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Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial
patterns and ordering due to strain driven self-organization. In this work a general formalism to
model such ultrathin adsorption layers that properly takes into account the competition between
strain and adhesion energy of the layers is presented. The model is based on the amplitude ex-
pansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length
scales but allows relaxation of the layers at diffusive time scales. The specific systems considered
here include cases where both the film and the adsorption potential can have either honeycomb
(H) or triangular (T) symmetry. These systems include the so-called (1 × 1), (

√
3 ×
√

3) R30◦,
(2× 2), (

√
7×
√

7) R19.1◦ and other higher order states that can contain a multitude of degenerate
commensurate ground states. The relevant phase diagrams for many combinations of the H and
T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening
patterns in some of these systems is also examined. The predictions are in good agreement with
existing experimental data for selected strained ultrathin adsorption layers.

PACS numbers: 68.55.-a, 81.10.Aj, 68.35.bd

I. INTRODUCTION

When ultrathin films of just a few atomic layers in
thickness are grown on atomically smooth surfaces, there
is in general a competition between the strain energy in
the film and the adsorption potential energy resulting
from the interaction of the adsorbate atoms interacting
with the substrate. This competition can lead to com-
mensurate states as well as interesting striped and Moiré
patterns in the incommensurate states. Understanding
and predicting these states and the transition between
them has been of great fundamental interest for many
years. Most recently there has been considerable work
devoted to the study of the growth and properties of
two-dimensional (2D) films, in particular graphene1–11,
and other films of honeycomb symmetry such as so-called
hexagonal boron nitride or hBN (which actually forms a
honeycomb structure)12–19 and MoS2

20–22. These sys-
tems typically show 2D Moiré patterns that are defined
by a triangular (honeycomb) array of commensurate re-
gions when grown on a substrate with an adsorption
surface potential having a triangular (honeycomb) ar-
ray of minima. More complex patterns emerge in other
adsorption systems, for example when Cu is grown on
Ru(0001), in addition to honeycomb patterns, zig-zag
and one-dimensional (1D) stripes can form23–25. In this
work, additional patterns that resemble twisted honey-
combs are predicted to occur in some adsorption systems.

Moiré patterns can emerge in nature in many different

FIG. 1. Figure a) illustrates the characteristic Moiré pattern
that emerges when a blue triangular mesh or screen is overlaid
on a red one that is 5% smaller than that of the blue one. In
b) a triangular periodic array of blue points is overlaid on a
similar red set that are 5% smaller.

circumstances, perhaps the simplest example being when
a screen or periodic lattice is overlaid on another with a
slightly different periodicity. As illustrated in Fig. 1 pat-
terns emerge even in the absence of coupling between the
two screens or layers. More interesting patterns emerge
when they are coupled as certain regions will become
more energetically favourable and tend to enlarge or even
lead to a change in the pattern. In this work the Moiré
patterns that emerge when a monolayer experiences an
adsorption potential that has a different lattice constant
and in some cases also a different symmetry are consid-
ered. For a film strained such that adatoms can be at
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the adsorption potential minima locations, an increase
in the strain energy in the film will occur. In contrast if
the film is completely incommensurate and unstrained,
most of the adsorbate atoms will be located away from
the potential minima. A competition between these two
factors leads, in 1D at a small misfit strain, to a second
order phase transition (in the absence of thermal fluctua-
tions) from a commensurate state to an incommensurate
“striped” state consisting of a period array of domain
walls separating the commensurate regions. This phe-
nomenon can be well described by ball and spring mod-
els such as the Frenkel-Kontarova model or by continuous
models, such as the sine-Gordon model. The situation is
much more complex in higher dimensions where the rel-
ative symmetry of the film and substrate will influence
the patterns that form and often will lead to 2D Moiré
patterns.

In this work the ordering of films of honeycomb (H)
or triangular (T) symmetry are considered on substrates
where the adsorption potential maxima for the adsorbed
atoms have either H or T symmetry. These differ-
ent classes of adsorption systems will be referred to
as HH, HT, TH, and TT, respectively, where the lat-
ter letter refers to the substrate symmetry. These
classes of systems include adsorption systems such as
Cu, Ni, or Co on Ru(0001)23,26–28, Ni on Rh(111), Co
on Pd(111), Cu on Pd(111)29–31 and Ag on Cu(111)32–38

or Ni(111)39, graphene on a wide variety of metallic
(111) substrates1–11, hexagonal boron nitride grown on
Ir(111)12, Cu(111)13–15, Rh(111)16–18, and Ru(0001)19.

In the systems listed above the natural atomic spac-
ing of the films is close to that of the substrate, lead-
ing to a (1 × 1) commensurate state of the film with
the same lattice constant as the substrate. When this is
not the case higher order commensurate states can oc-
cur which include the (

√
3 ×
√

3) R30◦ , (2 × 2) , and

(
√

7×
√

7) R19.1◦ cases, in which the commensurate state

of the film has lattice constants
√

3, 2 and
√

7 times larger
respectively than that of the substrate and the relative
orientation of the film to substrate is 30◦, 0◦ and 19.1◦,
respectively. The (

√
3×
√

3) R30◦ systems include Xe and
Kr on graphite40,41, Xe on Pt(111)42, Ag on Si(111)43,
Au on Ge(111)44, and K on Al(111)45. Many other addi-
tional cases can be found in the literature. As the atomic
spacing of the film atoms increases relative to the sub-
strate, the number of degenerate commensurate states
increases leading to more complex pattern.

The purpose of this work is to present a general
method for studying the type of atomistically thin films
described above and to show how the competition be-
tween the elastic and adsorption energies, the relative
symmetry of the film and substrate and the degeneracy
of the higher order commensurate states can influence
the patterns that form. The method incorporated here
is essentially an extension of the one used in the au-
thors previous studies of (1 × 1) systems11,24,25,46 and

the (
√

3 ×
√

3) R30◦ system47. The method is based on
the amplitude expansion48–53 of the phase field crystal

(PFC) model54–56 which describes a field related to local
number density fluctuations. This amplitude expansion
approach uses spatially varying complex amplitudes to
describe these density fluctuations in the film and mod-
els the substrate by a rigid potential. For practical pur-
poses, only the amplitudes of the lowest order Fourier
modes are included in such an approach, which would
imply that except for the (1 × 1) case, the higher order
commensurate states would not couple to the substrate
which is unphysical. This problem does not exist in the
full PFC model that includes all the Fourier modes. As
discussed in Ref. 47 and generalized in this work, the
higher order Fourier modes couple both to the adsorption
potential and the lowest order modes. When the higher
Fourier modes are integrated out, one obtains non-linear
coupling between the adsorption potential and the low-
est order modes. In this work this result is exploited to
develop the simplest possible model that uses the am-
plitude expansion for only the lowest Fourier modes to
study all the intricate patterns involving the higher or-
der commensurate systems and the transitions between
various incommensurate and commensurate states. This
is achieved by using an effective nonlinear film substrate
coupling involving the lowest power of the density that
mimics the full coupling of the density to the substrate.
This new amplitude expansion model can be used to
study the ordering for a class of systems with all types
of commensurate states such as (1× 1), (

√
3×
√

3) R30◦,

(2× 2), (
√

7×
√

7) R19.1◦, and even higher order ones.

