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Abstract— Current approaches to estimate the probability of
a traffic collision occurring in real-time primarily depend on
comparing traffic conditions just prior to collisions with normal
traffic conditions. Most studies acquire pre-collision traffic condi-
tions by matching the collision time in the national crash database
with the time in the traffic database. Since the reported collision
time sometimes differs from the actual time, the matching method
may result in traffic conditions not representative of pre-collision
traffic dynamics. In this paper, this is overcome through the
use of highly disaggregated vehicle-based traffic data from a
traffic micro-simulation (i.e., VISSIM) and the corresponding
traffic conflicts data generated by the surrogate safety assessment
model (SSAM). In particular, the idea is to use traffic conflicts as
surrogate measures of traffic safety so that traffic collisions data
are not needed. Three classifiers (i.e., support vector machines,
k-nearest neighbours, and random forests) are then employed
to examine the proposed idea. Substantial efforts are devoted to
making the traffic simulation as representative of the real-world
as possible by employing data from a motorway section in
England. Four temporally aggregated traffic datasets (i.e., 30 s,
1 min, 3 min, and 5 min) are examined. The main results
demonstrate the viability of using traffic micro-simulation along
with the SSAM for real-time conflicts prediction and the supe-
riority of random forests with 5-min temporal aggregation in
the classification results. However, attention should be given to
the calibration and validation of the simulation software so as
to acquire more realistic traffic data, resulting in more effective
prediction of conflicts.

Index Terms— Traffic safety, traffic conflicts, traffic micro-
simulation, support vector machines (SVMs), k-nearest neigh-
bours (k-NN), random forests (RFs).

I. INTRODUCTION

IN RECENT years, the estimation of unsafe traffic
conditions in real-time has been studied by many Intelligent

Transport Systems (ITS) experts. The significance of real-time
collision prediction is related to its integral part within a
proactive highway safety management that has the potential
to reduce road traffic fatalities and injuries. In particular,
predicting where and when a traffic collision is likely to occur
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in real-time and preventing the collision by adjusting the traffic
dynamics through a range of traffic management interventions
(e.g. variable message signs) are beneficial to highway safety.
Previous research on this topic has established an underpinning
theory suggesting that traffic dynamics (e.g. interactions
between speed, flow and congestion) and spatio-temporal
collision risk are highly correlated [1]. Based on this principle,
a dominating approach for detecting unsafe traffic conditions
is the comparison of traffic situations just prior to traffic
collision occurrences on a segment with the traffic conditions
at normal situations on the same segment. In the current era
where various advanced driver assistance systems [2] and
autonomous vehicles [3] are massively developed, it becomes
essential to effectively identify these traffic fluctuations in
real-time and enhance collision-freed decision making of such
technologies.

Perhaps the most important factor in the development
of real-time collision-prone traffic conditions models is the
temporal aggregation of traffic data which would lead to the
correct distinction between collision-prone and normal traffic
conditions. Temporal aggregation of traffic data is available
at pre-defined time intervals (e.g. 30-second or 1-minute,
5-minute and 15-minute) from the corresponding traffic agen-
cies. Highly disaggregated traffic data (e.g. 30-second or
1-minute of temporal aggregation) are usually considered not
suitable for implementing a timely intervention by the relevant
authorities to intervene and prevent both the collision and
the collision-related congestion. This is due to the fact that
in the majority of recent studies [4]–[6], traffic conditions at
5-10 minutes before the collision have been found to be the
most suitable time period to identify such events timely and
initiate an intervention by the responsible traffic agencies.
On the other hand, highly disaggregated traffic data may not
be available in many countries. Furthermore, even if highly
disaggregated traffic data are available, an error exists between
the reported collision time and the actual time of a collision.
This is because the reported time and location largely depend
on the subjective volition of the police officers attending the
site of the collision [7]. As a result, inaccurately reported
collision time leads to misrepresentative pre-collision traffic
dynamics resulting in an inaccurate calibration of the collision
prediction models [7].

The inherent difficulties with the recorded collision time
and temporal data aggregation issues can be overcome
using traffic micro-simulation. Recent research on traffic
micro-simulation and road safety (e.g. [8], [9]) showed that
it is now possible to estimate surrogate measures of safety
performance based on dangerous vehicle interactions. If these
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risky vehicle interactions are filtered with established risk
indicating thresholds, they are termed as “traffic conflicts”.
According to the definition by Amundsen and Hyden [10]
traffic conflicts occur when two or more road vehicles are in
such a collision course that a high probability of a collision
exists if their motion remains uninterrupted.

Using traffic conflicts can, therefore, address the issues
related to traffic collisions as discussed above. Furthermore,
studying conflicts can enhance the understanding of the spe-
cific characteristics that lead road users to drive unsafely and
cause collisions [8]. Approaches that use traffic conflicts are
however criticised in the literature because the correlation
between traffic conflicts and traffic collisions on a segment
may be low [9]. Nevertheless, it is admitted that the mecha-
nism that triggers collisions and conflicts is analogous [8], [9].

