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PREFACE 

"And !i!hat is actuaZ is actuaZ onZy fol' one time 

and onZy fol' one place" 

Ash-Wednesday, 1930 
T.S. ELLIOT 

i 

OVer the past decade Professor David J. Evans [1968] has suggested the 

use of .. Preconditioning .. in iterative methods for solving large, sparse 

systems of linear equations, which arise from the finite difference 

approximations to the partial differential equations. Since then, certain 

aspects on preconditioning have appeared in the literature and a whole new 

theory constructed. The versatility of the preconditioning concept is she~~ 

by the stimulating exploration of new numerical algorithms and methods of 
•. 

their realization. 

The aim of this thesis is to emphasise in the theory we use and 

develop together with the practice we state. This study led to a new form 

of preconditioning, wh1ch has not yet appeared in the literature. 

Specifically, we consider the conditioning matrix factorized into two 

rectangular matrices(!), so as to develop a new preconditioned iterative 

method and its related properties as well. It requires the selection of 

two parameters to be applied, a preconditioning parameter at its optimal 

value and an acceleration parameter in such a fashion that a simultaneous 

(l)To elucidate the diffepence betlileen this conditioning matrix and the 

PeZated ones used in othel' pPeconditioned schemes, lile note that the 

up to aate p1'econditioning techniques used a factol'ization into 

squal'e matl'ices. 
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displacement method is applicable. 

Further, the method is accelerated by the classical semi-J.terative 

technique. OUr first aim is to develop the theoretical foundation of the 

new preconditioning concept. OUr second aim is to present sufficient 

numerical details in the practical application of the theory to the numerical 

solution of certain elliptic partial differential equations. 

Chapter 1: This is an introductory chapter stating the origin of the problem. 

We consider the discrete generalized Dirichlet problem obtained by applying 

the five-point difference approximation to a continuous generalized 

Dirichlet problem. 

Chapter 2: Some basic iterative methods are introduced in a test of 

comparison.from the Jacobi method to the Symmetric Successive OVerrelaxation 

and the Preconditioned Simultaneous Displacement. Theorems on convergence 

are introduced and the rate of convergence is also defined for all methods 

included in the chapter. Furthermore, we give some attention in the 

Preconditioned Simultaneous Displacement method as it has been developed 

by Evans and others. However, we emphasise more to the preconditioning 

concept itself, since that is the original source of our study. 

Chapter 3: With the goal of having all the theoretical analysis of our 

method self-contained we have devoted Chapter 3 to the development of the 

new preconditioning scheme we recommend, ncunely the Preconditioning by 

Direct Factorization method (PDF method). 

A new conditioning matrix M is introduced which, in a sense, is close 

to the original matrix A. Matrix M is factorized into two rectangular 

matrices, i.e., 
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T 
where the main square part ~ and AU of each factor of M, arises by 

applying a backward and a forward process on the net, respectively. The 

semantic difference with the previous conditioning schemes is the existence 

of the matrix ~. which is constructed by a simple heuristic method which is 

applied under the consideration that the matrix M has to be written as a 

sum of matrices having at least one non-zero element in any of their 

columns and rows. An analysis is then performed on the interaction of the 

heuristic part of M, to its eigenvalues, in order to have sufficient 

conditions in the latter seeking a bound for the spectral radius of the 

iteration matrix (or equivalently on the P-condition number of the 

preconditioned matrix) and hence the rate of convergence of the method. 

The method can be seen as a fractional-step method which has three 

steps, a backward, a forward and a direct step of a simple Gaussian type 

elimination process. Following a technique due to Habetler and Wachpress 

[1961] we represent the eigenvalues of the preconditioned matrix B =M-lA 
Cl) 

in terms of certain inner products. A bound on the smallest eigenvalue of 

B is then given concerning these inner products. By Wilkinson [1965] we 
Cl) 

have sufficient conditions in seeking bounds for the largest eigenvalue of 

the aforementioned matrix. The preconditioning parameter w is chosen on 

the basis of a-priori information about the spectra of the operator 

involved in the algorithm. Moreover, we state a necessary and sufficient 

condition for the convergence of the method, in Theorem (3.5.54). 

Next, in Theorem (3.6.4) we are concerned with the determination of 

the estimated parameters w
1 

and P(B ) us1ng a theorem given by Young [1977], 
CJ)l 

suitably modified by Evans and Missirlis [1980]. Thus 1Theorem (3.6.4) 

provides a theoretical foundation for the estimated parameters we use in 

a later chapter for our method, whereas an a-priori evaluation for the 



rate of convergence is established. In Section 3.7 we see that the rate 

of convergence depends upon the bound on P(B ), by Theorem (3.6.4), and 
w 

asymptotic results are given comparing our method with the SOR,SSOR and 

1V 

PSD method. our theoret1cal expectations will be verified for the problems 

presented in Chapter 4. 

In Section 3.8 we describe the simplest investigation of our method 

for the one dimensional Poisson equation. 

Finally, a particular case is investigated when the original matrix 

is point two-cyclic (possesses Property A) and where a certain pre-

cond1tioning scheme is used. 

Chapter 4: We present in this chapter sufficient numerical details in the 

practical application of the theory developed in Chapter 3 to the numerical 

solution of six standard problems. The numerical results obtained with the 

optima and estimated parameters indicate that by applying the Preconditioning 

by Direct Factorization method, the number of iterations required for 

convergence varies approximately as h~ where h is the net mesh size. 

The optima values of our method were found by a golden section search 

and the estimated values obta1ned by applying Theorem (3.6.4). Table (4.1~3) 

portrays the results obtained from apply1ng the PDF method with optima 

parameters. The number of iterations of the PDF method with optima 

parameters is almost the same number as the iterations required by the 

PSD method with optima parameters also. However, the treatment for 

obtaining the parameters requ1res the same number of iterations necessary 

for solv1ng a problem itself, or even more. 

In Table (4.2.T2) we can see that the SOR method requires a number of 

iterations which varies between 2o-150% more than the required number of 

the PDF method with estimated parameters. Table (4.2.T2) again indicates 



V 

that the Symmetric SOR (SSOR) method requires 25-150% more iterations 

asymptotically as compared to the PDF method. Also, the PSD method 

required 8-115% more iterations than the PDF method, with all methods but 

the SOR consJ.dered with estimated parameters. It should be noticed that 

the PDF method requires about 30-40% more work per iteration, than the 

tested methods. 

Chapter 5: In Chapter 5 the parameters involved are chosen at each step 

in such a way that the error vector approaches zero unJ.formly from the 

initial approximations as fast as possible. That is the acceleration of 

the PDF method by semi-iteration, which yields the PDF-SI method. 

Acceleration by semi-iteration is possible since the eigenvalues of the 

iteration matrix of the PDF method are real and bounded in a certain region 

of the real axis. The parameters involved in the SI algorithm are again 

and P(Bw) together with a parametric set obtained by Chebyshev analysis. 

NumerJ.cal results obtained in that chapter indicated that by 

applying the PDF-SI method with optima and estimated parameters to the 

-1:! six problems of Chapter 2, required an 0 (h ) number of iterations. The 

1:! O(h ) convergence was obtained even in cases with certain discontinuities 

amongst the coefficients of the initial differential equation. It is 

noticed here that the result of the propositJ.on (4.2.8) of Chapter 4 

establishes the improvement of an order of magnitude, of the PDF-SI method 

over PDF method. In Tables (5.2.Tl) and (5.2.T2) we present the number 

of iterations required to solve the six problems of Chapter 4 by the PDF-

SI method. 

Appendices A-C: This part of the Thesis includes details Which have not 

been covered in the main part since they are either considered well-known 

or trivial. 



Appendix A: Appendix A includes preliminary results on matrl.x theory. 

Appendix B: In this appendix we cite a theorem for a bound on the P

conditl.on number of the Preconditioned Simultaneous Dl.splacement method 

(Evans and Missirlis [1980]), by applying the conditioning matrix with 

reverse order than given in Evans and Missirlis [1980]. 

Appendix C: A detailed analysis is given for the arithmetic operations 

necessary to execute our algorithm by the Niethammer's [1964] scheme, 

in order to have a saving of operations. A saving of 20 percent is 

realized when Niethammer's scheme is applied to the PDF method. An 

operations count is given when we use the vector correction process for 

our algorithm. 

Notation and Terminology: As a guide to the reader we state a word on 

references: "Theorem 3.5.54" refers to the Theorem 3.5.54 of Section 5 

of Chapter 3. References are given in the form "Evans [1968]" which 

refer to a paper (or book) by Evans published in 1968. 

Finally we mention that all the matrices used are real, except if 

otherwise mentioned. p(A) denotes an eigenvalue of the matrix A, M(A) 

denotes the eigenvalue of maximum algebraic value, m(A) denotes the 

eigenvalue of minimum algebraic value, whereas the spectral radius of A 

is denoted by S(A). The usual terminology in the text, defines A as a 

positive definite matrix to be the symmetric matrix A where <x,Ax>>O for 

all x#Q. In addition, the definition implies that A is non-singular, has 

positive di~gonal elements, has eigenvalues real and positive and has a 

complete system of eigenvectors. 

Vl. 
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CHAPTER 1 

INTRODUCTION 

It ia no paradox to say that in our most 

theoreticaZ words we may be nearest to 

our most practicaZ appZications. 

A. N. WHITEHEAD 

1 

Linear partial differential equations with given boundary conditions 

play a particularly important role in problems of applied mathematics. 

The numerical solution of such problems is in close relation to the 

solution of large scale systems of ordinary linear algebraic equations, 

characterized by a sparse matrix. The partial derivatives of a function 

can be conceived as limits of difference coefficients. The given partial 

differential equation can thus be replaced by a finite difference equation 

with an error which can be made as small as we wish at every point of the 

given domain. This does not guarantee that the solution of the algebraic 

system thus obtained will of necessity converge to the exact solut~on of 

the originally given partial differential equation, since the local errors 

committed may accumulate, resulting in a finite error. 

However, since the development of large-scale computers have 

formed a basis for algorithmic constructions and extensive mathematical 

experiments on large scale systems, it seems desirable to exploit the 

close analogy between linear differential equations and linear algebraic 

equations, to the maximum degree. 



2 

Almost any method for solving a partial differential equation 

numerically reduces ultimately to the computations of discrete data. 

Moreover, tabulation of the solution over a finite lattice of mesh 

points appears as perhaps the most natural way in which to describe it 

in terms of numbers. Thus, a convenient and quite general procedure for 

calculating numerical solutions of boundary value problems is to approximate 

them by corresponding problems for finite difference equations. 

In this investigation the partial differential equation with two 

independent variables is first transformed into a difference equation 

with the help of the "stencil": 

(i,j+l) 

H = (i-l,j) (i+l,j) 

(i,j-1) 

Consider the general linear partial differential equation 

L [u] 
a 

= 
n 
I a 

j,k=l jk 

n 

+ I bj 
j=l 

cu = o, (1.1) 

where the coefficients ajk' bj and c are suitably differentiable 

functions of the independent variables x1 ,x2, ••• ,xn and where it may 

be assumed that 



(1.2) 

We shall suppose that (1.1) is of eZZiptia type in some n-dimensional 

region D, which means that the quadratic form 

(1.3) 

is positive definite there, provided the signs are adjusted to 

The first boundary vaZue probZem or the DiriahZet probZem 

demands a solution u of (1.1) in D which takes as prescribed values 

u = f (1.4) 

on the boundary aD of that region. Under various hypotheses about 

the geometry of aD and the behaviour of the coefficients ajk' bj and 

c, the most essential of which states that c~o, it is possible to 

establish the existence, uniqueness and continuous dependence on 

(1) 
boundary data of the solution of Dirichlet's problem. 

we develop briefly the discretization of the self-adjoint 

differential equation 

L[u] = ..!_(A au) + ...!_(C 3u) + Fu = G ' 
ax ax ay ay 

involving Dirichlet boundary conditions. 

In the square D={D:Q:f~l, O:f~l} we seek a solution of the 

equation (1.5), satisfying the boundary. conditions 

u = g(x,y) , 

(1.5) 

(1.6) 

where A(x,y)>O, C(x,y)>O and F(x,y)~O in D+aD and where the continuous 

(1) 
Even for the JApZaae equation 

n 
t.u = L 

i=l 

!Jhiah has aonstant aoeffiaients. it is not an easy matter to soZve the 
DiriahZet probZem in a region D of arbitrary shape. The solution aan be 
obtained in aZosed form onZy for speaiaZ ahoiaes of D. suah as a sphere 
or a aube. 

3 



function g(x,y) is defined on 3D. 

we now construct a difference approximation of our problem. Let Db 

be the totality of points 

y = jh 
j 

1 
where h]N• l~i~N-1, l~j~N-1, i,j,NEN. Denote the points of inter-

(1. 7) 

section (xi,yj) by (x,y) and call them the mesh points of the lattice. 

The positive number h is known as the mesh size of the lattice. 

The set of mesh points for which one of (i±l,j), or (i,j±l) is 

not in Dh is denoted by 3Dh. 

For u(x,y) for which (x,y)EDh, we get a system of finite 

difference equations 

~[u] 
1 h h 

= ~A(x+t,y> [u(x+h,y)-u(x,y)rA!x:z,yl[u(x,y)-u(x-h,y)] 
h 

4 

h h 
+C(x,y~)[u(x,y+h)-u(x-h,y)]+C(x,y:zl[u(x,y)-u(x,y-h)]}+Fu(x,y) 

= G(x,y). 

2 
Multiplying by -h we obtain the difference equation 

where 

u(x,y) = b1 (x,y)u(x+h,y)+b
2

(x,y)u(x,y+h) 

+b3 (x,y)u(x-h,y)+b4 (x,y)u(x,y-h) + T(x,y) 

h h 

b1 (x,y) 
A(x~,y) 

b
2 

(x,y) 
C(x,y~) 

= = S(x,y) S(x,y) 

h h 

b
3 

(x,y) 
A!x:z,y> 

b
4

(x,y) 
C(x,y:zl 

= • = S(x,y) S (x,y) 

2 
T(x,y) = -h G(x,y)/S(x,y) 

and where 

h h h h 2 
S(x,y) = A(x+t,y)+A!x:z,y)+C(x,y~)+C(x,y:zl-h F(x,y). 

(1.8) 

(1. 9) 

(1.10) 

(1.11) 

The difference equation (1.9) contains the values of the solution 

2 at five lattice points and the approximation is of order e (2h ) • 
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With each mesh point of the lattice we associated a specific 

difference equation (1.9). Therefore what we actually have to find is 

the solution of a system of (N-1) (N-1) simultaneous linear equations (1.9) 

in (N-1) (N-1) unknowns, where (N-1) (N-1) stands for the total number of 

interior mesh points of the lattice exhausting Dh. Thus we obtain the 

matrix equation 

Au = b (1.12) 

where the inhomogeneous term is derived from the boundary values we 

assign to u(x,y). 

The matrix A is real and symmetric. The difference operator can 

be chosen so that the matrix A is diagonally dominant and positive 

definite with the elements of diag(A) positive and every other element 

of A non-positive. 

Since(l) any system of simultaneous linear equations can either be 

solved in a unique way for every choice of the inhomogeneous terms or 

it must possess non-trivial solutions in the homogeneous case, we can 

prove that a solution of the discrete Dirichlet problem always exists 

merely by verifying that when the data are made to vanish, the only 

answer available is the obvious one u(x,y)=O. On the other hand, an 

appeal to the maximum principle 12) assures us of the validity of the 

uniqueness assertion. The numerical answer has to converge toward 

the exact solution if the mesh size h approaches zero while at the same 

time the number 1 of decimal places retained in the calculations goes 

fast enough to infinity. As far as the more specific dependent of the 

(l)FredhoZm aZternative. 

(2) The maximum principZe, states that the soZution of oertain partiaZ 
differentiaZ equations of the eZZiptio type never aohieve a strong 
reZative maximum or minimum in the interior of their dom:zin of definition. 



error on h and 1 is concerned, it corresponds directly to the kind of 

inhomogeneous terms that appear in (1. 9) • For a fixed choice of 1 the 

expected size of the round-off error is proportional to the number 

(N-1) (N-1) of difference equations. 

6 



CHAPTER 2 

BASIC ITERATIVE METHODS 

There are nine and si:rty =ys of aonstructing 

tribal ZaJfs. and eVe1'!f single one of them is 
right. (.,) 

RUDYARD KIPLING 

2.1 ON THE ITERATIVE METHOD 

Many boundary value problems for partial differential equations can 

only be solved practically with the aid of difference methods. Whenever 

high precision is required, we are led to large systems of equations, 

often with thousands of unknowns. These systems of equations can be 

solved practically only by iterative methods. A well-studied topic is 

linear boundary value problems that occur with elliptic difference 

equations, where large systems of linear equations consequently result. 

Quite often in these systems, the terms on the principal diagonal 

"dominate" and an iterative method is recommended. 

Replacing the continuous problem by an associated discrete one, 

may lead to a linear system 

7 

Au = b , (2 .1.1) 

where A is a square (often sparse) matrix, b is a known and u is 

the unknown vector. 

Methods of solutions for a general computational problem fall 

into the direct and iterative procedures. Iterative methods can be 



programmed to take advantage of the zero elements in A. In elliptic 

partial differential equations the matrix resulting from the equation 

may be very large and sparse depending conversely on the mesh size of 

the lattice. 

TO solve the non-singular equation (2.1.1) by iteration we require 
In) 

a sequence u so defined that 

u(n) -+-A-~ as n .... , 

where A-lb is the exact solution. If U (n) is f cti f A b (n-l) a un on o , ,u , ••• (n-s) 
u we say that s is the degree of the iteration. In the case s=l, 

we could write 

(n) - F(A b (n-1)) u - , ,u , n=l,2, ••• . 

If F is independent of n, the iteration is said to be stationary 

and if F is linear in u(n-l), the iteration is termed linear. 

The most general linear iteration is 

(n+l) (n) 
u = Hu +k , n=O,l, ••• 

where H is a matrix depending upon A and b and k a vector. 

For a non-singular A we obtain, as a consistency condition, 

between (2.1.1) and (2.1.3), 

k = (I-H)A-~ 

The non-singularity, if it exists, of I-H implies a recriprocal 

consistency condition 

-1 
b = A(I-H) k • 

If both of the two consistency conditions are valid then the method 

is completely consistent, which means that the only solution of (2.1.3) 

is the solution A-~ of (2.1.1). 

8 



2. 2 ON CONVERGENCE 

The matrix H is called the iteration matrix for (2.1.3) and it is 

easy to see that if we split(l) A into 

9 

A = M-N , M non-singular (2.2.1) 

then for H---1'1-lN and k=tt~, u=H.u+k if and only if Au=b. 