When the periodic adsorption potential is represented
in the simplest form by the lowest order Fourier compo-
nents, there is also an extra simplification. It is easy to
see that by just flipping the sign of the potential one can
turn for example a triangular (T) substrate to a honey-
comb (H) substrate and vice versa. The same applies to
the symmetry of the film. As a result, from the symmetry
point of view the ordering of a H film on a T substrate
(which will be referred to as a “HT” system in what fol-
lows) is identical to a T film on a H substrate (a “TH”
system) in this model. Similarly a HH system is identi-
cal to a TT system. Another advantage of the amplitude
expansion method is that it can be numerically imple-
mented to study relatively large scale systems, up to mi-
crometer length scales. The length scale of the patterns
diverges in the limit of zero misfit and very large systems
are required in this limit. Thus for the study of the com-
mensurate - incommensurate transition it is essential to
have a simple model that can be used to examine large
systems, while still retaining atomistic details such as de-
fects. The largest system considered using the amplitude
method to date (to the best knowledge of the authors)
has been for a 2D film of size 20µm × 34µm containing
roughly 25 billion atoms (number density maxima)46.

In this manuscript a general methodology is outlined
and then used to examine surface ordering in TH and
TT systems for the (1× 1), (

√
3×
√

3) R30◦, (2× 2)and

(
√

7 ×
√

7) R19.1◦ structures. For completeness, the re-

sults for the previously studied case of the TH (
√

3 ×
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√
3) R30◦ system will be reported in addition to the HT

and TT (2×2) and HT and TT (
√

7×
√

7) R19.1◦ systems,
which were not previously considered. Phase diagrams
are presented for all these systems to highlight the in-
fluence of symmetry on the differences and similarities
between them. As discussed previously there exists sig-
nificant differences between the TH (or HT) and TT (or
HH) systems for the (1 × 1) structure. Not surprisingly
similar differences appear for the higher order structures
examined in this work. There is also a noticeable dif-
ference between the (1× 1) and higher order structures.
This difference is mainly due to the fact that the degen-
erate commensurate sublattices in the higher order states
are closer together, implying a smaller change in elastic
energy when a junction or a domain wall is crossed. The
most striking difference occurs in the TT case in which
junctions break into dislocation pairs as the film - sub-
strate coupling is increased for the (1 × 1) case, while
the junctions only twist in higher order structures. This
feature may be model dependent and more microscopic
approaches are needed to determine how generic it is.
While some aspects of the patterns that form may be
model dependent, many of the predictions of the work
presented here are consistent with many experimental
results as discussed in detail in section VI.

The manuscript is organized as follows. In Sec. II the
possible commensurate states for a given system are char-
acterized and the degeneracy of the states is determined.
In Sec. III the model used to describe these systems is
detailed. To make a connection with physical systems
the small deformation limit of this model is undertaken
in Sec. IV and analytic results are given for the stripe
- commensurate transition. Section V presents the re-
sults for the phase diagram of all the systems considered
here. This is followed by a comparison of the results with
experiments and other theoretical works in VI and a dis-
cussion of the limitations of the methodology follows in
Sec. VII. Finally, some concluding remarks are made in
Sec. VIII.

II. CHARACTERIZATION AND DEGENERACY
OF COMMENSURATE STATES

A. Characterization of Commensurate States

In this section, the characterization of commensurate
states for different combinations of film and adsorption
potential symmetries is examined. Consider a commen-
surate state in which the distance between adatoms is

d =
√

[(j + 1/2)asx]2 + (asy)2, (1)

where asx and asy =
√

3asx/2 are defined with respect to
the substrate lattice constant as shown in Fig. 2a) and
j is an integer (e.g., j = 3 in Fig. 2a). There are two
sets of sublattices that could be defined as shown in the
blue or red set of points in this figure. For the purposes

FIG. 2. Schematic of the film - substrate geometry. In these
figures the black and green points represent the maxima and
minima of the adsorption potential, respectively. For conve-
nience a substrate with a triangular or honeycomb array of
maxima will be correspondingly referred to as a triangular
(T) and honeycomb (H) substrate. In both figures a unit cell
of a commensurate state for the triangular film (T) is shown
for the parameters (j,m) = (3, 0) (see text for details).

of the present calculations only the red set will be con-
sidered. It should also be noted that the two sets overlap
for j = 0 and 1. The dimensionless length scale L of the
commensurate state can be given in terms of j as

L(j) =
d

asx
=

1

2

√
(2j + 1)2 + 3. (2)

This gives L(0) = 1, L(1) =
√

3, L(2) =
√

7, L(3) =
√

13,
etc.. The angle this line makes with the respect to the
horizontal is

θ(j) = ± tan−1

( √
3

2j + 1

)
. (3)

The ± correspond to the two equivalent sets of sublat-
tices. For simplicity in what follows the + set of states
will be considered.

In Fig. 2 the j = 3 states are illustrated for both the
TT and TH systems. As discussed in the Introduction it
is important to note that in the simple model used here,
the relative symmetry of the TH system is equivalent to
that of the HT system. Thus the results obtained for the
TH system are also applicable to, for example, graphene
adsorbed on various compact fcc(111) surfaces. It should
be noted that the distance between nearest neighbour
surface atoms is d/

√
3 for the HT system. Similarly a

HH system is equivalent to a TT system. Samples of
the various unit cells for the TT and TH systems are
illustrated in Fig. 3a) and b) respectively for j = 0, 1, 2
and 3.

It is also useful to note that adatoms located at inte-
ger multiple number of d at the same angle θ, implying
structures with lattice constants

d(j,m) =
m

2

(√
(2j + 1)2 + 3

)
asx, (4)

where m is an integer would also form commensurate
states. Some samples or ordered structures are shown
for j = 1 and various m in Fig. 4 for the TT system.
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FIG. 3. Sample commensurate unit cells are shown in a) and
b) for the TT and TH systems respectively. In these figures
m = 1 and j = 0, 1, 2 and 3 for the cyan, purple, blue, and
red lines and points, respectively.

FIG. 4. Sample commensurate unit cells for the TT system
with j = 1 and m = 1, 2 and 3 in red, blue and purple,
respectively.

B. Degeneracy of Commensurate States

Depending on the integers j and m there can be
many equivalent commensurate states. For example for
(j,m) = (0, 1) there are two equivalent commensurate
states for the TT case and one for the TH case. As j
and m increase the number of equivalent commensurate
states increases. The number N of such sublattices is

N =

{
(mL)2 = m2[(2j + 1)2 + 3]/4, for TH;
2(mL)2 = m2[(2j + 1)2 + 3]/2, for TT.

(5)

Sample sets of commensurate states are shown in Figs.
5 and 6 for the TT and TH systems, respectively. In the
TT case there are N additional states for j > 1 due to
the rotation by −θ.

FIG. 5. Sample commensurate states for the TT system with
m = 1 for j = 0 and 1 in a) and b), respectively. Each color
represents a different degenerate commensurate state.

FIG. 6. Sample commensurate states for the TH system with
m = 1 for j = 1 and 2 in a) and b) respectively. Each
color represents a different degenerate commensurate state.
It should be noted that in the (j,m) = (0, 1) there is only one
commensurate state.

Table I summarizes the classification and degeneracy
of the different commensurate states for several represen-
tative values of j and m.