Additionally, because of the technological advances in the
area of automated driving, the concept of real-time collision
prediction should not necessarily relate to a timely intervention
from traffic authorities but rather should concentrate on
improving the speed of the prediction. In that way network-
level collision prediction can be taken into account for
vehicle-level risk assessment. Therefore, the exploitation of
highly disaggregated traffic data should be taken into account.
In that direction machine learning and data mining approaches
can prove advantageous over traditional (e.g. logistic
regression [11]) or sophisticated techniques (e.g. Neural
Networks [12]) for real-time collision prediction. Since
collisions and conflicts are more rare events than normal traffic
conditions, attention should also be given to the handling of
imbalanced data [13] (i.e. data used for the classification where
one class has significantly more instances than the other).

The combination of traffic micro-simulation and machine
learning classifiers to detect conflict-prone traffic conditions on
motorways from highly disaggregated data form the motivation
for the current paper. This study explores the application
of commonly employed Support Vector Machines (SVM),
k-Nearest Neighbours (kNN) a simple but effective non-
parametric classifier and Random Forests (RF) an ensemble
classifier for the classification of simulated traffic data with
regards to traffic conflicts. The traffic data used in this study
come from the PTV VISSIM micro-simulation software [14]
and consist of speed, flow and acceleration data aggre-
gated at different temporal units (e.g. 30-second, 1-minute,
3-minute and 5-minute time intervals) to compare the effec-
tiveness of the temporal aggregation on the classification
results. The conflict data are acquired through the Surrogate
Safety Assessment Model (SSAM) [15], a software which
uses the trajectories of the vehicles from the traffic micro-
simulation and outputs traffic conflicts. A matched-case con-
trol data structure is used, in which traffic conditions before
each conflict is matched with normal traffic conditions coming
from three other simulation runs. The number of three addi-
tional runs was chosen in order to cope with the imbalance
between conflict and safe conditions which can prove essential
for classification purposes [13].

The rest of the paper is organised as follows: firstly,
the existing literature and its main findings are synthesised.
An analytic description of SVM, kNN and RF classification

algorithms is described next. This is followed by a presentation
of the data used in the analysis along with the pre-processing
methodology and the results of the classification algorithms.
Finally, the last section summarises the main conclusions
of the study and offers some recommendations for future
research.

II. LITERATURE REVIEW

The purpose of this review was to synthesize existing studies
on safety assessment using traffic conflicts by comparing and
contrasting their findings and identify whether there is any
important or interesting knowledge gap. Focus was also given
on the methods employed in real-time collision prediction
algorithms so as to select the appropriate methods for pre-
dicting conflict-prone traffic conditions.

A. Safety Assessment Using Simulated Conflicts

The use of traffic conflicts in road safety assessment using
traffic micro-simulation has gained popularity within the ITS
research community over the recent years.

In all traffic microsimulation platforms, simulating traffic
collisions is not possible because such software is programmed
according to a number of safety-related parameters. These
parameters include the free-flow speed of cars, inter-vehicle
headways, acceleration or deceleration profiles, the interaction
between priority and non-priority vehicles, appropriate over-
taking and lane-changing gaps as well as the obedience of
traffic regulations [16]. Despite these safety related constraints,
the fact that vehicles can come very close to each other and the
information on vehicles’ exact positions, speeds, headings and
accelerations can provide a relevant safety index for vehicle
interactions [17].

Minderhoud and Bovy [18] suggested that traffic micro-
simulation can overcome the need to collect collision data
and also provide alternatives to the safety evaluation of ITS
technologies. They indicated that safety indexes such as Time-
to-Collision (TTC) and the vehicles’ headway distribution
as provided by traffic microsimulation software can reveal
safe and unsafe driving patterns. Likewise, Archer [19] stated
that the traffic conflict technique based on the results from
micro-simulation could have a practical impact and provide
an insight on the identification of safety problems in real-
world traffic environments. In order to assess safety within
traffic microsimulation environments, Gettman et al. [20]
investigated the potential of detecting traffic conflicts from
surrogate safety indicators such as TTC, Post-Encroachment-
Time (PET), the maximum speed of the vehicles, the decel-
eration rate and the speed differential between the vehicles.
Their work was reflected in the development of SSAM, a post-
processing software which investigates simulated vehicle tra-
jectories and detects the number and severity of traffic conflicts
accompanied by surrogate safety measures for each conflict.
Currently SSAM is probably the only exceptional tool for
exploiting traffic conflicts from microsimulation [21].

The convenience in terms of the reduced need for
on-field data collection and the relatively easy identifica-
tion of hazardous vehicle encounters through safety indices
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led to a number of safety-related microsimulation studies.
A detailed overview of approaches concerning safety-related
traffic simulation was published by Young et al. [22]. In their
review, it is revealed that researchers are looking to establish
a correlation between the number of simulated conflicts with
the number of expected real-world collisions. El-Basyouny and
Sayed [8] justified the attempt to link conflicts with collisions
by indicating that conflicts are based on vehicle interactions
compared to typical collision predictors such as exposure. Essa
and Sayed [23] and Huang et al. [21] however emphasised that
the link between conflicts and collisions depends heavily on
the calibration of the simulation model. In the same principle,
Fan et al. [24], who investigated the safety of motorway
merging areas, suggested that SSAM should be used with
caution because of the purely stochastic nature of real-world
collisions.

