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ABSTRACT 

The potential of the nuclear microprobe for the determination of 

spatial distributions of stable isotope tracers has been examined. 

In a preliminar~' st~<!y the sensi ti vi ty of the isotope selective 

modes of operation of the microprobe (backscattering and nuclear reaction 

analysis) for the measurement of stable isotopes was examined using ~Ig, 

Si, Ni and Co as examples. The use of backscattering analysis coupled 

with high resolution detectors and heavy ion beams was assessed using 

.Mg, Si, Ni and Ag as examples and found to be of limited application 

for stable isotope tracer studies. Nuclear reaction methods were con-

sidered to be most suitable for the measurement of 10'" atomic number 
.. . 7. 13 

elements, and tracer studIes lnvolvlng Ll, C and 15N were carried out 

to demonstrate the application of the method. 

7Li is effectively a stable isotope tracer produced in B
4

C assemblies 

within fast reactors. It can be used as an indicator for the boron burn-up, 

and to this end 7Li profiles were determined for some sample assemblies 

using the 7Li (p, 0. )0. reaction. 

A CGiilprehensi ve study of 1H, 2H, 3He and 4He induced reactions with 

12C and 13C and of the value of these reactions for the 'measurement of 
13 13 12 . 

C and Cl C ratIos was carried out. Samples of the alloy PE16 which 

had been exposed to 13C labelled CO? were examined using the 13C(d,p) 14C 
12 ()13 . . ~ 13 12 13 

and C d,p C reactIons to determIne the Cl C and C profiles. The 
16 17. . 

O(d,p) ° reactIon was used for the SImultaneous measurement of oxygen 

profiles, thus allowing correlations between oxidation and carburization 

to be made. 

Nitrogen uptake profiles were measured across barley roots which 

had received various treatments in 151\ labelled NH
4

N0
3

, using the 

14N (d ,p) 15N and 15N (p ,ay) 12C reactions. This investigation invol ved the 

development of handling and measurement techniques for studying extremely 

beam-damage-sensi ti ve organic materials "'i th focussed ion microbeams. 
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CHAPTER 1 

INTRODUCTION 

Over recent years there has been an increasing demand for stable 

isotope tracers, particularly for the stud~" of physicochemical and bio­

chemical processes (1, 2). This upsurge in their use can be attributed 

to increased availability, the introduction of better methods of analysis 

and the non-existence or unsuitability of radioactive tracers for some 

elements for example for oxygen and nitrogen. In some cases the intro­

duction of a radioactive tracer might be barred or the radioacti vi ty of 

the tracer may be overwhelmed by the inherent radioactivity of the sample. 

Thus the use of a stable isotope tracer can be an attractive alternative 

especially since in the investi/iation of many processes isotope ratio 

values, rather than tracer concentrations alone, are far more informative. 

In addition to measuring stable isotopes used as tracers in mechanistic 

studies one may also wish to examine the isotopic composition of some 

elements which have been disturbed by nuclear transmutations, for example 

the stable isotope ratios of elements in meteorites (3). 

1.1 AVAILABLE TECHNIQUES FOR THE DET~IINATION OF STABLE ISOTOPE TRACERS 

There are several techniques which have been used for the 

determination of stable isotopes, namely mass spectrometry, emission 

spectrometry, infrared spectrometry, nuclear magnetic resonance and 

nuclear methods of analysis. These techniques are discussed in 

succession below. 

1.1.a Mass Spectrometry 

(4, 5) 
Mass Spectrometry is probably the most frequently 

applied technique. Part of the sample under interrogation is 

converted into positive or negative ions, often these ions are 

then accelerated and then analysed by their behaviour on trans­

mission through electrostatic or magnetic fields. Qualitative 

information is obtained from the ion traj ectory which is used to 

identify the mass charge ratios of the ions and hence parent atoms 

or molecules and quantitative data can be obtained by relating the 

ion intensity to the ~oncentration. The detailed behaviour of and 

and the equations governing, the ion trajectories under the influence 

of a magnetic field are" gi ven in Section 2.3 and under the influence 

of an electrostatic field in Section 3.1.a. Mass spectrometry has an 
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excellent sensitivity and is capable of measuring small changes 

in isotopic abundance. Isotope dilution mass-spectrometry can be 

used to monitor small changes in isotopic abundance and is often 

used where the significant impurity elements have already been 

identified and analysis of just one or two specific elements is 

required. For this type of analysis a known amount of isotopically 

enriched tracer of the required element is added to a known amount 

of that element, isotopic exchange ensues before separation and 

purification of the required el ement ready for mass-spectrometry. 

Sensi ti vi ties (6) as low as 10-11 to 1O-15g have been reported. 

There are many different ways of producing the ions ready for 

mass spectrometry including d.c. arc methods, thermal ionisation, 

electron impact and inductively coupled plasmas. An important method 

is that used in a probe modification of mass spectrometry, secondary 

ion mass spectrometry (S.I.M.S.). The sample is sputtered by ion 

bombardment as shown in Figure 1.1. The bombarding ion beam \";11 

either loose all of its energy within the sample in a collision 

cascade process or it can eject a sample particle as an ion or neutral. 

In a typical analysis system the sputtered ion beam then passes through 

an extractor lens, thence through a double focussing (mass and energy) , 

analyser to an ion detection system. Secondary ion mass-spectrometry(8) 

in its probe modification has a good spatial resolution, < 10~m, which 

is comparable to that of the nuclear microprobe described in Chapter 2, 

however it is more typically run with a resolution of 7011m \dth an 

absolute sensitivity of <1O-8g (4). It is acceptable for the measure­

ment of mass ratio values but suffers from notorious difficulties in 

measuring absolute concentrations. These difficulties primarily prise 

, because the yield of secondary ions varies dramatically with the 

chemical state. A familiar disadvantage is that the sampling 

technique is destructive as discussed above. 

A new technique related to S.I.M.S., laser probe mass spectrometry 

(9) has been developed and appears to have a similar capability for the 

spatial determination of stable isotopes in both thick and thin targets. 

A spatial resolution as high as ~l11m can be attained and typically the 

absolute sensi ti vi ty range is about 10-18 to 10-20g (9). A laser 

probe mass spectrometer which is particularly interesting is that 

detailed by Hillenkamp (10) which is particularly suited to the analysis 
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of biological samples, a sample type discussed in detail in Chapter 8. 

The samples must be thin (0.1 to 20m) enough to be perforated by the 

laser shot. Thin sections of organic materials, metal foils, coatings 

of evaporated materials, dust particles and various biological 

specimens (teeth, hair, smears of cells, wood) can be investigated. 

Hillenkamp used a frequency doubled ruby laser. The laser shot is 

focused on to the specimen by an incident light microscope to a spot 

nominally 0.5 iJm. The microplasma generated from each irradiated 

volume is analysed in a time-of-flight mass spectrometer, providing the 

capability of multielement analysis. Since chemical separation cannot 

be used prior to the spatial investigations of the samples using either 

of these two mass spectrometry probe techniques the problem of overlap 

of identical mass/charge ratios will tend to occur more frequently than 

in conventional bulk analysis using mass spectrometry. 

1. f. b Emiss ion Spectrometry 

Em " " S t t (11) h"l h" d "t""t" lSSlon pec rome ry \ol 1 e aVlng gOD senSl 1 VI Y 18 

much less popular. Although for arc emission spectroscopy absolute 

sensitivities in the range 4 x 10-9g to 1 x 10-5g (12) and for copper 

and graphite spark spectroscopy 2 x 1O-10g to 2 x 1O-6g have been 

obtained it is extremely difficult to resolve isotopes and depending 

on the isotopes involved, isotopic sensitivites will be considerably 

poorer. Hany variations of emission spectroscopy techniques exist, 

being based on the phenomena of light emission after excitation of 

valence electrons and at wavelengths characteristic of the isotopes 

present. The differences in wavelengths of photons emitted from 

different isotopes are very small, demanding the use of a very high 

resolution wavelength dispersive system. (The isotopic shifts are 

greater for light elements than for heavier elements because of their 

larger relative differences in isotope mass. The greater the effective 

difference between masses the more influence is exerted on charge 

distribution of electrons in the nucleus and the greater the effect on 

the emission lines). Using high resolution systems isotopes of the 

elements of up to uranium have been detected. Generally only bulk 

information can be obtained although spatial resolutions of 10-50 ~m 

have been reported (11) using a Laser Spark Microprobe, but in non­

isotopic applications. 
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1.1.c Infrared Spectrometry 

( 13) 
Infrared Spectrometry gi ves information about molecular 

structure by virtue of the changes in molecular rotational and 

vibrational energy that occur under certain conditions by the inter­

action of infrared radiation wi th samples. It has primarily been used 

with gases and with liquids and solids which are transparent to most 

of the wavelengths of interest. Unfortunately metals are inherently 

opaque to infrared radiation because the free electrons which give 

metallic characteristics follow the applied oscillating electric field 

and do not allow the field to penetrate the metal to any significant 
(4) 

extent. A technique, "infrared reflection-absorption spectroscopy" 

has been developed to try to observe metal samples, however it is a 

difficult technique in practise and the absorption bands obtained are 

very weak. 

The presence of different isotopes can greatly alter the 

appearance of an I.R. spectrum due to changes in the spacings of 

vibrational and rotational levels as the same force constant acts 

upon an increased nuclear mass. Changes in the relative intensities 

and frequencies of vibrational transitions are observed.. For 

instance the effect on measured bondstretch frequencies of the lH 

and 2H isotopes of hydrogen in ethene are given below in Table 1.1. 

TABLE 1.1: VARIATION OF BONDSTRETCH FREQU&~CIES IN ETHENE 

WITH ISOTOPIC SUBSTITUTION 

~Iolecule 
Wavenumber for the 
double bond (cm 1) 

1623 

1515 

\\favenumbers for 
four single bonds 

2990, 3010, 

3106, 3108. 

2200, 2251, 

2304, 2345. 

the 
(cm -1) 

As a surface analysis technique infrared spectroscopy has the 

advantage of barely disturbing the sample surface, although the 

technique is limited 'in sample application and is better suited to 

bulk rather than spatial analysis. 
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1.1.d Nuclear Magnetic Resonance 

N 1 'I t· R (14, 15) . 11 f' 1 I lie ear ~agne le esonance IS genera yaIr y 

insensi ti ve except under certain favourable circumstances with 

high resolution N.M.R. spectroscopy of certain nuclides, usually only 

one isotope of an element, when absolute sensitivities of <10-8g (15) 

have been achieved. However it does give an unambiguous identification 

of a nuclide. N.M.R. depends on the magnetic properties of atomic 

nuclei and involves magnetic dipole transitions between well defined 

energy levels. Many atomic nuclei possess small magnetic moments and 

behave like spinning bar magnets, only nuclei with both mass and 

atomic numbers even have zero spin and no moment. Two external fields 

are required for nuclear magnetic resonance analysis, a strong magnetic 

field H and a linear oscillating field H1 perpendicular to H . In 
0 0 

the presence of the magnetic field H a nucleus of non-zero spin can 
0 

take up one of several levels (For Hydrogen, spin I = t there are 2 

levels, the spinning nucleus is either aligned in resonance \dth the 

field or flipped over so as to oppose it). It is possible to exc~te 

transi tions between these levels by the application of energy of the 

appropriate frequency. The resonance condition at a fixed value of H 
o 

will only have one corresponding oscillating frequency at "'hich the 

system can absorb energy. The chemical environment of a nucl eus 

affects its resonance frequency because variations in electron densi to­

alter the shielding experienced by the nucleus and thus the shift in 

field strength H needed to bring the nucleus back into resonance in 
o 

different environments, gives information on the chemical environment 

of the nucleus. (This shift is thus often called the chemical shift). 

Most instruments are of the high resolution type with parameters 

sui ted to detecting the resonance of one nuclei only. Notable progress 

has been made in developing high resolution techniques to allow the 

measurement of the molecular location of isotopes such as 13C, 15N 
17 and O. However the highest resolution is only attained for liquid 

specimens, solid state spectra being somewhat broadened. Normally 

solids are.dissolved in non protonated solvents. Again this is a 

destructive, bulk analysis technique. At the high resolutions only 

the fine structure in the resonance of the one nuclide is measured, 

isotopic ratios cannot be measured directly. 
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1.1.e Nuclear Methods 

Nuclear Methods of stable isotope analysis depend on the 

interaction of nuclear particles with the nuclides of interest. 

These methods are readily applicable to isotopic analysis because 

the nuclear properties of the isotopes of an element are often widely 

different. For example in the nuclear reaction analysis of oxygen 

using the (p,a) reaction, because of reaction kinetics (explained in 

detail in" section 3.1. b) a highly selecti ve isotopic analysis is 
" 18 (16) achleved for 0 • This arises because the energy of the a 

particles emitted from the 180 (p,a)15N reaction is much greater than 

160 and 170 • the corresponding energies from As discussed in Chapter 

3 interference from isotopes of other elements may occur. 

These methods fall into two main categories the first relying 

on delayed measurement of the induced activity in the product nucleus 

and the second using prompt methods of analysis which measure the 

scattered and emitted products immediately. Both of these two main 

categories can be adapted to pro\"ide spatial information on tracers. 

Tomographic examination ",i th Y -detectors, of samples activated using 

neutrons or photons of Y -ray energies can provide three-dimensional 

information on the variation in concentration of the activated 

nuclides in a sample. However only moderate resolution has been 
" (17) 

achleved • More commonly isotopes have been measured by auto-

radiographic techniques (18, 19) using different emulsions. However 

the nuclear technique with the greatest potential, and which is 

studied in this thesis, is sampl e interrogat ion with charged particle 

microbeams (or "ion microbeams") and the measurement of prompt 

emissions. Using these microbeam methods the spatial distribution of 

"isotopes in materials can be determined from the particle groups, 

gamma-photons, neutrons, X-rays and scattered part icles emitted from 

11 " " " "th h d "1" b (20, 21) sma reglons lnterrogated Wl c arge partlc e mlcro earns • 

The nuclear microprobe is a relatively new analytical tool in 

the field of ion beam analysis, which proffers the possibility of 

measuring fine spatial (22) distributions of elements and isotopes 

"in materials. This opportunity arises because to'o of the analytical 

modes of the nuclear microprobe, namely nuclear reaction analysis and 

backscattering analysis, are isotopically sensitive. It also has the 

advantage of being essentially a non-destructive multi-mode technique 
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and can provide a wide variety of compositional information. Using 

the highly focused ion beams of a nuclear microprobe in conjunction 

with the two isotopically sensitive analytical modes, isotopic 

analysis at high spatial resolutions can be achieved, for instance 

lum resolution is attainable on the Oxford University microprobe. If 

required subsurface changes in composition to depths of ca. 3 llm (23) 

may also be measured using either Rutherford backscattering analysis 

or certain nuclear reactions (43). Haximum advantage of the method 

is gained by utilising the maximum information provided by the inter­

action of the probe and target, thus another nuclear microprobe mode, 

ion beam induced X-ray analysis (24, 25) may prove useful. Although 

the X-ray analysis is not isotopically sensitive it could be used to 

measure total elemental concentration in order to obtain ratios of 

tracer to total elemental content. It would, additionally, readily 

indicate the presence of sample impurities. A detailed explanation 

of the nuclear microprobe is gi \'en in Chapter 2. 

Very few stable isotopes have as 

its use has 

yet been studied using the 

been limited to lOB/liB (26) nuclear microprobe, in 

and to 180 and 2H (16, 

fact 
27) The advantages and limitations of both 

nuclear reaction analysis methods and backscattering analysis methods 

are examined in detail in this thesis and the range of isotopes for 

which the technique of stable isotope tracing using the microprobe is 

applicable is eXl'lored paying particular attention to selectivity and 

sensitivity. 

1.2 COMPARISON OF THE AVAILABLE TECHNIQUES 

With the growing number of surface and trace instrumental analysis 

methods it is important to ascertain the advantages and limi tations ~f the 

techniques available. It is unlikely that anyone technique alone will suit 

all purposes. In analysis it is always preferable to obtain as much infor­

mation as possible about a sample, although time and finance may well 

curtail this ideal. In selecting the technique most applicable, selectivity 

and sensi ti vi ty are of utmost importance, although wide appl icabili ty and 

ease of operation of the technique are also desired. In the spatial 

determination of stable isotope tracers the latter two points may have to be 

compromised by the rigours of obtaining high sensitivity and selectivity. A 

comparison of the available techniques is gi\'en in Table 1.2 belo,,'. 
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TABLE 1.2: COMPARISON OF THE AVAILABLE TECHNIQUES 

TECHNIQUE 

MASS 
SPECTROMETRY 

DIlSSION 
SPECTROMETRY 

CO}IJ>\ENTS 

Only S.1.1>I.S. and Laser probe 
mass spectrometry techniques 
can provide direct instru­
mental spatial measurements 
without prior tedious 
mechanical sample segmen­
tation. Both suffer overlap 
of identical mass charge ratios 
especially as prior chemical 
separation cannot be used. 
Both rely on destructive 
sampling methods. Isotopic 
Tracer ~Iethod. 

Samples generally must be made 
conducting. Destructive 
Sampling. Bulk Analysis 
Method. 

SPATIAL RESOLUTION AND 
SEJ'iSITI VITY 

S.1.M.S. spatial 
resolutions <l~m, 
usually 7~m sensi­
tivity <10-8g (4). 

Laser probe spatial 
resolutions W~I, 
Sensitivity (9) 
10-18 to 10-20g. 

(12) 
Sensiti):ity 
1 x 10-0 g - 4 x 10-9g 
usually far poorer for i 

I isotopic measurements. ! 
i 

~----------~--------------------------+---------------------

I INFRARED 
SPECTROMETRY 

NUCLEAR 
~IAGNETIC 

RESONANCE 

NUCLEAR 
METHODS 

Limi ted in sample type appli­
cation. Bulk Analysis Method 

Limi ted in sample type. High 
resolution N.M.R. important 
for molecular location of 13C, 
15N, 170 Bulk Analysis 
~Iethod • 

Using nuclear microprobe. 
Good selectivity, of complex 
samples •. ~Iul ti-mode for much 
simultaneous information. 
Sensitivity and interferences 
vary considerably for 
different isotopes. 
Particularly suited to 
elements of light to medium 
mass. Non-destructive 
sampling. Isotopic Tracer 
Method. 
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Sensitivity (13) not 
for trace 
usually > 

elements, 
1% ..: 0.5%. 

I 
Under favourable high 11 

resolution N.MIR.) 
sensitivities 15 
< 10-8g. Usually only I 
for 1 isotope of an I 
element. I 
Spatial resolutions 
l'~m, usually 5-10]Jm. 
Sensitivity varies 
greatly "ith isotope 
Depth range usually 
only a few ]Jm. 



For the spatial analysis of stable isotope tracers one is only really 

left with a choice between the techniques based on the two probe modific­

ations of mass spectrometry and that based on ion microbeam analysis. The 
• mass spectrometry techniques may suffer extensively from overlap of 

identical mass/charge ratios. (Although when a high powered laser is used 

in the laser probe technique it should not suffer so actuely as S.l.M.S. 

This is because it should reduce the additional complications caused by the 

presence of molecular as "ell as atomic species. The likelihood of molecular 

species being present depends on the power of the laser used and the Z number 

of matrix elements present.) However when one uses ion microbeam analysis 

in conjunction with nuclear reactions one can usually circumvent any ambiguity 

and often by careful choice of reaction and experimental parameters one can 

obtain a highly selective analysis of the desired nuclide, even in very 

complex samples. Another disadvantage ",i th both of the mass spectrometry 

techniques is that they rely on destructive sputter sampling and are affected 

by any nonuniformity in the sputter rate. Nuclear microprobe analysis is 

essentialy non-destructive. Thus the use of the nuclear microprobe for 

the non destructive spatial analysis of stable isotopes shows great promise. 

This thesis describes the investigation, development and application of the 

nuclear microprobe to the spatial analysis of stable isotopes. 
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CHAPTER 2 

EXPERHIENTAL FACILITIES AND EQUIPMENT DESIGN 

2.1 THE EXISTING NUCLEAR mCROPROBE FACILITY 

The essential features of the Harwell nuclear microprobe are sho,,'n in 

Figure 2.1. A 3 Mel' electrostatic generator, IBIS, accelerates a charged 

particle beam produced by afi R.F. ion source. The vital feature of the 

nuclear microprobe is its ability to focus the accelerated charged particle 

beam to a very small intense beam spot. Initially microbeam work used 
. (28 29) 

collImated beams ' ,however these had 10'" spatial resolutions and 

low ion beam intensities. The magnetic focusing system now used on IBIS 

is shown in Figure 2.2. 

A small part of the accelerator beam passes through an aperture which 

acts as an object for the lens, a set of four quadrupole magnets in the 
(30) 

form of a Russian quadruplet A demagnified image, demagnification 

factor 5.8, of the beam spot at the aperture is then produced 21cm beyond 

the last quadrupole as shown in Figure 2.2. The four quadrupole magnets 

are clearly seen in Figure 2.3 which shows a general picture of the chamber 

end of the nuclear microprobe. The beam spot, when incident on a viewing 

quartz, can be observed through the microscope placed at the back of the 

target chamber as seen in Figures 2.1 and 2.4. It is necessary to be able 

to see the beam in the chamber in order to ensure that it is the desired 

size and shape and to see its exact position. When a beam spot of approxi­

mately the required size and beam current is seen on the back viewing quartz 

one can watch as the pOSition and current of the quadrupole lenses are 

altered to give the fine focusing needed to produce the extremely well 

defined small microbeams required. The position of the chamber itself can 

be moved in both the X and Y planes to centralize the position of the beam 

within the chamber. When measuring linear scans using nuclear reactions to 

detect light elements the permissible beam spot size is only tightly limited 

in one direction, that of the proposed scan. If one wishes to have as much 

beam current as possible for this type of scanning only three of the four 

magnetic lenses are required and typically the current density is 5 times 

that with all four lenses, the demagnification factors being 8.8 and 18.9. 

Several other types of focusing systems using electrostatic lenses, or 
(31-35) variations on this magnetic quadrupole system have also been developed 

producing beams down to a few microns in size. Although in the early 1970's 

the Harwell nuclear microprobe "'as the only ion microprobe there are 
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(25) no,,' more than 16 and most of these currently in use have a focusing 

system of the same general form as that sho,,'n in Figure 2.2. One of the 

limitations of the Harwell microprobe is a maximum mass-energy produce of 

22 MeV-amu which dictates the range of beams and energies which can he 

successfully bent and focused onto the target. 

The spatial information required can be obtained either by electro­

static scanning of the beam or by mechanical movement of the sample table 

using stepping motors. Elemental maps can be obtained by two dimensional 
( 36) 

scanning using the electronic system shown in Figure 2.5. Generally 

mechanical scanning is most useful for linear scanning to obtain compositional 

information along a line. Long distances, up to 25mm across a sample can be 

measured by mechanical movement of the sample holder with respect to the beam 

using stepping motors. The distances between sampling points can be varied 

greatly, step sizes in the range 0.25 - 250 lJ m are available. There are three 

stepping motors in the chamber x, y and z. The z movement is only used to 

rotate the sample holder, seen in Figure 2.4, and locate the specimen in the 

beam path. Scanning may be carried out in the X and Y directions only. The 

side microscope can also be seen in Figure 2.4 and allows the front face of 

the sample to be viewed over the area of the sample to be scanned. A diagram 
(36) , 

of the mechanical scanning and data collection system 15 seen in Figure 

2.6. Electrostatic scanning is most useful for rapid continuous scanning 

over relatively small distances of about 500 lJm. It is also useful to reduce 

beam damage when analysing sensitive samples by time averaging energy 

deposition. This type of scanning is achie\'ed by passing a current from, for 

example, a sa,,~ooth generator through the scan plates at either 50 or 500 Hz 

as shown in Figure 2.7. The same sal,tooth can be used to simultaneously 

trigger the bright up on a cathode ray oscilloscope or to trigger a mul ti­

channel analyser working in dual parameter mode. This latter method of 

coincidence scanning data collection was used in Chapter 8 for the analysis 

of 15N/14N in all materials. A schematic diagram of the type of electronics 

used for dual parameter data collection is given in Figure 2.8, the energy 

spectrum and position of each event being stored in a canberra multichannel 

analyser operating in dual parameter mode. This typeof data is fully 

quantitative. For 2 dimensional (x,y) raster scanning, when the beam is 

scanned in synchronism with the electron beam of an oscilloscope the data 

obtained is only semi-quantitative. 

The species emitted or scattered, on bombardment of the target by a 

charged particle beam, can be measured by a \'ariety of detectors at different 

geometries and the standard detection systems are detailed below. 
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For nuclear reaction analysis the charged particles emitted are usuall~' 
o 

detected by a surface barrier detector at an angle of 135 to the beam. 

Absorber foils are used to prevent scattered particles from reaching and 

saturating the detector. The electronic instrumentation typically consists 

of a preamplifier and main amplifier which feed the detector output signal 

to a multichannel analyser and often also to one or more single channel 

analysers with windows set_to count over the peaks of interest. X-rays can 

be simultaneously detected "'i th a sil icon!l i thium detector and used to 

indicate whether or not the beam is on the sample, as well as for elemental 

analysis. X-ray analysis may be used in conjunction with nuclear reaction 

analysis to determine isotope ratios, the former measuring total elemental 

concentration while the latter measures the concentration of an isotope. 

A detailed view of the chamber facilities including the charged particle 

and X-ray detectors can be seen in Figure 2.4. The door of the chamber stands 

open and attached to the backplate are the back microscope used for viewing 

the beam, the stepping motion and the sample wheel. The sample wheel holds 

fi ve sample mounts and a viewing quartz. On the right of the chamber one can 
I 

see the copper cold finger and its de"·ar. The cold finger is used as a 

cryogenic trap for species (particularly carbon) present in the system which 

would otherwise be deposited on the sample surface during irradiation. Just 

above the copper cold finger one can see the microscope for viewing the front 

of the samples. The central hole allows the focused beam to pass through. 

In the chamber cone a surface barrier detector in its perspex holder sits 

top centre and the Si-Li X-ra~' detector can be seen on the left of the cone. 

The photograph in Figure 2.3 shows the modified backplate described later 

whereas Figure 2.4 shows the usual chamber backplate used for charged-particle 

detection analysis. 

Isotope distributions are usually measured quantitatively by 

discontinuously scanning the ion beam across the sample and at each point 

on the scan, whilst the beam is stationary, collecting all the particles of 

interest. At the end of each irradiation the data from the counters is 

recorded and the ion beam automatically moved on. In order to ensure that 

each point in the scan receives the same irradiation dose, usually 1 jJC, a 

beam current integrator (measuring the beam current falling on the sample) 

is used to control the counters and stepping motor. The entire electronic 

system used is sho,,~ in Figure 2.9. 
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2.2 MODIFICATIONS TO THE EXISTING NUCLEAR HICROPROBE FACILITY 

Many modifications to and extensions of the existing nuclear microprobe 

detection systems were designed in order to carry out high resolution back­

scattering experiments and experiments requiring Ge(Li), NaI(Tl) or neutron 

detectors. These new detection systems are described below. 

2.2.a High Resolution Backscattering Detection System 

The rigours of high resolution backscattering analyses using 

silicon surface barrier detectors, necessitated the use of a low 

noise, high quality electronic system. The output from the detector 

is fed through an Ortec 142A preamplifier and an Ortec 471 spectroscopy 

main amplifier into a multichannel analyser. In order to reduce 

electronic noise a filtered, stabilised mains supply was installed (in 

conjunction with a clean earth) to run all the electronic instruments 

of the analysis system. 

In order to optimise mass selectivity in high resolution back­

scattering analyses the angle of observation should be as high as 

possible, as explained in detail in section 3.1.a. The existing angle 

of collection was only 135
0 

thus it was necessary to design a holder 

for a small surface barrier detector at the highest possible observation 

angle. The confined chamber space posed 

b t " 1 f 1-(00 h" d o serva Ion ang e 0 was ac leve . 

geometrical problems but an 

One of the design drawings 

is given in Figure 2.10. The holder is held in place by a single 

watchmaker's screw which passes through the insulating and positioning 

perspex wedge. The thread was precision drilled into the chamber cone 

i tsel f. The small 'T' mount surface barrier detector is inserted into 

the holder once the holder is in position in the chamber and the 

collimator is then pushed over the holder. Both collimator and holder 

are clearly seen in Figure 2.11 and the position of the assembly in the 

chamber is shown in Figure 2.12. An arc shaped collimator slit is 

required since the scattering angles fall in cones, and when one is 

working so close to the incident beam line the change in scattering angle 

subtended by a rectangular or circular slit would be significant. 

The detector resolution obtained using the ne."ly provided 

facility, with optimised electronics and a clean earth, was tested 

in an accelerator environment using ~-spectrometry. The detector 

was positioned in the scattering chamber and a very thin high resolution 
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Cm-244 source placed in the chamber instead of a target. The beam 

stop prevented the accelerated beam from hitting the a source. The 

two main a peaks at 5.806 ~leV and 5.763 ~Iel' were used for energy 
(37) 

calibration and the FWilll of the 5.806 MeV peak used as the 

resolution check. The a-spectrum of Cm-244 is shown in Figure 2.13, 

typically the overall instrumental resolution obtained was about 13 

to 13.5 Kel' FWH~I (Full Width at Half Maximum). 

2.2.b Gamma-Ray Detection System 

One of the facilities required for stable isotope analysis 

using certain nuclear reaction methods is a Y -ray detection system. 

