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Abstract 

Bulk heterojunction (BHJ) solar cells have been developed intensively over the last two decades due 

to the cheap, flexible devices which may be obtained although their efficiency is below that of other 

emerging solar cell technologies such as dye-sensitized and perovskite solar cells. Molecular 

organometallic phosphors are noted for their triplet harvesting ability which has produced highly 

efficient organic light-emitting devices however triplet harvesting presents an equally appealing 

route to improve the efficiency of BHJ devices. The results of studies using molecular phosphors as 

dopants in very small loadings can yield large increases in short circuit currents and power 

conversion efficiency and demonstrate that improvements in solar cell performance may be 

obtained by this approach.

1. Introduction 

Bulk-heterojunction (BHJ) solar cells are an emerging technology for solar energy conversion 

alongside dye-sensitized solar cells (DSSCs) and perovskite solar cells. Polypyridyl complexes of heavy 

transition metals such as ruthenium[1–11] and, more recently, of cobalt,[12–22] copper,[23–32]  

zinc[33,34] and other earth-abundant 3d elements[35,36] are closely associated with DSSC 

technology while the best performing perovskite devices also rely upon heavy atoms such as tin and 

lead.[37–42] The development of materials suitable for BHJ devices has focused much more closely 

on purely organic systems. 

BHJ devices utilize an electron donating material, typically an electronically delocalized oligomer[43–

52] or conjugated polymer[48,50,53–61]  blended with an electron accepting small molecule. While 

there are a large number of studied donor materials the electron acceptor is often a fullerene such 

as C60, C70, PC61BM or PC71BM (figure 1)[50,62,63] although in recent years  studies using non-
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fullerene acceptors such as perylene diimide derivatives or other organic molecules capable of 

forming stable anions have increased in profile.[64–66] The blended nature of the BHJ results in an 

interpenetrated network of the donor and acceptor species which provides a very large interfacial 

area between these components. As the charge transfer required for device operation occurs at 

these interfaces, the BHJ improves charge carrier generation and transport and overcomes the 

limitations imposed by earlier bilayer (BL) devices where the heterojunction consisted simply of 

stacked layers of donor and acceptor.[53,67–69] Some basic differences between these device 

architectures alongside that of a doped ternary BHJ device are shown in scheme 1. 

Figure 1 

Scheme 1 

Here, the use of molecular metal complexes in BHJ and related BL devices will be presented in order 

to demonstrate the large extent to which the use of high triplet yield organometallics can improve 

organic solar cell (OSC) performance, particularly when used as dopants. The doped devices are an 

example of ternary BHJ devices whereby a third component helps to improve one or more device 

parameters. Ternary cells are among the most promising technologies under development and have 

led to BHJ efficiencies exceeding 10%.[70–73] 

While detailed explanations of the operating principles of BHJ devices are available elsewhere,[74–

78] a basic representation of these processes and associated energy levels are shown in scheme 2. 

The donor undergoes photoexcitation prior to charge transfer to an acceptor molecule. This results 

in the formation of a transient polaron pair which consists of the electrostatically bound donor 

radical cation and acceptor radical anion. Dissociation of this polaron pair, in competition with 

geminate recombination back to the ground state, gives rise to free charge carriers which can 

migrate towards the electrodes and thus an electrical current is generated.  

Scheme 2  

The primary indicators of cell performance which will be considered here are the short circuit 

current density (Jsc), open circuit voltage (Voc), fill factor (FF) and quantum efficiency (η). The first 

three factors are related to η according to equation 1 where P0 is the power of the incident light on 

the device, typically the AM1.5 solar spectrum at 100 mW cm-2. 

   
        

  
  (1) 

A common postulation in the studies presented here is that by incorporating complexes of heavy 

transition metals the photogenerated triplet yield will increase due to the spin-orbit coupling 

associated with high atomic weight elements. Spin-orbit coupling converts singlet excitons to 

formally forbidden triplet excitons by intersystem crossing (ISC).[79] This approach may be 
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considered complementary to the use of phosphorescent complexes in organic light emitting 

devices.[80–82] 

As triplet excitons in an organic material will typically have a much longer lifetime than singlet 

excitons, an increased exciton diffusion length (LD) accompanied with a decrease in recombination 

will occur in phosphor sensitized OSCs primarily resulting in a greatly improved Jsc. Similar logic is 

employed in the development of singlet fission based organic solar cells where one singlet exciton 

shares energy with the singlet ground state to produce two triplet states of intermediate energy 

which then take part in generating the photocurrent. [78,83–85] However, singlet fission relies on 

the energy of the first excited triplet state to be approximately half that of the singlet exciton which 

is a challenging criteria to satisfy and results in lower energy excitons which can limit the attainable 

Voc. [78,86]  

Although care must be taken to ensure that the frontier orbital energy levels of the dopant will not 

have a negative impact on photovoltaic performance, such as introducing energetically favourable 

deactivation pathways or otherwise limiting Voc, phosphorescent metal complexes can be 

implemented as dopants quite easily and alongside their ability to improve LD and Jsc the metal-

ligand charge transfer (MLCT) and related charge transfer processes characteristic of these 

complexes can also help to improve absorption of sunlight.  

