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Abstract 
 
The present work gives a systematic and rigorous implementation of Volterra 
dislocations in ordinary two-dimensional finite elements using the thermal analogue 
and the integral representation of dislocations through the stresses. The full fields are 
given for edge dislocations in anisotropic crystals and the Peach-Koehler forces are 
found for some important examples. 
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1. Introduction 
 
Dislocations are line defects in crystalline materials with well documented existence, 
formation, interaction and motion. Their importance in science and technology is 
enormous. The mechanics of dislocations is a prominent and difficult subject of 
Linear Elasticity, Hirth and Lothe (1982). Closed form solutions exist for relatively 
simple problems, whereas more complex geometries, as well as anisotropy, introduce 
substantial difficulties. In many cases, the detailed stress fields around dislocations are 
not known explicitely, especially when dislocations are interacting with boundaries or 
other dislocations.  
 
The knowledge of the stresses around dislocations is important. The equilibrium 
position of a dislocation and its stability requires that the resulting shear stress be 
balanced by the non-linear atomic interactions across the glide plane. This resisting to 
the free motion stress is called the Peierls stress, Peierls (1940) and Nabarro (1947). 
The assessment of such stresses is important for the physical theories of plasticity, 
fatigue and fracture, micro and nano-indentation, strength of nano-composites and 
micro-electro-mechanical devices etc (see for example Phillips, 2001; Cotrell, 1961; 
Petch, 1953; Hall, 1951; Rice, 1992). 
 
Atomistic calculations are still not in regular engineering use, despite important 
attempts to be included in finite element methodologies, e.g. Tadmor et al. (1996). In 
the present work we use an analogue from thermoelasticity to describe discrete 
dislocations within the context of classic finite element methodology.  Biot (1935) 
presented a thermal analogue to model the elastic fields around dislocations and the 
method has been applied as an experimental technique to study dislocations with 
optical methods. The integral representation of the Burgers vector in terms of stresses 
has been shown by Mindlin and Salvadori (1950) and has been recently used by 
Dundurs and Markenscoff (1993). We use the previous ideas, together with a suitable 
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temperature distribution to circumvent the displacement incompatibility that is needed 
by the mathematical description of a Volterra dislocation, however, not allowed by 
ordinary finite elements. The present work is focusing on the two-dimensional edge 
dislocations in anisotropic crystals, following our initial work on isotropic materials, 
Gouldstone and Giannakopoulos (2005). 
 
 
2. The thermal analogue and its implementation in finite elements 
 

2.1. The thermal analogue for two dimensional edge dislocations 
         We will consider an elastic solid under plane deformation. In the absence 
of body forces, the contents of the stress tensor ij must obey the equilibrium 
conditions which in Cartesian coordinates (x, y, z) are: 
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The linear strain components must meet the local compatibility condition 
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Consider an Airy function Φ(x, y) so as (1) are satisfied 
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The local compatibility condition is necessary for given strain components to 
yield continuum displacements (ux, uy), but is not sufficient if the domain is 
multiply connected. According to Michell (1899), global compatibility 
conditions in the form of line integrals must be imported. For closed contours 
surrounding a Volterra dislocation (Fig. 1):     
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 is the material rotation                  (4) 

x xdu b  and  y ydu b                          (5) 

 Equation (4) is necessary in order not to have any edge disclination (Somigliana 
type of dislocation). The quantities bx and by are the components of the Burgers 
vector of an edge dislocation.  

[Figure 1]    
Recall the strain-displacement relations 
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Then equation (4) becomes: 
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Taking into account equations (5), (6), (7) and (2), we obtain: 
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Let us consider the tangent and the perpendicular vectors of the closed contours 
(Fig. 1): 
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Next, consider an anisotropic thermoelastic medium with cubic crystal 
symmetry in its elastic properties (3 elastic constants are needed: c11, c12, c44). 
The constitutive expressions between the strains and the stresses in plane-strain 
deformation are: 
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In the absence of the temperature distribution (x, y), the stresses relate to the 
deformations in the following way: 
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Taking into account the equations above, we obtain 
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44 12 112H c c c      is the anisotropy factor and  44
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ratio (see Table 1 for particular examples used in this work). 
From the Michell equations (8) and (9) and from continuity of xxx , xyy  and 

xxy , xyx  we obtain: 
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From the compatibility equation, we obtain 
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Also recall that all stresses are continuous so that  
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From overall equilibrium of the tractions at the contours we have: 
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  0xy x yy yn n ds     ,    0xx x xy yn n ds               (19) 

