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Abstract. We consider a disordered suspension of spherical silica particles in water. For a 

particle size of a few hundred nanometres and concentration (volume fraction) around 0.15 to 

0.2, experiments conducted in the MHz range have shown that the non ideal nature of water 

must be taken into account for the "longitudinal" coherent wave attenuation to be understood, 

because of wave conversions, from longitudinal to shear and then back to longitudinal, 

occurring at each pair of scattering events. We are interested here in the properties of the 

"shear" coherent wave that are given by the expansion of its squared wavenumber, around that 

in the absence of particles, in powers of the concentration.  At 1 MHz and a particle radius of  

0.05 m, we show that convergence of the modal series involved in that expansion may be 

reached after three terms: we use ten terms subsequently. We study the evolution of both the 

effective shear velocity and attenuation with concentration, as well as that of the effective shear 

viscosity deduced therefrom.  

1.  Introduction 

We study the propagation of the "shear" coherent wave in a disordered suspension of silica spheres in 

water. Forrester [1] et al. have shown that for particle radii smaller than a few micrometres the 

attenuation of the "longitudinal" coherent wave in such a suspension could be well predicted by a 

multiple scattering model, as long as the shear-mode effects, due to water viscosity, were taken into 

account, as in Ref. [2]. Including those effects leads to the introduction of another coherent wave, 

called the "shear" coherent wave (with quotes omitted in the following), because its wavenumber S 

reduces to that, kS, of the shear wave in (viscous) water in the absence of particles. It is in the 

properties of this shear coherent wave that we are interested here.  

   The physical properties of both water and silica are the same as in Ref. [1], and the numerical 

study is conducted at one frequency only, f = 1 MHz. All particles have the same radius a = 0.05 m, 

so that letting kC denote the compressional wavenumber in water in the absence of particles, while low 

frequency approximations may be used when dealing with compression waves, one must be careful  

with shear waves, as 
42 10Ck a , and 0.1 1Sk a i . 

 

The properties of the shear coherent wave are deduced from the calculation of its wavenumber S, 

as a function of the concentration (volume fraction) c of solid, using the multiple scattering model of 

Ref. [2], and section 2 is dedicated to numerical issues that need to be taken care of in doing this. The 
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effective shear velocity and attenuation are studied as a function of the concentration in section 3, and 

preliminary work on the definition of a prospective effective shear viscosity is conducted in section 4.  

  

2.  The effective shear wavenumber  

2.1.  Effective shear wavenumber expansion 

After Eqs. (16,29-32) of Ref. [2], the effective "shear" wavenumber 
S

may be expanded around kS in 

powers of the concentration (c = 4n0 a3/3), 
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The first order term (in concentration), SS

1
, involves a modal series of the form 

0
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n n

n

f T , while 

SS

2  and 
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2  involve respectively series of the form 
0 0
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g T T  and 
0 0
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nm n m
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h T T , 

with fn, gnm, hnm more or less complicated functions of n and m, and the 
pq

nT  (p,q=S,C) the modal 

scattering coefficients of a single particle for an incident compressional (p=C) or shear (p=S) wave 

into either a compressional (q=C) or a shear (q=S) one. They are defined in Ref. [2] as associated with 

the Debye potentials of either compressional or shear waves, with no dependence with the azimuthal 

angle (see Eqs. 5,6 in Ref. [2]) . Their decay with the increase of mode number n is shown in Figure 1. 
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Figure 1. The modal scattering coefficients (amplitudes) as functions of mode number. 

The scattering coefficient of a compressional wave into a compressional one is the fastest to  

decrease, that of a shear wave into a shear one the slowest. The first one is also the lowest in 

magnitude, while the second one the largest. However, all coefficients are smaller than 10-10 as soon as 

n is larger than 4, and we can suppose that all the series involved in Eqs. (1,2) should have achieved 

convergence after summing up 5 terms at most.  

Convergence of the 2

0 0

N N
SS SSSS

N nm n m

n m

g T T series may be studied through the plot of its real 

and imaginary parts versus N, as done in Figure 2, where all the  terms are plotted against N, showing 

that N=2 should be sufficient for all series to reach convergence. While this information could be 

useful to carry out analytic approximations of Eqs. (1,2), a value of N=10 has been used nevertheless 

to obtain all the subsequent results. 
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Figure 2. Convergence of the first and second order terms of the                                                             

effective wavenumber expansion Eqs. (1,2). N is the order at which all modal series are truncated. 

