to be 

a very flexible and general way of representing systems [2.1]. The use of transfer 

functions in analysing feedback systems was introduced by Harris [2.13]. The idea 

of Harris enabled a mechanical servomechanism or a chemical process control system 

to be represented in terms of a block diagram [2.12]. 

The demands of World War II greatly accelerated work in the field of 

automatic control. In particular the need for precise and rapid control of ships, 

aircraft, and radar antenna systems led to significant advances in theory and 

practice. With the lifting of wartime security restrictions in 1945 [2.10], rapid 

progress took place in the control field, many books and innumerable articles and 

papers being written in the post-war period. This has resulted in the widespread 

dissemination and adoption of frequency-response ideas [2.1] and the application of 

control systems in industrial and military fields almost without limit [2.10]. 

The development of frequency response techniques was soon followed by 

another approach to control system design [2.15], This was introduced in 1948 by 

W. R. Evans, who was working in the field of guidance and control of aircraft. Many 

of his problems had unstable or neutrally stable dynamics, and he suggested a 

return to the study of the characteristic equation that had been the basis of work of 

Maxwell and Routh nearly 70 years earlier. However, Evans developed techniques 

and rules allowing one to follow graphically the paths of the roots of the 

2 - 2 



characteristic equation as a parameter was changed. His method, the root locus, is 

suitable for design as well as for stability analysis and remains an important 

technique today. 

Until the beginning of the second world war work concentrated mainly on 

either linear systems or simple "bang-bang" controllers. However, the need arose 

at this time to control the performance of systems which provided "plant" 

information at, and only at, discrete time intervals. For instance, the rotating 

aerial of a radar system illuminates its target intermittently; hence data is available 

only in pulsed or sampled form. Therefore, many of the fire-control systems 

developed during the Second World War had to be designed to deal with data 

available in this form [2.1]. Hurewicz laid the basis for an effective treatment of 

sampled-data automatic control systems [2.14], extending the Nyquist stability 

criterion to sampled-data systems. Digital controllers operating on continuous­

time plants required analysis techniques which relate both discrete-time and 

continuous-time systems. Linvill discussed this problem from the transfer point of 

view, including a consideration of the Nyquist approach to closed-loop stability 

[2.15]. Tsypkin used frequency-response methods to analyse sampled-data 

systems [2.16]. A "Z-transform" theory for systems described by difference 

equations emerged to match the "S-transform" theory for systems described by 

differential equations [2.17]. This theory was treated in textbooks by Ragazzini 

and Franklin [2.17], Jury [2.18], [2.19], Freeman [2.20], and others. 

The effect of random disturbances on automatic control systems was also 

studied during the Second World War [2.14]. Wiener studied the relationship 

between the time-response and frequency-response descriptions of a stochastic 

process [2.21]. His books had the important effect of propagating feedback control 

ideas in general, and frequency-response methods in particular, into the field of 

stochastic system theory [2.1]. 
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The emergence of the digital computer by the late 1950's as a widely 

availabe engineering device was a necessary prerequisite for the next developments 

in automatic control systems. The computing power and versatility' of the big 

scientific machines made the lengthy and intricate calculations involved a 

practicable proposition [2.22]. During the decade of the 1950's several authors 

including Bellman, Kalman, and Pontryagin began again to consider the ordinary 

differential equations (ODE) as a model for control systems [2,10], The new methods 

considered the simultaneous control of a number of interacting variables; these also 

assessed the use of different types of controller objectives, such as the minimisation 

of fuel consumption." As with the previous major developments in auton;tatic control 

theory, the next advances arose out of an important technical problem, in this case 

the launching, manoeuvering, guidance, and tracking of space vehicles [2,1], This 

development was supported by digital computers, which could be used to carry out 

calculations that would have been unthinkable 10 years earlier. The study of 

optimal controls begun and much of this work was presented at the first conference 

of the newly formed International Federation of Automatic Control (IFAC) held in 

Moscow in 1960. This work did not use the frequency response or the characteristic 

equation but instead worked directly with the ordinary differential equation. 

Generally such methods required the extensive use of computers [2,10], This 

approach is now often called "modern control", as opposed to the methods of Bode et, 

al, which are termed "classical", 

In the late 1950's, the control world became deeply involved in so called 

adaptive systems [2.23]. As Truxal noted [2.24] these are nonlinear feedback 

systems derived from an identification viewpoint. In the 1950's and early 1960's, 

such advanced techniques were seen as a means ·to substantially improve control 

performance in parameter varying systems. Unfortunately on-line digital 

computers with sufficient speed and computation capability were not available at 
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that time [2.25]. Analogue computers of that time period did not have either 

adequate accuracy or reliability to perform in the adaptive control mode [2.25]. 

Adaptive control has been a challenge to control engineers for a long time, many 

schemes having been proposed [2.26]. In spite of this, progress in the field has 

been comparatively slow. One reason is that it is difficult to understand how 

adaptive systems work because they are inherently nonlinear. Another reason is 

that it has been costly and fairly complicated to implement adaptive controllers. 

Computer control was still out of reach for many control problems until the 

development of the microcomputer in 1970 [2.22]. The situation changed 

dramatically with the advent of powerful low-cost microprocessors, making the 

implementation of adaptive controllers feasible and economical. Recently there has 

also been significant progress in the theory of adaptive control [2.27]. 

2.2 APPROACHES TO ADAPTIVE CONTROL 

During the past few years the field of adaptive control has become 

increasingly active. Major advances in microprocessor technology have also made 

sophisticated algorithms more feasible for practical applications. 

Self-Tuning Controllers (STC) and Model Reference Adaptive Control 

(MRAC) are the two principal solutions to the adaptive control problem [2.28,2.29]. 

tl,.STC is derived for discrete time s:ystems while...MJ3.AQ...ii!Wi~~mistic 

~9.!!!'1-C.oAtr.?_l systems ~~0]. 

In MRAC the objective is to force the response of the closed loop control 

system to follow that generated by some defined model. In STC a design procedure 

for known plant parameters is first chosen and this is applied to the unknown plant 

using recursively estimated values of these parameters. 

Figs.2.2 and 2.3 represent the adaptive control problem using MRAC and 
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STC approaches respectively, P'r~JFi!if.2.2l the in~i.!m!i the.QW.:llll.U2f..alinear 

plant are u and Y• respectively, A line~r...m2!ll!l~ refe~~~R~t JC..~J2!\'cified 

~ich result in a mod~~_pu~.Y~Q.I!Lail.J!:l~ avaiJ..'!..J?.Ie d_a~_(~!-.l~! __ r and Y•) it is 

de~ to det~!!!!!!!~.<?.P.-J.J:ol.!!!p~h that the error (e) between Y• and Y• 

tends to zero asymtotically [2.31]. 

In the STC approach (Fig.2,3) the first step is the selection of an 

appropriate known procedure for the design of a controller when the plant 

parameters are known. The second step is to estimate the unknown plant 

parameters; from these the control algorithm coefficients are modified (up-dated) in 

accordance with the defined control criterion [2.27]. Identification carried 

out continuously by the controller as the plant runs is known as "on-line" 

identification. Off-line identification is done on recorded data by transfering this 

data to a host computer where it is processed. 

According to Clarke [2.27] a "good" adaptive controller should be 

characterised by: 

* Closed loop performance criteria easily understood by control engineers. 

* Simplicity of coding. 

* Robustness when applied to as broad a class of plants as possible. 

In MRAC the zeros of the plant must lie in the interior unit circle (i.e. a non-

minimum phase plant is not allowed) [2.29], The general approach of MRAC yields a 

relatively complicated adaptive control law [2.44] while STC is, in a sense, the 

simplest possible adaptive control algorithm [2,30]. STC can use "conventional" 

control techniques that are robust and well known. The selection of an appropriate 

control scheme removes the restriction on the type of plant in STC. 

Although STC and MRAC techniques are based on different design 
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principles, it has recently been shown [2.32,2.33,2.34,2.35] that both control schemes 

are very similar and in some special cases even identical [2.35]. 
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3 MODEL DETERMINATION 

3.1 INTRODUCTION 

A model may be defined as "a representation of the essential aspects of a 

system which presents knowledge of that system in a usable manner" [3.8]. In 

order to design a controller for a dynamic system it is necessary in many cases to 

develop a model that adequately describes the system's behaviour. The 

mathematical model forms an important part of the design cycle, engineers thereby 

gaining an understanding of the nature of the dynamic behaviour of the system 

[3.1]. 

For a model to be useful it must not be so complicated that it cannot be 

understood and thereby be unsuitable for analysis; at the same time it must not be 

oversimplified to the extent that predictions of the behaviour of the system based on 

this model are inadequate [3.8]. 

The system model is usually represented by a transfer function, shown in 

the form of a block diagram, Fig.3.1. Note that the block is "unidirectional", The 

input may be regarded as the "cause" and the output as the "effect". The block 

diagram is unidirectional since the "effect" cannot produce the "cause" [3.3]. The 

transfer function G(s) relates the Laplace transform Y(s) of the output y(t) to the 

Laplace transform U(s) of the input u(t) through the relationship 

Y(s): G(s)U(s) (3.1) 

This chapter describes the methods used to obtain a mathematical model of 

the controlled plant. These are based on established statistical test methods, using 

an assumed high order model in the identification process. Once the "best" 

estimate of the plant model is obtained its order is reduced to a minimum acceptable 
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level. 

The model order reduction technique developed here, although based on 

that proposed by Soderstrom [3.9], offers significant improvements on earlier 

methods; furthermore several concepts involved are new and original. Its 

effectiveness is demonstrated in a series of practical tests, leading to fast 

identification combined with satisfactory closed-loop control. 
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3.2 APPROACHES TO MODEL DETERMINATION 

There are two approaches to the problem of determining a mathematical 

model of a given system [3.1]. 

(a) Physics: Many systems can be analysed in terms of laws of physics, 

thermodynamics etc. and expressed in mathematical terms by looking 

directly at the mechanism that generates signals within the system. 

Equations are then assembled to form a mathematical model, based on the 

physical laws and relationships that govern the system's behaviour [3.3]. 

An advantage of model-building from physics is that the variables have 

physical interpretations [3.1]. 

(b) Identification: System identification is the experimental approach to plant 

modelling in which data obtained from the system is used to model that 

system [3.5]. Many methods are suitable for analysing data obtained from 

such experiments [3.2,3.8] [Appendix-B), one basic approach being the 

principle of Least Squares (LS) [Appendix-B). 

In many situations direct modelling using physical knowledge may not be 

possible [3.6]. One reason may be that knowledge of the system's mechanism is 

incomplete, since this method needs insight. A further reason is that the system 

may be subject to on-line changes in an unpredictable manner, as occurs when the 

environment of the system changes (e.g. an aircraft changes altitude, a paper 

machine is given a different composition of fibre, etc.). The first approach can also 

be quite time-consuming, furthermore it may lead to models that are complex and of 

high order which in turn require order reduction [3.1]. In these circumstances the 

designer may turn to an identification method. These methods are also especially 
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useful when plant dynamics change with time or with operating conditions. On 

these occasions the control parameters need to be changed to "tune" the controller 

[3.4] for best performance. In order to achieve this it is necessary to obtain a plant 

model under the new conditions. Deriving this from experimental data is often the 

most effective (if not the only) way to do this. 

3.3 FUNCTIONAL TESTING AND SYSTEM IDENTIFICATION 

3.3.1 Overview 

The ultimate objective of this test is to produce a mathematical model of the 

plant based on measurements of the plant input (control) and output (measured 

value) signals. Therefore it is necessary for the experimenter to control the test 

procedures, setting conditions such as signal type and duration, sampling rates and 

number of measurement points. The set-up used for these tests is shown in Fig.3.2, 

the use of the PC being self-evident from the following text. Note there are two 

distinct aspects of this operation. In the first place the plant has to be perturbed 

to obtain data; subsequently the information so obtained is used as part of the model 

identification process. This is carried out within the PC. 

3.3.2 Plant testing 

The control program which actually runs the plant and collects data 

measurements sits within the target controller in Eprom. For this, the source code 

is written in MT+ Pascal, details being given the software development chapter. 

Program development, i.e. code writing, compilation, linkage and PROM blowing, 
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takes place within the PC environment. For the duration of the plant test the PC 

functions as a terminal having data storage facilities. It communicates with the 

target controller using its RS232 serial data line. 

To start the test procedure the controller and plant are powered up. The 

PC must be connected to the controller and placed in terminal mode. Instructions 

from the controller to the operator are displayed on the PC screen, responses being 

entered at the keyboard. These include plant test data and designation of the PC 

data file (on floppy disk) which is to be used to hold the plant measurements. A 

typical test procedure is shown in Fig.3.3 where, once the test parameters are 

entered by the operator, the controller runs the plant through its test sequence. 

During this, measurements are made of control signal and measured value, these 

being stored within the controller memory. At the end of the test this data is 

transferred to the named disk file in the PC. If required, the information can also 

be printed out for evaluation and review. 

3.3.3 Off-line identification 

The purpose of the off-line identification process is twofold. First, using 

the data recorded during the test run, it enables a mathematical model of the plant to 

be generated. Second, using this same set of data, a number of models can be 

obtained by applying various identification schemes. Details of several 

identification schemes are given in Appendix-B. 

Evaluation of several identification schemes was carried out, including 

Recursive Least Squares (RLS), Recursive Extended Least Squares (RELS), 

Recursive Maximum Likelihood (RML) and Recursive Instrumental Variable (RIV) 

methods (Appendix-B). The process of plant identification can be better 

understood by considering one of these in more details, RLS being a suitable 
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candidate. 

Fig.3.4 illustrates the concept involved in identification and model 

generation using RLS techniques. Here a program running under the PC operating 

system performs the following actions; 

(a) Set up a preliminary (guessed) model of the plant using information 

supplied by the operator. 

(b) Read the recorded plant control signal at a specific sample instant, apply 

this to the model, and calculate the resulting output. 

(c) Read the recorded plant measured value at the same sample instant and 

calculate the error between this and the model output. 

(d) Compute the average error power. 

(e) Adjust the model parameters to reduce the absolute value of the power 

gradient. 

(f) Repeat the above steps (b) to (e) for all recorded values, working iteratively 

towards a condition of a minimum error power. 

As this program is executed sample by sample the model parameters (hopefully) 

converge toward those of the plant itself. What we are left with is a best estimate of 

the plant transfer function, this information being used in the implementation of an 

appropriate control scheme. Also, the results may be stored at each calculation 

interval, thus allowing the experimenter to review the convergence rate and 

accuracy of the identification process. It is, of course, necessary to design and 

write the identification program in the first case. This process is covered under 

software development (chapter.9). 

The identification process is repeated to obtain models of different orders. 

These are then adjusted until a minimum order model is obtained which adequately 
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represents the plant. Details of the model order reduction process are given in the 

following section. 
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3.4 MODEL ORDER REDUCTION 

3.4.1 Overview 

In a self-tuning controller the time required to execute the identification 

scheme is very significant and is usually the limiting factor on system sample rates. 

As the order of the assumed model increases the execution time rapidly increases (as 

shown in Table.3.1). A balance needs to be struck between the order of a transfer 

function and its effect on control system performance. Increasing the order of a 

model may produce only a marginal change in closed-loop performance; it may, 

though, produce a major increase in the time taken to run the identification process. 

What is needed is a minimum order model that adequately represents the plant for 

control purposes. 

The objective here is to investigate the performance of lower order plant 

transfer functions derived from the transfer function produced by the 

identification process. By comparing this with the model derived from frequency 

response testing of the plant the relative performance of the models can be 

assessed. This test can be repeated for models of various orders. 

3.4.2 The effect of choosing different model orders 

If the order of the assumed model in the identification scheme is higher than 

the order of the plant, the following will occur: 

(a) Zero coefficients will occur in the numerator polynomial of the transfer 

function when it is in the rational expansion form in the a-domain. This will 

take place until the ratio of the numerator to the denominator of the 

assumed model is equal to the ratio of the numerator to the denominator of 

the plant. Then, 
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(b) Pole-Zero cancellation will take place until the assumed model matches the 

plant. This is very clear when the model is in factored form. 

Therefore from the theoretical point of view the choice of a higher model order does 

not affect the estimated model since it will match the real plant as simulated in 

Appendix-E. 

In practice this does not occur, but instead negligible, rather than zero, 

coefficients appear in the numerator and poles and zeros that should cancel are not 

exactly equal. This is due to the fact that there are different noise sources in the 

system (e.g. quantisation effect). 

Numerous model order reduction techniques have been proposed in the 

literature, these being reviewed in [3.10]. In general these techniques have 

different objectives. Model reduction using pole-zero cancellation is the aim of our 

tests; hence the pole-zero cancellation method proposed by Soderstrom [3.9] is used. 

3.4.3 The Pole-Zero cancellation technique 

(a) The problem formulation 

The objective of this method is to test possible pole-zero cancellations in 

order to reduce a model order. The identification technique (e.g. Recursive Least 

Squares (RLS)) used in section 3.3.3 forms the basis for this method. 

The problem that is considered can be formulated as follows: The two 

polynomials that form the plant transfer function (A/B) are 

A(z-1): ao + a1 z-1+ ••• ana z-•• 
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,---------- ----

B(z-1): 1 + b1 z-1 + ... bab z-•b 

where the values of parameters are those estimated in the previous test (section 

3.3.3}. To account for the uncertainty of the parameters estimated the covariance 

matrix (P} of these estimates produced from the identification technique is used. 

The problem now is to test whether the polynomials A and B have common factors or 

not. The test is carried out for N common factors by starting with N:1, repeat the 

test for N:2,3, ... , etc. as long as common factors are found. 

(b) The criterion 

Let the n-dimensional vector ! consist of the estimated values of the 

coefficients of the polynomials A and B. Introduce a vector ~ that has the same 

dimension as .! corresponding to two polynomials A and B. The problem now is to 

look for a vector ~in the same domain of !such that the corresponding polynomials 

(A and B) have at least N common factors. 

The technique achieves this by minimising a cost function J(x} of the form 

(3.1} 

Notice that the error criterion (Eq.3.1) uses P-1 as a weighting matrix. Each 

element in the covariance (P} matrix reflects the uncertainty of each estimate; a 

large uncertainty means large variance which in turn implies that the corresponding 

element in the P matrix is large. Therefore p-1 gives approximate relative 

weighting in the error criterion (Eq.3.1) because in p-1 large variance generates 

small weighting on the corresponding error. 
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(c) The algorithm 

Introduce the polynomials A(z-t), B(z-1) and C(z-1) where 

,., 
A(z-1): ao + iit z-1+ ,,, + iio ... K z-<oa-Kl 

-B(z-1): bo + bt z-1+ ... + bob-N z-<•b-Nl 

- J J C(z-1): 1 + Cl + .,, + CN z-N 

where N is the number of common factors. Consider the polynomials A(z-1) and B(z-1) 

have the following form 

,.. "" 
A(z-1): A(z-1) C(z-1) , 

"" " B(z-1): B(z-1) C(z-1), 

-Thus the polynomial C(z-1) represents the pole/zero cancellation factors. 

,.. "" ,.., 
The coefficients of these three polynomials (A, B, and C) are collected in a 

vector z. Thus~ can be written as a function of L ~ = f(z). Then the optimisation 

problem is to find the global minimum without constraints of 

V[f(z) 1 = [f(z)- i&JT p-1 [f(z)- i&J 

,., "" 
The resulting coefficients of A and B represent the coefficients of the reduced model 

,., . 
while the coefficients of C represent the common factors in the numerator and the 

denominator of the original model. 

This is a non-linear optimisation problem which may yield several minima, 
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therefore the selection of the initial values of the z vector is important. A 

reasonable set of initial values can be found by using the values of the original 

model. This is done by looking at the poles and zeros of the original transfer 

function and using the ones that are close to each other as the initial value for the C 

polynomial while the rest of the coefficients are used as initial values for A and B 

polynomials. 

Several methods are available to solve a non-linear optimisation problem 

[3.12]. The quasi-Newton method is one of the powerful techniques used in such 

optimisation problems and is available in the NAG library on the Honeywell MULTICS 

main frame computer. For these reasons it is used to handle the optimisation 

process involved in model order reduction. 

3.4.4. Static gain correction 

The static gain of a discrete transfer function is simply its value when z is 

set equal to 1. Looking at a typical transfer function produced from the 

optimisation for one common factor 

N ,V ,., ,., 

(ao + a1 z•l + ... + aa11-1 z-<•a-ll)(l+ Cl z•l) 

~ - -( 1 + b1 z-1 + ... + bab-1 z·!•b·ll)(l+ Cl z-1) 

"' There is one too many degree of freedom in the A polynomial. Therefore the 

optimisation may yield numerator estimates which are incorrect by a scaling factor 

and hence give rise to a static gain difference between the original model and the 

reduced model. This was found in practice as will be shown in Chapter 8. 

Several solutions to this problem are introduced: 

(a) Using the above method as proposed by Soderstrom, then multiplying the 
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reduced order model by a scaling factor. The resultant model has the 

following form 

Go 
Gaew(z-1) : 

Gr 

where Gaew(z-1) is the new model, Go is the static gain of the original model, 

and Gr is the static gain of the reduced order model using the Soderstrom 

method. 

(b) Modifying the algorithm to retain the static gain during the optimisation 

(c) 

"' procedure by forcing b1 to have the value 

1 .. • ,.., ,.. 
I: "' I: b1 = 8.1- bJ - 1 

Go l=O J=Z 

where Go is the static gain of the original model. 

,.., 
Retaining the static gain during the optimisation procedure by forcing ao to 

have the following value 

• ..., ID - I: I: "' ao = Go b1 aJ 
1•0 J•1 

"' instead of b1. 

(d) Produce a reduced order model using the Soderstrom method and then - "" amend the value of either ao or b1 so that the static gain is equal to the 

original model. 
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3.4.5 Model trimming 

The method proposed by Soderstrom tests for pole-zero cancellation but 

does not test for negligible numerator coefficients that could appear if the order of 

the model produced from system identification is over estimated as mentioned in 

section 3.4.2. Therefore the structure of the continuous reduced order model may 

not match the actual model of the continuous plant. It is shown in Appendix-E that 

it is not possible to eliminate these coefficients if the model is in the Z-domain since 

they contribute to each coefficient, but if the model is in the S-domain these small 

coefficients appear as separate coefficients in the numerator. 

A technique is introduced to test for negligible coefficients after 

performing model order reduction. This trimming method uses the same error 

criterion (Eq.3.1) used above and the quasi-Newton method is used as the 

optimisation method. Details are given in Appendix-E. 

3.4.6 Model order reduction technique 

Fig.3.5 shows the procedure to produce a reduced order model, these being 

* Reduce the model order using the improved method a, b, c or d (Section 

3.4.5) 

* Transform the model to the S-domain. 

* Trim the model using model trimming technique (Section 3.4.6) 

* Transform the model back to the Z-domain. 

3 - 14 



u(s) 

Fig . 3. 1 

THE TRANSFER FUNCTION BLOCK DIAGRAM 



--------------------------------------------------------

RS-232 
~ter1•al comma 

line 

measured value 

Fig.3.2 

SYSTEM ORGANISATION- FUNCTIONAL TESTING 

shaft position 



Fig. 3.3 

A 1YPICAL TEST SEQUENCE 

J 



i/ p 

STORED DATA 

PLANT 

CONTROL 

SIGNAL 

PLANT 

MEASURED 

V.Al..I.E 

PARAMETER 
ADJUSTMENT 

Fig.3.4 

PLANT OFF- LINE IDENTIFICATION PROCESS 

AIJEP.I.GE 
ERROR 
POWER 



Fig . 3 . 5 

MODEL ORDER REDUCTION SEQUENCE 



Table. 3. 1 

Time Required To Excute System Identification Procedure 



,----------· --- - -

CHAPTER-4· 



~~~~~~~~-----

4 IMPLEMENTATION OF THE DIGITAL CONTROL ALGORITHM 

4.1 INTRODUCTION 

Numerous control algorithms have been proposed for use in digital 

controllers [4.1,4.2,4.3). In this chapter a number of algorithms are implemented in 

order to evaluate their effectiveness in controlling the plant. The ones evaluated 

here are those which have (or appear to have) given satisfactory results in practical 

situations. These algorithms are related to the performance specification methods, 

being expressed either in statistical or deterministic form. However performance 

effectiveness is not the only criterion for evaluation. In an on-line adaptive 

controller for ~ervo applications the control action, and especially adaptation of the 

algorithms, must be carried out quickly. Thus simple algorithms which require only 

a small computing effort are desirable. 

Once the performance specification (criterion) and control algorithm are 

defined then the algorithm coefficients are adjusted until the closed loop 

performance specification is met. However the loop includes the plant; hence its 

dynamics must be taken into account when computing the coefficient values. This 

requires us to evaluate the plant transfer function in discrete form (i.e. to derive 

its pulse transfer function) before calculating the controller settings, Finally 

practical considerations involving system non-Iinearities and quantisation effects 

have to be considered before actually running the control loop. 

The performance actually achieved depends to some extent on the 

controller hardware and software. In this case a 16-bit microprocessor with 12-bit 

Analogue to Digital and Digital to Analogue converters is used; the software is 
..... ""'•-·•'>•~.-·•••~•><•>J'.~"'-""'~c'""''"' 

written in PASCAL, calculations being carried out in floating-point form. 
~~~~~~~~~~~----~~~---
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4.2 PULSE TRANSFER FUNCTION 

Fig.4.1 shows the system diagram of the microprocessor controller together 

with the plant. The analogue and the digital parts of the system are connected via 

D/A and A/D converters respectively. 

