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Abstract. We present a general setting in which the formula describing the

linear response of the physical measure of a perturbed system can be obtained.
In this general setting we obtain an algorithm to rigorously compute the linear

response. We apply our results to expanding circle maps. In particular, we

present examples where we compute, up to a pre-specified error in the L∞-
norm, the response of expanding circle maps under stochastic and deterministic

perturbations. Moreover, we present an example where we compute, up to a

pre-specified error in the L1-norm, the response of the intermittent family at
the boundary; i.e., when the unperturbed system is the doubling map.

1. Introduction

A question of central interest from both theoretical and applied points of view
in dynamical systems is the following: given a deterministic dynamical system that
admits a Sinai-Ruelle-Bowen (SRB) measure, how does the SRB measure change if
the original system gets perturbed, perhaps randomly? It is known that in certain
situations the SRB measure changes smoothly and a formula of such a “derivative”
can be obtained [8, 10, 14, 25, 28, 42]. This is called the Linear Response formula.
We refer to [9] for a recent survey about this area of research and to the most
recent articles on linear response for intermittent maps [5, 11, 30]. From a rigorous
computational point of view there are no results in the literature that approximate
the response of an SRB measure up to a pre-specified error in a suitable topology.

Our goal in this paper is to pioneer this direction of research and to provide
tools to investigate the changes in the statistical properties of families of systems.
Applications may range from the identification of tipping points in the statistical
behavior of systems studied in applications, such as the ones considered in [34], to
checking whether a family of systems has decreasing or increasing entropy, see for
example the problems considered in [12] and their relation to number theory.
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Our computational approach is based on finding a suitable finite rank approxima-
tion of the transfer operator associated with the original system. Such techniques
have proved to be computationally robust and to be successful when approximating
SRB measures of uniformly expanding systems [2, 20, 31, 35], (piecewise) uniformly
hyperbolic systems [15, 22], and one-dimensional non-uniformly expanding maps
[3, 20, 36]. It has also proved to be a successful approach in approximating spectral
data [1, 13, 16, 17, 21, 31] and limiting distributions of dynamical systems [4].

In this paper we show that suitable discretization schemes can be used to ap-
proximate linear response. The problem that we face in our rigorous approximation
is two-fold. The first is functional analytic. In particular, we need to find suitable
discretization schemes that preserve the regularity of the function space(s) where
the transfer operator acts, and which can approximate the original transfer op-
erator. The second is computational. In particular, the computational approach
should be amenable to tracking all the round-off errors made by the computer.

In Section 2 we present a general setting in which the formula corresponding to
the linear response can be obtained. In this section we also show how the formula
of such derivative can be rigorously computed using a computer. In Section 3
we show how the algorithm can be implemented in the case of circle expanding
maps. In particular we find suitable discretization schemes and suitable Banach
spaces achieving the goal for such maps. In Section 4 we apply our results to
stochastic perturbations of expanding circle maps and we present an example where
we compute, up to a pre-specified error in the C0 topology, the linear response of
an expanding circle map under stochastic perturbations. In Section 5 we apply our
results to a deterministic perturbation of an expanding circle map. In this example
the exact response can be computed analytically. Thus, a comparison between
the exact response and the computed one can be done. In Section 6 we present an
example where we compute, up to a pre-specified error in the L1-norm, the response
of the intermittent family at the boundary; i.e., when the unperturbed system is
the doubling map. Section 7 is an appendix that includes proofs and tools used in
the computations in the examples of Sections 4 and 5.

2. A general framework for the linear response

LetX be a compact manifold with boundary. X is the space on which we consider
certain dynamics that we are going to slightly perturb and study the change of
stationary measures after perturbation. The dynamics is described by the action of
some positive transfer operator acting on some space of regular Borel measures on
X. In this section we present a general setting in which the formula corresponding
to the derivative of a fixed point1 of a family of such positive operators Lε can be
obtained2. We consider the action of the operators on three Banach spaces Bss ⊆
Bs ⊆ Bw which are subsets of the space of finite signed Borel measures on X and
equipped with norms ||·||w, ||·||s, ||·||ss respectively, such that ||·||w ≤ ||·||s ≤ ||·||ss.
We suppose that Lε, ε ≥ 0, maps probability measures to probability measures and
has a unique fixed point, which is a probability measure, hε ∈ Bss. Let L := L0

1In applications to dynamical systems, such a fixed point corresponds to the density of an

absolutely continuous invariant measure, or in general to a physical invariant measure.
2The differentiation is done with respect to the variable ε in a suitable norm. This will be clear

in the statement of Proposition 2.1 below.
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be the unperturbed operator and h ∈ Bss be its fixed probability measure. Let
V 0
s = {v ∈ Bs, v(X) = 0}, V 0

w = {v ∈ Bw, v(X) = 0}. We assume that V 0
s is closed

in Bs.

The following proposition is essentially proved in [32]. Since we adapted the
assumptions to a general setting we include a proof.

Proposition 2.1. Suppose that the following assumptions hold:

(1) The norms ||Lk||Bw→Bw
and ||Lkε ||Bw→Bw

are uniformly bounded with re-
spect to k and ε > 0.

(2) Lε is a perturbation of L in the following sense

(2.1) ||Lε − L||Bs→Bw
≤ Cε.

(3) The operators Lε, ε ≥ 0, have uniform rate of contraction on V 0
s : there are

C1 > 0, 0 < ρ < 1, such that

(2.2) ||Lnε ||V 0
s→Bs

≤ C1ρ
n.

(4) There is an operator L̂ : Bss → Bs such that

(2.3) lim
ε→0
||ε−1(Lε − L)h− L̂h||s = 0.

Let

ĥ = (Id− L)−1L̂h.

Then

lim
ε→0
||ε−1(hε − h)− ĥ||w = 0;

i.e. ĥ represents the derivative of hε with respect to ε.

Proof. Notice that since V 0
s is closed in Bs and our operators preserve probability

measures, then L̂h ∈ V 0
s . Recall that hε = Lεhε. We have

(Id− Lε)(hε − h) = (Lε − L)h

and since ĥ = (Id− L)−1L̂h, we obtain

lim
ε→0
||ε−1(hε − h)− ĥ||w = lim

ε→0
||ε−1(Id− Lε)−1(Lε − L)h− (Id− L)−1L̂h||w

≤ lim
ε→0
||(Id− Lε)−1[ε−1(Lε − L)h− L̂h]||w

+ lim
ε→0
||(Id− Lε)−1L̂h− (Id− L)−1L̂h||w

:= (I) + (II).

(2.4)

Notice that by assumption (3), ||(Id−Lε)−1||V 0
s→Bw

are uniformly bounded. More-

over, since limε→0 ||ε−1(Lε − L)h− L̂h||s = 0, we obtain

(I) = lim
ε→0
||(Id− Lε)−1[ε−1(Lε − L)h− L̂h]||w = 0.
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Now we consider (II). By assumption (3), on the space V 0
s , (Id−Lε)−1 =

∑∞
0 Lkε .

Notice that by assumptions (2) and (3) we have:

||Lk − Lkε ||V 0
s→V 0

w
≤

k−1∑
j=0

||Ljε(Lε − L)Lk−1−j ||V 0
s→V 0

w

≤ sup
j
||Ljε ||w

k−1∑
j=0

||(Lε − L)Lk−1−j ||V 0
s→V 0

w

≤ Cε sup
j
||Ljε ||w

k−1∑
j=0

||Lk−1−j ||V 0
s

≤ Cε sup
j
||Ljε ||wC1

1− ρk

1− ρ
.

Consequently,

||(Id− Lε)−1L̂h− (Id− L)−1L̂h||w

≤ ||L̂h||s[
l−1∑
k=0

||Lk − Lkε ||V 0
s→V 0

w
+

∞∑
l

(||Lk||V 0
s→V 0

w
+ ||Lkε ||V 0

s→V 0
w

)]

≤ ||L̂h||s[Clε sup ||Ljε ||wC1
1− ρl

1− ρ
+ 2C1ρ

l 1

1− ρ
].

Choosing l = d| log ε|e implies

(II) = lim
ε→0
||(Id− Lε)−1L̂h− (Id− L)−1L̂h||w = 0.

Hence, limε→0 ||ε−1(hε − h)− ĥ||w = 0. �

The function h → L̂h depends on the kind of perturbation we consider (deter-

ministic, stochastic, etc.). In the following, we suppose that L̂h is computable with
a small error in the Bw norm. Then we show that this leads to the rigorous compu-

tation of ĥ in the Bw norm. The computation will be performed by approximating
L with a finite rank operator Lη which can be implemented on a computer. Let us
consider a finite rank discretization

Πη : Bs →Wη,

where Wη ⊆ Bs is a finite dimensional space of measures, such that for f ∈ Bs,
lim
η→0
||(Πη − Id)f ||w = 0.

The operator Lη is defined as

Lη = ΠηLΠη.

Let us denote by fη ∈ V 0
s a family of approximations of L̂h in the weak norm || · ||w.

Theorem 2.2. Suppose that L satisfies the assumptions in Proposition 2.1 and :

(1) ||fη||s are uniformly bounded and ||fη − L̂h||w →
η→0

0.

(2) Lη is an approximation of L in the following sense

||Lη − L||Bs→Bw ≤ Cη.
(3) ∃C > 0 such that for any n ≥ 1 and η > 0 we have ||Lnη ||s < C.
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Then, for any τ > 0, there are η > 0 and l∗ ∈ N such that

||(Id− L)−1L̂h −
l∗−1∑
k=0

Lkηfη||w < τ.

Proof. Notice that (Id − L)−1L̂h is well defined since L̂h is of zero average. We
have

l∗−1∑
k=0

||(Lk − Lkη)fη||w ≤
l∗−1∑
k=0

k−1∑
j=0

||Lj(L − Lη)Lk−1−j
η fη||w

≤M
l∗−1∑
k=0

k−1∑
j=0

||(L − Lη)Lk−1−j
η fη||w

≤M ||(L − Lη)||Bs→Bw
·
l∗−1∑
k=0

k−1∑
j=0

||Lk−1−j
η fη||Bs

,(2.5)

where M = supk ||Lk||Bw→Bw . Consequently, we obtain

||(Id− L)−1L̂h−
l∗−1∑
k=0

Lkηfη||w = ||
∞∑
k=0

LkL̂h−
l∗−1∑
k=0

Lkηfη||w

≤ ||
∞∑
k=l∗

LkL̂h||w + ||
l∗−1∑
k=0

LkL̂h−
l∗−1∑
k=0

Lkηfη||w

≤ ||
∞∑
k=l∗

LkL̂h||w +

l∗−1∑
k=0

||(Lk − Lkη)fη||w +

l∗−1∑
k=0

||Lk(L̂h− fη)||w

≤ ||
∞∑
k=l∗

LkL̂h||w +M ||(L − Lη)||Bs→Bw
·
l∗−1∑
k=0

k−1∑
j=0

||Lk−1−j
η fη||s

+M l∗||L̂h− fη||w.