TABLE I. Table outlining the structures corresponding to the
sublattices with different j andm for the commensurate states
in the TH system. The number of sublattices (N) is twice as
large for the TT system.

j m L NTH θ phase

0 1 1 1 60◦ 1 × 1

0 2 2 4 60◦ 2 × 2

1 1
√

3 3 30◦ (
√

3×
√

3) 30◦

1 2 2
√

3 12 30◦ (2
√

3× 2
√

3) R30◦

2 1
√

7 7 19.1◦ (
√

7×
√

7)R19.1◦

2 2 2
√

7 28 19.1◦ (2
√

7× 2
√

7)R19.1◦

3 1
√

13 13 13.9◦ (
√

13×
√

13) R13.9◦

3 2 2
√

13 52 13.9◦ (2
√

13× 2
√

13) R13.9◦

4 1
√

21 21 10.9◦ (
√

21×
√

21) R10.9◦

4 2 2
√

21 84 10.9◦ (2
√

21× 2
√

21) R10.9◦
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III. MODEL

Ideally a fully atomistic method such as molecular dy-
namics (MD) or even quantum mechanical density func-
tional theory would be employed to study the structure
and energetics of ordering and patterns of surface adsor-
bates. Unfortunately, only a few hundred or at best a few
thousand atoms can be handled fully quantum mechan-
ically and even the classical MD method is numerically
restricted by atomic length scales and phonon vibrational
time scales. The phase field crystal (PFC) method54–57

on the other hand can access much larger (diffusive) time
scales and can be used to find equilibrium patterns much
more rapidly. However, the PFC method resolves fea-
tures at atomic scales which is still somewhat restrictive
in terms of the computational effort. Typically the size
of the adsorbate patterns scales as the inverse of the mis-
fit strain for small film - substrate couplings and can
diverge near the commensurate - incommensurate phase
transitions (in the mean field limit). For this reason it
is imperative to consider the amplitude expansion of the
phase field crystal model48–53 (APFC) which is described
in detail below. This approach is particularly useful for
systems where deviations from a single orientation are
minor. It makes it relatively simple to construct phase
diagrams of surface ordering, since the films are often
of a single orientation, with some small deviations near
domain walls and their junctions, and the complex ampli-
tudes that enter the approach are very uniform allowing
for relatively large grid spacings in the numerical imple-
mentation of the APFC model.

To describe this approach it is useful to consider the
original 2D PFC model in the presence of an adsorption
potential V (~r). The dimensionless PFC free energy F
can be written as a functional of the atomic number den-
sity field n as follows

F =

∫
d~r

[
∆B

2
n2 +

Bx

2
n(1 +∇2)2n− τ

3
n3 +

v

4
n4

+V n] . (6)

The various parameters that enter this description have
been discussed in detail in prior works54–57. The part of
the free energy without the adsorption potential is mini-
mized by a triangular pattern of density field maxima for
τ > 0 and a honeycomb pattern of density field maxima
for τ < 0. In the APFC method, a set of complex ampli-
tudes ηkl are used to describe the dimensionless number
density field n. For films of triangular and honeycomb
symmetry it is convenient to expand n as

n =
∑

ηkle
iα~Gf

kl·~r + c.c., (7)

where c.c. is the complex conjugate, ~Gfkl = k~q1 + l~q2,

~q1 = (−
√

3,−1)/2 and ~q2 = (0, 1). The parameter
α = 1 − ε is related to the misfit strain ε defined as
ε = (as − a)/as, where a is the natural lattice constant
of the adsorbate film, and as is the lattice constant of

the substrate. In this formulation the complex ampli-
tudes, ηkl, are expanded around the lattice constant of
the substrate, implying that they are constant in a per-
fect commensurate state and vary periodically in a per-
fect incommensurate state. In the incommensurate state
the lattice constant of the film is exactly ax = 4π/

√
3

when V = 0.
For simplicity the interaction with the substrate will

be modeled by a rigid adsorption potential V described
in a similar fashion, i.e.,

V = V0
∑
kl

ei
~Gs

kl·~r + c.c., (8)

and

(~Gskl)x = αL
(

(Gfkl)x cos θ − (Gfkl)y sin θ
)
,

(~Gskl)y = αL
(

(Gfkl)x sin θ + (Gfkl)y cos θ
)
, (9)

and the same modes (kl) used for the film are used for the
substrate, and L and θ are the dimensionless length and
angle described by Eqs. (2) and (3), respectively. Thus
the potential will be rotated with respect to the film. For
V0 > 0 (< 0) Eq. (8) describes a triangular (honeycomb)
array of adsorption potential maxima and a honeycomb
(triangular) array of adsorption potential minima. Var-
ious methods, multiple scales analysis, renormalization
group theory and even a “quick and dirty” approach can
be used to derive the free energy in terms of ηkl from Eq.
(6) assuming that the amplitudes vary on length scales
much larger than the atomic spacing. The reader is re-
ferred to the multiple references48–53 for a discussion of
such derivations.

However, it is readily apparent that incorporating only
the lowest order modes in V and n will only work when
the lattice constants of the film and substrate are very
similar. When the length of scale of the film and sub-
strate are different the term V n integrates to zero to
lowest order. For example, in the (

√
3×
√

3) R30◦ struc-
ture it would be the set of the second largest set of (kl)
pairs that coupled to the substrate potential. To illus-
trate this, it is useful to consider a simple one dimensional
case where the commensurate state is twice the distance
between the minima in V , i.e.,

n = a1 cos(x) + a2 cos(2x), (10)

and

V = V0 cos(2x), (11)

where a1 and a2 are the amplitudes of the first two lowest
modes in n. Integrating Eq. (6) gives

F
2π

=
∆B

4

(
a21 + a22

)
+

9

4
Bla22 −

τ

4
a21a2

+
3v

32
a41
(
a41 + 4a21a

2
2 + a42

)
+

1

2
a2V0. (12)

As expected the coupling of n to V only occurs through
the term a2V0, i.e., there is no a1V0 coupling. However,
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minimizing F/2π with respect to a2, substituting the
solution of a2 that minimizes F/2π and expanding the
coupling term in Eq. 12 gives

a2V0 = V0

(
τ

4(9Bl + ∆B)
a21 +Oa41 + · · ·

)
. (13)

Thus a1 is effectively coupled to the potential via the in-
termediate second mode a2. A coupling of this sort would
also occur if a coupling ∼ V n2 were included in the free
energy functional since it would produce a term of the
form a21V0/4. Thus a simpler and more computation-
ally efficient approach would be to use only the smallest

modes (smallest ~Gkl’s, which in this instance would be
just a1) and including the coupling V n2 instead using
the coupling term V n, and using the two lowest sets of
modes (in this case a1 and a2) to describe n.

For higher order structures (i.e., larger values of j and
m) this strategy would require incorporating higher order
coupling terms of the form npV , where p is some integer.
After studying a number of examples and generalizing to
arbitrary p, it turns out the minimum value required is
p = (j + 1)m whose contribution is

FV =

∫
d~r n(j+1)m V. (14)

Thus the appropriate free energy is to replace the nV
term in Eq. (6) with n(j+1)mV , i.e.,

F =

∫
d~r

[
∆B

2
n2 +

Bx

2
n(1 +∇2)2n− τ

3
n3 +

v

4
n4

+n(j+1)mV
]
. (15)

It should be noted that in this form of the free energy
functional the adsorption potential is an effective one
with a different amplitude compared to the true adsorp-
tion potential. For the triangular or honeycomb films
described by Eq. (7), using the lowest order modes (i.e.,
(kl) = (10), (01) and (1̄1̄)), it can be shown that in the
limit where ηkl varies on length scales much larger than
n, Eq. (15) becomes

Fη =

∫
d~r

[∑
kl

(
Bx|Gklηkl|2 −

3v

2
|ηkl|4

)

+
∆B

2
A2 +

3v

4
A4 − 2t

(∏
kl

ηkl + c.c.

)
+ Djm

([(
(η∗10)jη01

)m
+ c.p.

]
+ c.c.

)
V0

]
, (16)

where A2 ≡ 2
∑
kl |ηkl|2, Gkl ≡ ∇2 + 2iα ~Gkl · ~∇+ 1−α2,

and c.p. stands for cyclic permutations ((10) → (01) →
(1̄1̄)→ (10) etc.). The coefficient Djm is a constant given
by

Djm ≡
[(j + 1)m]!