To develop a form of a sampled system as shown in Fig.4.2 the system is 

depicted as follows. Each A/D converter is represented by an ideal sampler [4.4]. 

Each D/A converter is represented by a sampler followed by Zero Order Hold (ZOH) 

circuit having the following transfer function [4.5]: 

1 
hzoh : (4.1) 

s 

where h is the sample time. 

The plant is modelled by its linear transfer function, which, in this case is 

k 
G(s)= (4.2) 

and the calculations in the microprocessor are expressed by their pulse transfer 

function H(z) as shown in Fig.4.2 [ 4.2]. 

Fig.4.3 is obtained by first combining the analogue parts (the hold, sampler 

and plant [4.3,4.4,4.6]) to give a combined transfe.r function of; 

1 
G(s)= - ( 1 - e-•h ) G(s) 

s 
(4.3) 

The discrete equivalent of this is obtained using invariant impulse transform tables 

[ 4.5]: 

G(z)= ( 1 - z-1 ) Z[G(s)/s] 
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kh z-1 
G(z): 

7'(1 - z·l) 

where h is the sampling time. 

In more general terms this transfer function can be written as: 

G(z): (4.4) 
(1+ b1 z•l) 

where a1 = kh/7' and b1 = -1 

This method of representing the continuous plant as a discrete model is 

used for the following reason: If at sampling instants,as shown in Fig.4.4, E is zero 

then the continuous and discrete models are identical (note this does restrict us to 

the sample instants), Using the impulse invariant transform technique the 

resulting discrete model has a pulse response which is identical to that of the 

impulse response of the continuous model. 

4 - 3 



4.3 THE CONTROL LAW 

Fig.4.5 and Fig.4.6 show the most general form of a system controller, F, S 

and 1/R representing individual processing functions. Any closed loop controller 

can be represented by this structure. For instance with F:1, S:1, and R:0.01 the 

unit is a simple proportional (P) controller having a gain of 100. 

Note that the symbology (F,S,1/R) is used for mathematical convenience only 

and has no other significance. From this structure the control law can be written in 

a general form [ 4.3] as: 

i.e. 

or 

Loop error = F(z)w(t) - S(z)y(t) 

R(z)u(t): F(z)w(t) - S(z)y(t) 

F 
u(t): - w(t) 

R 

s 
- -y(t) 

R 

where R, F and S are polynomials in the Z domain. 

( 4.5a) 

(4.5b) 

The control law (4.5) represents a combination of a feedforward from the 

command signal w with the pulse-transfer function [4.2]: 

F 
G, : 

R 

and a feedback from the measured output y with the pulse transfer function: 

s 
Gtb : 

R 

For a digital controller Gc to be physically realisable, the power series 

expansion of the controller transfer function Gc must not contain any positive power 

in z [4.10]. Any positive power in z in the series expansion of Gc indicates that the 
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output precedes the input to Gc. This cannot be implemented since it requires a 

knowledge of future values of the input to the controller [4,11], Therefore, the 

feedforward and the feedback transfer functions should satisfy the causality 

conditions [ 4.2]: 

deg R > deg F 

deg R ~ deg S 
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4.4 IMPLEMENTATION CONSIDERATIONS 

4.4.1 Introduction 

When implementing a digital controller the following are considered: 

* Choice of sampling rate 

* Computational delay 

* Practical constraints 

* Numerical accuracy 

4.4.2 Choice of sampling rate 

The selection of the best sample rate for a digital control system is the 

compromise of many factors. The basic motivation to lower the sample rate W• is 

cost. A decrease in rate means more time is available for the control calculations; 

hence slower microprocessors can be used for a given control function and the cost 

per function is lowered. Alternatively the original processor can perform extra 

tasks above that of controlling the plant. For systems with A/D converters, less 

demand on conversion speed will also lower cost. These economical arguments 

indicate that the best engineering choice is the slowest possible sample rate that 

still meets all performance specifications [ 4. 7]. 

Factors that provide a lower limit to the acceptable sample rate are: 

* Tracking effectiveness 

* Disturbance rejection 

* Prefilter design 
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(a) Tracking effectiveness 

This is defined in terms of closed-loop_~_!!!!d'!i-JIJ!L. or transient time 

response performance, such as rise time and settling time. The lowest bound to the 

sample rate is set by a specification to track a command input with certain frequency 

(the system bandwidth) [4.7]. The sampling theorem states that in order to 

reconstruct a continuous signal from samples of that signal, one must sample at least 

twice as fast as the highest frequency contained in the signal (4.8]. 

This is likely to be significantly higher than the closed loop bandwidth. In 

practice test results show that this theoretical lower bound of sampling is not 

sufficient in terms of the quality of the desired time responses, and a sample rate of 

4-20 times Waw is reasonable [4.4]. This is done mainly to reduce the delay 
.....--___.....---·--...-. ... , .. ,. ,• 

between the set-point and the system response to that set-point change (4.7]. 

Furthermore it smooths the system output response to the control steps coming out 

of the DAC since, as sampling rates are increased, the step change in DAC output 

amplitude reduces. Consequently control action becomes less abrupt and control 

roughness is reduced at high sampling rates [4.4]. 

It is important to distinguish between closed-loop bandwidth and the 

highest frequencies present in the open-loop system. ~n the majority of cases 

closed-loop band~~"~E"~ .. .':!.e.s_ignifica~tly. higher. than their _cor_res~?l1?ing _o_J)_en:l()()P 

~-i.e.-

1 
O.L.T.F : -------- : G(s) 

1 + 7 s 

For Gc:lO as shown in Fig.4.7, then 

GcG(s) 10/l+::fs 
C.L.T.F : ---------- = ------------

1 + GcG(s) 1 + 10/1+ ']' s 
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10 10 
= = 

1 + ::r s + 10 11 + 7' s 

10 1 

= 
11 1 + 7'/11 s 

This may, however, be complicated by resonance effects within the loop 

which have high natural frequencies. 

The situation is further complicated if the controller is likely to experience 

high frequency electrical interference. Here sampling rates are determined by the 

!row' filtet,_design (see paragraph (c)); the r~sultin_!f_pgf<?J'-'!!!!.!lCe ~~.,!cts may ~ad 

t9 the PSfLOf multi-rate sampling techniques [4.3] in conjunction with digital low 

pass filtering of the input signal. 

(b) Disturbance rejection 

Disturbance rejection is an important aspect in control systems. If the 

sample rate is very fast compared with the frequencies contained in the noise 

disturbance, the noise rejection will be high [4.5]. However, if the sample time is 

very long compared with the characteristic frequencies of the noise, the response of 

the system to the noise is essentially the same as if there were no control at all [ 4. 7]. 

Although the best choice of sample rate is dependent on the frequency 

characteristics of the noise and the degree to which random disturbance rejection is 
A 

important to the quality of the controller, sample rate re uirements of 10=20 t!!J:~ea-" 

~~·w:--~ar~e~c~o~m~m~o~n--_[4.4,4.7]. 
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(c) Prefilter design 

Digital control systems with analogue sensors typically include an analogue 

prefilter between the sensor and the A/D converter as an antialiasing device. T~ 

prefilt~rs_~~w-pass1 t~pically 3r<:Ug,..§.t.h...9J"_Qru:..fi1tel:!!.J?<ihJ.g~\ll'ledJn.fMi.!!~tl'l.!ll'l.. 
' 

[4.9]. The simplest transfer function is [4.7]: 

a 
HP(s): 

s + a 

so that the noise above the prefilter breakpoint a is attenuated [4.10], The design 

goal is to provide enough attenuation at half the sample rate (. Ws/2) so that the 

noise above w:., when aliased into lower frequencies by the sampler, will not be 

detrimental to the control system performance [4.4], A conservative design 

~rocedure is to select the bJ:!'l.f!~J?9~!!~ aiJd ... ~-•--ll!ltficientl~J!!.gh!lr than,_the ay~ 

~and width so that the pha~e_JM.Jz:qm_th~_p_r,e.f!U.eJ: .. do!ls .. not.sJgnificantlY,!!l!e~.!~.e 

;'Ystem stability,_ Thus the prefilter can be ignored in the basic control system 

design [4.7]. Furthermore, for a good reduction in the high frequency noise at 

Ws/2, the sample rate is selected about 5 or 10 times higher than the prefilter 
.o~•W•o.~·• ,•-.,., .,,_,._..., .- 0 , .,_,....,,... ~cO•O•• >- ... ,._,.,... .... ,,j•d,. 

implication of this prefilter design procedure is that the sample rates need to be of 

the order of 20 to 100 times faster than the system bandwidth. This means that the 
( 

p:..r_e_f_il_t_e_r_s;p_e_c_if_i_c_a_b_'o_n_d_e_t_e_r_m_i_n_e_s_t_h_e_l~e!.J!,9.1W.<i.2U.he_E!~ll!PhLJ'l!~.!l· 

6 The rise time of the actuator system is approximately 4.3 Sec. A sampling 

time of 0.1 Sec, roughly 40 times faster than the rise time, is used in the controller. 

4.4.3 Computational delay 

There is always time delay when implementing a control algorithm using 
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microprocessors [4.10]. This delay is due to A/D and D/A conversion times and the 

time required to carry out the control calculations. The A/D and D/ A conversion 

time is usually negligible (e.g. "' 25 uSec.), the significant time being the 

computational time. This is called the computational delay which is determined 

mainly by how the control algorithm is implemented.L1There are"tJr.<?~!!~.Y~ __ ._, ......... · ..... . 

~!!.U~~~ori~E}.!!~~~---~hE!!..f!;,".!.~ .... gig~4.~~~-~!?'.~.-~!.~.~:~ ... ~:_l 1 ]. 

In Fig.4.8 the measured value is read at time t and used to compute the 

control signal which is then applied at time t+l. This means that there is a time 

delay in the controller of one sample interval. In Fig.4.9 the measured value is read 

at time t, the control signal computed immediately, and the result output via the D/ A 

converter as soon as possible. This means that the control signal is delayed only a 

fraction of the sample time [4.11]. 

The advantage of the second case is that the computation time can be 

ignored if it is very small. This delay is variable, depending upon the programming 

and mathematical floating point operations [4.5]. In many situations this variability 

can be ignored. However if it is significant when compared with the sampling time it 

may cause problems in the control loop [ 4.3]. The disadvantage of the first case is 

that the control signal is delayed one sample, but the advantage is that, as the delay 

time is constant, it is a straightforward to include one time-delay in the controller. 

~g1...Qf..h.!!Yi!lLo!l!!_.tjm•~t::.<:lelay .in..the .. controller.is_Jhe ~me as hav~ 

one extra tim.clelaz in tq~~!JLDJ.<:!Jt~l.l•h!lJ• Thus system performance can be 

evaluated by including the sample time delay in the plant model [4.11]. 

In serve systems the response should be virtually instantanous. 

Therefore it is unacceptable for the controller to have any time delay at all; hence 

the second implementation only is considered in this work. 

The execution times obtained for different algorithms are shown in 

Appendix-C. In this system the slight delay between the y(t) sample and the u(t) 
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output has negligible effect on the actual response of the system. A rule of thumb 

4.4.4 Practical constraints 

The non-linearity produced by system saturation (Fig.4.10) represents the 

practical behaviour of many actuators and final control elements [4.12]. For 

example, a motor-amplifier combination can produce a torque proportional to the 

input voltage over limited range, However, no amplifier can supply .an infinite 

current; there' is a maximum current and thus a maximum torque that any practical 

system can produce [4.8]. The final control element is said to be overdriven when 

commanded. by the controller to do something beyond its capabilities. ~ 

l!erformance of all contro.l..§l~ i!!,El,!.!Jn!<'J.!t!Y.~.<!.£Lt~~.!t.1!:~.Y!'tl.ic_l;>..~I).!'Y,Ef1P. 

supply energy, Therefore it is important that all system performance 

specifications and controller designs be consistent with the energy-delivery 

capabilities of real devices [ 4.8,4.13]. 

In this work system identification is part of the self-tuning controller. 

Therefore, the system identification may fail to identify the system if it saturates. 

This is due to the fact that the identification algorithm will identify a saturating 

plant as having a very low gain. Consequently a controller with an unsuitable high 

gain will be implemented [4.14], It is therefore essential to make sure that the 

controller never allows the plant to saturate. There are two ways to achieve this 

[ 4.8]: 

(a) b Limiting the output of the controller so that it does. not exceed the value that 
....._.., .. ,~M""-•~•~-. ~·~ .. -.~· ... ''""'""•.._,,~··~>~• ·· ..,...,,~,.,.<:1""»~·~'"~'""''"'''•·' . ...,.,· >v.· -· · •-·-''" '·" · • • · ·' •<'•,·(-',"/<'·'··~"~~-· 

causes saturation. 
------····--·~ ........... """'~··-

This technique is useful in applications where the . .................. -.. . . -·- ...... _ . ..,..,.~~·--- ..... ~ ..... ~-·-·~><· ----~-... ,_. --- , __ ,., "--· . . " -- ·-·.---~- ¥''"'-~ 

magnitudes of the inputs are difficult to predict in advance [4.8]. ---- -·~-~ .............. ., .............. -... -... , ... ,.., ....... ---"'· .. ~·--
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(b) Selecting the gains so that saturation will never occur. This requires 

knowledge of the maximum input magnitude that the system will encounter. 

Denote the maximum expected value of w(t) (set-point) by w,. .. and the 

value of the controller output at saturation by Uau. Then at t:O the 

maximum error is W .. u. The maximum gain for linear operation is [4.13]: 

Umu 

Wmax 

The plant will always operate within the linear region if one of the above 

methods is used. 

Although low gain is a desirable feature to reduce both noise effects and 

wear and tear on control components it is a problem for system loops that exhibit 

steady state errors (e.g. positional errors in a type-0 system). In theory type-1 

systems do not have steady state positional error but in practice this is not the case 

due to the presence of nonlinear effects such as stiction and friction. Furthermore 

low gains cause a deterioration of the system dynamic responses [4.13]. Hence 

output limiting techniques are preferred. It is therefore essential that, when 

identifying the plant, an amplitude limited control signal is used. However if 

control only is required (i.e. no identification) then the plant may be overdriven if 

higher output levels are demanded. This is done by incorporating the non­

linearities into the controller software. 

This ensures that the actuator system operates within its linear region. 

Test results [Chapter-9] show that system performance is not degraded when 

amplitude limits are set into the controller. 

It is suggested [4.8] that control system performance can be improved if the 

limited energy-delivering capacity of the final control element is taken into account. 
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4.4.5 Numerical accuracy 

There are a number of different sources of numerical errors when 

implementing a controller on a microprocessor. The major soures ones are: 

* Arithmetic operations 

* Memory word length 

* AID converter 

* D/ A converter 

Internal number values are represented using integer and floating-point 

formats. Using the Intel 8087 Numeric Data Processor as a eo-processor real 

numbers are represented in the system as an 8-byte word. This gives a range oft 

4.19*10-307 to t 1.6noaoa, the corresponding precision being approximately 18 

(decimal) digits; integers are in the range oft 264 [4.17]. Applications that need to 

deal with data and final results outside this range are rare. 

The only limitations are then the A/D and the D/ A converters. Typically 

the converters used are 8, 10, 12, 14 and 16 bits ones, which correspond to 

resolutions of 0.4 %, 0.1 % , 0.025 % , 0.006 %and 0.00153 % • For ADCs, going above 

12-bit operation is very expensive, therefore a 12-bit converter is a good 

compromise between cost and resolution. 

4 - 13 



4.5 CONTROLLER DESIGN TECHNIQUES 

4.5.1 Overview 

A number of different control algorithms are used here in the design of the 

digital controller. These are implemented in the microprocessor in software, the 

resulting system performance being evaluated for each implementation. The most 

important factors to be considered for each algorithm are the execution time and the 

ability to specify the dynamic (transient) response of the system. In this section 

the following control criteria are implemented and evaluated: 

* One-Step-Ahead Prediction 

* Weighted One-step-Ahead Prediction 

* Pole/Zero Cancellation 

* PID Controller 

Design details for each criterion are described in depth in Appendix-C, the 

general results being summarized in the following sections. 

4.5.2 One-Step-Ahead Prediction 

The control objective here is to compute the control signal at the present 

instant of time in order to bring the future plant output to some desired value. 

Thus the design criterion is to minimise the prediction error (i.e. the difference 

between the actual value at some future instant and that actually desired). 

The one-step-ahead controller minimises a cost function (I) which is defined 

as: 
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--------------------------------------------- -----------------------------

I : [ y(T+ 1)- w(T) ]2 (4.6) 

where y(T+1) is the output at time T+1 and w(T) is the desired value. 

The transfer function (4.4) is rewritten here: 

at z-t 
G(z)= ---- (4.7) 

1+ bt z-t 

where at = kh/7' and bt = -1 

The discrete time domain of Eq.(4,7) is: 

y(T): -bt y(T-1)+ at u(T-1) (4.8) 

a I 
To minimise I in Eq. ( 4.6) is set equal to zero. 

ou(T) 

The design details are shown in Appendix-C. The control signal that minimises 

Eq,(4.6) is: 

1 bt 
u(T) : w(T) + - y(T) (4.9) 

at at 

Eq.(4.9) can be written in the general form (Fig.4.5) of Eq.(4.5) as: 

u(T) = fo w(T) - so y(T) (4.10) 

where R = 1 , fo = 1/at and so = -bt/at 

Since bt = -1 then fo = so and the controller is just a pure gain: 
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u(T) : K [ w(T) - y(T) ] ( 4.11) 

where K = l/a1 = 7'/kh. 
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4.5.3 Weighted One-Step-Ahead Prediction 

The purpose of the One-Step-Ahead control method is to bring the output to 

the desired value as quickly as possible. In a digitally controlled system this means 

that correspondence must be achieved within one sample period. Even if this is 

practicable it is likely that an excessive control effort will be called for. This can 

result in considerable wear and tear of the control elements. To avoid such effects 

some cost (weighting function) is put on the control effort, this being called the 

Weighted-One-Step-Ahead control method. 

The cost function becomes: 

I = [ y(T+l)- w(T)]2 + >. u 2 (T) (4.12) 

where the value of;,;. A determines the compromise between the time taken to eliminate 

the plant error (w-y) and the amount of effort expended in doing this. 

a I 
To minimise I in (4.12), set ------ = 0 

au(T) 

The controller that minimises Eq.(4.12) is: 

1 
u(T) : --------- w(T) + --------- y(T) (4.13) 

Using the design information shown in Appendix-C. Eq,(4.13) can be written in the 

general form (Fig.4.5): 

u(T): fo w(T) - so y(T) (4.14) 
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,----------- -

where R = 1 , fo= 1/[ at + A/at] and so= -bt/[ at + -\fat] 
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4.5.4 Pole/Zero Cancellation 

This design approach considers a servo problem expressed in terms of a 

model that gives the desired dynamic response to command signals [4.1]. Fig.4.11 

and Fig.4.12 show the block diagrams of the system and a general model form. 

Many closed loop systems can be satisfactorily modelled using a 2nd order 

(quadratic) Jag, as follows. 

·z 
w~ 

Gm(s): ------- (4.15) 

For such a model the important dynamic parameters to the control engineer are 

* Rise time (T.) 

* Overshoot (MP) 

* Settling time (Ts) 

These are illustrated in Fig.4.13. Note that the transfer function itself defines the 

closed loop to have zero steady state error. Using this model, and working with 

specified values of Tr, Mp and Ta, ! and "!,are calculated [see Appendix-C). Since 

the controller is implemented on a microprocessor, the discrete form of this 

continuous transfer function (G,.(s)) is determined using the Bilinear Z-transform 

[4.9]. The equivalent discrete form is 

do zZ + dt z + dz 
G,.(z)= (4.17) 

zZ + Pl z + pz 

The poles of the discrete time system are given by the characteristic equation: 
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z2 + Pt z + P• = 0 (4.18) 

where 

Pt = (4.19) 
4 + 4Tiw.,+ T•w! 

P• : 
4 - 4TIW,+ T2w2 

" (4.20) 
4 + 4T j,J~ + T2w! 

The values of these poles (pt and p.) are determined using ~ and w", 

Pole/zero cancellation techniques are used, the objective being to make the 

closed-loop transfer function of the system equal to the desired transfer function 

Eq.(4.17). The design details are discussed in Appendix-C, where the parameters 

(R, F and S) of the digital controller are determined. Substituting for these values 

in the general control Eq.(4.5) gives: 

u(T): fo w(T-1)- so y(T-1)- rt u(T-1) (4.21) 

where 

1 + Pt + P• 
fo = 

at 

bi - bt Pt + P• 
so = 

at 

rt = Pt - bt 
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4.5.5 PID Controller 

PID controllers are employed extensively in process systems and, to a lesser 

extent, in serve control applications. As a result they are perhaps the type most 

commonly encountered in practice. Fig.4.14 shows the conventional PID controller, 

its idealised equation being [ 4.8]: 

u(t): K [ e(t) + 

where the parameters 

t 

_I_ f e(t) 
Tt 

0 

K = proportional gain 

Tx = integration time 

Tu = derivative time 

de(t) ] 
dt +Tu--

dt 
(4.22) 

For any sample time T Eq.(4.22) can be turned into a difference equation by 

discretisation. The derivative is simply replaced by a first order difference 

expression and the integral by a sum (4,15], Applying backward rectangular 

integration gives [4.8]: 

T •-• Tu 
u(n): K [ e(n) + I: e(i) + (e(n)- e(n-1))] (4.23) 

Tx •=• T 

where u(n) is the current output, e(n) is the current error, etc. 

This is a non-recursive control algorithm, which means that all past error 

values e(n) have to be stored. However a recursive algorithm is more suitable for 

programming on computers, since past error values do not have to be stored. This 

algorithm is characterized by the calculation of the current control signal u(n) 
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based on the previous value u(n-1) and correction terms [4.8], The recursive 

algorithm is derived by subtracting from Eq.(4.23) 

T •-z Tm 
u(n-1)= K[ e(n-1) + - .}:e(i)+ -(e(n-1)- e(n-2))] (4.24) 

TI 1•0 T 

where one obtains 

u(n)- u(n-1): qo e(n) + Qt e(n-1) + qa e(n-2) 

and 

u(n) = qo e(n) + Qt e(n-1) + qz e(n-2) + u(n-1) 

with parameters 

Tn 
qo = K(1 +- ) 

T 

Tn T 
Qt : -K( 1 + 2 - - ) 

TD 
qz = K­

T 

T 

( 4.25) 

(4.26) 

(4.27) 

(4.28) 

Fig.4.15 shows the recursive algorithm of the digital PID controller, Fig.4.16 

illustrating the complete control loop. The Z-transfer function of the controller is 

(from 4.25) 
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u ( 1 - z-1) = qoe + (q1e)z·1 + (qze)z-2 

i.e. 

u(k) Q 
Gc(z): -- = = (4.29) 

e(k) J 1 - z-1 

and as e(n) = w(n) - y(n) 

(1 - z•1)u(k):(qo + q1 z-1 + qz z·2 )[w(k)- y(k)] ( 4.30) 

From Fig.4.16 the closed loop equation is found to be: 

QA 
y(T) : w(T) ( 4.31) 

B J + Q A 

The general control input form (Fig.4.17) can be compared with the PID control input 

function (Fig.4.18, Eq.4.30). The control input of Eq,(2.31) can be associated with 

the general controller form Eq.(4.5) if 

FIR : S/R 

then 

R : J :(1 - z-1) and F = S = Q = qo + q1 z-1 + qz z-2 

The coefficients of the Q polynomial qo, q1 and qz must be selected to meet the 

desired performance objective, hence the K, Tr and To coefficients will be 

determined using Eqs,(4.26) to (4.28), The pole assignment criterion is used, in 

which the denominator of the closed loop Eq,(4.31) is equated with P, the apriori 
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selected polynomial. The equation required to meet the pole assignment objective is 

therefore: 

BJ+QA:P (4.32) 

from which the coefficients of the Q polynomial are found. 

The apriori defined polynomial P corresponds to the continuous time 

polynomial 

s• + 2IW· s + w• 
~ " 

(4.33) 

as shown in Eq.(4.18) using the backward shift operator is 

1 + Pl z-1 + P• z-2 (4.34) 

where 

2T"w" - a 
Pt : 

4 - 4T!w + T•w• 
" " P• : 

The values of i; and w., are calculated according to the specified rise time 

and overshoot as shown in Appendix-C. 