(2.6)

Now, choose l∗ big enough so that ||
∑∞
k=l∗ LkL̂h||w ≤

τ
2 . Since for each η ||Lk−1−j

η fη||s
are uniformly bounded, by assumptions (2) and (3) we can choose η small enough
such that

(2.7) M ||(L − Lη)||Bs→Bw ·
l∗−1∑
k=0

k−1∑
j=0

||Lk−1−j
η fη||s +M l∗||L̂h− fη||w <

τ

2
.

�

Remark 2.3. For computational purposes it is important to have an algorithm to
find suitable l∗ and η. Let us comment on each summand in Equation (2.6):

(1) The first summand of (2.6), ||
∑∞
k=l∗ LkL̂h||w can be estimated by (2.2).

However, it is enough to have an estimation on the weak norm. In Sub-
section 7.7 we will see how to find in systems satisfying a Lasota-Yorke
inequality, constants C3, ρ3 such that: ||LkL̂h||w ≤ C3ρ

k
3 ||L̂h||s. Once the

constants are found, we can bound ||
∑∞
k=l∗ LkL̂h||w ≤

C2ρ
l∗
2 ||L̂f ||s
1−ρ2 and find

a suitable l∗ to make this summand as small as wanted.
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(2) For the second summand of (2.6)

M ||(L − Lη)||Bs→Bw ·
l∗−1∑
k=0

k−1∑
j=0

||Lk−1−j
η fη||s

we need an estimate on M which can be recovered by a Lasota-Yorke in-
equality (see Proposition 3.2 ). ||(L − Lη)||Bs→Bw

will be estimated by
condition (2) of Theorem 2.2. The summands ||Lk−1−j

η fη||s can be approx-
imated by the fact that Lη is of finite rank; i.e., by computing the matrix
representing it. ||Lk−1−j

η fη||s will be estimated by the computer.

(3) For M l∗||L̂h− fη||w of (2.6), we have to find a suitable approximation of

L̂h such that ||L̂h− fη||w is as small as wanted. Note that this depends on

the properties of L̂ and consequently on the kind of perturbations Lε that
we consider.

In the following we will discuss in details how the above results can be applied
to C3 expanding maps of the circle. We also present examples on how the algo-
rithm outlined in Theorem 2.2 and Remark 2.3 can be implemented in this setting.
The concrete implementation of the above ideas to expanding maps of the circle
involves spaces of measures having a smooth density. The general framework ex-
tends to more general classes of hyperbolic systems, provided a suitable functional
analytic framework is considered (see [6] for a recent survey on suitable spaces to
be considered for hyperbolic systems). The implementation to such systems is out
of the scope of the current paper.

3. Circle expanding maps and smooth discretizations

Theorem 2.2 and Remark 2.3 outline an algorithm for the computation of the
linear response.

(1) First we have to find suitable fη approximating L̂h in the weak norm.
(2) Then we can use a suitable discretization Lη of the transfer operator (well

approximating it as an operator from Bs to Bw) for the computation of l∗

as in Item (1) of Remark 2.3.
(3) Once found the suitable l∗ we compute the result of our approximation

procedure as

ĥappr =

l∗−1∑
i=0

Liηfη.

If fη, Lη, l∗ are well chosen, Theorem 2.2 ensures that ĥappr is a good approx-

imation of ĥ in the weak norm and by Remark 2.3 we can explicitly bound the
approximation error. In this section we describe suitable functional spaces and a
good approximation Lη for the transfer operator for expanding circle maps. This
gives us an approximation of the linear response in L∞. The approximation fη of

L̂h depends on the kind of perturbation considered. In the following sections we
will discuss two specific kinds of perturbations: deterministic and stochastic ones.

Let us consider the space (T,B,m) where T is the unit circle, B is Borel σ-
algebra and m is Lebesgue measure on T. Let T : T → T be a C3 uniformly
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expanding circle map; i.e. infx∈T |DxT | > 1. Let

λ = 1/ inf
x∈T
|DxT |.

Without loss of generality we assume that T is orientation preserving. The circle
map T it is naturally associated to an expanding map [0, 1] → [0, 1] which will be
still denoted by T . We will consider different perturbations of the transfer operator
associated to this kind of maps and apply Theorem 2.2 to compute the linear

response ĥ. We will consider the action of the transfer operator on the function
spaces Bw = C0([0, 1]), Bs = C1([0, 1]) and Bss = C2([0, 1]). We equip the Ck

spaces, k = 0, 1, 2, with the usual norms ||f ||Ck =
∑
i≤k ||f (i)||∞.

It is known that such an expanding map has a C2 invariant density and there
is an explicit formula for the action of the transfer operator associated with T on
probability densities (also called Perron-Frobenius operator, see [7]) L : C0([0, 1])→
C0([0, 1])

(3.1) Lf(x) =
∑

y∈T−1x

f(y)

T ′(y)
.

The reason behind working on the closed interval rather than the unit circle is
that there are some advantages in the computer implementation of the discretization
(the implementation on [0, 1] is easier and cleaner than the implementation on the
circle). We can also consider our function spaces as spaces of smooth functions on
the circle allowing discontinuities at 0. In the following when there is no ambiguity
we will denote these spaces by C0, C1, C2.

3.1. Basic properties of the transfer operator. We will need some additional
information on the action of the transfer operator on the space C2([0, 1]) to under-
stand better the properties of its invariant density. Let

J(f) = |f(1)− f(0)|.
Notice that C0(T) is the set of functions f in C0([0, 1]) such that J(f) = 0. In the
next lemma we are going to prove that, indeed, the fixed point of L is in C0(T).

Lemma 3.1. We have

(1) L preserves Ck([0, 1]), k ∈ {1, 2};
(2) J(Lf) ≤ λJ(f),
(3) if h is a fixed point of L in C1([0, 1]), then J(h) = 0.

Proof. We suppose T (0) = 0, by the regularity of T and the form of the operator
follows that L preserves Ck([0, 1]).

To prove the second statement, let us denote by di the preimages of 0 that are
contained inside the interval (0, 1). By continuity of T on (0, 1) we have

Lf(0)− Lf(1) =
1

T ′(0)
(f(0)− f(1)) +

∑
i

f(di)

T ′(di)
−
∑
i

f(di)

T ′(di)
.

If Lh = h then J(h) ≤ λJ(h). Since λ < 1 this implies item 3. �

Before introducing our discretization scheme, we state Lasota-Yorke inequalities
for L when acting on C1([0, 1]), C2([0, 1]). Since these inequalities will be used in
the computer implementation, we also give estimates for the constants involved.
For the proof of Proposition 3.2, see Section 7.2 in the Appendix 7.
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Proposition 3.2.

(1) Let M := supn ||Ln||L∞→L∞ . Then

M ≤ 1 +
B

1− λ
,

where λ := (infx∈T |DxT |)−1 < 1 and B = ||T ′′/(T ′2)||∞.

(2) For f ∈ C1([0, 1]) we have

||Lf ||C1 ≤ λM ||f ||C1 +M2||f ||∞.
(3) For f ∈ C2([0, 1]) we have

||Lf ||C2 ≤ λ2M ||f ||C2 +D||f ||C1 .

where

D = λM +M2 + 3 max{1,
∣∣∣∣∣∣∣∣ T ′′(T ′)2

∣∣∣∣∣∣∣∣2
∞
}M +M

∣∣∣∣∣∣∣∣ T ′′′(T ′)3

∣∣∣∣∣∣∣∣
∞
.

The above inequalities, along with the properties of the system, imply that L
has a spectral gap on C1([0, 1]) and on C2([0, 1]). Moreover, 1 is a simple dominant
eigenvalue. In particular, this implies that T admits a unique invariant density h
in C2([0, 1]) and the system (T,T, µ), where µ := h ·m, is mixing (see [18] for an
elementary proof of this).

3.2. A finite rank approximation of L as an operator from C1 → C0. To
compute the rate of convergence to equilibrium and the linear response we introduce
a finite rank approximations of L which will be called Lη.

We start by defining a suitable partition of unity. Let us consider the partition
of unity {φi}mi=0 defined in the following way: for i = 0, . . . ,m, let ai = i/m. For
i = 0, . . . ,m set

(3.2) φi(x) = φ(m · x− i),
where

(3.3) φ(x) =

 1− 3x2 − 2x3 x ∈ [−1, 0]
1− 3x2 + 2x3 x ∈ [0, 1]

0 otherwise
.

Note that for i = 0 and i = m, the bump function is restricted to half of its support.
Also note that φi(aj) = δij (where δij = 1 if i = j, 0 in all the other cases) and
that ||φi||∞ = 1, ||φ′i(x)||∞ = 3m/2,

∑
i φi(x) = 1.

Remark 3.3. There are reasons why this choice of φ is sensible for our line of work:
computing the value of a cubic polynomial is fast by using Horner’s scheme, and
rigorous bounds are implemented via interval arithmetics [45]. The same is true for
the derivatives of the φi defined above3.

3An alternative approach would be to choose a smooth bump function

(3.4) φ(x) =

{
e
− 1

1−x2 +1 |x| < 1

0 |x| > 1
.

and build a partition of unity by rescaling and translating this function, but the implementation
of this approach is more delicate since the derivative of φ cannot be implemented in a naive way
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To ensure that our discretization preserves integrals, we use an auxiliary function
κ(x):

κ(x) = 6x(1− x),

by direct computation ||κ(x)||∞ = 3/2, ||κ′(x)||∞ = 6. Moreover,
∫ 1

0
κ(x)dx = 1.

Set η := 1/m and define

Πη(f)(x) :=
∑
i

f(ai) · φi(x) +

(∫ 1

0

fdm−
m∑
i=0

f(ai)

∫ 1

0

φidm

)
κ(x).

We set

(3.5) Lη := ΠηLΠη.

We now prove properties of Πη that will be used to verify the assumptions of
Theorem 2.2.