However, a thorough examination of papers attempting
to link conflicts with collisions (e.g. [8], [9], [25]) reveals
that the primary aim of these papers is the before-and-after
evaluation of new technologies or infrastructure modifications
with regards to safety. More specifically, these approaches seek
to estimate if alterations to the current state of (a part of)
the traffic environment will increase or reduce the number
of collisions on specific spots. For instance, a recent study
from Shahdah et al. [9] used VISSIM with SSAM to develop
a statistical relationship between conflicts and collisions for
signalised intersections. Traffic conflicts were estimated by
using two thresholds for TTC (i.e. 1.5 and 0.5 seconds) and the
simulated conflicts were used to calculate crash modification
factors (CMFs) for before and after analyses of untreated
intersections.

Consequently, an emerging research gap is that of using the
simulated conflicts for the identification of real-time conflict-
prone traffic conditions. Although vehicles in microsimulation
do not collide, they have abundant interactions with each other
and their motions are realistic because of the built-in car-
following and lane-changing models. Furthermore, if proper
attention to the correct calibration of the microsimulation
model is given, traffic conditions before a traffic conflict
can be used as a surrogate measurement to identify traffic
collisions. Hence in this paper, simulated traffic conditions
and the corresponding conflicts data will be utilised to
estimate conflict-prone traffic conditions using machines
learning classifiers (i.e. SVMs, kNN, RF).

B. Review of Real-Time Collision Classifiers

In order to reliably identify conflict-prone traffic conditions,
potential classifiers need to be fast, accurate and suitable
for real-time applications. Since there is no previous study
concentrating on the identification of real-time conflict-prone
conditions, the classifiers used to detect real-time traffic colli-
sions were reviewed in order to choose the most appropriate
techniques.

Real-time collision classifiers tend to relate real-time traffic
measurements (coming usually from loop detectors) with the
probability of a traffic collision. Early studies on real-time
collision prediction (e.g. [26]–[28]) concentrated on analysing

only traffic data prior to crash occurrences. Using relatively
simple statistical techniques such as nonparametric Bayesian
filters [26], loglinear modelling [27] and nonlinear canonical
correlation analysis (NLCCA) [28] the aim of those studies
was to estimate a relative collision or collision type risk prob-
ability given historical traffic and accident data. Although these
studies accomplished a statistical relationship between real-
time traffic and collision occurrence, they lack in terms of data
sample size, classification accuracy and transferability issues
and the implementation of their results was not suggested from
future researchers [12], [29].

The state-of-the-art in real-time collision prediction mod-
elling requires the utilization of data just before a collision
occurrence (termed as collision-prone) as well as data of
collision-free/normal traffic conditions. Both data categories
describe traffic conditions on the road segment where a his-
torical collision took place. Traffic data resembling collision-
prone and normal traffic are usually employed in matched-case
control study designs in which every collision-prone traffic
condition is matched with a number of normal traffic cases in
order to single out collision precursors (i.e. traffic indications
of an imminent collision). Usually in matched-case control
real-time collision prediction, the ratio of collision-prone to
safe traffic conditions varies from 1:4 (e.g. [16]), 1:5 (e.g.
[17], [18]) to 1:34 (e.g [4]). However the ratio between control
and cases can prove essential for the classification results
[13], [29]. Thus, the potential classifier needs to perform well
without over-representing safe traffic conditions.

Methodologically, recent real-time collision prediction
approaches are divided into logistic regression (e.g. [33], [34])
and artificial intelligence (AI)/machine learning approaches
(e.g. [4], [6], [12], [35]–[37]).

With regards to logistic regression models, traditional
logit [5] and Bayesian logistic regression [38] have been
applied. However, regression models require the determination
of critical odds ratio for the identification of collision-prone
traffic conditions [39] and also rely heavily on distribution
assumptions for both the collision frequency and the traffic
parameters.

The first approaches within the machine learning
domain for real-time collision prediction were concerned
with Neural Network (NN) applications. For example,
Pande and Abdel-Aty [12], [35] utilized three types of
NNs (i.e. Probabilistic [12], Radial Basis Function [35]
and Multilayer Perceptrons [35]) for real-time collision
estimation in American freeways and demonstrated that
NNs outperform statistical approaches without requiring
distributional assumptions. Despite their learning and
classification performance NNs usually require a large
dataset for training [40]. However their major drawback is
related to the incorporation of the “black-box” effect which
prevents clear understanding of the model’s underpinning
properties [41]. Furthermore NN models often suffer from
overfitting [36] and require extra computational resources to
overcome it [40].

In order to deal with the drawbacks of regression models
and NNs, Hossain and Muromachi proposed Bayesian Net-
works [4]. However, Bayesian Networks require a sufficiently
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large dataset to represent the probabilities of each of their
nodes which make them difficult to implement with small and
unbalanced datasets. Genetic Programming [37] was proposed
by Xu et al to remove the “black-box” effect of machine
learning approaches but their model faced difficulties with
regards to transferability and practical implementation.

As a result, alternative classifiers were sought in this paper
to overcome the main existing methodological drawbacks:
i) the imbalance of collision/traffic datasets which over-
represent safe traffic conditions compared to collision-prone,
ii) the “black-box” effect and overfitting of NN models and
iii) the inflexibility in the incorporation of correlated variables
from regression models.