Substitute for A, B, J, Q and P from Eq,(4.7),Eq.(4.29) and Eq.(4.34) 

respectively in the design Eq,(4.32) to calculate the parameters of the controller. 
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The details are shown in Appendix-C. The control signal function is then: 

u(T): qo [w(T)-y(T)] + q1 [w(T-1)-y(T-1)] + u(T-1) (4.35) 

and this is equivalent to a PI controller as shown in Appendix-C. 
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5 SELF-TUNING CONTROLLER 

5.1 INTRODUCTION 

In a conventional closed loop control system (Fig.5.1) the controller is 

designed for fixed and known plant parameters. If these parameters vary due to 

environmental changes, then the control system may exhibit satisfactory responses 

for one environmental condition but may fail to do this under others [5.8], 

Therefore a fixed controller will not meet the specified closed loop performance 

criteria over the full operating range of the plant. Furthermore, large variations of 

plant parameters may cause instability [5.8]. In such situations, to meet the 

desired performance criteria, it is usually necessary to adjust the controller 

parameters every time the environmental conditions change, This can be done 

manually as in the case of the conventional PID controller. Here the tuning of the 

controller is adjusted as required by the plant engineer, controller settings being 

based on both experience and trial and error techniques [5.4]. In contrast, for 

self-tuning systems, we compensate for variations in the transfer function of the 

plant simply by retuning the controller until satisfactory system performance is 

achieved under all operating conditions [5.7]. Hence it is necessary for the plant 

transfer function to be identified continuously, a process which is carried out 

automatically as the plant is in operation. 

Another feature of the self-tuning controller is that tuning does not 

require operator experience or involvement. 

5.2 BASICS OF THE ADAPTIVE (SELF-TUNING) CONTROL SYSTEM 

The control system is called adaptive if it has the ability to modify its 

behaviour, on-line, to meet specified closed loop criteria [5.12]. 
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Fig.5.2 shows the basics of the adaptive controller. A recursive parameter 

estimator monitors the plant's input (u) and output (y) signals. From these it 

computes an estimate of the plant dynamics in terms of a set of parameters in a 

prescribed structural model. The parameter estimates are fed into a control design 

algorithm which then provides a new set of coefficients for the feedback law [5.3]. 

The important point about self-tuning is that, even if detailed knowledge of 

the plant dynamics is unavailable, the adaptation mechanism achieves this closed­

loop performance by adjusting the controller coefficients automatically. So we can 

view the self-tuner as consisting of two parts: 

* A Controller: designed to meet specified closed loop performance criteria. 

* A Parameter Estimator: to monitor the plant and compute its transfer 

function. 
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5.3 IMPLEMENTATION CONSIDERATIONS 

5.3.1 The control function 

The general form of the control algorithm is designed and implemented in 

software, running on a microprocessor. It still remains necessary to calculate the 

controller coefficients as a function of the plant parameters [5.6], these being 

adjusted dynamically. 

Many techniques are available which are suitable for the design of digital 

controllers [5.1,5.2,5.5,5. 7 ,5.11]. For serve applications Pole/Zero cancellation or 

PID controllers, as mentioned in Section.(4.5), are especially useful. These allow the 

operator to specify the desired plant performance in terms of the system dynamics. 

5.3.2 The identification process 

The self-tuner has to have the facility to estimate the parameters of the 

plant from its input and output signals. If identification is done while the plant is 

running, the technique is called on-line estimation. Recursive techniques are 

suitable for on-line identification and include the following methods (Fig.5.3) 

[5. 7 ,5.10]: 

* Recursive Least Squares (RLS). 

* Recursive Extended Least Squares (RELS). 

* Recursive Maximum Likelihood (RML). 

* Recursive Instrumental Variable (RIV). 

* Stochastic Approximation Method (STA). 

These methods are discussed in details in Appendix-B. It has been found 

that RLS, RELS and RML are most suitable for self-tuning due to the simplicity of the 
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implementation and the good results achieved [5.7,5.9]. 

When identification is done on-line the estimated parameters are updated at 

each sample instant. Servo systems are usually fast, having wide bandwidths; as 

such the sampling rates are high compared with process control. Therefore the 

identification calculation must be carried out quickly. Further, the estimated 

values of the parameters need to converge to the real values in as few samples as 

possible. Table.B.l [Appendix-B) shows that the Recursive Least Squares (RLS) 

identification algorithm is most suited for such requirements. 

If the plant parameters change rapidly, the estimated parameters must 

converge rapidly to their new actual values. Convergence is speeded up by 

modifying the identification algorithm through the use of a forgetting factor, as 

shown in Appendix-B [5.10,5.9]. 

5.4 GENERAL DESCRIPTION OF SELF-TUNING SYSTEMS 

Fig,5.4 shows the structure of a self-tuning controller. This is divided 

into three main components; 

(a) an identification component which identifies the parameters of the system 

using the input and the output signals to the system 

(b) a control-design algorithm which uses the estimated parameters of the 

system to provide the controller coefficients 

(c) a controller part which uses these coefficients to compute the output control 

signal [5.3] 

The control-design algorithm uses the estimated parameters for the 

purpose of controller parameter calculation as if they are the true parameters. 

This is called the certainty equivalence principle [5.12], the resulting design being 

called a "certainty equivalent controller". This controller does not take into 
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account any uncertainty of the estimates [5.12]. 

We can view the self-tuner (Fig.5.4) as an intelligent feedback control 

technique which, at each control interval, executes the following sequence: 

* estimates the unknown plant parameters via system identification 

techniques (using input and output measured signals) 

* calculates the controller parameters using these estimated values 

* implements the resultant control law 

By applying this sequence continually the controller is automatically 

tuned up for a particular system until it meets the required performance. The self­

tuner constantly monitors the system but, as the estimated parameters converge to 

their true values, the self-tuning algorithm will perform as a conventional fixed 

controller. If the system characteristics change the control law is once more 

retuned to meet the new system configuration. 

Either RLS, RELS, or RML (Appendix-B) methods can be combined with one 

of the control algorithms discussed in Section (4.5) to form the parameter adaptive 

controller [5. 7]. 
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5.5 IMPLEMENTATION OF THE SELF-TUNING CONTROLLER ALGORITHM 

5.5.1 Pole/Zero cancellation Self-Tuning 

(a) Overview 

The Pole/Zero cancellation method discussed in Section (4.5.4) is used here 

to implement the self-tuning controller. In Section (4.5) the plant model used is: 

B(z)y(T): A(z)u(T) (5.1) 

where u is the control signal, y is the measured signal, and A and B polynomials are 

the true parameters of the plant. In a self-tuning controller the plant parameters 

are replaced by estimated ones, and the assumed plant model is defined as; 

A A 

B(z)y(T): A(z)u(T) (5.2) 

A A 

where B, and A represent the estimated parameter polynomials. 

We shall consider the desired closed-loop behaviour to be given by the 

classical continuous time system 

G.(s) = (5.3) 

since the dynamics of such systems (e.g rise time, overshoot, etc) are explicit 

functions of .~ and w. Hence a system specification expressed in these familior 

control terms also implicitly specifies t; and W .• 

The equivalent discrete form, G.(z), of the continuous transfer function, 
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Ga(s), is determined using the Bilinear z-transform as shown in Section (4,5.4), 

The desired closed loop transfer function from set-point to output signal is then: 

Aa 
Ga(z) = (5.4) 

Bm 

and the design equation is: 

~ ~ 

B R + A S : B., (5.5) 

The general form of the controller Eq,(4.5) is rewritten: 

R(z) u(T) : F(z) w(T) - S(z) y(T) (5.6) 

where w is the set-point signal. The design details are discussed in Appendix-C, 

where the parameters (R, F and S) of the digital controller (5.6) are determined using 

the estimated polynomials A and Bin Eq.(5.5) instead of the true polynomials A and B. 

Substituting for these values in the general control Eq,(5.6) gives: 

u(T): fo w(T-1) - so y(T-1) - r1 u(T-1) (5.7) 

The parameters of the model, A and B, of Eq.(5.2) are estimated using the 

Recursive Least Squares (RLS) method. 

(b) Tuning technique 

* Estimate the coefficients of the polynomials A and B in Eq,(5,2) using the 

Recursive Least Squares (RLS) identification method. 
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* Substitute for these values in Eq.(5.5) and solve for R, S and F. 

* Calculate the control signal from Eq.(5.7). 

* Repeat these steps at each sampling period. 
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5.5.2 PID Self-Tuning 

(a) Overview 

The PID controller form Eq.(4.31) derived in Section (4.5.5) is rewritten 

(1 - z-1)u(T):(qo+ q1z-1+ qaz-2)[w(T)-y(T)] (5.8) 

The control signal of Eq,(5.8) can be associated with the general cotroller form 

Eq.(4.5) as shown in Section (4.5.5) if 

(5.9) 

In Section (4.5.5) it is shown that the values of qo, q1, and qa are determined by 

solving Eq. ( 4.33) 

BJ+QA=P (5.10) 

A A 

In self-tuning the estimated values A, and B of the assumed model are used instead 

of the true parameters A and B. Hence Eq,(5.10) becomes 

A A 

BJ+QA:P (5.11) 

The apriori selected polynomial P is designed to satisfy a specific system 

performance criteria such as rise time and overshoot; the corresponding controller 

parameters qo, q1, and qa are calculated by solving Eq.(5.11) [see Appendix-C). 

A 

qo = ( 2 + p1) I a1 (5.12) 
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ql = (pz - 1 )/ at (5.13) 

q2 = 0 

The control signal function is then: 

u(T) : qo [w(T)- y(T)] + q1 [w(T)- y(T)] + u(T-1) (5.14) 

Note that this ·is equivalent to a PI controller [Appendix-C). 

The Recursive Least Squares method is used to estimate the parameters of 

the model, A and B, of Eq.(5.2). 

(b) Tuning technique 

* Estimate the coefficients of the polynomials A and B in Eq.(5.2) using the 

Recursive Least Squares (RLS) identification method. 

* Calculate the values of qo and q1 from Eq.(5.12) and Eq.(5.13). 

* Substitute for these values in the controller Eq.(5.14) to produce the control 

signal. 

* Repeat these steps each sampling period. 

5 - 10 



set-p olnt e 
+ 

S.P 

u 
AXED PlANT 

CONTROLLER 

Fig.5.1 

CONVENTIONAL CONTROL SYSTEM 

CONTROU.ER 

PLANT 

MONITOR 

u 
PLANT 

Fig.5.2 

ADAPTIVE . CONTROL SYSTEM 

y 

y 



ON-LINE 

IDENllACATION TECHNIQUES 

Fig.5.3 

IDENllACATION TECHNIQUES 

u 

FIG. 5. 4 

BASIC STRUcnJRE OF SELF-TUNING CONTROLLER 

y 



----------~ ~ 

. A l r '' . Ut - ..) (-\,_at-..... r I 

·.N'/:..V> (lv[l~.>l-<1_)'. J 
b 2.1. 31? I 75~'63/rvt{IJ 



SQ,\'\srY~ =vv\ r~~ C~cV~ 

~ I(CAJNVJV> ~J(y./1 .- /f-r-0V/ 

jv~J'/\ 6,- · ~\ ~ ( C lffJ . OOy y.- fih} 

T th- U">-~11 t1u,{.1/v:- oJv~'V'l j'J~'!YlU!J ; (ll/0 (o e:,-(...,1 . 

1~1./J--ctj1-~ tc; /115c~ :; cl, c'"'r:"J>-f c­
(&z./. s?ro4-':,c;,dt). 

G z I ' 3~ LJj DfP /)lr(~J sr/V~ A~e~ 7 
})ctvi.c/ J. f}e_f-'ai~ 



CHAPTER-6 



6 DIGITAL CONTROLLER - ELECTRONIC HARDWARE 

6.1 General information 

The unit described here (Fig.6.1) is designed to be used as a general 

purpose digital controller in closed loop systems. Although meant initially for use 

in laboratory conditions its design reflects the requirements of real systems. It 

can be seen that the complete system consists of three main building blocks; 

(a) Microcomputer (CPU) section. 

'' (b) Analogue input/output (I/O) section. 

(c) Serial communications I/0 section. 

All of the digital electronics are housed on a single printed circuit board, the 

analogue sub-system being located on a small adaptor board. This technique 

enables a standard computer section to be tailored to meet specific I/0 requirements. 

The complete assembly is defined as the "target system", the micro being the target 

processor. 

6.2 CPU section 

This is based on the use of the Intel 8088 microprocessor, augmented by an 

8087 numeric data eo-processor. It is designed to handle a maximum memory 

address space of 64 kByte, all devices being memory (not I/O) mapped. The address 

space is programmable through the use of PROM decoding techniques. Currently 

the system is equipped with 32 kByte of Eprom for program and fixed data storage 

together with 16 kByte of RAM for variable data storage and stack operations. The 

design also requires the use of timing and interrupt functions. These are 
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implemented using standard microprocessor compatible components, being 

programmable for flexibility. As a safety feature a watchdog timer is included in 

the CPU design. Included also is a wait-state generator to enable the processor to 

be single-stepped through its program sequence. 

In normal circumstances restricting the address space to 64 kByte allows 

the processor to operate in minimum mode [6.1]. Unfortunately, when using an 8087 

the system has to be in maximum mode; as a result an 8288 bus controller must be 

added to the design. 

6.3 Analogue I/0 section 

Two analogue input channels are provided. One is for the measured value 

variable (shaft position), the other being an optional extra for shaft velocity. Each 

signal is input via a differential amplifier, bandlimited by a 3rd order low-pass anti­

alias filter and digitised by a 12 bit successive approximation ADC. Conversion time 

is insignificant when compared with computing activities. 

Additional internal analogue signals are digitised, including calibration 

reference values and DAC outputs, Signal selection is carried out using an 

analogue multiplexer, the output from this being applied to a sample-hold module 

prior to digitisation. 

Two output stages are provided, each one consisting of a 12 bit digital to 

analogue (DAC) converter followed by a buffer amplifier. Simple low-pass filtering 

is used to minimise the effects of DAC glitch spikes and to act in part as a 

reconstitution filter. Both short circuit and transient overvoltage protection are 

included for the output amplifiers. 

6 - 2 



----------------------------------------------

6.4 Serial communications 

Two full-duplex serial communication channels are incorporated into the 

design; a short distance one corresponding to RS232C standard [6.2] and a longer 

distance RS422 one [6.3], The RS232 one is designed mainly for interactive working 

with the PC. When used in this mode the maximum data rate is 9.6 kBaud, speed 

being limited by the PC. The RS422 channel is included to support controller 

operations within a distributed control system. 
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7 SOFTWARE DESIGN AND DEVELOPMENT 

7.1 THE HOST DEVELOPMENT SYSTEM 

A Future FX20 Personal Computer (described in Appendix-A) is used as a 

host for the development of software and down-loading of ROMable code to the target 

system. Fig.7.1 shows its connection in the system where it also provides an 

interface between the operator and the target system. 

7.2 DESIGN TECHNIQUES 

It is very important in the development of reliable software to have a 

complete and correct understanding of what the system is expected to carry out. 

The design method used to convert the specified requirements into software code 

also affects the reliability of the software [7.1]. 

The basic software design method used is that of Structured Programming 

[7.2], a technique which contains the merits of both Top-Down design and Modular 

programming [7.3]. A set of regulations which defines structured programming 

uses is given in Section 7.3. Diagramming techniques are used throughout, 

specifically that based on the Jackson chart system [7.4]. This diagram (e.g. 

Fig.7.5) is read from top to bottom to obtain more detail on program activities and 

from left to right to get the time sequences. Such techniques are excellent at 

describing what needs to be done rather than how it should be carried out. The eye 

can often appreciate the information carried in shape of a diagram much more 

quickly than it can the written word. Furthermore sections can be added or 

removed as the work proceeds without disturbing the rest of the diagram [7.3]. 

This greatly assists programme development and modification activities. 
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The Jackson chart is constructed from the test requirements and describes 

the software to a specific level of detail. The lowest levels represent simple 

functions that can be translated into program format. Generally the recommended 

control structures of structured programming [7.1] have been used in the writing of 

the program source code. 

The programs consist of procedures which are grouped according to their 

functional components (modules). Each module is independent of others from the 

compilation point of view. However any procedure can call any other procedure, 

irrespective of module location. The advantage of such modularisation is that new 

functions can be easily added to the program without disturbing other modules. 

7.3 THE RULES OF STRUCTURED PROGRAMMING 

Structured programming uses a set of rigid constructs which can be 

defined collectively by three main rules [7.3]. 

(i) The first rule defines the syntax structures allowed. These include: 

a- Sequencing 

b- Selection of the next statement by the testing of a 

THEN-ELSE structure) 

· c- Iteration 

condition (The IF-

GOTO statements should be used only in exceptional circumstances. 

(ii) The second rule relates to the program design. A Top-Down design technique 

incorporating step-wise refinement should be used. The program is divided into 

levels, with the highest level showing the flow of control among other major modules 

of the program. Each module should have only one entry and one exit point. 
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(iii) The third rule is to control the size of the program modules. The size of each 

module· is limited so it may be easily read and understood. This improves the 

readibility of the code, an essential feature of reliable software [7.1]. 

7.4 PROGRAMMING LANGUAGE 

It would have been possible to develop the software for the target system 

entirely in 8086 assembly language. This was rejected, the decision being to use a 

high level language wherever possible, turning to assembler only as a last resort. 

Three factors influenced this; 

* Speed of development. 

* Problem (and not processor) orientation of high level languages. 

* Inherent support by block structured languages for structured design 

techniques. 

In the -eontext of the PC development environment it would make little sense to use a 

different language for the programs that run on the PC. Software commonality is 

highly advisable. Thus the basic language selection criteria are; 

* The compiler must be capable of generating ROMable code, 

* Code produced must also run under the PC operating system. 

* Object ("in-line") code inserts must be supported, 

* Access of specific memoryaddresses and hardware devices from the source 

code (i.e. the high level language statements) must be a standard feature, 

* Access to the processor interrupt structure is essential. 

7 - 3 



Digital research Pascal/MT+ was selected as the software source code 

language for both the PC and the target system. 

7.5 PROGRAM STRUCTURE AND DEVELOPMENT 

In Pascal/MT+ the program comprises of a main body and modules. Fig.7.2 

shows the software organisation for this project, the details being listed below. 

* The main body and each module (extension .PAS) is compiled separately to 

produce a relocatable file of extension R86. 

* These files and other files provided by Pascal/MT+ (library modules) are 

linked together to produce a single output, the CMD file. This file can be 

run under CCP /M-86 on the FX20 PC. 

* As the CMD file is not in Intel hex format it cannot be loaded directly to the 

target system. A program called CMD2H86 is used to convert it to Intel hex 

format, the resulting output having the extension H86. 

* The H86 file is then down-loaded to an EPROM Programmer to be used in the 

target system. 
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7.6 THE SOFTWARE FUNCTIONS 

The software described here has three functions (Fig.7.3); 

* MODEL DETERMINATION 

* FIXED DIGITAL CONTROLLER 

* SELF-TUNING CONTROLLER 

The function of MODEL DETERMINATION is to determine the transfer 

function that models the plant. 

The FIXED DIGITAL CONTROLLER implements a digital controller in the 

target system using different control criteria. 

The function of SELF-TUNING CONTROLLER is to implement an adaptive 

controller based on various control criteria to control the plant via the target 

system. 

7.7 MODEL DETERMINATION 

7.7.1 Overview 

Fig.7.4 shows the basic blocks of this function which consists of four 

programs, namely "DATA-COLLECTION", "OFF-LINE- SYSTEM-IDENTIFICATION", 

"MODEL-ORDER-REDUCTION", and "MODEL TRIMMING", The function of each 

program is as follows. The first one implements collection of plant data by the 

target system, the second performs system identification using this data (done off­

line on the FX20), the third executes transfer function order reduction of the model 

obtained from system identification whilst the fourth trims the reduced order model 

to adjust its structure. 
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7. 7.2 Data collection - general description 

Fig.7.5, the structure design chart, is produced from the system 

requirements; as such it should reflect what needs to be done to run the plant and 

collect appropriate data. From this the source code (Pascal) is generated. At the 

higher levels of the chart operations are fairly self explanatory; at lower ones a 

detailed knowledge of the system and hardware is required to fully understand what 

is happening. 

The Pascal program must correspond to the design diagram (otherwise 

there is not much point in having the diagram in the first place). As an aid to 

program visibility and clarity, modular programming techniques are used 

extensively. Fortunately Pascal/MT+ allows modules to be compiled separately. 

The top level or "program" module is essentially made up of a set of procedures 

which are located in lower level modules, as follows; 

(* This is the body of the Data Collection program module *) 

BEGIN 

STOP _PLANT; 

INITIALISE_ CNT _DATA_INT; 

SET_ UP _SERIAL_COMMS; 

GET_TEST_P~ETERS; 

SET_UP_ANALOGUE_SYSTEM; 

COLLECT_DATA_ VIA_INT; 

TRANSFER_DATA; 

END. 
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(* End of main program module *) 

Each program statement above consists of a procedure without parameters; as such 

the sequence is clear, readable and unambiguous. In turn these procedures call 

lower level procedures, which, depending on the complexity of operations, may in 

turn call lower level operations still. For instance, the code for the procedure 

"SET_UP _SERIAL_COMMS" is; 

(* This procedure is called by the main program module *) 

PROCEDURE SET_ UP _SERIAL_COMMS; 

BEGIN 

INITIALISE_DEVICES; 

SEND _SIGN_ ON_MESSAGE; 

END; 

(* End of the procedure *) 

Procedure INITIALISE_DEVICES is implemented as follows; 

(* This procedure initialises all CPU hardware *) 

PROCEDURE INITIALISE_DEVICES; 

BEGIN 

(* Initialise the Programmable Interval Timer (PIT) *) 

PIT_CONT :: CON_WORD_O; 

PIT_CTER_O:: DATA_LOW; 

PIT_CTER_O:: DATA_HIGH; 

PIT_CONT :: CON_WORD_2; 
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PIT_CTER_2:: DATA_2_LOW; 

PIT_CTER_2:: DATA_2_IDGH; 

PIT_CONT :: CON_WORD_1j 

(* Initialise the UART *) 

UART_COMD:: $00; 

UART_COMD:: $00; 

UART_COMD:: $00; 

UART_COMD:= $40; 

UART_COMD:: MODE_UART; 

(* Initialise the Programmable Interrupt Controller (PIC) *) 

PIC_COM_O:: ICW_1; 

PlC COM 1:: ICW 2' - - - , 
PlC COM 1:: ICW 4' 

- - - J 

PlC COM 1:: ICW 1' - - - , 

END; 

(* End of hardware initialisation procedure *) 

The major software design objectives for reliability and clarity are modularisation, 

information hiding, loose coupling and high cohesion [7.2]. It can be seen that 

these are well supported by the structure and organisation of Pascal. However, for 

embedded applications, the language must 

* allow the programmer to access the various hardware devices, preferrably 

from high level language statements. 
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* Use meaningful and recognisable names and identifiers. 

Procedure INITIALISE_DEVICES shows how Pascal/MT+ facilitates such 

requirements. It also shows that, to develop software for target systems, an 

intimate knowledge of the processor hardware is needed. 

7. 7.3 Data collection - detailed information 

It is shown from the Jackson chart of the Data Collection program, Fig.7.5, 

that the software is divided into two subsystems: 

* INITIALISE SYSTEM. 

* RUN TEST. 

The function of INITIALISE-SYSTEMS is to stop the plant, initialise the 

"number-of-samples" counter, data space array and the vector interrupt, to set up 

the system devices so that the operator communicates with the target system, and 

finally to send a message to the VDU indicating completion of initialisation. 

The function of RUN-TEST is to get the test parameters, select the analogue 

input measurement channel, send the plant input test signal, collect plant data, stop 

the plant and transfer the collected data the FX20 (PC). 

(a) INITIALISE SYSTEM 

The lower level of this subsystem consists of four procedures, "STOP­

PLANT", "INITIALISE-CNT-DATA-INT", "SET-UP-SERIAL-COMM-SYS-DATCL", and 

"SEND-MESSAGE". These procedures may in turn call other (lower level) 
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procedures. Their functions are: 

* STOP-PLANT: This sends a command signal to stop the plant as soon as the 

power is switched on. 

* INITIALISE-COUNTER-DATA-INT: This initialises the number-of-samples 

counter, the data space array, and the vector interrupt. 

* SET-UP-SERIAL-COMMS: This initialises the PIT, USART, and PIC. A 

message is then sent to the screen to indicate completion of initialisation. 

* SEND-SIGN-ON-MESSAGE: This sends a message to the screen explaining the 

function of the main program. 