(jm)!m!
. (17)

A nice feature of this result is that in terms of the am-
plitudes, only six new terms appear for the coupling in-
dependent of (j,m). This free energy functional can now
be used to study surface ordering in both the TH and
TT systems for all values of j and m.

IV. SMALL DEFORMATION LIMIT AND THE
SINE-GORDON MODEL

It is useful to consider the limit of small deformations
of Eq. (16) to provide insight into the fundamental di-
mensionless quantities that control strain induced pat-
terning and to make connection with specific physical
systems. In the small deformation limit the amplitudes
can be written as

ηkl = φei
~Gkl·~u, (18)

where to first order φ is a constant and ~u is the displace-
ment vector that enters traditional continuum elasticity
theory. The value of φ can be estimated by minimizing
the free energy with respect to φ in the limit that ~u is a
constant and V0 is small. This gives

φ ≈

{
(t+
√
t2 − 15v∆B)/(15v), (t > 0);

(t−
√
t2 − 15v∆B)/(15v), (t < 0),

(19)

where t > 0 (t < 0) corresponds to a film of triangular
(honeycomb) symmetry. Substitution of Eq. (18) into
Eq. (16) gives to lowest order in gradients in ~u

Fu ≈
∫
d~r

{
C11

2

[
(uxx − ε)2 + (uyy − ε)2

]
+2C44u

2
xy + C12(uxx − ε)(uyy − ε)

+2V0Djmφ
(j+1)m

∑
kl

cos ~Gkl · ~u

}
, (20)

where Cij are the elastic constants given in Table II and
terms independent of ~u have been dropped. Note that in
this expansion ηkl have been expanded around the lat-
tice constant of the commensurate state, i.e., if ~u is a
constant there is an elastic contribution, while if ~u = ε~r
there is no elastic contribution and Fu = 0. Equation
(20) is a 2D sine-Gordon free energy functional. For the
boundary conditions relevant for this work there do not
exist any analytic solutions for the 2D Moiré patterns
that minimize Fu at small V0. Solutions do however ex-
ist for one dimensional striped states as will be discussed
in the next two subsections for the TH and TT systems.

TABLE II. The elastic constants for the amplitude model,
where φ is given in Eq. (19). The elastic parameter K =
(C11 + C12)2/C11 for the TT and TH systems.

C11 C12 C44 K for TH K for TT

9Bxφ2 3Bxφ2 3Bxφ2 16Bxφ2 144Bxφ2/10
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A. Commensurate to Stripe Transition in the TH
System.

Anisotropic one dimensional solutions or striped states
can form along three equivalent directions and one such
direction is depicted in Fig. 7a) for a (j,m) = (2, 1) TH
system. In such states it is convenient to consider dis-
placements (~u) along the stripe direction and parametrize
them in terms of a field Φ as

~u = av
Φ

2π
(cos(θ)x̂+ sin(θ)ŷ) , (21)

where av = 4π/
√

3(asx/L) and Φ changes by 2π from one
commensurate state to a neighbouring one. This gives

2V0Djmφ
(j+1)m

∑
kl

cos ~Gvkl · ~u

= 2V0Djmφ
(j+1)m (2 cos Φ + 1) . (22)

FIG. 7. In a) the seven commensurate sublattices are shown
in different colors for a (j,m) = (2, 1) TH system. In b)
the six commmensurate sublattices are shown for a (j,m) =
(1, 1) TT system. In both cases the parallel (or jagged) lines
and hexagon encompass the sublattices that correspond to
the large scale stripe and Moiré patterns respectively.

To calculate the elastic contribution it is convenient to
go into a primed coordinate system ((x′, y′) = (x cos θ −
y sin θ, x sin θ + y cos θ)) that is rotated by an angle θ
with respect to the horizontal. In these coordinates ~u
only depends on x′ so the elastic terms become

uxx = cos2 θ
av
2π

∂Φ

∂x′
; uyy = sin2 θ

av
2π

∂Φ

∂x′
;

uxy =
av
2π

sin θ cos θ
∂Φ

∂x′
. (23)

Using the fact that for systems of triangular or honey-
comb symmetry C11 = C12 +C44 it is straightforward to
shown that Eq. (20) reduces to

F = A2

∫
dx′′dy′′

(
K

2

(
∂Φ

∂x′′
− ε
)2

+W cos Φ

)
,(24)

where a constant term has been neglected, and x′′ =
x′/A, y′′ = y′/A, A ≡ av(C11 + C12)/(2πC11), and

W = 4V0Djmφ
(j+1)m, (25)

and

K =
(C11 + C12)2

C11
. (26)

Equation (24) is a 1D sine-Gordon model that in the
mean field limit has an incommensurate - commensurate
phase transition at a critical value of (W/K)c

58 given by[
W

K

]
c

=
π2

16
ε2 =

4Djmφ
(j+1)mC11

(C11 + C12)2
V0, (27)

such that for W/K < (W/K)c (W/K > (W/K)c) the
incommensurate striped (commensurate) state has the
lowest energy. As the transition is approach from be-
low (W/K)c, the wavelength of the striped state diverges
which can be expected because a commensurate state can
be thought of as a striped state with an infinite wave-
length. Although thermal fluctuations are not considered
in the present work it is possible that they will change
the nature of this phase transition.

B. Commensurate to Stripe Transition in the TT
System

The striped state for the TT system is depicted in Fig.
7b). The displacement vector from one stripe to the next
can be written as

~u = ~δ +
Φ(r)

2π
~δ, (28)

where

~δ

asx
=

1

2

[(
cos θ − sin θ√

3

)
x̂+

(
sin θ +

cos θ√
3

)
ŷ

]
.(29)

It is straightforward to show that for this displacement

2V0Djmφ
(k+1)m

∑
kl

cos(~Gvkl · ~u)

= 2V0Djmφ
(j+1)m

(
cos

(
2Φ + 4π

3

)
+2 cos

(
Φ + 2π

3

))
, (30)

for all k. To a good approximation this form can be fitted
to cos Φ as

2V0Djmφ
(k+1)m

∑
kl

cos(~Gvkl · ~u)

≈ −2V0Djmφ
(j+1)m

4
(5 + cos Φ) . (31)

A comparison of this approximation and the exact solu-
tion is shown in Fig. 8. Similar to the TH case the elastic
terms can be be simplified so that the 2D sine-Gordon
model can be transformed into a 1D model, i.e., Eq. (24)
with

W =
1

2
Djmφ

(j+1)mV0;

K =
(C11 + C12)2

C11 + C44/3
. (32)
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FIG. 8. The figure shows the exact potential Eq. (30) (black
line) ompared to the approximate solution given in Eq. (31)
(red line)

.

Again, the stripe - commensurate transition occurs at the
critical value of W/K[

W

K

]
c

=
π2

16
ε2 =

Djmφ
(j+1)m(C11 + C44/3)

2(C11 + C12)2
V0. (33)

To summarize the results in this Section, in Table III
some tabulated critical values for the 1D sine-Gordon
model for the TH and TT are given. The dimensionless
ratio W/K is essentially the ratio of adhesion energy to
elastic energy. When it is large the commensurate states
dominate and when it is small incommensurate states
(not necessarily striped states) emerge as will be shown
in the next sections. This ratio can be used to make
connection with physical realizations of the TH and TT
adsorbate systems as it can be calculated using quantum
density functional theory or classical interatomic poten-
tials assuming accurate potentials are available. The ra-
tio W/K can be calculated within a single unit cell of the
commensurate state by calculating four energies per unit
area, namely the energy density of a perfectly commensu-
rate state Etot, that of a perfectly incommensurate state
at zero strain Emin, that of a perfectly incommensurate
state at the given misfit strain Esl, and the surface en-
ergy of the substrate Esub. The strain energy density is
then given by Es = Esl − Emin and the commensurate
energy density is Ec = Etot−Esub−Emin. The adhesion
can then be defined as

W = Es − Ec. (34)

The value of K can be determined by measurements of
the elastic moduli. Estimates ofW/K for various systems
have been given in references25,46.