Both a 76mm x 76mm NaI(Tl) detector and a 100cm
3

, 17.4% efficient 

Li thium drifted Germanium detector with a 1.93 Kel' Fll'HM @ C060 1.33 

~leV y, were aquired. The usual chamber arrangements had to be 

modified to decrease the detector to target distance. A special 

modified door shown in Figure 2.14 was designed which allowed the 

y-detectors to within 14mm of the target. The detector 'hat' precluded 

the use of a z motion so a system was designed to allow maximum travel 

in the x and y directions. The sample plates and bracket are shOl,n in 

detailed design in Figure 2.15. The NaI (Tl) detector is fairly light 

and was fairly readily supported in the detector I hat' however the 

Ge (Li) detector with its 15 litre liqUid Nitrogen dewar weighed 23Kg. 

The nuclear microprobe system is supported on vibration free concrete 

pillars some 6 metres high, however the rest of the working cabin 

remains subject to vibration with all its inherent microphony problems 

for Ge(Li) detection. A system \,·as designed to support the Ge(Li) detector 

from the vibration free microbeam tube support. 

Not only had the Ge(Li) detector support system to be substantial 

enough to take the weight expected, it also had to move in the x, y and 

z axes in order to follOl, the movement of the chamber when focussing 

different mass beams of ,"arious energies and also to allow removal of 

the detector from its position within the chamber to allow sample 

changing. Two of the design dra"ings are given in Figures 2.16 and 2.17 

and a general overall view is sho'11 in the photograph in Figure 2.18. The 

two thick support channels clearly seen in Figures 2.16 and 2.17 were 

attached to the vibration free beam line. The sliding support rail was 

made out of P.T.F.E. for ease of movement, likewise a thin P.T.F.E. 

sheet was placed between the 2 flat cryostat support plates for ease of 
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movement from side to side. The end stop plate attached to the 

frame ensured the correct repositioning of the detector ,,'ithin the 

detector chamber 'hat' after a sample change. The whole system was 

found to give free movement in the x, y, and z directions and thus one 

was easily able to follO\,' the positions of the chamber. To allow 

use of the Nal (Tl) detector a small holder was provided which bolts 

onto the top moveabl e._dural plate. 

Data collection was carried out by feeding the signal from the 

detector and preamplifier into an Ortec 571 spectroscopy main amplifier 

and then either straight into an 8100 Canberra Multichannel Analyser or 

through the 2d coincidence scanning electronics sho,,~ in Figure 2.8. 

2.2.c The Neutron Detection System 

The ,counting system for neutrons used a 51mm x 51mm Nuclear 

Enterprise liquid scintillant (type NE213) proton recoil detector 

placed at 0 0 to the incident beam. The modified backplate shown in 

Figures 2.1 and 2.14 was used in order to decrease the .target to 

detector distance. Figure 2.19 shows the electronics used. The output 

of the detector, which collects both neutrons and y-rays, .. as fed 

after amplification into a pulse shape discriminator (38) which 

separated the neutrons and gammas by comparison of two weighted time 

integrals of the detector output. The shorter time integral represented 

the gamma yield, the longer one both neutrons and gammas. Data 

aquisi tion was carried out as described for charged particle analysis. 

2.3 THE BUECIU'IER MAGNETIC SPECTROMETER 

Another experimental facility used in an attempt to extend the mass 

limit of resolution for stable isotope analysis using backscattering 

analysis (as described in detail in Chapter 4) was a single focusing 
(39) . 

Buechner magnetic spectrometer. The Buechner spectrometer 1S one of 

the earlier types of spectrometers, England's book (40) describes both this 

and several more recent spectrometers in detail. 

A schematic diagram of the spectrometer facility used is shown in 

Figure 2.20. The accelerated charged particle beam impinges on the sample, 

is backscattered and passes'through the magnetic spectrometer entrance slit. 

For this system the optimum resolution, typically 8-9 KeV F.~·.H.~I. was 

attainable at its highest scattering angle, 1450
, .. ith a solid angle of 

0.175 msr. The trajectory of the scattered particle M, charge q and energy E 
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in MeV (dictated by initial beam energy and backscatter kinematics) in a 

magnetic spectrometer field intensity B(MHz) is given in equation 2.1 

= ••• Equation 2.1 

where R cm is the radius of the particle trajectory. Inherently there is 

some ambigui to' since different masses with different charge states could 

conceivably lead to the same value of q2/M. 

After passing through the magnet of the spectrometer the backscattered 

particles were detected using a 5cm long Ortec position sensitive surface 

barrier detector (41) (P.S.D.) for the simultaneous determination of charged 

particle energy and position. The P.S.D. was mounted in the focal plane of 

the magnetic spectrometer. A schematic diagram of the P.S.D. is given in 

Figure 2.21 along with the electronics used in conjunction with it for 

simultaneous energy and position measurement. The energy and position 

signals were processed after amplification by an Ortec 464/5 position 

sensi ti ve analyser, displayed on a mult ichannel analyser and stored on 

magnetic tape. The maximum of the energy and position signals had to 

coincide thus extra delay had to be introduced when necessary. Only a small 

portion of the backscatter spectrum can be analysed by the P.S.D. for any 

given magnetic field setting. Whilst keeping all other parameters constant, 

a different energy range of the spectrum can be collected by altering the 
(n.:t'U,,"lhiote 
fpQ~' 2 ,; of the field. For the convenient analo'sis of a sample it is 

desirable to choose an incident beam and beam energy such that given the 

correct choice of frequency the whole of the energy range containing the 

isotopes of interest can be collected on the length of the P.S.D. 

In order to set up the magnetic spectrometer the P.S.D. was mounted on 

a support which holds it in posi t ion in the focal plane of the magnets and 

the whole system was then evacuated. The complete spectrometer was placed 

at the maximum backscatter angle of 1450 , dictated by the physical dimension 

of the magnets which at this angle only just avoid the beam line. An a-source, 

Cm-244, was placed in the chamber to simulate backscattered particles. 

The frequency required to collect the Cm-244 5.806 and 5.763 MeVa peaks in 

the middle region of the P.S.D. can be calculated using equation 2.1 and 

tabulations of R vs position on the P.S.D. for the system used. A typical 

calibration spectrum is seen in Figure 4.4. 
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In order to check the linearity of the P.S.D. a polished gold target 

was placed in the chamber and the backscatter from an impinging 5.8 MeV4He+ 

beam was recorded. The 5cm long P.S.D. was found to have a very good 

linearity except for an 8.~~ increase in yield for 0.09 cm of its length 

at the high energy end of the spectrum. When collecting sample spectra 

the frequency was choosen preferably to position the spectral region of 

interest into the middle of the P.S.D. but always to avoid the non-linear 

region. 

2.4 TARGET PREPARATION 

Frequently positional information in the form of linear scans across 

a cross-section of a sample is required. The cross-section is cut and then 

must be polished to e~~ose a flat, clean surface for interrogation. It is 

important to have flat surfaces for both backscattering and Nuclear Reaction 

analysis. Anomalous scattering from uneven samples will occur and make back-" 

scattering measurements very ambiguous, since the scattering of the incident 

beam by matrix nuclides at various angles from an uneven sample surface, 

could conceivably lead to a final energy "'hich overlaps that from the 

nuclide of interest at the choosen detection angle. In Nuclear Reaction 

analysis differences in the trajectory path of the beam and reaction particle 

through an uneven sample surface, will lead to different final detected 

energies for the same reaction on a given nuclide "'ithin the sample. Thus 

making analysis very difficult. By placing the detector as close to 1800 

to the beam as possible one can minimise the effects of topographical 

features. However from a consideration of reaction cross-sections and hence 

sensitivity, this may well not be the optimum detection position. In addition 

to ensuring that the sample surface is flat one must use a clean sample 

surface for interrogation. Sample surfaces may be contaminated by the 

presence of surface layers, such as carbon and oxide layers. These must be 

removed, using either ultrasonic cleaning and/or polishing, prior to inter­

rogation with the beam in order to minimise the possibility of interference 

and also of attenuation of the incoming and outgoing particles by these 

surface layerso 

A satisfactory method of preparing metallurgical samples has been found 

whereby one cuts the cross-section required, mounts it in Wood's alloy and 

then laps the surface with silicon carbide paper followed by diamon-d paste 

to a 1 micron finish. The sample is then cleaned using solvents in an 

ultrasonic bath using water, ethanol, acetone and ether in succession. This 

is satisfactory except when carbon analysis is to be carried out because the 
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sample surfaces polished using this method may be contaiminated with carbon. 

In these cases a final polish in gamma grade alumina is carried out and this 

has been found to adequately remove surface carbon. 

Powder sampl es were prepared by pressing small pellets, 6mm in diameter 

and approximately 2mm thick, and then glueing them onto dural sample mounts. 

Very small amounts of silver dag were used to prevent chargeing up of the 

sample surface during irradiation. A thin sputtered layer of carbon over 

the surface may also be used to pro\'ide a conducting sample in those cases 

where carbon analysis is not required nor where carbon is likely to be a 

significant interference. Pressed powder samples are inevitably not very 

uniform and if a pressed powder sample is all that is available it is best 

to have the detector as close to the 1800 detection position as possible. 

Samples originally vacuum evapourated onto a substrate present a far better, 

more even surface. 

Wi th biological samples surface roughness cannot be removed ,d thout 

altering the sample to an unacceptable extent. This type of sample thus 

presents far more problems than those discussed above and the preparation 

of biological samples is described in detail in Chapter 8 as the preffered 

method evolved during the investigation of 151'1/141'1 stable isotope ratios 

in barley root sections. 

2.5 SOURCES OF ~IATERIALS USED 

Wood's alloy - B.D.H. Chemicals Ltd., Poole, England. 

Lapping products - silicon carbide papers - Carborundrum Company, Trafford 

Park, Manchester., England. 

- Diamond lapping pastes and pads - Engis Ltd., Park 1I'00d 

Trading Estate, ~Iaidstone, Kent, England. 

- Ultra Microid polishing alumina - Universal Abrasives 

Ltd., Doxey Road, Stafford, England. 

Bismuth implanted silicon backscattering standard - H.V.L. Lab., A.E.R.E., 

Harwell, Didcot, Oxon., England. 

26Mg and 25Mg enriched Magnesium - Chemistry Division, A.E.R.E., Harwell. 

~Iagnesiurn, specpure - Johnson Matthey & Co. Ltd., 100 High St., Southgate, 

London, England. 

Silicon, specpure - Johnson Matthey. 

Cobal t - Goodfello.' Metals, Cambridge Sci ence Park, Cambridge, England. 

Nickel, specpure - Johnson ~Iatthey. 

Silver - Goodfellow Metals. 
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Gold, specpure - Johnson ~Iatthey. 

Cm-244 et-source - Chemistry Division, A.E.R.E., Harwell. 

LiNb03 - H.V.L. Lab., A.E.R.E., Harwell. 

Be/Cu alloy - National Bureau of Standards, Washington D.C., U.S.A. 

Boron, specpure - Johnson Matthey 

Silicon Nitride - Materials Development Division, A.E.R.E. Harwell. 

Silica, specpure - Johns·on ~Iatthey. 

Strontium Fluoride, specpure - Johnson Matthey. 

Sodium Chloride - B.D.H. Chemicals Ltd. 

Aluminium, specpure - Johnson Hatthey. 

Indium Phosphide - Instrumentation & Applied Physics Division, A.E.R.E. Harwell. 

Lead Sulphide - Chemistry Di vision, A.E.R.E. Harwell. 

Silver Chloride, specpure - Johnson Hatthey. 

13C enriched BaC03 - B.O.C. Ltd., Prochem, Deer Park Road, London, England. 

12c standards in steel - Inter Group Lab. of British Steel Corporation, 

Hoyle Street, Sheffield, England. 

Nimonic alloy PE16 - ~Iaterials Development Division, A.E.R.E. Harwell. 

316, standard steel - Haterials Development Di vision, A.E.R.E. Harwell. 

9~b 13C enriched CO 2 .and 90% enriched CH4 - B.O.C. Prochem Ltd. 

Boron Carbide, specpure - Johnson ~Iatthey. 

15N enriched urea - B.O.C. Prochem Ltd. 

Barley Root sections - Letcombe Agricultural Laboratory, Letcombe, NI'. Wantage, 

Oxon., England. 
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CHAPTER 3 

THEORETICAL APPRAISAL OF THE NUCLEAR HICROPROBE DETERHINATION 

OF THE SPATIAL DISTRIBUTION OF STABLE ISOTOPE TRACERS 

The application of nuclear reaction and backscattering analyses to 

the determination of stable. isotopes is governed by fundamental and 

practical factors. Their significance is highlighted by a detailed 

discussion of mass selectivity and sensitivity. The influence of nuclear 

microprobe operation and sample composition are selected for special con­

sideration. The factors critically influencing mass selectivity in back­

scattering and nuclear reaction analysis differ and are thus discussed 

separately. 

3.1 MASS SELECTIVITY 

Stable isotope tracer methods are restricted to elements with more 

than one isotope, eliminating monisotopic elements from further consideration. 

3.1.a Backscattering Analysis 

Firstly the theoretical relationships and processes involved 

in backscattering analysis are outlined, followed by a more detailed 

examination of how each of the parameters involved affects mass 

selectivity_ 

In backscattering analysis the basic process involved is the 

scattering of a projectile ion by a target atom. When an incident 

particle beam of mass N1 , moving \,i th constant velocity Vo1 , collides 

.elastically Kith a stationary target nuclide of mass N2 , energy is 

transferred from the moving to the stationary particle. The particle 

cannot of course be backscattered if N1 ;' H2 • The collision can be 

assumed to be purely elastic providing that:-

(a) The beam energy Eo » the binding energy of the 

target atoms. (Chemical bonds are of the order of 10 eV 

thus Eo must be very much larger than this). 

(b) Nuclear reactions and non Rutherford scattering do 

not occur. This imposes an upper limit on the projectile 

energy, the limit varies depending on the type of atoms 

involved and is discussed in detail later in this section. 
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By applying the pr inciples of conservation of energy and 

momentum, the elastic scattering involved and presented diagram­

matically in Figure 3.1 can be fully described. The equations 

governing the conservation of energy and momentum both parallel 

and perpendicular to the direction of incidence are given below:-

••• Eqn. 3.1 

••• Eqn. 3.2 

••• Eqn. 3.3 

eliminating first I'l then V2 gives the following equation:-

this is + when Hi :; ~12. 

The ratio of the scattered projectile energy, E, to the 

incident projectile energy, Eo' is given by the kinematic factor, K • 

••• Eqn. 3.5 

substituting in the values of I'/Vo 

V 2 [1- (Hl/~12) 2Sin2~T~ + (~ll/H2)CoS e 2 
K = = ••• Eqn. 3.6 

V 1 + (~ll/~12 ) 
0 

where e = laboratory angle of scattering 

Hi = mass of the incident beam 

H2 = mass of the target 

For a given scattering angle and incident energy the final 

scattered particle energy depends onl~' on the kinematic factor which 

in turn (under these conditions) depends only on the ratio Hi /H2 • 

Hence in Rutherford backscattering analysis selectivity is truly 

based on mass and consequentl~T, isobaric interference can occur. 

In reality the problem can often be circumvented since many elements 

have a large number of isotopes available for isotopic ratio 

analysiso 

A mass resolution of 1 is defined as the ability to adequately 

resolve and measure signals from two nuclides of adjacent mass, i.e. 
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LlH =1. For stable isotope tracer work, an ability to measure adjacent 
2 

masses is usually essential, although for certain elements a mass 
-5 37 

resolution of 2 would be adequate, for instance j CII Cl and 

74Ge/76Ge. Good mass resolution is dependent on good energy 

resolution of the charged particles scattered from adjacent masses. , 
Consideration of the scattering kinematics shows that energy 

resolution is improved by:-

(a) Increasing incident particle energy. 

(b) In most cases operating at high scattering angles 
(42 43) 

where the rate of change of K with e is minimal ' 

(cl Increasing the incident mass (H 1). In fact it is 

the ratio of M11M2 "'hich is significant, this ratio 

should preferably be kept as high as possible. 

The overall energy resolution also depends on:-

(d) the energy spread and scattering of the incident 

beam. 

(e) the range of scattering angles subtended by the 

detector. 

(f) the detector resolution. 

These factors are discussed indi \-idually. 

Incident Particle EnerQ' 

It can be seen from Equation 3.5 that increasing the beam energy, 

Eo' increases the mass resolution. However in practice Eo is limited 

by the accelerator facilities available and the need to minimise 

interferences caused by nuclear reactions and inelastic resonance 

scattering. 

(i) The present generacion of nuclear microprobes are associated 

with accelerators having maximum operating voltages of about 

6 HV (44, 45) 

3.5 MV and 

attainable 

The Harwell nuclear microprobe is limited to 

beams ,,-i th energi es of > 3 ~leV are seldom 
46) 

(ii) In the Rutherford scattering region even incident particles 

undergoing close encounters \,i th a target nucl eus will be 
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deflected because of the enormous coulombic force. However 

interference by non-Rutherford scattering can occur whenever 

the incident beam energy is greater than the coulomb barrier 

of any target nucleus. Generally this occurs above 1 HeV for 

1H+ beams and about 2-3 He\' for 4He + beams. A compromise 

incident energy must be sought. Each case must be considered 

indi vidually, the highest available beam energy being chosen 

which still avoids interference by nuclear reactions. 

(i i i) Resonance elastic scattering may also cause probl ems of inter-

ference if the projectile energy coincides with a particularly 

favoured excited state of a component in the sample matrix. 

This may be turned to advantage if the resonance peak is 

associated with the isotope to be investigated since the 

sensitivity will be increased. 

An additional factor affected by incident energy is the 

scattering cross-section. This is discussed in the next section. 

Scattering Angle 

It can be seen from Equat ions 3.5 and 3.6 that for a given 

incident energy, EOl the mass discrimination is, theoretically, 

wholly governed by the difference in the kinematic factors of the 

masses involved, bK. This is a function of the angle of scattering 

and, as discussed later in this section, the ratio of the target 

and beam masses. 

The kinematic factors for a variety of incident beams, scattering 

angles, S, and target masses were computed. It has been found (42, 43) 

that generally it is advantageous for 8 to approach 1800
• Here the 

largest bK values for adjacent masses are obtained. The exception is 

when H2 is very small and the ratio of M~H1 approaches unity, in these 

cases the optimum e can be found by comparing K values at different 

angles. Generally 1800 is the preferred location for the detector. 

This coul d almost be achieved by using an annular surface barrier 

detector, however the resolution of this type of detector is poor 

compared to the available planar surface barrier detectors. Since 

this leads to inferior mass resolution their use is precluded in this 

investigation. High scattering angles are also normally favoured as 

the rate of change of kinematic factor with angle is a minimum, this 
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diminishes problems of kinematic spread caused by the detector solid 

angle. 

events 

The current Han-'ell microprobe has been designed to observe 

at an angle of 1350 (21) It is clear from Figure 3.2 that 

the kinematic spread for 3 HeV 4He + ions scattered 
24 0 

from Hg at 135 

is much greater than at 1700
• Despite the geometrical difficulties 

involved, namely fouling the microscope that observes the front of 

thick targets and intercepting the incident beam, an observation 

position ,,'ith e slight'ly greater than 1700 has been provided. 

Although mass selectivity considerations favour the use of a 

high scattering angle it can be seen from Section 3 Equations 3.19 

and 3.20 governing scattering cross-sect ions that increasing the 

scattering angle decreases the scattering cross-section. Clearly 

a compromise between the needs of mass selectivity and the conflicting 

needs of cross-section magnitude (mass sensi ti vity) must be made. 

The Rutherford backscattering cross-sections were computed at several 

beam energies for a variety of beam and target masses and scattering 

angles. It was found that increasing the scattering angle and to a 

lesser extent increasing the beam energy decreases the magnitude of 

the Rutherford cross-section, as theoretically predicted (42, 43) 

HO\o.'ever in most cases the cross-section is very high as shown in 

Figure 3.3 and generally the experimental conditions can be chosen 

to favour the optimum mass selectivity. 

Incident Particle Hass 

In principle notable increases in mass resolution can be 

obtained by using incident particles of high mass, for instance 

14N+ (42, 43) However detection problems generally lead to losses 

,in energy resolution that greatly outweigh any gain from increased 

mass. In addition in microbeam mode, increases in mass and energy 

make beam focusing more difficult. 

The effects of heavier beam mass are studied in greater detail, 

in the context of the magnitude of deterioration of the detector 

resolution versus effective mass selectivity, later in this section. 

In addition to the influence of these fundamental parameters 

on resolution, the overall energy and hence mass resolution also 

depends on factors which affect the energy analysis system. These 

addi tional fact.ors are discussed in the follo"'ing sections. 
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Energy Spread and Scattering of the Incident Beam 

The amount of scattering of the beam through the slits is 

difficult. to quantify but in practice is kept to a minimum by the 

following e"lledients in order to minimise any ultimate increase 

in the range of scattering angles subtended by the detector:-

(a) having the beam slit a large distance from the target. 

In the Harwell nuclear microprobe it is approximately 2 

metres. 

or (b) having a special double slit arrangement. The extra outer 

slit being shaped such that it affects and stops scattered 

beam only. 1I'0biling (35) describes the design and manufacture 

of specially shaped slits, two pairs of crossed stainless 

steel sli ts, which effecti vely suppress slit scattering for 

collimator diameters as small as 1 ~m. 

The voltage stability of the accelerator dictates the spread of 

beam energies delivered. In practice energy spreads of about 1 part 

in 10
3 

are typical of conventional Van de Graaff accelerators, however 

modern pelletron machines are more stable to :s 0.5 kV at 3 HI'. The 

latter type of machine not only has ad\'antages in energy resolution 

but also decreases problems of chromatic aberrations in focusing 
(35) systems • The smaller the spread of incident beam energies the 

less the uncertainty as to the exact origin of the scattering 

particles detected. 

The Range of Scattering Angles Subtended by the Detector 

In normal Rutherford scattering the range of scattering angles 

subtended by the detector is influenced by the divergence of the 

incident beam, the size of the beam spot, the target to detector 

distance and the detector aperture. For microprobe work there are 

differences, namely the microbeam converges on the target and is 

focused to such a small size that its area has negligible influence 

if the ratio of ~n-focus to out-of-focus beam is as small as that of 
4 (-4) the Heidelberg system, 10:1 0 

The effect of beam convergence on kinematic spread for a 

detector at 1700 , with 4He + incident ions on a 24Hg target is shown 

in Figure 3.4. For:3 HeV incident ions and the Harwell system, the 
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energy spread associated .'i th the maximum half-angle of convergence 

f 0 28 -0 (22, 46). f l' 1 h 1 o • '" lS 0 1 tt e consequence, t e resu tant energy 

spread at the detector being < 1 keV. 

The influence of target to detector distance and detector 

aperture on kinematic spread is sho.'n in Figure 3.2. If one assumes 

that a 5 keV kinematic spread is acceptable the need to decrease the 

aperture size with decreasing target to detector distance, is apparent. 

All those geometries .'i th kinematic spread ~ 5 keV are shown below the 

dotted line in Figure 3.2. With the Harwell system geometrical problems 

favoured the use of a relatively long target to detector distance and 

a wide aperture, 3.5 mm. The apertures used were arc shaped slits. 

When using rectangular or circular slits so close to the beam line any 

given scattering angle falls in a cone, thus if slits other than an 

arc shape are used problems of changing scattering angle would occur. 

Generally the dimensions of commercially available planar 

detectors prevent their use at distances of less than 50 mm at 

e = 170
0

• As mentioned previously the inferior energy resolution 

makes annular detectors unacceptable. 

Sometimes electrostatic deflection of the beam is used to scan 

a larger area of material. The technique is of particular interest 

for the examination of sensitive biological samples as it effectively 

diminishes the sample damage in localised spots. The beam is scanned 

across a sample at a frequency of 50 Hz b)' applying a triangular 

waveform to a pair of parallel plates at the entrance to the target 

chamber. Although beam scanning changes the detector solid angle 

and also the observation angle, its influence is small. For the 

above system and a + 1 mm beam deflection the detector solid angle 

changes by .c:. 0.5% and the observation angle by .c:. O. gO. These changes 

in solid angle and scattering angle are acceptably small, consequently 

electrostatic scanning may be used "'hen reduction in beam damage is 

essential. It is often preferrable to scan the beam in order to reduce 

beam damage rather than to use the alternative measure of reducing the 

beam current, which introduces an undesirable time penalty. 

Detector Resolution 

The inherent resolution of a detector, for a given set of 

operating conditions, is usually defined in terms of the smallest 
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, 
attainable energy .'idth for a given (usually Gaussian) peak from a 

reference source. This energy resolution is measured at half the 

maximum amplitude across the full width of the peak and is known as 

the Full Width at Half Maximum, F.II'.H.M., value. Backscattering 

spectra most often display the integral of the Gaussian distribution, 

the error function. The F.II'.H.~I. of a Gaussian corresponds to the 12 

to 88% range of the, error function. Clearly if two peaks or back­

scattered edges are closer in energy than the minimum F.II'.H.M. 

measurable with a given detector they will not be resolved and the 

mass selectivity is lost. 

Silicon surface barrier detectors are the most convenient for the 

detection of scattered particles. An interesting general paper 

discussing the spectral response of 

to both light and heavy ions (up to 

silicon surface 
581\' , ) , 

i 1 \\'as gl ven 

Although F.II'.H.M. values "'ere not investigated. 

barrier detectors 
(47) 

by Zabel et. al. • 

For 5 MeV 4He + ions small planar detectors are available with 

resolutions of about 10 keV however electrical noise in an accelerator 

environment and overall operation factors including kinematic effects 

make resolutions of < 15 keV difficult to achieve. The detector 

resolution and the magnitude of this resolution degradation for our 

system was checked using et -spectrometry as discussed in Section 2.2. a. 

Typical overall instrumental resolutions obtained were about 13 to 13.5 

keV F.lI'.H.M. for 5.8 MeV 4He + as seen in Figure 2.13. A Bismuth implanted 

silicon backscattering standard (48) was also used in order to obtain 

the overall experimental resolution, the most important additional 

factor included in this measurement is the degradation caused by 

kinematic broadening. lI'i th the 3 HeV 4He + beams available on the 

nuclear microprobe facility used, a mass resolution of one should 

be attainable up to mass 45 and a mass resolution of 2 up to mass 70. 
4 + 

For 6 Me\' He' beams the respecti ve '-alues should be mass 70 and mass 

105. 

Theoretically, as mentioned earlier, increasing the beam mass 

should extend the maximum masseE resol ved. However as the beam mass 

increases, the life and resolution of a silicon barrier detector 

deteriorates. There is some difference of opinion (49, 50) as to the 

exact magnitude of this degradation as 

literative values shown in Figure 3.5. 
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( 53) 
resolution for heavier beams than does Amsel (52), and Bergstrom 

predicts an even worse resolution. Experiments were carried out using 

14",+ as the heavier ion beam. Backscattering spectra of Ni(58 to 64) 

and Co(59) ,,"ith a 3.5 14",+ beam, Figure 3.6, do sho.' the presence of 

nickel isotopes, the nickel spectrum crossing over the cobalt edge. 

However the resolution is poor. For 3 HeV 12C+, 14",+ and 160 + ions 

the resolution of silicon barrier detectors is between 50 to 70 keV. 

Consequently mass selecti \'i ty is poorer than for 4He + ions, since a 

mass resolution of 1 is attainable only up to mass 25. 

Theoretically increasing 

mass resolution. For 1H+ and 

the beam energy should also 
4 + , 

He beams ln the HeV range 

increase 

increased 

beam energy does lead to improved mass resolution as the energy 
( 42) 

resolution of silicon surface barrier detectors is almost independent 

of energy in this range. However the same does not apply for heavier 

beams. 

High resolution detectors, such as magnetic spectrometers and 

electrostatic analysers, are often avoided because of their 10"" 

efficiency and operational inconyenience. However since the study 

of stable isotope distributions wi th surface barrier detectors requires 

the use of very ~mall detector solid angles, their effective efficiency 

is comparable to that of magnetic and electrostatic analysers. 

Consequently the use of high resolut;ion detectors appears worthwhile 

investigating. 

Hagnetic analysers improve system resolutions drammatically. The "'.R.L. 
(54) o 180 double focussing magnetic spectrometer has a resolution of 

1 2 k V f 4H + " f f 'I \" - ,e or e" lons 0 a e.'" e '. 

The improved energy resolution obtained with the magnetic analyser 

leads to correspondingly better depth and mass resolution. There are 

addi tional advantages .-i th magnetic spectrometers, namely they avoid 

pulse pile up problems and also decrease interference from other 

particles of slightly different mass, although this is achieved by 

only looking at a small portion of the total energy spectrum with the 

analyser. ~Iuch available informat;ion is thus lost. 

The reputed disadvantage of magnetic spectrometers is their 

extremely slow rate of data acquisition. This is a direct result of 

their small acceptance angle, only a small part of the spectrum being 

- 28 -



measured at anyone magnetic field setting, and also because the 

spectrometer accepts particles of only one charge state. The magnetic 

spectrometer at N.R.L. (54) has a variable solid angle of 0 to 25 msr. 

For high resolution work the angle must be on the lower part of ·the 

range but it is in fact of comparable magnitude to the solid angles 

dictated by the good mass resolution required of surface barrier 

detectors for stable isotope tracing. Even bearing in mind the slo.' 

rate of data acquisition the excellent resolution of these spectro­

meters suggests that their use in isotope tracer work may well be 

justified. 