If we subtract u=Hu+k from (2.1.3), we obtain the error equation 

(n+l) (n) n-1 {0) 
u -u = H(u -u)= ••• =H (u -u) • (2.2.2) 

{0) (ll (n) 
Hence the sequence u ,u , ••• ,u , ••• converges to u for 

(0) n 
each u if and only if lim H =0, that is, if and only if S(H)<l, 

n...., 

by considering the Jordan form for H. We have, thus, proved the basic 
I 

convergence lemma for (2.1.3). 

Lemma (2.2.3): Let A=M-N with A and M non-singular. Then for H=M-lN 

and k=M-1b, the iterative method (2.1.3) converges to the solution u=A-~ 

of (2.1.1) for each u(O) if and only if S(H)<l. 

When the matrix A of (2.2.1) is symmetric(2) the following theorem 

holds. 

Theorem (2.2.4): If A is symmetr1c(2) and A and MT+N are positive 

definite on some eigenset of H, then S(H)<l. Conversely, if <x,Mx>>O 

T for all x in some eigenset E of H and S(H)<l, then A and M +N are positive 

definite on E. 

As a result we have the following useful theorem: 

{11The splitting A=M-N ~th A and M non-singul.ar is caZZ.ed a regul.ar 

spl.itting if M-1~0 and N~O. If M-1~0 and M-1N~O then it is caZ.Zed 
a !Veak regul.ar splitting, !V'here the symbol. '~" is used ~th the sense 
of non-negativity for matrices. 

{2} Z.Z. A H • • f.bre genera y el'J71'1-turn. 
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Theorem (2.2.5): Assume that A is symmetric and that MT+N is positive 

definite. Then S(B)<l if and only if A is positive definite, or in 

another version, 

Theorem (2.2.6): If A is a positive definite matrix and if (2.1.3) is 

completely consistent with (2.1.1), then S(B)<l if 

M+MT-A (2.2.7) 

is positive definite. 

Moreover, we have 

llnll.,<l 
A 

Conversely, if (2.2.8) holds, then M is positive definite. 



11 

2. 3 ON THE RATE OF CONVERGENCE 

Even if a method converges, it may converge too slowly to be of 

practical value. Therefore, it is essential to determine the effectiveness 

of each method. To accomplish this we must consider both the work 

required per iteration and the number of iterations necessary for 

convergence. 

Definition (2.3.1): For a matrix H assume that S(H)<l and let u=Hu+k. 

Then for 

the number 

a = sup {lim llu (n) :.ull 
11-

R (H) = -.tna 
~ 

u(O) in a real space} (2.3.2) 

(2.3.3) 

is called the asymptotic rate of convergence of the iteration (2.1.3). 

Since a defined by (2.3.2) satisfies a=S(B) the asymptotic rate 

of convergence of (2.1.3) is 

R (H)= -1nS(H). 
~ 

The number of iterations req~red to reduce the size of the 

(0) 
initial error, u -u, by a factor ~ is approximately determined by 

the equation 

Solving for n we get 

n 
S(H) = ~. 

-1 -1 
n ;, [ -1nS (H)] t;n~ • 

We define the quantity, 

(2.3.4) 

(2.3.5) 

(2.3.6) 

RR(H) = [-.tnS(H)]-l (2.3.7) 

as the reciprocal rate of convergence of the method (2.1.3). By 

(2.3.6) the number of iterations required for convergence is 

approximately proportional to the reciprocal rate of convergence. 
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2. 4 A TEST METHOD 

In Young [1977], is defined the method given by 

u(n+l) = p(Bu(n)+c)+(l-P}u(n) , n=O,l, ••• (2.4.1) 

as the benchmark method. The method is often too slow to be of 

practical use. With a suitable p, the method has the advantage of 

converging for any positive definite matrix. This method is useful 

for the purpose of comparison with other methods. 

The construction of the benchmark method is summarized in the 

following steps. Consider (2.1.1) with A symmetric and positive definite, 

as well as the splitting A=D-DB, where D=diag(A). We can rewrite (2.1.1) 

in the form 

where 

and 

u = Bu+c 

B = I-D-lA 

c = o-\ , 
where I is the identity matrix. 

(2.4.2) 

(2.4.3) 

(2.4.4) 

Next step is the simultaneous over-relaxation method, defined by 
I 

u(n+l) = p(Bu(n)+c)+(l-p)u(n) , n=O,l,... (2.4.5) 

where p is a real parameter. 

Evidently, the iteration matrix of (2.4.5) is 

H = B = pB + (1-p)I • 
p 

The eigenvalues of B are real and less than unity, and let m(B) and 

M(B) be real numbers such that for each eigenvalue ~ of B 

m(B):f~:fM(B) , 

where m(B)::;o::;M(B). 

By (2.4.5) we have 

S(B ) = 
p 

max lp~+l-pl , 
~ E{m (B) ,M (B)) 

(2.4.6) 

(2.4.7) 

(2.4.8) 



which is minimized with respect to p if 

2 
p = p = 2-M(B)-m(B) 

with the corresponding value of S(B_) given by 
p 

M(B) -m(B) 
S(Bp) = 2-M(B)-m(B) .. 

Consider now the matrix A, where 

.. -~ -~ A=D AD • 

13 

(2.4.9) 

(2.4.10) 

(2. 4.11) 

A "' Since m(B)=l-m(A) and M(B)=l-M(A), the spectral radius of the bench-

mark method is given by 

" "' 
S(B-) = M(A)-m(A) 

p " A 
M (A) -i1D (A) 

or A 

S(B-) = P(A)-1 
p ,.. ' P(A)+l 

where P(A) the P-condition number(!) of the matrix A. 
The reciprocal rate of convergence is 

"' 

RR(B-) = 
p 

r_tn P(~>-lr1 ~ 
[ P(A)+l] 

,. 
2P(A) 

(2.4.12) 

(2.4.13) 

(2.4.14) 

for large P(A), i.e. the reciprocal rate of convergence is approximately 

A 

twice the P-condition number of the matrix A. 

(l)The spectra~ condition number. 
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2.5 BASIC ITERATIVE METHODS 

We describe in this section some basic iterative formulae for solving 

the linear system (2.1.1). We assume that the coeff1cient matrix A for 

(2.1.1) is non-singular with all non-zero diagonal entries. 

Consider the splitting 

A= D-C -C L U (2 .5.1) 

where D=diag(A) and -CL,-cu are the strictly lower and strictly upper 

triangular parts of A. 

Now (2.1.1) can be rewritten 

or 

~en clearly, 

or 

where 

eo-cL -cu> u = b , 

Du= (CL+CU)u+b • 

u = Bu+c 

-1 
B = D (CL +CU) 

= L+U 

c = 

and where L = D-1c u = D-1c 
L I u 

th (n) 
Assume that the n approximation u to 

has been computed. 

the solution u=A-lb 

Then, the Jacobi method (J method) is given by 

(n+l) (n) 
u = Bu +c, n=O,l, .•• 

or 
(n+l) (n) 

u = (L+U)u +c, n=O,l, ••• 

(2.5.2) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

(2.5.6) 

(2.5. 7) 

(2.5.8) 

(2.5.9) 

(2.5.10) 

Since I-B=D-lA we have that (I-B)A-~=c and the method is completely 

consistent (vd Section (2.1)). 

Related to the J method is the Jacobi overrelaxation method (JOR) 

(vd Section (2.4)) which is given by, 
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where 

(n+l) (n) 
u = B u +~~~c, 

(j) 

B = wB+(l-w)I 
(j) 

n=O,l, ••• (2.5.11) 

(2.5.12) 
(1) is the iteration matrix of the method and w a real parameter • 

If w;o!o, the method is completely consistent and if Ol"l we have the 

J method. 

A method closely related to the J method may also be derived 

from the observation of the intermediate use of the improved values. 

f 
(n+l) 'nlat is, the latest estimates of the components o u are employed 

immediately upon becoming available. This results in the iterative method 

where 

u (n+l) = Lu (n) +(I-L) -le, 

L = (I-L) -lU 

n=O,l, •.• 

is the iteration matrix of the method. We call this iterative 

scheme the Gauss-Seidel method (GS method). 

The GS method can be modified using a relaxation parameter oo 

(2.5.13) 

(2.5.14) 

(if w>l we are "over-correcting" while if w<l we are "Wlder-correcting") 

implying the successive overrelaxation (SOR) method, 

or 

where 

u(n+l) = w(Lu(n+l)+Uu(n)+c)+(l-w)u(n) , n=O,l, ••• 

(n+l) (n) -1 
u = L u +(I-wL) ooc , 

(j) 

-1 
L = (I-wL) (wU+(l-w) I) 

(j) 

For IJJ#O the SOR method is completely consistent. If Ol"l the SOR 

method reduces to the GS method. 

(2 .5 .15) 

(2.5.16) 

(2.5.17) 

The symmetric successive overrelaxation method (SSOR method) can 

be considered as two half-iterations. The first half iteration is 

the same as the SOR method, while the second half iteration is the SOR 

method with the equations taken in reverse order. Consequently, the SSOR 

(l)By the use of the re~tion paramete~ w, in certain instances, ~e 
can ma:dmize the asynrptotic rate of convergence fo~ the ~esuUing 
process. 



is determined by 

and 

where 
L = (I-wL)-1 (wU+(l-w)I) 

w 

U = (I-wU)-l(WL+(l-w)I). 
w 

n=O,l,. ••• 

) 
Eliminating u(n~) in (2.5.18) and (2.5.19) we get 

where 

with 

(n+l) {n) 
u = G u + k w w 

G = (I-wU)-1 (wL+(l-w)I){I-wL)-1 (wU+(l-w)I) 
w 

= U L w w 

k = W(2-w) (I-wU)-l(I-wL)-lc. 
w 

The matrix I-G is non-singular, if o<w<2 and if A is non-singular. 
w 

The SSOR is also a completely consistent method. 
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(2.5.18) 

(2.5.19) 

(2.5.20) 

(2.5.21) 

(2 .5 .22) 

(2.5.23) 



2.6 CONVERGENCE PROPERTIES 

The matrix A=(ai,j) emanating from the elliptic equation (1.5) with 

Dirichlet boundary conditions, has (as we have mentioned in Chapter 1) 

the following properties: 

(!) ai,i > o, a
1 

. 
,J 

~ o, ijlj 

(!!) ai,i ~ l lai,jl 
j 

ijlj 

for some i 

and 

(!!!) A is irreducible. 

Under these conditions the J method converges, whereas the relative 

magnitudes of the spectral radii of the iteration matrices associated 
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with the J method and GS method can be listed in one of the following ways: 

(!) S(L) = S(B) = 0 

(!!) 0 < S(L) < S(B) < 1 

(iii) 1 S(L) = S(B) 

(iv) 1 < S(B) < S(L). 

Thus, if these methods both converge the GS converges faster than 

the J method. 

If A is a positive definite matrix then the GS always converges, 

without further restriction on A. 

The theorems we cited in Section (2.2), are now applied to these 

basic methods of Section (2.5). Thus, we have, 

Theorem (2.6.1): Let A be a positive definite matrix and let D=diag(A). 

Then, 



(i) llsll ~ < 1 if 2D-A is positive definite 
A 

(ii) lls11) I~ < 1 if 
-1 2w D-A is positive definite 

(iii) 

(iv) 

A 

I ILl I ~ < 1 
A 

IlL 11 ,_ < 1, if O<w<2. 
w A' 

Moreover by the famous Ostrowski-Reich theorem for the SOR method 

when A is symmetric we cite 

Corollary (2.6.2): Let A be a real matrix with the decomposition (2.5.1) 

and assume that A is symmetric and that D is positive definite. Then, 

the SOR method converges for all O<w<2 if and only if A is positive 

definite. 

Proof: Here we set 

-1 
N= w [(l-w)D+wC0] • 

Then since T -1 
M +N = w (2-w)D 

is positive definite for all O<w<2, the corollary follows immediately 

from Theorem (2.2.5). 

Finally, we mention a convergence theorem for the SSOR method. 

'Iheorem (2.6.3): Let A be a symmetric matrix with positive diagonal 
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elements. For any real w the eigenvalues of G are real and non-negative. 
w 

Moreover, if 

0 < w < 2 

and if A is positive definite then 

= S(G) =IlL 11 2
,_ < 1 

w w A' 

Conversely, if S(G )<1, then O<w<2 and A is positive definite. 
w 

A proof for this theorem can be found in e.g. Young [1971]. 

(2.6.4) 

(2.6.5) 
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We next give some comparison results of the convergence rate of the 

SOR and the SSOR method. 

The introduction of the parameter oo into the GS method is not done 

so as to force convergence but, rather, to enhance the rate of convergence. 

We can, in certain instances, determine a "b• O<oob <2 such that 

R (L ) ~ R (L ), 
m "b m 00 

O<oo<2. (2.6.6) 

The real parameter Ill, is called the "optimum SOR relaxation 

parameter" since it maximizes the asymptotic convergence rate of the 

SOR method. This optimum choice of oo which can allow the SOR method 

to converge faster by an "order of magnitude" than the benchmark method 

(vd. Section (2.4)), provided that the matrix A is consistently ordered. 

If A is positive definite and consistently ordered, the optimum 

choice of oo, in the sense of minimizing S (L ) is given by 
00 

00 = 2 

b 1+h-s !Bl 2 

and the corresponding value of S (L ) is 
"b 

= 

When S(B)+l it can be shown that 

RR(L ) 
"b 

[RR!B-l]J; 
p 

( 
S(B) )

2 

l+h-s<s> 2 J 

• 1 

212 
Thus, we have an order of magnitude improvement over the benchmark 

(1) 
method. 

(l}By (2.4.9) sinae M(B)=-m(B)<l. p=l and B-=B 
p 

(2.6.7) 

(2.6.8) 

(2.6.9) 



By Evans [1973] we have that (2.6.8) can be expressed as 

s (L ) = 1 

.. 
where P(A) is the 

"\, ll + /p~~J ... (1 

P-condition number of the matrix A. ) 

Since now, 
R (L ) 
~ "\, 

= -tn s (L ) 
"\, 

we have 

R (L ) 4 = 
~ "\, lP cP.> 

or 
RR(L ) • ~ = 

"\, 4 

In Young [1977] there is the following theorem for the SOR 

method assuming a pos1tive definite matrix A. 

'Ibeorem (2.6.14): Let f!,M and m be numbers such that 

m(B) ~>.-2..-f 

M(B)~M~2/f 

M<l 

-
S(LU)~fl. 

'!ben 1-M 1-w (2-w)-:::....:.:......,
2
-_ , - 1 - 1 if B~ or if ll<4 

1-wM+w ll 

s(G ) 
w 

and oo~w* 

l.-m 
1-w ( 2-w) -~.::!::-2-_ 

1-(JJI!+W fl 
- 1 Here for ll<4 we define w* by 

oo* = 
2 

- 1 
, if B<4 and 

Moreover, the bound (2.6.16) is minimized if we let 

(1) The mat:ri:c A has been defined in (2. 4.11). 

w>w*. 
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(2.6.10) 

(2.6.11) 

(2.6.12) 

(2.6.13) 

(2.6.15) 

(2.6.16) 

(2.6.17) 
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.., = 
1 1 

2 
, if ~4[ 

l+fl-2M+4ii 
(2.6.18) 

w* , if M>,4ii. 

The corresponding value of S(G ) 
..,1 

l _ 1-M 
A-2M+4ii 

1 --;:::1=-=M=::: + 
ll-2M+4ii 

is given by 

1-/l-46 
l+il-4S 

= w*-1 , if M>,4S. 

(2.6.19) 

Young [1977] refers to the value of w
1 

given by (2.6.18) as a 

"good" value of w, which is not necessarily the true optimum value in 

the sense of minimizing S (G ) • A proof of this theorem can be found 
w 

in Benokraitis [1974] or in Young [1977] • 

Babetler and Wachspress [1961] presupposing the continuity(!) of 

the eigenvectors of G with respect to w, developed a formula for 
w 

finding the optimum w • 

Evans and Forrington [1963] derived an iterative procedure for 

determining the optimum w • Since then many adaptive schemes are based 

on the Evans and Forrington procedure. 

A modification to the above found (2.6.19) is given by 

1.../i'=M 
1-Wl-M 

A-M 1-/2 

(l)Whieh is not in generaL true. 

- 1 
, ifs~ 

(2.6.20) 



where 

[ 
216 !1 ]-~ 

y = 1 + --::-....,..,..::'--
1-M 

Comparing the bounds of RR(G ) with RR(B-) this result in 
(1)1 p 

1 -M 

12 
, if fl:i4 

RR(G ) 
(1)1 . M - 1 = 1 if ~fl:\'4 

kR!B-l 
p 

y-1 - 1 
, if fl'4 • 
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(2.6.21) 

(2.6.22) 



2. 7 ON THE NOTION OF PRECONDITIONING 

We have seen that the asymptotic rate of convergence of the 

aforementioned iterative methods for positive definite matrices depends 

inversely on the P-condition number of the coefficient matrix. Thus, a 

sensible approach to develop for a new technique of accelerating 

convergence, is to attempt to minimize that condition number, as Evans 

[1968] initially proposed. 

The concept of a minimum P-condition number is an important one. 

The original system (2.1.1) is theoretically equivalent (Evans [1974]) 

to the system 
PAQy = c (2. 7.1) 

with c=Pb, Qy=u and P,Q non-singular matrices. Thus, it was the 

question as to the existence of matrices P and Q for which 

P (PAQ) < P (A) (2.7.2) 

Evans dealt with. 

Evans [1968] considered P and Q as modified forms of the 

A 

triangular components of A (vd. Section (2.4)). Therefore (2.1.1) is 

transformed to 
-lA -1 

(I-wL) A(I-wU) z = b 
w 

where b (I) (I-(I)L)-lb and z = (I-(I)U)y. 

(2.7.3) 

In the context of that theory (I) is allowed to play the role of a 

preconditioning parameter in a range O<(I)<W, where a minimum value of the 

P-condition number of the left hand side of (2.7.3) is obtained. 

Further, the matrix 

C = D((I-(I)L) (I-wU)) (2.7.4) 

was defined as the conditioning matrix of the preconditioning 

transformation and the matrix, 
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(2.7.5) 

as the precond1tioned matrix of the iterative method. 

Since then, certain aspects on precondition~ng have appeared 

and a whole new theory constructed. 

Recently, Evans [1980] generalized the preconditioning concept 

and defined C to be factorable into easily inverted factors in such a 

-1 
way that C is an approximate inverse to A. Thus (2.1.1) is transformed 

in the preconditioned form, 

-1 
C Au 

and the general preconditioned iterative scheme is then defined 

(n+l) (n) -1 (n) 
u = u + TC (b-Au ), n=O,l, ••• 

where T is a real parameter which is consistent with (2.7.6) iff C 

is non-singular and t#O. 