Lemma 3.4. For f ∈ C1([0, 1]), we have

(1) ||Πηf ||∞ ≤ 4||f ||∞;
(2) ||Πηf ||∞ ≤ ||f ||∞ + 3

2 ||f
′||∞η;

(3) ||(Πηf)′||∞ ≤ ( 3
2 + 6η)||f ′||∞;

(4) ||Πηf − f ||∞ ≤ 5
2 ||f

′||∞η.

Proof. The following approximation inequality holds:

|f(x)−
∑

f(ai)φi(x)| = |
∑
i

(f(x)− f(ai))φi(x)|

= |
∑
i

f ′(ξi)(x− ai)φi(x)| ≤ ||f ′||∞η.
(3.6)

This implies that

(3.7)

∣∣∣∣ ∫ 1

0

fdm−
m∑
i=0

f(ai)

∫ 1

0

φidm

∣∣∣∣ ≤ ||f ′||∞η.
By (3.7), we have

||Πηf ||∞ ≤ max
x∈[0,1]

|
n∑
i=0

f(ai)φi(x)|+ |
∫
f(x)−

n∑
i=0

f(ai)φi(x)dx| · ||κ(x)||∞(3.8)

≤ ||f ||∞|
∑
i

φi(x)|+ 3

2
|
∫
f(x)−

n∑
i=0

f(ai)φi(x)dx|,

which implies (1) and (2) of the lemma. We now prove (3). First, since the {φi}mi=0

is a partition of unity, we have

n∑
i=0

φ′i(x) = 0.

and the sum of two functions

φ(m · x− i) + φ(m · x− (i+ 1)) 6= 1

for x ∈ [ai, ai+1].
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Therefore,

||(Πηf)′||∞ ≤ |
m/2∑
j=0

f(a2j)− f(a2j+1)φ′i(x)|+ |
∫
f(x)−

n∑
i=0

f(ai)φi(x)dx| · ||κ′(x)||∞

(3.9)

≤ 3

2
max
j
|f(a2j)− f(a2j+1)

η
|+ 6||f ′||∞η ≤

(
3

2
+ 6η

)
||f ′||∞.

Thus, (3) follows from (3.8), (3.9). Also note that (4) of the lemma follows from
(3.6) and (3.7). �

Remark 3.5. By Item (4) of Lemma 3.4, assumption (2) of Theorem 2.2 is satis-
fied. By the Lasota-Yorke inequalities4 given in Proposition 3.2, L and Lη satisfy
assumption (3) of Theorem 2.2.

4. Response for a stochastic perturbation

In this section we consider stochastic perturbations of the expanding maps de-
scribed in the previous section. At each step we add a small random perturbation
distributed with a certain probability density j. We describe the analytic estimates
which are necessary to apply our algorithm in that case and show the result of an
actual implementation, where we compute the response for the stochastic perturba-
tion of an expanding map. In particular we show the existence and the structure of
the operator L̂ for this case. We use Var(·) to denote the one dimensional variation
of a function.

4.1. A stochastic perturbation. For f ∈ C0([0, 1]) let Kε denote the operator
defined as:

Kεf(x) =

∫
T
ε−1j(ε−1(x− y))f(y)dy,

where j ∈ C∞(R,R+), supp(j) ⊂ [−1/2, 1/2] and
∫
R j(y)dy = 1.

Lemma 4.1 (Properties of Kε).

(1) For f ∈ Ck, k ∈ {0, 1, 2}
Var(Kεf) ≤ Var(f), ||Kεf ||Ck ≤ ||f ||Ck ;

(2) for f ∈ C1

||Kεf − f ||∞ ≤ ε||f ||C1 ;

(3) for f ∈ C2

||Kεf − f ||C1 ≤ ε||f ||C2 .

Proof. The first assertion is a standard property of convolution.
For (2), we have

|Kεf(x)− f(x)| = |
∫
T
ε−1j(ε−1(x− y))(f(y)− f(x))dy| ≤ ε||f ′||∞.

Since the support of j is contained in [−1/2, 1/2]. To prove (3), observe that

∂

∂x
j(ε−1(x− y)) = − ∂

∂y
j(ε−1(x− y)).

4See also the Appendix 7 for a proof of a uniform Lasota-Yorke inequality of L and Lη on C1.



A RIGOROUS COMPUTATIONAL APPROACH TO LINEAR RESPONSE 11

Therefore,

|(Kεf(x))′ − f ′(x)| = |
∫
T
ε−1j(ε−1(x− y))

∂

∂y
f(y)dy − f ′(x)|.

Using integration by parts and the compactness of the support of j, we obtain:

|(Kεf(x))′ − f ′(x)| ≤ ε||f ′′||∞.
�

We now define the (average) transfer operator relative to the stochastic system
with size ε noise by setting

(4.1) Lε := KεL,
where L is the transfer operator for the map without noise defined in (3.1). Below
we find the response of stochastic perturbation (4.1) when ε is small. We start by

finding the formula of the corresponding operator L̂.

Proposition 4.2. Let Lε be as in (4.1). Set γ :=
∫
j(ξ)ξdξ. For any f ∈ C2

(4.2) lim
ε→0
||1
ε

(Lε(f)− L(f))− γ(Lf)′||C1 = 0.

In particular,

L̂f = γ(Lf)′.

Proof. Notice that 1
ε (Lε(f) − L(f)) = 1

ε (Kε − Id)(Lf) and recall that for any

f ∈ C2 we have Lf ∈ C2. Therefore, it is sufficient to prove that, for every f ∈ C2,
1
ε (Kε − Id)f converges to γf ′ in the C1 norm as ε → 0 . We recall that the noise

kernel is given by rescaling a fixed kernel j, that is jε(x) = 1
ε j(

1
εx). Thus, the

support of jε is contained in the interval [−ε, ε] and
∫
xjε(x)dx = εγ. To prove the

convergence in C1 of the limit, we have to show that

lim
ε→0
||1
ε

(∫
jε(t− x)f(t) dt− f(x)

)
− γf ′(x)||∞ = 0

and

lim
ε→0
||1
ε

(∫
jε(t− x)f ′(t) dt− f ′(x)

)
− γf ′′(x)||∞ = 0.

The first limit can be treated as follows:∣∣∣∣1ε
(∫

jε(t− x)f(t) dt− f(x)

)
− γf ′(x)

∣∣∣∣
=

∣∣∣∣1ε
(∫

jε(t− x)(t− x)
f(t)− f(x)

(t− x)
dt

)
− γf ′(x)

∣∣∣∣
=

∣∣∣∣1ε
∫
jε(t− x)(t− x)

(
f(t)− f(x)

(t− x)
− f ′(x)

)
dt

∣∣∣∣
≤ γ · sup

t∈[x−ε,x+ε]

∣∣∣∣f(t)− f(x)

(t− x)
− f ′(x)

∣∣∣∣ .
Since f ∈ C1[0, 1], supt∈[x−ε,x+ε] |(

f(t)−f(x)
(t−x) − f ′(x))| → 0 uniformly. The limit

lim
ε→0
||1
ε

(∫
jε(t− x)f ′(t) dt− f ′(x)

)
− γf ′′(x)||∞

can be treated in the same way using the fact that f ∈ C2. �
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In order to apply Proposition 2.1 and Theorem 2.2 to the stochastic perturbation
we note that the previous proposition ensures that assumption (4) of Proposition
2.1 is satisfied. For the other assumptions we refer to the following remark.

Remark 4.3. Let h be the fixed probability density in C2([0, 1]) of L. By Lemma
3.1 we have J(h) = 0. Therefore, ∫ 1

0

h′dx = 0.

Remark 4.4. By Item (1) of Lemma 4.1 it follows that

Var(KεLf) ≤ Var(Lf) and ||KεLf ||Ck ≤ ||Lf ||Ck

for k = 1, 2. Therefore, Lε and L, satisfy uniform Lasota-Yorke inequalities on the
spaces BV , C1([0, 1]) and C2([0, 1]). This implies that assumption (1) of Propo-
sition 2.1 holds. 5 Moreover, by the stability result of [29] (see also [18] for an
elementary proof of a similar result) for sufficiently small ε > 0, assumption (3) of
Proposition 2.1 holds. Finally, by Item (2) of Lemma 4.1 we obtain the approxi-
mation assumption (Item (2)) of Proposition 2.1.

Thus, by Proposition 2.1, the linear response holds:

(4.3) lim
ε→0
||hε − h

ε
− ĥ||∞ = 0,

where ĥ := (Id− L)−1L̂h.

4.2. The rigorous computation of the response ĥ. Now we show how to com-
pute the linear response under stochastic perturbations for the class of systems
described in this section.

Assume we are given a family of C2 functions6 hη such that ||hη − h||C1 → 0 as
η → 0. In particular, this would imply

||h′η − h′||∞ → 0 as η → 0.

We can then apply Theorem 2.2 with fη := γh′η to obtain:

Corollary 4.5. Assume hη is a C2 family of functions such that ||hη − h||C1 → 0
as η → 0. Then, given τ > 0, ∃ l∗ ∈ N and η > 0 such that

||ĥ− γ
l∗−1∑
k=0

Lkηh′η||∞ < τ,

where h′η is the derivative of hη, γ is as in equation (4.2) and Lη is the operator
defined in (3.5).

5Let f ∈ C0 be a density. Suppose ||f ||∞ ≤ 1 and consider ||Lnε f ||∞. First remark that since
Lε is positive, f ≥ 0 implies ||Lεnf ||∞ ≤ ||Lεn1||∞ (1 is the function having constant value 1).

Furthermore ||Lεn1||∞ is uniformly bounded by the Lasota Yorke inequalities. In the general case
we can decompose f into positive and negative parts and apply the same construction to each
component.

6Note that hη is not the fixed point of the discretization Lη defined earlier in the section.
In the example of this section we obtain the sequence hη through the discretization defined in

subsection 7.4 in the Appendix 7.
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Proof. Since L̂f := γ(Lf)′ (see equation (4.2)), the proof is a direct application of
Theorem 2.2 with fη = γh′η . Assumption (1) of Theorem 2.2 follows by ||hη −
h||C1 → 0 as η → 0. Recall that the remaining assumptions (2), (3) of Theorem
2.2 are established in Remark 3.5. �

To estimate the rigorous error we have to find suitable l∗ and η. We follow

Remark 2.3. If we denote by ĥappr the approximation of the linear response we
have that:

||ĥ− ĥappr||∞ ≤

||
+∞∑
i=l∗

LiL̂h||+ ||
l∗−1∑
i=0

Lifη −
l∗−1∑
i=0

Liηfη||∞ + ||
l∗−1∑
i=0

Li(fη − L̂h)||∞.