According to Dreisetl and Ohno-Machado [42] SVMs
are flexible and have less over-fitting problems while kNN
provides a case-based explanation on classification results,
address the black-box problem and is easily transferrable
because they do not require prior knowledge of any datasets.
Additionally in a survey by Verikas et al. [43] it was demon-
strated that RF are computationally light, have no overfitting
problems, provide an insight on the importance of each predic-
tor for the classification result and perform better or similarly
to other classifiers such as SVMs for a large number of appli-
cations (e.g. cancer detection, face recognition and network
intrusion detection). In the same spirit, Rokach [44] concluded
that RF can handle a large number of predictors without being
computationally heavy. The aforementioned advantages of the
three algorithms (i.e. SVMs, kNN and RF) indicate that these
algorithms could be potential conflict detection classifiers and
were reviewed for their applicability.

C. Applications of SVMs, kNN and RF in Real-Time
Classification Problems

SVM models have been applied to real-time collision and
traffic flow predictions. For instance, Li et al. [45] compared
the findings from the SVMs with that of the popular negative
binomial models in predicting motorway collisions. Their
results showed that SVM models have a better goodness-of-fit
in comparison with negative binomial models. Their findings
were in line with the study of Yu and Abdel-Aty [36] who
compared the results from the SVM and Bayesian logistic
regression models for evaluating real-time collision risk
demonstrating the better goodness-of-fit of the SVM models.
The prediction of side-swipe accidents using SVMs was
evaluated in Wang et al. [46] by comparing SVMs with
Multilayer Perceptron Neural Networks. Both techniques
showed similar accuracy but SVMs led to better collision
identification at higher false alarm rates. More recently,
Dong et al. [47] demonstrated the capability of SVMs to assess
spatial proximity effects for regional collision prediction.

On the other hand, kNN has recently been applied in the
area of short-term traffic prediction due to the fact that it is one
of the simplest data mining algorithms. Zhang et al. [34] made
a first attempt to use kNN for traffic flow prediction using
occupancy rate, vehicle speed and weather data. They com-
pared the results from kNN with the results of backpropagation
Neural Networks and showed than kNN classification was

more accurate and transferable. Furthermore, Hou et al. [48]
argued that although kNN has a relatively slow comput-
ing speed, it is suitable for real-time applications. Lastly,
in comparison with SVM, kNN have better transferability as
suggested by Zhang et al. A recent study on variable selection
for real-time collision prediction [49] utilized kNN and showed
that kNN can produce efficient collision predictions when
utilized with traffic data aggregated in 5-minute and 10-minute
intervals.

RF has mainly been applied in the area of real-time
collision prediction for variable selection purposes. Its purpose
within real-time collision prediction was to select the most
important variables to be used in the subsequent modelling.
Abdel-Aty et al. [31] initially combined RF for variable
selection with Neural Networks and suggested that the
resulting classifiers can efficiently distinguish collision-
prone traffic conditions. Improved classification results were
also demonstrated when RF were combined with logistic
regression [11] and genetic programming [37] in order to
identify important variables to be used in real-time collision
models. To the author’s knowledge, however, there is no study
employing RF for distinguishing between collision-prone and
safe traffic conditions.

The recent work on SVMs proves that they are an efficient
classifier as well as a successful predictor when applied to
traffic collisions prediction. Hence, it is a potential candidate
for detecting conflict-prone conditions effectively. Moreover,
the simplicity of kNN and its real-time applicability as sug-
gested by studies on real-time traffic prediction provides an
alternative algorithm that can be used for classifying traffic
conditions. Lastly, the effectiveness of RF and its succesful
application on other domains as well as its primary use as a
variable selection method as suggested by studies on real-time
collision prediction provides an alternative algorithm that can
be used in addition to SVMs and kNN for detecting conflict-
prone conditions in real-time.

D. Literature Review Findings

In summary, it can be concluded that data from a traffic
micro-simulation tool (e.g. VISSIM) and relevant traffic
conflicts from the SSAM have the potential to improve real-
time highway safety assessment. Although vehicles in micro-
simulation do not collide, they have abundant interactions
with each other and their motions are realistic because of
the built-in car-following models. Consequently, if proper
attention to the correct calibration of the micro-simulation
model is given, traffic conditions before a traffic conflict
can be used as a surrogate measurement to identify traffic
collisions. However, existing studies utilising VISSIM/SSAM
concentrate on the investigation of the correlation between
traffic collisions and traffic conflicts so as to estimate the
number of collisions and the impact of interventions through
the use of traffic conflicts. In this paper, simulated traffic
conditions and the corresponding conflicts data are utilised to
estimate conflict-prone traffic conditions in real-time by the
use of machines learning classifiers (i.e. SVMs kNN and RF).

Another issue that needs further investigation by the
application of classification algorithms is the temporal



3200 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 10, OCTOBER 2018

aggregation of traffic data. Previous work on segment-based
collision prediction indicated that 5-10-minute aggregated
traffic data (e.g. [5]) offer an ideal balance between capturing
the microscopic traffic fluctuations and enabling sufficient
time to traffic authorities for introducing interventions.
Such temporal aggregation may not be optimal for the case
of (semi)autonomous vehicles which need a reliable prediction
of unsafe traffic conditions as fast as possible. Therefore,
different temporal aggregation intervals (i.e. 30-second,
1-minute, 3-minute and 5-minute) will be tested in order to
identify the aggregation offering the best results in real-time
conflict-prone traffic conditions estimation.

III. DESCRIPTION OF CLASSIFICATION ALGORITHMS

The objective of this study is to identify conflict-prone
traffic conditions from highly disaggregated data by using the
SVM, kNN and RF classifiers.