Now assume a steady state thermal distribution: 
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Then, eqs. (2) and (7) hold true and eqs. (15) and (16) become: 
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The temperature θ must satisfy equation (20) in order to avoid disclinations.  
As an example, select θ(x, y) as:  
θ=ΔΤ                         y=0                  x≤0 
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                                                                                                                         (22) 
h y

T
h

 
              0≤y≤h                x≤0 

θ=0    everywhere else 
 
The distribution described by (22) satisfies (20) and when inserted in (21) gives 

2(1 )yb Th                        (23a) 

In a similar way (by selecting an appropriate temperature distribution), we can 
obtain 

2(1 )xb Th                                                      (23b) 
 Note that eqs. (21) are the key theoretical results that need to be implemented 
in the finite element codes and then, after selecting an appropriate temperature 
field as in (22), solve the resulting thermoelastic problem. 

[Figure 2] 
 
 

2.2. Finite elements implementation 
         Turning to the Finite Element Method, assume that around the edge 
dislocation there is a fine element distribution of element size h, Fig. 2. 
Assuming linear thermoelastic response, we can assign a temperature 
distribution as in equations (22), on the dashed strips of elements shown in Fig. 
2, with 
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so that effectively an edge dislocation with predefined components of the 
Burgers vector (bx, by) is inserted through a temperature distribution. It should 
be noted that the thermal expansion coefficients x, y (z = 0 in all cases) are 
not the physical ones, but take apparent values that are suitable for the 
computations, keeping in mind that there is no actual temperature field in the 
problem. This procedure forces ordinary finite elements to produce dislocation 
stress fields in a straightforward way. It should also be reminded that the finite 
element enforcement of the integrals (21) is done through Gauss integration at 
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selected points and therefore, the type of element is important for the precise 
implementation of (21). If four-noded elements are to be used, then the inputs 
(24) and (25) need to be multiplied by 1/0.57735.  
 
The ABAQUS general purpose finite element code was used and a mesh of 
10000 four-noded elements was picked for all applications. The outer boundary 
was 150 times the Burgers vector in all directions, to model the conditions at 

infinity, 
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 as 2 2x y  . Note that no special attention was 

taken for mesh optimization (which will be presented in future work).  
[Figure 3] 

 
 
3. Numerical examples 
 

3.1. Single edge dislocations 
        An edge dislocation under plane strain, in an isotropic infinite medium, 
produces the following classic stresses: 
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[Table 1] 

The corresponding stresses around an edge dislocation in anisotropic infinite 
medium have been found by Eshelby et al. (1955) and are:  
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With these expressions we obtain the stresses fields shown in the following 
figures 4 and 5. For brevity, we show only the σxx fields which are the ones that 
are influenced mostly by the anisotropy. The left parts of the Figures are the 
finite element predictions whereas the right parts are the theoretical predictions.  

[Figures 4a, 
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 4b, 5a, 5b]  
3.2. Influence of a free surface 

        Consider an edge dislocation with b = (0, by), at a distance l from a free 
surface, Fig. 6. 

[Figure 6] 
 The stress fields in this occasion are not symmetric as in the dislocation in an 
infinite medium and can be found in the book of Hirth and Lothe (1982). Such 
asymmetry will create a configurational (material) force on the dislocation, no 
other that the Peach-Koehler force (Peach and Koehler, 1950). The Peach-
Koehler force per unit dislocation length that will attempt to move the 
dislocation is given by the form 

k ijk i jl lF b         or       y z x zG G     F G ξ i j                       (29) 

where z = 1 is the direction of the dislocation line (in this case in the out-of-
plane direction z) and 

x xx x xy yG b b       ,     y yx x yy yG b b                                              (30) 

The resulting force is an attraction toward the free surface and is equal to  
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Consider that the dislocation’s distance from the free surface is l=13by and the 
material is W. From eq. (31) and table 1, we obtain the theoretical solution of 

the acting force, 
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Calculating the force in terms of stresses, we lead in Fy=0.170 by 1010 (N/m). 
We can improve the precision of that result by doing a cubic interpolation near 
the tip and reach to Fy=0.167 by 1010 (N/m), that is an overestimation of 34%. 
It is clear that the poor resolution of the mess (13 elements between the 
dislocation and the free surface) seems to be inadequate for an exact evaluation 
of (Fx, Fy) although the overall stress distribution seem to be accurate.  
To improve the estimation of (Fx, Fy), without changing the mesh density, an 
alternative methodology is proposed, based on the energy released by a small 
advancement of the dislocation in the x and y directions respectively. Then, 
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where U is the total elastic energy of the material with the dislocation. In the 
numerical implementation of eq. (32), we move the dislocation (and the 
associate temperature distribution) by one finite element of length h in the 
(positive) x and the (positive) y direction, separately. Then, we compute the total 
energy in the initial and in the new positions of the dislocation to find the 
changes of energy ΔU. The forces were computed from the discretized form of 
eq. (32) with Δx=h and Δy=h respectively. 
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 In terms of the change of the total energy of the system, we obtain an almost 

exact result
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  (N/m) and Fx=0. In the same way, for Cu, we obtain 