TABLE III. Critical values of the effective coupling coefficient
in the sine-Gordon model.

State characterization (W/K)c/ε
2

System j m Djm TH TT

(1× 1) 0 1 1 V0/(4B
xφ) 10V0/(72Bxφ)

(2× 2) 0 2 1 V0/(4B
x) 10V0/(72Bx)

(
√

3×
√

3) R30◦ 1 1 2 V0/(2B
x) 10V0/(144Bx)

(
√

7×
√

7) R19.1◦ 2 1 3 3V0φ/(4B
x
o ) 10V0φ/(24Bx)

V. EQUILIBRIUM STATES AND PHASE
DIAGRAMS

Phase diagrams were numerically determined as a func-
tion of mismatch strain (ε) and adsorption strength (us-
ing the dimensionless variable W/K) for some specific
systems. The diagrams were obtained by minimizing the
free energy functional given in Eq. (16) for various pat-
terns using a simple relaxational (non-conserved) algo-
rithm, i.e.,

∂ηkl
∂t

= − δFη
δη∗kl

. (35)

In the case of the TH system, the patterns compared
were stripes and a 2D array of triangular commensurate
regions. For the TT systems stripes and a 2D array of
honeycomb commensurate regions were examined. In the
latter case it was found that there was a small region in
phase space (between the honeycomb and stripe regions)
in which junctions in the 2D patterns break into disloca-
tion pairs for the (1×1) system or twist for all the higher
order systems. While it is possible that there exist other
patterns that minimize the free energy functional, numer-
ical simulations from random initial conditions indicate
that these are the lowest energy patterns. In the next
subsection results are given for the TH system, followed
by an examination of the TT system in subsection V B.

A. Triangular on Honeycomb (TH) Systems

The (1 × 1) and (
√

3 ×
√

3) R30◦ systems have been
studied in prior publications11,46,47. In these cases the
phase diagram is dominated by 2D Moiré patterns for
(W/K) < (W/K)c that consist of a honeycomb network
of domain walls and a triangular pattern of commensu-
rate regions. The region defined by W/K > (W/K)c is
dominated by the commensurate phase. A small sliver of
a striped state may exists in between the low and high
W/K regions. In all the cases examined here, except for

the (1× 1) structure, (i.e., (
√

3×
√

3) R30◦ , (2× 2) and

(
√

7 ×
√

7) R19.1◦ ) a stripe region always separates the
2D Moiré patterns from the commensurate state. For the
(1 × 1) system the striped state does not exist for small
strains but there exists a triple point when the stripe re-
gion appears corresponding to the coexistence of striped,
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2D Moiré, and commensurate phases. Below a number
of specific systems are discussed in detail.

1. (
√

3×
√

3) R30◦ , (j,m) = (1, 1)

In Section III it was argued that the lowest order cou-
pling was given by Eq. (14), or for (j,m) = (1, 1), a
term of the form

∫
d~rn2V . It is reasonable to question

whether or not the full PFC model or a different non-
zero coupling would lead to different results. For this
reason numerical investigations were also conducted us-
ing the full PFC model, and the APFC model with a
n3V coupling in addition to the n2V coupling mentioned
above. For comparison the results are presented on the
W/K versus ε|ε| plane (recalling that the sine-Gordon
prediction for the stripe - commensurate transition oc-
curs when W/K = π2/16ε|ε|). The relationship between
W/K and the model parameters was discussed in Sec-
tion III for the lowest order coupling (i.e., n2V in this
instance). The n3V coupling makes the following contri-
bution to the free energy

FV = 3V0
(
η21η2 + η1η

2
2 + c.p.+ c.c.

)
, (36)

which contributes 24V0φ
3 cos Φ to the sine-Gordon equa-

tion, i.e.,

W = 24V0φ
3. (37)

This coupling does not change the value of K so it is
then straightforward to calculate W/K for the n3V cou-
pling. For the full PFC model it is difficult to analyt-
ically derive an expression for the values of W since it
involves non-linear coupling of several modes. However,
for small values of ε the continuum sine-Gordon result
for the stripe - commensurate transition should be valid.
At small ε the slope of V0 versus ε|ε| was measured for
both negative and positive values of ε. For comparison
with the APFC results V0 was multiplied by π2/16 and
divided by the slope measured.

Figure 9 displays the phase diagram for all three mod-
els and very similar results are obtained. In these phase
diagrams three specific phases are observed, namely the
2D Moiré, striped, and commensurate states. Examples
of the 2D Moiré and striped patterns are shown in Fig.
10. These figures were obtained by first reconstructing
the dimensionless density difference n using Eq. (7) and
then finding all the maxima in n. In Fig. 10 (and in
all the sample patterns to follow) the positions of these
maxima are plotted as points whose color is determined
from the distance of the point from the various sublat-
tices. More specifically, the color is an average of the
colors shown in Fig. 6 a) with a weighting inversely pro-
portional to the distance to the closest neighbour of the
corresponding sublattice.

It is interesting to note that the triangular pattern ex-
actly matches the sublattice pattern on a larger scale
which can be see by comparing Figs. 10 a) and b) with
Fig. 6 a). Moving across a stripe or through a hexagonal

region in the 2D patterns, the change in color depends on
the sign of ε. For example for ε = −3%, the colors change
from red to blue to green (also note that the systems are
periodic) as seen in Figs. 10 a) and c). In contrast for
ε = +3%, the colors change from red to green to blue
as seen in Figs. 10 b) and d). When the commensurate
state corresponds to a tensile (compressive) strain on the
film, domain walls appear when the atoms slip to the
closest degenerate commensurate state that is a further
(nearer) away.

FIG. 9. Phase diagram for TH (
√

3 ×
√

3) R30◦ ordering us-
ing the full PFC model with nV coupling (green), the APFC
model with n2V (red) and n3V (blue) coupling. The black
dashed lines correspond to the sine-Gordon solution for the
stripe - commensurate transition. In each case in the hatched
region the stripe state is the lowest energy state and below
(above) this region the 2DM (commensurate) state is the low-
est energy state. The n2V result is redrawn from Ref. 47.

The transition from the 2D Moiré to a striped incom-
mensurate phase is a discontinuous transition as it is not
possible for the 2D pattern to continuously deform into
a stripe. This is illustrated in Figs. 11 and 12 for ε = 3%
and 8% respectively for the n2V coupling (similar be-
havior is observed for the full PFC model and the n3V
coupling). In these figures it is clear that the lowest free
energy density changes discontinuously as a function of
W/K when the lowest energy states changes from 2D
Moiré to striped states. For small values of ε the tran-
sition from striped to commensurate states appears to
be continuous (in the absence of thermal fluctuations)
as predicted by the 1D sine-Gordon model. This can be
seen in the bottom left inset in Fig. 11 as the slope free
energy density of the stripe state approaches that of the
commensurate state at the transition, and as shown in
the top right inset in the figure the stripe wavelength
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FIG. 10. Sample 2D Moiré (a and b), and stripe (c and d),
patterns for ε = −3 % (a and c) and ε = +3 % (b and d), ob-
tained from the n3V coupling in the TH (

√
3×
√

3) R30◦ sys-
tem. In a) (W/K,Lx, Ly) = (−0.05432 × 10−2, 364.0, 630.5),
b) (W/K,Lx, Ly) = (−0.05160 × 10−2, 380.0, 658.2), c)
(W/K,Ly) = (−0.05786×10−2, 584.0) and in d) (W/K,Ly) =
(−0.05378× 10−2, 588.0).

diverges. A continuous transition is possible as a stripe
can continuously change into a commensurate state, i.e.,
the commensurate state is a stripe of infinite wavelength.
This behavior is in contrast to the large ε behavior where
the stripe - commensurate transition becomes discontin-
uous. This is illustrated in the bottom left inset in Fig.
12 as there exists above the transition a metastable stripe
phase that has a higher energy than the commensurate
phase. In addition the figure also shows that the stripe
periodicity does not diverge at the transition. It is likely
that the discrete nature of the system starts to play a
larger role at larger strains causing this effect.