(b) RUN TEST 

The lower level of this subsystem consists of four procedures "GET-TEST-

PARAMETERS", "SET-UP-ANALOGUE-SYS", "COLLECT-DATA-VIA-INT", and 

"TRANSFER-DATA". The funtion of these procedure are: 

* GET-TEST-PARAMETERS: This gets the test parameters specified by the 

operator, the sampling rate, the test signal, and the number of samples. 

* SET-UP-ANALOGUE-SYS: This sets the analogue system by selecting the 

input me.asurement channel and sending the specified command signal to 

run the plant. This is used as the plant input test signal, being either a 

step or a ramp. 
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* COLLECT-DATA-VIA-INT: This procedure enables the processor hardware 

interrupt, sets the sampling counter, and then waits for a hardware 

interrupt to occur. A separate design chart has been produced to show 

the function of the interrupt driven procedure (Fig.7.6). This procedure, 

when activated, collects samples of the plant output, increments the 

sampling counter, and returns to the main program. The COLLECT-DATA­

VIA-INT procedure checks this counter until the specified number of 

samples is reached; at this point it disables the interrupt and sends a 

command signal to stop the plant. 

* TRANSFER-DATA: This procedure transfers the collected data from the 

target board to the FX20 via the serial channel. 

7. 7.4 Off-line system identification 

The off-line identification program is derived from the software design 

diagram of Fig.7.7. Only the higher levels are shown to maintain diagram clarity; 

however the essentials of the identification process can be deduced from this. 

This program runs on the PC, having been developed on it in the first place. 

Thus, to produce the identification software, the programmer does not require any 

special knowledge of the target system. In fact test data is not even needed to 

evaluate the identification processes; simulations can be run on the PC using 

programmer provided information. 

The Jack son chart (Fig. 7. 7) of the system identification software consists of 

three main subsystems: 

7 - 11 



* INITIALISE SYSTEM. 

* SET RUN TEST PAJUUMETERS. 

* IDENTIFY SYSTEM, 

INITIALISE-SYSTEM initialises the data arrays and sets initial condition 

values needed for system identification. 

SET-RUN-TEST-PAJUUMETERS gets the test parameters, selects the 

identification scheme and sets the structure of the (assumed) model for system 

identification. 

IDENTIFY-SYSTEM sets the number of iterations, sets the input and output 

vectors, identifies the system parameters and displays values of the estimated 

system parameters. 

(a) INITIALISE SYSTEM 

The lower level of this part comprises two procedures "SET-INITIAL­

CONDITIONS", and "SEND-MESSAGE", The function of these procedure are: 

*SET-INITIAL-CONDITIONS: This procedure initialises all the data arrays and 

sets initial conditions needed for system identification, 

* SEND-MESSAGE: This procedure sends a message to the screen indicating 

completion of initialisation. 
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(b) SET RUN TEST PARAMETERS 

The lower level of this subsystem contains three procedures, namely "GET­

TEST-PARAMETERS", "SET-IDEN-SCHEME", and "SET-MODEL-STRUCTURE", their 

details being as follows: 

* GET-TEST-PARAMETERS: This procedure sends a list of options to the 

operator to set the test signal, the number of iterations needed, and the 

sampling rate used in data acquisition. 

* SET-IDEN-SCHEME: This procedure allows the operator to select the 

identification scheme to be used in the test. 

* SET-MODEL-STRUCTURE: This procedure enables the operator to set the 

structure of the (assumed) model for system identification. 

(c) IDENTIFY SYSTEM 

The lower level of this subsystem is comprised of "SET-NO-ITERATION­

COUNTER", and "CARRY-OUT-RECURSIVE-IDENTIFICATION". The function of this 

is: 

* SET-NO-OF-ITERATION: Sets the number of iterations specified by the 

operator during the acquisition of test parameters. 

* CARRY-OUT-RECURSIVE-IDENTIFICATION: The lower level of this part 

comprises procedures that sets the input and output vectors, identifies 
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system parameters, and displays the values of these parameters. Note that 

recursive identification is repeated until the iteration counter reaches the 

preset value. 

7.7.5 Model order reduction 

Fig.7.8 shows the Jackson chart of this program, the design being coded in 

FORTRAN to run on MULTICs (main frame computer). It can be seen that the 

software is divided into three subsystems: 

* INITIALISE-SYSTEM 

* SET-RUN-TEST-P~ETERS 
* REDUCE-QRDER 

INITIALISE-SYSTEM initialises the data arrays, specifies the names of data 

files, sets initial condition values needed for model order reduction and sends a 

message to the screen to indicate completion of initialisation. 

SET-RUN-TEST-P~ETERS gets system test parameters and sets the 

required model order. 

REDUCE-ORDER inverts the covariance matrix, calculates the static gain of 

the original transfer function, finds the reduced order model coefficients by 

optimising a cost function, and finally stores these coefficients in a predefined file. 

(a) INITIALISE SYSTEM 

The lower level of this subsystem consists of: "INITIALISE-DATA-ARRAYS", 

"SPECIFY-FILES", "SET-INITIAL-CONDITIONS-VALUES", and "SEND-MESSAGE". 
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The function of this subsystem is: 

* INITIALISE-DATA-ARRAYS: This initialises the data arrays needed for the 

test. 

* SPECIFY-FILES: This lets the operator specify the files that contain data 

and those needed to store test results. 

* SET-INITIAL-CONDITION-VALUES: This sets the initial condition values 

needed to start the test. 

* SEND-MESSAGE: This sends a message to the screen to indicate completion of 

initialisation. 

(b) SET RUN TEST PARAMETERS 

The lower level of this subsystem consists of: "GET-TEST-PARAMETERS", 

and "SET-MODEL-ORDER", its function being: 

*GET-TEST-PARAMETERS: This gets the coefficients of the original model and 

the covariance matrix of the original model. 

* SET-MODEL-ORDER: This sets the order of the required model by specifying 

the original model order and the number of terms to be cancelled. 

(c) REDUCE ORDER 

This subsystem consists of "INVERT-MATRIX", "CALCULATE-STATIC-GAIN", 

"OPTIMISE", and "STORE-RESULTS". Their functions are: 
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*INVERT-MATRIX inverts the covarisnce matrix used in the calculation of the 

cost function. 

*CALCULATE-STATIC-GAIN calculates the static gain of the original transfer 

funtion. 

* OPTIMISE finds the coefficients of the reduced order model that minimise a 

pre-specified cost function. 

* STORE-RESULTS stores the results in a predefined file. 

7.7.6 Model trimming 

Fig. 7.9 shows the Jackson chart of this program, the design being coded in 

FORTRAN to run on MULTICs (main frame computer). It can be seen that the 

software is divided into three subsystems: 

* INITIALISE-SYSTEM 

* SET-RUN-TEST-PARAMETERS 

* TRIM-MODEL 

INITILISE-SYSTEM initialises the data srrays, specifies the names of data 

files, sets initial condition values needed for model order reduction and sends a 

message to the screen indicating completion of initialisation. 

SET-RUN-TEST-PARAMETERS gets system test parameters and sets the 

required model structure. 
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TRIM-MODEL inverts the covariance matrix and tests for negligible 

coefficients by optimising a cost function, and finally stores new coefficients in a 

predefined file. 

(a) INITIALISE SYSTEM 

The lower level of this subsystem consists of: "INITIALISE-DATA-ARRAYS", 

"SPECIFY-FILES", "SET-INITIAL-CONDITIONS-VALUES", and "SEND-MESSAGE". 

The function of this subsystem is: 

* INITIALISE-DATA-ARRAYS: This initialises the data arrays needed for the 

test. 

* SPECIFY-FILES: This lets the operator specify the files that contain data 

and those needed to store test results. 

* SET-INITIAL-CONDITION-VALUES: This sets the initial condition values 

needed to start the test. 

* SEND-MESSAGE: This sends a message to the screen to indicate completion of 

initialisation. 

(b) SET RUN TEST PARAMETERS 

The lower level of this subsystem consists of: "GET-TEST-PARAMETERS", 

and "SET-MODEL-STRUCTURE", its function being: 
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' * GET-TEST-PARAMETERS: This gets the coefficients of the reduced order 

model and the covariance matrix, 

* SET-MODEL-STRUCTURE: This sets the structure of the required model by 

specifying the reduced model order and the number of terms to be 

neglected. 

(c) TRIM MODEL 

This subsystem consists of "INVERT-MATRIX", "OPTIMISE", and "STORE-

RESULTS", Their function are: 

* INVERT-MATRIX inverts the covariance matrix used in the calculation of the 

cost function. 

* OPTIMISE finds the new coefficients of the reduced order model after 

trimming that minimise a pre-specified cost function. 

* STORE-RESULTS stores the results in a predefined file. 
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7.8 FIXED DIGITAL CONTROLLER 

7 .8.1 Overview 

Fig.7.10 shows the Jackson chart of the fixed digital controller software 

system, the design being coded in PASCAL. The software is divided into three 

subsystems: 

* INITIALISE-SYSTEM 

* SET-RUN-TEST-PARAMETERS 

* CONTROL-SYSTEM-VIA-INT 

(a) INITIALISE-SYSTEM: The function of this subsystem is to set the output of the 

DAC to zero, initialise the "number of samples" counter, initialise the vector 

interrupt, set up the system devices to enable the operator to communicate with the 

target system and finslly to send a message to the VDU indicating completion of 

initialisation. 

(b) SET-RUN-TEST-PARAMETERS: The function of this subsystem is to get the 

test parameters, select the analogue input channel, set up the plant model and to set 

up the selected control criterion. 

(c) CONTROL-SYSTEM-VIA-INT: The function of this subsystem is to control the 

system according to a specified criterion. 
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7.8.2 Initialise system procedure 

The lower level of this subsystem consists of four procedures, namely 

"STOP-PLANT", "INITIALIZE-CNT-DATA-INT", "SET-UP-SERIAL-COMM-SYS-CONT", 

and "SEND-MESSAGE-CONT". Note that these procedures may call other (lower 

level) procedures. Their function are: 

(a) STOP-PLANT: This sends a command signal to stop the plant as soon as power 

is switched on, 

(b) INITIALISE-CNT-DATA-INT: This initialises the sample counter, the data space 

arrays, and the vector interrupt. 

(c) SET-UP-SERIAL-COMM-SYS-CONT: This initialises the PIT, the USART, and the 

PlC. A message is then sent to the screen to indicate completion of initialisation and 

show that the system is ready for communication with the operator. 

(d) SEND-MESSAGE-CONT: This sends a message to the screen explaining the 

function of the main program. 

7.8.3 Set run test parameters procedure 

The lower level of this subsystem consists of four procedures, namely 

"GET-TEST-PARAMETERS-CONT", "SET-UP-ANALOGUE-SYS", "SET-CONTROL-

CRITERION", and "SET-PLANT-MODEL", These deal with the following: 

(a) GET-TEST-PARAMETERS: This gets the test parameters specified by the 

operator, the test signal, and the sampling rate. 
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(b) SET-UP-ANALOGUE-SYS: This sets the analogue system by selecting the input 

measurement channel. 

(c) SET-PLANT-MODEL: This enables the operator to specify the type of plant 

model and to enter the coefficients of the plant transfer function. 

(d) SET-CONTROL-CRITERION: This sends a list of options of the available criteria 

and then sets the controller according to the criterion specified by the operator. 

7.8.4 - Control system via int procedure 

This procedure enables the processor hardware interrupt and then waits 

for a hardware interrupt to occur. The control algorithm is executed every time the 

interrupt signal is activated. Fig.7.11 shows a representation of the interrupt 

procedure, and Fig.7.12 shows the corresponding Jackson diagram. The interrupt 

procedure, when activated, measures the plant output through the A/D converter, 

computes the control signal, issues the control signal through the D/A converter, 

increments the sampling counter, and returns to the main program. 
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7.9 SELF-TUNING CONTROLLER 

7.9.1 Overview 

Fig.7.13 shows the Jackson diagram of the self-tuning controller software 

system, the design being coded in PASCAL. The software is divided into three 

subsystems: 

* INITIALISE-SYSTEM 

* SET-RUN-TEST-PARAMETERS 

* RUN-SELF-TUNING 

(a) INITIALISE-SYSTEM: The function of this subsystem is to initialise the number 

of samples counter, initialise the vector interrupt, set up the system devices to 

enable the operator to communicate with the target system and finally to send a 

message to the VDU to indicate completion of initialisation. 

(b) SET-RUN-TEST-PARAMETERS: The function of this subsystem is to get the 

test parameters, select the analogue input channel, set up the selected control 

criterion, and set the identification scheme selected. 

(c) RUN-SELF-TUNING: The function of this subsystem is to set the initial 

conditions required for self-tuning and then control the plant according to a 

specified criterion using a self-tuning technique. 
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7 .9.2 - Initialise system procedure 

The lower level of this subsystem consists of four procedures, namely 

"STOP-PLANT", "INITIALISE-CNT-DATA-INT", "SET-UP-SERIAL-COMM-SYS-CONT", 

and "SEND-MESSAGE-CONT". Note that these procedures may call other (lower 

level) procedures. The function of these procedures are: 

(a) STOP-PLANT: This sends a command signal to stop the plant as soon as the 

power is switched on. 

(b) INITIALISE-CNT-DATA-INT: This initialises the sample counter, the data space 

arrays, and the vector interrupt. 

(c) SET-UP-SERIAL-COMM-SYS-ONLINE: This initialises the Programable Interval 

Timer (PIT), the Universal Synchronous/Asynchronous Receiver Transmitter 

(USART), and the Programable Interrupt Controller (PIC). A message is then sent 

to the screen to indicate completion of initialisation and show that the system is 

ready for communication with the operator. 

(d) SEND-MESSAGE: This sends a message to the screen explaining the function of 

the main program. 

7.9.3 Set run test parameters procedure 

The lower level of this subsystem consists of four procedures, namely 

"GET-TEST-PARAMETERS-ONLINE", "SET-UP-ANALOGUE-SYS", "SET-CONTROL­

CRITERION", and "SET-IDENTIFICATION-SCHEME". Their functions are detailed 

below. 
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(a) GET-TEST-PARAMETERS-ONLINE: This gets operator specified test 

parameters, the set-point, and the sampling rate. 

(b) SET-UP-ANALOGUE-SYS: This sets up the analogue system by selecting the 

input measurement channel. 

(c) SET-CONTROL-CRITERION: This sends a list of options of the available criteria 

and then sets the controller according to the criterion specified by the operator. 

(d) SET-IDENTIFICATION-SCHEME: This puts up a list of identification schemes 

available to the operator on the VDU display. It then sets the plant model according 

to the identification scheme selected by the operator. 

7.9.4 Run self tuning procedure 

The lower level of this subsystem contains two procedures, "SET-INITIAL­

CONDITIONS", and "PERFORM-SELF-TUNING-VIA-INT", their details being as 

follows: 

(a) SET-INITIAL-CONDITIONS: Here the initial conditions required to start the 

identification algorithm are set. 

(b) PERFORM-SELF-TUNING-VIA-INT: This procedure enables the processor 

hardware interrupt, and then waits for a hardware interrupt to occur. The self­

tuning control algorithm is executed every time the interrupt signal is activated. 

Fig.7.14 shows the Jackson chart of the interrupt procedure. This procedure, when 
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activated, measures the plant output through the A/D converter, computes the 

control signal, issues the control signal through the D/A converter, identifies the 

sy-stem parameters, increments the sampling counter, and returns to the main 

program. 
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8 MODEL DETERMINATION PERFORMANCE - ACTUAL AND SIMULATED 

8.1 OVERVIEW 

This chapter describes the derivation of a mathematical model of the 

controlled plant using system identification techniques applied to practical data. 

From this a reduced order model is determined using an established pole/zero 

cancellation method. A modified algorithm technique is subsequently used to 

perform the same task. Both practical and simulated test results are given to 

demonstrate improvements obtained through the use of this algorithm modification 

technique. A new model trimming algorithm is introduced, its function being to 

improve the structure of the transfer function obtained from the reduction process. 

The theoretical effects produced by this trimming technique on actual data is also 

shown. 

8.2 THE MATHEMATICAL MODEL 

Data collected from the plant are used by the system identification process 

to determine the plant transfer function. These are used to develop a 3rd order 

model, the estimated transfer function being: 

G(z-1): 
0.0334 + 0.0081 z-1 + 0.0199 z-2 + 0.0202 z-3 

1 - 0.588 z-1 - 0.257 z-2 - 0.0918 z-3 
(8.1) 

The performance of this model is compared with those obtained previously 

using time domain (step) and frequency response testing of the actual plant. A 

comparison of the behaviour of the various models is given in Fig.8.1, these being for 

a step input test. 
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8.3 MODEL ORDER REDUCTION 

8 •. 3.1 Overview 

In this section both practical and simulated data are used to demonstrate 

the improvement in the pole/zero cancellation model order reduction technique. 

8.3.2 Practical results 

(a) Pole/Zero cancellation 

The 3rd order model (8.1) is reduced to a first order model using the 

algorithm proposed by Soderstrom, Fig.8.2 shows the step response of the original 

model and the reduced order model. It is shown that there is a static gain 

difference between the two responses, 

(b) Improved Pole/Zero cancellation 

Fig.8.3 shows the step response of both the original and the reduced order 

models when the improved technique is used. It is clear how the reduced order 

model retained all the characteristics of the original model. Fig.8.4 shows the step 

response of the original model compared with the reduced order models when both 

pole/zero cancellstion and the improved techniques are used. 

8.3.3 Simulated results 

A 2nd order model was simulated to produce data that was used by system 

identification process to estimate this model. A 4th order model was assumed in the 
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identification scheme to produce a higher order model than the original model, This 

model is reduced back to a 2nd order model using the different techniques. 

(a) Pole/Zero cancellation 

Fig.8,5 simulates the step response of the original and the reduced order 

models when the pole/zero cancellation technique is used. It is shown that the 

reduced order model does not retain the static gain of the original model. 

(b) Improved Pole/Zero cancellation 

Figs.8.6 and 8.7 show a simulation of the original and the reduced order 

models response to a step input. It is shown that the reduced order model retains 

the static gain of the original model. Fig.8.8 shows a comparison of all the 

techniques. 

8.4 MODEL TRIMMING 

The transfer function produced from model order reduction using the 

improved technique is 

0.06427 - 0.0208 z-1 
G(z-1)= (8.2) 

1 - 0. 95652 z-1 

and 

1 + 0.19565 s 
G(s) = (8.3) 

1 + 4.4459 s 
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The model determined previously using step and frequency response tests is 

1 
G(s) = (8.4) 

1 + 4.3 s 

and 

0.02273 + 0.02273 z-1 

G(z-1 ): (8.5) 
1 - 0.95455 z-1 

Notice the structure differences between the models in the z-domain introduced by 

the small term in the numerator in the a-domain. 

The transfer function produced after trimming the model (8.3) is 

0.02174 + 0.02174 z-1 
G(z-1): (8.6) 

1 - 0.95652 z-1 

and 

1 
G(s) = (8. 7) 

1 + 4.4459 s 

It is shown that the structures of (8.6) and (8.7) are very close to that of (8.4) and 

(8.5). 

8.5 DISCUSSION 

Test results showed that the improved technique overcame the drawbacks 

in the method proposed by Soderstrom [3.9]. The model trimming is a further 

improvement in model order reduction techniques as shown from test results. 
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The first order model (8.7) adequately represents the controlled plant. 
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Fig.8.2 

Step input Response - Reduced Model Order using P/Z 
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Fig.8.3 

Step input response - Reduced Order Model 
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Fig.a.s 

Step input response - Reduced model order using Soderstrom tech 
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Fig.8.6 

Step input response - Reduced model using improved algorithm 
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Fig .8.7 

Step input response - Reduced model order using Improved Tech. 
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Fig.8.8 
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9 CLOSED LOOP PERFORMANCE TESTS 

9.1 OVERVIEW 

In this chapter test results for the plant control system using both self­

tuning and fixed digital controllers are given. The performance of the plant using 

these tachniques is also compared for different system loading conditions. 

9.2 TEST RESULTS - FIXED DIGITAL CONTROLLER 

9.2.1 Overview 

In this section both simulatad and actual test results are given for the plant 

control system. The following control techniques are used; 

* One-Step-Ahead criterion 

* Weighted-One-Step-Ahead criterion 

* Pole/Zero Cancellation criterion 

* PID controller criterion 

Simulation is carried out on a Multics mainframe computer whilst the target 

controller uses an Intel 8088 microprocessor. 
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9.2.2 Simulation results 

(a) One-Step-Ahead Controller 

Fig.9.1 shows a simulation of the plant response to a square wave set-point 

demand, Fig.9.2 being the corresponding control signal. The response is very 

fast, but this is obtained only by the use of a substantial control effort. Notice the 

ringing, or ripple, in the control signal. In Fig.9.1 no ripple is observable in the 

output signal. This is totally misleading as the results are calculated and plotted 

out on a sample by sample basis. Nothing is said about the intervening period. In 

fact the output does ripple in the real system, as shown in Fig.9.12. 

(b) Weighted-One-Step-Ahead Controller 

Figs.9.3 to 9.6 display the simulated plant response to a square wave set­

point demand. It can be seen that the response becomes slower as).. gets bigger, 

but that the corresponding control effort is less. Fig.9.7 shows the relationship 

between the output response and A• Increasing the value of )I. means more weight is 

put in minimising u(T) in the performance criterion of equation 4.12 (repeatad 

below). 

I : [ y(T+l) - w(T)]I + }..ui(T) 

(c) Pole/Zero Cancellation Controller 

Fig.9.8 is a simulation of the plant response to the same square wave test 

signal using the pole-zero cancellation control algorithm. The system achieves the 

rise time, Tr, overshoot, Mr, and settling time, Ts, specified as part of the closed loop 
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performance criteria. Fig.9.9 shows the corresponding control signal. 

(d) PID Controller 

Fig.9.10 displays a simulation of the plant response, under PID control, to a 

square wave set-point signal. The transient response of the system satisfies the 

required closed loop criteria of rise time, Tr, overshoot, MP, and settling time, Ta. 

Fig.9.11 shows the corresponding control signal. 
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9.2.3 Practical results 

(a) One-Step-Ahead Controller 

Figs.9.12 and 9.13 show the 0/P response of the plant to the square wave 

reference signal. The response is oscillatory, appearing to limit cycle. The choice 

of the sample time affects the stability of the system, as can be seen from Fig.9.13. 

Here limit cycling is still present but its amplitude is significantly reduced. 

(b) Weighted-One-Step-Ahead Controller 

Figs.9.14 and 9.15 show the output response of the plant to a square wave as 

a reference signal for different values of >... It is clear that the choice of A affects 

the nature of the response to the test signal. Fig.9.7 shows the theoretical 

relationship between the response of the system and the value of · ),. When 'A gets 

smaller the output follows the reference signal faster. This is achieved only at the 

expense of more control effort as less weighting has been put on minimising u(T) in 

the performance criterion. 

(c) Pole/Zero Cancellation Controller 

Figs.9.16 to 9.19 show the output response of the plant when the controller 

uses the Pole/Zero cancellation algorithm; these are recorded for different transient 

performance objectives. It is shown that the dynamics of the system satisfy the 

system performance requirements, defined in terms of desired rise time, Tr, 

overshoot, M., and settling time, To. The system response is always robust and 

stable. 
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(d) PID Controller 

Figs.9.20 to 9.22 show the response of the plant when used with a PID 

controller. These illustrate thst, in all circumstances, the closed loop transient 

performance specified by the operator has been attained. 

9.2.4 Discussion 

The practical features of these criteria observed from the test results are: 

(a) Stability 

An obvious feature of the Pole/Zero cancellation and PID criteria is that 

stability can be guaranteed for arbitrary linear systems (provided that B(z) and 

A(z) have no common unstable roots). This is in contrast to the One-Step-Ahead 

design method which requires stability of the zeros, A(z), of the plant. Another 

problem with the One-Step-Ahead controller is that it is a pure gain controller which 

is very sensitive to sample time. The reason is that the required controller gain is 

proportional to the sample time, as shown in Eq.(4.11) (repeated below) 

where 

u(T) : K [ w(T) - y(T)] 

K: 
7' 

kh 

Hence, as the sample time (h) gets smaller the gain increases and the system becomes 

unstable. In practice it will be driven into a non-linear region of operation, 

producing limit-cycle effects. 

9 -:- 5 



(b) Transient response 

The transient response is often described in terms of the damping ratio,~ , 

and natural frequency W. However it depends on the locations assigned to the 

closed loop poles. Given a specification for the desired transient performance, 

Pole/Zero cancellation and PID control techniques translate this into a feasible set of 

closed loop pole locations. In practice, we notice that there is constraint on the 

allowable size of the control signal. Such constraint is taken into account in 

computing the coefficients of the control algorithm. The selection of these values is 

explained in Appendix-C. 