For the purpose of comparisort with our method we cite one of 

(2. 7 .6) 

(2.7.7) 

the preconditioned schemes, the Preconditioned Simultaneous Displacement 

method (PSD method) which is given (Evans and Missirlis [1980]) by 

where 

and 

(n+l) 
u = D u (n) + o 

T,W T 1 W 

D 
T,W 

= I-t(I-wU)-l(I-wL)-lD-lA 

o = t(I-wU)-l(I-wL)-lD-~. 
T,w 

The PSD method is convergent (Evans and Missirlis [1980]) if 

and only if O<w<2 and O<t<2w(2-w)~2. 

(2.7.8) 

(2.7.9) 

(2. 7 .10) 

The rate of convergence of the PSD method is approximately O(h) 

and is competitive with the SOR method in certain cases, but the PSD 

method requires more work per iteration than one SOR iteration. 
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Moreo\•er, "good" values for the involved parameters are 

determined in terms of bounds on the eiqenvalues of the preconditioned 

-1 
matrix C =C A by a theore~, presented here for convenlence. 

"nleorem (2. 7.11): Let S,M and m be numbers such that 

ff 
m(B)~m~-2>8 

'nlen, a.~ 

M<l 

-1 
upper boun<! on P("C l = P(C A) is given by 

"' 
1 wM+<}B - 1 - 1 

l
- = pM ,if il~-4 or if 1!<-

4 
and (1-M)w (2-w) 

? (c) ~ 

"' 1-w:n+w
2ii - 1 

7>-=~~~- = pm ,if B<-4 and w>w* (l-m) w (2-w) 

- 1 where for B<-, w* is defined by 
4 

2 
w* ----;:::::::=:-

1+/1-48 

Moreover, the bound on p cc,.,> is minimized if we let w=wl where 

2 

"' = l 2 

="' M 

= .., .. -
if M~4B 

With respect to the benchmark method (vd Section (2.4)), we 

have L~e asymptotic result, and its corresponding value is given by, 

P(C ) 
"'1 1 =-

2-w* • 1f M>,4S. 

Theorem (2.7.11) is a modification on Theorem (2.6.14), 

exploiting the fact that the SSOR method and the PSD method both 

possess identical P-condition numbers. Since that theorem is a 

valuable tool to our analysis, a proof is stated in Appendix B. 

(2.7.12) 

(2.7.13) 

(2.7,14) 

(2.7.1" 

(2.7.16) 



With respect to the benchmark metnod {vd SectLon {2.4)) we have the 

asymptotic result 

1 
2 

ll -1 
2Y 

if ;;~!!. 
"'4 

M- 1 
if ~8~4 

if ~a 
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(2.7.17) 

where we have used the notauon of {2.6.15-21), whereas for the SSOR 

method asymptotically the following result is obtained 
RR{G ) 

"'1 
2 

(2.7.18) 

namely, the number of iterations of SSOR is asymptotically twice the 

number of iterations of the PSD, for achieving the same level of accuracy. 



CHAPTER 3 

THE PRECONDITIONING BY DIRECT FACTORIZATION 

ITERATIVE METHOD 
'' 

Any attempt to improve ••• fundamentaZ methods 

must cZearZy appZy some form of preconditioning 

to the original equations in order to minimize 

the P-condition number and hence increase the 

rate of convergence. 

D.J. EVANS 

Let us begin with problem (2.1.1) 

Au = b 

where A is a positive definite matrix. 

Equation (2.1.1) is usually ~lved using the iterative process 

(n+l) (n) (n) 
u = u +T(b-Au ), n=O,l, ••• 
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The parameter • is chosen to maximize the asymptotic rate of convergence of 

the iterative process. This usually leads to a very slow convergence rate. 

The attempt to accelerate the procedure has resulted in the generalized 

preconditioned iterative method (Evans [1968-80]), (2.7.8) 

(n+l) (n) -1 (n) 
u = u +TM (b-Au ), n=O,l, ••• 

where M is a given positive definite matrix (conditioning matrix), the 

form of which is to be determined. 

Note that the problem is solved in one iteration if we choose 

M/T=A. Taking into account that 

-1 
TM A= I 

(n) is the identity matrix, we conclude that for arbitrary u 

u(n+l) =A-~. 



This is a formal expression for the exact solution to the problem. 

Even though the method looks impressive, its realization requires 

-1 
computation of the inverse A , a task whose difficulty equals that of 
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solving the original problem. For that reason the iterative process above 

is not constructive. It suggests, however, various other approaches 

for choosing the matrix M/T, in a sense, would be close to the matrix A 

and easily solvable, so it is appropriate to extend the discussion on a 

certain conditioning matrix. 

3.1 ON A CONDITIONING MATRIX 

Let A be the matrix, obtained from the original problem of the elliptic 

partial differential equation. 

Assuming the splitting 

A= D-C -C L U 
(3.1.1) 

where CL and c
0 

are strictly the lower and upper triangular parts of 

A and D=diag(A), let us take the conditioning matrix M in the following 

form 

M • ~-w~ 
D[I-wU: wB) ~~;j (3.1.2) (l) 

-1 -1 
where L=D CL, U=D c

0
, B is a matrix to be explained later, and w 

is a real parameter which can be chosen on the basis of a-priori 

information about the spectra of the operators involved in the algorithm. 

It can be easily seen that M can further be written in the form 

2 T M= D[CI-wU)(I-wL)+w BB]. (3.1.3) 

Assume that A is a positive definite matrix with posit1ve 

diagonal elements and that BBT is a positive semidefinite matrix, then 

(1) For our convenienae Zet us introduce the notation 
"' -v M = (I-wU) (I-wL). (3.1.5) 
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M is similar(l) to the positive definite matrix M, where 

- ~ 2 T ~ M= D [(I-wU) (I-wL)+w ee ]D • (3.1.4) 

It is not an easy matter to relate the closeness of M to A, but it 

can be conveniently handled by the well-known Wielandt-Hoffman theorem 

(vd Appendix (A.lS)) a lower bound on their distance. 

Also, by pre-assuming convergence to the iterative scheme concerning 

-1 
the iteration matrix (I • M A), an upper bound is given on their dl.stance 

2 (2) 
with respect to the L -norm. Thus, we have 

2 2 IIA-Mil 2 < I:m. 
L ~ 

(3.1.6) 

where.ai and m~ are the eigenvalues of A and M respectively, arranged 

in non-increasing order. 

The idea of "expanding" the matrices, from their original square 

form to a rectangular one, has been applied previously by Evans [1972] ·. 
in a direct method for solving tridiagonal systems occurring in the 

solution of certain elliptic partial difference equations, as well as( 3) 

by Evans and Hadjidimos [1979] in a factorization method for the solution 

of constant quindiagonal linear systems. 

However, such a scheme of conditioning matrix (or otherwise-named 

of a similar role matrix) we consider, does not seem to be known in the 

literature of iterative methods. 

(l)See Appendix (A.14). It is then evident that M is a non-singu~ matrix. 

(2)Th L2 f 't' def' 't t • e -norm o a pos~ ~ve ~n~ e ma ~ expresses its speatraZ radius. 

(:3) OP, at Zeast that is the avaiZabZ.e LJOrk rJe have. 
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3.2 GENERATION OF THE PRECONDITIONING SCHEME 

Evans [1968] pointed out that "any attempt to improve ••• 

fundamental methods must clearly apply some form of preconditioning to 

the original equations, in order to minimize the P-condition number and 

hence increase the rate of convergence". Let us then describe the 

transformation of A, by means of the new conditioning matrix (3.1.2), 

into the preconditioned form. By premultiplying the original system (2.1.1) 

by (3.1.5) we obtain 

-1 -1 M Au=M-b (3.2.1) 

or "' ...... -1 ""' ""' -1 [(I-wU)(I-wL)) Au = (CI-wU) (I-wL)) b (3.2.2) 

assuming that det M#O. 

Let • 
"'V """ -1 y = [!I-wU)(I-wL)) Au (3.2.3) 

calculate z=Au, starting with a guess value of the vector u. Hence - "" z = (I-wU) (I-wL)y. (3.2.4) 

Let v be an intermediate vector given by 

"' V = (I-wL)y. (3.2.5) 

Now we have to solve the system of equations 

- } (a) z = (I-wU)y 
~ 

(b) V= (I-wL)y. 
(3.2.6) 

which may be written in the form 

(a) 

(3.2. 7) (l) 

Thus, the initial system (3.2.3) can be replaced by the coupled 

(l)For> aonvenience bJheroe wfl bJe have put. si.mpZy fl. 
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system (3.2.7) (a) and (b) where we ascertain that is underdetermined by k, 

say, and overdetermined by k, respectively, and hence (3.2.7) (a) and 

(3.2.7) (b) can only be solved in a coupled manner, assuming a similar 

I T 
partitioned form for v=[v

1
:v

2
1 • 

We can therefore, write (3.2. 7) in the form 

(a) z = (I-wUlv
1

+av2 

vl c:-wL)y } 
(3.2.8) 

(b) 

v2 = e Y· 

By substituting (3.2.8) (b) in (3.2.8) (a), we derive the 

following result for y 

z = CI-wu> [CI-wLly1+eceTyl (3.2.9) 

and finally 
-1 -1 T -1 -1 -1 y = [I+(I-wL) (I-wU) !Ill 1 (I-wL) (I-wU) z. (3.2.10) 

In a similar manner we can show for b, the right part of (2.1.1) 

that 
- ~ -1 T-1 ~ -1 b = [I+ (I-wL) (I.!wU) !Ill 1 (I-wL) (I-wU) b. (3.2.11) 

Since it is up to us to define a we shall see later that for 

its sparseness the above result can be obtained in an algor1thmic form 

consisting of a simple Gaussian elimination. 

That approach for the determination of y and b is similar to the 

one followed by Evans and Hadjidimos [1979] for the factorization of 

special symmetric non-periodic quindiagonal matrices. 

3. 3 AN HEURISTIC METHOD FOR THE MATRIX !I 

Considering the five-point approximation difference formula to an 

elliptic partial differential equation as we have developed in Chapter 1 

we derive a system of (2.1.1) from where the matrix A is of order 

[(N-l)x(N-1!)
2

• 



We attempt now to determine an heuristic method for the matrix a 

or for "completing the rank" of the matrix UL, with the proper precautions 

to avoid any instability arising from an arbitrary definition of that 

matrix. 

Our requirement with respect to the conditioning matrix A is that it 

can be written as the sum of matrices having at least one non-zero element 

in any of their columns and rows. 

The scheme (3.1.3) of M implies 

M = D[I-w(L+U)+w2UL+w2aaT] (3.3.1) 

where the last column and last row of the matrix UL are the zero vector 

and its transpcse respectively. 

Thus we propose the following principles, 

H.I If the elements of the matrix U follow a recursive property or 

formula, then a is chosen to be the ((N-l)X{N-l)]x(N-1) sparse 

matrix with elements formulated by the above recursive property 

of the formula and have been situated towards the direction of 

the band of UL. 
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H.II If no relation or property appears in the elements of the matrix u, 

then a is chosen to be the ((N-l)X{N-l)]~N-1) sparse matrix with 

elements lb which have been situated towards the direction of the ·band 

of U, where 

O<J:l:>b , b>-S (UL) (3.3.2) 

Moreover, independently of H.I and H.II, we choose 

H.III a to be the ((N-l)X{N-1)~1 sparse matrix where the [(N-l)x(N-1),1] 

position has the non-zero element ~b>O and (3.3.2) holds. 



From the above situation we can see that the matr~x BBT is very 

sparse with only a few non-zero elements (that gives an advantage to the 

arithmetic operation count of our algorithm) as well as that the 

matrix (l) 

(3.3.3) 

has at least one element different than zero in every of its columns 

and its rows. 

If we partition the matrix A by placing all mesh points of 

successive horizontal mesh lines segments into successive sets, with 

the five-point approximation formula again, then the block form of A is 

tridiagonal (for such a derivation see for example Varga (1962]). Then, 

the matrix UL is block diagonal with its last diagonal block element equal 

to zero. In such a case, we propose again H.I and H.II where for H.II 

we have, BST= b(n)I, O<b(n)ib(n) and b(n)~S(U(n)L(nl), and (n) refers 

to the partition of the matrix A:· 

3.4 ON THE EIGENVALUES OF THE MATRIX til.=uL+BBT 

We attempt now to establish a relation between the eigenvalues of 

the matrices UL, UL and BBT and thus we consider the changing of the 

T T eigenvalues of UL by ad~g BB to it, where BB has been investigated in 

Section 3. 

T "' Let ai,bi and yi be the eigenvalues of UL, Bll and UL respectively, 
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where all three sets are arranged in non-increasing order • 
...., T 

Since UL=UL+Bil , 
. 

by the minimax theorem (vd for example Wilkinson (1965]) we have 

y = 
s 

min 
<pi,x>=O 

max (<x,ULx>), i=l,2, ••• ,s-1; s<(N-1)
2 

llxll=l (3.4.1) 

(l)Notiae that the nuZUty of UL is at Zeast one. 



where the pis are any s non-null vectors, in a subspace of the matrix UL. 

If R is a real unitary matrix such that 

(3.4.2) 

and since (3.4.1) holds for any pi, then if pi=Rei, where ei is the 

th sxs 
i unit base vector of R , i~s, we have from (3.4.1) that 

or 

T Ys ~ max (<x,ULx>) +<x,SSx>) 
llxll=l 

max ( L a y
2 + <x,SBTx>) 

llxll=l i>,s i i 

T 
y ~a + M(BB ), for any x. s s 

Similarly we can show that 

T or since m(BS )=0, 

Thus, we have 

T 
y >, a + m lBB ) s s 

•• T 
a ~ y ~a + M(BS ). s s s 

T Relations (3.4.7) imply that when BB, is added to UL all its 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

(3.4.7) 

eigenvalues are changed by an amount which lies between the smallest 

T and the largest of the eigenvalues of BB • 

NOTICE: It is evident that in the case H.III of Section 3 no change in 

the eigenvalues of the matrix UL is observed by adding the 

matrix BST to it. 
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3.5 THE PRECONDITIONING BY DIREcr FAcroRIZATION METHOD (PDF METHOD) 

In this section we shall establish an iterative method for approximating 

-1 
the solution A b of (2.1.1), where the matrix A has the properties stated 

in Chapter 1. 

The method relies on the spectral characteristics of the operators 

involved. A brief description may be given as follows: We construct an 

iterative process with the iteration matrix depending on a set of two 

parameters. These parameters will be taken identical for all steps and 

chosen by minimizing the spectral radius of the iteration matrix or in 

other words by minimizing the P-condition number of the precondit~oned 

matrix. Therefore, we use an a-priori information about the spectra of 

the corresponding matrices. The choice of these parameters is an integral 

part of the optimization of our algorithm. As a rule, the main problem is 

in finding the corresponding spectral bounds. 

·. 
Let us therefore consider obtaining the solution of (2.1.1) for u and 

vxv 
b belonging to a finite dimensional inner product space R , and A a 

positive definite matrix on the same space. Let M be a positive definite 

vxv 
matrix on R whose inverse can be discovered in an easy manner. 

vxv 
In the orthogonal space R , A and M are bounded and compact, and 

the compactness of the unit sphere in Rvxv implies the existence of 

positive constants \ and An such that 

An<U,Mu> ~ <u,Au> ~ A
1 

<u,Mu> , 

vxv 
for all non-zero u in R • 

(3.5.1) 

As mentioned previously our primary and central problem is to choose 
Al 

M, in such a fashion that An is close to Al and therefore ;:-is a finite 
n 

number. 
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We then define as our aonditioning matri:t: M, the matrix 

2 T 
M= D[I-W{L+U)+w {UL+be e J) {3.5.2) 

V V 

where e the vth unit vector of Rvxv, b a constant by means of H.III 
V 

of Section 3.3, D=diag{A) with positive elements and DL and DU, the 

strictly lower and strictly upper triangular parts of the matrix A. 

We define the Preaonditioning by Direat Faatorization stationary 

iterative scheme {Evans [1980]) as follows: 

Mu{n+l) = Mu{n)_T{Au{uJ_b), n=O,l, ••• 

or {n+l) -1 {n) -1 
u = {I-TM A)u +TM ~. n=O,l, ••• 

where T is a positive accleration parameter to be chosen later so 

that the error A-~-u {n) go to zero in some norm, and where the 

-1 
solution A b of {2.1.1) is clearly a fixed point of {3.5.3). From 

its construction, the Preaonditioning by Direat Faatorization method 

{PDF method) is a completely consistent method. 

·. 
We note that the above scheme can be seen as a fractional-step 

scheme {Marchuk fl975]). Namely, if we choose 

where 

~ {n+l/3) wU~ {n+l/3) +r {n) 

~ {n+2/3) = wL~{n+2/3J+~{n+l/3) 

{I+F) ~ {n+l) = ~ {n+2/3) 

u 
{n+l) 

= {n) I; (n+l) 
U -T 

r{n) = Au{nJ_b 

2 -1 -1 
F = w b{I-wL) {I-wU) e 

V 

and where the third step is a simple Gaussian elimination, given in 

Appendix c. 

'!he preaonditioned matri:t: B is then defined {Evans [1968]) by w 

{3.5.3) 

{3.5.4) 

(l) The aomputationaZ wrk for F is exeauted in similar fraationaZ steps. 
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B = M-lA. (3.5.5) 
w 

Since M is a positive definite matrix (vd Section (3.5)), then 

B is similar to the matrix w 

B = M7.B M-7. 
w w 

= M\M-lA)M-7. 

= M-7-AM-7. 

(3.5.6) 

As we can ascertain from Theorem (A.7) and Definition (A.3) of Appendix 

A, since A is positive definite then B is positive definite which 
w 

implies that B is similar to a positive definite matrix. w 
(1) vxv 

Lemma (3.5.7) :Let M,A be positive definite matrices in R • Then, 

for any vector X'#O, we have 

O<m(B ) ~ <X,Ax> < M(B ) 
oo <x,Mx> ' oo ' 

where m(B ) and M(B ) denote the eigenvalues of minimum and maximum 
w w 

algebraic value respectively of matrix B • 
w 

Furthermore, if y#O and B y='N:J then 
w 

Proof 

A = <y,Ay> 
<y,My> 

For a proof to this well-known theorem, see for example, 

Diamond [1972] or Young [1977].• 

Lemma (3.5.7) states a sufficient condition for obtaining bounds 

(3.5.8) 

(3.5.9) 

on the P-condition number of the matrix B, i.e. P(B ), which we shall 
w w 

deal with later. 