 7
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  (N/m), Fy=0 if the crystal is 

rotated by 90o. Whether the dislocation will actually move towards the free 
surface will depend on the opposing Peierls force (Peierls, 1940; Nabarro, 1947) 
τp·L where L is the length of the dislocation. For Cu, the value of the Peierls 
stress is given in the following table (b=0.255 nm, τp=2.43 MPa).  
For a dislocation length L=1m, the minimum distance to avoid attraction of the 
dislocation towards the free surface for the two cases of Cu crystal is l=1.619 
μm and l=1.409 μm respectively. The isotropic approximation gives 

2

0.1129 y
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  (N/m) and l=2.279μm. 

 [Table 2] 
 [Figure 7] 

 
 
4. Conclusions and further work 

The present work gives the development of a robust finite element computational 
tool for two dimensional edge dislocations in anisotropic crystals. Existing analytical 
solutions were checked and completed with presentations of the full stress fields. 
Extensive presentations of dislocation interactions with material interfaces, grain 
boundaries, spherical particles etc. will be given in future work. The method can be 
extended to study dynamic dislocations, dislocations in piezoelectrics, the influence of 
large deformations and disclinated dislocations (to model better the dislocation cores).   
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Table 1: Elastic constants of Cr, Cu and W (after Hirth and Lothe, 1982). 
 

Crystal c11 

(1010 Pa) 
c12 

(1010 Pa) 
c44 

(1010 Pa) 
H 

(1010 Pa) A μ 

(1010 Pa) 
Ε 

(1010 Pa) ν 

Cr 35.00 5.78 10.10 -9.02 0.69 10.10 32.85 0.124 
Cu 16.84 12.14 7.54 10.38 3.21 7.54 6.09 0.295 
W 52.10 20.10 16.00 0.00 1.00 16.00 38.97 0.218 

 
 
 

Table 2: Predominant slip systems and corresponding Peierls stresses for Cu (after 
Wang, 1996). 

 

Material Structure 
Burgers vector 
and length b 

Primary slip system d 
{plane}/b <direction> 

Theoretical 
τp/μ at 0o K 

Experimental 
τp/μ at 0o K 

Cu 
Simple 

fcc 
0110 , 2 / 2a  

b=0.255 nm 
 0 0

6 2
111 1 10

3 2
a a  53.22 10  

6

5

5.31 10

1.04 10








 

 
 
Figure 1: The components of the Burgers vector of an edge type Volterra dislocation 
and the corresponding contours surrounding them. 
Figure 2: The implementation of the thermal analogue to finite elements. 
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Figure 3: The normalized stresses /xx yb  for material W. The Burgers vector is b=(0, 

by). The isocontours range is (2.0, -2.0) Pa/m. On the left are the finite element results 
and on the right the theoretical results. The detail of the dicretization is also shown. 
Figure 4a: The normalized stresses /xx yb  for material Cu. The Burgers vector is 

b=(0, by). The isocontours range is (0.7, -0.7) Pa/m. On the left are the finite element 
results and on the right the theoretical results. The detail of the dicretization is also 
shown. 
Figure 4b: The normalized stresses /xx xb  for material Cu. The Burgers vector is 

b=(bx, 0). The isocontours range is (0.7, -0.7) Pa/m. On the left are the finite element 
results and on the right the theoretical results. The detail of the dicretization is also 
shown. 
Figure 5a: The normalized stresses /xx yb  for material Cr. The Burgers vector is b=(0, 

by). The isocontours range is (2.0, -2.0) Pa/m. On the left are the finite element results 
and on the right the theoretical results. The detail of the dicretization is also shown. 
Figure 5b: The normalized stresses /xx xb  for material Cr. The Burgers vector is 

b=(bx, 0). The isocontours range is (2.0, -2.0) Pa/m. On the left are the finite element 
results and on the right the theoretical results. The detail of the dicretization is also 
shown. 
Figure 6: An edge dislocation at a distance l from the free surface. 
Figure 7: The normalized stresses /xx yb  for material W near the free surface. The 

Burgers vector is b=(0, by). The isocontours range is (1.0, -1.0) Pa/m. On the left are the 
finite element results and on the right the theoretical results. The detail of the 
dicretization is also shown. 
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