9.2.5 Conclusion 

In servo problems the dynamics of the system have to be specified, such as 

stability, rise time, overshoot and settling time. Pole/Zero cancellation and the PID 

criteria allow the operator to specify these requirements explicitly and easily. The 

execution time for each criterion is short compared to the sample time as shown in 

Appendix-C. From practical results obtained it is clear that simulation does not 

reflect the true behaviour of real systems, but it does provide a starting point for 

the design and implementation of control techniques. 
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9.3 TEST RESULTS - SELF-TUNING CONTROLLER 

9.3.1 Overview 

In this section actual test results are given for the plant control system. 

The performance of the system is illustrated for both fixed and variable loads. The 

following self:...tuning control techniques are used: 

* Pole/Zero Cancellation Self-Tuning 

* PID Self-Tuning 

These tests are carried out on the target controller which uses an Intel 8088 

microprocessor. 

9.3.2 Fixed load 

The main feature of the self-tuning controller is its ability to identify 

unknown system parameters which are then used by the control algorithm to satisfy 

a specified performance objective. This feature is illustrated in Figs.9.23 to 9.31 

where different transient performance objectives are selected for each test. It is 

clear how self-tuning controller fulfills these requirements. Fig.9,23 for example 

shows the output response to a square wave input signal using Pole/Zero 

cancellation self-tuning. It can be seen that the initial response of the system does 

not meet the preset specifications; performance errors are caused by using an 

incorrect plant model, i.e. the estimated system parameters have not yet reached 

their true values. In subsequent pulses the performance objective is fulfilled 

since, by this time, the estimated parameters correspond to the true values. 
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Fig.9.24 shows how the estimated values of the system parameters converge to their 

actual values as time goes on. Fig.9.25 shows the response of the system when the 

estimated parameters converge to their actual values. Fig.9.26 shows the rise 

time and the overshoot of the system as specified by the operator. Figs.9.27 to 9.29 

show the response of the system under PID self-tuning. 

9.3.3 Variable load 

If the load on the shaft changes the system parameters will change. 

Therefore, the new values of the system parameters should be used in the controller 

to meet the same performance objective. In the fixed controller case these changes 

are not sensed by the algorithm; as a result the parameter values used in the control 

algorithm are not correct. Hence the system response will fail to meet the 

predefined performance objective. This point is confirmed in Figs.9.32 to 9.35. 

Figs.9.32 and 9.33 illustrate the response of the system under the fixed 

digital controller when the system loading is increased and decreased respectively. 

Figs,9.34 and 9.35 show how the rise time decreases and the overshoot increases 

when the load is reduced. 

Figs.9.36 and 9.37 display the response of the system when using a self­

tuning controller. This controller continuously identifies the values of the plant 

parameters, tuning the controller to meet the specified performance objective as 

necessary. Fig.9.38 shows the estimator performance as system loading is changed. 

9.3.4 Discussion 

The test results show that the transient response of the system to the first 

pulse (step-input) (in terms of overshoot and rise time) fails to meet its 
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specification. This is caused by the use of an incorrect model. It takes 30-60 

samples before the estimated values of the transfer function coefficients converge 

to their true values. During this time the estimated values of the pole and zero of 

the system influence the transient performance as follows: 

(a) Fig.9.39 illustrates the effect of the estimated value of at. If the value of at 

is less than the true value then this increases the overshoot Mp. 

(b) Fig.9.39 demonstrates the effect of the pole on the response. The rise time 

decreases if the estimated value of the pole is less than the true value. 

(c) Fig.9.40 shows the effects of the sign of the estimated value on system 

response. If the initial estimate of the sign of at is negative this may cause 

the step response to start out in the wrong direction. To prevent this a 

constraint is built into the identification process to prevent negative sign 

being generated. 

Since a constraint is put on the estimated value sign, the poor estimates in 

the first few samples affect the overshoot and the rise time of the system only. 

9- 9 



"' .. -0 
> 

"' .. -

4_ 

3 
f 

o/p 
,----

2.: 

0-:.-~~~~~~~~~~~~~~'~~~~~~~~~~~ 
0 50 ·, 00 ! 50 200 

samples 

Fig.9.1 

Simulation of the plant response to a step input - One Step Ahead {OSA) 

5 

:: 0-t---.--~~~~_._~--1111 
50 150 

somoles 

-5_ 
. 

Fig.9.2 

The corresponding control signal - One Step Ahead {OSA) 



0/P response when Lamda =0.005 
3-

Ul 2-...... 
0 
> 

0.... 

()- 1-

A 

0-~~----~~,-------,1--\~----~--------.1 

5 

Vl ...... 
0 
> 
0) 

0 
(/) 
...... 
c 
0 
u 

-5 

0 50 100 150 200 

-

t-' 

I 

0 

No. of Samples 

Fig.9.3 
Simulation of the plant response to a step input -

Weighted One Step Ahead ( WOSA ) 

,-, ,....., 

\ \ 
( 

I I 1 
50 100 150 

No. of Samples 

Rg.9.4 

The corresponding control signal - WOSA 

'-I 

200 



0/P response when Lamda =0,01 
3 

en 2 ....... 
0 
> 

0... 

61 

0 --l>,----------1,----.--~-----.1,------
0 50 100 150 200 

No. of Samples 

Rg.9.5 

Simulation of the plant response to a step input - WOSA 

5 - r--1 r--1 

en ....... 
0 
> . 
0) 

0 
(/) 
....... 
c 
0 
u 

\ ~ 
( 

-5 -i I I I 

0 50 100 150 200 

No. of Samples 
Rg.9.6 

The corresponding control signal - WOSA 



Max 

SPEED OF 
1HE RESPONSE 

M in 

0 1 

Fig.9.7 

System response VS )\. 



0/P response for w= 1.0 andz~t". 0.7 

(/) 
-+-

0 
> 

a... 
d-

(/) 
-+-

0 
> 
0 
c 
O'l 

(/) 

-+-
c 
0 
u 

4 

3 

2 

1 

0~------~----------~-----L--------

-1-;--------,-----------,----------..,--------, 
0 

5 

0 

50 100 150 

No.of Samples 
Rg.9.8 

Simulation of the plant response to a step input -
Pole/Zero Cancellation (Pfl:} 

200 

-5-~j---------.-------~-------,---------

0 50 100 150 200 

No. of Samples 

Rg.9.9 

The corresponding control signal - P/ Z 



,--------- - --- -------

0/P response for w= 2.0 andl-eJ"'.= 0.8 
3-

(/) 2-
....... 
0 
> 

0... 

6- 1-

\ 0-A~------~.-------,1--~----~,----------.1 

(/) 
....... 
0 
> 

0... 

6-

5 

0 

-5 

0 50 100 150 200 

No. of Samples 

Fg.9.10 

Simulation of the plant response to a step input - PID 

- r-"\ r-\ 

\ \ ~ 

( 

I I I I .:...; 

0 50 100 150 200 
No. of Samples 

Flg.9.11 

The corresponding control signal - PID 











------------- ---

















actual value 

Q. 75 -- 1- ------------- ,=-:-..:..----

o.5o· 

estimated value of a
0 

0.25 

o.oo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
;) 20 40 60 80 100 

Sample No. 

2 

estimated value of b 1 

o~~L-. ~~~~~~--~--~~~~~~~--~--~~,-~~~~~----~~ 
0 20 40 60 80 1 00 

Sample No. 

FIQ.9.24 

Converganceof estimated plant parameters 





















----------------







I i 'I.: 



0.7 

o.so 

0.25 

2 

actual value 

load change here 

\_ 
- - - - - -\----~--~ 

--------- -~-...,..----~- - --

estimated value of a 0 

estimated value of b1 

F~g.9.38 

- - ·- - - - - - - - -

150 200 

Sample No. 

Sample No. 

Estimator performance as system loading is changed 



' : i 
'i 
, I 

' i 
,, 
I 

q: :l I . I ! . 

:• I i I I !! ,I'' i I' : ' ,, .. i 





CHAPTER-10 



10 CONCLUSION 

10.1 A GENERAL COMMENT 

In order to review and comment on the work described in this thesis it is 

essential to understand clearly what is meant by an adaptive control system. Some 

confusion exists concerning this point. This has arisen because the concept of 

adaptivity was, in the first place, mixed with the concept of optimality, The original 

form of adaptive control system was misleadingly referred to as an "optimal control 

system" by Draper and Li [10.1]. However, an optimal control system is a control 

system in which where the objective is to minimise a specified cost function. 

In contrast, the adaptive (self-tuning) control system is basically a 

feedback control method that automatically adjusts its control algorithm to achieve a 

desired system response. This algorithm may be based either on classical OR 

optimal control techniques. Allied to the controller is an identification process. 

Its purpose is to supply the controller with a valid model of the plant under all 

operating conditions. This allows the control algorithm to adapt to variations in the 

plant parameters. 

Adaptive control should not be viewed as a technique which sets out to 

replace existing control methods. Rather it seeks to improve system performance 

where time varying plants are encountered. What it does is to eliminate the need 

for manual tuning of the controller. Instead the controller settings are 

automatically adjusted as the plant characteristics change, so maintaining the 

desired closed loop performance. 
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10.2 CONCLUSIONS 

The work described in this thesis has demonstrated the superiority of 

classical techniques in serve systems (when compared with optimal methods, chapter 

4). It has shown that self-tuning designs using classically specified performance 

criteria are serious contenders for use in modern digital control systems. 

It has been shown that pole/zero cancellation and PID self-tuners can be 

successfully used to regulate fast single-input single-output serve systems, 

provided that practical constraints are carefully considered. 

The self-tuners developed can quickly compensate for large changes in the 

controlled plant characteristics and are robust in the sense that they are based on 

robust classical control techniques. 

The model order reduction technique used here is an important tool for the 

simplification of complex mathematical plant models. It has been demonstrated that, 

as a consequence of model reduction, controller design is considerably simplified. 

One final point concerns the use of the 8087 maths eo-processor. Tests 

carried out showed that the speed-up factor attained by using this device lies in the 

region 20-100. From this it can be concluded that self-tuning controllers must be 

equipped with powerful maths computing facilities if they are required to work with 

fast systems. 

10.3 SUGGESTION FOR FURTHER WORK 

The model order reduction process was done off-line in this work. It is 

suggested that this should be done on-line in future systems. This will remove 

many of the limitations of current self-tuning systems, thus making the technique 

more widely usable and acceptable in practical systems. By adopting this approach 

the controller behaves like a "black box" that can adapt automatically to meet the 
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needs of any controllable system. 

For slow plants, where the sample time is long, one processor similar to the 

one designed here is sufficient. Dual sampling rates can be used where system 

identification and model order reduction can be carried out as a background task 

while control is performed as a timed, interrupt driven, function. 

For fast systems where the sample time is very short, there are two 

solutions to the problem. These are 

* One processor (DSP) or 

* Multi-processors 

Two main factors have to be considered when deciding which approach should be 

adopted; these are 

* Cost 

* High level language support 

(a) One processor: A high speed processor that can do the task by itself is the 

Digital Signal Processor (DSP). This type of processor is designed for 

arithmetically intensive operations; hence their instruction sets are chosen with this 

in mind. These complex multipurpose instructions make for very high processing 

rates. Unfortunately they demand a high level of skill on the part of programmers, 

who must understand all the ramifications of each instruction if they are to write a 

compact and efficient code. Code size can be of crucial importance in DSP work, 

especially if there is a need to keep the chip count down, i.e. avoid the use of off­

chip program memory [10,2], 

The complications of fixed-point arithmatic are an additional potential 

headache for the programmer. It has been said that in programming a DSP chip, 90% 

of the effort goes into worrying about where the decimal point is [10.2]. 

Existing DSP chips, then, require the services of skilled assembly-code 
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programmer; unfortunately, such individuals are short in supply. This shortage is 

partly a reflection of recent developments in general-purpose microprocessors, 

which are increasingly designed to be programmed in high-level languages. As a 

consequence, this is seen as a major factor in limiting the use of DSP devices. 

(b) Multi-processor: In this approach the task may be divided among the 

processors. For instance, one processor can be dedicated to control work whilst a 

second performs system identification and model order reduction. 

From the cost point of view there is little to separate this from the first 

approach. It is to be expected that such design would be based on the use of 

conventional general purpose microprocessors. Hence the major advantage of the 

implementation is the ability to program in high level languages and to use floating 

point maths functions. 

10 - 4 



APPENDIX-A 



A THE CONTROLLED PLANT 

A.1 GENERAL DESCRIPTION 

A block diagram of the "plant" used for control system development is 

shown in Fig.A.1, Fig.A.2 being a photo of the actual test rig. This is an 

electromechanical actuator (suitable for use with process control valves) coupled to 

a mechanical load simulator. The actuator motor and associated control/power 

electronics are considered to be part of the plant itself, as is the load shaft position 

sensor. 

The drive unit of the actuator is a 1/6 horse power induction motor, 

originally designed for 115v. 60 Hz. 3 phase operation. It is powered from a static 

inverter which, when used with its controller, provides full linear speed control 

from zero to mSldmum speed in both directions. MSldmum motor shaft speed is 2000 

r.p.m., though the mSldmum shaft speed is 1.2 cm/sec. 

A gearbox is used to translate motor shaft rotary motion to linear motion of 

the load shaft. Both the load resilience and viscous force can be varied by the rig 

operator. Further, the effect of valve loading is simulated using a coulomb damper 

(actually a disc brake) on the motor shaft; this, too, is adjustable. Position sensing 

is carried out using a continuous track rectilinear potentiometer. 

Motor speed control is carried out by a pulse width modulated (PWM) 

controller in conjunction with a 3 phase static inverter [A.1]. The inverter uses 

power field effect transistors, connected in a full bridge configuration, to switch 

power to the motor. Motor speed is determined by the switching frequency of the 

transistors, this being set by the PWM controller. In turn this is determined by the 

analogue input signal to the controller, the switching frequency range being 0 to 1 

KHz. (approximately). Constant flux conditions within the motor are maintained by 
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modulating the drive pulse width, though voltage boosting is used at low 

frequencies to compensate for shaft stiction effects. Thus ·the motor drive 

frequency is directly proportional to the input signal, setting the synchronous 

speed of the motor. 

A.2 MECHANICAL DESCRIPTION 

Fig.A.3 shows a block diagram of the mechanical part of the plant. This 

consists of 

* An induction motor 

* A gearbox 

* A disc brake 

* A shaft 

* Disc spring compressor 

* Hydraulic cylinder 

* A potentiometer 

(a) The induction motor: This is a 1/6 horse power induction motor, originally 

designed for 115V. 60 Hz. 3 phase operation. It is powered from a static inverter. 

Maximum motor shaft speed is 2000 r.p.m .. 

(b) The gearbox: This is used to translate motor shaft rotary motion to linear 

motion of the load shaft. The gear ration is 1/10. 

(c) The disc brake: This simulates a coulomb damper. The amount of brake force 

is adjusted manually using the hydraulic valve mounted on the brake unit. 
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(d) The shaft: The shaft length is 50 cm. and its maximum speed is 1.2 cm/sec. 

(e) Disc spring compressor: Fig.A.4 shows a diagram of the compressor. It 

provides different forces on the shaft, by rearranging the ten disc springs 

supplied, from 500 lb to 1000 lb. The compressor can be pushed or pulled to 

compress the springs. 

(f) The hydraulic cylinder: Fig.A.5 shows a diagram of this device. Its purpose 

is to act as a viscous load on the shaft; it too, is adjustable, and can be varied 

manually by the operator. This device consists of a cylinder with a shaft that is 

connected to the rig shaft. The two ends of the cylinder are connected together via 

a pipe. Oil flows through this pipe as the shaft travels through the cylinder. 

Within this pipe is a flow control valve which acts as a resistance to the flow of oil, 

i.e. a viscous damper. The viscous force experienced by the shaft is determined by 

the valve setting, 

(g) The potentiometer: Position sensing is accomplished through the use of a 

rectilinear continuous track potentiometer mounted on the end of the shaft. 

A.3 ELECTRONICS 

The electronics involved is devided into two parts, these being 

* The analogue interface board 

* The inverter/actuator board 
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A.3.1 Analogue interface board 

(a) Functions and Facilities 

(i) Functions: 

* Provides protection features for the inverter under all operational 

conditions 

* provides constant-flux operation within the motor 

*.provides all signals required by the inverter LSI PWM controller chip. 

* Interfaces between the microcontroller and the inverter-actuator unit. 

(ii) Facilities 

* Adjustment of motor speed in both directions from zero to 1.5 times its 

nominal speed. 

* Limitation of regenerated pow<;r during speed deceleration to protect the 

inverter against overvoltage. 

* Adjustment of starting torque values via "IR" compensation [A.l]. 

(b) Analogue interface operation 

The block diagram for the open loop system is shown in Fig.A.S, and consists 

of the following sub-sections: 

(a) ON-OFF circuit: This controls the inverter on/off function in response to 

external push button controls of inverter overcurrent fault conditions. 

(b) Potentiometer: This controls the motor speed in both directions. 

(c) Soft start/stop circuit: Ramps the voltage output from the potentiometer. 
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(d) Acceleration deceleration circuit: Adjusts the time constant of the ramped 

voltage. 

(e) Direction detector circuit: Alters the direction of rotation of the motor. 

(f) Absolute value unit: Provides positive voltage for both positive and 

negative input ramped voltages. 

(g) Voltage-controlled-oscillator and Control Logic Unit: Provides clocks 

needed by the PWM controller chip. 

A.3.2 Inverter/actuator structure 

The typical system block diagram is shown in Fig.A.7. The incoming 3-

phase a.c. supply is stepped down by a 3:..phase auto-transformer to an r.m.s. 

voltage of 115V. This voltage is rectified and smoothed to produce about 160V and 

this is fed to the three-phase inverter via a current-sensing circuit. The inverter 

chops the d.c. to give an output of 160V peak-to-peak pulse width modulated at a 

maximum frequency 1 kHz. This output is fed to the a.c. motor which responds 

mainly to the envelope of the PWM switching frequency. 

The six PFET switches in the inverter are under the command of a 

waveform-generation circuit which determines the conduction time of each switch. 

Since the control electrodes of the six switches are not at the same potentiai, the 

outputs of the waveform-generation circuit must be isolated and buffered. A low­

voltage power supply feeds the low-power signal processing circuit, and a further 

low-voltage power supply drives a transistorised switch-mode isolating stage to 

provide floating power supplies to the gate drive circuits [A.l]. 
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B SYSTEM IDENTIFICATION 

B.l PARAMETER ESTIMATION METHODS 

In general, solving the parameter estimation problem requires: 

* Input-output data from the process. 

* A defined model structure. 

* A criterion for parameter estimation, 

Parameter estimation can be formulated as an optimization problem in which 

the best model is the one that best fits the data according to the given criterion 

[B.2], There are a large number of methods for analyzing data obtained from 

experiments and one major distinction is between on-line and off-line methods. On­

line methods give estimates recursively as the measurements are obtained while off­

line methods first store the input/output data records and then estimate a model by 

using the entire data set. If identification is to be used in an adaptive controller 

then on-line recursive identification methods are appropriate. Fig.B.l shows a 

block diagram of an on-line identification scheme. 

When considering the selection of a parameter estimation method applicable 

in adaptive control, the following items have to be considered [B.S]: 

[B.6]: 

* The accuracy of the identified model and the convergence properties of the 

estimated parameters to the actual ones. 

* Computational effort (computer storage, computation time). 

Appropriate parameter estimation schemes for adaptive controllers include 

* Recursive Least Square (RLS) 

* Recursive Extended Least Square (RELS) 

* Recursive Maximum Likelihood (RML) 

* Recursive Instrumental Variable (RIV) 
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* Stochastic Approximation {STA), 

B.2 MODELS 

We shall now define the notation and conventions to be used for describing 

discrete time models. Fig.B.2 shows the model to be used in all the latter 

identification methods. Such a model has the following general structure [B.S]: 

B(z·1)y(T): A(z•1)u(T) + H(z·1)e(T) (B.1) 

where e(T) denotes the noise, y(T) denotes the output and u(T) the input. B(z-1) 

and A(z-1) are polynomials in the backward shift operator z-1, 

A(z-1): atz-4 ......... + aaaz·aa 

where z-• y(T) notationally denotes the value of y(T-n), The term H(z-1) has a 

different structure assumed by the various methods [B.S]. For RLS and RIV 

H(z-1)= 1 

while for RELS and RML 

H(z-1): C(z-1): 1 + C1Z"4 ..... + cacz·•c 
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B.3 A GENERAL CRITERION 

All the methods mentioned above fall within the class of prediction error 

identification methods [B.7], In the following example a simple model is considered 

to demonstrate the idea of prediction error minimisation. Consider the model 

y(T) + b y(T-1): a u(T-1) + e(T) (B.2) 

in which e(T) is zero mean white noise. The parameters to be estimated are collected 

into the vector: 

eT : [ b a ] 

First let us discuss how to determine the prediction of y(T) based on observations of 

y(i),u(i), 0 < i <T-1, and based on the assumption that the data is produced by the 

model(B.2). We denote such a prediction by y(T/~), which means the predicted 

value of y at timet based on the known data y(T-1), y(T-2) ... , u(T-1), u(T-2) ... , We 

shall make an elementary derivation of y(T/~) for this simple example; the general 

case will be shown later. From Eq.(B.2) 

y(T): -b y(T-1)+ a u(T-1)+ e(T) (B.3) 

Here y(T-1) and u(T-1) are known at timeT. The value of e(T) cannot be predicted 

from previous data since it is independent of everything that happened up to time T-1 

and by definition of e(T) the expected value of e(T) is zero. Hence, the natural 

prediction of y(T) is [B. 7]: 

I 

y(T/~): -b y(T-1) + a u(T-1) (B.4) 
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Introducing y(T) as the predicted value y(T/!!), we have from Eq.(B.3) and Eq.(B.4) 

that the prediction error can be evaluated 

e(T): y(T) - y(T) (B.5) 

Defining g,(T) as the vector containing the measured values at time T-1: 

g,(T)T: [ -y(T-1) u(T-1)] 

then 

y(T) : !!T g,(T) (B.6) 

From Eq.(B.5) and Eq.(B.6) the model Eq.(B.3) can be written as: 

y(T): ~T g,(T) + e(T) (B.7) 

Consider now a general model: 

B(z-1)y(T): A(z-1)u(T) + C(z-1)e(T) (B.8) 

where, as before, e(T) is a sequence of independent random variables and B(z-1), 

A(z-1) and C(z-1) are polynomials in the delay operator z-1• 

A(z-1): atz-t+ ........ +allaz-aa 
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We shall now derive the prediction error in this more general case [B.1]. Let us 

introduce the parameter vector 

Dividing Eq.(B.7) by C(z-1) we have 

B(z-1)/C(z-1) y(T): A(z-1)/C(z-1) u(T) + e(T) (B.9) 

or 

y(T): [1- B(z-1)/C(z-1)]y(T) + A(z-1)/C(z-1) u(T) + e(T) (B.10) 

Since the polynomials B(z-1) and C(z-1) have unity as the coefficient of their 

constant terms then the coefficient of the constant term in 

[ 1 - B(z•1)/C(z•1)] y(T) 

is zero. Thus the right-hand side of (B.10) is known at time T-1 with the exception 

of the term e(T) which is independent of everything that has happened up to time T-1. 

Therefore, the natural predictor is [B. 7]: 

y(T): [1-B(z-1)/C(z-1)] y(T) + A(z-1)/C(z-1) u(T) (B.ll) 

which gives 
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C(z-1)y(T): [C(z-1) - B(z-1))y(T) + A(z-1) u(T) (B.12) 

This is a convenient finite difference equation for calculating y [B.7]. The initial 

condition is often y(T):O for T<O, corresponding to an assumption that y(T): u(T):O 

for T<O. The error is then 

e(T): y(T) - y(T) 

From Eq.(B.12) 

C(z-1) e(T): B(z-1)y(T) - A(z-1)u(T) 

which can be written as 

e(T): y(T) - ~T.9.(T) 

with 

~T:(bt ••• bab Bl•••aaa Cl•••Cac] 

and 

.9.T(T):[ -y(T-1)/C(z-1 ), ••• , -y(T-nb)/C(z-1), u(T-1)/C(z-1), 

••• , u(T-na)/C(z-t), e(T-1)/C(z-1), ••• , e(T-nc)/C(z-1)] 

(B.13) 

(B.14) 

(B.15) 

(B.l6) 

A reasonable criterion of how well the model ~T.9. performs is to minimise some 

function of the prediction errors e(T). One procedure is to minimise a cost function 

B - 6 



J which is defined as the sum of the squares of the errors 

J = 1/2 t e(T)2 (B.17) 
T=l 

where 

e(T): y(T) - y(T) 

B.4. RECURSIVE LEAST SQUARES (RLS) 

B.4.1 General 

The LS method was first used by Gauss in 1809. Its recursive version has 

apparently been found independently by several authors [B. 7]. The original 

reference seems to be Plackett (1950) [B.23]. 