2. Higher order systems (2× 2), (j,m) = (0, 2) and
(
√

7×
√

7) R19.1◦, (j,m) = (2, 1).

The (2× 2) and (
√

7×
√

7) R19.1◦ orderings have four
and seven commensurate sublattices respectively. De-
spite this complication the phase diagrams look very sim-
ilar to the (

√
3 ×
√

3) R30◦ one as shown in Fig. 13.
The (2 × 2) system has a smaller stripe region than the

(
√

7×
√

7) R19.1◦ but in both cases the stripe region ap-
pears to exist for all values of ε. Sample configurations
for the 2D Moiré and 1D stripe patterns are shown for
both systems in Fig. 14. As with the (

√
3 ×
√

3) R30◦

both the 1D and 2D patterns are determined by the or-
dering of the degenerate sublattice states. In addition
the nature of the phase transitions are identical to the
(
√

3×
√

3) R30◦ system, i.e., the 2D Moiré to stripe tran-
sition is discontinuous and the stripe to commensurate
transition is continuous at small ε, and discontinuous at
large ε.

B. Triangular on Triangular (TT) Systems

The phase diagram for a film of triangular symmetry
adsorbed on a substrate that has a triangular pattern of
maxima (or honeycomb pattern of minima) gives rise to

FIG. 11. Free energy density difference from an incom-
mensurate (W/K = 0) state as a function of W/K for 2D
Moiré (blue), stripe (red) and commensurate (black) phases
at ε = 3%. In the bottom left inset is a blowup showing that
the free energy of the striped phase never becomes higher
than that of the commensurate phase indicating a continuous
phase transition. In the top inset the periodicity of the 2D
Moiré (blue) and striped (red) states is shown.

much richer features than the TH system. The case of
a (1 × 1) or (j,m) = (0, 1) system was explored in prior
publications24,25, but has not been examined for higher
order systems. Detailed phase diagrams were calculated
for the (

√
3×
√

3) R30◦ ((j,m) = (1, 1)), (2×2) ((j,m) =

(0, 2)) and (
√

7×
√

7) R19.1◦ ((j,m) = (2, 1)) systems and
compared with the (1× 1) case. The phase diagrams for
all these systems are shown in Fig. 15. The typical 1D
and 2D patterns that emerge in these systems are shown
in Fig. 16, Fig. 17, Fig. 18 and Fig. 19 for the (1× 1) ,

(
√

3×
√

3) R30◦ , (2× 2) and (
√

7×
√

7) R19.1◦ systems,
respectively.

In all cases as W/K is decreased there exists a tran-
sition from a commensurate to a striped incommensu-
rate state that for small ε is well predicted by the sine-
Gordon prediction given in Eq. (33). In all cases except
for the (1 × 1), this is followed by a transition from the
incommensurate striped state to an incommensurate 2D
twisted Moiré pattern, which is illustrated in Figs. 17
b), 18 b) and 19 b) for the (

√
3×
√

3) R30◦, (2× 2) and

(
√

7×
√

7) R19.1◦ orderings, respectively. AsW/K is low-
ered further this is followed by a transition from the in-
commensurate 2D twisted Moiré pattern to an untwisted
2D Moiré pattern. This latter transition is continuous as
the twisted pattern continuously untwists as the transi-
tion is approached from above as shown in Fig. 20. This
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FIG. 12. Free energy density difference from an incommensu-
rate (W/K = 0) state as a function of W/K for 2D Moiré
(blue), striped (red) and commensurate (black) phases at
ε = 8%. In the bottom left inset is a blowup showing that
the free energy of the stripes becomes higher than that of the
commensurate phase indicating a discontinuous phase transi-
tion. In the top inset the periodicity of the 2D Moiré (blue)
and striped (red) states is shown.

is also shown in Fig. 21 a) which displays the free energy
density difference per area A (∆F/A) of the twisted and
untwisted states as a function of W/K. As can been seen
in this figure, ∆F/A for the twisted state continuously
approaches the slope of ∆F/A for the untwisted state.
The transition from the twisted 2D Moiré state to the
stripe phase is discontinuous as there is no continuous
deformation from a twisted 2D pattern to a stripe. This
is also verified in Fig. 21b) which shows ∆F/A of the 2D
twisted state to cross ∆F/A for the striped state as the
transition is approached from small to large W/K.

Similar to the TH systems the stripe to commensu-
rate transition was observed to be continuous for small
ε and discontinuous for large ε for the (

√
3 ×
√

3) R30◦

system. In this instance the discontinuity in the free en-
ergy is very small and challenging to detect when plotting
∆F/A versus W/K for the two phases. It is however eas-
ier to see when plotting ∆F/A versus ax/λ, where λ is
the periodicity of the striped state and ax/λ = 0 corre-
sponds to the commensurate state. As shown in Fig. 21c)
∆F/A has only one minima that approaches zero as the
transition is approached at at ε = 3% indicating a con-
tinuous transition. This is in contrast to ε = 10% where,
as seen in Fig. 21 d), where there exists two minima in
∆F/A, one at ax/λ = 0 and the other at a finite value
of ax/λ. As the transition is approached from below, the

FIG. 13. Phase diagram for the (2 × 2) and (
√

7 ×√
7) R19.1◦ systems in blue and red respectively. The hatched

regions correspond to parameter ranges where the stripe
phase is the ground state.

FIG. 14. Sample 2D Moiré and striped ordering patterns in
a) and b) respectively for the TH (2×2) system with a misfit
strain of ε = 2% at W/K = 0.242 × 10−3 and 0.244 × 10−3,
respectively. The widths of the systems in a) and b) are 382 ax
and 56 ax, respectively. 2D Moiré and striped patterns in c)
and d) respectively for the TH (

√
7×
√

7) R19.1◦ system with
W/K = 1.358× 10−3 and ε = 5%. Figure a) has a lower free
energy per unit area than b). The widths of the systems here
are 49 ax and 53 ax in c) and d), respectively.

minimum that is lowest changes discontinuously indicat-
ing a discontinuous phase transition. In the (2 × 2) and

(
√

7×
√

7) R19.1◦ systems is was difficult to obtain reli-
able results for large ε indicating the model may not be
applicable in this limit for these systems and hence the
change from a continuous to a discontinuous transition
could not be verified.

It should be noted that the results differ for the (1 ×
1) case where for small ε there is a transition from the
striped state into an untwisted 2D Moiré pattern, while
at large ε there exists a zigzag state (illustrated in Fig.
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15b) ) which contains a periodic array of dislocations.
The transition from the 2D Moiré patterns to the zigzag
state is discontinuous.

FIG. 15. Phase diagrams for various TT systems. The white,
yellow, red, cyan and blue regions correspond to the com-
mensurate, striped, twisted 2D Moiré, 2D Moiré and zigzag
phases. The dashed line corresponds to the sine-Gordon pre-
diction for the stripe - commensurate transition. See text for
details.