Scheme 3  

Energy transfer processes taking place within the triplet sensitized heterojunction including short 

range Dexter electron transfer where an electron hops from one molecule to another and longer 

range Förster resonance energy transfer (FRET) where the energy released upon relaxation of a first 

molecule in an excited state transfers non-radiatively to generate an excited state in a second 

molecule.[78,85,87–89] Both of these processes are shown in scheme 3. FRET functions very well as 

a singlet transfer mechanism while Dexter transfer is far more efficient at transporting triplets.[90] 

Increases in triplet yield and LD have been definitively confirmed in phosphor doped 

organics[87,91,92] however precise mechanisms for the energy transfer processes taking place 

within a triplet sensitized BHJ are challenging to identify and it seems likely that both transfer 

mechanisms are able to contribute to the improved performance. 

A focus on discrete molecular complexes will be maintained, readers specifically interested in the 

use of metal containing polymers are directed to relevant literature.[93–96] Studies of complexes of 

a range of metals will be presented and are organized according to their group in the periodic table. 

As a further note, the reader is advised that device performance in all organic photovoltaic 

technologies improved rapidly over the last 15 years due to improved device fabrication as much as 
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to the synthesis of new materials, therefore a sense of perspective should be maintained when 

evaluating early studies.[78,97,98] 

2. Phosphors used in BHJs  

2.1 Group 7 

Rhenium 

Figure 2 

Rhenium(I) tricarbonyl α-diimine complexes 1 (figure 2) with the general formula fac-[Re(X)(CO)3(α-

diimine)] (where X = halide/pseudo-halide) have long-lived and ligand tunable excited states and 

electrochemical properties allowing them to effectively harvest solar wavelengths and convert 

absorbed light into useful energy.[99,100] As the structure of the α-diimine ligand is known to have 

a strong influence on the MLCT properties of these complexes this is a relatively straightforward 

property to control. These complexes are easy to synthesize and provide some of the earliest 

insights into the use of molecular metal complexes in OSCs.  

In 2001, the group of Chan produced a series of fac-[Re(Cl)(CO)3(DAB)] (DAB = 1,4-diazabutadiene) 

photosensitizers 2a-e (fig. 2) which displayed very low photoconductivity (σ ≈ 10-14 Ω-1 cm-1) when 

blended into a poly(carbonate) host attributed to poor charge carrier mobility.[101] However, when 

added as a dopant to a blend of the hole transporting material (HTM) triphenylamine in 

poly(carbonate) the photoconductivity increased by up to five orders of magnitude (2d, σ = 1.3 × 10-9 

Ω-1 cm-1). Complex 2d was incorporated into a BL solar cell with C60 as the acceptor producing a 

maximum open circuit voltage Voc = 0.38 V, FF = 0.18 and an efficiency of 2% under illumination at 

460 nm and 1.9 mW cm-2.[101,102] 

Subsequent investigations utilized fac-[Re(Cl)(CO)3(DIAN)] (DIAN = bis(phenylimino)acenaphthene) 

complexes 3a-h (fig. 2) in vacuum deposited BL and BHJ devices using C60 as acceptor alongside 

copper phthalocyanine (CuPc) and C60 as hole and electron transport layers respectively. [103–105] 

Studies of 3a demonstrated that it is ambipolar with good electron and hole mobilities of μ = 2.5 × 

10-3 and 2.3 × 10-3 cm2 V-1 s-1 respectively, which should enhance charge transport behavior. A BL 

device using 3a demonstrated a Voc = 0.58 V, Jsc = 0.18 mA cm-2, and FF = 0.28 giving only η = 0.03%. 

However by manufacturing the device as a BHJ through co-sublimation of 3a and C60 in a 1:1 ratio 

the performance improved drastically with Voc = 0.45 V, Jsc = 1.9 mA cm-2, FF = 0.56 and η = 

0.48%.[103] Ultimately, by optimizing device construction through control of heterojunction 

thickness, ratio of 3a to C60 and choice of HTM, devices were obtained with a Voc = 0.51 V, Jsc = 5.07 

mA cm-2, FF = 0.51 and η = 1.29%, an almost threefold improvement.[104,105] 
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In 2008 Ma et al. reported the oligo(phenylenevinylene) cruciform 4 centered around a 

[Re(Cl)(CO)3(bpy)] (bpy = 2,2’-bipyridine) moiety  (fig. 2).[106] The authors postulate that the 

oligomer arms and rhenium α-diimine core could function as donor and acceptor respectively, so a 

single layer device of the complex was produced alongside a BHJ device with PC61BM as the 

acceptor. The single layer devices performed poorly despite having a high Voc = 0.72 V due to a low 

Jsc = 0.082 mA cm-2 and FF = 0.21 giving η = 0.012%. The BHJ devices were more functional, 

displaying Voc = 0.75 V, Jsc = 3.8 mA cm-2 and FF = 0.28 giving η = 0.8%. The presence of the Re atom 

in 4 did show improved performance compared to the uncoordinated ligand. 