Since, from Lemma (3.5.7) the eigenvalues of B are between the 
w 

minimum and the maximum of 

(1) In the aase lilhere A is syrmretria and (3. 5.1) is satisfied lilith aonstants 
\and). then (Gunn [1964]) 

niiB 11 2 ~ max cl>-1 1,1>- I> or IIM-7-AM-7.11 2 ~ max<l>-1 1,1>.nl>· 
w L n L 



if we let z=M-~x then (3.5.10) becomes 

<z,Az> 
<z,Mz> 

Thus, we shall investigate the behaviour of the ratio (3.5.11) 
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(3.5.10) 

(3.5.11) 

in terms of inner products as introduced by Babetler and Wachspress [1961]. 

Let then ~ be an eigenvalue of the matrix B and v an associated 
(I) 

eigenvector. Thus 

B V= ~V 
(I) 

and by (3.6.2) and (3.6.5) we have 

Av = ~D[I-Ill(U+L)+Ill2UL]v 

where ilL=UL+be eT. 
V V 

(3.5.12) 

(3,5,13) 

By taking inner products of both sides with respect to v, then in 

relation to ~ we get the expression 

<v,Av> ~ = ___ ....:;:...=:.:.._,---
2-<v,D(I-Ill(U+L)+Ill UL)>v 

V 
Expanding numerator and denominator in (3.5.14) we obtain 

<v,Dv>-<v,DB> 
~ = ----'c:....!.:=-_..:.;:...!..:;=.,;----

2 ~ 
<v,Dv>-lll<v,DBv>+lll <v,DUL> 'I} 

~ 

(3.5.14) 

(3.5.15) 

We nON divide both parts of ~ by the non-zero quantity <v,Dv>. Then, 

(3.5.15) becomes 

where 

a(v) 

and b(v) 

1-a(v) = __,::....;;;..,~-,;---
2 1-llla(v)+lll b(v) 

= 
<v,DBv> 
<v,Dv> 

"" <v,DULv> 
= 

<v,Dv> 

(3.5.16) 

(3.5.17) 

(3.5.18) 



~ -1, Now B is similar to the symmetric matrix D BD , therefore 

<DJ.,v(D~BD-J.,)D~v> a(v) = <v,DBv> = =~T-=...--'~..!.:.. 
<v,Dv> J., ~ 

<D v,D V> 

is a Rayleigh quotient with respect to D~BD-~, thus we have 

m(B):;;a(v) :;;M(B), for any v#O. 

~ ~~ -~ Similarly UL is similar to the positive definite matrix D ULD = 

~ -~ ~ T -~ =D (UL)D +D (be e )D , therefore 
vv 

-= <v,DULV> 
~ ~~ -~ J., <D v, (D ULD )D v> b (v) 

<V,Dv> ~ ~ <D v,D V> 

~~ -~ is a Rayleigh quotient as well with respect to D ULD , thus 

0 :;; b(v) :;; S(UL) 

We have thus seen that the quant1.ties a(v) and b(v) are bounded 

"' by the extreme eigenvalues of the matrices B and UL respectively. 

Since now trace(B)=O, it follows that 

·. 
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(3.5.19) 

(3 .5 .20) 

(3 .5. 21) 

(3.5.22) 

m(B) =m :l: 0 :;; M = M(B) (3.5.23) 

Moreover, since B is similar to D~BD-~=I-D-~AD-~ and since D-~AD-~ 

is positive definite (for A is positive definite) we have 

Therefore 

"' S (UL) =S (UL) we have 

M(B) = M < 1. 

m ~ 0 ~ M < 1. 

S(B) = S(D~(L+U)D-~) = 

= IID~LD-~ + D~UD-~11 

IS 2 IID~UD-J.,II 

= 2/s(D~ULD-~) 

= 2..'s CULl 

If b is an upper bound for S (UL) then 

""" -S(UL) :l: b 

and 

(3.5.24) 

(3.5.25) 

(3.5.26) 

(3.5.27) 
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s (Bl ~ u{f (3.5.28) 

It follows then, 

-m ~ 2.15'" 

M~ 2.1f 

and, if the bounds M or -m exceed 2& we replace M by 2.15'" or m by 

By the above analysis, we are now in a position to seek a lower 

bound on M(B ), the smallest eigenvalue of B, involving only known w w 

(3.5.29) 

quantities determined a-priori without the need to preassume continuity 

on w, of any eigenvector v=v(w) of B • 
w 

This is a trivial problem which many authors have dealt with, 

Benokraitis [1974] and Young [1971] determining an upper bound for the 

spectral radius of SSOR method and Evans and Missirlis [19BO] who gave 

a similar proof to them seeking a lower bound to the minimum eigenvalue 

of his preconditioned matrix. Therefore, following the previous authors 

we obtain Lemma (3.5.30), in which we attempt to find the minimal of the 

function (3.5.16) with respect to a(v) and b(v) by taking successive 

lower bounds in any order, given the analysis concerning the bounds on 

B and UL. Thus, 

Lemma (3.5.30): If -2~m~(B) 

M(B)~~<min(l,2~) 

s (liT.) ~b 

then a lower bound on m(B ) may be given by 
w 

m(B ) ~ 
IJl 

- 1 where for b<4we define w* by 

1-M 
2-

1-wM+w b 

1-m 
2-1-wm+w b 

' 

' 

if ~! or if b<
4
1 and w~w* 

'4 

- 1 if b<4" and w>w*, 

(3.5.31) 



2 
w* = --=--

1+.{_41, 

OUr aim now is to estimate an upper bound on the largest 

eigenvalue M(B ), of the matrix B. Thus, we merely state the w w 

following discussion on the lower bound of the Rayleigh quotient 

of the conditioning matrix M. 

The matrix M given by (3.5.2) can be written in the form 

M = w(2-w)A+D(C+E) 

where 
C = [(1-w)I+wU][(l-w)I+wL] 

2 T 
and where E=w b e e • It is evident that C and E are positive semivv 

definite matrices and exact symmetry is preserved in the matrix 

C' = C+E. 

Thus, we can seek relations between the eigenvalues of C and E or 

between the eigenvalues of c•, by applying a classical technique due 
·. 

to Wilkinson [1965]. 

Since E is rank unity, if we partition C in a similar form toE 

we have 

C= 

c 

-------~---1 ,-
1 c 
I 
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(3.5.32) 

(3.5.33) 

(3.5.34) 

(3.5.35) 

(3.5.36) 

where c1 is the first minor matrix of C. Then, there is a real unitary 

matrix P of order v-1 such that 

T 
P c1P = diag (Cl) (3.5.37) 

and if we define R by the relation 

R = (3.5.38) 



T then R is a real unitary and R C'R implies 

diag(c
1

J I 1 
I 

0 I 0 

RT(C+E)R = I 
I + I -------,- ---~---

1T I c I 2 
0 I W b 

T 2 
where t=P c and w b is the unique non-zero eigenvalue of E. 

The eigenvalues of c and C' are therefore those of 

diag(C
1

J 1 diag(C
1

J t 

and 
I I --- ---t--- -- - ---

,_T c ,_T I 2 
IC+w b 

and if we denote these by hi and hi in decreasing order, then they 

satisfy the relation (vd Wilkinson [1965], p.97) 

2 
h. = h +p "' b 
i i i 

Hence all the eigenvalues of C after the addition of E have been 

2 shifted by an amount which lies between zero and w b, the unique 

eigenvalue of E. 

Since C' is a symmetric matrix, for any vector viO its Rayleigh 

quotient satisfies the relations 

min <v,C'v> 
viO <v,v> 

~ 
<v,C'v> 
<v,v> ~max 

v#O 

<v,C'v> 
<v,v> 

or in view of (3.5.41), relations (3.5.42) are written as 

<v,C'v> 
~ <v,v> 

~ M(C') 

' or since m(C)=O (for C is positive semi-definite), we have 
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(3.5.39) 

(3.5.40) 

(3.5.41) 

(3.5.42) 

(3.5.43) 



2 <v,DC'v> 
w pib:; :; M(C') 

<v,Dv> (3.5.44) 

We can now obtain a bound on M(B ) given that (3.5.44) holds for any 
w 

vto. 

Lemma (3.5.45): Let A be a positive definite matrix and wE (l,wb). Then, 

where p E(o,l] and 

Proof 

M CB ) :; 
w 

1 
2 

w(2-w) + ~ P 
2 

2 
"'b = l.E. p 

2 

(3.5.46) 

As it has been shown in Lemma (3.5.7) the largest eigenvalue of 

B is the maximum of (3.5.10). Let~ be an eigenvalue of B and van 
w Ill 

associated eigenvector. Thus, 

where <v,v>=l, or ~ 

~ 

= <v,B v> 
w 

<v,Av> 
= <v,Mv> 

and•by (3.5.33) and (3.5.41), we have 

~ :; <v,Av> 
2 

w(2-w)<v,Av>+w pib 

(3.5.47) 

(3.5.48) 

(3.5.49) 

Since now the right part of (3.5.49) is an increasing function 

of <v,Av>E[l~M(B),l-m(B)], then the maximum of that quantity with 

respect to <v,Av> occurs when <v,Av>=l-m(B) and therefore 

~ :; 2 
w(2-w)+w p 

1 
b 

1-m(B) 

where p has been chosen from the set {pi:rpi=l, O<pi:;l}, and 

-m(B)~-. Thus (3.5.46) is valid. 

(3.5.50) 

Notation: When the mesh size h of the net tends to zero then -m(B)+l-, 

and (3.5.50) can be written 

43 
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(3. 5. 51) 

In our later arithmetical examples we consider p varying approximately 

2 
as h • Hence, without loss of generality we use b instead of b in 

formula (3.5.51), given that b~b. 

With regard to "b• the supremum of w, 

-"b (b;m(B)) = 
2 

1 -
po (3.5.52) 

1-m(B) 

since it is an increasing function of b, it is limited in the interval 

where -m(B)~l- and pE(o,l]. 

- 1 
I if O<b<4 

- 1 
1 if l>b~ 

We now state a necessary and sufficient condition for the 

iterative scheme (3.5.3) to be convergent. 

(3.5.53) 

Theorem (3.5.54): If A is a positive definite matrix then the iterative 

scheme 

is convergent if and only if 

0 < T 

Proof 

2 
< M(B ) 

w 
(3.5.55) 

The iterative scheme (3.5.3) is convergent if and only if 

for every non-zero vector v. 
(3.5.56) 

Thus, on the unit sphere, since M and B =M-lA are positive definite 
w 

matrices (vd Section (3.5) and (3.6)), equivalently from (3.5.56) we 

have 

or 

-1 -1 < 1-T '<V,M AV> <1 

2 
0 < T < -M-,(8~,.-) 

w 

.. (3.5.57) 

(3.5.58) 



When we seek for estimated parameters the above theorem implies, 

Proposition (3.5.58): If A is a positive definite matrix and wE(l,wb) 

then (3.5,3) is convergent if and only if 
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2 ii o < T < 2[w(2-w) +w 2 p] (3.5.59) 

Proof: 

By Lemma (3.5.45) and Theorem (3.5.54) the proof is evident~ 

We can maximize the rate of convergence of the method by 

choosing an optimal value for T in its range. Thus we let T to 

have the value 

2 
TO= m(B )+M(B ) (3.5.60) 

w w 
0 0 

for the case of optima parameters, where w
0 

is the optimum point to 

be explained later, whereas 

2 
T = 1 M(B )+M(B ) 

(>1-1 wl 

for the case of estimated ones, where w
1 

is an estimated point to 

be explained later also. 

The acceleration parameter T can now be given, by means of 
o,l 

the P-condi tion number of B , P (B ) , in the form 
w w 

2/M(B ) 
wO,l 

T = ---..=f-=---
0,1 ~~1----~ 1 + i?<B 

w 
o,l 

where by the notation TO,l we mean either TO or T 1 • 

(3.5.61) 

(3.5.62) 



3.6 INTERVAL ESTIMATION ON THE BOUND OF P(B ) 
Ill 

From the analysis already developed we are now able to seek an 

interval in which an optimal value of a bound on the P-condition number 

of B lies. 
Ill 

·since 
M(B ) 

Ill 

from Lemmas (3.5.30) and (3.5.45) concerning m(B ) and M(B ) 
Ill Ill 

respectively, we have 

(3.6.1) 
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2o 
(1-M) [01(2-0J)+OJ ~) 

- 1 - 1 , if b~ or if b<4 and OJ:!'OJ* 

P(B ) IS 
Ill 2-

1-=+0J b 
2 jj 

(l-m)[OJ(2-0J)+OJ 2P1 

- 1 where for b<4, 01* is defined by 

2 Ill* = _.!:,_ __ 

l+r'i-4b 

(3.6.2) 

(3.6.3) 

b 
But 2 p, pE(o,l), is in general a small number in the interval 

b 
(0 •2> , so any attempt to minimize P (B ) with respect to w, in the case 

Ill 

- 1 of b~ implies implicit quantities, as optimal values, to be of practical 

use. On the other hand, the gain in the number of iterations is of little 

importance in comparison with the ones obtained with the estimated 

values from the following theorem (3.6.4). However, it is a simple 

formulae we need for the estimated parameters in order for it to be 

easily handled in an accelerating or an adaptive process. Theorem (3.6.4) 

proposes a less effective but more practical manner in seeking optimal 

values on P(B ) with respect to 01. 
w 

Theorem (3.5.4): Let b,M and m be numbers such that 



Then (3.6.2) is valid. 

m (B) :,n~-2.1f 

M(B)~~2..b 

M<l 

"' -S(UL)~. 

Moreover, a bound on P(B ) may be given if we let w 

---'2~-- = w* , if M1l4b 

l+h-.fu 
and therefore the corresponding bound of P(B ) is given by 

w 

P(C ) 
wl 

P(Bw) ~l+kP(C_)_ 
1 w

1 
where 

(1+ ll-2M+.fu) 
2-Mw 1 1 M 

if M:f4b 2 =- , 1-M 2 (1-M)WM 

P(C ) ~ 
wl 1 (1+~ = 

1 
if M~4b, 2 

l-4b 2-w* 

and where k is a pcsitive constant lying in the interval 

J= 

Thus, 

where PE(0,1). 

(1-M) w2b 
M 

1 

, if Ml>.fu 

, if M~.fu 

2-W 
M 

4-W (2-bP) 
M 

, if M~4b 

, if M~4b 
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(3.6.5) 

(3.6.6) 

(3.6.7) 

(3.6.8) 

(3.6.9) 

(3.6.10) 
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Proof ---
Now the boundary (3.6.2) on the P-condition number, P(B ) can be given 

w 

in the form 

where 

P(B ) 
w 

1 

(l-a)w(2-w) 1 
2- + 2 

1-wa+w b 

2-(1-a)w bp 
2 

1-wa+w b 

a =m M , if :":: or if b<'4 and l 
-1 - 1 

, if b<4 and w>w* 

Let F1 (w;a,b) and F2 (w,a,b) be the first and the second terms 

respectively of the denominator of (3.6.12). 

(3.6.12) 

(3.6.13) 

The function F2 (w;a,b) is increasing with respect to w, in the 

range (1,2), then in a subinterva1 of Wt say I, F
2

(w;a,b) has a 

minimum at w=w
1

, where w
1

=infw • 
wEr 

'Furthermore, in order to find a minimum on the bound of P(B ) 
w 

we have, 

1 
= max Fl + min F2 w of2r 

= 1 

max ~~~J + min F2 
w of2r 

= 

where P(C ) is the minimum bound on the P-condition number of the w 
\ 

matrix C , by theorem (B.1) of Appendix B and where, w 

(3.6.14) 

(3.6.15) 

• 
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2 
J.f M::-lli WM 

l+fl-2M+4b 
wl = (3.6.16) 

2 
= w* if M>,.fu. ' 

1+11-.fu 

From the analysis in the Appendix B concerning P(C ) the interval I 
w 

may lie in the following interval 

(l,w*] 

I £. [w*, 2) 
- 1 

if b<- and w =w* 4 1 

(1,2) - 1 
' if b~. 

Thus, a realistic choice of I is 

' if ~4b 

[w*,2) , if M>,4b. 

By {3.6.14) we have that 

k 

.2-
(1-Mlw-;(>p 

(2-w M) (2-w ) ' if M~4b 
M M 

w*bp 
-2-

-, if M>,4b 

and (3.6.9) and (3.6.10) are valid since P E(o,l] .• 

We can modify the bound on P (B ) 
wl 

given by (3.6.10) to yield 

.!. ( 1+ _.!._) 
2 li=M 
1 + M p 

ell-M 

t (1+/1;) 

1 + 1 p 
e/2(1-MJ 

.!. (1+ -1 1"2, 
2 y /~ - 1 

tiy ' if b>4 
1 +---'- p 

4 

(3.6.17) 

(3.6.18) 

(3.6.19) 

(3.6.20) 



where pE (0,1] and 

[ 

2 (b..!.))-~ 
y = 1 + 4 

1-M 

As M+l the bound on P(B ) is a number of the interval 
"'1 

(4,!. (1 + - 1-)) 
2 11-M 

(3.6.21) 

ca.t Cl+~» M-1 
• if ~b~4 

tl (1 +_/# 1 

•2 
1 

!!r_ 
+ 4 

ifb>t 
(3.6.22) 

From Theorems (2.6.14) and (2.7.11) we conclude that the SSOR, 

PSD and PDF method possess the same estimated values of w
1 

whereas it 

is important to remember the reverse order of the equations of the PDF 
•. 

method. This influences the upper bound bo!UL as confirmed by table 

(4.2.Tl). 

3. 7 ON THE RATE OF CXlNVERGENCE 

For the PDF method with T in the form (3.5.62) the spectral radius 

of the iteration matrix H can be conveniently written as 
"'o,l 

SCHW ) = 
0,1 

2 
l - l+P(B ) 

"'o,l 

whereby "'o,l we mean either "'o or w1 • 

If P(B )>>1, then 
"'o,l 

• 2 
= l - P-(""B;:..--..,-) 

"'o,l 

(3.7.1) 

(3.7.2) 

so 



hence the asymptotic rate of convergence is given by 

R (H ) ~ 
., 11) 

0,1 

2 

and the reciprocal rate of convergence by 

P(B ) 
11) 

0,1 
2 

The a-priori knowledge of the eigenvalues of B implies a 
11) 

dependence upon p of the estimated rate of convergence. Thus, 

comparing the bounds on RR(H ) with RR(B ) 
11)1 p 

into account that pE(O,l] we have 

1 
- (1-k) 
uT 1 

1 -1 
- y (1-k ) 
~ 3 

by (2.4.14) and taking 

- 1 
' if b'4 

(3.7.3) 

(3.7.4) 

(3. 7 .5) 

With respect now to the PSD method by comparing (2.7.18) and (3.7.5) 

we obtain that 

(3.7.6) 

or 

• = 1-k ' kE(O,l) (3.7.7) 

However, we are not able to specify exactly an a-priori asymptotic 

number to the ratio (3.7.7) since it is not possible to have an 

(1) 
a-priori knowledge of p , but the numerical results of Chapter 4 

justify our assertion, of the existence of k. 