To estimate ||
∑+∞
i=l∗ LiL̂h||∞ we use the uniform contraction, whose coefficients

can be estimated using the method in Subsection 7.7; we can find C1, k and ρ such
that

||Lkh′||∞ ≤ C1ρ||h′||C1 ≤ C1ρ||h||C2 ;

therefore, if l = k · h

||
+∞∑
i=l

Lih′||∞ ≤ C1 ·M · k
ρh

1− ρ
||h||C2 ,

and ||h||C2 can be bounded from the coefficients of the C2 Lasota-Yorke inequality in
Proposition 3.2; this permits us to find l∗. The second summand may be estimated
by

||
l∗−1∑
i=0

Lifη −
l∗−1∑
i=0

Liηfη||∞ ≤M ||L − Lη||C1→C0

l∗−1∑
k=0

k−1∑
j=0

||Lk−1−j
η fη||C1 ,

where we numerically estimate ||Liηfη||C1 . The third summand is estimated by:

||
l∗−1∑
i=0

Li(fη − L̂h)||∞ ≤M · γ · l∗||h′ − h′η||∞.

4.3. An example of linear response under a stochastic perturbation. In
this example we study a circle expanding map T and the behavior of the density
when, at each iteration step, we add a noise, as explained in Subsection 4.1. We
consider T : S1 → S1:

T (x) = 8x+ 0.0025(sin(16πx) +
1

4
sin(32πx)) mod 1;

the operator L, associated to T , satisfies the following inequalities:

Var(Lf) ≤ 0.127 ·Var(f) + 0.2||f ||1;

||Ln||∞ ≤M = 1.2,∀n ≥ 0;

||Lkf ||C1 ≤ 1.2 · 0.127k||f ||C1 + 1.44||f ||∞;

||Lkf ||C2 ≤ 1.2 · 0.017k||f ||C2 + 3.8||f ||C1 .

Let h be the fixed point of L in C2. Following Subsection 4.1 we have that L̂ :
C2 → C1 is given by

L̂h = γh′
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Figure 1. The computed approximations of the response in the
stochastic case, and a plot of an approximation of the invariant
density for the non-perturbed map.

and, by Proposition 2.1, the linear response is given by

ĥ = (Id− L0)−1L̂h =

+∞∑
i=0

LiL̂h.

To compute the linear response we need to compute an approximation fη to γh′;
to do so we use the discretization in Subsection 7.4. Let us choose l∗ = 18 and
η = 524288 both for the approximation of the density in C1 and the computation
of the linear response; we approximate the linear response by

ĥappr =

17∑
i=0

Lηfη.

In figure 1 a plot of the approximations of the invariant density and of the linear
response of the map under stochastic perturbation are presented. We are going
to estimate the error using the algorithm developed in the present paper (refer to
Theorem 2.2 and the subsequent discussion):

||ĥ− ĥappr||∞ ≤

||
+∞∑
i=l∗

LiL̂h||∞ + ||
l∗−1∑
i=0

Lifη −
l∗−1∑
i=0

Liηfη||∞ + ||
l∗−1∑
i=0

Li(fη − L̂h)||∞.

In the following subsections we are going to estimate the different summands sep-
arately.

Remark 4.6. To do our validated numerics we used SAGE [44] and the validated
numerics packages shipped with it (the interval package is a binding to MPFI
[40]), running either on local computers or on a cloud based version called Cocalc,
https://cocalc.com/.

The discretized operators are computed using a rigorous interval Newton method
[45], while the estimates for the norm of the discretized operators are done using
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Scipy [27], with rigorous error bounds on the error made by matrix-vector products,
obtained through the implementation of the rigorous matrix-vector product of [43].

The experiment can be done on SageMathCloud following the SAGE worksheets
contained in the software archive:

• stochastic estimate tail.sagews bounds the size of the tail ||
∑+∞
i=l∗ LiL̂h||∞;

• stochastic C 1 part.sagews approximates the invariant density in the C1

norm, to approximate L̂h;
• stochastic final estimate.sagews estimates the error on the linear response

and computes the approximation.

The software package contains a subset of the project compinvmeas-python, a
software package designed to approximate invariant measures and associated ob-
jects. There is a git repository for the full project whose access is by invitation:
please send us an email so we can grant you access.

Part of the computation was done taking advantage of parallelization; to do so,
some delicate memory issues arose [37].

4.4. Estimating ||
∑+∞
i=l∗ LiL̂h||. Let η = 1/262144 and let Lη be the discretized

operator; we have

(4.4) ||L9
η|V 0

C
||∞ ≤ 9.39 · 10−5

where V 0
C = {f ∈ C1,

∫
f = 0} is the set zero average densities, and for all f ∈ C1,

by the approximation Lemma 7.13:

||L9
ηf − L9f ||∞ ≤ 6.01 · 10−7||f ||C1 + 0.0021||f ||∞.

We can bound the speed of convergence to equilibrium and the associated constants
using the technique and the notation explained in subsection 7.7, with n1 = 9 . For
any g in VC0 , we have that, denoting by gi = L7gi−1:(

||gi+1||C1

||gi+1||∞

)
�
(

1.0006 · 10−8 1.44
6.01 · 10−7 0.0022

)(
||gi||C1

||gi||∞

)
,

which gives us the following estimates

||L9kf ||∞ ≤ 1.00025(0.0024)k||f ||C1
||L9kf ||∞ ≤ 4132.2(0.0024)k||f ||C1

.

Therefore,

||
∞∑
i=18

LiL̂h||∞ ≤ 0.00037γ.

Remark 4.7. Note that in this Subsection the partition size is coarser than the
ones used in Subsection 4.5 and 4.6; the reason is that estimating (4.4) is the most
computationally expensive part of our algorithm.

Let m = 1/η, the space of zero average measures of a partition of size η has
dimension m − 1; the way we compute (4.4) rigorously is to choose a basis of the
space of average zero measures and explicitly multiply a sparse matrix with each
element of this basis, which implies that the computation time scales asymptotically
as m2 (see [20, Section 8.3] for a complete treatment in the L1 case). Therefore, to
speed up computations, it is worth computing (4.4) on a coarser partition and get
information on L by using [21].

Since the first submission of the article we developed more efficient tecniques to
estimate these bounds, using what we call “coarse-fine” estimates [19]. Since the
article presenting these results is still a work in progress, we decided not to use
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them to do the computations in the present article, therefore the execution time of
the examples is long but does not represent the state of the art of our theory.

4.5. Estimating ||
∑l∗−1
i=0 Lifη −

∑l∗−1
i=0 Liηfη||∞. Let η = 1/524288, we have that

N ||LNη fη||C1 N ||LNη fη||C1

0 2.72 3 3.35 · 10−7

1 0.0007 4 1.07 · 10−8

2 1.44 · 10−5 5 4.8 · 10−9.

We observe now that

||Lkηf ||C1 ≤ 1.50002 · 0.261k||f ||C1 + 1.42||f ||∞,

which permits us to bound ||Lkη||C1 , and obtain that, for 6 ≤ N ≤ 17:

||LNη fη||C1 ≤ 8.67 · 10−9

Therefore

||
17∑
i=0

Lifη −
17∑
i=0

Liηfη||∞ ≤ 0.0018γ.

4.6. Estimating ||
∑l∗−1
i=0 Li(fη − L̂h)||∞. Let η = 1/524288, we computed using

the discretization in Subsections 7.4 and 7.5 an approximation hη of h such that

||h− hη||C1 ≤ 0.00022.

Therefore we have an approximation fη to L̂h = γh′ such that

||fη − γh′||∞ ≤ 0.00022γ.

Therefore

||
17∑
i=0

Li(fη − L̂h)||∞ ≤ 0.0047γ.

4.7. The error on the computed response. Therefore, the error on the response
is

||ĥ− ĥappr||∞ ≤ γ(0.00037 + 0.0018 + 0.0047) ≤ 0.0069γ.

5. Linear response for deterministic perturbations

We now consider deterministic perturbations of a C3 expanding circle map7 T0.
Let

Tε(x) = T0(x) + εS(x) + oC3(ε);

where S(x) ∈ C3(T) and oC3(ε) is a term whose C3 norm goes to 0 faster than ε
as ε goes to 0. Under these assumptions (see for instance [5, 9, 23]), the operator

L̂f(x) = −L0

(
f · S′

T ′0

)
(x)− L0

(
f ′ · S
T ′0

)
(x) + L0

(
f · S · T ′′0

(T ′0)2

)
(x)

7After posting the first version of our work on Arxiv, which did not include an example of a
deterministic perturbation, Pollicott and Vytnova [38] studied the problem of approximating lin-
ear response of given observables for deterministic perturbations. Their approach, which is based

on the periodic point structure of the system, requires the maps to be analytic and the observ-
ables to have a certain structure. Here we show that our approach also works for deterministic
perturbations, it requires only little regularity and no information on the observable.
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satisfies
lim
ε→0
||ε−1(L − Lε)f − L̂f ||C1 = 0 ∀f ∈ C3,

where Lε is the Perron-Frobenius operator associated to Tε.

Remark 5.1. If we suppose that the perturbation is small in the C2 norm: ||T0 −
Tε||C2 ≤ Kε it follows that Lε and L, satisfy a uniform Lasota-Yorke inequality.
This implies that assumption (1) of Proposition 2.1 holds. Moreover, by [18], Sec-
tion 6, assumption (2) and (3) of Proposition 2.1 also hold. Hence Proposition 2.1
holds and we have the linear response for these perturbations.

lim
ε→0
||hε − h

ε
− ĥ||∞ = 0,

where ĥ := (Id− L)−1L̂h.

5.1. An example of linear response under a deterministic perturbation.
In this example we study a family Tε, ε ∈ [0, 1) of C3-small deterministic perturba-
tions. We consider the family Tε:

Tε(x) = 2x+
ε

16
(cos(4πx) +

1

4
cos(8πx)) mod 1.

For ε = 0 the dynamics is given by the map

T0(x) = 2x mod 1;

whose invariant density h is constant and equals to 1. The operator L0, associated
to T0, satisfies the following inequalities:

Var(Lk0f) ≤
(

1

2

)k
Var(f)

M = ||L0||∞ ≤ 1

||Lk0f ||C1 ≤
(

1

2

)k
||f ||C1 + ||f ||∞.