While a number of other Re(I) tricarbonyl complexes have since been prepared displaying properties 

such as triplet-triplet annihilation and have been identified as useful triplet photosensitizers, these 

molecules have not been further employed in OSC devices.[107,108] 

2.2 Group 8 

Ruthenium 

Figure 3 

In 2004, dimeric ruthenium phthalocyanine [RuPc]2 was employed in a BL device with C60 displaying 

Jsc = 0.23 mA cm-2  and Voc = 0.17 V although its EQE responses showed a marked sensitivity to 

air.[109] 

In a collaborative study in 2009, dendritic oligothiophene functionalized RuPc derivatives 5-10 

(figure 3) were prepared and utilized in solution processed BHJ devices.[110] These complexes 

displayed strong absorbance across the UV-vis region with the magnitude of absorptivity increasing 

with thiophene content. However, it was complexes 5 and 8 containing Py-3T which produced the 

best devices with higher Jsc  values making up for losses in Voc when compared to the larger 

analogues. These complexes blended well with PC61BM resulting in smooth films as measured by 

atomic force microscopy (AFM). 5 and 8 displayed notably improved performance when the less 

symmetric fullerene PC71BM was used in place of PC61BM (table 1). Ultimately 8:PC71BM produced 

the best OSCs overall with Voc = 0.56 V, Jsc = 8.3 mA cm-2, FF = 0.34 and η = 1.6%. All of the complexes 

outperformed an oligothiophene free analogue (L=L’=pyridine). An interesting trend observed for 

these complexes is that the Voc tends to increase with increasing thiophene content which is 

surprising considering that the HOMO levels for the complexes are identical therefore this must 

indicate some further influence of the oligothiophene chains. 

Table 1 

Researchers in Milan incorporated the diruthenium bis(acetylide) complex 11 (fig. 3) in BHJ devices 

with PC61BM.[111] Photoexcited charge transfer between 11 and PC61BM was established however 
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short circuit currents were low Jsc = 0.66 mA cm-2 and only η = 0.08% was obtained. The low Jsc values 

could be explained by the poor film quality of the blend. In 2017, a further series of ruthenium 

bis(acetylide) complexes were reported by Liu et al. and showed comparable performance in BHJ 

devices with PC71BM.[112] The best performing device consisted of 12:PC71BM in a ratio of 1:4 

displaying Voc = 0.51 V, Jsc = 4.24 mA cm-2, FF = 0.31 and η = 0.66%. The other members of the series 

had one or more triphenylamine groups bound to the terminal thiophene but did not perform well 

in OSCs. 

Azadipyrromethene complexes 13-15 (fig. 3) were reported by Bessette et al. and their properties 

discussed in the context of photosensitizers for OSCs but no actually device performance was 

reported.[113] 

2.3  Group 9  

Iridium Complexes as Dopants 

The majority of studies of molecular Ir(III) complexes in OSCs primarily use them as dopants or 

interlayers for existing conjugated polymer donors and significant improvements in device 

properties can be observed when the complexes are employed in this way. 

Figure 4 

Yang et al. doped end-capped poly(fluorene) (PFO) with Ir(mppy)3 16 (figure 4) and identified a large 

increase in triplet exciton population.[114] They then made OSCs using blends of PFO and P3HT (fig. 

4) with CdSe nanocrystals. Doping of these OSCs with 16 at a loading of 10 wt% caused a 200% 

increase in Jsc for PFO and 100% increase for P3HT indicating that the presence of the 

phosphorescent dopant yielded more, long-lived charge carriers. For PFO a 50% increase in Voc was 

also observed. 

In a detailed study in 2008 the groups of Howe and Hu noted an 80% increase in η by doping 5 wt% 

Ir(ppy)3 17 (fig. 4) into an MEH-PPV/PC61BM. The dopant improved the Jsc from 0.6 to 1.1 mA cm-2 

under illumination of 8 mW cm-2 at 500 nm leading to the improved efficiency.[115] A similar Jsc 

response was observed at wavelengths from 370 to 700 nm. The Voc and FF were essentially 

unaffected at 0.82 V and 0.29 respectively.  By substituting 17 with aluminium tris(hydroxyquinoline) 

(Alq3) which has comparable HOMO and LUMO levels, no such increase was observed. The presence 

of the Ir complex was shown to increase LD from 3.5 to 6.0 nm. The authors conclude that these 

changes are due to spin-orbit coupling populating the triplet manifold and minimizing 

recombination. 
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Devices utilizing the small molecule donor NPD (fig. 4) doped with 5 wt% 17 also demonstrated an 

80% increase in η alongside an improved FF and a near doubling of the LD in the donor layer from 6.5 

nm to 11.8 nm, again attributed to an increased triplet population.[116] 

In 2011, Winroth et al. optimized the loading of 17 into a BHJ of the archetypical donor and acceptor 

pairing P3HT and PC61BM. [117] At 5 wt% 17 improved all device parameters including the Voc from 

0.26 to 0.41 V, the short circuit current from -4.64 to -14.4 μA, FF from 0.34 to 0.47 and η at 340 nm 

jumped from 0.825 to 9.48% however η dropped slightly from 1.14 to 0.92% when measured at 600 

nm. This study identified that the dopant can perform a number of roles simultaneously including 

harvesting high energy photons and introducing extra heterojunctions for exciton dissociation. This 

work also identifed that the deterioration of performance at higher dopant levels is due to 

morphological changes induced by the metal complex inhibiting the packing of P3HT chains 

therefore doping levels must be carefully controlled. 