One can calculate the expected limit of mass resolution lI~l" = 1 
~ 

for magnetic analysers. The magnetic spectrometer analyses the 

momentum (energy) of the charged particles entering the input slit 

and focuses the dispersed charged particles, preferrably onto a 

position sensitive detector located in the image plane of the spectro­

meter. Particles of slightly different energies, Eo and Eo + LIE 

traverse slightly different paths through the spectrometer and .,ill 

be brought to a focus at different posi tions (Xo and Xo + lIX) along 

the image plane. In order to find the limit of mass resolution for 

lI~12 = 1, one must find the final separation by the spectrometer, liE, 

between adjacent masses. For a magnetic spectrometer field intensity B, 

a non relativistic particle of momentum p and charge q has a curved 

deflection of radius R:-

R = Eqn. 3.7 

The variation of path lIR .·ith momentum lip is given by:-

Since E 
2 

= P 1~1 and 

lIR = 

liE = p lip 1~1 the variation 

1 
2 

••• Eqn. 3.8 

E of E is:-

Eqn. 3.9 

where E = kEo ' Eo being the incident beam energy (MeV), and LIE is 

F.W.H.M. (MeV). Typical values of R/lIR are:::" 2000 (42) hence 

EIlIE= 1000. For any ratio of E/lIE= 1000 and lIM2 = 1, the maximum 

1 d . 4H + . t·l Id b b t 5 f mass reso ve uSIng e proJec 1 es wou e a ou 11 or a 

. 0 f tt· I _~ 900 • scattering angle ~. 180 and about 85 or a sca erlng ang e 
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Electrostatic analysers have also been used to improve system 

resolution. Although Hage-Ali et al (55) describe one which operates 

up to 1 HeV, their application is usually limited to low energies 

(lower than the 1 ~leV range). Electrostatic analysers are more commonly 

used, for instance by Honig and Harrington (56) and by Buck (57), below 

a few hundred keV. A schematic diagram of a backscattering detection 

system using an electrostatic analyser is given in Fig. 3.7. 

An energy spectrum of scattered particles is built up by stepping 

or continuously scanning the voltage on the plates of the electrostatic 

analyser and collecting the impulses in the detector. Detectors for 

10.' energy ion scattering are usually electron multipliers of either 

the channel or eu-Be dynode type. 

An electrostatic analyser ',hich operates at beam energies more 

pertinent to these studies is described by Hage-Ali (55). The machine 

operates up to 1 ~leV "ith an energy resolution of up to 0.4%. 

The electrostatic analyser acts as an energy/charge filter. As 

the voltage on the plates changes scattered ions corresponding to E/q 

are transmitted through the analyser and counted. For a curved plate 

analyser as sho.~ in Figure 3.7:-

where E = 

q = 

V = 

R = 

d = 

kinetic 

= V.R 
2d 

energy of transmitted 

charge of transmitted ions 

potential difference between 

~Iean radius of the plates 

their separation 

••• Eqn. 3.10 

ions 

the plates 

(N.B. Outer and inner plates are held at + V/2 and - V/2 

respecti veIl' thus the traj ectory through the analyser is at ground 

potential) • 

Energy resolution E/ ilE depends primarily on the ratio of the 

sum of the aperture l<idths, d, to the analyser radius, R, and on the 

selected energy itself. With a typical analyser of R = 10 cm, 

d = 0.5 cm, 100 eV singly charged particles would be collected .'hen 

V = 10 volts. The energy resoluLion of electrostatic analysers is 

typically ~ 1 keV. Thus for a 250 kel' 4 He + incident beam the maximum 

mass resolved would be ~ 60. 
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It would thus appear that the use of the magnetic spectrometer 

for resolving isotopes in stable isotope tracer profile studies may 

well be worthwhile, the data acquisition rate being comparable to 

that attained by the very small acceptance angle surface barrier 

detectors required in these studies. Electrostatic analysers may 

well prove useful when running at lower energies but are limited in 

data collection rat.e .b.ecause of their scanning mode of operation. 

Energy Loss and Straggling 

One of the important features of backscattering analysis is 

the ability to do depth analysis without recourse to sputtering or 

destruction of the sample. In the spatial determination of isotopes 

it is not intended to use this depth facil i ty but, as will be seen 

in Section 3.3.a when studying complex samples containing surface 

inclusions, phase boundaries and heterogeneous thin layers, these 

effects must be taken into consideration. As the effects of energy 

loss and straggling affect the resolution of the backscattered spectrum 

it would seem apt to discuss them in this current section. 

Under a given set of experimental conditions the energy of the 

scattered particle depends not only on the mass of the target nuclide 

(M2 ) but also on the depth (X) of that target atom below the surface. 

Particles scattered from a depth of X loose energy both before and 

after scattering at a rate determined by the stopping power E 

E = 1 ••• Eqn. 3.11 
N 

where N = atomic densi ty of the target 

dE = 
dX 

average energy loss b;y all possible processes as the 

projectile passes through the target. 

Figure 3.8 illustrates the scattering of a projectile through a 

sample thickness X. The final emergent energy El is given by the 

following equation:-

}
cosssJ 

- E dl 
E 1 

o 

K ••• Eqn. 3.12 

where Er; and Eel are the stopping pOl>ers of the ingoing (11) and 

the outgoing (12) trajectories respectively. 
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E = incident surface energy 
o 

E = energy immediately before scattering 

Ss = laboratory scattering angle 

The emergent particle energies can therefore provide detailed depth 

information, c.f. Eqn. 3.12, as well as information on the scattering 

mass, c.f. Eqns. 3.5 and 3.6. Thus in backscattering analysis the 

energy lIscale" is simultaneously a mass "scale" and a depth lI scal e ll 

and there can effectively be an overlap of masses. For instance the 

resultant energy of a particle scattered from a light nuclide near 

to the surface may be identical to the resultant energy from a heavy 

nuclide deeper into the target. There is some ambiguity of peak 

origin and this basic uncertainty leads to a loss of elemental 

specificity, i.e. a poorer mass resolution. Ambiguity is avoided in 

the preferred backscattering situation where there is a heavy dopant 

in a light matrix. Also the problem of loss of mass resolution is 

much reduced when the depth of sample interrogated is small. As in 

the spatial determination of isotopes where surface analysis rather 

than depth analysis is carried out. The maximum depth penetrated by 

the microprobe, if required, could be 3 ~m (3 MeV, 4He +) but in the 

studies carried out it ,,'as generally less than this, for instance 

using the microprobe to interrogate magnesium isotopes as described 

in Section 3.2.a it was ~ 0.6 ).Jm. For isotope work the energy region 

. covered by the isotopes is very small, for instance for 25~lg and 26Mg 

(Section 3.2.a) 6E = 37.7 keV and as the depth penetration is also 

small, the energy spread over the depth led in fact to an error of 

< 1% which is of little consequence. Energy losses will become more 

significant in the more complex samples and this is discussed in 

Section 3.3.a. 

Energy straggling is another process in backscattering which 

introduces uncertainty in target mass identification. It arises 

because a beam scattered at a depth X in the target is not mono­

ener~etic. This would again smear the spectrum peaks or steps, 

however as the straggling is usually" 10% of the value of energy 

loss, for the spatial determination of isotopes the error is 

insignificant. 

3.1.b Nuclear Reaction Analysis 

When a charged particle beam interacts with a target an 

extensive range of radiations may be produced as illustrated in 
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Figure 3.9. The energy of the emitted radiation from a nuclear 

reaction may be determined from the reaction kinetics discussed in 

detail below. 

Nuclear Reaction Kinetics 

Nuclear reactions are usually represented in the form of a 

balanced equation:-

A + a ••• Eqn. 3.13 

where A = target nucleus 

a = projectile 

B = product nucleus 

b = emitted particle(s) 

Q = energy released or absorbed 

Frequently nuclear reactions are presented in abbreviated form 

A(a,b)B. 

The amount of energy released or absorbed by a nuclear reaction 

can be extremely large and must be accounted for to obtain the correct 

mass/energy balance. 

Figure 3.10 represents a nuclear interaction resulting in a 

hea\'y product nucleus of mass ~14' the emission of a y photon and a 

light emitted particle, ~13. A breakdown of the energy relationships 

(assuming that for this case an intermediate "'as formed) is given in 

Figure 3.11. II'here:-

~11 = mass of incident particle a, of energy El' velocity 1'1. 

H2 = mass of target. 

H3 = mass of emitted light particle; energy E3 (,,'hen product nucleus 

is in the ground state), velocity "3 and if the emitted particle 

is in its i th excited state an energy E_ .• 
01 

Ey = energy of Y produced on relaxation of particle B to the ground 

state. 

H4 = mass of product B. E4 = 0 

Qo = energy released by reaction. 

Qi = the Q value for the reaction giving the ith excited state product. 

Qi is endoergic in Figure 3.12. = E 
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By using the principle of consen'ation of total energy and 

mass:-

Total 
Energy 

••• Eqn. 3.14 

••• Eqn. 3.15 

and the information"de~ived from the principle of conservation of 

momentum:-

••• Eqn. 3.16 

••• Eqn. 3.17 

the kinetic relationships betl,'een the particles involved in the nuclear 

reaction, for the non-relativistic case, can be found. The energy of 

the prompt particle emitted, E3 , can be calculated:-

E3 = El [c Cos El ..:::. (D _ c2 8in
2 e)f] 2 = ••• Eqn. 3.18 

D 

:~~)/ 
In order to find the excited state energ~' E

3i
; 

••• Eqn. 3.19 

Certain general features can be seen on considerat ion of these 

relationships:-

(1) The product particle energy decreases as the angle of observation 

increases away from the incident beam line. 

(2) For negative Q values there is a threshold incident energy 

below .'hich the reaction '"ill not occur. This can be used 

to advantage to limit interferences. The threshold energy 

"ill in fact be slightly more than Q, to provide the required 

momentum for the product nucleus. 

(3) The formation of excited states, as seen in Figure 3.11, 

reduces the product energy and thus a set of characteristic 
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discrete product particle energies will give characteristic 

spectral peaks. 

These general features are used in order to help elucidate the best 

measuring conditions for the stable isotope of interest. 

All nuclear reactions are isotopically sensitive because the 

nuclear properties of~ -the isotopes of an element are frequently 

di fferent. Isotopic sensi ti vi ty is generally optimised by choosing 

the most favourable reaction, irradiation energy and emitted radiation. 

While this may be relatively simple .if the absolute concentration of 

the isotope tracer alone is to be measured, compromises may be necessary 

""hen measuring isotope ratios. 

Choice of Reaction 

An indication of the kinetic favourabili ty of a nuclear reaction 

is given by its energy balance, commonly known as its Q-value. Generally 

reactions with high Q-values are favoured since the emitted radiations 

normally have higher energies than those from interfering reactions. 

For example the Q-values for the (a ,n) reaction on one of the stable 

isotopes of carbon, 13C Q = 
9 25 

Be Q = 5.702 Mel', Mg Q = 

2.215 Mel', is 

2.623 Mel' and 

only 
21 

Ne 

exceeded by that for 

Q = 2.557 Mel', 

consequently measurement of the emitted neutrons should allow the 
13

C 
(58) 

highly selective measurement of 
r 12 

However if ~C/ C isotope 

ratios need to be measured then the compromise of using the proton 

12C(dp) 13C and 12 1- 1- 14 
reactions C(p,Y) "/Ii and "C(p, Y)/Ii or the 
r 14 
~C(d,p) C reactions may be necessary, despite the loss of selectivity 

attributable to the fairly large number of nuclides with higher Q-values 

(43) for both the (p, Y ) and (d,p) reactions on 12C and 13C• 

When measuring isotope ratios, the Q-value for the reaction ~'i th 

the tracer isotope should be greater than with the compari tor isotope. 

For example, using the (d,p) reaction to study the diffusion of tracer 

2~lg in magnesium, the Q values are Q = 8.86 Mel' for 2~lg and 

Q = 5.107 Mel' for 24Mg , allo~'ing the ready measurement of the 2~g 
protons as can be seen by the peak separation in Figure 3.12 which 

shows two parts of the experimental spectrum obtained when interrogating 

natural magnesium using a 1.9 Mel' deuteron beam and observing emitted 

particles at 1350
• 
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The methods for determining the lowest abundance isotope are 

the most important, obviously the greatest possible change in the 

isotope ratio occurs when the two chosen isotopes of the element 

have the greatest initial difference. 

In some cases more than one reaction will be required in order 

to obtain information about two isotopes. This does introduce the 

problem of ensuring- that the sample volume interrogated is the same 

for each method, this is discussed in the sample constitution 

Section 3.3.a. 

Irradiation Energy 

Nuclear reaction analysis using low energy ion beams is ideal 

for the interference free determination of light elements in hea\"y 

matrices, due to the coulomb barrier suppression of heavy element 

reactions. Much of the "'ork reported in the literature is concerned 

with light nuclides, due to the particular suitability of the technique 

for these cases coupled with the fact that great difficulties often 

arise when trying to measure light elements using other techniques. 

However nuclear reaction techniques are not exclusively for 

light element analysis. 2.5 Mel' protons undergo (p, y ) and (p, Py 
reactions "'i th a wide range of el ements conceivably allo"'ing measure-

ment of 194pt and 195pt (59) Also deuterons of about 3 MeV have been 
52 53 54

F
. 56

F 
d 87

S 
(60, 61) 

used to determine Cr, Cr, e, e an r • Consequently 

nuclear reactions may be more suitable for the determination of very 

high mass isotope tracers than backscattering analysis, provided light 

element interferenc.e permits. 

Selection of Emitted Radiation 

Fundamentally, isotopic sensi ti vi ty is favoured by measurement 

of emitted particles rather than gamma-rays since the former are 

characteristic of the reaction, ,,'hile the latter are characteristic 

of the residual nucleus. For instance, measurement of 24Mg through 

the 1. 368 ~Iel' y ray emitted 

interfered wi th by 23Na and 
27 24 (59) 

and Al (p, ay) ~Ig . 

b h t . 24 ( ) 24 . 
Y t e reac lon ~Ig p, pY r.lg lS 

27 23 . 24 
Al through the reactions Na(p, y) Mg 

Particles also carry invaluable information 

on the sub-surface sample composition. 
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~Iuch of the discussion of factors critically affecting energy 

resolution in scattering is irrelevant to the measurement of particles 

from nuclear reactions, since relatively poor energy resolution is 

normally adequate. Consequently factors such as beam convergence, 

and detector solid angle are of little importance. However, high 

observation angles are favoured to diminish the influence of sample 

topography and annular detectors may be used despite their inferior 

energy resolutions, where an increase in detector efficiency is 

desirable to improve sensitivity. 

3.1.c X-Ray Production 

(24, 62) 
Ion beam induced X-ray analysis is not isotopically 

sensitive, ho\\tever if a nuclear reactiqn must be employed ",thich a110\\'8 

only the measurement of the tracer isotope, the total elemental con­

centration may be measured simultaneously from its particl e induced 

X-rays. The technique should be most readily applicable to elements 

of mass greater than sodium (21) when using proton or deuteron beams. 

X-ray cross-sections generally increase "i th increasing beam energy 

but decrease for ions of greater mass at any given energy. 

In addition to providing total elemental concentrations for 

isotopic ratio measurements, ion beam induced X-rays may also prove 

invaluable to detect and identify sample impurities. 

SIDIHARY OF THE CONDITIONS REQUIRED TO GIVE OPTIMUM MASS SELECTIVITY 
FOR THE NUCLEAR MICROPROBE DETERHINATION OF STABLE ISOTOPE TRACERS 
USING NUCLEAR REACTION AND BACKSCATTERING ANALYSIS 

Theoretical prediction and experimental investigation were used 

to elucidate the best conditions for the nuclear microprobe deter­

mination of the spatial distributions of stable isotopes. These have 

been discussed in detail in Sections 3.1.a - 3.1.c and are briefly 

summarised below .. 

BACKSCATTF£ING:-

(a) Bearing in mind the limi t imposed on beam energy by the Q 

values of any interference nuclide present in the target, 

'the highest beam energ;)' a\'ailable should be used for back­

scattering analysis. Resonance scattering may be useful for 

optimising the sensitivity of a particular isotope. 
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(b) Generally a scattering angle close to 1800 should be used, 

except when the ratio ~1;!M1 approaches unity. Careful con­

sideration of K values at various scattering angles indicates 

the optimum detector observation angle when H;!~11 ~ 1. 

(c) Generally no advantage in mass resolution is obtained by using 

heavy ion beams eg 14N , unless facilities are available to 

provide heavy ion-'beams at fairly high energies i.e. 2: 5 ~leV 

and detectors other than silicon surface barrier detectors are 

used. 

(d) The scattering of the incident beam must be minimised, for 

instance by using a double beam entrance slit arrangement in 

the scattering chamber. Another factor is beam energy stability, 

the accelerator used should deliver a fairly steady beam, 

typically spreads are in the order of 1 part in 103• 

(e) The high resolutions required by isotope studies dictate very 

small detector acceptance angles. 

(f) Electrostatic scanning (or "rastering") of the beam normally 

introduces insignificant error to the analysis. 

(g) Annular detectors do not have acceptable resolutions. Small 

planar surface barrier detectors with high resolution are 

convenient to use and isotopes can be distinguished under careful 

ex~erimental operation. The use of high resolution magnetic or 

electrostatic analysers I,'ould appear to be a justificable 

proposition. 

NUCLEAR REACTIONS 

(h) Hany of the factors critically affecting energy resolution in 

scattering are irrelevant since relatively poor energy resolution 

is often adequate. 

(i) The nuclear reaction must be chosen such that it gives the most 

selective determination of the isotopes required. 

(j) The nuclear reaction cross-section data is used to find the energy 

which gives an optimum cross-section and hence sensitivity, 

bearing in mind possible interferences. 
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(k) A high observation angle is preferrable to decrease topographical 

effects. 

The subsequent discussion of mass sensitivity (Section 3.2) 

takes account of the conditions required for good mass selectivity. 

3.2 ~IASS SENSITIVITY 

In stable isotope tracer analysis the sensi ti vi ty of a measurement 

method is best defined as the smallest change it can detect in the natural 

isotopic abundance of the tracer isotope, or, its absolute concentration, 

if the total elemental concentration is known. The highest sensi ti vi ties 

are achieved .'hen using isotopes of low natural abundance. High 

sensitivity is desirable to reduce the consumption of enriched isotope 

tracers. Sensi ti vi ty for Backscat tering and Nucl ear reactions are discussed 

separately. 

3.2.1 Backscattering Analysis 

In backscattering analysis expected yields can be calculated 

fairly readily, the cross-sections (unlike nuclear reaction cross­

sections) being readily predictable. For Rutherford scattering, 

within the confines stated at the beginning of Section 3.1.a, the 

differential scattering cross-section is given by Rutherford's 
( 63) formula :-

(~~ ) 
c 

= ••• Eqn. 3.20 

where the subscript c indicates that the values are given with respect 

to centre of mass co-ordinates. For the general case of Equation 3.20, 
(64) 

transformation from centre of mass to laboratory frame of 

reference yields equation 3.21 

.. Eqn. 3.21 

where 21 = atomic no. of projectile atom "'i th mass Ml 

22 = atomic no. of target atom with mass ~12 

e = electronic charge in electrostatic units = 4.8 x 10-10 
Stat 

E = energy of projectile immediately before scattering (in ~leV) 

8 = angle of scattering in the laboratory frame of reference. 
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It can be seen that da/dS"l varies in the following manner:-

(i) da/dS"l O(l/l 

( 
" 

I' ) da/d" S"l 1/ 4 h 'I 'I th' dd' " Cl. (Sin 9/2) .. en "1« "2' IS epen ence gIves 

rapidly increasing ~'ields as the scattering angle is 

decreased. 

(iii) da/dS"l Cl. Z12. The backscatter yield from a 12C+ beam (Z=6) 
4 + 

is nine times larger than for a He beam (Z=2). 

(i v) 
2 

da/dS"l Cl. Z2 • Hea\'y atoms are far more efficient scatters of 

any given particle beam. 

Clearly the restriction of detector solid angles to < 10 msr, to 

ensure good mass selecti vi to', adversely influences isotopic sensi ti vi ty. 

This is illustrated 

been calculated for 

by a 
26M Ig 

simple example. The isotopic sensitivity has 

used as a stable isotope tracer for the 

hypothetical study of self-diffusion in magnesium metal. The measure­

ment conditions assumed .. ere those dictated by the Harwell nuclear 

microprobe chamber when observing 

a detector solid angle of 6 msr. 

scattering events at 1700 , namely 
4 + 

A 3 HeV He ion beam was chosen, 

and an irradiation dose of 20 p coulombs. Referring to Figure 3.13, 

the number of events characteristic of 26Mg , has been taken as those 
26 25 arising from the centre third of the region between the Mg and ~Ig 

edges in an idealised spectrum. For natural magnesium, 26Mg (11.1~~), 

this is 2050 events. This is compared with events typical of the 

total magnesium content which arise from an identical region just below 
24 

the Mg edge, namely 18350 events. This leads to a standard de\'iation 

for the 26~lg isotopic abundance, a = 0.0026, and a coefficient of 

variation CV26 = 2.3%. Consequently, despite the relatively high ion 

dose for a nuclear microprobe measurement, it is unrealistic to ex~ect 

to measure changes of <5% in the natural isotopic abundance of 26Hg , 

even for elemental magnesium. Isotopic sensitivity \dJ 1 be decreased 

by dilution "ith light elements and interference from heavy elements. 

This is discussed in Section 3.3. Hea\'ier elements than ~Ig I<ill have 

better isotopic sensitivities. Isotopic sensitivity is optimised by 

using the heaviest iso~ope as the tracer. 

For the accurate calculation of isotopic composition the small 

differences in the scattering cross-sections for each of the different 

isotopes of an element must be taken into account. For an accurate 
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calculation when comparing total height ratios, for instance 24: 26 

as in Fig. 3.13, the number of events in the 26Mg channel must be 

calculated under the 24r.lg peak using i terati ve steps to take into 

account the gradual changes in stopping power, cross-section, back­

ground and, if necessary, the contribution of the tails from 

adjoining steps or peaks beneath the area of interest. 

The advantage of magnetic spectrometers in mass selecti d ty 

\o,'as mentioned earlier.. Since instruments are available \·.rith apertures 

similar to those needed with silicon detectors, their use for stable 

isotope tracer measurement is further justified (65, 66) 

3.2.b. Nuclear Reactions 

fairly 

in the 

Nuclear reaction cross-sections vary considerably and are 

difficul t to calculate. Generally experimental values reported 
. (67-70) 

Ilterature are used • Since there is a wide variation 

between cross-sections this can be used to advantage to enhance 

isotopic sensitivity by using a sensitive reaction for the tracer 

isotope of particular interest. Although reaction cross-sections 

for nuclear reactions are normally much lower than for Rutherford 

scattering this loss in sensitivity can often be more than compensated 

for by an increase in detector solid angle by a factor of 100. 

The isotopic sensitivity that may be achieved using nuclear 

reactions is illustrated by the study of self-diffusion in magnesium. 

25~lg waS used as tracer (natural abundance 10.13%) and compared ,,·i th 
24 Hg (abundance 78.7%) using the reactions "'=" 26 --Hg(d,p) Hg and 
24 25 

Hg(d,p) Hg. Deuteron energy = 1.9 ~leV. Figure 3.12 shows the 

2~lg Pi peak and the 2'\fg Po peak from an experimental magnesium 

spectrum, as indicated the peaks are well separated. Their yields, 

for a 4 llC dose, "ere used to estimate the isotopic sensitivity for 

2~lg. For the isotopic ratio measurement:-

25 2 
Hg/24 = 5.183 x 10-

)Ig 
Count ratio 

the variance of the count ratio = 7.847 x 10-
4

• 

This coefficient of variat ion of 1. 51% suggests that a 3% change in 

isotopic abundance of .2~lg, at the natural level for a 4 II C dose, 

should be measurable. This could be improved to 1% since a tenfold 

increase in detector efficiency is possible. However, it will be 
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degraded by decreases in )lg concentration and interference from 

light elements (see Section 3.3.2). 

Although it: has been demonstrated that good isotopic 

sensitivity can be obtained llsing nuclear reactions, wide variations 

are inevitable because of the numerous parameters involved. 

3.3 THE INFLUENCE OF SAMPLE CONSTITUTION 

Two aspects of the influence of sample constitution on nuclear micro­

probe measurements are considered. Firstly, bulk chemical composition. 

Secondly, sample heterogeneity. Backscattering and Nuclear Reaction Analysis 

will be considered in turn. 

3.3.a Backscattering Analysis 

The influence of bulk composition and sub-surface heterogeneity 

is complex. Of particular interest is the influence of these 

parameters in microbeam operatio~. 

In backscattering analysis of stable isotopes it is preferrable 

that the tracer should be t:he heaviest mass present. This removes 

problems of· interference by the presence of a high plat:eau from a 

heavier element, effectively acting as a hig'h background under the 

tracer count region. It is not essential though, and indeed cannot 

be ensured since materials inevitably contain some heavy metal 

impurities. Therefore the influence has been calculated of 1% 

concentrations of Si, Co, Rb, Ag and Bi on the isotopic sensitivity 
, 26 

for naturally abundant ~Ig (see Table 3.1); the assumptions and 

conditions were identical to those used in Section 3.2.a. 

Table 3.1 

Coefficient of variation for the measurement of the 
natural abundance of 26Mg in the presence of 1% Si, 

Co, Rb, Ag and Bi 

HlPURITY ;qL Si Co Rb Ag Bi 

Cv 2 .. 33% 2. 42~~ I 2.50% I 2.54% 2.60% I 2.82% 

As might be expected the greatest influence is from bismuth. Even so, 

at the 1% level its influence on the isotopic sensitivity of 2~lg is 

acceptable. 
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A general problem in 
(58, 65, 71) 

impurities 

oxide (65) 

ion beam analysis is the presence of surface 

In the measurement of magnesium, both native 

and carbon deposi ted by the beam may be encountered. The 

experimental investigation of magnesium by backscattering is detailed 

in Chapter 4, however it is of interest to note that the simulation 

spectrum, shown in Figure 4.1, ,,'hich allowed for the presence of oxide 

and carbon surface lay_ers gave the best fit to experimental data. The 

use of simulations such as these are very useful in demonstrating the 

effects on spectra of different types and thicknesses of surface 

contaminants. 

The influence of sample heterogeneity in microbeam operation is 

complex. For layer structures similar effects will be observed' for 

micro and macro-beam operation (42). However for multiphase systems, 

the observed scattering spectra .'ill depend on the scale of dispersion 

of the phases relati ve to the beam size. When inclusions are large 

"'i th respect to the beam, their composition will be accurately 

represented by the scattering spectra except at boundaries. There 

overlap effects occur, namely the analysis of both phases simultaneously 

and the passage of scattered particles from one phase through the second 

en route to the.detector. As the inclusions decrease in size spectra 

become almost uninterpretable, until the particles become so small that 

a true solution is effectively formed. The same considerations apply 

to multilayered structures except that the penetration depth 

beam relative to the la~'er thickness is the important factor 

of the 
(42) 

Topographical effects are also complex. Metallic samples do 

not present quite so much of a problem as other sample types and may 

undergo sequential polishing (using silicon carbide paper, diamond 

pastes to 1 or i urn, alumina to remove residual silicon contamination 

and then diamond paste again) in order to try to remove topographical 

features. One must be cautious though because excessive polishing 

can affect distributional as well as topographical features. 

Pressed powder samples are inevitably not very uniform, samples 

originally vacuum evaporated onto a substrate present a far better 

surface, avoiding topographical problems. With powder samples and 

particularly with biological samples surface roughness cannot be removed 

,,'ithout altering the sample to an unacceptable extent. However, by 

using an observation angle very close to 1800 errors caused by 
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surface topography can be minimised. Its effect is two-fold firstly 

the incident and exit trajectories will be as near as possible the 

same thus avoiding, or at least minimising, the effects of exit through 

inclusions, phase boundaries or just through a thicker part of an uneven 

surface. Secondly this is the minimum path length within the target thus 

diminishing errors introduced by changes and inaccuracies in stopping 

powers and straggling. Additional information about complex structures 

should be obtained for other sources, for instance optical microscopy. 

Whilst 

the effects 

considering biological samples it is useful to consider 
(72 73) 

of sample damage ' • Although by using stable 

isotope tracers one avoids the effects of radiation damage caused by 

the presence of radioactive tracers in a sample, some beam damage 

during analysis is almost inevitable. When an energetic charged 

particle beam impinges on a target, large amounts of energy are 

dissipated into the target and some ionisation occurs. Much of the 

deposited energy causes thermal damage which may be reduced by 

lowering the dose rate. This may be achieved by using a low beam 

current or preferably, as it does not increase the analysis time, 

continuous electrostatic scanning can be used as discussed in Section 

2.3. Usually nuclear reaction and backscattering experiments are 

carried out in vacuum, ho.·ever if the chamber is filled .'ith air or 

an inert gas this medium can help dissipate some of the heat generaLed. 

The e~~erimental arrangements used and the problems related to gas 

filled target chambers are discussed in (74, 75). The advantages of 

using an inert gas are two fold as it also allows easier preparation 

of biological samples. Vacuum samples can be prepared but the 

technique is fairly difficult and often water loss damages samples 

irreparably. 

3.3.b Nuclear Reaction Analysis 

The influence of sample composition and heterogeneity in 

analysis by nuclear reactions is far less predictable than for back­

scattering analysis because of the resonant nature of cross-sections 

and the variety of emitted radiaLions. In general the measurement of 

emitted particles is preferred since they carry information on sub­

surface composition and surface cont.amination, whil e emitted gamma-rays 

are less informative. For heterogeneous materials, differences between 

the cross sections of tracer and comparison isotopes will create 

problems. Similar difficulties will ensue if X-ray measurements are 
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used to determine the total elemental concentration. Analysis of 

two phase systems may prove virtually impossible except when 

inclusions are much larger or smaller than the beam. 