Note that the family satisfies the assumptions discussed in Remark 5.1. Hence the
linear response formula can be applied. Following [23], the operator L̂ : C2 → C1

is given by

(5.1) L̂h = L0

(
π

8
sin(4πx) +

π

16
sin(8πx)

)
=
π

8
sin(2πx) +

π

16
sin(4πx)

and, by Proposition 2.1, the linear response is given by

ĥ = (Id− L0)−1L̂h =

+∞∑
i=0

Li0L̂h.

The simple structure of the example also allow to compute the response exactly.

Remark 5.2. From direct computations we have that for all φ ∈ L1

L0φ(x) =
φ(x2 ) + φ(x2 + 1

2 )

2
.

Therefore, L0 sin(2πx) = 0, L0 sin(4πx) = sin(2πx) and

ĥ =

+∞∑
i=0

Li0L̂h = L̂h+ L0L̂h =
1

16
(3π sin(2πx) + π sin(4πx)) .



18 WAEL BAHSOUN, STEFANO GALATOLO, ISAIA NISOLI, AND XIAOLONG NIU

0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 2. The plot of ĥappr =
∑56
i=0 Lηfη.

We now approximate the linear response and estimate the error using the al-
gorithm developed in the present paper (refer to Theorem 2.2 and the subsequent
discussion). We will compute its linear response using the discretized operator
and the general estimates introduced in Section 4. Let us set the discretization
parameter η = 1/4194304. We have:

||L̂h||∞ ≤
3π

16
;

||L̂h||C1 ≤ 3π

16
+
π2

2
.

As L̂h is explicit (see Equation 5.1) in the algorithm we use its discretization fη =

ΠηL̂h. Let us choose l∗ = 57 and approximate ĥ by

ĥappr =

56∑
i=0

Lηfη.

In Figure 2 we have a plot of the approximated linear response ĥappr.

Now we apply the general procedure for the estimation of the error. As in the
previous section, we have to estimate three summands:

||ĥ− ĥappr||∞ ≤

||
+∞∑
i=l∗

LiL̂h||∞ + ||
l∗−1∑
i=0

Lifη −
l∗−1∑
i=0

Liηfη||∞ + ||
l∗−1∑
i=0

Li(fη − L̂h)||∞.

In the following we are going to estimate the different summands separately.

Remark 5.3. The experiment can be done on SageMathCloud following the SAGE
worksheets contained in the software archive:

• deterministic estimate tail.sagews bounds the size of the tail ||
∑+∞
i=l∗ LiL̂h||∞;

• deterministic final estimate.sagews estimates the error on the linear re-
sponse and computes the approximation.
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5.2. Estimating ||
∑+∞
i=l∗ LiL̂h||. Let us consider a coarse discretization η = 1/131072

(see Remark 4.7) let Lη be its discretized operator. We have by direct computation

||L19
η |V 0

C
||∞ ≤ 0.00076

where V 0
C) = {f ∈ C1,

∫
f = 0} is the set zero average densities. For all f ∈ C1, by

Lemma 7.13:

||L19
η f − L19f ||∞ ≤ 0.000144||f ||C1 + 0.0079||f ||∞.

We can bound the speed of convergence to equilibrium and the associated constants
using the technique and the notation explained in subsection 7.7, with n1 = 19 .
For any g in VC0 , we have that, denoting by gi = L19gi−1:(

||gi+1||C1

||gi+1||∞

)
�
(

1.91 · 10−6 1
0.000144 0.0079

)(
||gi||C1

||gi||∞

)
.

This gives the following estimates for all f ∈ V

||L19kf ||∞ ≤ 1.01(0.0171)k||f ||C1
||L19kf ||∞ ≤ 120.1(0.0171)k||f ||C1

.

Therefore,

||
∞∑
i=57

LiL̂h||∞ ≤ 0.00055.

5.3. Estimating ||
∑l∗−1
i=0 Lifη−

∑l∗−1
i=0 Liηfη||∞. Let η = 1/4194304, we have that

N ||LNη fη||C1 N ||LNη fη||C1

0 7.92 2 6.42 · 10−10

1 2.047 3 3.24 · 10−10.

We observe now that

||Lkηf ||C1 ≤ 1.6 · 0.76k||f ||C1 + 1||f ||∞,

which permits us to bound ||Lkη||C1 , and obtain that, for 4 ≤ N ≤ 56:

||LNη fη||C1 ≤ 3.31 · 10−10

Therefore,

||
56∑
i=0

Lifη −
56∑
i=0

Liηfη||∞ ≤ 0.0019

5.4. Estimating ||
∑l∗−1
i=0 Li(fη − L̂h)||∞. Let η = 1/4194304, we have that

||fη − L̂h||∞ = ||Πη(L̂h)− L̂h||∞ ≤
5

2

1

4194304

π2

2
≤ 2.96 · 10−6.

Therefore,

||
56∑
i=0

Li(fη − L̂h)||∞ ≤ 0.00017.
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5.5. The error on the computed response. Therefore,

||ĥ− ĥappr||∞ ≤ 0.00055 + 0.0019 + 0.00017 ≤ 0.0026.

Remark 5.4. We expect our approximation scheme to be more efficient than the

rigorous bounds. Since we computed ĥ explicitly in Remark 5.2, we compare our
approximation directly with the explicit linear response obtaining:

||ĥappr −Πηĥ||C0 ≤ 3.42 · 10−13, ||Πηĥ− ĥ||C0 ≤ 15.5

4194304
.

This shows the efficiency of our approximation scheme.

6. Appendix I: the response of the intermittent family at the
boundary

In this appendix we approximate the linear response for a family of maps that
does not satisfy the assumptions of Proposition 2.1. Let Tα : [0, 1] → [0, 1] be the
family of maps defined by

(6.1) Tα(x) =

{
x(1 + 2αxα) 0 ≤ x ≤ 1/2

2x− 1 1/2 < x ≤ 1,

where α ∈ [0,∞). This family was initially popularized in [33] as a version of the
Pomeau-Manneville family [39]. When α ∈ (0,∞), this family of maps of the in-
terval [0, 1] has an indifferent fixed point at the origin, and when α ∈ (0, 1) it has
a unique absolutely continuous invariant probability measure and it exhibits only
polynomial decay of correlations [24] with respect to Hölder observables. When
α = 0, it is the doubling map, which is uniformly expanding, it preserves Lebesgue
measure and it exhibits exponential decay of correlations. In general for α ∈ [0,∞),
the transfer operator associated with Tα has a unique (up to multiplication by a
constant) fixed point hα.

As we have mentioned at the beginning of this appendix, for the family of maps
defined in (6.1) the assumptions of Proposition 2.1 cannot be verified. However,
in a recent paper Baladi and Todd [11] have proved linear response for the above
family, when α ∈ [0, 1), using techniques different from those of Proposition 2.1.
In particular, the linear response formula at α = 0 in Proposition 6.1 below was
derived in equation (2.22) of [11].

Proposition 6.1. Let Tα be as in (6.1) with α ∈ [0, 1).

(1) For α ∈ (0, 1), q > 1
1−α and ψ ∈ Lq

(6.2) lim
ε→0

∣∣∣∣∫ ψhα+εdx−
∫
ψhαdx

ε
−
∫
ψĥαdx

∣∣∣∣ = 0,

where ĥα = −(Id−Lα)−1[(XαNαhα)′], with Xα = 2αg1+α
0,α (x) ln(2g0,α(x)),

Nαϕ = g′0,α(x)ϕ(g0,α(x)), g0,α(x) = T−1
0,α(x) and T0,α = Tα|[0, 12 ].

(2) The result also holds for α = 0 by taking the limit as ε ↓ 0. The formula of

ĥ := ĥ0 is given by

(6.3) ĥ = (Id− L0)−1L̂h0,

where

(6.4) L̂h0 = −1/4− ln(x)/4 and h0 ≡ 1.



A RIGOROUS COMPUTATIONAL APPROACH TO LINEAR RESPONSE 21

We now show how to approximate the linear response formula of Baladi and
Todd [11] which we stated in Proposition 6.1 above. We follow a procedure similar
to the one of Theorem 2.2 and Remark 2.3. We first note that the invariant density
of Tα, α ∈ (0, 1), is unbounded. Thus, we approximate the linear response, at
α = 0, only in L1. Consequently, the discretization scheme does not need to be
smooth. In particular, the well known Ulam approximation scheme can be used in
this case.

We now start the procedure of approximating ĥ rigorously in L1([0, 1]). In this
specific case, it is possible to find some explicit bounds that allow us to approximate

the linear response. Note that approximating ĥ in L1([0, 1]) will directly provide an

approximation of
∫
ψĥdx, for any ψ ∈ L∞. Note that for T0(x) = 2x mod 1; the

transfer operator on L1([0, 1]) associated to this dynamical system has the explicit
form

L0f(x) =
f(x/2) + f(x/2 + 1/2)

2
,

and the density of the absolutely continuous invariant measure is h0 ≡ 1; those are
important ingredients in our estimates.

Remark 6.2. The experiment can be done can be done on Cocalc following the
SAGE worksheets contained in the software archive: lsv at boundary.sagews esti-
mates the error on the linear response and computes the approximation.

Definition 6.3. Let {Ii}n−1
i=0 be a uniform partition of [0, 1] consisting of intervals

of size η = 1/n, denote by m the Lebesgue measure. Let πη be the finite rank
operator defined on L1([0, 1]) as follows:

πηf(x) =

n−1∑
i=0

∫
Ii
f dm

m(Ii)
χIi(x),

where χIi is the characteristic function of Ii. The Ulam approximation of L0 of
mesh size η is

L0,η := πηLπη.

We summarize in the next lemma some properties of πη, L0 and L0,η used in
this appendix; we refer to [4, 20] and references therein for proofs of these results.

Lemma 6.4. Let T0(x) = 2x mod 1, let L0 be the associated transfer operator, and
let L0,η be the Ulam approximation of size η. Then

||g − πηg||L1 ≤ η ·Var(g)

||L0||L1 ≤ 1 ||L0,η||L1 ≤ 1

Var(L0g) ≤ 1

2
Var(g) Var(L0,ηg) ≤ 1

2
Var(g),

for all g ∈ BV ([0, 1]).

We now approximate ĥ, which was defined in equations (6.3) and (6.4), with a
rigorous error bound in L1([0, 1]).