Figure 5 

Yu et al. reported on the effect of inserting a layer of the complex bis(2-(4-tert-butylphenyl) 

benzothiazolato-N,C2) iridium (acetylacetonate) 18 (figure 5) between the donor and acceptor layers 

of a BL device of pentacene and C60.[118] This extra layer was labelled a multicharge separation 

(MCS) layer and increasing the thickness of this layer from 0 to 8 nm resulted in the Voc increasing 

from 0.325 to 0.488 V alongside a decrease in Jsc from 10.72 to 5.88 mA cm-2. At an MCS film 

thickness of 1 nm the FF = 0.48 which ultimately provided the highest η = 1.85%. Similar 

dependencies were observed when the non-phosphorescent complex CuPc was employed as the 

MCS although in this case an optimized MCS film thickness of 4 nm yielded  = 1.98%. Yu performed 

a second study of devices consisting of CuPc as donor and C60 as acceptor with varying amounts of 

18 doped into the CuPc layer.[119] The extent of doping was optimized to 25 wt% with larger 

concentrations of 18 leading to deteriorated charge transport. Overall device performance improved 

marginally from η = 1.23% in the non-doped device to η = 1.42% in the 18 doped device due 

primarily to an increase in Jsc from 6.48 to 8.23 mA cm-2 and the LD from 10 to 17.4 nm, indicating 

improved triplet sensitization. When these studies are considered together it appears that the 

presence of the MCS layer seems merely to increase series resistance and recombination rates while 

diminishing any influence from the triplet sensitizer. Upon considering that charge transfer to form 

polaron pairs prior to charge separation occurs at the interface of donor and acceptor interface it is 

perhaps unsurprising that the MCS layer can be a hindrance therefore the strategy of distributing the 

complex as a dopant throughout the BHJ seems much more promising. 

Wang and Zhang utilized iridium tris(2-(benzo[b]thiophen-2-yl)pyridine) 19 (fig. 5)  to dope BHJ solar 

cells of P3HT:PC61BM and primarily examined the sensitivity of device performance to annealing 
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temperature.[120] They concluded that an optimum annealing temperature exists for each dopant 

concentration above which performance decreases attributed to aggregation of the metal complex 

dopants disrupting film morphology. 

The groups of Kim, Kwon and Hong utilized a somewhat complex device using the ionic iridium 

complex 20 (fig. 5) as a triplet‒singlet energy donor in the presence of polyethylene oxide (PEO) in 

conjunction with the BHJ pairing of P3HT:PC61BM.[121] They postulated that improved 

morphological properties will arise from the hydrophobic quinolone based ligand while the mobile 

Na+ ions in PEO will minimize electrode energy barriers. While efficient energy transfer between 20 

and P3HT was identified, in practice the gains in device efficiency were modest with the best 

consisting of a blend of P3HT:PC61BM:20:PEO in the weight ratio of 1:0.8:0.01:0.01 and annealed at 

150 °C. High Jsc of over 10 mA cm-2 were observed however the FF of the devices deteriorated in the 

presence of 20. A noteworthy result from this study is that simply incorporating PEO itself in the 

absence of 20 actually gave rise to markedly increased Voc, Jsc, and  FF in the non-doped, non-

annealed P3HT:PC61BM BHJ.[121] 

Yao et al. presented a study focused upon the influence of varying levels of  

tris(phenylpyrazole)iridium 21 as a dopant in BHJ devices consisting of P3HT and the indene-C60-

bisadduct ICBA, the structure of which is shown in figure 5.[122] In the presence of 0.1 wt% 21 Voc 

and FF values showed almost no variation going from 0.827 V and 0.65 when non-doped and 0.821 V 

and 0.63 after doping. However the presence of 21 did yield an increase in Jsc from 10.09 to 11.76 

mA cm-2 thereby a moderate improvement in η from 5.41 to 6.08%. Upon annealing at 150 °C the Jsc 

of the doped device increased further to 12.40 mA cm-2 which ultimately provided η = 7.08%. 

Femtosecond time-resolved photoluminescence spectra revealed that energy transfer with 21 

increased the LD of the P3HT:ICBA blend from 1.35 to 1.53 nm. The presence of 21 in the BHJ also 

resulted in smoother films while thermal studies in conjunction with AFM and secondary ion mass 

spectroscopy identified that the annealing temperature can be used to control the vertical 

distribution of the complexes in the heterojunction. Prior to annealing the complexes have settled 

towards the bottom of the active layer. As the annealing temperature increases the complexes 

migrate vertically through the BHJ eventually reaching an optimum distribution in which to assist 

charge generation and transport. Increasing the annealing temperature further has a  detrimental 

effect on device performance as had been observed in other studies.[120] 

Figure 6 

An elegant example of how heavy metal complexes can be employed as dopants was presented by 