FIG. 16. Sample configurations for the TT (1 × 1) system
showing 2D Moiré, zigzag and striped phases in a), b), and
c), respectively at ε = 7%. Here W/K = 0.399×10−3, 0.599×
10−3, and 4.051× 10−3 in a), b), and c), respectively.

C. Energy Considerations

The phase diagrams of the TH and TT systems are
remarkably different, the latter being much more com-
plex and containing an extra phase (zigzag or twisted 2D
Moiré states). The reason for this was discussed in a

FIG. 17. Sample configurations for the TT (
√

3 ×
√

3) R30◦

system showing 2D Moiré, twisted 2D Moiré, and striped
states in a), b,) and c), respectively, at ε = 3%. Here
W/K = 0.574 × 10−3, 0.112 × 10−3, and 0.574 × 10−3 in
a), b), and c) respectively.

FIG. 18. Sample configurations for the TT (2×2) case show-
ing 2D Moiré, twisted 2D Moiré, and striped states in a), b),
and c), respectively, at W/K = 0.039 × 10−3 and ε = 2%.
Figure b) has a lower free energy per unit area than a) or c).
The widths of the figures are 440ax, 448ax, and 288ax in a),
b), and c), respectively. The black hexagons at the junctions
in a) and b) contain 61 density maxima in n. The average
distance where these maxima lie from the potential maxima
is 0.67ax and 0.80ax implying that the twisted junctions have
a lower potential energy.

previous publication11 that examined the (1×1) system.
The difference can be ascribed to the large difference in
junction versus domain wall energies. If the junction en-
ergy is much larger than the domain wall energy one
would expect that the transition to the striped states
would occur at a much lower value of W/K. The spatial
free energy density plots for the 2D Moiré patterns in
the TH and TT (

√
3 ×
√

3) R30◦ cases are compared in
Figs. 22 a) and b) just below the transition to this state
(from either striped (TH) or twisted 2D (TT) states).
In the TH case the domain walls and junctions (in red)
form a honeycomb network, while the commensurate re-
gions (in blue or light blue) form a triangular pattern.
In contrast, in the TT case the domain walls (in light
blue) and junctions (in red) for a triangular network and
the commensurate regions (in dark blue) form a honey-
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FIG. 19. Sample configurations for the TT (
√

7 ×√
7) R19.1◦ case with 2D Moiré, twisted 2D Moiré, and striped

states in a), b), and c), respectively, at ε = 3%. Here
W/K = 0.0377×10−3, 0.0566×10−3, and 0.377×10−3 in a),
b), and c), respectively.

FIG. 20. Series of configurations for the TT (
√

7 ×√
7) R19.1◦ system showing colored density maxima plots of

the 2D twisted Moiré state. In panel a) the honeycomb
state is at (V0, ε, Lx) = (0.00076, 3%, 130), and the twisted
honeycomb states in b) - d) correspond to (V0, ε, Lx) =
(0.00078, 3%, 132), (0.00081, 3%, 138) and (0.00150, 3%, 170).

comb pattern. These figures clearly show that the rela-
tive junction to domain wall energy is much larger in the
TT case. In the TH case the junction and domain wall
energies are comparable and in some cases the junction
energies can be lower than the domain wall energies. Sim-
ilar comparison also applies to the (1× 1)11, (2× 2), and

(
√

7 ×
√

7) R19.1◦ systems. As explained in Ref. 11 the
difference arises as the change in the displacement vector
~u is larger going through a junction than a domain wall
in the TT case.

The very large relative junction energy in the TT case
is the reason why the stripe phase appears at much lower
values of W/K than the TH case. It is also the reason
why the new 2D twisted Moiré and zigzag patterns ap-
pear in the TT phase diagrams, whose free energy land-
scapes are shown in Figs. 22 c) and d), respectively. In

the (
√

3×
√

3) R30◦, (2×2), and (
√

7×
√

7) R19.1◦ systems
the twisted state increases the total length of the domain
walls, which implies that the “twist” must lead to a low-
ering of the junction energies. A close examination of
the maxima of the density near the junction reveals that
these maxima are further from the maxima of the poten-
tial energy V (~r) in the twist case. More specifically, in
the (2 × 2) TT case the average distance where the 61
maxima closest to the junction (see Fig. 18) are from the

FIG. 21. The free energy density difference from the incom-
mensurate (W/K = 0) state is shown as a function of W/K
for twisted and untwisted 2D Moiré patterns in red and cyan,
respectively in panel a), and for twisted 2D Moiré and striped
states in red and blue, respectively, in panel b). In panels c)
and d) the free energy density difference from the commensu-
rate state is show as a function of inverse stripe wavelength (λ)
at ε = 3% and 8%, respectively. In panel c) the lines from bot-
tom to top correspond toW/K = 5.7115×10−4, 5.7132×10−4,
and 5.7150×10−4, respectively. In panel d) the lines from bot-
tom to top correspond to 1.89413×10−2, 1.89449×10−2, and
1.89484× 10−2, respectively.

maxima in V (~r), is 0.67ax for the twisted case as com-
pared to 0.80ax for the untwisted case. Thus the system
twists to lower the potential energy of the junctions even
though this increases the length of the domain walls con-
necting the junctions.

In the (1 × 1) case the change in the magnitude of
the displacement vector across both domain walls and
the junction is larger than in the other systems since
the degenerate sublattices are further apart relative to
the preferred lattice constant of the film (typically the
relative distance decreases as j and m are increased). In
the TT (1×1) case the junction energy becomes so large
that it splits into two dislocation pairs. The creation
of the pairs will probably depend on the energy of the
dislocation cores.

The (1× 1) TH system also differs from the other TH
systems in that for small ε there exists a direct transi-
tion from the 2D Moiré patterns with no stripe state in
between (to the accuracy of the numerical calculations).
The stripe states only appear for large values of ε11. This
is somewhat similar to the (1× 1) TT case in which the
zigzag state only appears at large values of ε. This effect
must be due to a subtle interplay between the junction
and domain wall energies. In the (1 × 1) TH case it



14

was found that for small (large) ε the junction energy
was slightly lower (higher) than the domain wall energy
which may explain this phenomenom. However, as shown
in Ref. 47 this also occurs in the TH (

√
3×
√

3) R30◦ sys-
tem and a stripe region in the phase diagram exists for
all values of ε within our numerical accuracy.

FIG. 22. Spatial plot of the local free energy densities for
a) TH (

√
3 ×
√

3) R30◦ system at (ε,W/K) = (3%, 0.5357 ×
10−3), b) and c) TT (

√
3 ×
√

3) R30◦ system at (ε,W/K) =
(3%, 0.0574×10−3), and (ε,W/K) = (3%, 0.1063×10−3), re-
spectively , and d) a (1×1) system at (ε,W/K) = (7%, 1.997×
10−3). The energy scale from low (blue) to high (red) is shown
on the right in arbitrary units.

VI. COMPARISON WITH EXPERIMENTS

An important initial motivation for this work was to
understand the patterns that form in the Cu/Ru(0001)
system, which is a TT (1×1) system in the notation used
in this work. Experiments in that system reveal that the
patterns that the film form depend strongly on the num-
ber of monolayers that are adsorbed, such that one mono-
layer is commensurate, two monolayers are in a zigzag
state, three monolayers are in a striped state, and finally
four layers are in a honeycomb state. While the simplistic
approach used in this work only considers 2D monolay-
ers it can be argued – and has been verified in density
functional calculations on the Cu/Pd(111) system – that
the effective W/K decreases with increasing number of
layers as the effective adhesion energy decreases with in-
creasing layer thickness, and the total strain energy per
unit area increases in the commensurate state.