Proposition 6.5. Let L0,η be the Ulam approximation of L0 with mesh size η. Let

η = 2−20, fη = πηL̂h0 and ĥappr =
∑19
i=0 Lηfη. Then,

||ĥappr − ĥ||L1 ≤ 0.00021.
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Proof. To obtain the rigorous bound for ||ĥappr − ĥ||L1 , note that

||ĥappr − ĥ||L1 = ||
19∑
i=0

Li0,ηfη − (Id− L0)−1L̂h0||L1 ≤

||
19∑
i=0

Li0(fη−L̂h0)||L1 + ||
19∑
i=0

Li0fη −
19∑
i=0

Li0,ηfη||L1 + ||
+∞∑
i=20

Li0L̂h0||L1 .

We will now give an explicit estimate for ||Lk0L̂h0||L1 . By induction we have

|Lk0L̂h0(x)| ≤ |
(
− 1

4
− 1

4
·
(

ln(
∏2k−1
j=1 (x+ j))

2k
− ln(2k)

))
|+ | ln(x)

2k+2
|.

Note that if x ∈ [0, 1], we have that:

(2k − 1)! ≤
2k−1∏
j=1

(x+ j) ≤ 2k!;

we can use Stirling’s Formula for n!, [41]:

ln(
√

2π)+(n+
1

2
) ln(n)−n+

1

12n+ 1
≤ ln(n!) ≤ ln(

√
2π)+(n+

1

2
) ln(n)−n+

1

12n
.

Thus: ∣∣∣∣1 +
ln(
∏2k−1
j=1 (x+ j))

2k
− ln(2k)

∣∣∣∣ ≤ ln(
√

2π)

2k
+

ln(2k)

2k+1
+

1

22k12
,

which in turn implies that

||Lk0L̂h0(x)||L1 ≤ 1

2k+2
·
(

1 + ln(
√

2π) +
ln(2k)

2
+

1

12 · 2k

)
.

Therefore,

(6.5) ||
+∞∑
i=20

Li0L̂h0||L1 ≤ 1

220+1
(1 + ln(

√
2π)) +

20 + 1

220+1

ln(2)

2
+

1

9 · 240+2
,

and consequently,

||
+∞∑
i=20

Li0L̂h0||L1 ≤ 4.4 · 10−6.

We estimate ||fη − L̂h0||L1 explicitly:∫ η

0

| ln(x)−
∫ η

0
ln(x)dx

η
|dx =

2η

e
;

for each interval [iη, (i+ 1)η], i ∈ 1, . . . , 1/η − 1 we have that∫ (i+1)η

iη

| ln(x)− 1

η

∫ (i+1)η

iη

ln(ξ)dξ|dx ≤ η(ln(iη)− ln((i+ 1)η)).

Therefore:

||fη − L̂h0||L1 ≤ η

2e
− η ln(η)

4
.
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Since ||L0||L1 = 1 we have

(6.6) ||
19∑
i=0

Li0(fη − L̂h0)||L1 ≤ 20

(
η

2e
− η ln(η)

4

)
.

Fix η = 2−20; therefore using (6.6) we have:

||
19∑
i=0

Li0(fη − L̂h0)||L1 ≤ 6.9 · 10−6

We bound now ||
∑19
i=0 Li0fη−

∑19
i=0 Li0,ηfη||L1 . We make and “a priori” estimate,

using the fact that η = 1/n and ln(x) is decreasing:

Var(fη) =
|
∫ η

0
L̂h0 dx−

∫ 1

(n−1)η
L̂h0 dx|

η
=
− ln(η)− (n− 1) ln((n− 1)η)

4

From Lemma 6.4

||(L0 − L0,η)f ||L1 ≤ 3η

2
Var(f),

and

||
19∑
i=0

Li0fη −
19∑
i=0

Li0,ηfη||L1 ≤
19∑
j=0

j∑
i=0

3η

2

(
1

2

)i
Var(fη)

≤ 3η

2

(
2 · 20− 220 − 1

219

)
Var(fη).(6.7)

Using (6.7), since for η = 2−20 Var(fη) ≤ 3.72, we have the following bound:

||
19∑
i=0

Li0fη −
19∑
i=0

Li0,ηfη||L1 ≤ 0.000203.

Summing up the errors we obtain:

||ĥappr − ĥ||L1 ≤ 0.00021.

�

In Figure 3, we depict the graph of the computed approximation of the linear
response.

7. Appendix II: some estimates and technical lemmas

Throughout subsections 7.1-7.5 we use the following setup. T : T → T is a
C3 uniformly expanding circle map; i.e. infx∈T |DxT | > 1. Without loss of gen-
erality we assume that T is orientation preserving. The circle map T it is nat-
urally associated with an expanding interval map, which we also denote by T ,
T : [0, 1]→ [0, 1]. Throughout the presentation, we use the interval map represen-
tation T : [0, 1] → [0, 1]. Recall that L denotes the transfer operator associated
with T (see (3.1)). In addition, the following constants will be used extensively
throughout subsections 7.1-7.5. We set

λ := 1/ inf
x∈T
|DxT |; B := ||T ′′/(T ′)2||∞; M := 1 +

B

1− λ
;

Z :=
1

1− λ2

(∣∣∣∣∣∣∣∣ T ′′′(T ′)3

∣∣∣∣∣∣∣∣
∞

+
3λ

1− λ

∣∣∣∣∣∣∣∣ T ′′(T ′)2

∣∣∣∣∣∣∣∣2
∞

)
;
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Figure 3. The plot of ĥappr =
∑19
i=0 Lηfη.

and

D = max{3λBM
1− λ

, 3M

(
B

1− λ

)2

+MZ}+Mλ+M2.

Finally, we denote the kth iterate of T by Gk; i.e. for k ≥ 1 we write Gk := T k.

7.1. Useful estimates. The following Lemma provides bounds on the distortion
for iterates of T . These bounds will be used in the proofs of the Lasota-Yorke
inequalities in Subsection 7.2.

Lemma 7.1. For any k ≥ 1, we have∣∣∣∣∣∣∣∣ G′′k
(G′k)2

∣∣∣∣∣∣∣∣
∞
≤ B

1− λ
; and

∣∣∣∣∣∣∣∣ G′′′k(G′k)3

∣∣∣∣∣∣∣∣
∞
≤ Z.

Proof. Write Gk(x) = T (Gk−1(x)). Then

G′k(x) = T ′(Gk−1(x))G′k−1(x),

G′′k(x) = T ′′(Gk−1(x))(G′k−1(x))2 + T ′(Gk−1(x))G′′k−1(x).

Using these two expressions we have

G′′k(x)

(G′k(x))2
=

T ′′(Gk−1(x))

(T ′(Gk−1(x)))2
+

1

T ′(Gk−1(x))

G′′k−1(x)

(G′k−1(x))2
,

which implies the first inequality. We now compute

G′′′k (x) = T ′′′(Gk−1(x))(G′k−1(x))3 + 3T ′′(Gk−1(x))G′k−1(x)G′′k−1(x)

+ T ′(Gk−1(x))G′′′k−1(x).

Using this last expression and the computations above we have:

G′′′k (x)

(G′k(x))3
=

T ′′′(Gk−1(x))

(T ′(Gk−1(x)))3
+ 3

1

T ′(Gk−1(x))

T ′′(Gk−1(x))

(T ′(Gk−1(x)))2

G′′k−1(x)

(G′k−1(x))2

+
1

(T ′(Gk−1(x)))2

G′′′k−1(x)

(G′k−1(x))3
,

which implies the second inequality of the lemma. �
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7.2. Lasota-Yorke inequalities. In this subsection we prove Lasota-Yorke in-
equalities when L acts on C1([0, 1]) and on C2([0, 1]). The following proposition is
a well known result. See for instance [32] Lemma 1.2 for a similar statement.

Proposition 7.2. Let Var(·) denote the one dimensional variation on [0, 1]. Then
for any function of bounded variation f we have

Var(Lf) ≤ λVar(f) +B||f ||L1 .

Lemma 7.3 (Uniform bound on ||Ln||∞). For any n ≥ 1 we have

||Ln||∞ ≤M.

Proof. The operator L is positive. Therefore ||Ln||∞ = supx∈[0,1] Ln1. By Proposi-
tion 7.2, we have

Var(Ln1) ≤ B

1− λ
,

and therefore ||Ln1||∞ ≤M . �

Proposition 7.4. For f ∈ C1([0, 1]) and any n ≥ 1 we have

||Lnf ||C1 ≤M · λn||f ||C1 +M2||f ||∞.
In particular, there exists an iterate G := Tn of T such that

||LGf ||C1 ≤ θ||f ||C1 +M2||f ||∞,
where θ ≤ λnM < 1.

Proof. For x ∈ (0, 1) we have

(7.1)
∂

∂x
(Lnf)(x) =

∂

∂x

( ∑
y∈G−1(x)

f(y)

G′(y)

)
=

∑
y∈G−1(x)

f ′(y)

(G′y)2
−f(y)

G′′(y)

(G′y)2

1

G′(y)
.

By Lemma 7.3, Lemma 7.1 and (7.1)
(7.2)

||(Lnf)′||∞ ≤ λn||Lnf ′||∞ +

∣∣∣∣∣∣∣∣ G′′(G′)2

∣∣∣∣∣∣∣∣
∞
||Lnf ||∞ ≤Mλn||f ′||∞ +

BM

1− λ
||f ||∞.

Therefore, by (7.2) and Lemma 7.3, we have

||Lnf ||C1 = ||Lnf ||∞ + ||(Lnf)′||∞

≤M ||f ||∞ +Mλn||f ′||∞ +
BM

1− λ
||f ||∞

≤Mλn||f ||C1 +M2||f ||∞.
�

Proposition 7.5. For f ∈ C1, we have

||(Lf)′||∞ ≤ (M +B)λ||f ′||∞ +B(B + 1)||f ||L1 ,

Proof. From Proposition 7.2 and the fact that ||f ||∞ ≤ ||f ||L1 + Var(f) we have

||Lf ||∞ ≤ Var(Lf) + ||Lf ||L1 ≤ λVar(f) + (B + 1)||f ||L1

≤ λ||f ′||∞ + (B + 1)||f ||L1 .

By (7.2) and the above estimate we have

||(Lf)′||∞ ≤Mλ||f ′||∞ +B||Lf ||∞ ≤ (M +B)λ||f ′||∞ +B(B + 1)||f ||L1 .

�
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Proposition 7.6. For f ∈ C2([0, 1]) and any n ≥ 1 we have

||Lnf ||C2 ≤M(λ2)n||f ||C2 +D||f ||C1 .

In particular, there exists an iterate G := T k of T such that

||LGf ||C2 ≤ Λ||f ||C2 +D||f ||C2 ,

where Λ ≤ λ2kM < 1.