Qian et al. whereby trace amounts of the iridium complex 22 (figure 6) were “doped” into the high 

performance polymer PTB7 in very small quantities by Stille type copolymerization to produce the 
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new metallopolymer 23.[123] By synthesizing batches of 23 with controlled levels of doping 

between 0 and 5% then incorporating these polymers into BHJ devices with PC71BM as acceptor they 

obtained cells with Voc = 0.75 V, Jsc = 18.14 mA cm-2, FF = 0.64 and η = 8.71%. Improvements in η of 

up to 45% were observed compared to PTB7 at a dopant loading of 1%. These improvements were 

primarily attributed to large increases in Jsc and moderate increases in FF. Similarly to previous 

studies, further increasing the dopant concentration proved detrimental to performance and AFM 

imaging identified the smoothest morphology at 1% loading. This is further evidence that the 

presence of the octahedral Ir complex can assist in minimizing phase separation, cavity formation 

and other morphological defects if implemented correctly. 

Figure 7 

In a 2016 report a variety of Ir phosphors 24-27 (figure 7) were studied as triplet-singlet energy 

transfer dopants in a PTB7:PC71BM BHJ.[124] Photoluminescence spectroscopy confirmed energy 

transfer between the complexes and PTB7 and the best performing complex 25 showed little change 

in Voc and FF but a significant improvement in Jsc from 13.3 to 16.1 mA cm-2 increasing η from 7.23 to 

8.62%. These improvements were correlated to both the efficient energy transfer between dopant 

and host and the large FRET radius of 25 at 8.2 nm. Similar behavior was identified between 27 and 

P3HT. This study also identified explicitly that the complex must be blended into the active layer 

itself to have any effect, simply using the complex as a further layer in its own right did not enhance 

performance. 

A report from earlier this year also used an Ir(III) phosphor as a FRET pairing with P3HT and and 

efficiencies of up to 4.44% were obtained with 1 wt% dopant and solvent annealing. This is an 

improvement of almost 50% over a non-doped, non-annealed device.[125] Unfortunately however, 

the complex is written as bis(1-phenylisoquinoline) acetylacetonate iridium(III) Ir(piq)2(acac) 28 but 

the structure in the supporting information is that of 29 (both shown in figure 6) therefore these 

results must be interpreted with some caution. 

Iridium Complexes as BHJ Donors 

Despite the promising results obtained using Ir complexes as dopants, a number of studies have 

employed Ir complexes as donor materials in their own right although the results of these studies 

have been less encouraging. 

Figure 8 

Lee et al. synthesized the short series of complexes 30-32 (figure 8) with 2-picolinic acid as the 

ancillary ligand which were then employed as donors alongside PC61BM in solution processed BHJs 

and C60 in thermally evaporated BHJ devices. [126] Photoinduced charge transfer between donor 
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and acceptor was identified although photovoltaic performance was low with the best device 

consisting of an evaporated BHJ of 31:C60 having Voc = 0.49 V, Jsc = 2.32 mA cm-2, FF = 0.53 and η = 

0.60%. 

In 2012, Wang et al. utilized bis(1,2-diphenyl-1H-benzoimidazole) iridium (acetylacetonate) 33 (fig. 8) 

in conjunction with C60 to produce vacuum deposited BL devices.[127] The J-V curves of these 

devices displayed an S-shaped kink attributes to the low hole mobility of 33 (μ = 6.49 × 10-6 cm2 V-1 s-

1). This kink could be resolved by carefully controlling the donor layer thickness and by using a thin 

layer of a hole transporting material such as NPD (fig. 4) at the donor/anode interface, ultimately 

producing cells with Voc = 0.78 V, Jsc = 4.82 mA cm-2, FF = 0.60 and η = 2.23%. An improvement in 

efficiency of 35% compared to devices without the NPD layer. 

Fleetham and co-workers produced a BL device using the azaperylene complex 34 (fig. 8) as donor 

and C60 as acceptor.[128] The azaperylene ligand conferred a very broad absorption profile to the 

complex, with triplet absorption stretching into the near-IR and giving the complex favorable solar 

energy harvesting properties.  The performance of this complex in solar cells was compared to 

control devices fabricated with platinum(II) octaethylporphine (PtOEP, fig. 8) and zinc(II) 

phthalocyanine (ZnPc).  LD for each complex was measured and, as expected, both of the 5d metal 

complexes 34 (10.1 nm) and PtOEP (12.0 nm) had a longer exciton diffusion length than ZnPc (<5 

nm). Despite having a slightly shorter LD than PtOEP, 34 actually produced the most efficient devices 

at η = 2.8% (rather high for a simple bilayer device) thanks to its improved Voc of 0.99 V versus 0.62 V 

for PtOEP (η = 1.8%), the ZnPc device performed the most poorly (η = 1.4%). The Voc of 34 proved 

very sensitive to film thickness, but demonstrated robust stability towards temperature over the 

range of 100-300 K. The differences in LD between 34 and PtOEP and the variations in Voc with 

respect to film thickness and temperature were attributed by the authors to the influence of the 

octahedral geometry of 34 compared to the planar PtOEP molecules of which will tend to stack 

leading to favorable charge transport pathways. 