 

 

Eq. (2) corresponds to the expansion of  
2

S

2

Sk
 in powers of the concentration c, up to order 2. This 

expansion was carried out [2] under the assumption of a small enough concentration for all successive 

orders to be decreasing in magnitude. However, each term of a given order r in Eq. (2) is multiplied, 
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not only by the small quantity cr, as one would have expected, but by a larger one, 
3

S

r

r

c

k a
, so that, 

while the delta terms relating to the terms of order 2 in concentration (Figure 2) are two orders of 

magnitude smaller than the delta term relating to the order 1 term in concentration, Figure 3 shows that 

the whole term of order 2 in concentration in  Eq. (2) is no longer smaller than the whole term of order 

1 in concentration as soon as the concentration gets higher than about 0.25. This shows clearly the 

limit of the model, and the subsequent analysis considers only concentration up to 0.2. 
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Figure 3. Magnitude of the terms in the effective shear wavenumber expansion in concentration. 

 

2.2.  Properties of the effective shear wave  

The effect of the concentration of scatterers on the velocity and the attenuation of the effective shear 

wave is shown in Figure 4. Not surprisingly, the introduction of solid scatterers in water increases the 

shear velocity and decreases the shear wave attenuation, compared to the situation in the absence of 

scatterers. The deviation from the corresponding values in the absence of scatterers, however, is less 

than 10 %. As the effective wavenumber expansion in concentration is limited to order 2 in 

concentration, both the velocity and attenuation curves exhibit a quadratic behavior, but the 

concentration ccrit at which the velocity reaches a maximum is slightly lower than that at which the 

attenuation is lowest. As the quadratic behavior of the curves is the most obvious for concentration 

values around ccrit, it might be an indication that, for this particular frequency under study, order 3 in 

concentration can no longer be neglected for c  ccrit. 

Figure 5 shows that the real and imaginary parts of the effective shear wavenumber are practically 

equal, just like those in the absence of scatterers, and the next section discusses the possibility of 

defining an effective shear viscosity by analogy with a pure viscous fluid. 
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Figure 4. Ratios of the effective shear wave velocity (solid line, left vertical axis) and attenuation 

(dotted line, right vertical axis) to those of the shear wave in the absence of scatterers, versus 

concentration.  
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Figure 5. The effective shear wavenumber: ratio of its imaginary part to its real part versus 

concentration.  
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3.  Towards the definition of an effective shear viscosity  

In a viscous fluid such as water, and supposing the exp(-it) time dependence, 

   

2 2

S , ,k i

  


        (3) 

so that the shear wavenumber has equal real and imaginary parts. The fact that the effective shear 

wavenumber calculated in the preceding section almost satisfies this condition suggests that one could 

define an effective medium, at least from the shear wave point of view, with a real effective mass 

density eff and a (practically) real effective shear viscosity eff obeying 

    

2

S

2

eff S eff

.
k

 

 
      (4) 

 

There have been many published works regarding the effective density of a random configuration 

of scatterers in a host matrix, with nearly as many formulas for that density. All agree on the complex 

nature of the effective mass density, as well as on its real static limit, which is given [4,5] by a simple 

volume average in the case of an elastic matrix,  

 
 eff water Silica1 c c     , (5) 

and by a different one [4] in the case of an inviscid fluid matrix. 

 

Taking into account the shear viscosity of water through Eq. (3) is equivalent to considering water 

as a solid with a purely imaginary second (shear) Lamé coefficient , and thus adopting Eq. (5) with 

Eqs. (2, 4) allows an effective viscosity, eff, to be obtained. This effective viscosity eff, which is 

almost real, is plotted in Figure 6 (black curve), and has an imaginary part of less than 2 % of the 

viscosity of pure water . The other curves in Figure 6 correspond to a few hydrodynamic models of 

viscosity for hard sphere suspensions in water that are described in Ref. [5]. While all hydrodynamic 

models provide quite different results, they all show a monotonic increase of the effective viscosity 

with concentration, which is not the case in our calculation (black curve). This dramatically different 

behavior may be explained from the difference in the assumptions of the hydrodynamic models and 

the one used here. All of them correspond to static expressions of the effective mass density and 

viscosity, whereas our calculation, while using a static approximation for the effective density (Eq. 

(5)), has been obtained from a multiple scattering model at intermediate frequency 
42 10Ck a , and 

0.1 1Sk a i . It is quite clear that one should use here a frequency dependent approximation of the 

effective mass density, but this is a topic of further investigation. A comparison of our model 

calculations of the effective compressional and shear wavenumbers with those obtained from various 

self consistent models such as [6,7] is also an area for future work. 
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Figure 6. The effective shear viscosity as a function of concentration. Hydrodynamic models 

follow Ref. [5]. 

 

 

4.  Conclusion 

This work is a preliminary study of the properties of the shear coherent wave in suspensions of 

spherical particles. It highlights the truncation of the series in partial wave orders as well as the 

problem with convergence of the concentration series. Although an effective viscosity has been 

determined, its validity requires use of a frequency dependent effective mass density. Further work 

will include the introduction of self consistent models such as in Refs. [6, 7] and their relation with the 

model used here. The relation between hydrodynamic models and multiple scattering effective 

theories should be also investigated further, as begun by the authors of Ref. [8]. 
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