Proof. We denote G := Tn. For x ∈ (0, 1) we have

(Lnf)′′(x) =
∑

y∈G−1(x)

f ′′(y)

(G′(y))3
− 3f ′(y)

G′′(y)

(G′(y))4

+
∑

y∈G−1(x)

−f(y)
G′′′(y)

(G′(y))4
+ 3f(y)

(G′′(y))2

(G′(y))5
.

Therefore,

||(Lnf)′′||∞ ≤ λ2n||Ln(f ′′)||∞ + 3λn
B

1− λ
||Ln(f ′)||∞(7.3)

+ 3

(
B

1− λ

)2

||Lnf ||∞ + Z||Lnf ||∞.

In particular

||(Lnf)′′||∞ ≤Mλ2n||f ′′||∞ + max{3λ
nBM

1− λ
, 3M

(
B

1− λ

)2

+MZ}||f ||C1 .

Thus, by Proposition 7.4, we get

||Lnf ||C2 = ||Lnf ||C1 + ||(Lnf)′′||∞
≤Mλ2n||f ||C2

+

(
max{3λ

nBM

1− λ
, 3M

(
B

1− λ

)2

+MZ}+Mλn(1− λn) +M2

)
||f ||C1 .

�

7.3. Uniform Lasota-Yorke inequality for Lη. In this subsection we prove
uniform Lasota-Yorke inequalities for the discretized operator defined Lη = ΠηLΠη

that was defined in Subsection 3.2.

Proposition 7.7. Let 0 < η < η0. Suppose that8

Θ :=

(
3

2
+ 6η0

)
(M +B)λ < 1.

For any f ∈ C1([0, 1]), and any n ≥ 1, we have

||Lnηf ||C1 ≤ (3 + 12η0)

(
Θn||f ||C1 +

B(B + 1)

1−Θ
||f ||1

)
+ ||f ||1,

8If Θ ≥ 1; i.e., the expansion of T is not big enough, we use an iterate Tk := G of T as

in Proposition 7.4, with an expansion factor that guarantees the corresponding Θ to be strictly

smaller than 1. Note that, since L has a spectral gap on Ci, i = 1, 2, its iterate LG will also
have a spectral gap on Ci, i = 1, 2. In particular, 1 will still be a simple eigenvalue of LG on Ci,

i = 1, 2.
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and

||Lnη ||C1 ≤ (3 + 12η0)

(
Θn +

B(B + 1)

1−Θ
+

1

3

)
.

Proof. We start by bounding, using the inequality proved in Proposition 7.5

||(LΠηf)′||∞ ≤ (M +B)λ||(Πηf)′||∞ +B(B + 1)||Πηf ||1

≤
(

3

2
+ 6η

)
(M +B)λ||f ′||∞ +B(B + 1)||f ||1.

Since ||(LΠη)nf ||1 = ||f ||1, we have that

||((LΠη)nf)′||∞ ≤ Θn||f ′||∞ +
B(B + 1)

1−Θ
||f ||1.

Therefore,

||(Lnηf)′||∞ ≤
(

3

2
+ 6η

)(
Θn||f ′||∞ +

B(B + 1)

1−Θ
||f ||1

)
.

Since

||f ||∞ ≤ ||f ||1 + Var(f) ≤ ||f ||1 + ||f ′||∞
we have

||Lnηf ||C1 ≤ (3 + 12η)

(
Θn||f ′||∞ +

B(B + 1)

1−Θ
||f ||1

)
+ ||f ||1.

�

7.4. Approximating the invariant density in the C1 norm. In this subsection
we provide a discretization scheme of the transfer operator L in order to approxi-
mate the invariant density of T in the C1 norm.

7.4.1. An approximation of L as an operator from C2 → C1. Let

φ(x) =

 1 + 10x3 + 15x4 + 6x5 x ∈ [−1, 0]
1− 10x3 + 15x4 − 6x5 x ∈ [0, 1]

0 otherwise

and

ν(x) =

 x− 6x3 − 8x4 − 3x5 x ∈ [−1, 0]
x− 6x3 + 8x4 − 3x5 x ∈ [0, 1]

0 otherwise
.

Let m ∈ N and η = 1/m. For i = 0, . . . ,m, let ai = i/m, φi(x) = φ(m · x − i),
νi(x) = ν(m · x − i)/m. Let δij = 1 if i = j and δij = 0 if i 6= j. The following
relations hold for all i and j:

φi(aj) = δij , φ′i(aj) = 0, φ′′i (aj) = 0,

νi(aj) = 0, ν′i(aj) = δij , ν′′i (aj) = 0.

Moreover,
∑m
i=0 φi(x) = 1; i.e., {φi}mi=0 forms a partition of unity. Further, for

x ∈ [ai, ai+1] we have

|νi(x)|+ |νi+1(x)| ≤ 5

16
η, |ν′i(x)|+ |ν′i+1(x)| ≤ 1.
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Furthermore,
∫ 1

0
νi(x) = 0 for all i = 1, . . . ,m− 1. In addition we have,

||φi||∞ = 1, ||φ′i||∞ =
15m

8
, ||φ′′i ||∞ =

10
√

3m2

3
,(7.4)

||νi||∞ =
16

81m
, ||ν′i||∞ = 1, ||ν′′i ||∞ =

8m

225
(28 + 19

√
19) ≤ 4m.(7.5)

Let
κ(x) = 6x(1− x).

Note that
∫ 1

0
κ(x)dx = 1. Let

(7.6) p(x) =

m∑
i=0

f(ai)φi(x) + f ′(ai)νi(x).

We define the operator

(Π̃ηf)(x) := p(x) +

(∫ 1

0

fdx−
∫ 1

0

pdx

)
κ(x).

For f ∈ C2([0, 1]), we prove in Lemma 7.10 estimates on the Ci, i = 0, 1, 2, norms

of Π̃ηf . We first start with two preliminary lemmas.

Lemma 7.8. Let f ∈ C2([0, 1]), and let p be as in (7.6).

(1) ||p||∞ ≤ ||f ||∞ + 32/81||f ′||∞η,
(2) ||p′||∞ ≤ 23/8||f ′||∞,
(3) ||p′′||∞ ≤ 4||f ′′||∞.

Proof. In this proof, we will denote by pi(x) := p(x)|[ai,ai+1]. By construction we
have

pi(x) = f(ai)φi(x) + f(ai+1)φi+1(x) + f ′(ai)νi(x) + f ′(ai+1)νi+1(x).

(1) follows by observing that:

|pi(x)| ≤ ||f ||∞|φi(x) + φi+1(x)|+ ||f ′||∞(|νi(x)|+ |νi+1(x)|).
The proof of (2) relies on the fact that (φi(x) + φi+1(x))′ = 0, since the φi’s form
a partition of the unity:

|p′i(x)| ≤ |f(ai+1)− f(ai)||φ′i(x)|+ ||f ′||∞

≤ 15

8

|f(ai+1)− f(ai)|
η

+ ||f ′||∞.

We now prove (3). For x ∈ [ai, ai+1] let

li(x) := f(ai) +
f(ai + 1)− f(ai)

η
(x− ai), qi(x) := pi(x)− li(x);

we have p′′i (x) = q′′i (x), where qi(ai) = qi(ai+1) = 0. By unicity of polynomial
representation, we have

q(x) = q′(ai)νi(x) + q′(ai+1)νi+1(x),

with

q′(ai) = f ′(ai)−
f(ai + 1)− f(ai)

η
, q′(ai+1) = f ′(ai+1)− f(ai + 1)− f(ai)

η
,

and

|q′′(x)| ≤ 4

η
(|q′(ai)|+ |q′(ai+1|).
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In the last inequality we have used the fact that |ν′′i (x)| ≤ 4/η. Moreover,

|q′(ai)| = |f ′(ai)−
f(ai + 1)− f(ai)

η
| = |f ′(ai)− f ′(ai)− f ′′(ξ)η/2| ≤

||f ′′||∞η
2

,

which proves (3). �

The following lemma provides bounds on the distance, in Ci, i = 0, 1, 2, between
f and p.

Lemma 7.9. Let f ∈ C2([0, 1]), and let p be as in (7.6).

(1) ||f − p||∞ ≤ 15||f ′||η/8,
(2) ||f − p||∞ ≤ 3||f ′′||η2/2,
(3) ||f ′ − p′||∞ ≤ 3||f ′′||η,

(4) |
∫ 1

0
(f − p)dx| ≤ 15||f ′||η/8,

(5) |
∫ 1

0
(f − p)dx| ≤ 3||f ′′||η2/2.

Proof. Let x ∈ [ai, ai + 1], we have pi(ai) = f(ai), p
′(ai) = f ′(ai). We first prove

(1). There exist ξ, ς ∈ [ai, ai+1] such that:

|f(x)− p(x)| = |(f ′(ξ)− p′(ς))(x− ai)| ≤ |||f ′||∞ − ||p′||∞|η.
Thus, (1) follows from (2) of Lemma 7.8. We now prove (2). There exist ξ, ς ∈
[ai, ai+1] such that:

|f(x)− p(x)| = |(f ′′(ξ)− p′′(ς)) (x− ai)2

2
| ≤ |||f

′′||∞ − ||p′′||∞|
2

η2.

Thus, (2) follows from (3) of Lemma 7.8. We now prove (3); there exist ξ, ς ∈
[ai, ai+1] such that:

|f ′(x)− p′(x)| = |(f ′′(ξ)− p′′(ς))(x− ai)| ≤ |||f ′′||∞ − ||p′′||∞|η.
Thus, (3) follows from (3) of Lemma 7.8. Items (4) and (5) follow trivially from
item (1) and (2). �

We now obtain estimates on the Ci, i = 0, 1, 2 norms of Π̃ηf . First we need
some notation that will be used in the remaining lemmas of this subsection. Fix
η0 > 0 and define the following constants

A1 :=
23

8
+

32

81
η0; A2 := 4 +

32

81
η + 18η2

0 ; A3 :=
9

4
+ 9.

Lemma 7.10. Let f ∈ C2([0, 1]), then

(1) ||Π̃ηf ||∞ ≤ ||f ||∞ + 32/81||f ′||∞η + 45||f ′||η/16,

(2) ||Π̃ηf ||∞ ≤ ||f ||∞ + 32/81||f ′||∞η + 9||f ′′||η2/4,

(3) ||(Π̃ηf)′||∞ ≤ 23/8||f ′||∞ + 45||f ′||η/4,

(4) ||(Π̃ηf)′||∞ ≤ 23/8||f ′||∞ + 9||f ′′||η2,

(5) ||(Π̃ηf)′′||∞ ≤ 4||f ′′||∞ + 18||f ′′||η2.