Figure 9 

At time of writing, the most recent report of a device relying upon an Ir complex as the sole donor in 

an OSC utilized complexes of 2-(2’-pyridyl)benzothiophene ligands functionalized with 4-

methoxyphenyl 35 and 4-triphenylamine 36 moieties (figure 9) alongside the acac analogue 2,2,6,6-

tetramethyl-3,5-heptanedione as the ancillary ligand.[129] These complexes were employed in BHJ 

devices with PC71BM at very high acceptor loadings. Devices were poor with the best performing 

devices consisting of 35:PC71BM (1:2.5) with Voc = 0.77 V, Jsc = 4.30 mA cm-2, FF = 0.35, η = 1.2% and 

36:PC71BM (1:2) having Voc = 0.74 V, Jsc = 6.52 mA cm-2, FF = 0.42, η = 2.0%. The triphenylamine 
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substituted 36 showed better performance in all respects. The authors identified the very short 

excited state lifetimes of 35 (108 ns) and 36 (122 ns) in the solid state as a limiting factor. 

2.4 Group 10 

Palladium and Platinum 

PtOEP (fig. 8) was used in a bilayer device reported by Shao and Yang with C60 as acceptor.[130] 

Despite the low mobility of PtOEP at μ = 10-5 cm2 V-1 s-1 a Voc = 0.66 V, Jsc = 5.6 mA cm-2, FF = 0.57 and 

η = 2.1% were obtained. LD of the heterojunction was estimated to be 30 nm by measuring the 

dependence of η on the thickness of the PtOEP layer. The magnitude of LD is ascribed solely to a long 

exciton lifetime of PtOEP itself which the authors note has a triplet lifetime of approximately 90 

μs.[131]  

Subsequently, Rand et al. doped PtOEP into the poly(p-phenylene vinylene) derivative Super Yellow 

at a loading of 5 wt% in a BL device alongside C60 to obtain a device with a 10%  improvement in 

photocurrent compared to the non-doped device.[132] They identified that the presence of the 

heavy Pt atom was essential to producing improved photovoltaic performance by comparing it to a 

device that used the metal free ligand octaethylporphine as a dopant which lead to a decrease in all 

device parameters. LD were estimated at 9 and 4 nm for the sensitized and non-sensitized devices 

respectively with the difference attributed to the presence of triplet excitons in the PtOEP device. 

Figure 10 

In 2007 a single layer solar cell was prepared using the fullerene functionalized thiophene-2,5-

di(platinum bis(acetylide)) complex 37 (figure 10).[133] It was envisioned that the Pt centers will 

undergo photoinduced electron transfer to the pendant fullerenes while also encouraging ISC to 

form triplet charge separated states as the authors had observed for a related polymer in a BHJ with 

PC61BM.[134] While photophysical evidence supported aspects of this postulation, device 

performance was ultimately poor with η < 0.06% which the authors attributed to the heavy Pt atom 

assisting in both ISC upon excitation and rapid reverse ISC from the triplet state back to the short 

lived singlet state. 

The groups of Thompson and Forrest conducted comparative studies of Pt and Pd 

tetraphenylbenzoporphyrin (PtTPBP and PdTPBP, fig. 10) derivatives in layered heterojunction 

devices with C60 alongside other donors including CuPc, PtOEP, tetracene, rubrene and others. While 

the overall efficiencies of the TPBP complexes outperformed most other donors (PdTPBP η = 1.8%, 

PtTPBP η = 1.9%) they did not display the high Jsc observed in other triplet sensitized devices due to 

their poor absorbance with respect to the solar spectrum.[135,136] This was followed by a report on 

PtTPBP focused on studying the ISC processes occurring in a phosphor doped organic 
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semiconductor, specifically  diphenyltetracene 38.[137] By controlling the thickness of a film of 38 

doped with 5 wt% PtTBPB this triplet sensitized layer was used as the donor in a BL with C60. The 

formation of triplet excitons due to the presence of the Pt phosphor in 38 was identified as occurring 

in the picosecond timescale and was observed to increase Jsc from 30 μA cm-2 in a film of pristine 38 

to 66 μA cm-2 in the doped film. 

In 2009, Li et al. utilized the carbazole functionalized Pt porphine complex 39 (fig. 10) as a dopant in 

a P3HT:C60 BL device. Though the extent of doping is not clear the presence of 39 improved all device 

properties. Voc and Jsc almost doubled going from 0.214 to 0.412 V and 2.546 to 4.152 mA cm-2 which 

increased η from 0.17 to 0.70%. Devices doped with 39 were compared to those doped with CdTe 

nanoparticles and the molecular dopant was shown to be superior. In a device consisting of just 

39:C60 values of Jsc and η are both very low due to the poor charge carrier mobility of the Pt 

complex.[138] 

The limitations on LD that are imposed by poor charge mobility were clearly identified in two papers 

by Jabbour et al.[139,140] which were published concomitantly with a similar investigation by Lane 

et al.[141] These studies focus on group 10 phthalocyanine complexes and serve well to validate 

each other. Jabbour’s initial study utilized ZnPc, PdPc and PtPc alongside CuPc for comparison.[139] 