In order to compare with experiments, simulations
were done on micron sized systems where W/K was de-
creased from a value in the commensurate region to a
value in the striped, zigzag or 2D Moiré regions and then
held fixed to observe subsequent ordering. These simu-
lations were meant to mimic the experimental procedure
of adding layers (lowering W/K) and then annealing the
system for some time at a given coverage. As shown
in our earlier works24,25 the results are remarkably con-
sistent with experimental results of Gunther et al.23 in
both the nature of the patterns and the selected length
scales. In the present work additional simulations were
conducted to examine the dynamics of ordering in the
large W/K commensurate region or the monolayer or
sub-monolayer limit. The patterns that emerge in this

limit were also consistent with experiments performed
by Schmid et al.27 as shown in Fig. 23.

FIG. 23. Comparison between numerically simulated order-
ing in the large W/K limit for the (1 × 1) TT system with
experimental results of Schmid et al.27 on the ordering of a
partially filled monolayer in the Cu/Ru(0001) system. The
experimentally observed pattern is shown as an overlay on a
typical configuration (number density plot) from the simula-
tions.

The HT (1 × 1) system is relevant for graphene or-
dering on a wide range of metallic substrates and has
been analyzed in some detail in Refs. 11 and 46. In the
latter work quantum mechanical density functional the-
ory calculations (DFT) were used to parametrize specific
systems, i.e., to calculate W/K for a given graphene -
substrate system. For most of the graphene on (111) sub-
strates (Pd, Pt, Al, Ag and Au) the value of W/K is well
below the transition to striped or commensurate states,
implying that 2D Moiré patterns should be observed ex-
perimentally, which is also the case. The value of W/K
calculated for graphene on Cu(111) is just below the tran-
sition line also implying 2D Moiré patterns. Finally, the
value for graphene on Ni(111) is well above the transi-
tion line (i.e., in the commensurate region) implying that
no Moiré patterns should occur, which is consistent with
experiments61,62.

The influence of the film - substrate misorientation was
also examined46. It was found that the periodicity λ of
the 2D Moiré patterns decreases with the misorientation
angle θm although surprisingly the state with the lowest
energy was not at θm = 0. It was found to be at θm =
0.88◦ for Cu(111) and 3.22◦ for Pt(111). The behavior of
the λ as a function of θm was found to be consistent with
experiments although the experimental data of Merino et
al.3 is somewhat inconclusive.

The (
√

3 ×
√

3) R30◦ TH class of systems includes Xe
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on graphite40, Kr on graphite41 and Xe/Pt(111)42. As
discussed in Ref. 47, the appearance of striped and 2D
Moiré patterns is consistent with experimental observa-
tions in the Xe/Pt(111) system while only the latter pat-
tern has been seen in Kr on graphite and Xe on graphite.

One of the unexpected predictions of this work is the
appearance of the twisted 2D pattern that emerges in
TT (or HH) systems. Even though the region of the
phase diagram where such pattern would be observed
is relatively small there is experimental and theoretical
evidence of these patterns in a number of systems as il-
lustrated in Fig. 24. They include experiments of TiOx

ordering on Au(111) surfaces63,64, simulations of Au on
Ru(0001)65 and in misoriented graphene bilayers66. In
addition to these system twisted 2D Moiré patterns have
also been observed in surface reconstruction experiments
on Au(111) exposed to Gd, and simulations of Pt(111)
surfaces with excess density. While most of these sys-
tems may not be compatible with the 2D model systems
considered in this work, where the substrate is approxi-
mated by a simple rigid adsorption potential, the basic
underlying cause of formation of the twisted state is likely
the same. The relative symmetry of the film or surface
compared to the bulk state gives rise to a triangular net-
work of domain walls with the junctions in very high
potentially energy locations. Energy can be released by
twisting the junctions such that the surface atoms move
slightly away from the potential maxima, giving rise to
the twisted 2D Moiré state.

VII. LIMITATIONS OF MODELING

The approach proposed in this work is perhaps the sim-
plest method that incorporates elasticity, crystal symme-
tries and dislocations on the long length and time scales
needed to study surface ordering. It is also clear that the
approach does not include many physical features that
could influence the strain induced patterning. Two obvi-
ous limitations are the lack of out of plane deformations
and approximating the substrate as a rigid periodic po-
tential with the simplest lowest order harmonics. In the
former case it is likely that the deformations will play a
role at defects, such as domain walls and junctions. In
the latter case substrate relaxation may play a role if the
substrate - film coupling is strong as would be the case
for metal-on-metal systems, but may not be as important
in graphene or hexagonal boron nitride on metallic sur-
faces since the coupling is relatively weak in most cases
(Cu and Ni being the exceptions46).

Another important feature that was not included in
this work is the influence of thermal fluctuations. It is
well known that they play an important role in deter-
mining the order of the phase transitions. It is quite
likely that the characteristics of the mean field phase
transitions discussed in this work will be altered by the
inclusion of thermal fluctuations. While it is relatively
straightforward to include such fluctuations in the am-

FIG. 24. Experimental evidence for twisted states in mi-
croscopy images. a) TiOx on Au(111) taken from Ref. 63
(also observed by Tumino et al.64). b) Ag on Ru(0001) taken
from Ref. 65 where the system was numerically relaxed with
a Frenkel-Kontorova model with an initial condition provided
by the experiments. c) Patterns observed in misoriented
graphene bilayers taken from Ref. 66. d) Surface reconstruc-
tion of Au(111) after exposing the surface to Gd for approx.
20 s, taken from Ref. 67. e) Surface reconstruction of Pt (111)
after additional density added to surface, taken from Ref. 68.

plitude expansion approach (see for example Huang et
al.53) or in the original PFC model69,70, it maybe com-
putationally challenging to examine all the transitions
discussed in this manuscript. In particular, an interesting
question is whether or not a liquid phase can intervene
between the commensurate and incommensurate phases
due to thermally induced dislocation pairs71.

In principle the limitations discussed in the previous
paragraphs could be incorporated into the methodology
presented in this work. However, there are some other
effects that are much more diffcult to model using this
technique. It can be difficult to incorporate higher order
harmonics and to model the very large deformation limit.
The former case is possible, however, the computational
cost can be quite significant. In the latter case the ampli-
tude expansion explicitly breaks down in the limit that
the amplitude varying on too small length scales, which
occurs in this limit. Clearly when the size of the patterns
becomes very small this becomes a problem.

VIII. SUMMARY AND CONCLUSIONS

The modeling approach used in this manuscript as de-
scribed by the simple complex amplitude approach (i.e.,
the free functional given in Eq. (15)), while perhaps miss-
ing some features, provides a basis for examining a broad
class of systems with relative computational ease. Com-
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pared to quantum mechanical density functional the-
ory, molecular dynamics, or even the relatively simple
Frenkel-Kontorova model, this method can examine sys-
tems orders magnitude larger on much longer time scales.
In this manuscript phase diagrams were computed in the
mean field limit for five different systems (in addition to
three others previously considered) illustrating the power
of the approach.

While there are many possible physical features that
could be added to the existing approach, perhaps the
most interesting extension would be films that contain
more than one type of atom. Of specific interest in
recent years are 2D films such as hexagonal boron ni-
trite (hBN), molybdenum disulfide, and other transition
metal dichalcogenides which are distinctly different from
graphene and have many potential applications. It would
be very interesting to see how, for example, inversion
boundaries in these systems can be used to relieve strain
and potential lead to different patterns, such as the pin-
wheel type structure delineated by inversion boundaries

as observed in hBN72.
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