In isotope measurement by nuclear reaction analysis isotopic 

sensitivity may be influenced adversely by light element interference. 

This is illustrated for a 25Mg tracer, as used in Section 3.2. b. The 

influence of the concentrations of B, N, AI, Si and S (having higher Q 

values than magnesium, these nuclides are the most likely interferences) 
25 

on the isotopic sensiti\'ity for Mg has been assessed e>'llerimentally. 

In calculating the coefficient of variation for the 25~1g/2\lg 
isotopic ratio it was assumed that the statistical influence of the 

interfering elements .'as directly proportional to their 

contributions in the region of the 25Mg Pi peak and the 

The influence of the impurities is shown in Table 3.2. 

Table 3.2 

count 
24 

Mg Po peak. 

The influence of impurities on the coefficient of variation 

for the 2~1g/2~lg isotope ratio, at their natural abundances 

IMPURITY NIL B N Al Si S 

1 .. 51% 2.90% 
[ 

2.10% 
I 

1.51% 1.60% 1.52% CV25/24 
, 
I 

The lightest elements, Band N, clearly have the greatest influence. 

In general the influence of light element interference must be assessed 

for every analytical problem. 

3.4 SUH~IARY OF THE APPRAISAL OF THE NUCLEAR MICROPROBE DETERMINATION OF 

THE SPATIAL DISTRIBUTION OF STABLE ISOTOPES 

The distribution of stable isotope tracers may be determined using the 

nuclear microprobe by nuclear reaction or backscattering analysis. In some 

cases ion beam induced X-rays may be used in order to obtain the ratio of 

tracer isotope to the total elemental concentration. Both nuclear reactions 

and backscattering are largely confined to el ements of light to medium mass. 

Microbeam operation allows the attainment of spatial resolutions approaching 

2 ~m "ith little adverse affect on mass selectivity or isotopic sensitivity. 

The highest isotopic sensi ti vi ties, ca 1%, appear to be achievable using 
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nuclear reactions. The two techniques are somewhat complementary, for 

nuclear reaction analysis isotopic sensitivity is degraded mainly by light 

element interference ~'hereas in backscattering analysis the converse applies, 

heavy element interferences cause the problems. Difficulties may occur with 

complex samples, for instance in two phase systems microbeam operation permits 

only the examination of inclusions larger than the beam. The summary of the 

condi tions for optimal mass.. selecti vi ty in nucl ear reaction and backscattering 

techniques for stable isotope tracing is given at the end of Section 3.1. 

Al though the rival technique, ion-probe mass-spectrometry can achieve 

isotopic sensitivities of 0.1% at spatial resolutions of < 10 ~m, its 

range of application can be se\'erely limited by mass interferences and the 

formation of molecular species (8). 

The nuclear microprobe technique for the spatial determination of 

stable isotope tracers would be most suitable for the study of corrosion 

mechanisms, self-diffusion and possibly biological processes if beam damage 

can be minimised. For complex materials the selectivity of nuclear reactions 

may prove invaluable. 

In the following ch~pters the nuclear microprobe in conjunction with 

each of its two mass ·sensitive modes is applied to the measurement of 

stable isotope abundances and tracers in a variety of materials. 
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CHAPTER 4 

BACKSCATTERING TECHNIQUES FOR THE HEASURENENT OF 

STABLE ISOTOPE ABUNDANCES AND TRACERS 

Several examples illustrating the use of backscattering for the absolute 

quantitative analysis of stable isotopes are detailed in this chapter and an 

appraisal is made of the ,possible extension of the technique to allow spatial 

analysis. The use of both surface barrier detectors and a magnetic analyser 

M'as investigated. 

4.1 STABLE ISOTOPE ANALYSIS USING SURFACE BARRIER DETECTORS 

Silicon surface barrier detectors, as discussed in Section 3.1.1f, are 

the most convenient 

investigated first. 

for scattered particle measurement and their use was 
4 + 

A 3 MeV He beam was produced by the nuclear micro-

probe and focussed onto the chosen targets. The scattered particles were 

detected by a high resolution solid state detector placed either initially 

at the usual particle collection position of 135
0 

or at the new 170
0 

position. 

The active surface of the detector was covered by a tantalum shield with a 

slit cut into it as sho.n in Figure 2.7. This slit reduces the angle 

subtended by the detector and hence reduces kinematic spread and its 

consequent spectrum degradation. An arc shaped slit was used to ensure 

collection at the correct angle. As detailed in Chapter 2 the rigours of 

high resolution backscattering spectrometry necessitated the use of a low 

noise high quality electronic system. 

The stable isotopes of magnesium were investigated using a planar 

detector .'ith an energy resolution ~ 11.5 keV FII'HJlI. Part of the experimental 
4 

spectrum obtained using a 3 ~leV He beam, the original collection angle of 

1350 and a lmm x 2mm slit placed 37mm from the sample, is shown in Figure 4.1. 
26 2"-

Al though this detail shows only the h'o low abundance Mg and -Mg stable 

isotopes all three were clearly visible. Figure 4.1 also shows spectra 

generated by a simulation programme. 

The computer programme, used in order to help analyse backscattering 

spectra, was an adaptation of the large simulation programme I<ritten by 

Ziegler, Lever and Hirvonen (65, 76) Basically the programme sets up an 

idealised spectrum and then convolutes in factors which degrade this idealised 

spectrum, producing a simulation of an experimental spectrum. A few 

iterations comparing calculated simulated spectra I<i th the experimental 
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data are made and so that by a process of successive simulations one arrives 

at the best simulation of the data and has effectively "deconvoluted" the 

spectrum. This type of simulation method has been sho,m to be much more 

successful to the application of a ,,-ide range of data than the far more 

difficul t approach of direct deconvolution (i. e. the removal of equipment 

resolution and other factors which degrade the resolution) of the experi­

mental data. The problem xith direct deconvolution lies in the inherent 

differences in the statistical processes used. In deconvolution one normally 

obtains the transform of the data and the resolution function, divides them 

and then obtains the inverse transform. When the Poisson statistics of the 

data (which contains significant high frequency components) is divided by 

the resolution function (which has practically zero high frequency component) 

the resultant high frequency component is unrealistically magnified and 

hence the inverse transform contains excessive oscillations. 

The idealised spectra are based on coulombic scattering and on the 

Ziegler-Chu (77) energy loss polynomials. The programme calculates, by 

detailed numerical integration, the energy loss into the target, the elastic 

scattering of the projectile and the energy loss back out of the target. 

Using Bragg's rule one can attempt to deal ,,-ith multi-element layers. The 

effects ·of detector resolution, the energy loss of proj ectiles in the detector 

surface metal layer and the interdiffusion of two or more layers are also 

included in the calculated simulation spectrum. The equations used to 

simulate the spectra are· gi ven in Appendix A. In high resolution back­

scattering each isotope may appear separately and isotope effects must be 

accounted for. In the original Ziegler programme the isotope effects were 

removed, being treated as another factor degrading the spectrum resolution. 

In the adapted programme used, the isotopes were retained each being 

treated separately taking into account the differences in kinematics, 

scattering cross-section and the different stopping po,,-ers •. Some of the 

simulated spectra obtained are given in the Figures illustrating this chapter 

and can be compared with experimental data. It is worth noting that for 

,'isual impact the isotope steps in some of the Fi-gures are marked as flat. 

The steps are not in fact absol utel,' flat owing to changes in scattering 

cross-section and, to a lesser extent, stopping power as the incoming particle 

energy decreases. Over very small energ,' changes the differences are slight 

and within the accuracy of -che programme and the graphs one does apparently 

see "plateaus". 
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Figure 4.1 sho,;s two simulations calculated using the computer 

simulation programme described. The two shOlm allo,," for magnesium with a 

° 70 A oxide layer, with and wi thout 80 ~ of carbon. The spectrum simulated 

assuming the presence of both oxide and carbon layers gi ves the better fi t 

with the experimental data, particularly at the leading edges of the 

"plateau" regions. The experimental data was used to calculate the isotopic 

composition of magnesium. The counts used ""ere those in the centre third 

of the 26Mg and 25Mg steps and a similar region in the 24Mg region. The 
26 25 

corrected Mg, ~Ig and impurity contributions to the region under the 

24Mg step were calculated using an iterative method incrementing stopping 

power and cross-section at each energy interval in order to obtain the 24~lg 
contribution by difference. The resulting abundances are given in Table 4.1 

belo~'. 

TABLE 4.1: EXPERIMENTALLY DET~IIt\ED ABUNDANCES OF MAGNESIUM AND 
SILICON USING A SURFACE BARRIER DETECTOR 

DETECTION SMIPLE ISOTOPES INVESTIGATED CONDITIONS 

135°, 1 2.2mm Isotope ~lg 
24 I Mg25 I Mg26 x 

sliL 

37mm from sample 
abundance 

78.7 10.13 11.17 
40 llc 

~lg expected 

Kinematic spread abundance 78.8 + 1.46 10.3 + 0.24 10.8 + 0.26 

" 11 keV determined Cv = -1.84% Cv = -2.45% Cv = -2.42% 

170°, 3.0mm Isotope I Mg24 Mg25 I Mg 26 arc 
slit 

60mm from sample 
abundance 78.7 10.13 11.17 ~Ig expected 

16 llC 

Kinematic spread abundance 78.7 + 1.48 9.9+0.39 11.4+0.42 
4.5 keV C,. -1.88% Cv 

- 3 .. 98% -3.68% " determined = = Cv = 

170°, 3.0mm arc Isotope I Si 28 I Si29 I Si30 

slit 

60mm from sample Si abundance 92.2 4.7 3.1 
4 )lc 

expected 

Kinematic spread abundance 92.7+3.2 4.12+0.49 3.2+0.44 

" 4.5 keV determined Cv ::: -- 45°1 Cv = -12% Cv = 13 .. 6% .).. ;0 

As mentioned in Section· 3.1 it is desirable to collect backscattered 

particles at the highest possible angles thus reducing kinematic spread. 

The 1 by 2 mm slit used at 1350 (0 = 0.6 msr) has a kinematic broadening of 
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'" 11.5 keV. At the 1700 maximum collection angle, 60 mm from the sample, 

the same slit would subtend 0.22 msr with a kinematic spread of '" 2 keV. 

As the sensitivity is greatly reduced at the new position it is advantageous 

to use the largest arc slit which still ensures an acceptable kinematic 

spread, < 5 kel'. A 3.0 mm arc sli t, 60 mm away from the target was used. 

Part of the spectrum of magnesium obtained under these conditions is given 

in Figure 4.2. Again the isotope steps are visible and the abundances 

obtained are given in Table 4.1. While use of the higher observation angle 

improves mass resolution through reducing kinematic degradation of the 

spectrum, in practice the overall resolution was not improved since the 

transmission mount detector available had a relatively poor resolution, 

about 13.5 keV (FlI'HH). 

Figure 4.3 shows the silicon steps obtained from the spectrum of a 

bismuth implanted silicon backscattering standard. This standard is usually 

used to check the overall resolution of the various systems used. The 

abundances found are listed in Table 4.1. 

The abundances found for both magnesium and silicon are in good agree­

ment \,i th the e>'llected abundances al though for the latter the statistics are 

poor because of the 10'" dose used. These results demonstrate the ability of 

backscattering to quantitatively determine stable isotope abundances. Since 

the method is an absolute one it has the advantage that no calibration 

standards are needed, pro\'iding that the scattering approximates closely to 

pure Rutherford scattering. 

4.2 STABLE ISOTOPE . .\,\ALYSIS USING THE MAG,\'ETIC SPECTROMETER 

To extend the limit of mass resolution a Buechner magnetic spectrometer 

was used to analyse the backscattering particles. At present there is no 

magnetic spectrometer facility available on the nuclear microprobe thus 

these feasibility experiments "'ere carried out on the Tandem Van de Graaff 

accelerator "'hich has a single focussing Buechner magnetic spectrometer but 

unfortunately no microprobe focussing. The single focussing Buechner spectro­

meter is described in detail in Chapter 2. As discussed there, the optimum 

resolution was attainable at the highest backscattering angle of 1450
, with 

a solid angle of 0.175 msr. 

thin 244Cm alpha source (6 x 

Using a position sensitive detector and a very 
-5 

10 d.p.s.) in the place of a target, a practical 

resolution' of 8.5 ~ 0.2 keV FlI'~1 was achieved. The relevant calibration 

curve is shO"T! in Figure 4.4. It should be noted that the resolution obtained 
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with the Harwell single focussing Buechner is considerably poorer than that' 

obtained by the N.R.L. double focussing facility as described in Chapter 3. 

The mass resolution of the silicon surface barrier detector and the 

magnetic spectrometer is compared in Table 4.2 for a variety of ions wi th 

a range of energies. 

TABLE 4.2: OPTHnSTIC THEORETICAL MAXIMUM LIMITS OF MASS RESOLUTION 
CALCULATED FOR OUR DETECTION SYSTEMS 

NOMINAL OPTHIUM OVERALL THEORETICAL ~ASS 
INCIDENT BEAM BACKSCATTERING RESOLUTION & LIMIT FOR "HI = 1 

ANGLE DETECTOR TYPE 

3.0 MeV4He + 135
0 

) " 45 
) Silicon surface 

4 + 
1700 ) barrier detector 3.0 HeV He " 48 

4 + 
) 

5.8 }teV He 1700 ) " 15 keV 
" 70 

4 + 
1700 ) 3.0 ~leV He " 64 

4 + 
) 

3.0 ~teV He 1450 ) Magnetic " 62 

HeV4He + 
) spectrometer 

5.8 145
0 ) " 88 

) " 9 keV 
5.8 HeV160+4 1450 ) " 158 

) 

20.0 HeV 160+4 1450 ) >200 
I 
I 
I 

The table clearly shows that the magnetic spectrometer has the better mass/ 

energy resolution and also has the capability of successfully analysing 

heavier and more energetic beams. It would have been interesting to examine 
4 + magnesium using a 3 HeV He beam and the magnetic analyser in order to get 

a direct comparison with the isotope resolution of the surface barrier 

detectors. Unfortunately this "'as impractical because of the extreme 

difficul ty in obtaining 10'" energy, 10"' mass beams from the Tandem 

accelerator that were sufficiently stable for our purposes. A good beam 

was obtained at 5.8 HeV 4He+. The maximum theoretical limit of resolution 

Mt = 1 at the available angle 145
0 

was "70 thus a nickel sample provided a 

convenient target. The spectrum obtained with a 5.8 MeV 4He + beam at 

1450 is shown in Figure 4.5. The isotopes are clearly evident and again the 

data was used to obtain stable isotope abundances. The results are shown in 

Table 4.3. 
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TABLE 4.3: EXPERIMENTALLY DETERMINED ABUNDANCES OF SILVER AND NICKEL 
USING A MAGNETIC SPECTRO~1ETER 

ISOTOPE ABUNDANCES 
EXPERIMENTAL. 

SAMPLE 

I CONDITIONS 
EXPERIMENT AL EXPECTED 

NICKEL 58 67.6 ,,"_.4.01% 67.88% -
60 26.6 + 2.07% 26.23% 5.8 ~leV4He + BE»1 -
61 1.24 + 1.17% 1.19% 0 = 1450 

-
62 3.45 + 0 •. 81% 3.66% n = 0.175msr -
64 1.04 + 0.37% 1.08% -

SILVER 107 51.63 + 2.6% 51.83% 20 MeV160+4 BE»1 -
109 48.3 + 1.55% 48. 17'~ 0 = 145

0 

-
n = 0.175msr 

Heavier mass beams were also available on the Tandem and the higher 

energy and higher charge state beams provided 

currents and the most stable beams. A 20 ~1eV 

the most convenient beam 
16 +4 O' beam was used to obtain 

the backscatter spectrum of silver shown in Figure 4.6. An analysis time 

of 70 minutes was required to collect a satisfactorily defined spectrum. 

This was a consequence of the low beam current (ca 50 namps) low solid 

angle (0.175 msr) and the inherent problem of charge state fractionation~ 

This latter probl em arises because whenever charged particl es pass through 

a target, orbital electrons are captured and lost and hence the beam 

fractionates bet"'een the available charge states. The fractionation values, 

which are in fact energy dependent, have been tabulated by Marion and Young 

The problem of spectrum interpretation ,,·hen several charge states are 

present is somewhat simplified by the fact that usually only one charge state 

of a given mass appears on the detector at any given frequency. Obviously in 

order to shorten analysis times, improvements in beam current and sol id angl e 

are possible cf. the solid angle range available on the N.R.L. magnetic 

spectrometer (54). Collection of the scattered ions with the highest 

abundance charge state optimises sensitivity. Despite limitations isotope 

steps were resolved and the abundances found are given in Table 4.3. The 

abundances found for both the silver and nickel spectra are in good agree­

ment with the expected values and clearly demonstrate the ability of the 

magnetic spectrometer to quanti tati vely determine stabl e isotope abundances 

and greatly extend the mass 1 imi t of resolution of the backscattering 

technique. 

- 52 -



4.3 APPRAISAL OF THE ADAPTATION OF THE BACKSCATTERING TECHNIQUE FOR 
SPATIAL ANALYSIS 

The great advantage of the nuclear microprobe is its capability to 

allo~' spatial measurements to be carried out. Thus the possibility arises 

for one to measure the spatial distributions of stable isotopes in a system 

which has been treated with a stable isotope. 

Although it has been shown by the examples studied in this chapter that 

backscattering can be used.,;;uccessfully to measure stable isotope abundances 

even at relatively high mass when employing magnetic spectrometers, its 

extension to nuclear microprobe analysis will be severely restricted by 

sensitivity as implied by the results in Tables 4.1 and 4.3 which indicate 

that even at high doses for pure elements the isotopic sensitivity (i.e. 

coefficient of variation from standard deviation) is low. In spatial analysis 

a scattering spectrum must be collected at each analysis point, increasing 

the analysis time in proportion to the number of points examined. This will 

be time consuming since the analysis of an individual point will normally 

exceed 5 minutes and could take as long as 1 hr. Although in theory analysis 

times can be decreased by increasing incident beam currents it is often not 

possible to exceed a few nano-amps because of beam damage and pile up 

phenomena particularly when using silicon surface barrier detectors. Solid 

angle limitations on mass resolution ultimately control analysis speed ... hen 

using either silicon surface barrier detectors or magnetic spectrometers. 

While the latter have a fundamental advantage in energy resolution, their 

sensi ti vi ty is affected by charge state fractionation ~'hereas silicon detectors 

are unaffected since they collect all charge states. 

Because of these limitations backscattering will only be employed to 

measure isotope abundances with the nuclear microprobe in exceptional 

circumstances". In all probability 4He + irradiation with measurement of 

scattered particles using a silicon detector will be selected because of 

its convenience, and mass resolution ~'ill be adjusted by optimising the 

irradiation energy. For many light elements nuclear reaction methods ~'i1l 

be preferred for isotope measurement despite the need for calibration which 

is not essential when using scattering because of its fundamental basis. 

4.4 CONCLUSIONS 

Backscattering analysis has been successfully used to quanti tati vely 

determine the absolute abundances of stable isotopes and the use of the 

magnetic spectrometer to extend the mass limit of resolution of the technique 

has been successfully demonstrated. It would appear that the lack of sensi­

tivity will severely limit the application of the technique for spatial analysis. 

"The 
may 

development of 
perhaps modi fy 

(14 -) 
a ne~' detecLor .) for heavy ion backscattering anal;ysis 
these c6nclusions. 
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CHAPTER 5 

NUCLEAR REACTION METHODS FOR THE SPATIAL ANALYSIS OF 

STABLE ISOTOPES, IN PARTICULAR 13C AND 12c; 

It was apparent from the detailed theoretical investigation of the 

two isotopically sensitive modes of the nuclear microprobe discussed in 

Chapter 3, that nuclear reaction methods were particularly well suited to 
. . (78T 

lIght element analysIs • In this chapter, sensitive and selective 

nuclear reaction methods have been sought for the nuclear microprobe measure­

ment of the spatial distributions of 13C and 13C;
12

C ratios as an example 

of the application of nuclear reaction methods to stable isotope analysis. 

The behaviour of carbon in biochemical, biomedical and physicochemical 

systems is of widespread interest. Whilst 14C is commonly used as an 

isotope tracer in mechanistic studies it is not always suitable, for instance 

where the introduction of a radioactive tracer might be barred or where it 

might be overwhelmed by the inherent radioacti vi ty of the specimen. further­

more, as mentioned earlier, in the investigation of many processes isotope 

ratio values are far more informative than the tracer concentrations alone. 
13 14 

Consequently, C can be an attractive alternative to C in tracer studies, 

providing a spatially sensitive method is available to measure 13C and 
13 ;12. . 

C C ratIos. 

A comprehensive investigation was undertaken of the 13C and 12C 

reactions that could be induced by the various beams, of up to 3 Me\', 

available on the nuclear microprobe to find the most promising reactions 
13 13 12 

for the measurement of C and C; C ratios. The conditions governing 

the use of these reactions, particularly 1 ight el ement interferences, are 

detailed. 

5.1 PRELIMINARY SURVEY OF POSSIBLE REACTIONS SUITABLE FOR THE SPATIAL 

DETERHINATION OF 13C and 13C; 12C RATIOS 

In selecting reactions suitable for use on the nuclear microprobe, 

good sensitivity is of paramount importance because of the inherently low 

beam currents available, < 25 nA, and the large number of analyses per 

specimen. Good selectivity is also highly desirable to simplify data 

resolution. Whilst certain nuclear reactions, such as the (p, Y (79-87) 

reaction,are satisfactory for the determination of 13C;
12

C ratios in bulk 

specimens their suitability for application to the nuclear microprobe was 
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questionable on the grounds of sensitivity so experimental examination of 

this was undertaken. 

(88-91) 13 Although the (p,n) reaction has been used to measure C the 

threshold energy (in the region of 3.23 ~le\') and the resonance energies 

(6.7, 7, 8.8 MeV) are too high for the HarKell nuclear microprobe. Even 

if the most favourable irradiation conditions could be used the sensitivity 
13 (91) 

for measuring C is barely acceptable for nuclear microprobe application 
13 12 

In addition only C and not C can be measured as the Q value for the 

12C(p,n)12N \ Q f 13 ()13 . reaction is -18.13 Me'. The value 0 the C p,n N reactlon 

-3.03 Me\' is also rather unfavourable. As 7Li , 9Be , llB, 180 and 37Cl all 

have more positive reaction Q-values extensive interference is possible. 

Experience ~'ith the determination of 9Be (58) suggests that the (a ,n) reaction 

has considerable potential for the highly selective determination of 13C "ith 

significant interference being limited to that by beryllium. The use of the 
13 (a,n) reaction for the measurement of C in thick targets of 89% enriched 

'CH
3

I deposited onto a tantalum backing has been reported b~' Ramstrom (92). 

He was primarily interested in the astrophysical application of che 13C(a,n)160 

reaction as a neutron source during star evolution and the use of the reaction 

for the determination of the spatial distribution of 13C tracers does not 

appear to have been carried out. The remaining alpha induced chars"ed 

particle reactions show little promise for 13C determinations as all have 

high reaction thresholds. With the deuteron energies available on the 
. 13 14 12) 13 . Harwell mlcroprobe both the C(d,n) N and the C(d,n N nuclear reactions 

will occur. The neutrons emitted have been measured using the time of flight 

technique, however this is incompatible with the present nuclear microprobe 

facility since the long pulse width, 20ns, leads to unacceptably poor energy 

resolution. Neutron measurement methods with exception of the (a ,n) method 

are unattractive because of the high probability of interference from the 

many (p,n) and (d,n) reactions on nuclides which emit relatively high energy 
(93) 

neutrons • Consequently the only reaction suitable for carbon analysis 

using neutron detection in conjunction with the nuclear microprobe appeared 
13 16 

to be the C(a,n) 0 reaction, therefore this reaction was investigated 

experimentally. 

The (d,p) (20, 94) reaction is used routinely for the nuclear micro-

b d t . . f 12C d . t· . t . f ( 94 ) . pro e e ermlnatlon 0 an senSl IV1 les 0 ca. lppm are no", 

attainable. Obviously it would be convenient if these techniques could be 

extended to allow simultaneous analysis of spatial distributions of 13C• 

Cross-section studies (95, 96) indicate that the po particle group emitted 
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. 13 14 13 by the reactIon C(d,p) C is measurable for C enriched targets. In 
o 

addition the 
(97) 

promise 

investigated. 

deuteron induced gamma producing reactions do shoM' some 
. 12 13 for the analytIcal measurement of C and C and thus were 

The (3He , p) and (3He ,a ) reactions have been used by several groups 

(98, 104), mainly to analyse bulk 12C. Most workers have carried out their 

measurements by utilising the resonance y-rays emitted from the product 

1 . d K' . d k (105) d' d th t f th nuc I es. aIm an co-wor ers I measure e pro on groups rom e 

12C(3He , p) 14N reaction although a consideration of the charged particle 

product energies suggests that interference may well occur in both 12C and 

13C analysis by this reaction, thus limiting the sensitivity attainable. 

The sensitivity of the method and the extent of interference were 

investigated. 

The details of the investigations of the most promising reactions are 

described and the probable value of the various techniques for the nuclear 

microprobe measurement of 13C and 13C/ 12C ratios is discussed. 

5.2 EXPERIMENTAL INVESTIGATION fu~D DISCUSSION OF THOSE REACTIONS 

CONSIDERED MOST APPLICABLE TO 13C/ 12C STABLE ISOTOPE ANALYSIS 

The experimental investigation was carried out using the nuclear 

microprobe and the counting systems described in detail in Chapter 2. 12C 
13 and C standards were prepared as pressed powder discs from BaCO_ enri ched 

.) 

up to 90% in 13C• Interference studies were undertaken for Li, Be, B, N, 0, 

F, Na, ~lg, AI, Si, P, S and Cl using targets of LiNbO_, Be/Cu alloy, B, SiN, 
.) 

Si02 " SrF 2' NaCl, Mg, AI, Si, InP, PbS and AgCl as polished solids or pressed 

powder discs. For the 

were required in order 

BaCO_ samples very careful measurement conditions 

to mtnimise any loss of 13C as 13C02 due to heat 

damage by the beam. A 1.6nA rastered beam was used stepped after each 0.1 :lC 

dose of charge. 

5.2.1 The (~,n) Reaction 

13 Sensi ti vi ty and selecti vi ty in the measurement of C by the 

(a,n) reaction were optimised through choice of irradiation energy 

and by neutron energy discrimination. 

Consideration of 13C and in particular the 9Be (a,n) reaction 

cross-sections at 00 indicated that irradiation with 2.8 ~leV 4He + ions 
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would optimise the yield of neutrons from 13C (106). Few nuclides 

produce neutrons of greater 

" 13 ( ) 16 by the reactlon C a,n 0 

or comparable energy to those emitted 

as can be seen in Table 5.1. 

TABLE 5.1 EMITTED NEUTRON EJ',ERGIES mml POSSIBLE INTERFERENCES 

TO 13C ANALYSIS USING THE (a ,n) REACTIOK 
o = 2.8 MeV, 8 = 0 

TARGET NUCLIDE 
EmTTED 

9
Be 

25~lg 

21Ne 

13
C 

lOB 

17 
0 

11B 

26
Mg 

22Ne 

18
0 

NEUTRON ENERGY 
(MeV) 

8.486 

5.416 

5.312 

4.936 

3.704 

3.269 

2.754 

2.734 

2.179 

1.919 

Assuming Neon to be absent, the neutron yield obtained for various 

neutron energy threshold settings of the pulse discrimination system 

was determined for targets of boron, 1.89% beryllium in copper, 

"I" 13C SI lea, enriched BaCO_ 

of neutrons emitted by 
9 .) 

Be, 

and magnesium. Since the maximum energy 

25~lg, 21Ke , 13C , lOB, 170 , llB, 26Mg , 

22 18 
Ne and 0 are those shown in Table 5.1 a series of threshold settings 

were found "hich successively eliminated neutrons from those targets. 

The values found and the related neutron energies are shown in Figure 

5.1. By choosing a lOB cut-off point, 3.704 ~leV, only neutrons from 
9 25 13 

Be, Mg and C can be collected. For these conditions 1 wt % of 

13C in a BaCO_ matrix gave 885 countS/)J coulomb and the relative 
'"'9 25 13 

responses for Be, Mg and C were found to be 13.7 0.001: 1.0. 

A far greater sensi ti vi ty, 4300 counts/)J coulomb, was obtained for 13C 

h 1 " h f 18 by reducing the neutron energy t resho d to Just above t at 0 0, 

1.919 MeV. While this leads to additional interference from 26Mg and 
10/11

B 
17 

none was measurable for 0 at its natural abundance in Si0
2

• 
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Calibration curves for the two measurement conditions are shown 

.'eight basis the relative responses for 

in 
9 

Be, Figure 5.2. 
25/26Mg , 13C 

Since on a 

and 10/11B were 3.9 : 0.001 : 1.0 : 0.007 the choice of 

the lower discrimination energy has the advantage of enhancing 

sensitivity with little loss in selectivity. For matrices containing 

little or no beryllium and minor amounts of 25/26Mg and 10/11B the 

(a,n) reaction is vir:t!lally specific for the measurement of 13C with 

a sensitivity of Ca. 100 ppm. 