SVMs belong to the larger group of supervised learning
algorithms and kernel methods. In supervised learning, there
exists a set of example input vectors {xn}N

n=1 along with
corresponding targets {tn}N

n=1, the latter of which corresponds
to class labels. In this study, the two classes are defined as
‘dangerous’ when t=1 and ‘safe’ when t=0. The purpose of
learning is to acquire a model of how the targets rely on the
inputs and use this model to classify or predict accurately
future and previously unseen values of x.

An SVM classifier is based on the following functional
form:

y = f (x; w) =
N∑

i=1

wi K (x, xi ) + w0 = wT ϕ(x) (1)

In (1), K (x,xi) is a kernel function, which defines a basis
function for each data point in the training dataset, wi are the
weights (or adjustable parameters) for each point, and w0 is
the constant parameter. The output of the function is a sum of
M basis functions ϕ(x) = [ϕ1(x) ,ϕ2(x) , . . . c, ϕM (x)]) which
is linearly weighted by the parameters w.

SVM, through its target function, tries to find a separating
hyper-plane to minimize the error of misclassification while
at the same time maximize the distance between the two
classes [36]. The produced model is sparse and relies only on
the kernel functions associated with the training data points
which lie either on the margin or on the wrong side. These
data points are referred to as “Support Vectors” (SVs).

kNN is a non-parametric learning algorithm which is simple
but effective in many cases [50]. For a data record t to be
classified its k nearest neighbours are retrieved and this forms
a neighbourhood of t . During training, each t is assigned to
a class if the majority of the k neighbours of t belong to this
particular class. However, an appropriate value for k is needed
to apply a kNN approach and the success of classification is
very much dependent on this value [51].

RF belongs to the group of ensemble classifiers and more
specifically to the group of bagging algorithms. Bagging
algorithms make use of only one learning algorithm and
modify the training set by using the bagging algorithm to
create new training sets [52]. RF is an evolution of bagged

trees and uses the bagging algorithm along with the random
subspace method proposed by Ho [53]. Each tree is built using
the impurity Gini index [54]. Nevertheless, only a random
subset of the input features is used for the construction of
the tree and no pruning takes place. For each new training
dataset, one-third of the samples is randomly neglected and
forms the out-of-bag (OOB) samples. The samples that are not
neglected are used for building the tree. For every constructed
tree the OOB samples are used as a validation dataset and
the misclassification OOB error is estimated. When a new
data record (say t) needs to be classified, it is run through
all the constructed trees and a classification result for every
tree is obtained. The majority vote over all the classification
results from all the constructed tree is chosen as the classified
label for that specific data record [43]. However, an appropriate
value for the number of features used for splitting a node of
a tree needs to be tuned by the user in order for the OOB
misclassification error to be as low as possible [43].

IV. DATA DESCRIPTION AND PROCESSING

This study aims to examine the effectiveness of SVM, kNN
and RF classifiers in identifying conflict-prone traffic condi-
tions using data from a traffic micro-simulation (i.e. VISSIM)
and the SSAM. As discussed in the literature review section,
the fundamental issue relating to this approach was the build-
ing and calibrating of a traffic micro-simulation model using
real-world traffic data. Fig. 1 shows the overall methodology of
capturing the required data for classification purposes and how
the results from the classification algorithms can be applied to
different real-time applications.

As can be seen from Fig.1, link-level disaggregated traffic
data from loop detectors and GPS-based probe vehicles were
obtained from the UK Highways England Journey Time Data-
base (JTDB). Link-level data corresponded to every day of
the years 2012 and 2013 and included average travel speed
and volume at 15-minute intervals. It should be noted here
that 15-minute traffic data corresponded to link-based average
speed, volume and journey time of all vehicles between two
junctions.

A 4.52-km section of M62 (a motorway in England)
between junction 25 and 26 was selected as the study area.
The segment has three lanes in each direction. On-ramp
and off-ramp traffic were not taken into account because
relevant data were not available. In order to build a robust
micro-simulation model, the JTDB data were split into four
scenarios for each year:

• Morning peak hours (06:00 – 09:30)
• Morning off-peak hours (09:30-13:00)
• Afternoon off-peak hours (13:00-15:45)
• Afternoon peak hours (15:45-19:15)

For each of these scenarios the 15-minute traffic volumes
and the cumulative speed distribution of the roadway
segment were extracted and employed as input to VISSIM.
Furthermore, the vehicle composition for 2012 and 2013 was
also obtained from the UK Department of Transport [55]
and was used to build a micro-simulation model. The road
segment was manually coded in VISSIM using a background
image from OpenStreetMap [56]. The allocation of data
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Fig. 1. Flow chart of the procedure followed to classify traffic conditions for real-time conflict detection from AVs.

collection detectors for the acquisition of traffic data was
decided to be 300m in order to resemble the spacing of
detectors in previous studies on real-time collision prediction
on motorways (e.g. [4], [36]). Such studies also investigated
real-time safety assessment using traffic conditions measured
from detectors with such spacing and claimed that the
prediction can be performed in real-time. Therefore, a similar
spacing was used in the micro-simulation model in this paper

In order for the micro-simulation to be initiated, the
car-following model needed to be defined in VISSIM, the
Wiedemann 99 model was selected because it applies

to motorway scenarios [14]. The Wiedemann model is
characterised mainly by the three parameters in VISSIM;
the standstill distance, the headway time and the following
variation [14]. The standstill distance describes the average
standstill distance between two vehicles. The headway time
is the time gap (in seconds) which a driver wants to maintain
at a certain speed. On the other hand, the following variation
defines the desired safety distance a driver allows before
moving closer to a vehicle in front.