The complexes were incorporated into BL devices with the acceptor perylene tetracarboxylic 

bisbenzimidazole (PTCBI). Both the donor and acceptor layers were 20 nm in thickness and the films 

of all materials displayed similar morphology. Of the four complexes tested PdPc was the most 

efficient. While CuPc, ZnPc and PtPc all displayed Jsc ≈ 3.0 mA cm-2, PdPc had Jsc = 4.0 mA cm-2 

thereby providing the most efficient solar cells. Surprisingly PtPc produced the poorest device due to 

a very combination of low Jsc and the influence of its high HOMO energy limiting the Voc. The low Jsc 

of PtPc is perhaps the most surprising result, however estimated LD values increased in the order 

PtPc(5.6 nm) < CuPc(5.8 nm) < ZnPc(6.2nm) << PdPc(10.1nm). PtPc was then shown to have a hole 

mobility almost two orders of magnitude lower than the other members of the series which explains 

its low Jsc. The 3d metal complexes CuPc and ZnPc actually displayed the largest charge mobility but 

only intermediate Jsc therefore a combination of high mobility (compared to Pt) and enhanced 

exciton lifetime thanks to ISC explains the improved performance of PdPc. The authors confirmed 

this by making further devices of CuPc and PdPc with C60 as acceptor and increased Jsc was again 

observed for PdPc. A subsequent comparison of ZnPc and PdPc in HJ architectures with a p-i-n 

configuration yielded similar results.[140] The study by Lane et al. was being conducted at the same 

time and compared NiPc, PdPc, and PtPc as donors in vacuum deposited BL devices alongside C60. 

While PtPc outperformed NiPc in this instance due to the higher HOMO of NiPc limiting its Voc, 
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trends comparable to those observed in the preceding studies were made with PdPc clearly superior 

to NiPc and PtPc.[141] 

Figure 11 

The group of Fréchet synthesized multichromophoric Pt-acetylide oligomers 40-42 (figure 11) with 

varying chain lengths and employed them in BHJ devices with PC61BM and PC71BM.[142] As the 

frontier orbitals are located over the Pt acetylide and 2,1,3-benzothiadiazole moieties the optical 

and electrochemical properties of all three molecules are almost identical, therefore increasing the 

oligothiophene chain length should only affect charge transport and morphological properties. 

Ultimately the two shorter oligomers 40 and 41 displayed higher charge mobility possibly due to 

their better film forming properties while the best devices were obtained with the intermediate 

length terthiophene terminated  41 displaying Voc = 0.82 V, Jsc = 8.45 mA cm-2, FF = 0.43 and η = 3.0% 

in conjunction with PC71BM. 

In a study of platinum acetylide polymers in BHJ solar cells Li et al. synthesized the 9,10-

anthraquinone oligomers 43 and 44 (fig. 11) however they only produced devices with the related 

polymers in conjunction with PC61BM which performed poorly.[143] 

Pd and Pt 8-hydroxyquinoline (Pdq2 and Ptq2, fig. 11) and 5,7-dimethyl-8-hydroxyquinoline 

complexes (PdMe2q2 and PtMe2q2, fig. 11) were reported by Che et al. in 2011 and were 

incorporated by vacuum deposition into organic field effect transistor (OFET) and BL solar cell 

devices with C60 as acceptor. While the Pd and Pt complexes displayed similar morphologies the Pt 

complexes in this instance had marginally higher charge mobility than their Pd analogues as 

measured in the OFETs and also produced more efficient solar cells. The Jsc of Pt(Me2q)2 based OSCs 

was particularly high at 14.8 mA cm-2 and it had a Voc = 0.42 V, FF = 0.38 and η = 2.4%.[144] 

Figure 12 

A further series of Pt acetylide oligomers 45-48 (figure 12) published in 2012 were studied in OFET 

and BHJ devices at a range of film thicknesses.[145] PC71BM was used as the acceptor in a ratio of 

45-48:PC71BM = 1:4. 45 and 46 ultimately produced devices with high Jsc > 7.0 mA cm-2 and η = 2.37 

and 2.34% respectively. Again, the BHJ performance correlated well with the OFET measured 

mobility. 

In 2015 multichromophoric Pt bis(acetylide) complexes 49 and 50 (fig. 12) were produced with the 

best performing BHJ device consisting of 49:PC71BM (1:1) displaying Voc = 0.75 V, Jsc = 4.14 mA cm-2, 

FF = 0.45 and η = 1.40% in the presence of the additive 1,8-diiodooctane.[146] 

Figure 13 
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Ma et al. used a triphenylamine substituted porphyrin to produce a range of metal complexes 

including those of Ni, Pd, and Pt 51-53 (figure 13) for BHJ devices with PC61BM.[147] Similary to the 

studies on Pc complexes[139–141] Pt was outperformed again by the Pd complex 52. The triplet 

exciton lifetime of the Pd complex 52 is 890 μs compared to just 80 μs for 53[148] and 52 also 

proved to have the best charge transport properties with a hole mobility of 1.4×10-4 cm2 V-1 s-1 

compared to 6.2×10-5 cm2 V-1 s-1. The OSC of 52 displayed the highest performance by a significant 

margin having Voc = 0.90 V, Jsc = 2.70 mA cm-2, FF = 0.25 and η = 0.84%. 