The RLS method assumes a model of the form (B.1) with H(z•1):1: 

B(z·t)y(T): A(z·1)u(T) + e(T) (B.18) 

We shall define 

p:[ -y(T-1) •••• -y(T-nb) u(T-l) •••• u(T-na)] (B.19) 

and 

.!T:(bl•••• bab at •••• aaa] (B.20) 

and y(T) as the predicted value of y at time T-1. The model is rewritten in terms of 
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the predicted value y(T) as 

y(T): y(T) + e(T) (B.21) 

since C(z-1):1 then f{T)= g(T) and (B.21) is 

y(T): ~Tg(T) + e(T) (B.22) 

The RLS method is a simple and easily applicable method. Its rate of 

convergence is very high [B.17], There is only one real disadvantage, namely the 

assumption H(z-1):1, If this does not hold in. the system being identified, RLS will 

in general give a biased estimate. This drawback is the motivation for use of other 

methods [B.S]. 

B.4.2 The algorithm 

The function J in Eq.(B.17) is minimised by the parameter Q that obeys 

N N 

[r:g(T)gT(T)] !!(N) : l.:s(T) y(T) 
t=l •. .. 1 

N 

if the matrix D<T)gT(T) is nonsingular, the minimum is unique 
t=1 

and given by [B.l]: 

N N 

!!(N): [ Lg(T)g_T(T)]-1 I: g(T) y(T) (B.23) 
t=l .. 1 
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This solution requires all the data recorded up to the Nth sample to be stored and 

calculated at once in a batch execution process. Every time a new sample is 

recorded the same process is repeated for the whole data. 

In real-time applications this solution is not practical for two reasons. A 

lot of memory storage is required since all the sampled data has to be recorded. The 

second reason is that matrix inversion process takes a considerable time, this is a 

problem when fast sampling is required. 

To avoid these problems a recursive solution is obtained in which the 

estimated value, !:!Mr after N samples is a linear sum of the estimated value, !:!M-t, 

obtained after N-1 samples plus a corrective term based on the new information YN 
' 

and £l.N received at the Nth sampling instant. This solution does not require matrix 

inversion, consequently the execution time is exessively reduced. Furthermore, it 

requires much less memory storage. 

The least-squares estimate l! satisfies the recursive equation [B.9] 

!:!(T): !:!(T-1) + }i(T)[y(T) - ~T(T-1)g(T)] (B.24) 

where 

}i(T): P(T-1)g(T) [1 + g(T)TP(T-1)g(T)]-t (B.25) 

and 

P(T): [I - }i(T-1)g7 (T)] P(T-1) (B.26) 

where P(T) is the variance-covariance matrix of the identified parameters. 
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B.5 RECURSIVE EXTENDED LEAST SQUARES (RELS) 

B.5.1 General 

The recursive extended least squares was developed by Panuska (1968) and 

Young (1968) [B.23], It can be considered as a straight forward extension of the 

RLS and also as a special case of the recursive maximum likelihood method as we shall 

see later. The general model Eq.(B.1) is assumed to have H(z-1):C(z-1), as as shown 

in Fig.B.2: 

B(z-l)y(T) : A(z-l)u(T) + C(z-l)e(T) (B.26) 

In RELS 

f!T: [bt ... bab 81 ••• aaa Cl ••• cac] 

and 

f_T: [ -y(T-1) ... u(T-1) ... e(T-1) ... ] 

Therefore, 

e(T) : y(T) - f.T !! (B.27) 

Clearly this method is more general since the restrictive assumption H(z-1):1 is no 

longer in play. Convergence requires some restrictions on the value of the C{z-1) 

polynomial (its roots have to be within the unit circle) [B.4], 
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8.5.2 The algorithm 

The cost function Eq,(8.17) is rewritten 

N 

J =1/2 2: e2(T) 
T=l 

where 

e(T) : y(T) - .9.T!! 

and 

.9.(T) : f(T)/C(z-1) 

If a good estimate of C(z-1) is available, it may be possible to use a fixed filter 

based on available a priori knowledge. The use of a fixed filter will then lead to an 

approximate form of the sequential prediction error algorithm [8.4]. Let D(z-1) be a 

fixed a priori estimate of C(z-1), In the case of RELS the algorithm is simplified 

even further by putting D(z-1):1 [8.4]. Therefore: 

.9.(T) = f(T) 

The algorithm is then: 

_!!(T) : _!!(T-1) + _k(T-1) [y(T) - .9.T.!!(T-1)] 

_k(T-1): P(T-1).9,(T) [1 + .9.T(T)P(T-1).9,(T) ]-1 
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P(T): [I - k(T-1) gT(T)] P(T-1) 
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B.3 RECURSIVE MAXIMUM LIKELIHOOD (RML) 

B.3,1 General 

The recursive maximum likelihood method, originally developed by 

Soderstrom (1973), is based on an idea by Astrom [B.S], The assumed model is the 

same as in RELS 

B(z-1)y(T) : A(z-1)u(T) + C(z-1)e(T) (B.28) 

or 

y(T) : 9.T!! + e(T) (B.29) 

where 

~T: [ bt ... ba.b at ••• aa.a Ct ••• ca.c] 

From Eq.(B.16) 

g_T: [ -y(T-1)/C(z-1) ... u(T-1)/C(z-1) ,., 

e(T-1)/C(z-1) ... ] (B.30) 

The RML is a superior method and has been shown to converge for all values 

of C(z-1) [B.S]. The RML method is superficially the same as RELS except that the 

g(T) vector of RELS is filtered, where the filter used is 1/C(z-1), The RML 

algorithm needs more computation than RELS due to the extra filtering as shown in 

Table.B.I. 
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B.3.2 The algorithm 

The cost function (B.17) is rewritten 

J = 1/2 t e2(T) 
T=l 

where 

e(T) : y(T) - gT2(T) 

The algorithm is 

e(T) : e(T-1) + k(T)e(T) - - -

k(T) : P(T-1)g(T) [1 + gT(T)P(T-1)g(T) ]-1 

P(T) : [ I - k(T)gT(T)] P(T-1) 
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B.4 RECURSIVE INSTRUMENTAL VARIABLE (RIV) 

B.4.1 General 

The recursive instrumental variable method is a modification of the least 

squares method and is designed to overcome the biased estimate problem of the RLS, 

if H(z-1);tl[B.10], The model assumed is the same as that in RLS i.e. 

B(z-1)y(T): A(z-1)u(T) + e(T) 

and 

y(T) : gT2 + e(T) (B.31) 

A disadvantage with the least square estimate is that in general g(T) and e(T) 

will be found to be correlated but, as a condition for ~(N) to converge to the true 

2 in the RLS is that g(T) and e(T) should not have any correlation, e(N) will not 

converge to the true 2 if this condition is not satisfied. To overcome this 

problem we might replace g(T) in (B.23) by a vector ~(T), such that x(T) and e(T) 

are uncorrelated and (B.23) becomes: 

e(T) : [ ~(T)gT]-1 ~(T) y(T) (B.32) 

and 2(T) will tend to the true ~ as t tends to infinity under the following three 

conditions [B. 7]: 

x(T) and e(T) are uncorrelated 

e(T) has zero mean, 

the matrix [ ~(T)gT(T) ]-1 is non-singular 
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The estimate Eq.(B.32) is known as the Instrumental Variable (IV) estimate. The 

vector x(T) is referred to as the instrumental variable [B.lO]. 

B.4.2 The algorithm 

A common choice to satisfy the three conditions (B.33), (B.34), and (B.35) is 

[B.7]: 

:?fT(T): [-y,.(T-1) ••• -y.,(T-nb) u(T-1) ••• u(T-na)] (B.36) 

where y,.(T) is the output of a deterministic system driven by the actual input u(T) 

[B. 7]: 

y,.(T)+bty.(T-l)+ ••• +bobY•(T-m): atu(T-1)+ ••• + aoau(T-na) (B.37) 

For the recursive algorithm (B.39) a frequently used approach is to let b1 and a1 be 

time-dependent. Then the current estimates b1(T), a1(T) obtained from (B.39) can 

be used at time t in (B.37) [B.7], Eq.(B.37) can be written as: 

y,.(T): eTx(T) (B.38) 

This approach was suggested by Mayne (1967), Wong and Polak (1967), and Young 

(1965) [B. 7]. 

The algorithm is then 

2(T): 2(T-l) + Ji(T) [y(T) - .9.T(T)2(T-l)] (B.39) 
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_k(T-1): P(T-l}Ji(T) [1 + gTP(T-1)]i(T)]-1 (B.40) 

P(T): [I - _k(T)gT(T)] P(T-1) (B.41) 
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B.5 STOCHASTIC APPROXIMATION (STA) 

B.5.1 General 

There are several recursive identification methods based on stochastic 

approximation, e.g. [B.ll], [B.12], [B.13]. 

The model assumed is the same as that in RLS, i.e. 

B(z-t)y(T): A(z-1)u(T) + e(T) 

or 

y(T) : ~T~ + e(T) 

The methods considered above can be simplified to yield algorithms of this 

type by essentially substituting the matrix P(T) by a scalar p(T), e.g. c/T or 

1/trP(T)-1 [B. 7]. This means that the general description of the algorithms is 

transformed into 

~(T) : ~(T-1) + p(T)~(T)e(T) (B.42) 

This reduces the time of computation per iteration considerably, as shown in 

Table.B.l, and simplifies the procedure. However, in general the convergence will 

be slower than if the original algorithm is applied [B.S]. 

B.5.2 The algorithm 

The cost function Eq.(B.17) is rewritten 
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N 

J = 1/2 L: e(T)2 

T=l 

and 

e(T) : y(T) - gT~(T) 

Rob bins and Monro (1951) suggested the following recursive scheme as time evolves 

[B. 7]: 

~(T)= ~(T-1) + p(T) g(T) e(T) (B.43) 

The sequence p(T) in Eq.(B.43) is the gain sequence. Consideration of how to 

choose this sequence is given in [B. 7]. 
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B.6 INITIAL VALUES 

In order to start all recursive algorithms, it is necessary to have initial 

values for e(O) and P(O). If no apriori information is available, then algorithm can 

be started with e(O):O [B.9]. Since there is no confidence in this choice, the 

coveriance matrix P(O) should be large; an appropriate choice is P(O): r.I where r 

is a big number e.g. 104 [B.14]. 

The choice of ~(0):0 and P(O) = r.I is applicable to all methods. Note that 

the choice of the initial values have influence only on the transient behaviour of the 

methods. 

B. 7 REAL TIME VERSIONS 

Real time identification allows time varying parameters to be tracked [B.8]. 

The ordinary algorithm gain (~) reduces quickly when the P matrix gets small 

after a few iterations (typically 10 to 20) [B.7]. Therefore the algorithm cannot 

track any subsequent large change in the system parameters, The solution is to 

prevent the P matrix from getting too small. It is possible to modify the general 

algorithm to handle such systems. Essentially three kinds of extensions are used in 

the literature [B.8]. 

One way. is to include a weighting factor or forgetting factor g. The 

modified algorithm is then: 

e(T) : e(T-1) + k(T) e(T) - - - (B.44) 

~(T) : P(T)g[ g + gTP(T)g ]·1 (B.45) 

P(T) : [ I - ~(T-l)gT(T)] P(T-1)/g (B.46) 
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By choosing g smaller than I (e.g. as 0.99) old residuals will have small influence 

on the estimates [B.8,B.15), This approach is described in [B.16). An adaptive 

control algorithm with variable forgetting factor was implemented by Fortescue, 

Kershanbaum and Ydstie [B.15). 

Another approach is to reset the covariance matrix P at various times. 

In this case, the obvious time to reset P is when one suspects that a significant 

parameter change has occurred [B.S). Therefore: 

P(O) : h.I, where h > 0 

Let Zs = [Tt T2 T• ... ) be the times at which resetting occurs, otherwise for 

TE:[Zs) an ordinary algorithm is used, that is: 

P(T) : [ I - _k(T-l)g_T(T)] P(T-1) (B.47) 

otherwise, for T = T1 E: [Zs), P(T) is reset as follows: 

P(Ti) : Ki.I (B.48) 

where 0 < Krain < K1 < Kmax < oiJ 

The third approach is to make use of the interpretation of the RLS method as 

a Kalman filter [B.S). Inclusion of process noise in the model will lead to the 

algorithm: 
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e(T) : e(T-1) + k(T) e(T) - - - (B.49) 

_k(T) : P(T)g.[ 1 + gT P(T)g ]-1 (B.50) 

P(T) : [ I - _k(T-1)gT(T)] P(T-1) + R (B.51) 

where R is a positive semi definite matrix [B,7]. 

The extensions above have the desired property that the gain vector k(T) 

does not tend to zero. 

B.S IMPROVEMENT OF THE CONVERGENCE RATE 

In [B.17] several ways to improve the convergence rate were discussed for 

the RML method. A very common choice is to use the algorithm [B.S]: 

e(T) : e(T-1) + k(T-1) e(T) - - - (B.52) 

_k(T) : P(T-1)g[ g(T) + gT P(T-1)g ]-1 (B.53) 

P(T) : [ I - _k(T-1)gT ] P(T-1)/g(T) (B.54) 

where 

g(T) = go g(T-1) + ( 1 - go) (B. 55) 

The number go is chosen close to I. e.g. as 0.99, and so is the initial value g(O) 

[B.S], 
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The weighting factor g(T) is constructed to tend to 1 as time goes on. 

B.9 COMPARISONS 

These methods have been examined and compared in [B.5], [B.6], [B. 7], [B.S], 

[B.20], [B.21], and [B.22]. The following results are obtained: 

B.9.1 Overall comparison of the performance 

For long identification time the parameter estimation methods with unbiased 

estimates are (RIV, RELS, RML, STA) and they have approximately the same accuracy 

of the input/output model. For short identification all methods, including RLS show 

little difference. In general the estimates of the process parameters converge 

quicker than the estimates for the noise parameters. 

B.9.2 Properties of each method 

Table.B.l shows a comparison of the methods in terms of computation time 

and rate of convergence. 

(a) Recursive Least Squares (RLS) 

Biased estimates for coloured noise. Applicable for short identification 

time if noise acts on the process. Relatively small computational expense. Good 

starting method for RIV or RML. RLS reliable convergence for white noise. 

(b) Recursive Extended Least Squares (RELS) 

Similar to RML but it doesn't converge for some type of systems (i.e. if the 

roots of the C(z-1) polynomial are outside the unit circle). 
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(c) Recursive Maximum Likelihood (RML) 

Good performance for special noise model C/B. Large computational 

expense due to the filtering of g(T). The convergence is more reliable than RELS. 

(d) Recursive Instrumental Variable(RIV) 

Good performance for wide range of noise models. Medium computational 

expense. A priori factors: 1 matrix, filter factors. Reliable convergence. It is 

recommended to start with RLS first and then continue with RIV. 

B.9.3 

(a) -

(b) -

(c) -

(d) -

(e) -

Conclusion 

The RLS method gives biased estimates for noisy systems. 

The RIV, RELS and RML methods often give good results. Notice, however, 

that the RIV method sometimes produces unacceptable estimates. 

In general the RML method is the most accurate method. 

The RML method seems to be superior to the RELS method, in particular 

concerning the estimation of the parameters of C. 

For adaptive control RLS is often adequate. 

B - 24 



Contra 
signal 
(u) 

I 

e 

u 

Plant 
y 

~error 
~ /'. 

Mjdel 
y 

Adjustment 
Mechanism 

Fig.B.1 
On -line System Identification Process 

A 

B 

H 

B 

Fig.B.2 

General Model Form 

y 

(e) 



• 

Table. B .1 

Specifications of the methods 



APPENDIX -C 



C - CONTROLLER DESIGN TECHNIQUES 

C.1 - ONE-STEP-AHEAD CONTROL 

The one-step-ahead controller minimises a cost function I which is defined 

as: 

I = [ y(T+1)- w(T)]2 (C.1) 

where y(T+1) is the output at time T+l and w(T) is the desired value. 

The transfer function ( 4.4) is rewritten here: 

atz-1 

G(z)= ------------
1 + btz-t 

where at = kh/7" and bt = -1 

The discrete time domain equivalent of Eq.(C.2) is: 

y(T): -bt y(T-1) + at u(T-1) 

To minimise I in (C.1) is equal to zero. Thus 
a u(T) 

a I/ a u(T): 2 [ y(T+1)- w(T)] at : 0 

(C.2) 

(C.3) 

(C.4) 

and substituting for y(T+l) from Eq.(C.3) in Eq.(C.4) we have 

-bt y(T) + at u(T) - w(T): 0 
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The control signal is then 

1 
u(T) - - w(T) + 

at at 

---------------------------

y(T) (C.5) 

Eq.(C.5) can be written in the general form of Eq.(4.5) as: 

u(T) = fo w(T) - so y(T) 

where fo = 1/at and so = -bt/at. Since bt = -1 then fo = so and the 

controller is simply a pure gain: 

u(T) : K [w(T) - y(T)] (C.6) 

where K = 1/at = 7'/kh. 
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C.2 - WEIGHTED ONE-STEP-AHEAD CONTROL 

The cost function I is defined as: 

I : [ y(T+l)- w(T)]Z + 1\ uZ(T) (C.7) 

where the value of . ).. determines the compromise between bringing y to w and the 

amount of effort expended. 

To minimise I in (C.7), set ·~I/:(J u(T): 0 

oi/ (J u(T) : 2 [ y(T+l)- w(T)] a1 + 2/.. u(T) : 0 (C.8) 

substituting for y(T+l) from Eq.(C.3) in Eq.(C.S) then: 

[-b1 y(T)+ a1 u(T)- w(T)] a1 + 'A u(T): 0 

u(T)[ a1 + A /a1 l= w(T) + b1 y(T) 

and 

1 
u(T) : ------------ w(T) + ------------ y(T) (C.9) 

a1 + (\ /a1 a1 + 'i\/a1 

Eq.(C.9) can be written in the general form: 

R(z) u(T) : F(z) w(T) - S(z) y(T) 

and in this R, F, and S for our example of polynomials of degree zero, then 
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u(T) = fo w(T)- so y(T) (C.lO) 

where fo = 1/[at+ ~/at] and so : -bt/[at+ A/at] 
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C.3 - POLE/ZERO CANCELLATION 

0.3.1 - General 

The design considers a servo problem which is expressed in terms of a 

model that gives the desired response to command signals [0.12). Fig.C.1 and Fig.C.2 

show block diagrams of the system and the desired model respectively. 

The desired closed-loop pulse-transfer is given by 

Gm = 
Am 

Bm 
(C.ll) 

where Am and Bm do not have any common factors. In general it is not sufficient to 

specify Gm [0.2). With output feedback, the command signal does not excite all the 

states of the system; therefore the states that are not measured have to be observed. 

This is done by introducing a polynomial Bo called an observer [0.2), 

The plant model(4.4) is written as: 

B(z)y(T) = A(z)u(T) (0.12) 

where u is the control signal and y is the measured output signal of the plant. The 

problem is to find a control law of the form (4.5) such that the closed-loop system has 

the input-output relation given by the pulse-transfer function of (C.ll). 

The input-output relationship for the closed-loop system is obtained by 

eliminating u between Eq.(4.5) and Eq.(C.12), then 

( B R + A S )y : A F w (0.13) 

Comparing Eq,(C.ll) and Eq.(C.13) gives: 
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AF 

= 
BR+ AS 

Aa 

Bm 
(C.l4) 

The problem now is to find the polynomials R, S, and F that satisfy Eq.(C.l4). 

The zeros of the closed-loop system are the zeros of the polynomials A and 

F. First consider the open-loop zeros of the plant, i.e. the zeros of the polynomial A •. 

If a factor of A is not a factor of A. then it must be a factor of BR+AS, so it must be 

cancelled by a closed-loop pole. Since the closed loop system must be stable, only 

zeros which lie in the complex domain unit circle stability region (defined here as 

"stable zeros") may be cancelled. We can factor A as: 

A : A• A-

where A• represents all zeros inside the stability region and A- represents all zeros 

outside the stability region. To get a unique factorisation the coefficient of the 

highest power in A+ is fixed to unity [C.l2]. The polynomial N is said to be manic 

[C.2]. 

Since A- cannot be a factor of BR+AS, it follows that it must divide Am, i.e., 

A. : A- A~ (C.15) 

This implies that unstable plant zeros cannot be changed, but must be included in 

A •• If A• (stable zeros) is a factor of BR+AS, it follows that it is also a factor of R. 

Hence 

R: A• R' (C.16) 
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Now we can write Eq,(C,14) as: 

A• A- F 

B A• R'+ A-N S 

A• A- F 
=> 

N( B R'+ A"S 

= 

= 

Clearly Eq.(C.17) reduces to 

F 
=>----- = 

B R'+ A" S 

A- A:O 

Bm 

Bm 

(0.17) 

(0.18) 

and this shows that Bm is a factor of BR'+A-s. Furthermore, as discussed in (0.2] the 

observer polynomial (Bo) will not appear in the transfer function, which relates the 

output to the command signal. It follows that the observer polynomial is cancelled in 

the transfer function from the reference signal to the output. Therefore Bo is a 

factor of BR+AS and F and the following conditions are obtained: 

F:A:.Bo (0.19) 

and 

B R' + A- S : Bo B,. (0.20) 

Equation (0.20) must therefore be satisfied by R' and S to achieve the required 

closed-loop plant model. 
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0.3.2 - The design of the plant controller 

The transfer function (4.4) is rewritten in the forward shift form: 

a1 
G(z): -----­

z + b, 

where a1 = kh/'Y and b1 = -1 

(C.21) 

We shall consider the desired closed-loop behaviour to be given by the classical 

continuous time second order system: 

G(s)= ------------------
s• + 2?;'VJ· s + w.• 

since such system has known rise time and overshoot as explicit functions of l; and 

The equivalent discrete form of the continuous transfer function, G(s), is 

determined using the Bilinear z-transform [C.l]. The poles of the corresponding 

discrete time system are given by the characteristic equation: 

zZ + Pl z + pz = 0 (C.22) 

where 

2T1f.,.12 - 8 .. (0.23) P• = -----------------
4 + 4T~W + T2!.)2 

" .. 
4- 4Tt;w + T•w• " ... (C.24) pz = --------------------
4 + 4Ti;'W,. + T't,u~ 
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Fig.C.3 shows the definition of the rise time Tr, settling time Ts, and 

overshoot M •• The values of and are calculated according to the specified rise 

time, Tr, and overshoot, Mp, using the following relations [C.6,C. 7]: 

exp ( p/tan s6 ) 
Tr : ----------------w .... 

. , 

and 

exp ( s6/tan s6 ) 

UJ = ----------------
Tr 

where cos s6 = . {· 

. The overshoot is 

M• = exp(- ,.?;! 1 - 42 ) 

and 

t;': In Mp/ .,.z + (In M.)z 

the settling time Ts is 

Ts = In X / W_( 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

where x is the tolerance of the output response to the steady state value. 

The desired closed-loop system is characterised by the pulse-transfer 

function: 
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A. P(1) A-(z) 
G.:--- = (0.30) 

B,. A·(1) P(z) 

where A-(z) are the unstable or poorly damped zeros of the plant. P(1) and A-(1) 

ensure zero steady state error [0.2]. 

The pulse transfer function (0.21) has no zero. In this case no zero is 

cancelled and A(z) is factorised as: 

A• : 1 

The desired pulse-transfer function of the system is then: 

G,. : 

A' -·-

1 + Pt + P2 

Z2 + Pt z + Pa 

A. 1 + Pt + P• 
= 

(0.31) 

(0.32) 

It is proved in [0.2] that for the pole-placement design to have a causal 

solution then, 

the degree of Bo ~ 2 deg B - deg B. - deg A• - 1 = -1 

Thus with deg Bo = 0 and choosing Bo = 1 

deg S = deg B -1 = 0 

and 

F = A:. Bo = ( 1 + Pt + pa)/at = fo (0.33) 
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deg F = 0 

deg R' = deg Bo + deg B. - deg B = 1 

then R' = z + r1 [C.2]. 

Substituting for F, R and S in the design Eq.(C.12) 

( z - 1 )( z + n)+ a1 so = z2 + P1 z + p2 (C.34) 

which can be solved for the unknown coefficients. Let z = 1 in (C.34) then: 

a1 so : 1 + p1 + p2 

and 

1 + P1 + P2 
so = 

81 

equating equal powers of z in Eq.(C.34) to get: 

( r1 - 1 ) = P1 

and 

r1 = 1 + P1 

Substituting for these values in the general control Eq,(4.5): 

( z + r1) u(T) = fo w(T) - so y(T) 

then 

u(T) = fo w(T-1) - so y(T-1) - r1 u(T-1) (C.35) 
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C.3.3 - The design algorithm 

The following data must be provided in the design of pole/zero cancellation: 

a plant model specified as a pulse-transfer function A/B, an observer 

polynomial Bo, the desired closed-loop pulse-transfer function Am/Bm, and 

the stability region. 