According to the guidelines from the Federal Highway
Administration (FHWA) [57], the GEH-statistic [58] and the
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Fig. 2. GEH statistic and Travel time validation for each time interval and
year.

link travel time were used. The GEH statistic correlates the
observed traffic volumes with the simulated volumes as shown
below:

G E H=
√√√√ (Vsim−Vobs)

2

Vsim +Vobs
2

(2)

where Vsim is the simulated traffic volume and Vobs is the
observed traffic volume.

After a number of trial simulations, the best GEH values
were obtained by using the following parameters for the
Wiedemann 99 car following model:

• Standstill distance: 1.5 m
• Headway time: 0.9 sec
• Following variation: 4 m
For the simulation to efficiently resemble real-world traffic

it is essential that [57]:
1) GEH statistic <5 for more than the 85% of the cases
2) The differences between observed and simulated travel

times is equal or below 15% for more than 85% of the
simulated cases.

The validation results are summarized in Fig. 2 and 3, and
the comparison between traffic flow and travel time in simu-
lation and reality are depicted in Fig. 4 and 5. The calibration
was performed using the entire simulated dataset (from all
four periods) and the observed traffic conditions and conflicts
so as to have a unified dataset.

In the simulations that were undertaken, the GEH values
for most of the time intervals were found to be less than five.
However, there were intervals where GEH values were found
to be between 5 and 10. According to [59] these values indi-
cated either a calibration problem or a data problem. Because
of the large number of simulations undertaken (∼1000 for

Fig. 3. Percentage of unaccepted cases for each year regarding the GEH
statistic and travel time.

Fig. 4. Observed vs Simulated Traffic flow for each year.

every scenario) it was assumed that the bad GEH values related
to the highly aggregated traffic data (i.e. 15-minute by road-
level). Therefore, it was decided to keep the simulation results
for the intervals with GEH values between 5 and 10.

After calibrating the simulations, three additional simula-
tions with different random seeds were run resulting in a total
of four different simulation results for each of the scenarios.
The number of additional runs was chosen in order to cope
with the imbalance between conflict and safe conditions which
can prove essential for classification purposes [13]. The four
different simulations were used for the matched-case control
structure, where the first simulation was used to acquire the
traffic conflicts and the other three were used to resemble the
normal traffic conditions.

For the extraction of traffic conflicts, the vehicle trajectory
files exported from VISSIM were inserted to the SSAM.
Conflicts were detected if the TTC value between two vehi-
cles was below 1.5 seconds and the PET value was below
4 seconds which are the default values used in SSAM [15].
Only lane-changing and rear-end conflicts were considered
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Fig. 5. Observed vs Simulated travel time for each year.

TABLE I

TRAFFIC CONFLICTS STATISTICS

according to the SSAM manual for motorway scenarios.
A total of 3,075 traffic conflicts and the corresponding
9,225 conflict-prone traffic conditions were gathered for fur-
ther analysis. Table I presents the type, count and average
statistics of the conflicts used for the analysis.

In order for the conflicts to be validated, the Crash Potential
Index (CPI) was used as suggested by Cunto [60]. CPI is
calculated through the following equation:

C P I i =

t fi∑
t=tii

(P(M ADR(a1,a2,...,an) ≤ DR ACi,t ) · �t · b

Ti
(3)

where C P I i is the CPI for vehicle i, DR ACi,t is the decel-
eration rate to avoid the crash (m/s2), M ADR(a1,a2,...,an) is a
random variable following normal distribution for a given set
of environmental attributes, tii and t fi are the initial and final
simulated time intervals for vehicle i, �t is the simulation time
interval (sec), Ti is the total travel time for vehicle i and b is a
binary state variable denoting a vehicle interaction. For MADR
according to [60] a normal distribution with average of 8.45 for
cars and 5.01 for HGVs with a standard deviation of 1.4 was
assumed for daylight and dry pavements. The results for the
calibration of the conflicts are shown in Fig.6

Fig. 6. Conflicts validation.

In Fig. 6 it is shown that for the majority of the time
intervals, CPI is similar to the simulated CPI of the NGSIM
dataset and close to the values of the observed NGSIM CPI.
Therefore, it can be concluded that the simulated conflicts
resembled realistic hazardous scenarios.

In the last step of the data processing, a MATLAB [61]
code was developed in order to match the conflicts (exported
from the SSAM) with the traffic conditions (acquired from
VISSIM). The estimated conflicts were filtered again to obtain
conflicts with TTC below 1.3 seconds and PET below 1 second
in order to obtain conflicts which are difficult to avoid. That
is because TTC below 1.3 seconds is lower than the average
human reaction time [62] and PET values close to zero show
imminent collisions [15]. Other TTC values were also tested
however the value 1.3 provided a sample containing sufficient
cases of near-misses (TTC<0.5seconds) and conflicts with
TTC close to the human reaction time (TTC<1.5seconds).
As conflicts extracted by SSAM and traffic conditions acquired
by VISSIM were time stamped it was concluded that the
issue of incorrectly reported collision times has largely been
overcome.