5.2.2 The (d,p) and (d,a) reactions 

Carbon distri butions are frequently measured on the Harwell 

nuclear microprobe by the 12C (d,p) 13C reaction wit." a l.3MeV deuteron 
(20 94) 

beam ' ,thus these conditions were choosen initially to study 
13 the possible extension of the technique to measure C. The particle 

energy spectra obtained for natural and enriched BaCO_ targets are 
" 12 13 shown in Figure 5.3., The p particle groups from both C and C 

o 
clearly stand out. Straight line calibration graphs, Figure 5.4, were 

obtained for both 12C and 13C by measuring their Po peak areas over 

channels 60 to 68 and 115 to 135 respectively. For a BaCO_ matrix 

" sensitivities were obtained of 40900 and 3250 counts/wC/l w-t. % 12C 

and 13C respectively giving direction limits of 5 and 60 ppm respecti ,-ely 

were obtained. 

Extensi ve interference .'i th the determination of 12C and 13C 
( 93) 

through their emitted Po groups ma;y occur since many light elements 

react "i th deuterons. Consequently the extent of interference by 

elements from Li to Cl was studied with the exception of Neon. The 

charged particle energy spectra of some of the interferences are given 

'in Figures 5.5 to 5.8 and the interference levels of the 4 worst inter­

ferences Li, B, F and 1'1 are given in Figure 5.9. The interference by 

boron to 13C is due to the very high background levels from the 10BP1 

and also from the tails of the higher energy l°Bpo and 10Ba1 peaks. 

The 10Bp4 and the very high background levels from other higher energy 

b k th ' t f 12C 1 - Th b d 7L , oron pea s cause e In er erence to ana YSlS. e roa lao 

peak causes interference to 13C analysis and the very high background 
po 

levels from the 7 Li ,6Li and 6Lip peaks all hinder 12Cpo ' analysis. 
ao Po . 14 14 

The high background levels from the Np and 1'1 groups cause 
'1- 0 ao 

interference to "Cpo analysis and general high levels of background 

from high energy Nitrogen peaks causes the interference to 12C analysis. 
Po 
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The tail of the higher energy 19Fa peak causes some interference to 
13 19 o. 12 C analysis and the F peak causes some lnterference to C analysis. 

P6 

The effect of varying the incident beam energy both on the yield of 

13C and also the degree of interference from Li, B, F and N are given in 

Figures 5.10 and 5.9 respectively. The greatest sensiti"ities, ca. 6300 

and 108,600 counts/].JC gi ving detection I im~ ts of 30 and 2ppm for 1 ,,'to % 

13C and 1 wt. % 12C in BaCO_ respectively, were obtained with 1.5 NeV .., 
deuterons. However although increasing the irradiation energy can reduce 

the degree of interfe~ence from some isotopes, the interference of lithium 

on 13C is reduced by almost two orders of magnitude, in some cases the 

degree of interference increases above 1.4 NeV. The choice of bombarding 

energy would thus depend to some degree on which interferences were likely 

to be present but clearly for matrices containing even limited amounts of 

Li, N, Band F considerable caution must be exercised in applying the 

(d,p) reaction. While interference from other light elements was found 

to be lower, the measured R values (where R is the ratio of the yield of 

1 .'t. % interference nuclide to the yield of 1 .'t. % 13C or 12C all 

measured per ].JC) indicate that few can be ignored completely as can be 

seen in Table 5.2 below. 

TABLE 5.2 INTERFERENCE TO THE HEASURE.MENT OF 12C AND 13C USING 

THE (d,po) NUCLEAR REACTIONS. 

!:od = ·1.3 Ne\', El = 1350 

R VALUE R VALUE 
NUCLIDE ( 12C) ( 13C) 

Li 0.49 4.7 

Be 0.16 0.008 

B 0.009 0.073 

0 0.005 < 0.0001 

N 1.3 0.18 

F 0.067 0.0155 

Na 0.0001 0.001 

Ng 0.001 0.008 

Al 0.0007 0.006 

Si 0.0002 0.006 

P 0.0008 0.0008 

S 0.012 0.001 

Cl 0.009 0.0002 

R = (Yield of 1 wt. % Interference Nuclide/].JC) 
13 12 (yield of 1 ."t. % C or C/].JC) 
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For materials containing insignificant amounts of interfering 

elements the (d,p) reaction will allow the nuclear microprobe 

determination of 13C/ 12C ratios with a reasonably high sensitivity. 
13 The inferior sensi tivity for C reduces the possibility of measuring 

small enrichments of the tracer isotope. 

The (d,a) reaction "-as found to be of no use for the determination 

of 13C and 12C. As' ca'n be seen in Figure 5.3 the 13C peak sits under 
16 a o 12 

the 0po group and also on the edge of the 10'" energy tail of the Cp 
12 0 

peak, thus interference would be unacceptably high. The Cao peak is 

totally absorbed by the absorber foils needed to prevent scattered 

deuterons reaching the active detector layer. 

'5.2.3 The (3He ,p) and (3He ,a) Reactions 

, (104 105) 13 3 15 The cross-sect10n ' for the C( He,p) N nuclear 

reaction rises slowly with increasing energy. Good sensitivity for 

the measurement of 13C will therefore be favoured by choosing an 

irradiation energy close to the 3 He\' maximum of the Harwell nuclear 

microprobe. Consequently, initial stUdies used 2.8 He\' 3He ions and 

the emitted particle spectra, shown in Figure 5.11, were produced by 

irradiating natural and enriched BaCO_ targets. Since the 12Cpo peak 
13 " suffers interference from the Cp2 and p3 groups clearly seen in 

13 12 ' Figure 5.11, on the basis of the kno,,'Il C and C concentratlons of 

the standards a linear least squares fitting procedure was employed to 

,,'t. % 12C and 1 ,,'t. % 13C 

sample the 13C concentration 

obtain the best values for the response of 1 
, , h' 12 F 1nterference "'1 t 1n the Cpo region. or a 

is obtained directly from the 13Cp particle group, this is then used 
12 0 1-

to correct the C value. The calibration curves obtained for both "c 
12 ,and Care 

for 1 wt. % 

gi ven in Figure 
13C ,­and 1 ,,'t. " 

5.12. Sensitivities of 320 and 840 countS/llC 

12C in BaCO_ respectively were obtained, 

" gi ving limits of 630 and 240 ppm respecti vely. 

A ,,-ide range of light elements react ,,-i th 3He + (30) ions and 

again the interference level of all the elements up to Z ~ 17 with 

the exception of H, He and Ne was investigated. The four most serious 

interferences were found to be beryllium, lithium, boron and nitrogen 

and the relevent particle spectra are given in Figures 5.13 to 5.16. 

The very 

13C peak is 
Po 

to the 12C 
Po 

high degree of interference from the beryllium to the 
9 9 

due to the Bepo and Bepl peaks while the interference 
9 peak is due to the presence of the Bep_ peak and (to 

" 
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9 13 
some extent) the Be

p2 
low -energy tail. The interference to the Cp 

peak analysis caused by Lithium is due to the 7Lipo whilst the 7Lip4 0 

and general high background level from high energy Lithium peaks causes 

the interference for 12Cp analysis. As can be seen from Figure 5.15 
10 11 0 1-

several Band B proton peaks cause interference to both "Cp o 
1 - d 12C - 1 - The 14"Pl d k - t f -th ana YSIS an p ana YS1S. "an P2 pea s In er ere Wl 

1- 0 
"Cpo analysis and several nitrogen peaks cause interference to 12Cp 

analysis. Figure 5.17 sho,,'s the \'ariation in 13C yield with increas~ng 
energy. The highest _s_ensi ti vi ty of 460 counts/)JC for 1 "'t. % 13C in 

BaC0
3 

was obtained at 3 ~leV 3He +, the energy limit of the machine. The 

yield of the 12C group also increases with increasing beam energy and 
Po 

a sensitivity of 1400 c/)JC "'as obtained at 3 ~leV 3He +. The effect of 

increasing the beam ener~' on the relative interference levels of the 

four worst interferences was investigated and the results are given in 

Figure 5.18. Again the effect on the levels of interference varies but 

it can be seen that to work at 3 ~leV is advantageous both with regard 

to sensitivity and the degree of interference. The inverse proportionality 

of the R value and energy is partly attributable to the increase in 

sensitivity for both 12C and 13C with increasing energy. The remaining 

elements cause less interference and the R values obtained at 2.8 MeV 

are listed in Table 5.3. 

TABLE 5.3 INTERFERENCE TO THE MEASUREM&\,T OF 12C AND 13C 

USING THE (3He ,po) NUCLEAR REACTIONS 

= 2.8 MeV, 0 = 

R VALUE R VALUE 
NUCLIDE 

( 12C) (13C) 

Li 12.0 7.3 

Be 28.0 18.5 

B 0.122 0.97 

N 0.015 0.51 

0 < 0.001 0.001 

F 0.06 0.04 

Na 0.01 0.004 

Mg < 0.001 < 0.0001 

Al 0.005 < 0.0001 

Si < 0.001 < 0.0001 

P 0.004 0.013 

S < 0.001 0.002 

Cl < 0.001 < 0.0001 

R = (Yield of 1 ,,'t. % Interference Nuclide/wC) 
(Yield of 1 ,,-to % L)C or i2C/UC) 
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3 The ( He,et) 

measurement. The 

12 peaks were found to be of no value for C and 
13 

Cet
o 

to et4 peaks were barely discernable and 
13 close to the C

P1 
by the thickness of 

the ~5 and ""6 are just visible they lie very 

peaks. The 12Ceto peak was entirely absorbed 

detector mylar absorber foil used to prevent scattered 3He + ions 

entering the active detector. 

13C 

although 

and 
P2 

Although the (3H~;p) reaction may be used for the nuclear micro­

probe determination of 13C/ 12C ratios this reaction tends to be less 

attractive than the (d,p) reaction because of its lower sensitivity 

and wide suseptibility to interference. For the Harwell nuclear micro­

probe irradiation with 3 MeV 3He + ions optimises sensi ti vi ty and 

selectivity. 

5.2.4 ~+ Induced Gamma Reactions 

A major disadvantage of the (d,p) method for the determination 

of 13C/ 12C ratios is its relatively high susceptibility to interference. 

Heasurement of prompt gamma-rays emitted during deuteron bombardment, 

with a high resolution Ge(Li) detector, offers a possible means of 

retaining the good sensi ti vi ty of the (d,p) method while discriminating 

more successfully against interferences. 

Gamma-ray spectra of enriched and natural BaCO_ targets bombarded 
,j 

with a 1.5 HeV deuteron beam are given in Figure 5.19 and the assign-

ment of peak origins are tabulated in Table 5.4. 

TABLE 5.4 IDENTIFICATION OF THE G»L"1A-RAYS EmTTED BY IRRADIATING 

12C AND 13C WITH 1.5 HeV DEUTERONS AND OBSERI'ED IN THE 

SPECTRA SHO~~ IN FIGURE 5.19 

, I 

Peak Gamma-ray 

Number Reaction Energy 

I 
Transition 

(HeV) (HeV) 

1 13C(d,py)14C 6.09 6.09 -+ 0 

2 13C(d,ny) 14N 5.685 5.685 -->- 0 

3 Cl se) 

4 (2 se) 

5 ~13C Cl de) 
(d,ety)l1B 5.03 5.03 _ 0 

6 13C (d,ny) 14~, 4.910 4.910 _0 

/Table Contlnued •• 
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TABLE 5.4 (Continued) 

Peak Gamma-ray 

No. 
Reaction Energy Transition 

(MeV) (~leV) 

I 7 (2de) 
I 

- --
8 (5se) -

, 

9 (6se) 

10 (5de) 

11 (6de) 

12 13C (d, nY) 14N 3.373 5.685 -+ 2.312 

13 12C(d,pY) 13C 3.085 3.085 -+0 

14 (13se) 

15 13C(d,ny)14N 2.312 2.312 -+ 0 
: 

se and de denote the single and double escape peaks. 

Only the 3.085 MeV Y-ray from the reaction 12C(d,py)13C is produced 
12 

for C and must be used for its measurement. Although six gamma-rays 

produced by the reactions 13C(d,Py)14C, 13C(d,ny)14N and 13C(d,ay)11B 

have been identified that at 3.373 MeV was preferred for the measure-
13 

ment of C on the grounds of sensi ti vi ty. Using these two Y -rays and 

a simple base line subtraction method 

peak areas, straight line calibration 

13C which are given in Figure 5.20. 

to calculate their associated 

graphs were obtained for 12C and 

Sensitivities of 1800 and 3100 

counts per >lC, giving detection limits of 640 and 440 ppm were found 

for 1 ,,'to % 13C and 1 ,,'t. % 12C in BaCO_ respecti vely. The poorer 
,) 

sensitivities are partly a consequence of the reaction cross-sections 

invol ved and partly a consequence of gamma-ray detection efficiency. 

The poorer detection limits also reflect the adverse influence of the 

high compton background on counting statistics. 

Again since so many gamma peaks are produced when bombarding 

samples with deuteron beams all possible interferences up to Z = 17 

with _the exception of H, He and Ne were investigated. Gamma-ray 

detection was found to give poorer discrimination against light 
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element interference than expected. Although direct interference 

can occur from react ions that 1 ead to the production of 13C and 14N, 
15 13 16 14 

namely, N(d,a) C and O(d,a) N, interference studies on nitrogen 

and oxygen indicate that they are of little or no consequence. 

Interference through gamma-ray overlap can, however, occur. The 

3.373 MeV peak is poorly separated from the 3.368 ~leV gamma-ray 

produced by the reacti_on 9Be (d,py)10B, the 3.368 MeV emission from 

32S (d ,Py) 33S and the 3.385 MeV and 3.364 MeV emissions from 24Mg ( d ,Py )25Mg 

and 2~g(d,ay)22Na respectively. Fortunately, these problems can be 
13 

circumvented by chasing other gamma-rays for the measurement of C, 

but with some loss of sensi ti vi ty. The 3.085 MeV peak is overlapped 

by gamma-rays emitted by 9 of the 13 light elements tested. The 

interfering gamma-rays involved are the 3.09 ~leV emission from 

19F (d,py)20F , the 3.07 MeV emission from 23Na (d,ay)21Ne , the 3.082 MeV 

emission from 24Mg (d,Py)25Mg , the 3.10 ~leV and 3.057 ~leV emissions 

from 27A1 (d,py)28Al , the 3.069 ~leV emission from 31p (d,ay)29Si , the 

3.098 MeV emission from 32S (d,p )33S , the 3.11 MeV emission from 

32S (d,py)33S , and less well authenticated emissions from 9 Be (d,ny)10B 

and 7 Li( d ,ay) 5He • Quanti tati vely the degree of interference can be 

seen from the measured R values which are tabulated belo,,' in Table 5.5. 

TABLE 5.5 INTERFERENCE TO THE MEASUREMENT 
12 13 _ 

THE C(d,py) C Ey = ".085 MeV 

Ey=3.373MeV REACTIONS 
o 

Eod = 1.5 MeV, 0 = 0 

NUCLIDE 
R VALUE 

( 12c) 

Li 0.015 

Be 0.054 

B < 0.006 

N < 0.0008 

0 < 0.0001 

F 0.028 

Na 0.020 

~lg 0.006 

Al 0.0017 

Si < 0.00006 

P 0.007 

OF 12C AND 13C USING 

R VALUE 
(13C) 

< 0.066 

0.016 

< 0.008 

< 0.0001 

< 0.00003 

< 0.069 

< 0.002 

0.004 

< 0.014 
-

< 0.00006 

< 0.00002 

I 
ITable continued ••• 
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TABLE 5.5 
(Cont'd) R VALUE R VALUE 

NUCLIDE 
( 12C) (13C) 

S 0.022 0.0013 

Cl 0.013 < 0.001 

R = (Yield of 1 _'t. % Interference Nuclide/~C) 

(Yield of 1 wt. % 13C or 12C/)lC) 

The limit values indicate the measurement limitations imposed by the 

presence of a Compton continuum rather than a gamma-ray peak. This 

limitation is highly significant for some elements, notably lithium 

and fluorine. For certain elements, particularly boron and nitrogen 

the degree of interference is much less than for the (d,p) method, 

and gamma-ray measurement might be used with advantage for the 

examination of materials containing those elements. Although 

deuteron induced gamma-rays may be used for the nuclear microprobe 

determination of 13C and 13C/ 12C ratios, the method is less sensitive 

than the (d,p) method, and its use \,ill be limited by the presence of 

a wide range of light elements. 

5.2.5 
3 + 

He Induced Gamma Reactions 

~leasurement of prompt gamma-rays emitted during 3He + ion 

bombardment offers a means of circumventing some of the light element 
. t f t d h d .. 13C d 12C b . In er erences en co un ere ". en etermlnlng an y measur lng 

emitted particles. Gamma-ray 

bombarded with a 2.8 ~leV 3He + 

spectra of enriched and natural BaCO_ 
.) 

beam are given in Figure 5.21 and the 

assignments of peak origins are tabulated in Table 5.6 belo"'. 

TABLE 5.6 IDENTIFICATION OF THE G»!!>IA-RAYS EMITTED BY IRRADIATING 

12C AND 13C WITH 2. 8 ~leV 3He + ION, A>'liD OBSERVED IN THE 

SPECTRA SHOM~ IN FIGURE 5.21 

Peak Gamma-ray 

No. 
Reaction 

Energy Transition 
(~leV) (~leV) 

1 ( 13C(3 He )15/1 7.572 7.572 - 0 r - ,Py 15' 
.)C(.)He nv) 0 7.56 7.56 --+0 , , 

2 (1, se) 

/Table continued ••• 
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TABLE 5.6 
(Cont'd) 

Peak Gamma-ray 

No. 
Reaction 

Energy Transi tion 
(~leV) (~leV) 

3 (l,de) 

4 12C ( 3H e , PY ) 1411' 5.685 5.685 ....... 0 

5 . 13C(3He ,py) 15N 5.305 5.305 ....... 0 

6 13C (3He ,py) 1511' 5.276 5.276 -0 

7 12C (3He ,py) 1411' 5.104 5.104 -0 

8 (5,se) 

9 (6,se) 

10 (7,se) 

11 (5,de) 

12 (6,de) 

13 (7,de) 

14 12C (3He ,py)14N 3.945 3.945 -0 

15 (H,se) 

16 12C(3He ,py) 1411' 2.792 5. 104 ~2. 312 

17 13C (3He ,py) 1511' 2.734 9.06 -6.33 

18 12C(3He ,py) 1411' 2.598 4.91 -;. 2.312 

19 12C (3He , py ) 1411' 2.312 2.312 -..0 

20 (19,se) 

21 12C(3He ,py) 1411' 1.63.4 3.945 -+ 2.312 

22 13C(3He , ny) 150 1.41 7.56 ->6.15 

, 

se and de denote the single and double escape peaks. 

The 5.305 MeV . . 13 3 15 
gamma-ray eml tted by the reactlon C( He,py) 11' was 

chosen for the quanti tati ve determination of 13C because of its 

superior sensi ti vi ty. While the 2.311 MeV gamma-ray from the 

reaction 12C (3He , Py) 1411' is apparently the most sensi ti ve for the 

measurement of 12C , we confirmed a previous observation that it is 

unsuitable for prompt measurements because it is also fed by the 

decay of 140 , t~ = 17s, produced by the reaction 12C(3He ,n)140 (97) 
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Consequently, the next most sensitive gamma-ray at 1.634 MeV was 

chosen for the quantitative determination of 12C. These gamma rays 

gave straight line calibration curves which are ShO\.,'ll in Figure 5.22. 

For a BaCO_ matrix sensitivities at 1 
,j 

"rot • % were 360 and 100 counts/1J 

coulomb for 12C and 
13C respectively giving detection limits of 4100 

and 3500 ppm. The reduction in sensitivity obtained for gamma-ray 

detection compared to particle detection parallels our experience 

with deuteron irradiation. Because of its low sensitivity the method 

will only be suitable for the examination of materials containing 

high carbon concentrations. 

The degree of interference found for the light elements examined 

is indicated by the measure R values. For the 1.634 MeV and 5.305 MeV 

gamma-rays the R values obtained for 12C and 13C respectively are given 

in Table 5.7 below. 

TABLE 5.7 INTERFERENCE TO THE MEASURDIENT OF 12C AND 13C USING 

THE 12C(3He ,py)14N Ey =1.634 MeV AND THE 13C (3He ,py)15N 

E :5. 305 ~leV REACTIONS -y 

R VALUE R VALUE 
NUCLIDE ( 12C) (13C) 

Li < 0.045 0.057 

Be 0.042 < 0.043 

B < 0.0008 < 0.0006 

N < 0.0008 < 0.001 

0 < 0.001 < 0.0002 

F 0.64 0.016 

Na < 0.004 < 0.0004 

~Ig 0.024 < 0.0003 

Al < 0.0002 < 0.0002 

Si < 0.0002 < 0.0002 

P < O.ooor < 0.0008 

S 0.083 < 0.003 

Cl 0.016 < 0.0003 

R = (Yield of 1 ~~. % Interference Nuclide/1jC) 

(Yield of 1 ~~. % 13C or 12C/1jC) 
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, 

The limitation imposed by a Compton continuum, as opposed to an 

overlapping gamma-ray, is indicated by a less than value. Interfering 
14 . 15 reactions which could produce Nand N were found to be of no 

consequence for the selected gamma-rays. However, several elements 

cause interference through gamma-ray overlap. The 5.305 Me\' gamma-

ray is poorly separated from the 5.300 MeV emission from 19F (3He ,ay)18F , 

and a broad line closEt. to 5.36 Me\' emitted by the reaction 

7Li(3He,py)9Be. The 1.634 MeV gamma-ray is overlapped by a 1.63 ~leV 
emission from 9Be (3He ,pY) llB, an unassigned 1.632 MeV emission from 

19F , a 1.623 MeV emission from 24Mg(3He,py)26Al, a 1.611 MeV emission 
35 3 34 . 

from Cl( He,ay) Cl, and several gamma-rays close to 1.63 MeV from 

32S(3He,py)34Cl and 32S (3He ,ay)31S • Although, these interferences 

may be largely overcome by selection of alternative gamma-rays for 

the determination of 12C and 13C, the already low sensitivity of 

the method is reduced further. Consequently, the circumstances in 

which advantage can be taken of the good selectivity of the method 

will be strictly limited to samples with high carbon contents. 

5.2.6 lH+ Induced Gamma Reactions 

The sensitivity of the (p,y) reaction for the measurement of 

12C and 13C was' checked by irradiating a BaC0
3 

target 90.7% enriched 

in 13C with a 0.8 MeV proton beam. The irradiation energy was choosen 

as it falls within the optimum range, 0.6 - 0.8 MeV, recommended for 

determination of 13C/ 12C ratios (81, 84, 87) Under these conditions the 

the 13 12 gamma-rays at 8.061 ~leV from C and at 2.366 MeV from C were 

barely discernable for an incident charge of 25 ].lC. The very poor 

sensi ti vi ty is consistent with that found by Engelmann et al. (84) 
. ' . 13 12 

where 1000~C and 150(),1C doses were requIred for C/ C analyses. Such 

doses are totally unacceptable in spatial analyses because analysis 

times become excessively long due to the large number of analysis 

points. Extrapolating the sensitivities obtained by Engelmann to the 

nuclear microprobe measurement conditions acceptable for spatial 
13 

analysis, <0.2 and < 1 counts/].lC can be expected from 1 wt. % C and 

1 ,,1;. % 12C in BaC0
3
. respectively. Although the use of our 7.5 x 7.5 

cm NaI(Tl) detector would raise the sensitivities by approximately an 

order of magnitude, they would remain impractically low for nuclear 

microprobe analysis. 
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5.3 CONCLUSIONS 

Sensitive and selective nuclear reaction methods have been sought 

for the nuclear microprobe measurement of the spatial distributions of 

13C and 13C/ 12C ratios and a summary of the reactions and measurement 

conditions used is given in Table 5.8 below. 

TABLE 5.8 SUMJ.IARY OF REACT10NS USED FOR 13C AND 13C/ 12C ANALYSIS USING 

THE NUCLEAR mCROPROBE 

.. 
INCIDENT DETECTED SENSITIVITY IN 

REACTION BEAM DETECTOR RADIATION BaC0
3 

(MeV) (HeV) ~ 
C/l ,,~. % PPM 

13C(d,po) 14C 1.3 2H+ Surface 6.216 IH+ 3300 60 

12C(d,po) 13C 
Barrier 

3.255 IH+ 41000 5 

1.5 2H+ " 6.344 1H+ 6300 30 

3.384 1H+ 108600 2 

13C(3He 'Po)15N 
3 + 

2.8 He Surface 11.2401 1H+ 320 630 

12C(3He 'Po)14N Barrier 5.852 1H+ 840 240 

3.0 
3

He
+ 

" 11.365 V 460 440 

5.969 IH+ 1400 150 

13C(a,n)160 2.8 4He + NE 213 1 2 HeV 4300 100 on 
Scintillant 

13C (dny) 14N 1.5 2H+ Ge(Li) 3.373 Y 1800 640 
13C(day)11B 

NaI (TU 

13C (dpY) 14C 

12C (dpy) 13C 
I 

3.085 y 3100 440 

13C (3He , py) 15N 2.8 
3

He
+ 

" 
I 

5.28 Y 100 3500 
13C(3He ,ny)150 
13C(3He ,ay) 12C 

12C(3He ,py) 14N 
I 1.634 Y 360 4100 

13C(p,y)14N 
, 

0.8 IH+ I " 8.061 Y < 0.2 
12C(p,y)13N I 2.366 Y < 1 

~ elM Q", r .... /1 "'" ..... ..1 re V< ;tu'- s-o,/<, .",li .. 1>1.., e~ 
Within the limitations imposed by the Harwell nuclear microprobe, four 

I 

i 

techniques have been found to be suitable for the simultaneous determination 

of the spatial distribution of 12C and 13C• For applications which demand 
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high sensitivity the first choice is deuteron irradiation with detection 

of emitted protons. However, the technique must be applied with caution 

since serious light element interference can occur, notably from Li, N, 

Band F. Substitution of gamma-ray for proton detection may circumvent 

this problem, particularly for Band N, but at a considerable loss in 

sensitivity. Although, 3He + ion irradiation using proton detection is an 

addi tional al ternati ve, it -"'ill rarely merit sel ection because its 

susceptibility to light element interference is similar to that for the 

(d,p) method, while its sensitivity is inferior by a factor of at least 
3 + 

ten. Although He ion irradiation with gamma-ray detection is the least 

sensitive method, the wide choice of gamma-rays for the detection of both 
12 13 C and C offers a means of circumventing most interferences, and it may 

find application in the examination of materials rich in carbon. Proton 

irradiation with gamma-ray detection is particularly insensitive and is 

clearly unsuitable for nuclear microprobe analysis, despite finding favour 

for the determination of 13C/ 12C ratios in bulk specimens. 

For 13C analysis alone the (a,n) reaction is particularly attractive 

as it is both highlY selective and reasonably sensitive. 
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CHAPTER 6 

THE SPATIAL ANALYSIS OF THE STABLE ISOTOPE 13C USED 

AS A TRACER DURING THE OXIDATION OF PE16 BY CO
2 

A problem of considerable importance at the present time is the 

oxidativejcarburization corrosion of many alloys at high temperatures in 

a variety of gases. CarboIL dioxide in particular has been found to cause 

corrosi ve carburization of a number of alloys, greatly affecting their 

mechanical properties. 

Carbon dioxide is used as the coolant for ~lagnox reactors and their 

successors, the Advanced Gas Cooled Reactors (A.G.R. 's). Thus its 

corrosive interaction behaviour with other reactor materials is of great 

concern (especially because of the potential radiation hazards). A simple 

schematic diagram Figure 6.1 shows the flow of coolant through an A.G.R. 

The reactor core consists of fuel elements containing fuel pellets of 

uranium oxide enriched in U-235, clad in stainless steel and surrounded by 

a graphite moderator. The whole of the fuel element assembly is supported 

by tie bars made out of the nimonic alloy PE16. The heat produced in the 

reactor core by normal fission processes is removed by circulating high 

pressure carbon dioxide gas and is then transferred via heat -exchangers to 

steam generating plant in the power station. The carbon dioxide coolant 

is a mixture of CO
2

, CO, CH 4 and water vapour. The methane is used to 

inhibit the attack on the graphite moderator by CO
2

, producing CO, a process 

which effectively corrodes away the moderator. Other reactor components are 

corroded by the carbon dioxide based coolant. A critical component is the 

PE16 tie bar as its failure would allo,," the fuel element assembly to fall 

with profound consequences. The behaviour of PE16 in CO
2 

at elevated 

temperatures has been studied previously (107) In this chapter CO
2 

labelled with the stable isotope tracer 13C, in conjunction with spatial 

nuclear microprobe methods, is used to study the oxidative carburization 

processes, cL in PE16 tie bar material, to improve our understanding of 

the mechanisms involved. 

The development of sensitive, selecti ve methods for the spatial 

I " f 13C d 13C/ 12C t" ana YSlS 0 an ra 108 was discussed in detail in Chapter 5. 

Some of the methods described, namely those based on the (d,p) and (""n) 

nuclear reactions can be applied to investigate the carburization corrosion 

of a fuel cladding material, nimonic alloy PE16, treated at 8000 C in carbon 
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13 , 12 13 13 12 dioxide isotopically labelled in C. Profiles of C, c, C/ C and 
, ' (107) 

oxygen across PE16 samples are presented. PrevIous experiments have 

found the oxidation kinetics of CO2 on PE16 to be pseudoparabolic, the 

penetration increasing parabolically with time and temperature. lnter­

grannular oxidation and carburization were both observed. However, there 

is some ambiguity as to the exact origin of the carbon in the carburization 

profiles observed. The intention of this work "'as to distinguish between 

carbon originally present in the alloy and carbon introduced during the 

intergrannular oxidation of the alloy by carbon dioxide, thus facilitating 

a deeper understanding of the processes involved. 