(l)A rough approaah gives asP one 
~here h is the net mesh size. 

2 of the eZements of the set {a, eh, eh } 
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Since now 

RR(L ) ~ IRR(B_) "b • p 

where Lw is the iteration matrix of the SOR method we establish 
b 

that 
1 

ifb4 -(1-k ) 
12 1 

RR(Hw ) 

if~d 1 . 
= (l-k2) 

RR(L"\,) 4' '4 

y-1 (l-k3) if "b>.! 
4 

where k.E(o,l) and A is consistently ordered matrix. 
l. 
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(3.7.8) 

(3.7.9) 

Moreover, asymptotically for the SSOR method we have by (2.6.22) 

that 

= 

where ki E (0,1). 

1 
2(1-kl) 

1 
2(1-k2) 

1 -(1-k ) 
2 3 

·. 

- 1 
' if b~ 

' if b>t 
(3.7.10) 

3.8 A NOTE ON THE DIRICBLET PROBLEM FOR THE ONE-DIMENSIONAL POISSON EQUATION 

We will consider a simple but typical problem of Mathematical Physics 

and use it to illustrate the effectiveness of our method. 

To begin with, let us consider the problem 

d
2

u 
--- = F (O<x< 1) 

dx
2 

u(O) = a, u(l) = b, 

where F represents the source term and a and b are given constants. 

(3.8.1) 

The difference analogue of (3.8.1) with the second order approximation, 

can be written in the matrix form, 



where in general 

1 1 
and where ~a<2. 

Au = g 

A= { . . . } ... ,-~::,-a, ... 

The preconditioned system 

B u = g w w 
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(3.8.2) 

(3.8.3) 

(3.8.4) 

by means of M having the form (3.1.2) has the optimis-tic p-condition 

number which can be easily ascertained from,(3.8.5) 

Proposition (3.8.5): If A has the form (3.8.3) then 

P(B)~{l 
w k P(A) 

"f 2 1 
, 1 a :E4 

"f 2 1 
, l. a ~ 

where k is a positive constant such that k<l and where B =M-lA is 
w 

the preconditioned matrix of the PDF method. 

Proof: 

(3 .8.6) 

Let ~1.~2 be two eigenvalues of Bw and let v
1

,v2 be two eigenvectors 

associated with them respectively. '!hen, if we suppose that 

while <v1 ,sv1> = a(v
1

) # a(v2 l = <v2 ,Bv2> 

(3,8,7) 

by means of the relation (3.6.16) we have 

2 2 
l-wa(v

1
l+w a 

= 

which equivalently implies 

r. 2 2 i!-<v2l-aCv1l] (w a -w+l) 

or 

0 

2 1 
, if a <'4 

where w~(0,2). Therefore (3.8.8) is valid for (3.8.10) and 

subsequentally P(B *) = 1. 
w 

(3.8.8) 

(3.8.9) 

(3.8.10) 



2 1 2 
On the other hand, if a ~since (3.6.16) with b(v)=a is a 

decreasing function with respect to a(v), then any eigenvalue ~of B 
w 

lies on 

E 1-M 1-m d 
2 2 , 2 2 

1-wM+w a 1-wm+w a 

and hence the P-condition number of B is minimized at 
w 

Therefore, 

2fa2-M 
where the quantity is less than one. 

2./l--m 
We have therefore, proved (3.8.6).• 

1 
w = --. 

M lc1 

A schematic typical representation of the behaviour of the P

condition number of B, with respect to a 2 , is given in (3.8.13F). 
w 

P(B ) 
w 

P(A) 

(3.8.11) 

(3.8.12) 
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(3.8.13F) 
k.P (A) 

1 

1 a 

3.9 A CERTAIN CONDITIONING MATRIX WHEN A POSSESSES PROPERTY A 

A particular case with another approach to the conditioning matrix M, 

is now investigated where we assume that a
1 

ordering has been applied which 

leads A to form (0.15). Actually, the finite difference equations can be 

reordered by choosing all the points in which (i+j) is even, and then all 

the points in which (i+j) is odd so that the coefficient matrix A has the 

simple partitioned form, 



A= [I -UJ 

-L* I 

where L*=U*. 

Consider the conditioning matrix 

where 

I-wu = 
I 

and 

I-wL* = I 

-wL* 

Therefore, M
2 

has the form 

M
2 

= r·I11,2U*L* •. 

L -wL* 

-wU* J 
2 • 

I+w U*L* 

As we have seen the preconditioned matrix B(2 ) is given by 

"' 

whereas the iterative scheme has the form (3.6.3). 

Lemma (3.9. 7): Let A have the form (3.9.1). If 11 is an eigenva1ue 

of the 

and if 

(2) 
preconditioned matrix B "' such that 

11 -# w-1 +/ (w-1) 2 + ..!.. 
w w w2 

o (/w
2 

+2w)J (1-w) -l] = (p-1) 
2 

2 
then o is an eigenva1ue of B • 

Proof: 

Let us assume that A has the form, A=I-L-U, where 
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(3.9.1) 

(3.9.2) 

(3.9.3) 

(3.9.4) 

(3.9.5) 

(3.9.6) 

(3.9.8) 

(3.9.9) 



L= and u = 

Let v be an associated eigenvector to the eigenvalue p of B(2). 
w 

'lhen 

or 

or 

which implies 

Av = pM
2

v 

Av = p [I-w(U+L)-+u.ZUL+w
2

UL]v 

2 
(wp-l)Bv-2w pULv = (p-l)v. 

Since A has the form (3.9.1) then, 

B = ro U*J 

l!.* 0 
and 

UL = ~*L* :J 
Thus (3.9.14) becomes 

where we assume that v=[v
1

,vz)T is s1.milarly partitioned to A. 

Furthermore, 

(wp-l)L*v + 
1 

(a) } 

(b) 

Multiplying (a) by (p-1) and (b) by (wp-l)U* and substituting the 

first into the second we have 

~p(2w-2-wpl+l]U*L*v1 = (p-1/v
1 

Similarly, 

Since from (3.9.8), the relat1.ons (3.9.18) and (3.9.19) become 
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(3.9.10) 

(3.9.11) 

(3.9.12) 

(3.9.13) 

(3.9.14) 

(3.9.15) 

(3.9.16) 

(3.9.17) 

(3.9.18) 

(3.9.19) 
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2 
U*L*v = 

(l!-1) 
vl 

) 
1 Wl1(2w-2-wl!)+l 

2 (3.9.20) 

L*U*v = 
(l!-1) 

2 Wl1(2w-2-Wl!)+l v2 

Since now 

2 l*L* 
B V= 

0 
W)J(2w-2-W).I)+l 

(3.9.21) 

2 we conclude that v is an eigenvector of B and (3.9.9) is valid.• 

Following closely to a proof of Kahan [1958] concerning the eigenvalues 

2 of the SSOR iteration matrix and those of B we set, 

Proposition (3.9.22): Let A have the form (3.9.1). If n is an eigenvalue 

of the iteration matrix H(
2) of (3.6.3) such that 

n ~!. +/...!... + (w-112 
w ,;. w 

and if 
2 

n 

2 then o is an eigenvalue of B • 

Proof: 

•. 

Qw-1) 
2 

+wn (2-wn>] o 

The proof is similar to the one followed in Lemma (3.9.7).• 

(3.9.23) 

(3.9.24) 

We now proceed to the following theorem concerning the minimization 

of the P-condition number of the matrix B(2). 
w 

Theorem (3.9.25): If A possesses property A and a
1 

ordering then the 

P-condition number of the matrix B(
2) is minimized if we let 

w 

(3.9.26) 

1 
• w* , if M(B)~~ 
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and the is given by 

(3 .9.27) 

Proof: 

if w =w* 
1 

Let A have the form A=I-L-U, where (3.9.10) is valid for the 

matrices L and u. Let 1.1 be an eigenvalue of B(2) and v an associated 
(I) 

eigenvector. 

(2) 
Since now, B v=l.IV, we have that 

(I) 

(A-l.IM )v = 0 
2 

or assuming in v a partition similar to that of A we get from 

(3.9.5) and (3.9.28) 

[::J-0 
which simplifies to ·. 

Ul-1.1) I-l.lw
2

U*L*]v1 + (l.lw-l)U*v2 = 0 ) 

(l.IW-l)L*v1 +[Cl-l.l)I-l.lw
2
U*L:Jv2 = 0 

Eliminating v1 from the equations of (3.9.30), this results in 

(3.9.28) 

(3.9.29) 

(3.9.30) 

(l-l.IW)
2
U*L*v2 - [Cl-l.ll

2
I+1.1

2
w

4
(U*L*) 2-2(1-I.I)l.IW

2
U*L:lv2 = 0 

(3.9.31) 

Since the non-zero eigenvalues of (L+U) occur in pairs 

±bi (i=l,2, ••• ,r) where r is less than or equal to the number of rows 

2 in L* or U*, the eigenvalues of U*L* are precisely bi (i=l,2, ••• ,r) or 

zero. 

Therefore, since v2#0, we must have 

o, (i=l,2, ••• ,r) (3.9.32) 



Now, the P-condition number of the matrix B(2) is given by the 

"' 
expression 
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(2) M(B..,l 
P(Bw ) = m(B ) (3.9.33) 

"' 
and is obtained by taking i=l in both choices of solution to (3.9.32) 

or in its transformed form 

Thus, 

= 

l+bl 
( 2 2 ) 
"' b! +wbl +1 

l+b w2b2-wb +1 
(--1) ( l. 1 ) 

l-bl w2b~+wb1+1 
- 1 

Now, if b1~, P(B..,l receives its minimmn value with respect to w 

1 
at the point "'Mb' thus, 

1 

P(B(2)) = !P(A) 
"'M 3 

l+bl ·. 
where P(A) l-b is the P-conditl.on number of A. 

1 
On the other hand, if b

1 
=::t. a minimum occurs at the point 

w* = 
2 

l+k4b~ 

(3. 9. 34) 

(3.9.35) 

(3.9.36) 

Finally, we conclude that (3.9.26) and (3.9.27) are valid, where 

Note that the above approach for determining a bound on P(B(2)l 

"' 
is similar to that followed by Evans {1968) concerning the classical 

scheme of preconditioning methods, when A has property A. 

The asymptotic rate of convergence when A pOssesses property A 

and M=M
2 

for P(B~2))>>1 is 



R (H( 2)) 2 
= 

P(B(2 )) .. w 
M 

WM 

or 
R (H(2 )) 6 -

P(A) oo WM 

whereas the reciprocal rate of convergence is given by 

and 

Thus 

P(A) 
-6-

In the case of Property A we have 

R (B-) .. p = R (B) .. 
R (B-) ~ .. p 

1 
2P(A) 

This improvement is really only of academic interest and does 

not convey the use of this form o; preconditioning for practical 

problems. 
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(3.9.37) 

(3.9.38) 

(3.9.39) 



CHAPTER 4 

EXPERIMENTAL RESULTS 

The sequence of values of the (solution) vector after 

the successive cycles of the iteration must eventually 

either reach a fixed terminal state or enter a periodic 

phase ••• either of these tluo terminations of the 

iteration is possible but have no information as to 

which occur more often. 

G.E. FORSYTHE 

Six distinct problems will be studied in this section, in order to 

test the theoretical results obta~ned in Chapter 3. All the numerical 

experiments were carried out involving the Dirichlet problem with the 

differential equation 
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..!.eA au, + ..!.cc aul = o 
ax ax ay ay (4.0.1) 

on the unit square 
{(x,y): O~x~l, O~y~l} (4.0.2) 

with zero boundary conditions. 

The number of iterations required to solve the systems of equations 

using SOR, SSOR and PSD methods are compared with the number of iterations 

required when the same problems are solved with the method developed in 

this thesis, i.e. the PDF method. 
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4 .1 OPTIMA PARAMETERS 

We discuss now, the determination of the optima parameters w and P (B ) , 
o wo 

where by the optimum w we mean the value of w which minimizes the P-condition 

number of B • 
w 

At first we deal with the searching of optima parameters for the 

iterative scheme 

(n+l) (n) M-lA (n)+M-L u =u - u D , n=O,l, .•• (4.1.1) 

evidently without the acceleration of parameter T of (3.5.3). 

That method as we can easily verify by Theorem (2.2.5) is convergent 

12 12 
for any w in the range, 1-~w<l+;! , where we assume that A is positive 

definite and M possesses form (3.5.2). By the optimum w we mean the value 

of w which minimizes the spectral radius S (H ) of 
w 

-1 
H =I-M A 

w 

The optimum S(H
00

) is the largest ~igenvalue of H
00 

for w=w
0

, i.e. 

S(H ) = min 
00

0 W 

max 
x#O 

<x,B x> 
(J) 

<x,x> 

12 12. 
Since S (H

00
) is an unimodal function of w where WE(l-2,1+2), 

then using the method of golden section search (vd for example, 

(4.1.2) 

(4.1.3) 

Himmelbau [1972]) with the power method (vd for example, Wilkinson) 

[1965 ]) ' 
Y(m+l) (m) '""'·'· ... ) = H z 

(J) 
(4.1.4) (m+l) 

z (m+l) 
= 

y 
( (m+l)) max y 

(0) (1) 
where z an arbitrary vector and max(x) denotes the element of 

maximum modulus of the vector x, we were able to determine the optimum 

value of the spectral radius S(H
00
), of H

00
, at the point w=w

0
• 

(l)I:n o"w ~se. (O) ( 1) - ~ z = 1.1..... • 



Clearly, we have,provided that the first component of the initial 
(0) 

vector z is different from zero, that 

z(m) + x 
max(x) (4.1.5) 

and 

(4.1.6) 

X where S (H ) is the dominant eigenvalue of H and ( ) the 
ro w max x 

(compute~ corresponding eigenvector. Hence, the above process provides 

simultaneously the spectral radius at its optimum point, i.e. s (Hw ) • 

The scheme (4.1.1) then applied with a guess vector (0) 0 
u =(1,1, ••• ,1) 

and the procedure was terminated when the inequality llu(n) ll'~lo-6 

was satisfied. 

We present the number of iterations ni of six problems together 

with the optima values of w and S(H ) i.e. w
0 

and S(H ) given that 
W WO n -1 

the terminated criterion for the golden section search was (.618) G -3 
IilO 

namely the a-priori number of fun~~onal evaluations to reduce the initial 

-3 interval of w to 10 , was nG=lO. 

The results of the numerical experiments are given in Table (4.l.Tl). 
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Tl\BLE (4.l.T1) 

OPTIMA PARAMETERS w
0 

AND S (H ) OBTAINED BY THE POWER METHOD 
wo 

COMBINED WITH A GOLDEN SECTION SEARCH 

COEFFICIENTS -1 
S(H ) PROBLEM h ., 

0 "'o 

I A=C=1 20 1.6465 .7032 

40 1.6854 .88o6 

60 1.6969 .9432 

!I A=C=e10(x+y) 20 1.5383 .4508 

40 1.6437 • 7051 

60 1.6549 .8491 

III A 
1 

1+2x2+y2 20 1.6478 .7109 
·-

1 40 1.6861 .8911 
c 2 2 

1+x +2y 60 1.6964 .9454 

e+x,O~x~~ 
20 1.6459 • 7212 --

IV A=C= 40 1.6455 .8903 
2-x,~~x~l 60 1.6963 .9451 

A=1+4lx-~1 2 20 1.6493 .7254 

V e·o:;x:;~ 40 1.6850 .8878 
C= 60 1.6956 .9429 

9,~:;x:;1 

A=1+sin'll'(x+y) 20 1.5600 .4687 
VI 

2 
C=e10(x+y) 40 1.6459 .7098 

60 1.6714 .8400 
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ni 

42 

121 

246 

19 

48 

105 

43 

123 

254 

46 

126 

248 

44 

120 

246 

20 

48 

90 
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We now discuss the accelerated version of (4.1.1), namely the PDF 

iterative technique, in the sense of searching for the optima parameters. 

Evans [1968] has shown that the P-condition number of the classical 

preconditioned matrix is an unimodal function of w. Since our pre-

conditioned matrix,B , preserves the same property then by a simultaneous w 

process using the method of golden section search (l), again, with the power 

method(2) applied twice in B to determine at first M(B ), the largest 
w w 

eigenvalue of B00 and secondly m(Bw)' the smallest one of B
00 

at their 

optimum point w=w
0 

we were able to determine the optimum P (B w) , in the 

sense of its minimization with respect to w, i.e. 

<x,B x> 
w max <x,x> 

x;io 
P(B ) = min 

WO w 
<x,B x> 

min w 
(4.1.7) 

x;io <x,x> 

Since the golden section search loses accuracy in determining 

the optima w
0 

and P(Bw) in its final steps these optima are obtained by 

using some trial values of w between the last of the search. 

(0) 
The scheme (3.6.3) is then applied with a guess vector u =(1,1, ••• ,1) 

and the procedure was terminated when the inequality llu(n) 11 ~lo-6 was 
"' 

satisfied. Our experiments were carried out involving (4.0.1) on (4,0.2) 

with zero boundary conditions, whereas the coefficients, A(x,y) and C(x,y) 

used, can be found in Table (4.l.Tl), 

The results of the numerical experiments are given in Table (4.l.T3) 

where TO has been computed from (3.5.60) using the optima values, m(B ) and 
WO 

n -1 
(1)The te~~ted criterion ~s, again, (,618) G ~10-3• 

(2)The power method ~s appZied in similar fashion to (4.1.4). 
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!'I(B ) of m(B ) and l'I(B l respectively and n10 indicates the number of w
0 

W W 

iterations of each problem. Furthermore, SOR,SSOR and PSD have been 

computed with their optima values. Table (4.l.T2) includes the optima 

values of the three last methods, given that wb for the SOR has been computed 

by formula (2.6.7), while the SSOR and PSD method are implied with the 

same optima parameters (vd l'lissirlis [1978]). Analytically, w
0

, S(G ) 

P(C ) and 'o are given in l'lissirlis 
WO 

Besides the values of l'I(B ), m(B ) 
WO WO 

WO 

[1978] and S(B),~ given in Young [1977]. 

the number of power iterations,n 
p 

necessary to evaluate these values are tabulated. 