Moreover, for all η < η0 we have

||Π̃ηf ||C2 ≤ A2||f ||C2 , ||Π̃ηf ||C1 ≤ A1||f ||C1 +A3η
2||f ||C2 .

Proof. By definition

Π̃ηf = p(x) +

∫ 1

0

(f − p)dx · κ(x).
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We have ||κ||∞ = 3/2, ||κ′||∞ = 6, ||κ′′||∞ = 12. Consequently, all the items in the
lemma follow from Lemma 7.8 and items (4) and (5) of Lemma 7.9.

Finally, we have:

||Π̃ηf ||C2 ≤ 4||f ||C2 +
32

81
η||f ′||∞ + 18||f ′′||η2 ≤ (4 +

32

81
η + 18η2)||f ||C2 ;

||Π̃ηf ||C1 ≤
(

23

8
+

32

81
η

)
||f ||C1 +

(
9

4
+ 9

)
||f ||C2η2,

which completes the proof of the lemma. �

7.5. Uniform Lasota-Yorke inequality for L̃η. We define now the discretized
operator

L̃η := Π̃ηLΠ̃η.

In this subsection we prove uniform Lasota-Yorke inequalities for the discretized
operator L̃η.

Proposition 7.11. Let 0 < η < η0. Suppose that

Θ := (M +B)λ(
23

8
+

45

4
η0) < 1.

For any n ≥ 1 we have

||(LΠ̃η)n||C1 ≤ 2Θn +
B(B + 1)

1−Θ
+ 1 := K̃

and

||L̃nη ||C1 ≤ 2(
23

8
+

45

4
η0)

(
Θ +

B(B + 1)

1−Θ
+

4

23

)
:= M̃.

Proof. The proof is identical to the proof of Proposition 7.7, using the fact that
||(Π̃ηf)′||∞ ≤ ( 23

8 + 45
4 η)||f ′||∞, which was proved in Lemma 7.10. �

Lemma 7.12. Let 0 < η < η0. Suppose that

Θ̃ := A2 ·Mλ2 +A3η
2
0 < 1.

For f ∈ C2([0, 1]) and any n ≥ 1 we have

||L̃nηf ||C2 ≤ A2Θ̃n||f ||C2 +
A2DA1M̃

1− Θ̃
||f ||C1 ,

where M̃ := 2( 23
8 + 45

4 η0)

(
Θ + B(B+1)

1−Θ + 4
23

)
.

Proof. We bound

||LΠ̃ηf ||C2 ≤Mλ2||Π̃ηf ||C2 +D||Π̃ηf ||C1

≤ (A2 ·Mλ2 +A3η
2
0)||f ||C2 +D ·A1||f ||C1 .

Then

||(LΠ̃η)nf ||C2 ≤ Θ̃n||f ||C2 +
D ·A1M̃

1− Θ̃
||f ||C1 ,

and

||L̃nf ||C2 ≤ A2Θ̃n||f ||C2 +
A2DA1M̃

1− Θ̃
||f ||C1 .

�
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7.6. Some approximation inequalities. In this section we show how to control
the error made in iterating the discretized transfer operator instead of the transfer
operator, under the assumption that the dynamics satisfies a Lasota-Yorke inequal-
ity.

Lemma 7.13. Suppose there are two norms || ||s ≥ || ||w, such that ∀f ∈ Bs,∀n ≥ 1

(7.7) ||Lnf ||s ≤ Aλn1 ||f ||s +B||f ||w.

Let πδ be a finite rank operator satisfying:

• Lδ = πδLπδ with ||πδf − f ||w ≤ Kδ||f ||s;
• πδ, Li and Liδ are bounded for the norm || ||w : ||πδ||w ≤ P and ∀i > 0,
||Li||w ≤M , ||Liδ|V0 ||w ≤ Ci, i = 0, . . . , N .

Then

||(Ln − Lnδ )f ||w ≤ Kδ

n∑
k=1

Aλk−1
1 Cn−k(Aλ1 + PM)||f ||s

+ Kδ

n∑
k=1

Cn−k(Aλ1 + PM +M)B||f ||w.

Proof. We have

||(L − Lδ)f ||w ≤ ||πδLπδf − πδLf ||w + ||πδLf − Lf ||w.

Since

πδLπδf − πδLf = πδL(πδf − f),

and ||πδf − f ||w ≤ Kδ||f ||s, we have

||πδL(πδf − f)||w ≤ PM ||πδf − f ||w ≤ PMKδ||f ||s.

On the other hand

||πδLf − Lf ||w ≤ Kδ||Lf ||s ≤ Kδ(Aλ1||f ||s +B||f ||w)

which gives

(7.8) ||(L − Lδ)f ||w ≤ Kδ(Aλ1 + PM)||f ||s +KδB||f ||w

Now let us consider (Lnδ − Ln)f . We have

||(Lnδ − Ln)f ||w ≤
n∑
k=1

||Ln−kδ (Lδ − L)Lk−1f ||w ≤
n∑
k=1

Cn−k||(Lδ − L)Lk−1f ||w

≤ Kδ

n∑
k=1

Cn−k(Aλ1 + PM)||Lk−1f ||s + Cn−kB||Lk−1f ||w

≤ Kδ

n∑
k=1

Cn−k

(
(Aλ1 + PM)(Aλk−1

1 ||f ||s +B||f ||w) +BM ||f ||w
)
.

We will now collect the terms in front of ||f ||s:

Kδ

n∑
k=1

Aλk−1
1 Cn−k(Aλ1 + PM)||f ||s,
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and the terms in front of ||f ||w:

Kδ

n∑
k=1

Cn−k(Aλ1 + PM +M)B||f ||w.

�

In the case where f is a fixed point of L we have the following estimate:

Lemma 7.14. Suppose there are two norms || ||s ≥ || ||w, such that ∀f ∈ Bs,∀n ≥ 1

(7.9) ||Lnf ||s ≤ Aλn1 ||f ||s +B||f ||w.

Let πδ be a finite rank operator satisfying:

• Lδ = πδLπδ with ||πδf − f ||w ≤ Kδ||f ||s
• πδ, Li and Liδ are bounded for the norm || ||w : ||πδ||w ≤ P and ∀i > 0,
||Li||w ≤M .

Then if f is a fixed point of L, we have

||Lf − Lδf || ≤ Kδ(1 + PM)||f ||s.

Proof. The proof is almost identical to the one above:

||Lf − Lδf ||w ≤ ||Lf − πδLf ||w + ||πδLf − πδLπδf ||w,

since f is fixed point:

||Lf − Lδf ||w ≤ ||f − πδf ||w + ||πδLf − πδLπδf ||w
≤ Kδ||f ||s + P ||Lf − Lπδf ||w
≤ Kδ||f ||s + PM ||f − πδf ||w
≤ Kδ||f ||s + PMKδ||f ||s.

�

7.7. A recursive convergence to equilibrium estimation for maps satis-
fying a Lasota-Yorke inequality. Here we recall an algorithm introduced in
[21] to compute the convergence to equilibrium of a measure preserving system
satisfying a Lasota-Yorke inequality. We will see how, the Lasota-Yorke inequality
together with a suitable approximation of the transfer operator by a finite dimen-
sional operator can be used to deduce finite time and asymptotic upper bounds on
the contraction of the zero average space.

Consider two vector subspaces of the space of signed measures Bs ⊆ Bw with
norms || ||s ≥ || ||w, suppose that the transfer operator L is such that ∀f ∈ Bs,∀n ≥
1

(7.10) ||Lnf ||s ≤ Aλn1 ||f ||s +B||f ||w.

Let πδ be a finite rank operator satisfying:

• Lδ = πδLπδ with ||πδf − f ||w ≤ Kδ||f ||s;
• πδ, Li and Liδ are bounded for the norm || ||w : ||πδ||w ≤ P and ∀i > 0,

||Li||w ≤M , ||Liδ|V0
||w ≤ C̃i, i = 0, . . . , N .
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Then by Lemma 7.13 there exist C(δ, n), D(δ, n) depending only on δ and n,
such that

(7.11) ||(Lnδ − Ln)g||w ≤ C(δ, n)||g||s +D(δ, n)||g||w.

Suppose now that there exists an n1 such that ||Ln1

δ |V0
||w ≤ C̃n1

< 1; from now

on, we will denote λ2 = C̃n1
< 1.

Let us consider a starting measure: g0 ∈ V0, let us denote gi+1 = Ln1gi. If
the system is as above, putting together the Lasota-Yorke inequality(7.10) and the
approximation inequality (7.11)

(7.12)

{
||Ln1gi||s ≤ Aλn1

1 ||gi||s +B||gi||w
||Ln1gi||w ≤ λ2||gi||w + C(δ, n1)||gi||s +D(δ, n1)||gi||w

.

Writing (7.12) in a vector notation:

(7.13)

(
||gi+1||s
||gi+1||w

)
�
(

Aλn1
1 B

C(δ, n1) D(δ, n1) + λ2

)(
||gi||s
||gi||w

)
where � indicates the component-wise ≤ relation (both coordinates are less or
equal). The relation � can be used because the matrix is positive. The relation
(7.13) and the assumptions allow to estimate explicitly the contraction rate, by
approximating the matrix and its iterations. Let

M =

(
Aλn1

1 B
C(δ, n1) D(δ, n1) + λ2

)
.

Consequently, we can bound ||gi||s and ||gi||w by a sequence(
||gi||s
||gi||w

)
�Mi

(
||g0||s
||g0||w

)
which can be computed explicitly. This gives an explicit estimate on the speed of
convergence for the norms || || and || ||w at a given time.

We need an asymptotic estimation as the one given in (2.2) and in particular an
estimation for C1 and ρ. This can be done using the eigenvalues and eigenvectors
of M.

Indeed, let the leading eigenvalue be denoted by ρM and a left positive eigenvec-
tor (a, b), such that a+ b = 1. For each pair of values by (a, b) such that a+ b = 1.
We can define a norm

||g||(a,b) = a||g||s + b||g||w.
We have

||Lg||(a,b) = a||Lg||s + b||Lg||w ≤ (a, b) · M ·
(
||g||s
||g||w

)
.

Then

||Lkn1g||(a,b) ≤ ρkM||g||(a,b).
By estimating ρM and the vector (a, b) we can have upper estimates on C1 and ρ.
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