6.1 SANPLE PREPARATION AND EXPERHIENTAL PROCEDURE 

13 The C standards used throughout the investigation to establish the 

most suitable method for measuring 13C 13C/' 12C' 'b and ratIos, descrl ed in 
13 

Chapter 5, were pressed powder pellets of C labelled BaC03 • These 

provided an adequate calibration for that purpose, although because they 

are so sensitive to beam damage a large rastered beam of very low beam 

current was used whenever they were interrogated. Thus the acquisition of 

data was relatively slo,,' compared to the rate of data acquisition possible 

when measuring metallic material such as the PE16 samples which can with­

stand small and quite intense beams (20-40 nA; at spatial resolutions as high 

as 5 )lm). Ideally when one measures high spatial resolution profiles which 

contain many points, one requires a standard \·,rhich may be analysed, under as 

nearly identical conditions to the sample as possible and preferably in 

between each sample run in order to monitor any changes in analysis conditions. 

The powdered BaCO_ standards could not fulfil these requirements in an 
.) 

acceptably short analysis tim~ and so the preparation of a sui table 13C 
12 , 

standard in steel was required. A C standard In steel "'as readily available. 

In order to improve the likelihood of producing a high 13C content 

standard in steel, a sample of the steel must initially be decarburized 

to remove the 12C already present before carburizing wi th a labelled 13C 

reagent. PE16 is notoriously difficult to decarburize since it contains 

one of the most stable of all carbides, titanium carbide. However samples 

of 316 standard steel were successfully decarburized by heating in a silica 

vessel lined with tantalum, at 800
0

C for 6 weeks in 1 atmosphere pressure of 

hydrogen. The tantalum acts as a "getter" for both carbon and oxygen. 

Oxidation would produce a protective barrier on the sample which would 

hinder decarburization. The carbon content of the 316 sample "'as analysed 
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using the Harwell nuclear microprobe and a nuclear reaction method dependant 
12 )13 " upon the C(d,po C reactlon. The decarburized 316 sample was found to 

contain 0.00036 + 0.00018 wt. % 12C on average, compared with the untreated 

archive 316 sample which contained 0.032 + 0.0038 wt. % 12C. The 

decarburized 316 material was then placed in another silica vessel and 

connected to a resevoir of 90% 13C labelled methane and heated at 800
0

C for 

six weeks. The extent of- ~"3C labelling was then quantified. A calibration 

curve for the 13C content in BaCO_ enriched standards was obtained using the 
" 0 

13C(d ) 14C t"" " " "th h 11 ,Po reac lon ln conJunctlon Wl t e Harwe nuclear microprobe. 
13 1-

The C content of the 316 sample was then found to be 3.29..::. 0.036 wt. % 0 C 

using this calibration surve and the pertinent stopping power corrections. 
r 12 

Since the ratio of 0 C/ C in the methane was kno\;n one could calculate the 

wt. % 12C expected. The 12C content of the 316 standard measured simul­

taneously wi th the 13C agreed well ""i th the expected value. 

The 13C labelled nimonic alloy samples were prepared as follows. 

Nimonic alloy PE16 sample discs, 14.3mm in diameter and lmm thick, were 

placed individually in silica cruicibles as shown in Figure 6.2. The 

composition of PE16 is given in Table 6.1 below. 

TABLE 6.1 SPECIFICATION OF THE NHlONIC ALLOY PE16 

ELEMENT STANDARD wt. % CO~lPOSITION 

C 0.08 

Nn 0.05 

B 0.0003 

Al 1.3 

Ti 1.2 

Zr 0.03 

Cr 17.1 

Ni 42.5 

No 3.1 

Balance as Fe 

The CO
2

, enriched to 95% 13C, ""as introduced into the vessel such that at 
o 

800 C, the usual test temperature for highly alloyed reactor materials, it 

attained 1 atmosphere pressure. In each vessel the sample was placed on a 
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silica support which ensured that the sample was held within the strictly 

controlled temperature region when the whole vessel was suspended within 

a furnace. The copper oxide, seen at the top of the vessel, is effectively 

an oxygen resevoir such that the carbon and carbon monoxide produced during 

the oxidation/carburization processes could readily combine with the oxygen 

from the copper oxide to regenerate carbon dioxide. Samples of PE16 were 

treated in the labelled gaE4 at 800
0
C for various lengths of time and then 

removed and cooled. Cross-sectional pieces of each sample were mounted in 

Woods metal as described in Section 2.4, ready for interrogation with the 

nuclear microprobe. 

The 13C and 12C in the treated PE16 samples, the standards and archive 

PE16 were initially measured using the 13C(d,Po)14C and 12C(d'Po)13C 

reactions with a 1.3 MeV incident deuteron beam from the Harwell nuclear 

microprobe as described in Chapter 5. The respective Po .groups required 

were detected using a silicon. surface barrier detector placed at an angle 

of 1350 to the incident beam. Initially a 13C calibration curve was obtained 

using both the BaCO_ standards containing various enrichments of 13C, and the 
,) 

13C/ 316 steel standard. A typical calibration curve is shown in Figure 5.4. 

The 13C standard in steel was then used throughout the experimental run to 

monitor and correct for any change in conditions between each sample which 
13 12 could affect C measurement. A C calibration curve was obtained by using 

12C standards in steel, for example that shown in Figure 6.3. The 1% 12C 

standard was used throughout the run to monitor and correct for any changes 

in conditions which affect 12C measurement. Not only did the use of the 12C 

standard in steel allow faster analysis times in an analogous fashion to the 
13 use of the C in steel standard, it also overcomes a serious interference 

problem caused by oxygen. Since the oxygen content in BaCO_ is about four 
12 0 

times greater than that of C in natural abundance BaCO_, the interference 
16 0 12 

from the OPo peak (positioned just on the lower energy edge of the CPo 

peak) can cause considerable interference. As the 13C content increases the 

magnitude of the interference increases, this decreases the reliability of 

the 12C measurement and calibration curve. By using 12C in steel standards, 

which contain only trace quanti ties of oxygen, this problem is circumvented. 

An X-ray detector was used to locate the edge of the PE16 samples in 

order to· spatially relate the profile obtained to the edge of the sample. 

This was achieved by mechanically moving the sample relative to the beam 

and monitoring for the iron and chromium X-rays. These elements are present 
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in the steel samples but not in the Wood's metal sample mounting material. 

The profile data obtained, as particle group yield for 13e and particle 
12 

group yield for C for each scan point across the sample, can then be 

converted to profiles of 13C and 12C weight % against distance from the 

sample edge. 

Since the process being investigated was an oxidative/carburization 

process it was useful to measure the oxygen profiles across the PE16 

samples as well. This was achieved by measuring the oxygen Pl group in 

an exactly analogous manner to that used for measuring the 12C Po and 13C Po 

groups. A 1.1 MeV deuteron beam from IBIS was used to induce the charged 
" "16 17 partlcle reactlon O(d,Pl) 0 and a silicon surface barrier detector (with 

two 9 mg/cm
2 

mylar absorber foils) was placed at 135
0 

to the beam line to 

measure the emitted Pi particle group. Oxygen standards of zirconium 

metal, oxidised to different oxygen levels, and also Zr0
2 

were used. The 

calibration curve, Figure 6.4, was obtained by a polynomial least squares 

method. Using the calibration curve profiles of oxygen weight j6 against 

distance from the sample surface were obtained. 

13C f"l Although measurements of the pro 1 es 

highly selective 13C (u , n) 160 method, they have 

were planned, using the 

been prevented by time 

limitations. The desirability for such measurements to ensure that the 

(d,p) results have not been disturbed by a minor aluminium interference is 

discussed later. 

6.2 RESULTS AND DISCUSSION 

The penetration of the labelled 13C into the PE16 samples treated for 

different periods of time at 800
0
C is shown in Figures 6.5 to 6.12. All of 

these figures each sho" profiles of the weight percentages obtained of 12e, 

13C, and 13C/
12

C. The first three figures show profiles through the complete 

cross-sections of samples PE16/21, PE16/23 and PE16/24 at a spatial resolution 

of 25 \lm. The remaining five figures give measurements into the samples 

from either the bottom or top sample surfaces at a 5 \lm spatial resolution. 

The wt. % 12C was found directly 

techniques (108) with wide and narrow 

12 
from the C Po group using the usual 

measurement groups to remove the 
0' 13 affects of surface carbon contamination. The wt. /0 C was found from the 

13C Po group however there ""as some interference from the Alpo peak, the 

energy of which is almost identica~3to the 13C Po peak. The level of " 

aluminium interference within the C Po region was obtained by measuring 
'. 
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the archive PE16 material, the expected counts from natural 13C in PE16 

can be calculated and although only just significant can be subtracted 

from the count observed in this region for archive PE16. The average 

residual count was then taken to be the aluminium interference. Collabor­

ative evidence was obtained from particle spectra of the 13C standard, 
1-

archive PE16 and aluminium. Each of the ...,c counts/)JC were corrected for 

the average aluminium cont~ibution. Obviously it would be interesting to 

unequivocably verify that the aluminium interference was adequately corrected 

for. This could probably be achieved using the 13c (a,n)160 reaction method. 

However measurements would be relatively imprecise because of the inferior 

sensitivity of the (a,n) method, as discussed in Chapter 5, hence the 

accuracy of the profile data would be severely affected. Alternatively 

X-ray analysis might be used to look for any significant alterations in 

aluminium concentration 
13 effect the C result. 

in a given region during the experiment which may 

The 13C/ 12C ratio was obtained by dividing the 
13 

average C wt. %, obtained from up to 8 scans across a given sample, by 

the average 12C wt. % obtained simultaneously. The ingress of 13C tracer 
13 12 . can be seen through the enhancement of the C/ C ratIo above the natural 

value. 

Figures 6.5 to 6.7 show the carbon isotope profiles of the complete 

sample widths at a 25)J m spatial resolution for material treated for 1096, 
. . 12 13 13 12 4029 and 4601 hours. All three profIles I.e. C, C and the C/ C 

ratio were needed to interpret the carbon behaviour in these extremely 

inhomogeneous samples 

of the inhomogeneity. 
12 

Where the C 

as apparent inconsistences often occur as a result 

The 12C profil es sho.' several anomalously high 

concentration is high without a correspondingly points. 

high 13C concentration, this probably indicates the persistence of a large 

The 12C carbide precipitate which was present in the original material. 

profiles throughout probably reflect both the original carbon distribution 

in the PE16 samples and some redistribution of 12C by diffusion or dis­

placement by oxygen. A typical 12C original distribution is that of archive 

PE16 sho.~ in Figure 6.13. The distribution is quite scattered and 

precipi tates certainly appear to be present. Generally the ingress of 13C 

into the samples is far more clearly seen from the 13C .1;. % profiles than 

those of the ratios because the latter have more scatter as a result of the 

original inhomogeneous distribution of carbon. Using the three profiles 

for each of the PE16 samples one can clearly distinguish the 13C ingress 

into the samples from the carbon originally present and by using the 13C 

tracer one largely overcomes the problem of confusion due to diffusion of 
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carbon originally present when using CO
2 

of natural abundance to follow 

the oxidative!carburization processes in PE16. 

It can be seen in the profiles that the amount of carburization from 

the two surfaces in towards the centre is asymmetric. This is because the 

bottom of the PE16 samples rested against the silica support whereas the 

top of the samples were freely exposed to the CO
2 

oxidant and hence greater 

changes were observed as expected. As the period of carburization increases 

the amount of 13C penetration and build up very clearly increases. Indeed 

the degree of penetration of 13C is "ery high even quite early on in the 

carburization period and for example in the PE16!24 ratio profile at a 
13 

depth of 250)J m below the top surface the C content is over 25% of the 

total carbon present compared to the natural level of 1.11%. A fast 

mechanism for the transfer of carbon deep into the samples is needed to 

explain these observations. It is thought that a 'crevice' type corrosion 

mechanism may 
, ' (107) 

provlde an explanatIon • In the crevice corrosion 

mechanism it is thought that oxidation opens up the alloy structure by 

internal attack and crevices appear. As the gas goes down the crack it 

experiences changing carbon and oxygen potentials. At the mouth of the 

crack oxygen is preferentially removed from the gas whilst at the base of 

the crevice carbon is the predominant species removed from the gas. By 

this crevice corrosion mechanism carbon can penetrate very long distances 

fairly rapidly. 

(107) h 
Previous results a,'e sho,m a complex behaviour of carburization 

and decarburizat ion at the outer edges of the sample "i thin approximately 

a 90 )J m region from the surface. Consequently higher spatial resolution, 

5 iJrn, scans 

Figures 6.8 

were obtained for 
19 

to 6. 10 shO\,' -C, 

first" 250)J m into each sample surface. 

13C! 12C f'l 'f and pro 1 es measured In\"rards rom 

the bottom, less exposed, sample surface. Again as the period of carburiz­

ation increases the amount and degree of penetration of 13C increases. 

However rather than just a carbon peak towards the sample edge followed by 

a roughly exponential diffusion into the alloy one can see a more complex 

13C and behaviour at this 
13 12 . 

C! C profiles, 

higher spatial resolution. 
13 

one sees a small C peak 

Looking both at the 

about 10-15)Jm (on average) 

from the outside edge 

1 13C t' ow cone en ratIon 

followed by a region of about 20 )J m "idth with a very 

and then a second far larger and broader carburized 

region peaking between 50-100)J m from the surface and extending roughly 

from 35 to 200)J m in from the surface. It should be noted that the outer 
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13 
C peak in specimen PE16/21 13C profile (Figure 6.8) is obscured by the 

anomalously high 12C concentration near this surface 

I I . h 13C/ 12C . f' I Th h' h c ear y seen In t e ratIo pro 1 e. e Ig 

however it can be 

12C concentration 

at this surface may be due to redistribution but could be due to a 

residual surface precipitate, especially since the other samples PE16/23 

and PE16/24 sho", evidence of redistribution of 12C inwards into the 

material. 

12 13 13 12 . 
Figures 6.11 and 6.12 sho,,' the C, C and C/ C proflles measured 

inwards from the top sample surfaces of specimens PE16/21 and PE16/24 

respectively. As expected this surface sho",ed increased carburization 

compared to that of the bottom surface, in accordance with the effects 

seen in the 10'" spatial resolution scans. A very marked increase in the 

overall amount and degree of penetration of 13C .. as observed with increasing 

carburization period. Again evidence of original 12C precipitates was 
13 /12 . observed. In Figure 6.12 it can be seen that the C C profIle presents 

1- 1- 12 
a clearer picture of ..,C ingress than many of the other ..,C/ C profiles 

mainly 

second 

because of 
13 

the small scatter on the 12 . C regIon 

large C peak region. The complex picture of 

corresponding to the 

13C distribution is 

similar to that shown by .the high resolution scans on the bottom surface 
13 except that there is little evidence of a first C peak near the surface 

in the highly carburized PE16/24 sample. All the 13C appears to have 

ingressed deeper into the material. 

Since PE16 contains both titanium and chromium it forms both carbides 

and oxides of high thermodynamic stability. To help interpret the carbur­

ization information the oxidation profiles across the PE16 samples were 

also obtained. Examples of the oxygen profiles are given in Figures 6.14 

and 6.15. The former shows the oxygen profile corresponding to the carbon 

profiles in Figure 6.10, those of PE16/24 measured inwards from the bottom 

surface. There is a very narro'" region of high oxidation, c.a. 7.7 wt. % 

down to 1 wt. % of oxygen, over the first 12 ]Jm from the surface and then 

the oxidation falls to 0.1 .. t.. % oxygen after the first 30-40 ]Jm from the 

surface. Figure 6.15 shows the oxygen profile corresponding to the carbon 

profiles in Figure 6.12, those of PE16/24 measured inwards from the top 

surface. Figure 6.15 shows the far higher degree of oxidation from the 

top side of PE16/24, ca. 15.6 .. t. % down to 1 wt. % oxygen over the first 

60 ]Jm and' then falling to <0.1 wt. % oxygen approximately 80-90 ]Jm from the 

bottom edge. This difference between top and bottom .. as expected due to the 

shielding of the bottom edge from CO
2 

oxidant during the experiment.s. 
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On examining the extent of oxidation for each alloy sample and 

correlating these results with the requisite carburization scans from 

the top and bottom sample edges the outer high carbon peak is found to 

correspond roughly with the very high oxygen content, the outer oxide 

scale. The carbon uptake increases across the outer scale to a maximum 

near the oxide/alloy interface. In the underlying intergrannular oxide 

region there appeared to be little 13C present until the carburization 

again increased to a maximum in the vicinity of the boundry of the inter­

grannular oxide/unoxidised alloy. From here the carbon level tends to 

fall in a typical exponential diffusion profile towards the centre of the 

sample. This behaviour is given" in diagrammatic form in Figure 6.16. It 

is clear that the carburization even a couple of hundred microns in from 

the surface mainly origionates from the carbon in the CO2 gas and not from 

migration of carbon originally present in the material. 

Careful consideration of the 

d t "I d" F" 6 1- (107) " e a1 e In 19ure . t, 15 

relati ve carbon and o:x-ygen potent ials, 

needed in order to gain some understanding 

of the technical and mechanistic significance of the data. In the outer 

scale carbon could be precipitated in the region of the Ti02/TLO_ boundry 
" " by the deposition of carbon on catalytic surfaces (those containing iron) 

from carbon monoxide. This is known as the Boudard reaction:-

2CO --- CO2 + C (Eqn. 6.1) 

Although as can be seen in Figure 6.17 (107), this does require the 

improbably high partial pressures of 0.88 and 0.12 atmospheres for carbon 

monoxide and carbon dioxide respectively. In addition this reaction can 

be inhibited by oxide films and hence this reaction should be expected to 

be somewhat restricted by the highly stable oxides formed with the PE16. 

Previous work (109) has shown that carbon which is deposited by the Boudard 

reaction remains mainly at the surface of the oxide film thus this could be 

the origin of the first smaller 13C peak. Subsidiary reactions ""hich may 

1 t (110) h b d "d " b CO d H ° be re evan are t ose ase upon OXI atlon y 2 an 2:-

(Eqn. 6.2) 

At the boundry between the outer oxide scale, Ti_0
5

, and the intergrannular 
" " 

oxide Ti
2

0
3

, additional reactions can contribute to carburization:-

CO -> C ••• (Eqn. 6.3) 
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and Cr + co ---.... Cr Cy + 
x 

(most probably 

.,. (Eqn. 6.4) 

thus either depositing carbon or forming chromium carbides. With reference 

t F ' 6 17 (107) 'th' th I 't If t't' b'd I o 19ure • Wl In e meta 1 se 1 anlum car 1 e can on y co-

exist with Ti
2

0
3 

along line AB. Previous experimental evidence (107, 110) 

namely the absence of TiC in association with the intergrannular Ti
2

0
3 

implied that the oxygen and carbon potentials varied along a course above 
/. / / / 

AB (B ) passing across this line at either B or B along to BC or B C to 
/ 

D and D. Within the purely metal region only TiC can exist since neither 

Al
4

C
3 

nor Cr
23

C
6 

would be stable at equilibrium. Using the information 

available in Figure 6.17 (107) one can detail the regions found experimentally 
(107) 

and given diagrammatically in Figure 6.16 

6.3 CONCLUSIONS 

Nuclear microprobe analysis and 13C tracer experiments have been 

successfully applied to the investigation of the high temperature corrosion 
13 of the Nimonic alloy PE16 by CO

2
, 

The 13C(d,Po) 14C and 12C(d,po) 13C reactions were used to measure the 

13C and 12C profiles over their respective ranges, of 0.0005 - 0.17 ."t. % 

and 0.05 - 1.1 wt. %, within the PE16 samples. 13C/
12

C ratio profiles .'ere 

also obtained from the data. 

13 The addition of carbon to the alloy from CO2 , was followed through 

measurement of the 13C in the specimens exposed at 8000 C for times bet.'een 
13 1096 hours and 4601 hours. The use of the C stable isotope tracer 

allowed clear distinction between carbon added from the gas phase and 

carbon initially present in the alloy. The distribution of the latter was 

based on the measurement of 12C, the major component of natural carbon. 

PE16 normally contains relatively large carbide precipitates, and high 

resolution measurements of carbon distributions are characterised by the 

presence of extensive scatter. While corrosion experiments undertaken in 

natural CO
2 

are complicated by difficulties in distinguishing between added 

and archi ve carbon, those conducted with CO
2 

highly enriched in 13C are not. 

The 12C profiles proved that much of the archi \'e distribution of carbon 

persists, even at the longest exposure time. 

The presence of oxide films increases corrosion resistance of alloys 

and since PE16 contains some very highly stable oxides and carbides one 
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would expect the penetration of carbon to be hindered somewhat. In fact 

although a proportion of the carbon, the first carbon peak, is apparently 

located at the surface of the intergrannular oxide region of the alloy, a 

considerable proportion penetrates very deeply into the intergrannular 
(107) 

region. It is thought to do so via the crevice corrosion mechanism 

Most of the carbon build up in the alloy was found to come from the CO
2 

gas 

rather than relocation of carbon originally present in the alloy. 

Further work should be carried out using the (u,n) reaction to measure 

the 13C profiles again, to unequivocably verify that the aluminium inter­

ference has been adequately corrected. 
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CHAPTER 7 

THE SPATIAL &VALYSIS OF lOB BURN-UP IN IRRADIATED B4£ 

USING THE STABLE ISOTOPE TRACER 7Li CREATED IN SITU. 

In Fast Reactors the neutron absorber assemblies are made out 

carbide either in its natural state or enriched in lOB. 10 B has a 

of boron 

particularly high neutron absorption cross-section, hence its suitability 

as an absorber material. Typical Fast Reactor core designs allocate 

approximately 10% of the core posi tions to absorber assemblies although 

by increasing the enrichment of lOB, at some expense, this could be reduced 

to about 8% thus leaving more space for fuel elements and hence increasing 

the breeding ratio. During the normal working of a fast reactor boron 

"bu;n-up" occurs in the B
4

C absorber assemblies i.e. the lOB is converted 

into lithium via the 10B(n,a)7Li reaction. Since the efficiency of the 

absorber assembly depends on the amount of lOB present it is important to 

quantify the extent of this burn-up. Some of the 7Li is used up in the 
7 3 (111) 
Liln,na) H reaction but as it has a neutron threshold energy of 1.2 ~leV 

(112) the reaction occurrence is very low, probably about three orders of 

magnitude lower than the rate of production of lithium. Also the lithium 

profiles in their own right are important because the formation of lithium 

affects the structure of the B
4

C and it is th~ught (113) that lithium 

bonding is responsible for the mechanisms of 0 T retention in the absorber 

assemblies. Some of the lithium and tritium produced in the assemblies is 

lost and this is to some extent dependent on the initial porosity in the 

B
4
C pellets. It should be noted 

absorber assembly depends on the 

that although 
10 amount of B 

the efficiency of the 

present, usually the actual 

"life-time" of the absorber assemblies in the reactor tends to be dictated 

by engineering design, as during irradiation the B4C swells and radiation 

creep occurs causing distortion of the assemblies. Obviously there is a 

maximum movement after which the distortion hinders the removal of the 

absorber assemblies in and out of the core. 

A method capable of spatial measurement has been developed to follow 

the "burn-up" of lOB in B
4
C assemblies since the "burn-up" in different 

assembly rods or even within the same rod is not necessarily e:Xllected to 

be uniform because of the variations in neutron flux experienced. In fact 

measurements of "burn-up" within the· assembl ies provides a very useful 

additional check on neutron flux variations at different positions in the 

reactor core. 
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7.1 CHOICE OF REACTION FOR THE SPATIAL MEASUREMENT OF "BURN-UP" IN 

FAST REACTOR ABSORBER RODS 

If one ,,-ishes to follo,,- this "burn-up" one can either measure the 

disappearance of the lOB or the formation of 7 Li, where 7 Li is effectively 

a stable isotope produced in siLu. The 10B(d,p)11B reaction has been 
(114) 0 10 0 10 11 

used to determIne B In metals and both Band B have been 
o (26) 0 10 13 11 14 

SImultaneously analysed 0 •• 0 USIng the B(c. ,p) C and B(a ,p) C nuclear 

o H 25.\ 14 d 29S 0 - blOt f t th reactlons.. owever 1" g, N an 1 are POSS! e In er erences o· e 

lOB d tOt 0 0 th (d) 0 d 27 lObi - t f e ermlna Ion USIng e ,p reactIon an A a POSSl e In er erence 

to the determination of lOB using the (a,p) reaction. If one chooses to 

follow the formation of 7Li rather than the disappearance of lOB, the 

7Li(p,a )He
4 

reaction offers the possibility of a highly selective determination. 

The Q value for the reaction is Q = 17.347 MeV ,,-hich is considerably higher 
11 8 

8.59 than the next largest B(p,a) Be Q = He\'. Another advantage of 

follo,,-ing the formation of 7Li is that one is measuring a small quantity on 

theoretically a zero background whereas when measuring the disappearance of 

lOB one is looking for a small difference on a large signal. If the spatial 

determination of lithium using the 7Li (p,a)a reaction is to be used to follow 

the boron burn-up which occurs during the normal running of a reactor, it is 

first necessary to verify that the position of the 7Li is a true indication 

of the position of the lOB. The 7 Li may move away from the lOB site because 

of one or more of the follOl.-ing processes; transmutation recoil, diffusion 

under the influence of the high reactor temperatures, relocation during 

sample preparation for analysis and movement during sample interrogation 

by the microbeam. 

In the transmutation 10B (n, a.)7Li , Q = 2.79 HeV, the 7Li will be 

d d °th 01 (115, 116) th 0 f th - - 1 pro uce \0.'1 reeOl energy, us mOVIng 3\ .. ·a~· rom e orlglna 

lOB site. The distance it travels can be calculated and its significance 

will depend on the spatial sensi ti vi ty required. For the measurements of 

B
4

C samples, which are several mm across, a spatial resolution >20).lm should 

be adequate. 

From the law of conservation of momentum, when the 1)\ particle IS 

ejected from the reaction nucleus "i th an energy Ea' the resultant nucl ide 

recoils backwards with a momentum PLi such that:-

P a 

= -P a 
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= ~I I' 2 
Cl Cl 

••• Eqn. 7.3 

2 

where ~h = mass of alpha particle 

\~ = vel od ty of alpha particle 

Assuming the peak of the distribution of neutron energies in a fast reactor 

to be about 1 Mel' then from kinematics E = 1.96 Hel'. There will in 
Cl 

reality be a spread of values but taking this peak value:-

P = j 2E
Cl 

~I = - P Li Eqn. 7.4 
Cl Cl 

? 
= = 2E ~I = E M ... 7.5 

E1lLi 
P-Li 

Cl Cl Cl Cl 
Eqn. 

2,\ILi 2MLi MLi 

E1lLi = (4/7) 1.96 = 1.12 ~Iel' 

Using the stopping power and range tabulations of Northcliffe and 

Schilling (117) and Bragg's rule, the distance travelled by the 7Li nuclei 
-3 through the B

4
C, p = 2.332 gcm ,can be calculated and was found to be 

just over 2.1 )J m. Thus on average the movement of the lithium nuclei from 

the original boron site can be described as being within a sphere of" radius 

2.1 )J m. This is well within the minimum spatial resolution of > 20 )Jm and 

thus the errors introduced by recoil effects will be insignificant. 

Loss of lithium by diffusion out through the fairly porous B
4

C 

absorber assemblies, within the reactor, could be 

an alternative technique of directly measuring the 

mentioned. One could 

7Li ex~ected and then 

then use the 10B/iiB data to 

it with the value of 

verified by making use of 
10 11 

Band B as al ready 

calculate the amount of 

7 Li directly obtained compare 

from the 7Li (p,Cl)Cl reaction. One would thus be using the two measurement 

techniques in a somewhat complementary fashion. 

Any movement of the 'Li by diffusion under the influence of the micro-

beam "'ill be 

during which 

seen by 
7 . 

the Ll 

bombarding a" gi yen sample location for a period of time 

concentration changes, if any, are monitored. 

One of the main difficulties which may arise is the possible relocation 

or loss of the lithium during sample preparation. The B
4

C absorber 

assemblies are made up of cylindrical pellets of B4C stacked end on end. 
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In order to measure the radial distribution of lithium in B4C pellets 

it will be necessary to take a slice of material from the centre of each 

pellet by means of a diamond slitting wheel. Although the lithium will 

lay within the crystal structure of the B4C and may be relatively firmly 

bound, since the nuclear microprobe measures only to a depth of a few}' m, 

loss or movement of lithium in this small area is critical. Some indication 

of lithium loss should be obtainable from the comparison of the nuclear 

microprobe results with bulk lithium measurements obtained from material 

taken from the same pellets. One could perhaps also obtain some indication 

of the subsurface variation of 7Li , in the first fe.' microns, from the 

energy distribution of the emitted alpha particles. 

7.2 . EXPERIMEI'\TAL 

The absorber assembly pellets of interest were first mounted in epoxy 

resin. The sample slices were then obtained by cutting a slice from the 

centre of each pellet using a diamond cutting wheel. The slices were then 

polished, on the surface to be interrogated by the beam, in the usual manner 

using diamond lapping products. The basic procedure is described in Chapter 

2 although because these samples were active all polishing was carried out 

wi thin glove boxes. In addition in order to help minimise any further loss 

of lithium during polishing, oil based rather than "ater based lapping 

products were used in conjunction with carbon tetrachloride as solvent. 