The degree of the observer polynomial is [C.2] 

deg Bo ~ 2 deg B - deg Bm - deg A• - 1 

Step 1. Factor A and Am as 

A : A- A• , Am : A- A:. 

where A• is monic and has all its zeros inside the stability region, and A­

has all its zeros outside the stability region. 

Step 2. Solve the equation 

B R' + A- S = Bo Bm 

for the polynomials R' and S. The solution should satisfy the conditions: 

deg R' = deg Bo + deg B. - deg B 

deg S = deg B - 1 

To solve the equation introduce polynomials R' and S with unknown 

coefficients and given order and equate equal powers of z to determine the 
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coefficients of R' and S. 

Step 3. Substitute in the control law 

R u(t) = F w(t) - S y(t) 

where R = A• R' 1 F = A:O Bo 

[0.2]. 
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C.4 - PID CONTROLLER 

The idealised equation of a continuous time PID controller is [C.13]: 

u(t): K [ e(t) + 

where the parameters 

• 

:,/ 
0 

de(t) ] 
e(t) dt + Tn -­

dt 

K = proportional gain 

T1 = integration time 

Tn = derivative time 

(C.36) 

For a given sample time T, Eq.(C.36) can be turned into a difference equation by 

discretisation. The derivative is simply replaced by a first order difference and the 

integral by a sum [C.14]. Applying backward rectangular integration gives [C.l3]: 

T k-1 

u(k): K [ e(k) + -· L e(i) + 
TI I•O 

Tn 
---( e(k)- e(k-1))] 
T 

(C.37) 

This is a non-recursive control algorithm, which means that all past error values 

e(k) have to be stored. However a recursive algorithm is more suitable for 

programming on computers since past error values do not have to be stored. This 

algorithm is characterised by the calculation of the current control signal u(k) 

based on the previous value u(k-1) and correction terms [C.13]. The recursive 

algorithm is derived by subtracting from Eq.(C.37) 
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--- ------------------

T k-2 To 
u(k-1): K[ e(k-1) + - .L:e(i-1)+ --(e(k-1)- e(k-2))] 

Tt •=• T 

and one obtains 

u(k)- u(k-1) = qo e(k) + q1 e(k-1) + q2 e(k-2) 

with parameters 

To 
qo = K( 1 + - ) 

T 

To T 
q1 : -K( 1 + 2 - - ) 

T Tt 

To 
q• : K 

T 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

Fig.C.4 shows the recursive algorithm of the digital PID controller, Fig.C.5 

shows the control loop of the controller. The Z-transfer function of the controller is 

u(k) Q 
Gc(z):-: : 

e(k) J 1 - z-1 

(1 - z-l)u(k) : (qo + q1 z-1 + q2 z-•)[w(k)- y(k)] 

The following characteristic coefficients can be defined: 

K = qo - q2 gain 

Co : q2/ K lead coefficient 

Ct : (qo + q1 + q2)/ K integration coeff 
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They have been defined so that for small sample times they are related to the 

parameters of the continuous PID controller as follows: 

K: K Cu : Tu/T CI = T/TI 

Cu is the ratio of the lead time to sample time and C1 the ratio of sample time to 

integration time. If these characteristic coefficients are substituted in Eq.(C.43) the 

z-transfer function becomes 

K [ (l+Cu)+ (CI - 2Cu)z•l + Cu z·• ] 
Gc(z): ---------------

1 - z-1 
(C.48) 

If Cu = 0 in Eq,(C.46), then q: = 0 and Eq.(C.43) becomes 

Gc(z) = 
qo + q1 z·l 

1 - z-1 

and the difference equation is 

u(k) = u(k-1) + qo e(k) + q1 e(k-1) 

and this is equivalent to a PI controller. 

(C.49) 

(C.50) 

From Fig.C.5 the closed loop equation is found to be: 

QA 
y(T): --- w(T) (C.51) 

B J + Q A 

The general control input form shown in Fig.C.6 can be compared with Fig.C.7, the 

PID control input function given by Eq.(C.44). The control input of Eq.(C.44) can be 

associated with the general controller form Eq,(4.5) if 
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F/R : S/R , and F : S 

then 

R = J = 1 - z-1 and F : S : Q : qo + q1 z-1 + q2 z-2 (C.52) 

The coefficients of the Q polynomial qo, q1 and q2 must be selected to meet the 

desired performance objective, hence the K, Tr and Tn coefficients will be chosen. 

The pole assignment criterion is used, in which the denominator of the closed loop 

Eq.(C.51) is equated to P, an a priori selected polynomial. The equation required to 

meet the pole assignment objective is therefore: 

BJ+QA:P (C.53) 

from which the coefficients of the Q polynomial are found. 

The apriori defined polynomial P corresponds to the continuous time 

polynomial 

(C.54) 

and, as shown in Eq.(C.22), using the backward shift operator is: 

1 + Pl z-1 + P2 z-2 (C.55) 

where 
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Pl : 
2T'w':..- 8 

(C.56) 

pz : (C.57) 

The values of (I.)., and ( are calculated according to the specified rise time 

and overshoot as discussed in section (C.3). 

Substituting for A, B, J, Q and P from Eq.(C.2),Eq.(C.52) and Eq.(C.55) 

respectively in the design Eq.(C.53) we have 

(C. 58) 

Equating equal powers of z gives 

qo = ( 2 + Pl )/a1 (C.59) 

(C.60) 

qz = 0 (C.61) 

and this is equivalent to a PI controller. The control signal function is then 

u(t)= qo [ w(t)- y(t)] + q1 [ w(t-1)- y(t-1)] + u(t-1) (C.62) 
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C.5 - EXECUTION TIMES 

Fig.C.8 shows the hardware used to measure the execution time for each 

algorithm. 

The computational time required to execute each of the following algorithms: 

- One Step Ahead controller (OSA) 

- Weighted One Step Ahead controller (WOSA) 

- Pole/Zero Assignment controller (PZA) 

- PID controller 

is as follows: 

OSA 2.475 mSec. 

WOSA 3.05 mSec. 

PZA -- 4.35 mSec. 

PID -- 4.40 mSec. 

Table.C.l 
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D SELF TUNING CONTROLLER - HARDWARE 

D.l TARGET BOARD SYSTEM DESCRIPTION 

D.l.l Overall structure 

Fig.D.l shows the overall structure of the target system controller, this 

being implemented on two printed circuit boards. It is based on the use of a general 

purpose single board computer (SBC), augmented by an analogue I/0 section 

mounted on a piggy-back board. 

(a) Central processing unit 

The Central Processing Unit (CPU) is an Intel 8088 (5-MHz version). The 

system operates in maximum mode at a clock frequency of 4 MHz. 

(b) Numerical data processor 

The Numerical Data Processor (NDP) is the Intel 8087 Co.Processor which 

works in parallel with the system processor to execute arithmetic operations. 

(c) Bus controller 

The Intel 8288 Bus Controller is incorporated since the CPU has to work in 

maximum mode. 
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(d) Analogue to digital converter 

A 12-bit successive approximation type Analogue to Digital Converter (ADC) 

is used to digitise plant (and other) analogue signals. 

(e) Digital to analogue converter 

A 12-bit Digital to Analogue Converter (DAC) is used to handle the digital to 

analogue conversion for the output control signal. 

(f) Memory 

Three sockets are provided, organised in BYTE-WIDE fashion (JEDEC 

standard). Each socket is capable of holding either: 

* 2764 Eprom (8K x 8 Bits) 

* 27128 Eprom (16K x 8 Bits) 

* 4802 Ram (2K x 8 Bits) 

* 2016P Ram (8K x 8 Bits) 

The system has a 64 kByte address range, 

(g) Timers 

A single programmable timer I.C. is included in the design, housing three 

separate timers. One is used as the serial communications baud rate generator (see 

section D.l.h), enabling software selection of the baud rate. Two timers are 

available for control loop timing. 
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(h) Interrupts 

A multi-level interrupt structure is implemented using a programmable 

interrupt controller device. 

(i) Serial communications 

A serial data communications interface is incorporated for use with a 

console. Full duplex signal transmission and programmable baud rate (See 

Sec.D.1.g) facilities are included, the signal levels complying with EIA RS-232C 

standards. 

(j) Backplane bus 

This consists of address, data and control buses, being compatible with the 

IEEE P1000 bus standard. Connections are made via a 64 way (DIN 41612C) two-part 

connector. 

(k) Power supplies 

Three d.c. voltages are required by the system. A 5 volt line feeds the 

digital circuits whilst H5 volt lines power the analogue sub-systems. 

(1) Circuit board 

This is Extended double Eurocard format. 
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D.l.2 System design - Details 

Fig.D.2 shows a block diagram of the target system. 

(a) System bus 

(i) Bus signals 

The system bus consists of 16 address and 8 data lines plus the following 

control lines: 

* MRDC/ (Read) 

* MWTC/ (Write) 

* READY 

* RESET 

* CLK (Clock) 

* PCLK (Peripheral Clock) 

* REQUEST/,GRANT 0/ 

* REQUEST/,GRANT 1/ 

* DEN/(Data Bus Enable) 

* DT/R (Data Transmit/Receive) 

* ALE (Address Latch Enable) 

Note: A signal that is active low is designated by a slash(/) following its title. 

The address and data buses are fully buffered, 

(ii) MRDC/ and MWTC/ Lines 

These signals are issued by the Bus Controller to addressed memory or 
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peripheral devices commanding them to perform a data write (MWTC/) or data read 

(MRDC/) function. 

(iii) RESET and READY lines 

* RESET is a signal generated by the Clock generator. It is applied to the 

CPU and peripheral devices as a general hardware reset command. 

* READY is a CPU input signal which is generated by on-board devices, the 

purpose being to force the processor into a wait-state condition. This allows a 

"slow" device to lengthen the read and write cycles. This line is sampled by the 

processor during each read and write cycle; if it is "not ready" (low) the CPU holds 

all its control lines in their current state, continuing only when ready returns high. 

(iv) Clock and peripheral clock 

The clock (CLK) signal is used as the CPU's timing reference. It is a square 

wave signal having a 33% duty cycle. 

The peripheral clock (PCLK) is a square wave at half the CLK frequency 

with a 50% duty cycle. It is used as the timing reference for the peripheral devices. 

(v) REQUEST/,GRANT/ 

Request-grant operations are provided to support multiprocessor 

operation. "REQUEST" is an input signal generated by another processor in the 

system which requires use of the system bus. "GRANT" is the response by the 

receiving processor, this being sent back on the same line as REQUEST. Fig.D.3 
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shows the Request/Grant timing diagram. On receiving a request the CPU 

completes its current instruction and then sends a grant pulse to the requesting 

processor on the same line. At the same time as issuing GRANT the processor 

releases control of the system bus (i.e. "floats" it). The second processor takes 

control of the system on receiving the GRANT/ signal. 

(vi) DEN/, DT/R, and ALE 

The 8088 uses a multiplexed address and data bus structure; the lower 8 

bits of the address bus being shared with the 8 bit data bus. 

At the beginning of each cycle the required address is presented on the 

address pins of the CPU. This is then latched using external latches with ALE as 

the control signal (generated by the Bus Controller). The lower 8 bits of the CPU's 

address bus now become the bi-directional data bus. In most cases this requires 

buffering so that it can drive the system data bus; hence the Bus Controller 

generates the required buffer chip control signals, data enable (DEN) and data 

transmit/receive (DT/R). 

(b) System timing 

All system timing is related to the system clock as shown in Fig.D.4. Each 

processor bus cycle consists of at least 4 CLK cycles, referred to as Tl, T2, T3, and 

T4. If the READY line is low (not ready) at the end of T2 or T3, extra CLK cycles 

called wait states (Tw) are inserted between T3 and T4 [D.l]. 
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(c) Interrupt operation 

Interrupts are used extensively in the system to allow devices to work 

independently to the CPU, but be able to request service from it via an interrupt. 

Interrupts can be either software or hardware initiated. 

The 8088 processor can support 256 interrupt vectors. A 256-entry vector 

table, which contains address pointers to the interrupt routines, reside in absolute 

locations 0 through 3FFH. As shown in Fig.D.5, the first five interrupt vectors are 

associated with the software-initiated interrupts and the hardware non-maskable 

interrupt (NMI). The next 27 interrupt vectors are reserved by Intel. The 

remaining interrupt vectors (vectors 32 through 255) are available for user 

interrupt routines. 

(i) Software interrupts 

These originate directly from program execution (i.e. execution of a "cause 

interrupt" instruction) or indirectly through program logic (e.g. attempting to 

divide by zero). An interrupt can be initiated under software control by issuing 

the "cause interrupt" instruction followed by the appropriate type vector. 

(ii) Hardware interrupts . 

Hardware interrupts, originating from external device, fall into two 

catagories, maskable and non-maskable (NMI). 

A maskable interrupt is triggered by raising the INTR pin from low to high. 

The processor completes its current instruction and then executes the interrupt 

acknowledge sequence of Fig.D.6. The CPU causes the bus controller to switch the 

data bus into the read mode and then branches into the interrupt service routine. 

To do this it requires that the address of the interrupt vector (the "type vector") be 

placed on the data bus. This type vector is used as a pointer to a "look-up table" 
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(Fig.D.5) located in memory which contains the addresses of the interrupt service 

routines. The processor then executes the appropriate routine; on completion it 

returns to the main program. 

A non-maskable interrupt is caused by raising the NMI pin from low to high, 

In this case there is no interrrupt acknowledge sequence; instead the CPU goes 

directly to position 2 in the look-up table to find the address of the service routine. 

There is only one hardware non-maskable interrupt. 

The INTR pin may be masked (disabled) under software control. However, 

the NMI interrupt will always be serviced, even while another interrupt is being 

serviced, and can not be disabled. 

(d) Memory organisation 

Fig.D. 7 shows the memory map of the system. The system has a 64 kByte 

address range with memory locations being labelled from OH to FFFFH (H indicates a 

hexadecimal number). Some locations are reserved for the processors use, these 

being: 

OH to 40H for the interrupt look-up table. 

FFFOH to FFFFH for the power-on reset routine. 

The processor starts executing the program at FFFOH every time it receives 

a valid reset signal. In this design the reset signal is generated on power-on or 

when the "reset" switch is operated. Hence the program at FFFOH must be located 

in read only memory (ROM), This interrupt look-up table can be stored in either 

ROM or read/write memory (RAM). RAM is chosen so that the same device may be 

used for the system stack (which must be in RAM) and also to store program 
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variables. 

2 kByte of memory is set aside to map the peripheral devices into memory. 

(e) Address decoding 

The memory map for this system is shown in Fig.D. 7. This shows the system 

with one 32K EPROM chip, two 8K RAM chips and 2K set aside to map some 

programmable devices into the memory. 

Selection of devices is performed by the chip select logic. Each of the 

memory sockets accepts a range of memory devices; hence the chip select logic must 

be able to accommodate these different devices. To provide this flexibility, a small 

PROM is used to generate the major chip select logic signals. As a result the memory 

map can be changed simply by programming a new PROM. Additional minor 

decoding is required to select system peripheral devices. These include the 

interrupt controller, USART, PIT, PIC etc.. For each device a minimum of 2 and a 

maximum of 128 memory locations are provided, this extra decoding being done with a 

3-8 line decoder. The PROM selects the decoder and it in turn further decodes the 

address bus further, as shown in Fig.D.8. 

(f) Bus controller 

The Intel 8288 Bus Controller is used when the 8088 processor in the max. 

mode to provide command and control signals. Its command logic decodes the 8088 

CPU status lines (SO/Sl/,S2/) to determine what command is to be issued. The bus 

controller has two operational states, these being I/0 Bus mode and System Bus 

mode. In this design the 8288 is set to System Bus mode, commands being issued 

accordingly. 

D- 9 



(g) Numerical data processor 

The Intel8087 Numerical Data Processor (NDP) is included in the system as a 

eo-processor to perform fast mathematical operations on a variety of numeric data 

types. The NDP works in parallel with the main CPU (as shown in Fig.D.9), that is, it 

is not perceived as a separate device. By using this device the computational 

capabilities of the CPU are greatly expanded. 

(h) Analogue input 

The input signal is converted to a digital code using an Analogue to Digital 

Converter (ADC). Before conversion takes place the signal passes through 

interfacing circuitry (Fig.D.IO) which conditions the signal before it is fed to the 

ADC [D.2], 

(i) Analogue output 

The output control signal is required in analogue voltage form. Digital to 

analogue conversion is carried out using a 12 bit Digital to Analogue Converter (DAC) 

supplemented by a booster amplifier as shown in Fig.D.ll. The signal is fed to an 

output low pass filter amplifier before leaving the microcontroller to; 

* eliminate high frequency components and transient spikes introduced by 

the DAC 

* give the control signal the drive capability [D.3] 

* allow for offsetting the analogue output. 
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( j) Serial communications 

The RS232 system transmits and receives data in serial form. Interfacing 

to the serial 1/0 system is performed using a Universal Synchronous/Asynchronous 

Receiver/Transmitter (USART). This device also adds various control bits to the 

serial data as required by the RS232 standard. 

As far as the system is concerned, the serial port appears as a single 

memory location. One USART is required for each serial channel. The baud rate 

reference is generated by a programmable timer device. 

(k) Backplane bus 

This is a 64 way bus as shown in Table.D.l. Its full functional description is 

given in the IEEE PlOOO specification [0.4]. 

(1) Hardware interrupt structure 

As the CPU can only deal with one hardware generated interrupt (excluding 

the NMI) it needs to be supplemented for general purpose working. In this design 

system interrupts are handled by a programmable interrupt controller (PlC) which 

supports 8 hardware initiated interrupts. These 8 interrupts form the input 

signals to the PlC, this producing a single output interrupt request for the CPU. 

When it receives any interrupt signal the PlC interrupts the CPU; on receipt of the 

"interrupt acknowledge" response from the bus controller it supplies the processor 

with the interrupt type vector, as shown in Fig.D.S. 

The PlC also resolves priorities when more than one interrupt occurs at the 

same time. Table.D.2 shows the interrupt structure, with IR7 being the highest 

priority and IRO the lowest. 
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(m) Watchdog timer 

This provides a hardware check of the program's operation, causing a 

system reset in the event of fault conditions. The program addresses the watchdog 

timer at regular intervals; if for any reason the program fails to do this a NMl is 

generated to force the program to a restart state. It could also be used to institute 

an external alarm function. 

The watchdog timer is mapped into memory at one location only, its output 

being connected to the Non Maskable Interrupt (NMI) pin of the CPU. When the 

watchdog is addressed for the first time it starts a timer and sets its output to a 

non-interrupt condition. Provided it is addressed within a specified time limit the 

timer resets and starts timing again. The output signal therefore does not change 

state. Hence, as long as the timer is addressed at regular intervals, program 

operation continues in its normal fashion. However, if it is not re-addressed before 

the timer completes its cycle it generates a non maskable interrupt. 

(n) Single step control 

This is an invaluable hardware/software debugging tool. It provides a 

way to stop the CPU in mid cycle (by signalling not-ready on the READY line). 

Hence the program may be executed one step at a time, allowing the tester to examine 

the system state at carefully controlled intervals. 
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D.2 HARDWARE DESIGN 

D.2.1 Overview 

The target system controller consists of two boards, a digital board and an 

analogue one. The circuit diagrams of the digital and analogue subsystems are 

shown in Figs.D.12 and D.13 respectively. 

D.2.2 Central processing unit 

(a) Processor and clock generator 

Fig.D.l4 shows the circuit diagram of the CPU system, this being based on 

the Intel8088 microprocessor. The processor has two modes of operations, minimum 

mode and maximum mode. In minimum the processor generates all bus control 

signals (RD, RW etc.) whilst in maximum mode a separate bus controller chip performs 

this function. The maximum mode is intended to be used when there is more than 

one processor in the system (e.g. the Intel8087 numeric processor). The modes are 

selected with the MIN/MAX pin. 

In this system the 8088 works in maximum mode. It can be seen from 

Fig.D.l4 that the 8088 deals directly with the RQ/GT lines, providing the 8088/8087 

handshake control function. 

The 8088 requires an external clock signal, this being supplied by the 8284 

clock generator. In addition to generating the primary (system) clock signal, this 

device provides both the hardware reset interface and the insertion of wait states in 

the bus cycle [D.l]. 
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The clock generator requires an external frequency source. This is shown 

in Fig.D.14 as a series-resonant crystal input, the CLK frequency being one third of 

the crystal frequency, With a 33% duty cycle. The crystal frequency is 12MHz, 

giving a CLK frequency of 4MHz. To run the system slower than 4MHz the PCLK line 

must be used as the system clock. 

The 8284 has two input signals (RDYl and RDY2) which control the CPU 

"READY" signal. "RDYl" is used in this design; it is connected to output of the 

single step circuit. 

To cause a valid processor reset the RESET line must be raised high for at 

least four clock cycles [D.l] which are used for an internal reset by the processor. 

When reset returns low the processor restarts execution at location FFFOH. 

The 8284 provides for a power-on a reset facility. Its RES/ line (an input) 

is connected to its reset line (an output) via an internal Schmitt inverter. A 

capacitor-resistor network is connected to the RES/ line as shown in Fig.D.14. On 

power-on the capacitor has zero volts across it. It then charges up via the resistor 

until RES/ reaches a trigger potential, at which time the RESET line goes low. This 

causes the CPU to fetch and execute the instruction at location FFFOH. 

The RESET signal is also used by various other devices in the system. It is 

activated synchronously With the CLK signal and must be active for four clock 

cycles. 

(b) Bus control logic 

The 8088 has a multiplexed address and data bus as mentioned in section 

D.l. Two 74LS373 latches and one 74LS245 transceiver integrated circuits (IC's) 

shown in Fig.D.14 comprise the bus control logic. The two 74LS373 are used to latch 

the address onto the address bus and the 74LS245 is used to buffer the data bus. 
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(c) Bus controller 

In the maximum mode the CPU does not provide all control signals since some 

of these pins are used for other functions. Instead a Bus Controller is used, 

providing the following control signals: MRDC/ (read), MWTC/ (write), DEN/ (data 

bus enable), DT/R (data transmit/receive), ALE (address latch enable), and INTA 

(interrupt aknowledge). Fig.D.15 shows the bus controller. 

D.2.3 Numeric data processor 

As a eo-processor to the 8088, the 8087 is wired directly to the CPU as shown 

in Fig.D.14. The CPU's queue status lines (QSl and QSl) enable the NDP to obtain 

and decode instructions in synchronisation with the CPU. The 8087 NDP is invoked 

directly by the programmer's instructions. There is no need to write instructions 

that address the NDP ss an "I/0" device [D.5]. The NDP's BUSY signal informs the 

CPU that the NDP is executing code. For normal operations the NDP uses one of the 

CPU's REQUEST/, GRANT/ lines to obtain control of the bus for data transfers (reads 

and writes to memory), The NDP utilizes the same clock generator and system bus 

interface components. 

The NDP can interrupt the CPU when it detects an exception condition such 

as divide by zero, overflow etc.. This is done through the 8259A Interrupt 

Controller. 

D.2.3 Memory 

(a) Address decoding 

Fig.D.7 shows the memory map of the system and Fig.D.16 shows the chip 

select logic. A 32 word by 8 bit PROM is used, which provides 8 chip select lines, 
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each representing at least 2K of system memory. Table.0.3 shows a listing of the 

contents of the programmed Prom. Three of these lines are used for the memory 

sockets and a fourth is used to select the area used by the system devices. 

Table.D.4 shows the memory map of these devices. 

This logic produces 3 CS/lines for' use by the system memory devices, 7 

lines for the system devices and one line for the watchdog timer. 

The watchdog timer requires a unique address in the system. Thus one of 

the system chip select lines is further decoded to produce a single output goes 

active (low) only when one specific address is present. 

(b) Memory sockets 

A memory socket is shown in Fig.D.l7. It shows which connections have to 

be made for each memory type. 

0.2.4 Interrupts 

(a) Interrupt controller 

Fig.D.IS shows the 8259A programmable interrupt controller (PIC). This 

device provides 8 interrupt request lines (IRO - IR7) for use by the system. It also 

has an interrupt request (INT) and an interrupt acknowledge (INTA) line which are 

connected to the corresponding lines on the CPU and the Bus Controller 

respectively. 

When the PIC receives an interrupt request on one of its IR lines it raises 

the INT line to signal the processor. As a result of this the Bus Controller sends the 

interrupt acknowledge pulses, as shown in Fig.D.6. On receiving the second INTA 
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pulse the PlC places the type vector, corresponding to the interrupt requested, onto 

the data bus, The processor reads this and then jumps to the appropriate service 

routine. 

The CPU masks the INT line on entering an interrupt service routine, so the 

service routine must set it again if interrupts are to be continuously serviced. 

The PlC removes its interrupt request on receiving the second pulse from 

the bus controller and resumes monitoring of the IR lines, If two or more interrupt 

requests are received simultaneously they are processed according to their priority 

in the sysem. IR7 is the highest priority in this system and IRO the lowest. 