AS we see in Table (4.l.T3) the number of iterations of the PDF method 

with ~ptima parameters is almost the same with the iterations required by 

the PSD with optima parameters, thus PSD preserves its superiority since 

less work is required per iteration than PDF. Evenmore, PDF, PSD, SSOR 

with optima parameters require a considerable computing effort for the 

approach of these parameters, which means that the generation of w
0

,P(B ) , 
WO 

P(C ), S(G ) requires the same number of iterations necessary for solving 
WO WO 

a finite difference problem itself, or even more. We also note that the 

number of iterations required to satisfy the convergence tolerance 10-6 

-1 using the aforementioned methods varies approximately as h • 
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TABLE (4.1.T2) 

OPTIMA PARAMETERS, USED FOR THE SSOR,PSD AND SOR METHOD 

-1 
SSOR PSD SOR 

Prob h (1)0 -1 
S(G ) P(C ) 

T 
h S(B) (j)b 

WO WO 0 

I 20 1. 7641 .8099 5.2604 .6993 20 .9877 1. 7295 

40 1.8750 .9008 10.08o6 .4264 40 .9969 1.8547 

60 1.9157 .9343 15.2207 .3031 80 .9992 1.9237 

II 20 1.5888 .5876 2.4248 .9251 20 .9576 1.5527 

40 1. 7668 • 7663 4.2790 .6679 40 .9894 1. 7460 

60 1.8386 .8386 6.1958 .5110 80 .9983 1.8902 

III 20 1. 7652 .8140 5.3763 .6989 20 .9880 1. 7326 

40 1.8756 .9031 10.3200 .4254 40 .9970 1.8564 

60 1.9163 .9343 15.2207 .3010 eo .9992 1.9242 

IV 20 1.7624 .8088 ··5.23o1 .7031 20 .9882 1. 7385 

40 1.8748 .9002 10.0200 .4268 40 .9972 1.8599 

60 1.9143 .9324 14.7929 .3073 80 .9993 1.9260 

V 20 1. 7479 .8281 5.8173 .7520 20 .9870 1. 7233 

40 1.8665 .9105 11.1732 .4574 40 .9968 1.8515 

60 1.9093 .9395 16.5289 .3266 80 .9991 1.9191 

VI 20 1.6097 .6o65 2.5221 .8998 20 .9576 1.5528 

40 1.7820 .7855 4.4543 .6345 40 .9982 1. 7448 

60 1.8490 .8438 6.4020 .4829 80 .9983 1.8907 



TABLE (4.l.T3) 

OPTIMA PARAMETERS IJl AND P (8 ) OBTAINED BY THE POWER METHOD COMBINED WITH 
o wo 

A GOLDEN SEcriON SEARCH 

-1 M(B ) /. m(B ) I P(B ) niO OPTIMUM 
-1 PROBLEM h wo 'o h SOR 

wo wo wo 
PDF SSOR PSD 

I 20 1.7642 2.3892 30 .4569 55 .7027 5.2291 37 66 37 20 61 
40 1.8741 4.2312 58 .4185 51 .4301 10.1104 71 134 71 40 121 
60 1.9155 6.1721 73 .4134 54 .3037 14.9301 105 201 107 so 253 

II 20 1.5878 1.5263 89 .6331 101 .9262 2.4108 18 24 17 20 so 
40 1.7661 2.4179 92 ·".5695 85 .6695 4.2449 35 48 30 40 99 
Go 1.8377 3.3477 96 .5479 82 .5134 6.1100 51 71 44 so 217 

III 20 1.7667 2.4112 39 .4587 40 .6969 5.2566 37 GB 38 20 Go 
40 1.8760 4.2902 68 .4248 40 .4242 10.0993 71 137 72 40 121 
60 1.9158 6.1934 39 .4149 39 .3027 14.9274 105 205 107 so 252 

IV 20 1.7643 2.3903 30 .4249 59 .7104 5.6256 33 66 37 20 59 
40 1.8748 4.2532 56 .3887 49 .4308 10.9421 64 133 70 40 119 
60 1.9143 6.0919 69 .3704 31 .3108 16.4468 102 200 104 so 225 

V 20 1. 7483 2.2696 27 .3866 121 .7529 5.8706 41 74 41 20 6('1 
40 1.8662 4.0051 42 .3548 125 .4587 11.2883 79 149 79 40 118 
60 1.9090 5.7568 41 .3444 122 .3278 16.7154 115 224 117 so 274 

VI 20 1.6065 1.5820 6 .6198 2 .9083 2.5520 17 28 17 20 41 
40 1. 7790 2.5437 7 .5578 2 .6448 4.5602 31 57 32 40 81 
60 1.8464 3.5051 7 .5404 2 .4944 4.4861 47 85 47 so 176 
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4. 2 ESTIMATED PARAMETERS 

In order to test the theoretical results obtained in Section(3.7)the 

problems of Section(4.llwere considered, whereas the numerical experiments 

were carried out involving estimated parameters. We denote the bound of 

P(B ) by P(B ) itself. 
(Ill (Ill 

'l'he parameters w
1 

and P (B ) will be referred to 
(Ill 

as the estimated preconditioning parameters. 

Before we can compute w
1 

and 

for S (B) and an upper bound b for 

P (B ) , 
(Ill 

we must find an upper bound M 

S (UL). 

Young [197la] has shown for the Dirichlet problem (4.0.1) that 

S (B) ~ 1 -

=M 

211 211 
2Asin 21 + 2£sin 21 

1- 1- 1- 111- 11 
2(A+A) ~(C+£} ~(A-!) cosn(C-£) cosi 

(4.2.1) 

where the region Oh is included in an (IhXIh) rectangle for a positive I and 

where ·. 
a~ A(x,y) :<A, £ ~ C(x,y) :< C (4.2.2) 

in oh+aoh. 

The bound b for S (UL) is determined by a similar process as in 

Benokraitis [1974] who determined a bound on S(LU). Thus, in order to 

investigate how the matrix UL operates on a vector defined on the net, 

let the system be 
ULu = v. (4.2.3) 

Let w be an intermediate vector such that 

Thus we have 

and 

Lu = w. 

w(x,y) = b
3

(x,y)u(x-h,y)+b4 Cx,y)u(x,y-h) 

v(x,y) = b
1

(x,y)w(x+h,y)+b
2

(x,y)w(x,y+h) 

(4.2.4) 

(4.2.5) 

= b
1 

(x,y) ~3 (x+h,y)u(x,y)+b4 (x+h,y)u(x+h,y-h)] 
+b2 Cx,y) ~3 (x,y+h)u(x-h,x+h)+b4 Cx,y+h)u(x,y)J 



for each (x,y)Eoh. 

= LP1 Cx,ylb3 (x+h,y)+b2 (x,y)b
4 

(x,y+hl]u(x,y) 

+[b
1 

(x,y)b 
4 

(x+h,y) J u(x+h,y-h) 

+ [b2 (x,y)b
3 

(x,y+hl]u (x-h,y+h) 
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(4.2.6) 

Thus, the operator UL only involves values of u(x,y) at the diagonal 

points (x,y),(x+h,y-h) and (x-h,y+h). 

Geometrically with notation (4.2.6) it is convenient to indicate 

the net points involved in the equation (4.2.6) of the operator UL by 

means of a diagram as given in (4.2.Fl) as well as the net points involved 

in the equation (1.9). 

y 

l_l 
l_j 

LJ 
(4.2.Fl) 

X 

O, represents point involved in (1.9) 

~. represents point involved in (4.2.6) 

A bound for the largest eigenvalue of UL can be obtained from 

= max ~l (x,y) 1}>3 (x+h,y)+b4 (x+h,yl] 
(x,y)E~ 
_ +b

2
(x,y) 1}>

3
!x,y+h)+b4 (x,y+h)]) 

= b (4.2.7) 



Proposition (4.2.8): If A(x,y) and C(x,y)E c 12 l (D+oD) then 

S(UL) .~ t + O(h
2
), ash~. 

Proof: 

(4.2,9) 

From Chapter 1 we have (1.9) where (1.10) and (1.11) are valid. 

Furthermore, (1.11) can be written as 

S(x,y) = 2[A!x,y)+C(x,yl] + O(h2) 

We seek to determine a bound on !lULl!., by obtaining a bound 

on yO+yl+y2. 

From (4,2.71 we have 

Moreover, 

s
1 

= b
1 

(x,y) [!:,
3 

(x+h,y) +o 
4 

(x+h,yl] 

A(x~,y) [A!x~,y)+C(x+h,y1>J 
S(x,y)S(x+h,y) 

hr; h h:-~ 
A(x~) L!>(x~,y)+C(x+h,y2)J 

=----~~--~~----~----------~ 
4 [ACx,y) +C(x,y) +O!h

2
l] [!..cx+h,y) +C(x+h,y) +O(h

2
l] 

hr; h h] 
A(x~) LA(xi:2,y)+C(x+h,y2) + O(h2) 

= 4 [A (x,y) +C(x,yl] [A(x+h,y) +C(x+h,ylJ 

h r; h h] A(x~,y) LA(x~,y)+C(x+h,y2) 

= A(x,y) [A!x+h,y)+C(x+h,yl] 

+(M~+O(h2)) [A~+C+hCx~+O(h2l] 

-A (?\+hAx+c+hCx+O (h 
2

>] , 

(4.2.10) 

(4.2 .11) 

ll
1 

= A(x~,y) [A<x~,y)+C(x+h,y ~l}A!x,y) [A!x+h,y)+C(x+h,yl] 

'lhus, 

= (A~+O(h2 )) [A~+C+hCx~+O(h2~-A A+hAx+C+hCx+O(h
2
l] 

= h( ;Aey+¥xcJ + O(h
2

) 

= ~[Axc-Aey]. 

71 
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A(x,y) + ~ AxC-ACy -K>(h2) 5
1 = A(A(x,y)+C(x,yJJ 2 4[A(x,y)+C(x,yl) [A!x+h,y)+c(x+h,y)J 

A + ~ 
= 4(A+Cj 8 

Similarly, 

Hence 

Therefore and (4.2.9) is valid.• 

The proof of the above proposition is based on Young [1977], who 
-

obtained a bound on S(LU). 

1 
The result S(UL)~~(h) is significant because, it establishes an 

order of magnitude improvement of the PDF-SI method (vd Chapter 5) over 

PDF,SOR,SSOR and PSD. 
·-

For the purpose of comparison we include in Table (4.2.Tl) the 

bounds on S(UL) computed by (4.2.7), as well as the bounds on S(LU) 

given in Missirlis [1978] and Young [1977]. 
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TABLE (4,2,T1) 

PROBLEM h 
-1 

b=b(UL) b(LU) 

I 20 .2500 .2500 

40 .2500 .2500 

60 .2500 .2500 

II 20 .2350 .2350 

40 .2461 .2461 

60 .2482 .2483 

III 20 .2499 .2506 

40 .2499 .2502 

60 .2500 .2501 

IV 20 .2521 .2511 

40 .2501 .2505 

60 .2500 .2500 

V 20 .2499 .2499 

40 .~500 .2499 

60 .2500 .2500 

VI 20 .2366 .2360 

40 .2469 .2468 

60 .2486 .2493 
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By (3.6.20) given that M=l-ch
2

+0(h4) we have that P(B )=c
1
h-1 • 

(All 

Thus by (3.7.3) we obtain the expected result for the asymptot1c convergence 

rate of the PDF method 

R (H ) ~ O(h) 
., (A) 

1 
(4.2.12) 

where h the net mesh size. The numerical results of Table (4.2.T2), 

however indicate that we can also attain O(h) convergence for the PDF 

method with estimated parameters. In this way, we see that for the SOR, 

-1 
SSOR,PSD and PDF method the number of iterations varies as h • 

We conclude this section by presenting in Table (4.2.T2) the estimated 

parameters w
1 

and P(B ) for the same as in Table (4.l.Tl) problems on the 
(All 

unit square. The upper bound M for S(B) is given in Young [1977]; the 

upper bound b for S(UL) is computed by (4.2.7). Note that in Problems II 

and VI we would replace M by 2.13" since M>2..1f. The estimated parameters 

w
1

,T
1 

and P(Bw) computed by (3.6.6), (3.5.61) and (3.6.10) (l) respectively. 

1 (0) •. 
The same guess vector u =1 as previously was used as well as the same 

terminated criterion. The number of iterations required to carry out the 

solution is indicated by niE. We also present the number of iterations of 

the SSOR and PSD methods with estimated parameters (by Missirlis [1978] the 

estimated parameters of PSD are presented in Table (4.2.T3)). 

As it was expected from the analysis in Section(3.7)of Chapter 3 a 

significant improvement of the convergence rate of the PDF method is 

observed in comparison to SOR and SSOR method. The results are fairly 

optimistic when compared with the ones of PSD. In Fiqlire (4.2.Fl-4) we 

plot the logarithm of the required number of iterations using PDF,PSD, 

SSOR and SOR versus tnh-1 • The slope indicates the approximate O(h) rate 

of convergence. 

(l)In formuta (3.6.10) we took p equaZ to h2, i.e. 
net mesh size. 

2 
p=h • where h the 



In Table (4.2.T2) it is shown that the SOR method requires at least 

33%,150%,26%,32%,17% and 128% more iterations than the PDF method with 

estimated parameters, respectively to Problems I,II,III,IV,V and VI. 

However, it should be noted that the PDF method requires more work per 

iteration than the SOR method. 

The SSOR method, asymptotically requires about 63%,25%,77%,53%,95% 

75 

and 153% more iterations as compared to the PDF method (both the methods 

using estimated parameters), respectively to the six problems in increasing 

order. The numerical results which we obtained indicate that the PDF method 

is much more effective than the PSD method, in view of the Table (4.2.T2) 

and formula (3.7.7). In case of Problem II, the convergence of the PDF 

method was slower than the one of the PSD method, while in Case V we have 

almost the same results for both methods. Moreover, the PSD method 

requires asymptotically 8%,28% and 39% more iterations than the PDF method 

for the Problems I,IV and VI, resPectively. Even noting that in Case III 

when h=l/20 and h=l/40 the PSD requires 115% and 103% more iterations than 

the PDF method, whereas for the case of h=1/60 the convergence of the PSD 

is erratic. 



PROBLEM h 
-1 

b 2.£' 

I 20 .2500 1.0000 
40 .2500 1.0000 
60 .2500 1.0000 

II 20 .2350 .9695 
40 .2461 .9921 
60 .2482 .9963 

III 20 .2499 .9997 
40 .2499 .9992 
60 .2500 1.0000 

IV 20 .2521 1.0041 
40 .2501 1.0002 
60 .2500 1.0000 

V 20 .2499 .9997 
40 .2500 1.0000 
60 .2500 1.0000 

VI 20 .2366 .9728 
40 .2469 .9937 
60 .2486 .9971 

TABLE (4.2.T2) 

ESTIMATED PARAMETERS w
1 

AND P (B ) 
. wl 

M wl Tl P(B ) 
wl 

.9877 1. 7288 .8186 6.8760 

.9969 1.8544 .5018 13.1661 

.9986 1.8992 .3634 19.3686 

.9999 1.6o65 .9094 2.5377 

.9999 1. 7779 .6469 4.4997 

.9999 1.8.:136 .4993 6.3872 

.9967 1.8540 .5011 12.4429 

.9992 1.9330 .2478 22.0863 

.9996 1.9422 .2156 23.4865 

.9914 1. 7241 .8033 9.8038 

.9979 1.8790 .4282 15.8543 

.9990 1.9143 .3145 22.8430 

.9977 1.8782 .4282 14.5976 

.9994 1.9357 .2403 24.3183 

.9997 1.9521 .1826 36.9602 

.9999 1.6240 .8883 2.6561 

.9999 1. 7996 .6012 4.9865 

.9999 1.8607 .4552 7.1754 

M(B ) niE ESTIMATED 
wl 

PDF SSOR PSD 

• 

2.1329 46 68 48 
3.7037 91 138 93 
5.2334 127 207 137 

1.5779 20 28 18 
2.5293 37 45 33 
3.4633 54 67 47 

3.6943 47 73 101 
7.7214 96 145 195 
8.8976 123 218 -
2.1023 41 66 59 
4.3935 9o 133 114 
6.0908 131 200 168 

4.3713 60 93 65 
8.0155 101 193 lOO 

10.6643 148 288 144 

1.6356 18 36 23 
2.7709 35 82 47 
3.8563 51 129 71 



77 

TABLE (4.2.T3) (1) 

ESTIMATED PARAMETERS FOR THE PSD METHOD 

-1 PROBLEM h w1 T1 P (PSD) 

r 20 1. 7287 .8188 6.8727 

40 1.8544 .5021 13.2357 

60 1.9005 .3598 19.6008 

rr 20 1.6065 .9073 2.5415 

40 1. 7788 .6444 4.5208 

60 1.8465 .4914 6.5139 

Ill 20 1.8355 .5661 14.9905 

40 1.9142 .3177 29.5540 

60 1.9420 .2203 44.1015 

IV 20 1.7717 .7223 8.3322 

40 1.8790 .4282 16.1660 

60 1.9176 .3034 23.9999 ·-
V 20 1.8756 .4379 15.2395 

40 1.9359 .2402 30.0138 

60 1.9568 .1654 44.7804 

VI 20 1.6903 .7994 3.2293 

40 1.8475 .4889 6.5567 

60 1.8997 .3463 9.9697 

(l)The ~esuZts have been obtained by ~ssi~Zis {1978] 
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CHAPTER 5 

THE PRECONDITIONING BY DIRECT FACTORIZATION, 

SEMI-ITERATIVE METHOD 

Kai V~Tpouvcv Kat TO v£yceos 

Tn Ktv~a~t Kai Thv Ktvnatv 

TW VEYE8E\ 

'AptaTot£Aous 'vatKns IV,12,29r1J 
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As we noticed in Section 3.5 of Chapter 3, the PDF method relies on 

the spectral characteristics of the operator involved, and the parameters 

are considered identical for all steps of the algorithm. In that chapter 

the parameters involved are chosen at each step in such a way that the 

error vector approaches zero uniformly from the initial approximation as 

fast as possible. Evenmore, the method requires the transient information 

of the last two vectors. 

(J)That Lie do measw>e Unear magnitude by movement and vi.se versa. 

AristotZe's Physias IV, 12,29. 
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5 .1 THE PSD-SI METHOD 

Let us consider the completely consistent linear stationary iterative 

method defined by (2.1.3) where (I-H) is non-singular and (2.1.5) is valid. 

We assume that the eigenvalues ~ of H are real and lie in the interval 

(5.1.1) 

where a and b are real. 

The convergence properties of (2.1.3) method can often be improved 

by the use of a semi-iterative method based on the (2.1.3). 