For each of the conflicts, the nearest upstream detector on
the road segment was identified by comparing the time of the
conflict with the time that the vehicles passed each detector.
This specific detector was marked as “conflict detector”.
Traffic data were extracted for every conflict detector, the cor-
responding upstream and downstream detectors on the same
lane and the detector in the adjacent lane for every time inter-
val. The traffic measurements for these detectors were marked
as “conflicts” because they represent the traffic conditions
near the time when the conflict occurred. In order to obtain the
non-conflict cases in a matched-case control design, for every
conflict detector the conflicts for the other three simulation
runs were checked to see if any conflicts happened near them
in these runs. If there was no conflict, the traffic measurements
from that detector were obtained to represent safe conditions.
Otherwise the detector was discarded. For each of the detectors
and for every time interval the number of vehicles, the vehicle
speeds and the vehicle accelerations were extracted.

The ultimate purpose of the approach, as seen in Fig.1,
is that after the offline classification, traffic management
agencies could use the classification algorithms with real-time
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TABLE II

CLASSIFICATION ACCURACY PER DATA AGGREGATION INTERVAL
(SAMPLE SIZE 12300 CASES WITH 10-FOLD CROSS-VALIDATION)

traffic data to inform AVs about conflict-prone traffic
conditions Similar to previous real-time safety assessment
studies [5] when a conflict is detected the information could
be broadcasted to drivers and AVs so that the vehicles adjust
to a lower speed, thus reducing the probability of a conflict.

V. RESULTS AND DISCUSSION

Classification methods of SVM, kNN and RF have
been applied to a unified dataset containing all the cases
(“conflicts” and “safe”) as discussed above. SVM and kNN
were developed using the Statistics and Machine Learn-
ing Toolbox of MATLAB and RF were developed using
WEKA [63].

SVMs depend on the kernel functions to perform the
classification. The most popular kernels used in the SVM
classification are the linear, polynomial and Gaussian or radial
basis function (RBF). In this study, the Gaussian kernel has
been used because existing research suggests that it provides
more accurate results [36]. The Gaussian kernel is calculated
through the equation:

K
(
xi , x j

) = ex p
(
−γ

∥∥xi − x j
∥∥2

)
(4)

where γ determines the width of the basis function. The coef-
ficient γ was set to 0.5 because the targets of the classification
lie in the interval {0,1}.

The kNN classifier, on the other hand, requires tuning the
important parameter - the number of nearest neighbours (k).
A usual approach is to perform tests with different k values
starting from 1 and ending at the square root of the number
of observations [64]. In this paper after a grid search among
different k values, the best results came from using k = 35.

The RF classifier, on the other hand, requires tuning the
number of features used for node splitting. A usual approach
as suggested by Breiman [54] is to use the value log2(PR + 1),
where PR is the number of predictors used for classification.
This approach was used in this paper for building the RF
classifier. A hundred trees (i.e. the default value in WEKA)
were used to make an ensemble.

To test the performance of the three different algorithms
(i.e. SVM, 35-NN and RF) the classification accuracy was
initially tested for each of the temporal aggregation intervals.
The results are summarised in Table II.

Likewise, existing studies on collision-prone traffic
conditions estimation, classification performance increases
with higher temporal aggregation. Thus, traffic data aggregated
in 5-minute time intervals have proved to be a better conflict

precursor than any other temporal aggregation used in this
study. This is probably related to the noise inherent to
30-second and 1-minute aggregated data and lack of 3-minute
data to capture accurately the traffic dynamics leading to a
conflict.

To further investigate the performance of the classifiers for
real-time conflict-prone traffic conditions identification as well
as to cope with the imbalance of the dataset (because conflict
to safe conditions ratio is 1:3) several metrics were employed
to evaluate the performance of the classifiers. These metrics
are sensitivity, specificity, precision, G-means and F-measure
and are defined in (5) - (9) according to [6]:

Sensitivity = Tconflict

Tconflict + Fsafe
(5)

Specificity = Tsafe

Tsafe + Fconflict
(6)

Precision = Tconflict

Tconflict + Fconflict
(7)

G-means = √
Sensi tivi ty ∗ Speci f ici ty (8)

F-measure = 2 ∗ precision ∗ sensi tivi ty

precision + sensi tivi ty
(9)

where Tcon f lict represents a correct detection of conflict-prone
traffic conditions identified as conflict-prone, Fcon f lict repre-
sents an incorrect detection of conflict-prone traffic conditions
identified as safe, Tsa f e is a safe traffic condition instance
correctly identified as safe and Fsa f e is a safe traffic condition
instance falsely identified as conflict-prone.

The sensitivity statistic shows the correct classification
accuracy with respect to conflict-prone traffic conditions, while
the specificity statistic shows the classification accuracy in
terms of safe conditions. Precision is used for identifying the
classification accuracy among each class. G-means is used to
check whether the use of an imbalance dataset (1:3; conflicts
vs safe) has any negative impact on the balanced qualification
accuracy. Lastly, the F-measure is a metric which resembles
the conflict-prone classification ability of the classifier models.
Results for all the above-mentioned performance metrics for
the classifiers are summarised in Table. III.