However, other priority structures are available by reprogramming the PlC. 

An interrupt is caused by raising the required IR line from low to high thus 

supplying it with a positive edge. It is possible to use the PlC in the level triggered 

mode, 

The PlC is mapped into memory as two locations (Table.D.4), 

(b) Watchdog timer 

Fig.D.19 shows the circuit of the watchdog timer. It is based on the use of a 

75LS123 retriggerable monostable flip flop. When the timer receives a negative 

going edge on its A input (from the CS/ logic) the output Q/ goes low. It stays low 

for a time determined by the capacitor Cl and the resistor Rl. If the timer is re­

selected before this time it will retrigger; this keeps Q/low but resets the timer. If 

the timer is not retriggered within the time-out period Q/ goes high as soon as the 

time is up, and then interrupts the CPU. This generates a NMI as described in 

Sec.D.1.2-m. 

D- 17 



(c) Single step logic 

Fig.D.20 shows the single step logic. The two NAND gates are used to de­

bounce the push button, so that when pressed and then released, a single positive 

going pulse is produced. The Two D-type flip flops are used to synchronise the 

ready and clock signals. As designed here, when the "step" button is pressed the 

ready line goes to a high state for one clock cycle and then returns low. 

When flip-flop A receives the positive going edge from the switch de­

bounce circuit it "latches" the logical '1' on its D input to its Q output. This takes 

the D input of flip-flop B to a logical '1'. On the next positive edge of the clock is 

latched to the Q output of B. This then resets the '1' of the output of flip-flop A. 

On the next positive clock edge A 'O' will be latched by B. Thus the Q output of B 

has gone high for one clock cycle and then returned low. This signal can be 

switched onto the READY line. When the push button is pressed the processor will 

complete the current" instruction and continue to the next. However, READY will 

have gone low again, so after T3 the processor will wait for READY to go high again 

before completing the new instruction. Thus a single instruction has been 

executed. 

D.2.5 Programmable timer 

Fig.D.21 shows the 8254 programmable interval timer (PIT) I.C. This has 

three independent timers, each of which can be used in one of five modes. 

Each timer has two inputs and one output. The CLK input provides the 

timing reference for that timer and can be at a different frequency to the system 

clock. The OUT line is the output from the counter. 

In Table.D.4 the PIT is shown to occupy four locations in memory, one device 

command register and three count registers, one for each timer. The device is 
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programmed by writing a byte to the command register. This byte indicates which 

channel it refers to, what mode it is to be set to, and how the count data is to be 

entered. 

The two modes used in this system are square wave mode (baud rate 

generator) and rate generator mode. In the baud rate mode GATE is tied high to 

enable counting. OUT goes high for half the count and then low for the other half. 

This timer then resets to the original count and repeats the above. The system 

clock is used as the CLK input. This produces a square wave with a 50% duty cycle 

at the system clock frequency divided by the contents of the count register. 

Channel 0 is in this mode and is used as the programmable clock for the serial 

communications channels. 

In rate generator mode the timer acts as a "divide by N" counter, 

generating a single (low) pulse at end-of-count. It automatically reloads its 

counter and repeats the sequence. In this system its output is connected to the 

PIC, so providing an accurately timed regular interrupt signal. This is used to set 

the control loop timing. 

D.2.6 Serial communications port 

Fig.D.22 shows the serial communications port. The USART (8251A) is 

mapped into memory as a memory location as shown in Table.D.4. 

The clear to send line (CTS/) enables transmission to commence and is tied 

low. This line is intended for use with a full modem system. 

The serial data appears on the TXD line, with each bit shifted out on the 

falling edge of the TXC. Similarly the received data is input to RXD line. The RXC 

line is used as the sampling reference. The RXC and TXC are tied together so that 

the transmit and receive baud rates are the same. The programmable timer (PIT) 
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acts as the baud rate generator. 

The TXRDY line indicates whether the 8251A is ready to accept a byte for 

transmission. A high indicates that the USART is ready to accept data. On 

writing data to the port (AO low) TXRDY goes low to signal a "not ready" status. 

When the USART can accept the next byte for trasmission TXRDY goes high. This 

low to high transition is used to signal an interrupt which informs the processor that 

the USART is now ready to accept the next byte. 

When the USART has received a complete byte, it raises the RXRDY line to 

indicate that it has data ready to be read. This line is used to signal the processor, 

via an interrupt, to read this data from the USARTs data port. 

The serial I/0 signals of the UART are TTL compatible. These are 

processed so that they conform with the required line driving standard of RS232C. 

A 741 operational amplifier and a simple transistor switch circuit provide the 

interface between the UART and the data lines. The receiver circuit requires only 

the standard 5V power line; however the transmitter circuit needs +15V, -15V and 5V 

supplies. 

The signal lines are connected to a 25 way 'D' connector as shown in 

Table.D.5. 

0.2. 7 Analogue input 

Fig.D.13 shows the circuit diagram of the analogue input section. It 

consists of 

Signal conditioning 

Channel multiplexer 

Sample/hold 
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Analogue to Digital Converter (ADC) 

(a) Signal conditioning 

Fig .D.23 shows the signal conditioning circuit. It consists of first, a 

differential amplifier which amplifies the signal to a level that can be handled by the 

ADC. An OP07 amplifier is used in this circuit. The input amplifiers are protected 

against transient overvoltage by employing four diodes as shown in Fig.D.23. The 

input amplifier is followed by a 3rd order low-pass anti-alias filter, incorporated to 

eliminate high frequency components. 

(b) Channel multiplexer 

This device provides and controls the sharing of the ADC. Fig.D.24 shows 

the circuit diagram of the multiplexer. In this design the Hi-508A multiplexer is 

used. It can handle 8 input channels, they being used for 

* Input signal 

* Reference voltage 

* Output signal 

The 8 input channels are mapped to the memory as shown in Table.D.4. 

(c) The sample/hold 

Fig.D.25 shows the sample/hold device. This is a Harris HA-2420 device 

which has an acquisition (sample) time of 5 uSec. The output of the analogue 
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multiplexer is fed to the sample/hold input, Sample/hold commands are issued from 

the ADC using the EOC line. When the ADC starts conversion it issues a command to 

the S-H unit to hold the signal; at the end of conversion it automatically issues the 

sample command. 

(d) Analogue to digital converter 

The Analogue to Digital converter (Fig.D.26) is a 12-bit successive 

approximation analogue to digital converter with a conversion time of 25 usec. This 

device, Hybrid Systems AD574A type, is set for bipolar operation, for a !5V range. 

It is mapped into the memory as 4 locations as shown in Table.D.4. 

The control signals CE, CS/, and R,C/ control the operation of the converter. 

Table.D.6 shows the ADC truth table relating to system operation. 

D.2.8 Analogue output 

Fig.D.13 shows the circuit diagram of the analogue output. It consists of 

Digital to Analogue Converter (DAC) 

Output filtering and amplification 

(a) The digital to analogue converter 

Fig.D.27 shows the circuit diagram of the AD7542 [D.6], DAC, this being a 

precision 12-bit multiplying DAC. The DAC is set for bipolar mode having an output 

range of t!O volts (when fitted with a buffer amplifier). 

To operate the DAC the following sequence of memory write instructions are 
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executed. 

* Load the LOW byte data register. 

* Load the MIDDLE byte data register. 

* Load the mGH byte data register. 

* Load the 12-bit DAC register. 

Address lines AO and Al determine the operation of the AD7542. These lines are 

decoded internally in the DAC to point to the desired loading operation (i.e. load high 

byte, middle byte, low byte or DAC register). Table.D.7 shows the AD7542 truth 

table. These operations are identical to the write cycle of a RAM as shown in 

Table.D.7. Therefore the DAC appears to the memory as 4 locations as shown in 

Table.D.4. 

The DAC requires a stable reference voltage (lOV) which is provided by the 

REF-01. 

(b) Output filtering and amplification 

The analogue signal from the DAC is fed to a buffer amplifer to improve its 

drive capability. It is then fed to low-pass amplifier which minimises the effects of 

DAC glitch spikes and high frequency components. Both short circuit and transient 

overvoltage protection are included for the output amplifiers using diodes as shown 

in Fig.D.27. 

D.2.9 Power supplies 

The 5V and t15V power lines from the host system are fully stabilised. To 
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suppress power line "spikes" due to fast switching logic a 0.1 uF disk ceramic 

capacitor is placed between the +VE supply pin to each !.C. and its ground pin. A 

lOO uF electrolytic capacitor is placed across the supply to deal with any sudden, 

short term high current demands. 

A voltage reference REF-01 is used to provide the analogue circuits with a 

10 V reference voltage as shown in Fig.D.13. 
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TABLE. 0.1 

a b c 
1 ( OV ) ( ) ( ov ) 
2( +SV ) { ) ( +SV ) 
3( DO ) ( ) ( 01 ) 
4( 02 ) ( ) ( 03 ) 
5( 04 ) ( ( 05 -- ) 
6( 06 ) ( ) ( 07 ) 
7( AO ) c ( (1{ ) 
8( A2 ) ( ( A1 ) 
9( A4 ) ( A3 ) 

10 ( A6 ) ) ( AS ) 
11 ( AB ) ( J ( A7 ) 
12 ( A10 ) ( ) ( A9 ) 
13 ( A12 ) c ( A11 ) 
14 ( A14 ) ( ) ( A13 ) 
15 ( ov ) ( ) ( A15 ) 
16 ( A16 ) ( J ( AU ) 
17( A18 ) c ) ( A19 ) 
18 ( SWRITE* ) ( J ( SIOREQ* ) 
19 (' ADRSTB* ) ( ) ( ov ) 
20 ( XFRICK* ) c ( DA.TSTB* ) 
21 ( INTRQ1* ) ( ) ( ov ) 
22 ( INTRQl* ) ( J ( INTRQ2* ) 
23( INTACK* ) ( ( NTR<l4* ) 
24 ( BUSREQ* ) c ) ( BUSBSY* ) 
25( BUSERR* ) ( ) ( ~RESET* ) 
26( SYSCLK* ) c ) ( +VSTBY ) 
27 ( lACK IN* ) ( ) ( IACKOT* ) 
28 ( BACKIN* ) ( ) ( BACI<OT* ) 
29 ( ov ) ( ) ( Cl ) 
30 ( -AUX V ) ( ' ) ( +AUX V ) 
31 ( +fN ) ( ) ( +SV ) 
32 ( ov ) c ) ( ov ) 

. 



lnt Type 

IRO 

IR 1 

IR2 

IR3 

IR4 

IR5 

1R6 

IR 7 

Device 

X 

X 

X 

USART(A- B)TXRDY 

USART(A) RXRDY 

USART(B) RXRDY 

NDP(8087) 

PIT(OUT -1) 

TABLE. D.2 

INTERRUPT VECTOR TABLE 



H:XADDRESS HEX CONTENTS M:MORYSOCKET NO. 

00 7E CSMO (1) 01 7E 
02 7E (BKRAM) 

-·-·---~---·-·- ---·-·-·--?:~------·-· ------------·-·-·-·-------------·-· 
04 70 
05 70 CSM1 (2) 
00 70 (BKRAM) _______ ([Z _______ 

-·-·-·-·-10·-·-·-·-·- ·----------------------------------
08 7F 
00 7F RESERVED OA 7F 
OB 7F FOR 
oc 7F RAM 
()[) 7F 

_______ ()j; _______ _________ If... __________ 
·-·-·-------------·-·---------·-·-· _______ Ctl: _______ _________ fE·-·-·-·-·- _______ g:l_(~J.J;MP.~G~.~-----· 

10 7B 
11 7B 
12 7B 
13 7B 
14 7B 
15 7B 
16 7B 
17 7B CSM2 
18 7B (32KEPROM) 19 7B 
1A 7B 
1B 7B 
1C 7B 
10 7B 
1E 7B 
1F 7B 

TABLE D-3 

THE USTING OF THE PROM CODE FOR MEMORY MAP 



DEVICE REGISTER HEX. ADDRESS 

PlC COMMANDO 7800 
COMMAND1 7801 

12-BIT CONVERT 7880 

ADC 8- BIT CONVERT 7881 
READ8-MSB 7882 
READ4-MSB 7883 

COUNTCH.O 7900 

PIT COUNTCH.1 7901 
COUNTCH.2 7902 
CONTROL 7903 

232-USART 
DATA 7AOO 
COMMAND 7A01 

LOW 4- BIT BYTE 7A80 

DAC MID. 4- BIT BYTE 7A81 
HIGH 4- BIT BYTE 7A82 
LOAD 12- BIT BUFFER 7A83 

CH. 1 (OUTPUT OF DAC) 7800 
CH.2 7801 

INPUT 
CH. 3 (INPUT -1) 7802 
CH. 4 (REFERENCE) 7803 

CHANNELS 
CH. 5 (INPUT- 2) 7804 
CH.6 7805 
CH. 7 7806 
CH.8 7807 

WATCHDOG 3BFF 

TABLE 0.4 

THE MEMORY MAP OF THE SYSTEM DEVICES 



'D' CONNECTOR 

PIN FUNCTION 

2 RS232TRANSMIT 
3 RS 232 RECEIVE 
7 GROUND 

TABlE 0·5 

THE CONNECTIONS OF THE SERIAl PORT 



CE CS R.C 1218 Ao OPERATION 

0 X X X X None 
X 1 X X X None 
1 0 0 X 0 Initiate 12-bit Conversion 
1 0 0 X 1 Initiate 8- bit Conversion 
1 0 1 Pin1 (5v) X Enable 12-bit parallel output 
1 0 1 Pin15(Gnd) 0 Enable 8 Most Significant Bits 
1 0 1 Pin15 (Gnd) 1 Enable 4 LSBs and 4 trailing zeros 

Table 0·6 

TRUTH TABLE FOR ADC 

A1 Nl CS WR 

X X X X 
X X 1 X 
0 0 0 ____s--

0 1 0 ____s--

1 0 0 ____s--

1 1 0 ~ 

* MSB xxxx xxxx xxxx LSB 
high mid ICMI 
byte byte byte 

a..R OPERATION 

0 Reset DAC 12-bit reg. to OOOH 
1 Noop. 
1 • Load low byte data register on edge 
1 • Load mid byte data register on edge 
1 • Load high byte data register on edge 
1 Load 12-bit DAC register with data 

in low, mid, and high byte data 
registers. This control signal is level 
1riggered 

1 indicates logic High 
0 indicates logic LCMI 
x indicates don't care 

____s-­

indicates ICMI to 
high transition 

Table 0·7 

TRUTH TABLE FOR DAC 
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E MODEL DETERMINATION 

E.l Overview 

In this appendix the mathematical details required in model determination 

are presented. These are 

* the effect of choosing a model order that is higher than the actual order, 

* static gain calculation, 

* improved techniques for model order reduction, 

* the effect of noise on the model in the Z-domain and the S-domain, and 

* a model trimming technique. 

E.2 The effect of assuming a higher order model 

If the order of the assumed model in the identification scheme is higher than 

the order of the plant, the following will occur: 

(a) Zero coefficients will occur in the numerator polynomial of the transfer 

function when it is in the rational expansion form in the a-domain. This will 

take place until the ratio of the numerator to the denominator of the 

assumed model is equal to the ratio of the numerator to the denominator of 

the plant. Then, 

(b) Pole-Zero cancellation will take place until the assumed model matches the 

plant. This is very clear when the model is in factored form. 

Therefore from the theoretical point of view the choice of a higher model order does 

not affect the estimated model since it will match the real plant. This will be 

E - 1 
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illustrated by a simulated example. 

In practice this does not occur, but instead negligible, rather than zero, 

coefficients appear in the numerator and poles and zeros that should cancel are not 

exactly equal. This is due to the fact that there are different noise sources in the 

system (e.g. quantisation effect). Practical data obtained from the controlled plant 

is used to show these concepts. 

E.2.1 Simulation results 

Frequency and step response tests previously carried out show that a first 

order model of the form: 

k 
(E.l) 

I +7's 

adequately describes the actuator system. This has a closed-loop time constant (?":) 

of approximately 4.3 sec and unity gain (k:l). 

A simulation using this model was carried out and the data produced from 

this simulation were used to identify the transfer function. When a second order 

model was assumed in the identification scheme the following estimated transfer 

function was produced: 

0.022727278 + 0.0340663364 z-1 + 0.01133915 z-• 
G(z): 

1 - 0.455626 z-1 - 0.4 762413 z-2 

Transforming G(z) to the S-domain then 

0.27253 + 0.00911 s + 0.0 s• 
G(a): 

0.27253 + 1.18099 a + 0.03918 s2 

E- 2 



Notice the occurrence of a zero coefficient in the numerator. 

Hence 

0.27253 + 0,00911 S 

G(s): -------------
0.03918( S + 0.23256){ S + 29.91012) 

( 1 + 0.03343 S ) 

= 
( 1 + 4,3 S ){ 1 + 0.03343 S ) 

Pole-zero cancellation within the transfer function reduces the order to match the 

original model. 

1 
G(a): 

1 + 4.3 s 

This shows that (in theory) the assumption of a higher order model in the 

identification scheme does not affect the estimated model since it will match the real 

plant. 

E.2.2 Practical results 

In this test the data used was collected from the real plant as mentioned in 

section 3.4. When a second order model was assumed in the identification scheme 

the estimated transfer function became: 

0.27658 + 0.00894 s + 0.00168 s 2 

G(s)= -----------
0.27845 + 1.17530 a + 0.03969 s• 

Notice the coefficient of s2 is not zero here, but is small and will be ignored. 
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Hence 

0.27658 + 0.00894 S 

G(s)= ------------
0.27845( 1 + 4.2 s)( 1 + 0.034 s) 

0.27658 ( 1 + 0.0323 S) 
G(s)= ------------

0.27845( 1 + 4.2 s)( 1 + 0.034 s) 

It is clear that the pole and the zero which should cancel each other are not exactly 

equal. This is caused by a variety of noise sources in the system (e.g. quantisation 

effect). The transfer function, assuming pole/zero cancellation and ignoring the 

difference, is 

0.993 
G(s)= 

1 + 4.2 s 

E.3 Static gain 

The static gain of a discrete transfer function G(z) is its value when z=1. 

Let G denote the static gain, therefore 

t at 

G = (E.2) 

t: bJ 

where m and n are the order of the numerator and the denominator respectively. 
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E.4 Techniques to improve Pole/Zero cancellation 

The pole/zero cancellation technique proposed by Soderstrom produces a 

reduced order model that is incorrect by a scaling factor and hence give rise to a 

static gain difference between the original model and the reduced model. Several 

solutions to this problem are introduced. These are; 

* Scale the reduced order model 

* Retain static gain during optimisation 

* Amend a zero or a pole 

E.4.1 Scale the reduced order model 

The static gain of both the original and the reduced order models are 

calculated using Eq.E.2. The proposed improvement in the pole/zero cancellation 

method is to multiply the reduced order transfer function Gr(z) by the ratio of the 

static gain of the original model to the static gain of the reduced order model. 

Therefore the new model is 

Go 
G.ew(z) : - Gr(z) 

Gr 

where Go and Gr are the static gain of the original and the reduced models 

respectively. 
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E.4.2 Retain static gain during optimisation 

(a) Force a pole to have specific value 

The static gain of the original model is determined using Eq.E.2. The 

objective is to have the static gain of both the original and the reduced models 

equal. This is achieved as follows. Let 

t SI 

Gr = = Go (E.3) 

t bJ 
J•O 

then 

t ~ t.: "' Go bJ = 8.1 

t. 
,.. 1 t ,.. 
bJ = 8.1 

Go 

and 

,.. 1 t. • 
"' z:. bJ 1 + b1 = Sj-

Go J•2 

,. 
b1 = 

This value is assigned to b1 every iteration during the optimisation procedure to 

insure the retainment of the static gain. 
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(b) Force a zero to have specific value 

"' The above procedure is repeated but this time a • is factored out and • 
assigned the value 

• • ..., 
ao = Go 2:. L. 

J•O i=l 

E.4.3 Amend a zero or a pole 

The pole/zero cancellation technique is used to produce the reduced order 

model and then either a zero or a pole is amended. This is done by changing the 

value of ao to be 

• .. 
"" 2:. "' 2:. "" ao = Go bJ BJ 

J=O i=l 

or replacing the value of b1 by 

1 • .. ..., 
~ 

IV L. "' bl = BJ- bJ - 1 
Go 1=0 j=2 

E.5 Effect of negligible coefficients 

The simulation results in section E.2.1 showed that zero coefficients should 

appear in the numerator of the estimated transfer function until its structure 

matches the actual model. Practical results in section E.2.2 showed that negligible 

coefficients will appear instead of zero coefficients due to noise. These coefficients 

should be eliminated to match the structure of the actual plant. 

Assume a first order transfer function of the form 
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G(s) = 
k( 1 + € s) 

( 1 + T1 s) 
(E.4) 

where € is a small coefficient (negligible) due to noise in the system. The aim here 

is to show how this coefficient transfers to the Z-domain. Using the Bilinear Z­

transform method then 

and 

k(1+~: 
(1 - z-1) ) 
(1 + z-1) 

G(z) = 
2 (1 - z-1) 

1 + T1 
T (1 + z-1) 

k T(l + z-1) + 2 k E.(1 - z-1) 

=--------------------
(1 + z-1) + 2 T1(1 - z-1) 

k T + 2 k € - 2 k 6 z-1 + k T z-1 

=----------------------
1 + z-1 + 2 T1 - 2 T1 z-1 

G(z) = 
k( T + 2E) + k( T - 2€) z-1 

( 1 + 2T1) + ( 1 - 2T1) z-1 
(E.5) 

It is shown in Eq.E.5 that the noise coefficient contributes in every coefficient of the 

numerator in the Z-domain. Therefore, it is not possible to eliminate this coefficient 

·if the transfer function is in the Z-domain, while it is possible in the S-domain since 

it will be a separate coefficient. 

E - 8 



E.6 Model trimming 

The model determined using system identification as shown in Chapter-3 is 

in the Z-domain. The pole/zero cancellation method tests for pole/zero cancellation 

in the Z-domain but does not test for negligible coefficients which should appear if 

the model order is over estimated (Sec.E.2). The controlled plant is continuous, for 

more accurate model determination we have to trim the produced model to eliminate 

all small coefficients and match the actual structure of the plant. This is done in the 

S-domain for the reason mentioned in section E.5. 

(a) The problem formulation 

The objective of this method is to test for negligible coefficients in the 

numerator of the transfer produced from model order reduction process. 

The problem that is considered can be formulated as follows: The two 

polynomials that form the plant transfer function (A/B) are 

A(z-1)= ao + a1 z-1+ ... ana z-•• 

B(z-1): 1 + b1 z-1 + ... bnb z-•b 

where the values of parameters are the ones produced in the previous test (section 

E.4), The technique takes into account the uncertainty of the parameters 

estimated. Therefore, the covariance matrix (P) of these parameters is used. The 

problem now is to test whether the polynomial A has small coefficients or not. The 

test is carried out for M coefficients by starting with M=l, repeat the test for 

M:2,3, ... , etc. as long as small coefficients are found. 
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(b) The criterion 

Let the n-dimensional vector ! consist of the estimated values of the 

"' " coefficients of the polynomials A and B. Introduce a vector ~ that has the same 

dimension as !corresponding to two polynomials A and B. The problem now is to 

look for a vector~ in the same domain of !such that the corresponding polynomials 

(A and B) have at least N common factors. 

The technique achieves this by minimising a cost function J(x) of the form 

J(~) : (~ - ~T p-1 (~ - ~ (E.6) 

(c) The algorithm 

"' "' ~ Introduce the polynomials A(z-1), B(z-1) and D(z-1) where 

,., .,., "' ,.., 
A(z-1): ao + a1 z-1+ ... + ana-M z-(na-Ml 

,J ~ ,., " 
B (z-1 ): bo + b1 z-1+ ... + bnb z-nb 

" D(z-1): 1 + lQ-4 z-1 + ... + 10-4*M z-M 

where M is the number of small coefficients. Consider the polynomials A(z-1 ) and 

B(z-1) have the following form 

"' ,., 
A(z-1): A(z-1) D(z-1) , 

,., 
B(z-1): B(z-1), 
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"' ,., 
The coefficients of the two polynomials (A, and B) are collected in a vector z. Thus~ 

can be written as a function of z, ~=f(z). Then the optimisation problem is to find 

the global minimum without constraints of 

V[f(z) J = [f(z)- !JT p-• [f(z)- i1 

N N 

The resulting coefficients of A and B represent the coefficients of the trimmed model. 

This is a non-linear optimisation procedure and hence may yield several 

minima, therefore the selection of the initial values of the z vector is important. A 

reasonable set of initial values can be found by using the values of the reduced 

model. 

The quasi-Newton method is used to handle the optimisation process involved in 

model trimming. 
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