The 7Li profiles were measured by the 7Li (p,a)a reaction using the 

nuclear microprobe, a silicon surface barrier detector and single channel 

and multichannel analysis systems as described in Chapter 2. Mylar absorber 

foils were placed in front of the detector in order to pre"ent any scattered 

particles entering the detector. When analysing active samples one some­

times has to place a tantalum shield (Kith a slit cut into it e>''Posing the 

area for interrogation) over the sample face. This helps reduce background 

levels caused by the target B radiation. For these samples the radiation 

levels were 10.', about 10 mr/hr S on contact, and no radiation problems 

occurred. 

7.3 RESULTS AND DISCUSSION 

An initial invest'igation was carried out to elucidate the optimum 

incident beam energy for these analyseso The cross-section for the 7 Li(p ,a)a 

reaction increases with increasing beam energy, however the energy gap beb,een 
7 . 11 

the a groups produced by the Ll and B reaction (most likely interference) 
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decreases. Thus although ~he sensitivity does increase it may not 

necessarily be advantageous to ,,"ork at the higher energy. 

Samples containing lithium and the most likely interferences, boron 

and fluorine (Q. values 17.347, 8.59 and 8.115 Mel' respectively), were 

bombarded ~'ith various energy proton beams from the nuclear microprobe. 

The results obtained are given in Figure 7.1. At the higher energies, 

2.0 Mel' and above, so many absorber foils were required to remove scattered 

particles that the reaction groups of interest were totally absorbed before 

reaching the detector. The highest sensi ti vi ty was obtained at 1.5 Mel' were 

the two most likely interferences are negligible. Using the ratio value R, 

i. e. the yield of 1 \;t. % interference nuclide per microcoulomb divided by 

the yield of 1 wt. % 7Li per microcoulomb, one finds that for boron R = 0.0001 

and for fluorine R = 0.00008. Although the sensitivities for 1.0 and 1.5 

~lel' IH+ beams are very similar it is advantageous to work at the slightly 

higher energy because surface effects become less dominant the further the 

beam penetrates into the sample. 

The circular B
4

C samples ~'ere interrogated first across one diameter 

and then across the diameter at right angles to the first. Since these 

samples were over 1 cm in diameter a spatial resolution of 250 jlm was choosen 

as gi ving adequate data in an acceptable analysis time. The counts/lJ C/l ~"t. % 

7Li in the LiNbO_ standard were converted into counts/lJC/l ,,"t. % 7Li in a 

B C t ' "0th 1 t t " t" (118) f th 4 ma rlX uSIng e re evan soppIng power correc Ions or e 

at~enuation, particularly of the outgoing a's, over the energy range resulting 

in product t<.' s of an energy .. i thin the effect i ve energy window of the detector. 

The counts a~ each scan point can then be converted to a 7Li concentration 

profile. The profiles ob~ained are given in Figures 7.2 to 7.5. The 

perpendicular diametric scans across pell ets 197, 185 and 172 agree very 

closely, implying that the neutron flux in the x and y directions across a 

gi ven horizontal plane within the absorber assembly is fairly uniform. As 

sample 160 was broken one Scan is incomplete. Even so the differences 

observed between scans possibly indicate slight variations in the neutron 

flux in the x and y directions at this ex~remity of the absorber assembly. 

These four pellets come from different vertical locations in one absorber 

assembly, pellet 197 ~'as located to~'ards one end and pellet 160 towards the 

other. The amount of neutron flux variation across each pe-llet from these 

different locations does vary slightly as seen in Table 7.1 below. This 

could be due to self-shielding or tempera~ure effects. 
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TABLE 7.1: VARIATION IN THE MAXIMml Al"iD mNHIU~1 7 Li CONCENTRATIONS 

ACROSS PELLETS FRO~I DIFFERENT VERTICAL LOCATIONS IN AN 

ABSORBER ASSEf.IBLY 

PELLET APPROX. ~IAX"I APPROX. MINH DIFflERENCE 
NUMBER 7Li \\rt. % tLi \\tt. % IN HAX I MID mN~1 

. 

197 1.29 0.67 0.62 (48%) 

185 1.68 0.80 0.88 (52.4%) 

172 2.16 1.03 1.13 (52.3%) 

160 2.17 1.15 1.02 (47%) 

Generally the degree of burn-up in the centre of the pellets is only 

half of that in the outside edge. Also as one moves vertically along the 

absorber assembly from pellet 197 to pellet 160 the degree of burn-up 

increases greatly. Bulk analysis obtained from pieces of the same absorber 

pellets have been carried out using an alternative method. After high 

pressure dissolution of the B
4

C in nitric acid the lithium content was 

determined using flame photometr~' (119) In order to compare the bulk 

analyses obtained by flame photometry, to the effective mean bulk analyses 

obtained from these diametric scans across the cylindrical B4C pellets, 

the spatial values must be weighted ",ith respect to their distance from 

the pellet centre. This ,,'eighting is necessary because the value obtained 

in the outermost scan point is representative of a far larger quantity of 

material than the value from the central point. Therefore the spatial 

point values were weighted by a factor equal to the difference in the 

relevant inner and outer band radii squared. On di"iding the sum total 

of these weighted values by the total weighting factors one then obtains 

a representative mean bulk value for each pellet. These values are 

compared with those found by flame photometry in Table 7.2. Also included 
7 . ,10 11 

for comparison are the values of Ll calculated kno"'lng the Band B 

concentrations in the absorber assemblies before and after irradiation and 
10 

the reasonable assumptions that each of the B atoms lost are transmuted 

to a 7Li atom which reacts 'no further. 
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TABLE 7.2: COMPARISON OF 7Li BULK ANALYSES 

NUCLEAR MICROPROBE BULK VALUES 
BULK VALUES 

PELLET CALCULATED FROM 
NUMBER 

BULK VALUES BY FLAME PHOTOMETRY lOB AND llB DATA 
"rt. % ,,1;. % 

,,1;. % 

197 0.96 - - 1.16 1.15 

185 1.24 1.39 1.55 

172 1.55 1.62, 1.68, 1.72, 1.76 1.91 

160 1.50 1.47 1.71 

A point to note when comparing these values from the nuclear microprobe 

and flame photometry is that the nuclear microprobe data was obtained 

from the slice in the centre of the pellet whereas those for the flame 

photometry method were obtained from the edge slice of the pellets. 

However the variation from the edge to the centre of a pellet is not 

usually very large and the results obtained from the spatial measurements 

are lower than expected. This very likely represents a loss of 7Li during 

the preparation procedure, in particular the cutting of the pellet slice by 

the diamond wheel. B
4

C is an extremely hard material, difficult to cut 

and at the temperatures involved it is quite likely that the fairly mobile 

7Li was released by the B
4

C. The more porous the B
4

C the more readily 

release occurs. There did not appear to be any significant movement of 7Li 

within the sample whilst being interrogated by the microbeam. This was 

found by bombarding the same position for ten times the normal does of l~C 

per scan point and recording the counts for each 1 ~C dose period. No 

change in counts were obsenced. Thus the 7Li would appear to be lost during 

the cutting and polishing. One can sometimes use the shape of the spectra 

obtained from both standards and sample in order to verify surface losses. 

The whole shape of the curve can change. If all the 7 Li was lost from the 
7 . 

surface leaving only subsurface Ll, the high energy point of the spectrum 

would have moved to lower energy. Unfortunately because of the extremely 

poor energy resolution of the detection system with so many nickel absorber 

foils causing a high degree of spectral degradation, any small changes in 

energy due to the depth origin of the emitted alpha particle were smeared 

out and the spectra were of little help in interpreting the data. 

7 
Comparing the Li bulk values obtained from both the nuclear micro-

probe and flame photometry methods one can clearly see that as one goes 
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7 . 
from pellet 197 to pellet 160 the Ll concentration. appears to be 

increasingly lower than theoretically predicted. This could well indicate 

loss of 7Li by diffusion during reactor irradiation. Perhaps the appli­

cation of the 7Li(p,a)a method to follow boron burn-up may be limited to 

those cases where 7Li loss is negligible, for instance in relatively lo~' 
temperature irradiations of that experienced by pellet 197 (temperature 

'" nooC). 

7.4 CONCLUSIONS 

7Li distributions across B
4
C absorber assembly pellets have been 

obtained by the 7Li (p,a)a reaction in conjunction with the nuclear micro­

probe. Quite marked profiles were obtained and generally only about a 

half the boron burn-up occurs in the centre of the pellets compared to 

that at the pellet edges. Al though these profiles provide very good 

relati ve data the absolute values obtained were someo'hat lower than 

expected. This may well be due to loss of 7Li during sample preparation, 

in particular during the cutting of the B4C slices. It may also partly 

be attributed to some error introduced using the LiNbO_ single crystal 
v 

as calibrator, for instance inaccuracies in existing stopping power data. 

It may also be caused by loss of 7Li by diffusion processes during reactor 

irradiation as discussed. This very fundamental problem may well limit the 

application of the 7Li (p,a)a reaction method to boron burn-up measurements 

~·here the irradiation temperature is low causing negligible loss of 

lithium during irradiation. 

It would be very interesting to measure 7Li distributions across a 

material which is far less likely to loose 7Li during preparation for 

analysis, for instance a material which is easier to cut than B
4
C. If 

one wished to regard the bulk values obtained by the alternative technique 

as absolute values, the spatial data could be normalized wi th respect to 

them by application of the normalization factor between the bulk values 

from the two techniques and the weighting factors to correct for bulk 

cylinder to diametric scan data. 
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CHAPTER 8 

THE APPLICATION OF 15N AS A STABLE ISOTOPE TRACER 

IN BARLEY ROOTS 

To date very little work has been carried out on the application of 

the nuclear microprobe to biological samples. The opportunity arOse to 

work in collaboration with the nearby Agricultural Research Council Letcombe 

Laboratory on the application of the stable isotope 15N as a tracer, in the 

investigation of the uptake of nitrogen by a segment of intact barley plant 

roots. The uptake of plant nutrients is of considerable importance in 

improving crop yields, not only with respect to finding the best nutrient 

types but also in finding variat ions of nutrient uptake under different 

conditions. The uptake of several plant nutrients such as phosphate, 

potassium and calcium by different parts of the root system had been 
. t' t d (120, 121) . d t'l t Lt b . d' t· lnves 19a e 10 e a1 a e corn e USIng ra loac Ive tracers. 

Usually the techniques used to investigate the biological specimens are 

micro-autoradiography and electron probe microanalysis. Of course the 

latter is of no use in isotopic tracer measurements since the technique 

is not isotopically sensitive and micro-autoradiography cannot be carried 

out for nitrogen 

using the stable 

since there 

. t 15N 1S0 ope 

is no suitable radioactive tracer. 

provided a 

had been carried out in which bulk root 

reasonable alternative. 
15 measurements of N had 

Nethods 

Experiments 

been 

obtained using conventional mass spectrometry after combustion of the root, 

followed by purification of the gaseous products. However the extension of 

the investigation to include lateral spatial measurements of the 15N across 

the barley roots was required in order to fo 11 0\,' the nitrogen distribution 

across the root, from the labelling solution outside the root, to the centre 

of the root which conducts the nutrients and water to the plant shoot. It 

was therefore proposed to try to develop a technique allowing lateral spatial 

measurement of 15N and 15N/14N ratios across barley roots using the nuclear 

microprobe. 

8.1 SUR\~Y OF NUCLEAR REACTIONS SUITABLE FOR 151\, 14N ANALYSES 

S I I t · h b t d . bl f 15" / evera nue ear reac Ions aye een repor e as SUI ta e or 1\ and or 

14N measurements, these include the fo11owing:-

14N(d,p) 15N and 141\(d ,a) 12C (Refs: 122-125) 

141\(p, y) 150 and 151\ (p, ay) 12C (Refs: 79, 82, 84, 126-130) 

14N(d,PY) 15N and 14N(d,ny) 150 (Refs: 131-133) 
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14N(p,ny) 140 (ReI. 134) 

15"'(p,p)15j'\ (Ref. 135) 

14N(n,y)15N (Ref. 136) 

14", (n, 2n) 13N (Refs. 137, 138) 

The latter two are incompatible with the focussed charged particle micro­

probe facil i ty. 

Sundqvist et. al. (123) have successfully used the (d,p) and (d,a) 

reactions for the analysis of 14N in single grain samples of wheat and barley. 

The 14N content being related to the protein content. The beam was only 
2 collimated by slits to 1.5 mm and 10'" beam currents were used, however the 

beam energy used, 6 MeV 2H+, exceeds the energy limit available to the 

focussing microprobe. Although the technique has proved successful for 14N 

determination it will not a 110"- the simultaneous measurement of 15N because 
15 16 of the likelihood of interference. The Q value for the N(d,p) N reaction 

15 (13 _ is only 0.265 ~leV and although that of the N d, a) C reactIon is +7.69 ~leV, 

interference is highly likely since so many other nuclides have an even higher 

reaction Q value. 

The 14N(d,p)15N'reaction is used routinely for the analysis of 14j'\ in 

metallurgical 
(139) samples on the nuclear microprobe using 

1630 C/pC/1% 14N 

focussed 1. 9 ~leV 
2 + H beams. A sensitivity of approximately in metallurgical 

samples is obtained giving a sensitivity limit of::', 0.002%. 

(132) (131) Both Bodart et. a!. and Chen et. a!. have successfully used 
14 12 the (d,ny) and (d,py) reactions for the measurement of N/ C ratios in 

, b' I 'I I I h h ' I 14" h 15,,/14N t' VarlOUS 10 oglca samp es a t Dug agaIn on y !" rat er than n' ra 108 

can be measured. Bodart used a 2.3 MeV 2H+ beam of large diameter, 5-20mm, 

to induce the reactions and measured the emittedy 's (14N(d,ny)015 Ey = 7.286 

MeV) using both a 10% efficient Ge(Li) detector and a NaI(Tl) detector. Chen 

made'similar measurements using a 12.7 x 12.7 cm2 NaI(TI) detector but made 
14 15 use of the '" (d, py) N E 5. 3 ~leV peak in addi tion to the peak at the higher 

y 
energy. Relat i. vely large doses were used, 10-500 mA for 10 minutes. At the 

lower end of this range 6 PC may be acceptable when analysing microtome 

sections of barley root ho,,'ever from previous experience I<i th rather beam 

sensitive powder samples the higher end of the range, tOl<ards the ca. 300)JC 

dose, is unlikely to be acceptable. 
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(135) h 
Matsumato et. a1. ave used proton elastic scattering to measure 

15N and 180 in various biological samples. A 6.7 ~leV IH+ beam was used to 

investigate very thin samples, prepared by evaporation of 5-10 lJ litres, 

measuring the backscatter at an angle of 165
0

• The scattering y.ield from 
15 

N was found to be extremely small so the following suggestions to improve 

sensitivity were made: use beam currents up to 100 nA, increase the detector 

solid angle and utilise an..-annular detector. Some increase in detector solid 

angle, 1.74 msr was that used, could be utilised without detriment to the 

spectral resolution bearing in mind the solid angle restrictions discussed 

in Chapter 3, however an increase in yield of several orders of magnitude 

was required for adequate sensitivity and increasing the solid angle 

certainly could not provide that. The damage done to barley cells at beam 

currents even approaching 100 nA is totally unacceptable in small spatial 

scans, many cell walls being completely broken. Annular detectors are not 

currently available with the resolution required, i.e. better than 15 KeV 

F'WlIM. Thus the sensitivity would probably remain rather poor. In addition 
. (126) . 

Kelly et. al. found that In biological samples, for thicknesses of 

more than 0.25 pm, the 10.' energy end of the ox'ygen overlaps the high energy 

end of the nitrogen. Thus computerised resolution enhancement methods are 

required. 

14 14. . 14.. 
The N (p, n y) 0 reactIon was used to measure N content In grain by 

Standing et. a1. (134) with a 16 MeV IH+ beam, which greatly exceeds the 

energy 1 imi t 
14 

from the 0 

of the focussed microprobe. The nitrogen content was calculated 
. 12 13 

decay Ey = 2.31 MeV. However If C and C were present in the 

sample, interference to the nitrogen measurement .'ould be likely from the 

12C(p,y)13N Ey = 2.366 ~leV and the 13C(p,y)14N Ey = 2.313 Me\' reactions. 

Th t 1 th d f th 1 · f 15,; d 15"/14,, . . . e mos popu ar me 0 or e ana YSIS 0 " an " "ratIos ,n 

biological materials involves the use of proton induced gamma reactions; the 
14 15 _ 15 12 _ 

N(p,)') 0 Ey = ..).042 ~leV and the N(p, ct() C E = 4.4.>9. Generally lower 
IH+ y 

energy beams, in the region of 1 NeV, have been favoured in order to 

reduce the number of possible interfering reactions although Xenonlis et. al. 

(129) discussed the application of high voltage accelerators for this type 

of nitrogen analysis. They used 4.3 MeV IH+ beams and measured the 
14 14 _ . 15 12 _ 

N(p, Py) N 2.31..) MeV Ey and the N(p,CiY) C 4.4.>9 ~leV Ey. Of course with 

the focussed microprobe the lower energy beams are preferable not only to 

minimise interference but also because they are far easier to focus to the 

extremely 
3 

a 100 cm 

small dimensions required for reasonable spatial resolution. Both 

Ge(Li) detector and a 10.2 x 10.2 cm
2 

NaI(Tl) detector have been used 

to measure the emitted gammas. The 15N 4.439 ~leV peak is fairly sensitive 
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( ) . . . t f 14 1 especially when using NaI Tl detectors however the sensltlvl y or ]'\ 

determination is considerably lower. 

Available information indicated that measurement of deuteron and proton 

induced gamma-rays and deuteron induced protons 

nuclear . 15 14 
mIcroprobe measurement of Nand N. 

these techniques was assess_ed experimentally. 

might be suitable for the 

Consequently the value of 

8.2 EXPERIMENTAL EVALUATION OF THE HOST SUITABLE NUCLEAR REACTIONS FOR 

THE SPATIAL ANALYSES OF 15]'\ AND 14N 

Initial feasibility studies were carried out using each of the chosen 

reactions in turn. Pressed powder targets of urea, NH
2

CONH
2

, containing 

different enrichments of 15N were placed in the nuclear microprobe chamber 

and interrogated using focussed beams from the nuclear microprobe. 

Investigating the 15N(p,ay)12C and 14N(p,y)150 reactions first, in 

order to choose the optimum incident energy, it was necessary to consider 

the reaction resonances tabulated in Table 8.1. 

Table 8.1: GAMMA-EMISSION ENERGIES FROM THE IH+ INDUCED Y REACTIONS 

ON 14N AND 15N 

RESONANCE 
NUCLEAR 

RESONANCE 
Er EMITTED COMMENT ENERGY REACTION 

(mb) ~'IDTH KeV ON RESO]'\ANCE KeV (KeV) 

360 15N (p ,aY) 12C 0.03 94 4.439 

429 15N(p,ay) 12C 200 0.9 4.439 fairly strong 

429 15N(p,y) 160 0.001 0.9 6.46 

700 14N( )150 P,y - 100 8.0 

710 15N( ) 160 P,y - 40 6.72 

898 15N( ) 12C . p,ay 800 2.2 4.439 strong 

1040 15N(p,ay) 12C 15 130 4.439 

I 
strong 

1040 15N( )160 1 130 13.09 P,y I 
1059 15N (p,y ) 160 - 4 8.34 

5.27 

3.04 

1210 15N (p ,ay) 12C 600 22.5 4.439 I strong i very 

14N (p,y) 150 
I 

1544 - 34 8.8 i 
1640 151\'( ) 12C 

j' p,aY 340 68 4.439 , very strong 

Table Continued ••• 
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TABLE 8.1 (Continued) 

i 
RESONANCE RESONANCE 

NUCLEAR Ey EMITTED COMMENT 
ENERGY (mb) WIDTH REACTION KeIT ON RESONANCE 

KeV (KeIT) 

1742 14N(p, y ) 150 - 5 9.0 

1807 14N( )150 p,y - 5 9.0 

1979 I 
15N(ppy) 12C -

_. 

35 23 4.439 fairly strong 

It can be seen from Table 8.1 that there were several very strong resonance 

energies for the 15N reaction leading to the emission of the 4.439 MelT gamma 

ray. The variation in yield using different beam energies was investigated 

using the nuclear microprobe and a 100 cm3 "17% efficient" Ge(Li) detector. 

One of the spectra obtained is shown in Figure 8.1. The 15N (p py ) 12C 

Ey = 4.439 MeV and its single 

The variation in yield of the 

atom % 15N; 44.5 wt. % 15N in 

and double escape peaks were all clearly seen. 

NH
2

CONH
2 

sample fully enriched in 15N (i.e. 95.1 

urea) at different energies is shown in 

Figure 8.2. The sensitivity of the measurement increased with increasing 

incident beam energy as each successive resonance was included. The 4.439 

15. d h b MeV gamma transition is extremely strong and the N content coul aye een 

evaluated directly from the peak intensity of the 4.439 MeV line. However 

the 5.242 and 8.283 HeV gamma transitions which can be used for 14N analysis 

have very low yields, especially when compared to the strong 15N transition. 

In order to enhance the chances of successfully measuring the 14N, for the 
15 14 N/ N ratio values required, it appeared preferable to work at lower proton 

beam energies, below the 1.21 MelT resonance. This was verified by Engelmann 
15N (84 127) 15 14 

et. al. ' who found that for N/ N measurements when the 

isotopic concentration was above the natural abundance (0.36%) the optimum 

incident IH+ energy was 1.1 Me\', whilst 1.25 - 1. 75 MelT was preferahle when 

the 15N level was below the natural level. Once the 15N enrichment was above 

5% it was extremely difficult to measure the 14N at all. As these 15N/14N 
1-

tracer experiments were such that the "N level of enrichment rose above the 

natural level, a bombarding energy of 1.1 ~le\' was choosen in order to see if 
15 14 

the sensitivities were adequate for both Nand N measurement under nuclear 

microprobe conditions. Even after 35 pC of charge had been collected, whilst 

bombarding NH
2

CONH
2 

containing the natural abundances of the nitrogen 

isotopes, the peak yields in the region of the 5.242 ~leV and 8.283 MeV y's 

from the 14N reaction were insignificant. 

of about 100]lC in conjunction "'iih a 10.2 
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about 1000)JC 

Engelmann et. 

in conjunction 
a1. (84, 127). 

.'i th a 100 cm2 Ge(Li) detector were used by 

Comparing these results and scaling down to 

the beam doses acceptable for spatial microprobe analysis, from the point of 

view of both beam damage and spatial analysis time, the counts expected for 

1)J C/l% 14N were in the region of 0.05 counts using the optimum conditions 

of a NaI (Tl) detector and the resol ved 5.242 MeV Y peak. Thus under the 

conditions required for spa.tial analysis using the nuclear microprobe only 

15N rather than 15N/14N ratio ,'alues could be successfully measured. For 

15N analysis only, the constraints on incident energy were somewhat diminished. 

An incident 1HT energy may be choosen such that all the large resonances of 

the 15N(p,ay) 12C reaction leading to the 4.439 MeV prompt y transition could 

"be utilised, the only constraint being the level of interference from other 

light elements encountered. The interference levels from all elements with 

Z ::: 17, with the exception of H, He and Ne, were obtained at the optimum 

incident energy of 1.69 MeV and are given in Table 8.2. A 10.2 x 10.2 cm2 

NaI(Tl) detector was used in order to achieve the highest sensitivity. 

TABLE 8.2: MAGNITUDE OF THE INTERFERENCE TO THE MEASUREMENT OF 15N USING 

THE 15N(p,ay)12C REACTIQ\. Ey = 4.439 MeV 

I 

INTERFERENCE R POSSIBLE ORIGIN 

SULPHUR 0.098 34S (p,y)35Cl 4.17 MeV -r t.g. (60%) branch 
-+ several other transitions. e.g. 7.601 __ 
3.16. E = 4.441 (8%) 

Y 

FWORINE 0.063 19F(p, y)20Ne 4.969 and 4.248 ~teV ~ t. g. 
many observed transitions. e. g. 13.55 ----7 
9.11 MeV. E = 4.401 Me\'. 

y 
LITHIUM 0.0155 6Li (p,y)7Be 4.53 Me\' --+ t.ground. 

CHLORINE 0.0027 
-- -6 
""'Cl(p,y)" Ar, 4. 44 ~te\' --+ t. g. (60%) 

BORON 0.002 llB(p,y)12c . Same residual nucleus, same 
but lower abundance peaks. 

BERYLLIUM 0.0019 9 10 Be(p,y) B, 4.75 and 4.45 --r t.g. 

where R = (Yield of 1 wt. % interference nuclide/)J C) 
(Yield of 1 .'t. % l"'iI: in Urea/{J cl 

+ 

h " h ld b d h h" h h 15, b " 1 t 1S notation s ou e use throug out t 1S C apt er wit 11' e1ng rep aced 
14 . 

by N where appropriate. 

Although none of the worst interferences gave even a tenth of the yield 

from 1511', the application of the technique may be of very limi ted application 
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when samples contain appreciable quantities of sulphur, fluorine and lithium. 

However for the barley plants no significant interference was expected. 

A typical spectrum obtained using 

Figure 8.3, the main and single escape 

the NaIITl) detector is given ,in 
15 12 peaks from the NIp, ay) C Ey = 4.439 

MeV transition are clearly visible. A typical calibration curve is 

Figure 8.4 and a sensitivity of 4,240 countsll.lC/l ,,'t. % N15 in urea 

obtained. 

given in 

was 

Although it was obviously preferable to analyse both 15N and 14N 

simultaneously the sensitivity required for spatial analysis at these low 

beam doses necessitated the use of the Id,p) or the Id,nY) reactions for 

the 14N analysis. 

For the 14Nld ,p)15N and the 14Nld,et)12C reactions an incident beam of 1.9 

MeV 2H+ was used and an annular detector was choosen to collect the resultant 

charged particles in an attempt to achieve better sensitivity. An 150 mm2 

active area detector 

matics the resultant 

8.89 MeV and that of 

wi th 300 ].JI! depletion depth was available. From Kine-
15 energy of the Np group under these conditions "'as 

14 0 
the N a group was 9. 84 ~leV. In order to detect the 

o 
8.89 MeV proton group, detector absorber foils were required to degrade its 

energy prior to entering the detector surface. Approximately 90 ).l m of nickel 
14 foil was used and this totally absorbed the N group. In addition to the 

14 "" et 025 29 10 
Np 0 group only the Sp 0 and PI groups and the Mgpo' Sip 0 and Bp 0 

groups could be detected and were therefore the onl~' potential sources of 

interference. The levels of interference found from each of these is listed 

in Table 8.3 with the exception of 29Si which wasn't measurable. 

TABLE 8.3: MAGNITUDE OF INTERFERENCE TO THE MEASURDIENT OF 14N USING THE 

14N Id, po) 15N REACTION 

SILICOi\ SURFACE SILICON SURFACE 
INTERFERENCE BARRIER DETECTOR AT 1350 BARRIER DETECTOR AS CLOSE 

NUCLIDE TO 0 0 AS POSSIBLE 
R R 

Boron 0.54 0.088 

Sulphur 0.0062 0.0224 

Magnesium 0.004 0.00144 
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A typical spectrum for a NH
2

CO]l;H
2 

sample is shown in Figure 8.5 only the 

14N(d,po) 15]1; group being seen since 90 l1 m of Nickel detector foils attenuated 

lower energy proton and alpha groups as previously described. 

A typical calibration curve is given in Figure 8.6, and a sensitivit~· 

of 1150 counts;1J C/l wt. % 14]1; in urea was achieved. Al though a higher 

sensiti\'ity could be achieved using a larger surface area annular detector 

this sensitivity proved adequate for these 15N tracer experiments. 

2 + A 1.9 MeV H beam was used to investigate the analytical potential of 

deuteron induced gamma reactions. (The radiation hazard prevented the use 

of higher energy deuteron beams on the nuclear microprobe.) The strongest 

de-excitation gammas from the products of the deuteron induced gamma reactions 

are given below:-

14]1;(d,ay) 12C 

14N(d,py)15N 

14N(d,ny)150 

E 
y 

Ey 

Er 
Ey 

Er 
Ey 

= 

= 

= 

= 

= 

= 

4.43 

5.28, 

6.82 

7.3 

8.3 

6.14 

very weak peak 

5.31 very strong peak 

weak peak 

strong peak 

less strong peak 

weak peak 

The sensitivity of the 15]1; analysis was extremely low, even with the fully 

15]1; enriched urea targets (44.5 wt. % N15 in NH
2

CONH
2

) the 15N(d,ny)160 

Er = 6.14 MeV transition was only just discernable. A sensitivity of 

90 c/l1C/l wt. % 15N in urea at best, with a sensitivity limit in the region 

of 7700 ppm was found. For the barley experiments the maximum amount of 15;.; 

was in the region of 1.8 - 2 wt. % 15N in the root and since it was likely 

that the cell structure would only withstand very low dose rates, sensitivity 

was of the utmost importance. The sensitivity offered by the d ->- Y reaction 

was totally inadequate and compared very unfavourably with that of the 

15N(p,ay)12C reaction namely 4,240 counts/l1C/l wt. % 15]1; in urea. The y-ray 

spectrum obtained by deuteron irradiation of a natural ]l;H
2

CO]l;H
2 

sample using 

the Ge(Li) detector is given in Figure 8.7. Three of the 14]1; induced 

transitions at 8.3, 7.3 and 5.3 ~leV were seen although the double escape of 

the 8. 3 ~leV peak fell very 'close to the 7.3 MeV y peak. The sensi ti vi ty 

obtained using the 5. 3 ~leV y main peak "as approximately 140c/l1 C/l wt. % 14:-.; 

in urea and for the "'eaker peak at 8. 3 ~leV a sensi ti vi ty of '" 80c;1J C/".t. % 14]\ 
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in urea was obtained. As the 14N(d,p)15N reaction was far more sensitive 
14 15· 

it was prefered for N analysis. For N the prefered method was that 
15 12 . based on the N(p,ay) C reactIon. 