Finally, in 2016 Qin and collaborators presented cruciform Pt-bis(acetylide) complexes 54 and 55 (fig. 

13) which they employed in BHJ devices with PC61BM and PC71BM.[149]  The devices of 54 displayed 

high FF compared to other Pt bis(acetylide) complexes and in optimized BHJ displayed Jsc values as 

high as 11.9 mA cm-2 for 54:PC71BM (1:0.8)and 10.7 mA cm-2 for 54:PC61BM (1:0.8) leading to η = 5.6 

and 5.1% respectively. These are very high values compared to other devices consisting of a sole Pt 

donor. 

2.5 Group 11 

Gold 

Figure 14 

In 2014 Lai et al. reported the synthesis of three Au(III) corrole complexes 56‒58 (figure 14)and used 

them as donor materials in vacuum deposited OSCs with C70 and as triplet sensitizers for the polymer 

PTB7 in solution processed BHJ devices with PC71BM.[150] Monolayer devices of C70 alone displayed 

Voc = 1.23 V, Jsc = 1.19 mA cm-2, FF = 0.32 and η = 0.5%. Upon addition of just 5% of the standout 

material 57 to the C70 the post-annealing Jsc increased almost tenfold to 10.34 mA cm-2 and the FF 

improved to 0.46, these improvements offset a drop in Voc from 1.23 to 0.85 V and resulted in a 

device with η = 4.0% overall. All of the complexes 56‒58 led to improved performance at loading of 

only 3-7% therefore it is not unreasonable to consider them as having “doped” C70 as much as having 

acted as a formal donor. A similar improvement in the performance of a solution processed 

PTB7:PC71BM BHJ was observed upon addition of 5% 57 which led to a Voc = 0.74 V, Jsc = 14.18 mA 

cm-2, FF = 0.57 and η = 6.0%. Compared to the fullerene-only devices the presence of the donor 

polymer PTB7 had a very beneficial effect on the FF. 

2.6 Others 

Mixed porphyrin/phthalocyanine sandwich complexes of a number of lanthanides have employed in 

devices which seem like a hybrid of a BHJ and a DSSC using PC61BM or N,N’-bis(1-ethylhexyl)-

3,4,9,10-perylenebis(dicarboximide) (PDI) as acceptor and a “buffer layer” of TiO2. Device 
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performance is modest with the best η = 0.82% for Eu(III) but many of the devices did not function at 

all without TiO2 being present.[151,152]  

3. Summary and Outlook 

The studies presented here clearly show that the presence of a metal based triplet sensitizer can 

provide notable improvements in one or all of the key performance indicators in OSCs with Jsc values 

showing particularly pronounced improvements due to energy transfer processes leading to 

increased triplet population and extended LD.  

Comparing the results obtained using metal complexes as dopants to those using the same or similar 

complexes as the sole donor material, it is quite clear that the former approach presents the 

greatest promise. The majority of these complexes have low charge mobility themselves and the 

sheer cost of precious metal complexes would appear to preclude their use as a major component of 

any device. Metal complex dopants also show a strong influence on heterojunction morphology 

which presents another opportunity to use these materials to influence charge transport properties. 

The results obtained using Au(III) corroles as donors are particularly compelling as some of these 

devices are essentially sensitized fullerene monolayers and the presence of a small amount of these 

complexes resulted in a tenfold increase in the short circuit current of the fullerene. The tendency 

for planar Pd complexes to outperform those of Pt complexes is also noteworthy as studies of Pd 

complexes as active components in organic optoelectronics are much less frequently encountered. 

Though challenges remain including truly unravelling the underlying mechanisms of operation, 

identifying structure-property relationships that influence charge carrier transport, and controlling 

the location and distribution of the metal phosphors in the ternary blend,[153] the fact that addition 

of very small amounts of  metal complexes to the active layer has already been observed to improve 

BHJ efficiencies  by up to four times identifies that this is a truly promising approach to the 

continued development of BHJ technologies. The knowledge being gained from studies on other 

ternary systems should be extremely helpful in advancing this premise.  

Producing molecules with bespoke optical and electronic behavior is an ideal area for inorganic and 

particularly coordination chemists to thrive therefore the application of metal complexes to BHJ 

solar cells can provide fertile ground for the development of useful new materials and technologies. 
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Table 1 

Donor:Acceptor Voc (V) Jsc (mA cm-2) FF η (%) 

5:PC61BM  0.55 5.1 0.37 1.0 
8:PC61BM  0.48 4.5 0.37 1.0 
5:PC71BM 0.55 7.1 0.38 1.5 
8:PC71BM 0.56 8.3 0.34 1.6 
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Phosphorescent metal complexes can act as triplet sensitizers in organic heterojunction solar cells. Energy 

transfer and spin-orbit coupling processes between the phosphor and the organic matrix greatly increases the 

number of triplet excitons formed upon photoexcitation which can contribute to significant improvements in 

device efficiency. 
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