Varga [1957] and Golub and Varga [1961] have shown that a gain by 

an order of magnitude is attained if one uses the linear non-stationary 

method of second degree 

where 

u(n+l) = Pn+l[p(Hu(n)+k)+(l-p)u(n)]+ (1-pn+l)u(n-1)' n=O,l, ••• 

(5.1.2) 

and where 

2 
P = 2- (a+b) 

·. 

p = 
2 

2 
(1 !!._p ,-1 

Pn+l = - 4 n ' 

a= 
b-a 

-:::--;---,~ = S (H) • 2-(a+b) 

n=2,3, ••• 

For the PDF method (vd Chapter 3) we have 

H = I-TM-lA 
(I) 

= I-TB 
(I) 

where T>O and A is a positive definite matrix. 

Since B is a positive definite matrix (vd (3.5.6)) there 
(I) 

exists positive numbers m(B ) , M(B ) such that 
(I) (I) 

0 < m(B ) ~ ~(B ) ~ M(B ) , 
(I) (I) (I) 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1. 7) 



hence all the eigenvalues of H are real and lie in the interval 
"' 

where ~(H )=~(I-TB). 
(I) (I) 

a ~ ~(H ) ~ b < 1 

"' 
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(5.1.8) 

Then from (5.1.2) the optimum semi-iterative method corresponding 

to the PDF method (3.5.3) is 

(n+l) (n-1) (n) (n-1) - -1 (n) 
u =u +p+l(u -u )+p+lpM (~-Au ),n=O,l, ••• 

n n (5.1.9) 
where p,p

1
,p

2 
••• have been defined by (5.1.3), (5.1.4) and (5.1.5), and 

by means of the PDF method transform to 

and 

2 p = m(B )+M(B 
"'o "'o 

pl = 1 
2 

(1 
a -1 - -) p2 = 

Pn+l = (1 

P(B ~-1 

"'o 
a=-~:..___-

P(B )+1 
"'o 

2 

n=2,3, .... 

where in Chapter 3, m (B ) , M (B ) and P (B ) have been defined as 
"'o "'o "'o 

the minimum, maximum eigenvalue of B and their reciprocal ratio, 
"'o 

respectively. 

Below we will omit the subscript on Ill and T for simplicity. 

By (5.1.2) and (3.5.3) the formula for the PDF-SI method is 

where 

p 
n 

CH ) 
(I) [ 

2H -(b+a)I ) I ( 1 
= Tn -"'~b---a-- Tn 2-~~a)J 

(5.1.10) 

(5.1.11) 

(5.1.12) 

(5.1.13) 

(5.1.14) 



k = (I-P (H ))A-~ 
n n w 

and T the Chebyshev polynomial of degree n. 
n 

By Missirlis and Evans [1980] we have that 

( 
M(B )-11n(B l-2B )/ [ M(B )-11n(B )) 

P (H ) = T "' "' "' T "' "' n w n M(B l-m(B ) n M(B )-m(B ) 
"' "' "' "' 
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(5.1.15) 

(5.1.16) 

where we suppose the optimum value of any quantity involved in (5.1.16). 

where 

Young [1971] has shown that 

r = 

2rh/2 
h 

l+r 

(
IP<BJ - 1 )2 
rP(Bj + 1 

"' 
hence as a measure of the rapidity of the convergence we take the 

asymptotic rate of convergence defined by 

R (P (8 ) ) = lim 1 tn S (P (H )) ) 
"' n "' n n "' n..., 

= lim 1 
tn 

2rh/2 

n h n..., l+r 

1 
=- 2 tnr. 

Taking M(B )>>m(B ), we obtain the asymptotic relation 
"' "' 

r ~ 1 -
4 

(5.1.17) 

(5.1.18) 

(5.1.19) 

(5.1.20) 

and therefore the asymptotic rate of =nvergence of the PDF-SI method 

is given by the formula 

R(P(H))~ 
"' n "' 

2 
(5.1.21) 



whereas the reciprocal rate of convergence is given by 

IPcB > 
RR (P CH )) ~ ____,~w~ 

n w 2 

which means that the use of the PDF-SI method results in an order 

(5.1.22) 

of magnitude improvement in the method, as we can ascertain from the 

formula (3.7.4). 

From (3.7.5) and (3.7.9) we see that we have a substantial 

improvement of the rate of convergence comparing the PDF-SI method, 

the benchmark method and the SOR method. 

5.2 NUMERICAL RESULTS 

In order to test the effectiveness of the PDF-SI method for solving 

elliptic difference equations, we carried out six numerical experiments 

similar to Table (4.l.Tl). The bGundary values were taken to be zero 

on all sides of the unit square except for the side y=O, where they were 

taken to be unity. The starting vector u(O) was the vector with all its 

compcnents equal to unity. The process te~nated after n iterations 

where n satisfied the stopping procedure 
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2rh/2 
h 

l+r 
:> 10-6 (5.2.1) (l) 

where r is given by (5.1.18). 

The procedure was carried out with two classes of parameters, 

the optima and the ones estimated, by Chapter 4. 

llu(n)_ull , 

(l)When (5.2.1) is satisfied then A :> lo-6 • 
IIUJJ ~ 

A 
A detailed analysis on that aan be found in Benokraitis [1974]. 



TABLE (5.2.T1) 

NUMBER OF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERION 

(5.2.1) USING PDF-SI WITH OPTIMA PARAMETERS 

-1 OPTIMA PARAMETERS 
PROBLEM h (I) P=T P (B l PDF-SI 0 0 (1)0 

I 20 l. 7642 .7027 5.2291 16 

40 l. 8741 .4301 10.1104 23 

60 1.9155 .3037 14.9301 28 

ti 20 1.5878 .9262 2.4108 10 

40 l. 7661 .6695 4.2449 14 

60 1.8377 .5134 6.1100 17 

III 20 1.7667 .6969 5.2566 16 

40 1.8760 .4242 10.0993 23 
•. 

60 1.9158 .3027 14.9274 28 

IV 20 l. 7643 .7104 5.6256 17 

40 1.8748 .4308 10.9140 24 

60 1.9143 .3108 16.4468 29 

V 20 l. 7483 .7429 5.8706 17 

40 1.8662 .4587 11.2883 24 

60 1.9090 .3278 16.7154 30 

VI 20 1.6065 .9083 2.5520 10 

40 l. 7790 .6448 4.5602 15 

60 1.8464 .4944 6.4861 18 

87 
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TABLE (5.2.T2) 

NUMBER OF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERION 

(5.2.1) USING PDF-SI WITII ESTIMATED PARAMETERS 

-1 p=T P(B ) ESTIMATED PARAMETERS PROBLEM h (1)1 1 (I) 

PDF-SI PSD-SI 1 

I 20 1. 7288 .8186 6.8760 19 19 

40 1.8544 .5018 13.1600 26 26 

60 1.8994 .3634 19.3686 32 32 

II 20 1.6065 .9094 2.5377 10 10 

. 40 1. 7779 .6469 4.4997 15 15 

60 1.8436 .4993 6.3872 18 18 

III 20 1.8540 .5011 12.4429 25 29 

40 1.9330 .2478 22.0863 34 39 

60 1.9422 .2156 23.4865 36 48 
. 

IV 20 1. 7241 .8033 9.8038 16 21 

40 1.8790 .4282 15.8543 29 29 

60 1.9143 .3145 22.8430 35 36 

V 20 1.8782 .4282 14.5976 28 28 

40 1.9357 .2403 24.3183 36 40 

60 1.9521 .1826 36.9602 47 49 

VI 20 1.6240 .8883 2.6561 11 12 

40 1. 7996 .6012 4.9865 16 18 

60 1.8607 .4552 7.1754 19 23 



By (5.1.19) and since 

R (P CH )) ~ 
"' n w 1 

-1 
P (B ) =c h we obtain the expected result w

1 
1 

2 

lclh-1 

(5.2.2) 

The numerical results of Tables (5.2.Tl) and (5.2,T2) indicate O(h~) 

convergence even if the coefficient functions are not restrLcted to 

(2) 
class C • This is an order of magnitude improvement of the PDF-SI 

over PDF. However, an h-~ behaviour is attained by using SSOR-SI or 

PSD-SI. Also all three methods in the SI processes require approximately 

twice the work required by the SOR method. 

What we have to point out here is that the accuracy of the PDF-SI 

with estimated parameters is stronger than the one offered by the SSOR-SI 

and PSD-SI, since the estimated parameters of the PDF method are better 

posed than in the other two methods, namely PSD and SSOR (compare for 

example Table (4.2.T2)). •. 
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For the problems considered we obtain approxLmately O(h~) convergence 

with the PDF-SI. As indicated in Table (5.2.T2), the PDF-SI method is 

applicable for problems with certain kinds of discontinuities, as shown 

by Problem IV and the one given by Case V. In cases like this, the 

expected analytical solution (if it is possible to be found) is a weak 

solution and this leads to the consideration of generalized functions. 

In the nume:dcal solution it was suggested by Young [1971] that the 

coefficient of equation (1.5) to be bounded in a suitable chosen space. 

In Figures (5.2.Fl-4) we plot the logarithm of the required number 

-1 of iterations using PDF-SI versus tnh • The slope indicates the 

~ approximate order O(h ) of the convergence rate. 
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EPILOGUE 

Panorami.:c: AZors, Obel.ix, Z 'HeZvetie, a'est aorm1ent? 

Obel.ix: PZat. 

Asterix Chez Les HeZvetes 

Gosainy 

In this text, we have attempted to establish and describe an 

iterative method for solving large sparse systems of linear algebraic 

equations, based on the preconditioning concept. We have tried to 

present the theory making a detailed study on the formulation of the 

method. This investigation provided us with useful information on the 
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validity of this particular type of preconditioning considered, on the 

spectral condition number and on the rate of convergence of the associated 

method. ·. 

The numer1cal experiments demonstrated the theoretical foundation 

of the Preconditioning by Direct Factorization method, even for certain 

kinds of discontinuities amongst the coefficients of the elliptic partial 

differential equations. 

Since the iteration matrix of the PDF method has positive eigen-

values the semi-iterative technique applied resulted in a O(h~) 

acceleration of the convergence rate, where h is the net mesh size. 

Principally, we have been concerned with a certain conditioning 

matrix M of form (3.5.2). The field is open for research when M possess 

one of the forms stated in Section (3. 3) of Chapter 3. Our aim was to 

reduce the original P-condition number (spectral condition number) of the 



-1 matrix A, by premultiplying A by M 
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• The resulting preconditioned matrix, 

-1 
B =M A, turned the initial system (2.1.1) which was ill-conditioned to 

"' 
the well-conditioned system (3.2.1). 

The PDF optimal procedure required the knowledge of the two parameters 

w,T at their optimal values, for carrying out the numerical solution of a 

partial differential equation efficiently. The theoretical foundation for 

the evaluation of w was given in Theorem (3.6.4). Further, that theorem 

provided us with a bound on the P-condition number of the preconditioned 

matrix B and hence a theoretical evaluation for the convergence rate of 
"' 

the PDF method. 

The numerical results presented in Chapter 4 show a substantial 

improvement of the rate of convergence of the P~ method as compared with 

the SOR,SSOR and PSD method, where all the methods except SOR used 

estimated parameters. The percentage increase in the number of iterations 
•. 

required by the SOR,SSOR and PSD method over the PDF method, with 

estimated parameters, including the SOR method with optima parameters can 

be found in Tables (4.2.T2) and (4.l.T3) of Chapter 4. The PDF algorithm, 

nevertheless, required more operations than the aforementioned methods for 

the program to be executed. The Niethammer's scheme was applied to the 

PDF method in order to reduce the number of operations. A saving of only 

20 percent was realized in the arithmetic operations count (vd Appendix C). 

The PDF method accelerated by semi-iteration gave an order of 

magnitude improvement of the rate of convergence over the PDF method. 

Further research is required to investigate the accuracy offered by the 

PDF-SI method as compared to the SSOR-SI and the PSD-SI method. The 

acceleration by semi-iterative techniques shOws that the PDF model can be 



applied effectively to second degree and to non-stationary methods even 

in cases of differential equations containing discontinuous coefficients, 

as Problem V. 
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Our results permit further generalization to cases where the 

conditioning matrix M possesses one of the forms described in Section(3.3) 

of Chapter 3. However, the exposition of such cases of the conditioning 

matrix will occupy a larger amount of computer storage. Of particular 

interest, would be the investigation of a preconditioning method with 

such a matrix M as well as the problem of finding the optimal process 

(3.5.3) from the condition of minimizing the numerical work. 
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APPENDIX A 

MATRIX THEORY PRELIMINARIES 

In this Appendix we present some basic definitions and theorems on 

matrix theory, preassuming that the reader is familiar with it. 'nle proofs 

can be found in any standard book of matrix theory. 

Definition (A.l): 
h 

If x,yE R then by we call the inner 

product of x,y over R. 

Definition (A.2): 
2 h 

The L -norm of a vector xER , is defined by 

llxll 2 .. l<x,X> 
L 

Definition (A.3): 
-1 

'nle matrices A and A
1

mBAB are said to be similar. 

-1 
The relation is symmetric for A•B A

1
B. 

'nleorem (A.4): If A is symmetric matrix then for any x€-Rh 

min 
xf.O 

<X,Ax> 

<XrX> 
:; 

<X,Ax> 
< <x,x> ' 

max 
X 

<x,Ax> 
<XrX> 

'nleorem (A.S): 
, T 

For any matrix A, the matrix AA is symmetric and non-

negative definite. 
T 

If A is non-singular then AA is positive definite. 

Theorem (A.6): If A is positive definite matrix then there exists a 

unique positive definite matrix B such that 

B
2 

z A • 

(The matrix B is denoted by A,) • 



Theorem (A.7): If A is positive definite then for any non-singular 

T matrix L the matrix M=LAL is positive definite. 
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Definition (A.B): 2 The L -norm of a positive definite matrix A is defined 

by 

IIAII 2 • sup 
L x#o 

I!Axjj 2 
L 

llxll 2 
L 

• sup <Ax,Ax> • 

Definition (A.9): The M-norm of a matrix A is defined as 

, 

for any non-singular matrix M and for any norm 11·11· 

Theorem (A.lO) : For any matrix norm we have S (A)~ 11 A 11 where AS\hxh and 

S(A) denotes the spectral radius of A. 

Theorem (A.ll): If A and B are square matrices, then AB and BA have the 

same eigenvalues with the same multiplicities. 

Definition (A.l2): A matrix Aa(aij) has weak diagonal dominance if 

and for some i, 
> r 

j 
i,lj 

If for every i the second relation is valid, then A has strong diagonal 

dominance. 

Definition (A.l3): A (nxn)mmatrix A is reducible if there exists a 

permutation matrix P such that 

-
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where B and C are square matrices, or if n•l and A-o. Otherwise, A is 

irreducible. 

Definition (A.l4): A matrix A of order n has "Property A" if there exist 

two disjoint subsets s
1 

and s
2 

of w, the set of the first n positive 

integers, such that s
1 

+s
2

..w and such that if ijlj and if either ai/0 or 

ajt"O• then iEs1 and jEs
2 

or else iEs
2 

and jEs
1

• 

Simply by rearranging the rows and corresponding columns of A, A 

can obtain the form 

(A.lS) 

where o
1 

and o
2 

are square diagonal matrices. 

Wielandt-Hoffman Theorem (A.l6): If c-A+B, where A,B and Care symmetric 

matrices having the eigenvalues a~,bi,yi respectively arranged in non

increasing order, then 

• 
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APPENDIX B 

PROOF OF THEOREM (2.7.11) 

In this Appendix a proof is stated in Theorem (2. 7.11). 

Theorem (2.7.ll)'s exclaimation states except that S(UL)~b is used 

instead of S(LU)~b in (2. 7.12). 

Proof: 

Evidently (2.7.13) is derived from (3.6.1) by Lemma (3.5.30) and 

the relation M(C l~l/[w(2-w)]. 
w 

Consider now the functions pM(w)-pM(wJM,b) and pm(w)apm(wJMrbl as 

they have been defined. 

In order to minimize p (wl and p (wl we first note that in the range 
M m 

(1,2) of w they have a minimum at 

and at 

2 
wM • -.....:::..---

l+h-2M+4b 

2 
"'m • -;:::::::;:

l+h-2m+4b 

respectively, where w ~w • 
m M 

We now attempt to locate the functions p (w) and p (wl with respect 
M m 

to their critical and optimal values (in the sense of minimization), so 

we distinguish the following cases. 

- 1 2 
Case I.a.l: b<:p l<~w* and j<"'lf"'* 

Since the critical point "'M is in the range of "'' then 
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Graphically pM(w) has the form (B.Fl) as we can establish from Table (B.Tl). 

w 0 OlM w* 2 

sign (p~ (w)) - + + 

pM(w) ~ ~ 

0 1 w* 

Since the critical point wM is out of the range of w and pM(wl 

decreases on (l,w*], then 

• min 
wE(l,w*] 

wME(l,w*l 

(B.Tl) 

(B.Fl) 

Graphically pM(w) has the form (B.F2) as we can establish from Table (B.T2). 

w 0 w* WM 2 

sign(p~(w)) - - c + 

pM(wl "'-. ~ 
(B. T2) 



0 1 

- 1 case I.b: b<4, ~·~w<2. 

- 1 Since now, b<4 and w*>l then w~l<w*• 

increases on [w* ,2), we have 

P (w*) • 
m 

min 
wE[w* ,2) 

w* 

Therefore since p (w) 
m 

P (w) 
m 
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(B.F2) 

Graphically p (w) has the form (B.T3) as we can establish from Table (B.F3). 
m 

Ill 

sign (p' (w)) 
m 

p (w) 
m 

P (w) 
m 

0 

I 
I 

• \ 

-

~ 

wm 1 w* 

) + 

/ 

\ , 

0 

\ , 
' ~"'""/ ', . 

' ' ...... , ... """ ------
w 
m 

1 w* 

2 

(B.T3) 

/ 

(B. F3) 



Respectively to the location of ~·.~M and ~m we ascertain the Cases 

I.a and I.b imply together that 

when w ~~ ~w* and that 
m M 

= min 
~E(l ,2) 

p ~~·> R 
M 

min 
~E(l ,2) 

where graphically for pM(~)) we have Figures (B.F4) and (B.FS). 