From Table III it can also be observed that RF demon-
strates a higher sensitivity and specificity compared to SVMs
and kNN. This implies smaller Type I and Type II errors
because both conflict-prone and safe conditions have a better
chance of being correctly classified, especially when using
30-second traffic data. The performance of all classifiers
regarding sensitivity and specificity improves with higher
temporal aggregation reaching its best value when 5-minute
traffic data are classified. On the other hand, the low scores
of sensitivity imply that conflict-prone conditions are not
accurately classified. This is most probably due to the class-
imbalance problem which is further resembled on the relatively
high precision scores. High precision but low sensitivity is an
indicator that the classifiers perform well in classifying traffic
conditions but most of the correct classifications correspond
to safe traffic conditions (which form most of the sample).
The F-Measure results of the classifiers in Table. II enhance
the observation that conflicts are difficult to be detected by all
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TABLE III

CLASSIFICATION PERFORMANCE METRICS PER DATA AGGREGATION
INTERVAL (SAMPLE SIZE 12300 CASES WITH

10-FOLD CROSS-VALIDATION)

three algorithms probably due to the class imbalance problem,
as well as the noise included in lower temporal aggregation
intervals.

Finally, observing the G-means metric results, which show
the balanced classification ability of the classifiers, RFs out-
perform the other algorithms. The value of the G-means metric
increases in bigger temporal aggregation intervals but still is
in correspondence with the class imbalance problem.

The classification accuracy obtained from each of the
three classifiers agrees with the results from existing studies
(e.g. [6], [27] which use actual collision data and more precise
traffic data. The results of the classifiers regarding accuracy,
G-Means and F-measure are comparable to the findings
by Sun and Sun [6] who employed a Dynamic Bayesian
Network (DBN) classifier.

Their DBN classifier achieved an overall accuracy of 76.6%
which is similar to the accuracy of most of the conflict-
based classifiers in this paper. It should also be observed that
using 3-minute and 5-minute traffic data with SVMs and RFs,
the accuracy performance of the developed classifiers increases
to 78 -79%. Furthermore, it is shown that even though the
kNN classifier is considered to be a simple algorithm, its
performance is similar when using 3-minute and 5-minute
traffic data. Regarding G-means and F-measure the DBN
classifier in [6] has a value of 0.76 and 0.51 respectively
which is superior to the classifiers in the current study data.
This shows that further research is needed to overcome the
data imbalance for better detection of conflict-safe traffic
conditions.

In summary, it can be concluded that traffic data aggregated
in a 5-minute interval have proved to be the best temporal
aggregation in classifying conflict-prone traffic conditions.
However, it is noted that the achieved accuracy and sensitivity

are relatively low. A reason behind these low metrics might
be that traffic conditions leading to a conflict might not differ
so significantly from normal traffic conditions as collision-
prone traffic conditions do. Improvements regarding the data
imbalance problem need to be made to increase the G-means
and F-measure metrics for the classifiers.

VI. CONCLUSIONS

This paper developed a simulation approach to detect traffic
conflict-prone traffic conditions in real-time. This approach
overcame two issues associated with the classification of
collision-prone traffic conditions employed in existing studies:
(i) the temporal traffic data aggregation problem and (ii) the
issues surrounding the incorrect reporting of collision time
and the corresponding misrepresentative pre-collision traffic
conditions. Furthermore, in this paper the Random Forest
algorithm was applied for classification and not for the task
of variable selection as in previous literature regarding real-
time collision prediction. Significant efforts were devoted to
calibrating the traffic simulation model in VISSIM.

The classification results showed that traffic micro-
simulation along with safety thresholds to detect conflicts
from the SSAM model could be used in real-time safety
assessment. The accuracy of the SVM, kNN and RF clas-
sifiers was found to be in-line with recent studies on real-
time collision prediction which used actual collision data
along with the corresponding traffic data. The superiority
of 5-minute temporal aggregation in the classification results
comes in agreement with safety experts who utilized 5-minute
aggregated data to understand the traffic fluctuations and the
occurrence of traffic collisions. Thus, having overcome the
misreported collision time simulation-based data can better
represent traffic conditions before the occurrence of a dan-
gerous vehicle encounter. In terms of practical applications in
real-time, a library of calibrated functions can be developed
offline (for example, one for lane closures) and used them
as an online application. In the same principle of real-time
collision prediction, traffic management agencies could utilize
real-time conflict prediction and warn road users if conflict-
prone conditions are present. Since the mechanism leading
to a conflict and the mechanism leading to collision present
similarities, the correct real-time identification of conflict-
prone conditions would lead to safer real-time traffic because
collisions are a fraction of the observed conflicts.

Researchers should however be cautious if highly disaggre-
gated traffic data (i.e. 30-second) are utilized in estimating
real-time conflicts for risk assessment especially in appli-
cations of advanced driver-assistance systems (ADAS) and
autonomous vehicles (AVs).Special attention shall be given
in the validation using detailed real-world data e.g. video sur-
veillance data or radar-based data for conflicts and lane-based
traffic data under many incident conditions (e.g. temporary
work zones or lane closures). Further research shall be devoted
to solving the issue with the data imbalance as identified
in this study by the low G-means and F-measure metrics.
Since ‘ground truth’ data for conflicts were not available
in this study, it would be beneficial to identify the most
effective TTC threshold so as to enhance model predictive
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performance. Hence, TTC and PET metrics which consider
all kinds of conflicts as well as the acceleration of vehicles
should also be researched. Finally, sensitivity analysis for
choosing the cases:controls ratio and feature selection for the
calibration of the classifiers may enhance the classification
results.
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