8.3 THE LABELLING OF BARLEY ROOTS WITH A 15N TRACER 

Barley seeds were soaked in distilled water for 6 hours, the water being 

continually aerated. The seeds were then spread evenly over a double layer 

of Whatmans No. 1 filter paper on a sterile tray. The filter paper was 

moistened and the tray then covered \,-ith black polythene sheet to make it 

light-proof and sufficiently airtight to prevent excess drying of the filter 

paper. The tray was then maintained at 20
0

C for the seeds to germinate. 

This usually takes about 48 hours and the seeds were planted out when the 

first seminal root was approximately 2-3mm long. Uniformly germinated seeds 

were placed onto a stainless steel mesh suspended in a black polythene tank 

of nutrient solution A. (Table 8.4). 

TABLE 8.4: NUTRIENT CULTURES USED TO GROII' BARLEY ROOT AND SUBSEQUENTLY 

LABEL THDt WITH A 15N TRACER 

CONCENTRATION m moles/litre 
CO~tPOUNDS 

A 

Ca(N03)2· 4H20 0.15 

K NO_ 0.50 
cl 

Na N0
3 

0.20 

K H2 P04 
0.10 

~tgSO 4. 7H
2

O 0.15 

H_ BO_ 9.22 x 10-3 
cl cl 

Fe EDTA 9.22 x 10- 3 

CuS04 ·5H2O 0.16 x 10- 3 

KCl 14.10 x 10-3 

MnS04 ·4H
2

O 3.60 x 10-3 

(NH4 )6Mo 7024·. 0.016 x 10- 3 

4H
2

O 

ZnS°4 • 7H2O 0.77 x 10- 3 

During labelling 
requisite amount 

the 3 nitrates in Culture Bare 
of KNO_ enriched to 99% 15N• 

.) 
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B 

1.5 

5.0 

2.0 

1.0 

1.5 

9.22 x 10- 3 

9.22 x 10-3 

0.16 x 10- 3 

14.10 x 10 
-3 

3.60 x 10-3 

0.016 x 10-3 

0.77 x 10-3 

all replaced by the 



The seeds were left in the dark,in a controlled temperature of 20
0

C, for two 

days prior to replanting uniform plants into individual jars containing 500 

mls of solution B (in Table 8.4). All solutions were gently aerated at all 

times. After nine days growth the seedlings were placed over the labelling 

culture solution which was identical to culture B except that all three 

nitrates were replaced by potassium nitrate enriched to 9~h in 15N• The 

pattern of uptake was established by leaving the seedlings in the labelling 

culture for various periods. .'hen similarly treated roots were left in the 

unlabelled 14N culture for similar periods of time to that in the 15N 

culture, i.e. "chaser" experiments were carried out, a different pattern of 

accumulation emerged. Differences should indicate those regions which 

readily exchange the nitrogen and those which do not. 

After growing and labelling the barley seedlings in the desired 

sequence of cultures the roots of the barley plants were prepared for 

sectioning. There are two basic requirements in the preparation of plant 

tissue for sectioning namely, (a) to freeze the root immediately after 

treatment to stop redistribution of tracer within the tissue (rapid freezing 
"" th" d th f " t I (140, 141) h h redu~lng e SIze an grow rate 0 Ice crys as\\' ic cause 

severe cellular disruption) and (b) to support the tissue in a suitable 

matrix to prevent it being ruptured during sectioning. ~Iethyl cellulose 

was used for these experiments since it is fairly easy to use and good 

quality sections can be obtained above 5 I'm. Immediately after the root 

segments were removed from the plants they were dipped first into distilled 

water and blotted to remove surface contamination of 15N, then into a 
o 

viscous solution of methyl cellulose (at 2 C) and then were immersed in 

liquid nitrogen. The selected portion of the frozen root was severed from 

the remainder of the root system and mounted onto a microtome chuck, with 

the m"ethyl cellulose cooled in liquid nitrogen and then allowed to warm to 

cryostat temperature (_20
o

C) before sectioning to the required thickness. 

An excellent detailed account of basic mounting and sectioning techniques 
( 142) 

is given by Sanderson Indi,'idual sections were transferred from the 

microtome knife, ,,.ith the aid of a wooden handled needle, to a piece of 

mylar film in the base of the cryostat. The last cut face of the section 

was placed against the mylar film. 

The method used for mounting the microtomed freeze dried root sections 

ready for nuclear microprobe analysis evolved during the series of experi­

ments. However ul timately 100,u m sect ions were placed, with the lower face 

of the freeze dried section (i.e. the one in contact with the mylar during 

- 99 -



freeze drying) uppermost, onto Nickel mounts and held in place by strips of 

double sided sticky tape which adhered to the cellulose matrix leaving the 

root region itself clear for microprobe interrogation. 

The barley plants were grown, labelled, freeze dried and sectioned by 

Mr. J. Sanderson in collaboration with Dr. D. Clarkson, both of the 

Agricultural Research Council Letcombe Laboratory. 

8.4 EXPERH1ENTAL INVESTIGATION OF 15N AS A STABLE ISOTOPE TRACER 

IN BARLEY ROOT SECTIONS 

15 14 The Nand N levels in the treated barley root sections were analysed 

using first the 15N(p,ay) 12C and then the 14N(d,p)15N reactions in conjunction 

with 'the nuclear microprobe. One of the main problems, when analysing these 

extremely thin root sections, is that of beam damage. Low beam currents, 

the continuous electrostatic scanning method and special sample mounting 

techniques were used in order to help minimise beam damage. 

8.4.a Sample handling techniques used during root cell analysis 

The first sample mounting technique tried involved the use of 

a small air cell in an attempt to more readily conduct away the heat 

deposited in the barley cells by the beam. The air was trapped between 

two small perspex plates sealed with a perbunam "rubber" '0' ring, the 

beam hole in the front plate being sealed with a mylar windo\; onto the 

back of which the root section was placed. ~lylar "'as used rather than 

the more radiation damage resistant kapton because the former contains 

no nitrogen other than that absorbed by the film from the atmosphere. 

The second mounting method was very simple and involved placing the 

root sections directly onto nickel sample blocks (nickel being highly 

unl ikely to introduce any interference to the analyses) and then to 

cover the root sections with a 6.3).l m mylar film to prevent the cells 

being sucked off the nickel blocks during the evacuation of the micro­

probe chamber. Root sections were mounted using either of the two 

methods and were bombarded for different beam doses, in the range 20).l C 

to 0.5).l C, under the conditions detailed earlier for 15N and 14N analysis. 

The root sections placed in the air cells were very badly damaged, the 

chamber vacuum pressur~ rather suggested that the air cells were leaking 

t~us the root sections were effectively being bombarded in vacuum. 

Although the simple expedient of placing the root cells in good contact 

with nickel blocks,proved more successful there was still evidence of 
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beam damage. The higher incidence of beam damage in sections partially 

damaged during freeze drying suggested that radiation shrinkage of the 

overlaying mylar film was the cause, rather than the direct interaction 

wi th the beam. While improvements to the gas cell method might have 

been implemented, including the use of helium to increase heat dissipation, 

this option was not pursued as the problem of radiation damage to the 

mylar window ,.-ould have remained. Consequently, improvements to the 

nickel block method were sought. A sample preparation technique which is 

often used in electron microscopy, primarily to prevent sample surface 

charging up during bombardment, is to deposita very thin film of carbon 

over the section to be examined. Thus a third sample mounting technique 

was tried out. Barley root sections were placed on Nickel blocks, each 

section being held in place by t,,.o thin strips of double sided sticky tape 

which contact the cellulose matrix surrounding the barley root sections. 

The whole of the nickel block surface was then covered by a 0.02].lm layer 

of carbon, prior to interrogation using charged particle beams. This 

undoubtably appeared to be the most satisfactory method of sample 

mounting and was used' for all subsequent measurements on barley root 

sections. Figure 8.8 shows two photographs of a barley root section 

before and after bombardment with 1.9 Mel' deuterons. The beam "'as 

electrostatically scanned over the desired pathway across the cell and 

a total of 2 ].l C of charge were deposited over the area of the beam. 

Figure 8.8, Photograph i,has the different regions of the root section 

clearly marked where (a) denotes the cellulose matrix to support the 

section when cutting frozen sections in the cryostat at _200 C, (b) is 

the outer region of the root segment consisting of the epidermis and 

cortex. The epidermis is an outer rank of small cells. The cortex has 

larger cells with few air spaces between the cells. (c) is the stele, 

a region of much smaller cells bounded by a single rank of small thick 

walled cells, the endodermis, which acts as a semi-permeable barrier 

between the cortex and stele and xylen vessel. (d) shows the central 

}.'Olen vessel. Low beam doses "ere preferred to minimise the amount of 

damage; 20 ].lC of charge completely destroyed most of the cell walls. 

Very 1 i ttl e damage was incurred by a maximum of 5 ].lC charge spread over 

an area of '" 50 x 350 ].l m in a cell, or sI ightly more when a proton beam 

is used because it produces less damage than the same dose of deuterons. 

A 2 ].lC dose of deuterons produced no visible damage as can be seen in 

Figure 8.8 Photograph ii. Generally when examining sections from the 

tracer exper iments the dose "'as restri cted to 2 ].lC but was increased to 
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a maximum of 5 ~C for those cells treated for the shortest periods 

"'ith 151'1. 

8.4.b Spatial measuremenc methods used for root cell measurement 

When spatially analysing samples using the nuclear microprobe 

there are two al ternati ve methods, firstly one could mechanically move 

the sample whilst keeping the beam position static, and secondly one 

could electrostatically scan the beam continuously across the sample 

whilst keeping the sample static. This latter method was used for the 

151'1/
14

1'1 analyses in order to help minimise beam damage on these sensitive 

samples by minimising the dose rate. The beam was electrostatically 

scanned continuously across the required distance, just larger than the 

radius of the root section. The coincidence scanning data collection 

system used is described in detail in Chapter 2. Effectively the scan 

is split into a choosen number of data collection blocks. Instead of 

collecting a single spectrum across the whole radius of the barley root, 

32 or 16 spectra were collected over approximately 15 or 30 pm sections 

of the barley root respectively. The actual number of collection blocks 

choosen depends on a compromise between spatial resolution and sensitivity 

requirements. The method of spatial analysis is clearly seen by looking 

at Figures 8.9 and 8.10. Figure 8.9 shows some of the 16 gamma ray 

spectra obtained using the NaI(Tl) detector and the 15N(pay)12C reaction 

on a urea sample enriched i~ 15~. (44.5 wt. % 151'1 in urea). The main and 

single escape peaks of the 4.439 HeV y are clearly seen in each block. 

Figure 8.10 shows some of the 16 proton spectra obtained using an annular 

detector and the 14N(d,fu)15N reaction on a natural urea target. The 

14Npo (8.888 }leV) group is clearly visible, broadened somel<hat by the 

Nickel detector absorber foils. 

8.5 RESULTS AND DISCUSSION 

The first batch of barley roots spatially analysed comprised of root 

sections of a variety of thicknesses in the range 3D - 100 ~m, mounted some 

with the lower face of the freeze dried section (which had been in contact 

with the mylar ) uppermost and some I<i th the lower face of the freeze dri ed 

section against the Nickel block, as illustrated in Figure 8.11. The roots 

were treated in the labelling culture for either 48 hours or for only 5 

minutes. 'An example of the two parameter spectrum of the highly enriched 

barley root section treated for 48 hours is shol<n in Figure 8.12. The 4.439 

MeV main peak and its single escape peak are clearly visible in each section 
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of the root scan(.'ith a 17 urn spatial resolution in this easel. Also it can 

be clearly seen that the 15N builds up at the endodermis which acts as a 

barrier to the movement of ions. This was expected from the behaviour of 

14N f'l' t d' h 1 ' pro 1 es In roots reate Wlt natural abundance nitrogen cu tures. The 

position of the central region is also clearly seen in Figure 8.13 which 

shol<s a 14N profile where a larger spatial resolution .'as used to allo.' the 

beam to extend across the xylen vessel in the root. The position of the 

centre is much easier to locate than the boundry between the root section 

epidermis and the cellulose matrix. In order to find the representative 

15N/14N ratio profile, many scans .'ere obtained across the radii of roots 

treated for each period in the cultures, these were combined to find the 
15 14, ' 

average N/ N ratio at each pOlnt. The combining of the scans was always 

carried out from the centre outwards because of the difficulty in locat ing 

the outside edge. When combining the different scans it is important to use 

only good sections. During freeze drying and the other root handling 

processes parts of the cell may be distorted, only those scans across 

undistorted regions could be used in order to combine scans and get good lateral 

spatial accuracy since the radii of distorted regions could vary significantly 

from the average undistorted radius. Photographs of the root sections, taken 

before and after bombardment of each section, helped considerably in the 

sorting and combination of data. 

The most consistent results were obtained from the thickest root sections 

wi th the freeze dried layer at the 'top of the root section directly under the 

carbon deposit. This is probably a resul t of several factors which are 

discussed below. 

It can be seen in Figure 8.11 that after freeze drying the root section 

consists mainly of hollow space, cell walls and an extremely thin layer (in 

the region of 1 or 2]J m) of the frozen cell contents which contains most of 

the nitrogen. In the thicker sections more of the nitrogenous material may 

have adhered to some of the cell walls rather than drop to the bottom, thus 

effectively presenting a "thicker" nitrogen layer to the beam. This can then 
15 

interact with more of the N resonances to impro\re sensitivity and quanti-

tat ion. Another very important factor is that the th icker sections were far 

more regular, with less cell walls collapsed, thus they presented a more 

uniform pathway for the bea!l1 to traverse. 

It is advantageous to have the nitrogenous layer uppermost since one can 

control the initial beam energy entering the sample whereas, as sho.'n in 
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Figure 8.11, there are several different pathways for the beam to traverse 

when the nitrogenous layer is placed at the bottom. 

that the incident beam energy, .'hen it hits this layer, will vary. Quanti­

tation will thus be extremely difficult. For all subsequent barley root 

sample batches lOO}, m sections, flashed with 0.02,um of carbon, mounted with 

the nitrogenous layer uppermost .'ere used. 

Although the movement of 15N after 48 hours was clearly seen, the spatial 

analysis method .'as too insensi ti ve to detect the 15N movement after the 5 

minute exposure experiment. Consequently root sections were treated for 

various, longer times in the labelling culture. In addition sections from 

nearer the tip (1 cm from the tip) of the root were used since the outer root 

cell-s of this part of the root have a higher nitrogen status, Le. there is 
15 

more unused nitrate, and thus the labelled N from the culture can exchange 

with it very easily. In addition the cell diameters at the tip tend to be 

smaller and thus were less susceptible to damage during sectioning and freeze 

drying •. 

The tracer experiments, where the roots were exposed to the 

produced measurable 

labelling 
15N/14N culture for periods of 2 hours and 24 hours, 

ratio profiles. The resultant 15N/
14

N ratio profiles obtained from averaging 

many root section scans from each of the two periods are given in Figures 8.14 

and Figure 8.15 respectively. The two- have similar patterns but after 2 hours 

the ~5N/14N ratio was still fairly low whereas after 24 hours considerable 

exchange between the 15N labell ing cuI ture and the outer cortical cells (.-hich 

act as a storage 'larder') had occurred. As expected those cells closer to 
15 14 _ 

the centre had a much lower N/ N ratlo because they do not have as a high 

a nitrogen status and the 15N cannot so easily exchange with 14N already 

present. A very good lateral spatial picture of the 15N movement was obtained 

clearly verifying the importance of the 'larder' cells of the root section 
15 

where N exchange had occurred to a high degree. From this type of data 

one might work out kinetic information on the uptake and exchange of 15N by 

the cell~ in different lateral positions across the root sectio~with time. 
_ 15 

One would have to treat many batches of roots 10 the N labelling culture 

for periods between 2 and 24 hours, measure the spatial 15N/14N profiles and 

then calculate the rates. Sufficient time was not available for the quantity 

of data required to be obtained but quite clearly the evidence obtained to 

date strongly indicates that this type of information could be acquired. 
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Further experiments were carried out to elucidate how quickly the high 

15N status cells lose the accumulated 15N. Some plants take up and lose 

nitrogen at different rates since enzymatic conversion of nitrate to protein 

fixes and diminishes the amount of nitrogen which can be lost. To this end 

these further experiments of the "chaser" type were carried out by removing 

the young plants from the labelling culture B after a given period of time 

and subsequently allowing the young plants to continue growing in the 

unlabelled culture B for an additional period of time. 

Figure 8.16 shows the 15N/14N profile obtained by labelling barley 

plants for 24 hours followed by growth in the unlabelled culture for 24 hours. 

Figure 8.16, of the 24 hour chaser experiment, clearly shows a very similar 

patt~rn to that of Figure 8.15, where the plants were just labelled for 24 

hours. Although it should be noted that in Figure 8.16 the electrostatic scan 

did not cover the outside edge of the samples and further work should be 

carried out to ensure the outside edge is also'measured. However it can be 

seen that a considerable portion of the 15N in the high nitrogen status cell 
, 14 

region, or "larder cell" region, had readily re-exchanged with N when the 

plants were placed in the unlabelled culture. However the concentration of 

15N in the smaller cells of the stele is practically unchanged, the nitrogen 

in this region is thus far less susceptible to exchange which may indicate 

some degree of fixation of the nitrogen as protein. Due to time limitations 

further "chaser" experiments have not been carried out, however from Figure 

8.16 it can be seen that the rate of loss of 15N from various radial positions 

across a root section and hence the degree 

section could be obtained by measuring the 

of fixation of nitrogen across the 
15 14 

average NI N profiles across 

many sections after a variety of chaser treatment periods. 

Considering the results obtained throughout the accuracy of the 
, 15 14 

quantitative, NI N data was inevitably affected by the inhererit problems 

of sample irregulari,ties and inhomogeni ty in freeze dried sections. The 

incomplete knowledge of the exact material traversed by the beam within the 

freeze dried sections affects the nuclear reaction kinematics, cross-sections 

and stopping powers used in data interpretation when comparing responses in 

standards and responses in the root sections. The experiments have been 

designed, as described in detail "i thin this chapter, to minimise this 

inherent difficulty. Howev,er if one could work using a cryogenic stage this 

problem could be largely overcome. The use of the cryogenic stage would 

ensure that the nitrogenous material remains in solution through the .'hole 
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CHAPTER 9 

SU~I~IARY OF COi'iCLUSIOi'iS Ai'iD FllRTHER WORK 

The use of the nuclear microprobe, in conjunction with backscattering 

and nuclear reaction analysis, has been successfully demonstrated for the 

spatial determination of stable isotope ~racers in a variety of materials. 

Fundamental assessment of .the applicability of both backscattering and 

nuclear reaction analysis for these lateral spatial isotopic measurements 

indicated that microbeam operation had no specific disadvantages. 

Although backscattering analysis has been successfully used to quanti­

tatively determine the absolute abundances of stable isotopes, the lack of 

sensitivity (which imposed unacceptably long analysis times) severely limited 

the application of the technique for spatial analysis. However the use of 

nuclear reaction analysis has provided sensitive and selective methods capable 

of measuring high lateral spatial resolution profiles of stable isotopes and 

isotope ratios of light elements. Compared to conventional nuclear microprobe 

analysis, selection of the measurement conditions was often complicated by 

several factors. For example because stable isotope ratios were often 

preferred l simultaneous measurement of more than one isotope ""as required 

and a compromise of measurement conditions almost inevitable. Since high 

tracer sensi ti\'ity was vi tal to optimise the detection of any changes in 

tracer isotope abundance and since enriched s~able isotope tracers are 

expensi ve, the conditions choosen "ere usually optimised for the tracer 

isotope. 

The potential of the nuclear microprobe for s~able isotope ~racer 

analysis 
. 13

C In , 

has been demonstrated by the successful application of the technique 

'Li and 15N stable isotope experimen~s, which serve as illustrative 

examples. They were choosen to provide as wide a spectrum of sample types as 

possible. 

The detailed investigation of reactions capable of measuring 13C and 12C 

allowed a full appreciation of the capabilities and limitations of the various 

reactions for different applications. Four 

suitable for the simultaneous determination 

techniques 
13 

of C and 

were 

12C. 

found to be 

For applications 

requiring the highest sensitivitJ' the (d,p) reactions were preferred although 

serious light element interference could limit its use in certain cases. The 

use of Y rather than proton detection circumvented interference problems but 

at considerable loss of sensitivity and the 3He induced y reactions provided 
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a useful alternative method but only for carbon rich samples. For 13C 

analysis alone the ~,n) reaction was particularly attractive, it being 

both highly selective and reasonably sensitive. A good understanding of 

corrosion is important because of its widespread occurrence and generally 
13 14 12 )13 . detrimental effects. The C(d,p) C and C(d,p C nuclear reactIons 

f 11 d t ·d 12C 13C d 13C/
12C t· f·l· were success u y use 0 provl e ,an ra 10 pro 1 es In a 

study of the mechanism of the 

nimonic alloy PE16 treated in 

oxidative carburization corrosion of the 
13 13 

C labelled CO
2

• The use of the C stable 

isotope tracer clearly distinguished between the carbon added from the gas 

phase and the carbon initially present in the alloy, the latter being based 
12 on C measurement. It was clearly shown that the majority of carburization 

occurring was due to ingress of carbon from the CO
2

, whilst the original 

carbon distribution remained practically unaltered. 
13 )16 . the method based on the C(Ci,n ° reactIon would 

collaborative information. The need for both 13C, 

Further work utilising 

provide useful 

12C and 13C/
12C ratios 

would argue in favour of nuclear microprobe analysis as opposed to S.I.M.S. 

analysis. The fact that 12C and 13C concentrations were to some degree 
13 12 

phase dependent would have made even the Cl C values obtained by S.I.M.S. 

of dubious value. Further applications in the field of corrosion and in 

the field of materials compatability in general, where the system components 

include light elements, would be expected. 

A special area of·application is to materials in which the natural 

abundance of an isotope has been disturbed, for example in a material which 

had been subjected to nuclear transmutation either artificially or naturally. 

Such disturbances may act as indicators or tracers of those processes involved. 

Hence the example of the formation of 7Li in B
4

C fast reactor control material, 

by the reaction 10B(n,Ci)7Li was investigated. The 7Li distributions were 

measured using the 'Li(p,Ci)Ci reaction and although good relative spatial 

information was successfully obtained there was still uncertainty as to the 

exact quantitation of the 7Li data. This could be due to a very fundamental 

problem, that of lithium loss during reactor irradiation or could be due to 

loss of lithium during preparation for analysis or to standardization errors. 

Further investigation to improve the quantitation is required. When following 

the formation of a species by nuclear transmutation great care in translating 

the data is necessary, to avoid confusing nuclear and non-nuclear processes. 
10 11. 7 

Hence BI B ratIOS as well as Li distributions would have been valuable. 

Indeed, measurement of other isotopes formed during the transmutation of the 

boron isotopes (e.g. T or He) may have given further valuable information on 

- 108 -



the nuclear processes and associated physico-chemical processes involved. 

The applicability of nuclear microprobe methods to radiation sensitive 

materials was im'estigated by a study of the mechanism of nitrogen exchange in 

barley roots using 1511' labelled nitrate. The avoidance of specimen damage 

during the preparation and examination of root sections was critically important 

and acceptable procedures have been developed. 1511'/14N ratio profiles across 

barley root sections were 'successfully obtained with insignificant damage to 
15 12 14 15 , 

the cellular structure. The N(p,ay) C and the N(d,p) N reactIons were 
15 14 . 15 

used to measure the Nand i\' respecti vely. The movement of N across 

the root sections was clearly seen and the different regions of the section 

were clearly- identifiable, the measured behaviour correlating very well with 

the expected physiological behaviour. By carrying out additional labelling 

experiments (for more varied labelling periods) the rate of nitrogen uptake 

and loss across the root sections could be measured accurately. Also by 

carrying out additional "chaser" experiments kinetic information on the rate 

of exchange and loss of 1511' from different lateral positions across the barley 

root sections could be obtained. This would also give information about the 

amount of nitrogen fixation as protein. Examination of frozen sections on a 

cryogenic stage might decrease errors caused by the sample distortion and 

inhomogeneity inherent in freeze dried samples. 

In addition to the further work emanating directly from the stable 

isotope experiments there is much scope for the development of nuclear 

microprobe techniques capable of analysing other stable isotopes "'i th good 

lateral spatial resolution. During this study the detection and sampling 

handling facilities have been considerably extended but there are still many 

further improvements, particularly on computerised data handling facilities, 

which would be very useful. 
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APPENDIX: THE EQUATIONS USED TO CALCULATE SIMULATION BACKSCATTER SPECTRA 

Simulations of backscatter spectra, utilised in Chapter 4, were generated 

using the follo"ing method. The simulation spectra are based upon coulombic 

scattering theory and on the Ziegler-Chu (Zi75) energy loss polynomials. 

The Ziegler-Chu tables provide polynomial coefficients aai such that the 

energy loss per unit areal density of element a is gi ven by:-

5 

~ = Z aai Ei 

i ;::0 

where E is in units of eV/i015 atoms cm-2 

E is in keV 

••• Eqn. Ai 

Considering a multielement layered system, the composition matrix is input 

and is then converted into a matrix of atom fractions F Cl. for each atomic 

species present. Assuming Bragg's rule to be valid the composite energy 

loss in eV/i015 atoms cm- 2 is given by Equation A2:-

l: F E: (E) 
a a a 

••• Eqn. A2 

For a given inci dent energy Eo the energy of the incident beam Er is 

calculated as follows as it exists from each layer, r, of a multilayered 

sample:-

er 
r 

= 

= 

where fj is an angle between the incoming 

••• Eqn. A3 

••• Eqn. A4 

beam and the perpendicular to the layer surface. 

The energy loss values for a layer r are than calculated for the incident 

energy Er-i' The set of energies Er then serve as collision energies for 

the subsequent calculations of backscatter from the different species in 

a layer, e.g. from a nucleus of type at the bottom of a layer r with 

incident energy Er' On the out .. ard trajectory the particle looses energy 

and emerges from the top of a layer 1 at an angle of S. 

The initial backscatter energy E 1 N is calculated as [ollo",s:-
r, r+ ,"'" 

E - K E r, r + 1, a - a. r ••• Eqn. A5 
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and "\x 
2 

= [m Cos 6 + 2 2.2 ~J (~Ia - m Sw 6) / [m ••• Eqn. A6 

where m is the mass of the incident beam, and 

Ha is the mass of speci es 

Let Ersa denote the energy of a particle exiting from the top of a layer s 

having previously backscattered from the bottom of layer r, then:-

y = r-s 
= l: r-y •• _ Eqn. A7 

y = 0 

where 

a rs = ••• Eqn. A8 

The energy loss Ea being calculated as in Equation Al. 

For 1 ight element isotopes, where the energy differences between isotopes 

can be relatively large, each isotope is treated as a separate 'element' 

having the same Z but a different mass Ii:x and different Ea values. 

One no~' has to calculate the number of counts at the detector in the energy 

range Erla to Er _l , 1, a from an atomic species a using the following:-

n = N r 

where Q ()J C) = charge 

~ (msr) = solid angle 

( 2 -1) o cm sr = cross-section. This is 

assumed to be constant for each layer and 

characteristic of its average i.e. the 

cross-section at an energy = ~ (Er _1 + Er) 

••• Eqn. A9 

and Fra is the fraction of atoms of' type a in layer r 

At this point the yield for each species a present in each layer has been 

found along with the corresponding exit energies. In order to arrive at 

a simulation of ~he experimental spectrum, the various partial spectra are 

summed over the experimental channel "'idth e.g. 3 keV/Channel. This final 

spectrum is obtained by summing the total counts in each spectrum from the 

high energy end, performing a linear interpolation on this sum at e.g. 3 keV 

intervals and then differentiating the result to give the number of counts 
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per channel. A stopping power correction is often required to take into 

account the variation of (J and hence yield with varying collision energy. 

Since the yield has been calculated using cross-section values at the 

collision energy Eo giving final energies Erlx one must correct to the 

collision energies corresponding to the final channel energies E t. ou 
One knows the final channe~_.energies Eout thus one can interpolate to find 

the corresponding collision energy EBC given the table 

values of Eland E for each element. The correction 
r x r 

must be used to multiply the calculated counts/channel. 

of already calculated 
2 factor (Eo/E

BC 
) 

The additional factors which degrade the spectrum e.g. detector resolution 

and the energy loss of projectiles in the detector surface metal layer are 

also convoluted into the calculated spectrum in order to obtain the final 

simulation spectrum. 
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Figure 2.3. General view of the nuclear microrrobe showing the quadropole magnel~ anu 
chamber. 



Figure 2 .4. Detailed view of the chamber facilities used for charged particle and X-ray analysis. 
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Figure 2 . 11 . Magnified view of detector holder (Q.D. = 20.4 mm) and collimator assembly used 
in backscattering analysis. 



Figure 2 . 12. View of the chamber cone showing the position of the detector holder and collimator assembly used in 
backscattering analysis. 
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Figure 2. 14. The modified backplate, sample holder and motion used in X-ray and neutron detection. 
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Figure 2.18. General view of the GeLi detector and cryostat support assembly. 
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(i) Berore bombardment (a) cellulose mounting matrix ; 
(b) the cortical 'storage larder" cells; 

(c) the stele "" 60 I'm bounded by the endodermis; 
(d) tbe central xylen vessel "" SO/lm. 
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Photographs of l00\Jm barley root sections mounted on nickel blocks, flashed with 2~m 
carbon. 

Ol before and (jj) after microbeam bombardment . 
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