0 

', p (~) / 
', m .... -'' ', ........ ............ ___________ _ 

~ 
m 

1 ~· 2 

(B.F4) 

103 

(B.FS) 

0 ~ 
m 

1 ~· 2 



l 
Case II: b~ 

104 

Two subcases are observed which imply the same result. Hence always 

wM is in the range of w. However, in Case II we have that 

·. 
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APPENDIX C 

ARITHMETIC OPERATION COUNT 

In this Appendix, we determine the number of arithmetic operations (ops) 

required by the PDF method to solve the problem 

l._(A .!!!_) + .!._( C au) • 0 , 
ax ax ay ay 

which is described in Chapter 1, for the unit square, 

The discretised form of (C.l) is 

(C,l) 

u(x,y) • b
1 

(x,y)u(x+h,y)+b
2

(x,y)u(x,y+h)+b
3

!x,y)u(x-h,y)+b4!x,y)u(x,y-h) 

where 

and 

h 
A(x~,y) 

bl (x,y) • S(x,y) 

(C,2) 

' h C(x,y+p 
' b2(x,y) • S(x,y) 

(C, 3) 

we assume that the coefficients A and C for each mesh point are 

in storage and need only be computed once, Since the matrix A is 

symmetric then slightly more than a full array of size (J-l)x(J•l) is 

needed to store both coefficients A and C if h•l/J, 

In the operation count we consider products as well as summation 

processes equally, 

In order to compute the bis in (C,2) 
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3 additions } 4 divisions 

are required as can be seen from (C,3) and (C,4). 

Let us now consider the PDF method defined by 

where 
2 -1 -1 T 

F a w b(I-wL) (I-wU) eJ-leJ-l (C,6) (l) 

and eJ-l ~ [o,o,,,. ,o,l]T the (J-1)-basic vector of 

(J-1) X (J-1) 
R • 

An alternative form of (C,S) is the following scheme due to 

Niethammer [1964], which is a three step process. 

(n+l/3) 2 (n) 
u(J-l)x(J-1) = w bu(J-l)x(J-1) 

. 
(n+2/3) (n+l/3) L (n+2/2) L (n) 

u = u +w u -w u 

(C, 7) 

where the third step is a simple Gaussian elimination process, since 

the matrix I+F is upper triangular with non-zero elements only on the 

diagonal and the last column, 

Evidently we have 

and 

(l)EvidentZy F has onZy one non-zero coZumn. i.e •• the Zast one. 

Thus the form ofF is reZativeZy easy. 
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(n+l/3) 
Eliminating u we get the formula (3.5.4) 

U (n+l) • M-l (H--rA]u (n) + TM-~ 

-1 (n) -1 
• (I-TB A)u + TM b • 

Ill 

By Niethammer's scheme we can reduce the computational work, taking 

(n) 
advantage of the appearance of Lu in both equations of (C.7). Thus, 

we can store Lu(n) after the first half iteration and use it for the 

second half one. Similarly at the end of the second half iteration we 

(n+2/3) 
can store Lu and use it in the next iteration step after the 

direct one. For each step after the first it is necessary to store only 

(n+i) d t L (n+i+2/3) Lu annou • 

Explicitly, it can be seen as indicated, 

(n+l/3) 
u 

(n+l/3) 2 (n) 
u(J-l)x(J-1) = "'bu(J-l)x(J-1) 

(n) 
save Lu 

·. 

(n+2/3) (n+l/3) L (n+2/3) L (n) 
U -=U +(I.)U -(a)U 

u(n+4/3) • (l--r)u(n+l)+(T-w)Uu(n+l)+wUu(n+4/3)+-r(Lu(n+l)+b)) 

(n+4/3) 2 (n) 
u(J-l)x(J-1) = "'bu(J-l)x(J-1) 

L 
(n+l) 

save u 

(n+S/8) (n+4/3) L (n+S/8) L (n+l) 
u =u +UJU -wu 

etc • . 
• . 
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We proceed to determine the number of operations necessary to 

complete one PDF iteration. From (C.7) we have the following PDF 

computation for a particular point (x,y), 

(n+l/3) ( ) (n) r. (n) (n) (a) u x,y • (1-T)u (x,y)+(T-w) Lb
1

lx,y)u (x+h,y)+b2 !x,y)u 

1 r. . (n+l/3) 2 (n+l/3) (x,y+h) +wLb
1

(x,y)u (x+h,y)+b (x,y)u 

J r. (n) (n) J (x,y+h) +TL?
3

!x,y)u (x-h,y)+b4 !x,y)u (x,y-h) 

(C.B) 

(n+2/3) ( ) (n+l/3) r; (n+2/3) u x,y ~ u (x,y) +w Lb
3 

(x,y) u (x-h,y) + 

(n+2/3) J b 
4 

(x,y) u (x,y-h) 

r. (n) (n) J 
-w~3 !x,y)u (x-h,y)+b4!x,y)u (x,y-h) (C. 9) 

u(n+l) (J-l,J-1) • u(n+2/l) (J-l,J-ll/[l+F(J-l,J-ll] 

(n+l) (n+2/3) (n+l) u (x,y) • u (x,y) - F(x,y) ><u (J-l,J-1) 
} "·"' 

The algorithm needs 8J2 operations to perform F, additional to 

the total number of operations involved to execute the program. 

For a single point, from (C.Ba) we have 

10 multiplications 

and 6 additions 

not counting the operations involved to form (1-T) and (T-w) since these 

can be computed once and stored. 

For the computation of (C.9) 

6 multiplications 

3 additions 

are required and 



l subtraction 

Surplus to that for the computation of (C.lO) 

l subtraction 

and l multiplication 

is required. 

Therefore, for one full iteration 

(l6+7)J2 + (l0+5)J2 + 2J2 2 
ops • 40J ops 

is required. 

Using Neithammer's scheme we have seen that it is not necessary to 

(n) 
compute Lu in the second half iteration, This means a saving of 8 

operations, hence for one iteration applying the Niethammer's process 

2 2 2 
(40J -SJ )ops • 32J 

operations are required. 

In comparison one SOR iteration requires l7J2 operations, one SSOR 

2 Niethammer's iteration requires 26J operations for the first iteration 

and l8J2 operations after the first and one PSD Niethammer's iteration 

requires 30J2 operations for the first iteration with 22J2 operations 

for every iteration after the first. Thus, we conclude that the PDF 

method requires about 30\ 1 40\ and 45\ more work for an intermediate 

iteration compared to the SOR,SSOR and PSD methods respectively. This 
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was expected for the direct step (C.lO) and was included in the algorithm, 

A less sophisticated scheme than the Niethammer's one is the 

fractiona1-0Jtep scheme making use of vector corrections, This scheme 

is described in (3,5,4) of Chapter 3, One complete PDF iteration of 

2 (3,5,4) requires 36J operations, 

In a simple manner we see that the PDF-SI method given by formula 

2 (5,1,9) requires 39J operations since it is a second degree formula, 



If we applied a Chebyshev acceleration technique we should have a 

smaller number of operations in the PDF version, but we expect the 

same number of iterations at the PSD method. That is because both 

methods possess almost identical P-condition numbers even in some cases 

of estimated parameters (vd. Tables (4.2.T2) and (4.2.T3). However, 

better accuracy for SSOR and PSD methods is expected by using a similar 

version of the PDF. 

·. 

llo 



APPENDIX D 

In this Appendix we present a program which was employed for the 

solution of the six problems in Olapter 4, by the PDF method, either 

with optima or with estimated parameters. The same program can be used 

for the PDF-SI method if we replace the last step of the PDF algorithm 

by the non-stationary SI step. 

For all numerical tests performed in this work, the ICL 1904S* 

computer was used. 

'BEGIN' 'INTEGER' NI IN I J I I I K: 
'REAL'A0,A1,A2,A3,A4,W,D1,T; 
'PROCEDURE' CALCOEF(C0,C1,C2,C3,C4,K,L,H); 
'VALUE'K,L,H; 
'REAL'C0,C1,C2,C3,C4,H; 
'INTEGER'K,L; , 
'BEGIN'C1 C2 C3 C4 1; 
ce C1+C2+C3+C4;- -
'END': 
'PROCEDURE' NORMINF(M,A,N); 
'VALUE' N; 'INTEGER' N; 'REAL' M; 
'ARRAY' A; 
'BEGIN''INTEGER' I,J; 
M ABS(A[1,1)); 
'FOR' I 1 'STEP'1 'UNTIL' N 'DO' 
'FOR'J I 'STEP' 1 'UNTIL' N 'DO' 
'IF' ABS(A[I,J)) 'GT'M'THEN' 
M ABS(A [I,J)): 
'END': 
SELECT INPUT(0);SELECT OUTPUT(0); 
NEWLINE(3); 
WRITETEXT(' ( 1 %PROBLEM1%')'); 
'FOR'W 1.7288, 1.8544, 1.8994 'DO' 
'BEGINT . 
N READ; 
PihNT(N,2,0); 
NEWLINE (3) ; 
WRITETEXT ( 1 

( '%T%') '); 
T READ; 
PRINT (T I 0, 8); 
NEWLINE (2); 

lll 



'BEGIN' 
'ARRAY' X,Y,Z,D,H,G,F,Z1,L[0:N,0:N]; 
'FOR' I 0'STEP' 1 'UNTIL' N'DO' 
'FOR' J-0 'STEP' 1'UNTIL' N'DO' 
Y[I,J] Z[I,J] D[I,J] X[I,J] 
L[l,J]-H[l,J]-G(I,J]-F[I,J]-Z1[I,J] 0; 
'FOR'l-1'STEPT1'UNTIL'N-1'DO' -
'FOR'J-1'STEP'1'UNTIL'N-1'DO' 
X [I,J]=1; 
NI_0; 
'FOR'J N-1 'STEP' -1 'UNTIL' 1 'DO' 
'FOR' I N-1 'STEP' -1 'UNTIL' 1 'DO' 
'BEGIN'-
CALCOEF(A0,A1,A2,A3,A4,I,J,1/N); 
H[N-1,N-1] W*W/4; 
G[I,J] H[I~J]+W/A0*(A1*G[I+1,J]+A2*G[I,J+1]); 
'END I;-
'FOR' J 1 'STEP' 1 'UNTIL' N-1 'DO' 
'FOR' I-1 'STEP' 1 'UNTIL' N-1 'DO' 
'BEGIN'
CALCOEF(A0,A1,A2,A3,A4,I,J,1/N); 
F[I,J] G[I,J]+W/A0*(A3*F[I-1,J]+A4*F[I,J-1] ); 
I END'; 
LAB1: 
'FOR'J 1'STEP'1'UNTIL'N-1'DO' 
'FOR'I-1'STEP'1'UNTIL'N-1'DO' 
'BEGINT CALCOEF(A0,A1,A2,A3,A4,I,J,1/N); 
Z[I,J] X[I,J]-1/A0*(A1*X[I+1,J]+A2*X[I,J+1]+ 
A3*X[I~1,J]+A4*X[I,J-1]); 
'END' ; .. 
'FOR'J 1'STEP'1'UNTIL'N-1'DO' 
'FOR'I=1'STEP'1'UNTIL'N-1'DO' 

Z[I,J] Z[I,J]-D[I,J]; 
'FOR'J-N-1'STEP' -1'UNTIL'1'DO' 
'FOR'I-N-1'STEP' -1'UNTIL'1'DO' 
'BEGINTCALCOEF(A0,A1,A2,A3,A4,I,J,1/N); 
Y[I,J] Z(I,J]+W/A0*(A1*Y[I+1,J]+A2*Y[I,J+1]); 
'END',-
'FOR'J 1'STEP'1'UNTIL'N-1'DO' 
'FOR'I-1'STEP'1'UNTIL'N-1'DO' 
'BEGINTCALCOEF(A0,A1,A2,A3,A4,I,J,l/N); 
Y[I,J] Y[I,J]+W/A0*(A3*Y[I-l,J]+A4*Y[I,J-l]); 
'END';-
Z1[N-l,N-1] Y[N-l,N-1]/(1+F[N-1,N-1]); 
'FOR'J N-2'STEP'-l'UNTIL'1'DO' 
Zl[N-1~J] Y(N-1,J]-F[N-1,J]*Z1[N-1,N-1]; 
'FOR' I N~2'STEP' -1'UNTIL' 1'DO' 
'FOR'J N-1'STEP'-1'UNTIL'1'DO' 
Zl(I,JJ Y(I,J]-F(I,J]*Z1[N-l,N-1]; 
'FOR' I-1 'STEP' 1 'UNTIL' N-1 'DO' 
'FOR' J-1 'STEP' 1 'UNTIL' N-1 'DO', 
Y[I,J] X[I,J]-T*Z1[I,J]; 
NI_NI+l; 
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**** 

K_N-1: 
NORMINF (D1 I y I K): 
'IF' D1 'LE' &-6 'THEN' 'GOTO' LAB2: 
'FOR'J 1'STEP'1'UNTIL'N-1'DO' 
'FOR'I-1'STEP'1'UNTIL'N-1'DO' 
'BEGINTL[I 1J] X(I 1J]: 
Xli1Jl Y!I1JlT 
'END':
'GOTO'LAB1: 
LAB2: 
'FOR'I 0'STEP'1'UNTIL'N'DO' 
Y[I 1 0]-0: . 
NEWLINE (3): 
WRITETEXT (I (I %W%') I) :PRINT(WI114): 
NEWLINE(3); 
WRITETEXT (I (I %NI% I) I) :PRINT (NI I 1 I 4): 
NEWLINE(3): 
'FOR'J 0'STEP'1'UNTIL'N'DO' 
'BEGINT 

NEW LINE(3): 
'FOR' I 0'STEP'1'UNTIL' N'DO' 
PRINT(Y(I 1J] 1 0 1 8): 
I END I : 

I END I: 
I END 1 : 

I END I: 
FINISH 

113 



114 

REFERENCES 

[1] BENOKRAITIS, V .J. (1974) : "On the Adaptive AaaeZ.eratian of Syrrmetria 

Suaaessive OVerrelaxatian", Ph.D. Thesis, Oniv. of Texas at 

Austin, U.S.A. 

[2] 
~ 

BERMAN, A. and R.J. PLEMMONS (1979) : "Non-negative Matriaes in the 

f.hthematiaaZ. Saienaes", Academic Press, New York, San Francisco, 

London. 

[ 3] DIAMOND, M.A. (1972) : "An EaanomiaaZ Al-gorithm for> the SoZ.ution of 

EZ.Ziptia Differ>enae Equations Independent of User>-Suppl.ied 

PCU'Cimeters", Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, 

U.S.A. 

[ 4] EVANS, D.J. (1968): "The Use of Preaonditioning in Iterative Methods 

for> SoZ.ving Linear> Equations ~th Symmetria Positive Definite 

Matriaes'~ J .Inst.Math.Appl. 4, 295-314. 

[5] EVANS, D.J. (1973): "Comparison of the Canvergenae Rates of Iterative 

Methods for> SoZving Linear> Equations ~th Preaonditianing", 

Greek Mathematical Society, carath;odory Symposium, 106-135. 

[6] EVANS, D.J. (1972): "An Al-gorithm for> the SoZ.ution of Cer>tain 

TI'idiagonaZ. Systems of Linear> Equations", The Computer Journal, 

15, 356-359. 



115 

[7] EVANS, D.J. (1974): "Iterative Sparse Matrix AZgorithms", In 
I 

"Software in Numerical Mathematics• (D.J. Evans, ed.), Academic 

Press, 1974, 49-83. 

[8] EVANS, D.J. (1980): "On Preconditioned Iterative Methods for EZZiptic 

PartiaZ DifferentiaZ Equations", Elliptic Problem Solvers 

Conference, Los Alamos Scientific Laboratory, July (1980) , 

Academic Press 

[Sa] EVANS, D.J. (1980): Private Communication. 

[9) EVANS, D.J. and C.V.D. FORRINGTON (1963): "An Iterative Process for 

Optimizing Syrrrnetric OVerreZa:ration", The Computer Journal, 

6, 271-273. 

[10) EVANS, D.J. and A. HADJIDIMOS (1979): "On the Factorization of 

SpeciaZ Syrrrnetric Periodic and Non-Periodic QuindiagonaZ 

Matrices, Computing, 259-266. 

[11) EVANS, D.J. and N.M. MISSIRLIS (1980): "The Preconditioned 

SimuZtaneous DispZacement Method", Math. and Comp. in 

Simulation (in press). 

' [12] GOLUB, G.B. and R.S. VARGA (1961}: "Chebyshev _semi-iterative methods, 

Successive OVerreZa:ration Iterative Methods and Second order 

Rir:hardson Iterative Methods", Numer.Math. Part I and II, 3, 

147-168. 

[13] GUNN, J.E. (1964}: "The SoZution of EZZiptir: Difference Equations by 

Semi-E:r:pUcit Iterative Techniques", J.SIAM Numer.Anal., Ser.B, 

2, 24-45. 



[14) HABETLER, G.J. and E.L. WACHSPRESS (1961): "Symmetria Suaaessive 

OVerrel.axation in So~ving Diffusion Differenae Equations, 

Math.Comp. 15, 356-362. 

[15) HIMMELBAU, D.M. (1972) : "AppZied Non-Zinear ProiJ1'C11TUifing", 

McGraw-Hill, 

[16] KAIIAN, w. (1958): "Gauss-seide~ Methods of So~ving Large Systems of 

Unear Equations", Ph.D. Thesis, Univ. of Toronto, Canada. 

116 

[17] MARCHUK, G.I. (1975): "Methods of Nwneriaa~ Mathematias", (translated 

by J. Ruzicka from Russian), Springer-Verlag, New York, 

Heidelberg, Berlin. 

[18) MISSIRLIS, N.M. (1978): 'Preaonditioned Iterative Methods for So~ving 

E~Ziptia Partia~ Differentia~ Equations", Ph.D. Thesis, Univ. 

Of Technology, Loughborough, U.K. 

[19) MISSIRLIS, N.M. and D.J. EVANS (1980): 110n the Aaae~eration of the 

Preaonditioned Simu~taneous Disp~aement Method", submitted to 

I.M.A. Jour.Num.Anal. 

[20] NIETHAMMER, w. (1964): "Relaxation bei Kompkxen Matrizen", Math. 

zeitsch, 86, 34-4o. 

[21] VARGA, R.S. (1957): "A Comparison of the Suaaessive OVerrel.axation 

Method and Semi-Iterative Methods Using Chebyshev Po~ynomia~s. 

J.Soc.Indust.Appl.Math., 5, 39-46. 

[22] VARGA, R.S. (1962): "Matrix Iterative Ana~ysis", Prentice-Ball, 

New Jersey. 



117 

, , [23] WILKINSON, ;:r .B. (1965): "The AZgebra.ic Eigenvalue Problem"• 

C1arendon Press, Oxford. 

[24] YOUNG, D.M. (1971): "Iterative Solution of Large Unear Systems". 

Academic Press, New York. 

(25] YOUNG, D.M. (197lal : "A Bound for the Optimum ReZazation Factor for 

the Successive OVe?'I'eZazation Method"• Numer.Math., 16, 408-413. 

[26] YOUNG, D.M. (1972): "Second-Degree Iterative Methods for the Solution 

of Large Itz.near Systems". J. of Approx:ipation 'nleory, 5, 

137-148. 

[27] YOUNG, D.M. (1977): "On the Accelerated SSOR Method for Solving 

Large Linear Systems", Advances in Mathematics, 23, 215-271. 






