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Abstract: Potential problems induced by the multilayered manufacturing process pose a serious
threat to the long-term reliability of MEMSCAP® actuators under in-service thermal cycling. Damage
would initiate and propagate in different material layers because of a large mismatch of their thermal
expansions. In this research, residual stresses and variations of design parameters induced by metal
multi-user micro electromechanical system processes (MetalMUMPs) were examined to evaluate their
effects on the thermal fatigue lifetime of the multilayer structure and, thus, to improve MEMSCAP®

design. Since testing in such micro internal structure is difficult to conduct and traditional testing
schemes are destructive, a numerical subdomain method based on a finite element technique
was employed. Thermomechanical deformation from metal to insulator layers under in-service
temperature cycling (obtained from the multiphysics model of the entire actuator, which was validated
by experimental and specified analytical solutions) was accurately estimated to define failures with
a significant efficiency and feasibility. Simulation results showed that critical failure modes included
interface delamination, plastic deformation, micro cracking, and thermal fatigue, similarly to what
was concluded in the MEMSCAP® technical report.

Keywords: micro electromechanical systems (MEMS); residual stresses; subdomain method;
manufacturing process; multilayer structure

1. Introduction

Multilayer structures have been widely used in various micro- and nanoscale components because
of their better electrical continuity and thermal insulation. Alongside these advantages, it has also been
demonstrated that multilayer interfaces are one of the most common sites of potential failures, since
they often have weak bonding (low resistance to fracture) and are sites of large stress concentration
(high driving force for fracture) as a result of the deformation mismatch of dissimilar materials [1].

Recently, several scholars have realized the reliability problems of multilayer structures and have
attempted to analyse their failure behaviours. In [2–4], the scholars examined the interface delamination
failure in various micro electromechanical systems (MEMS) devices. Sumigawa et al. studied the
crack initiation at a Si–Cu–SiN–Au interface caused by stress concentration [1]. Zhu et al. [5] also
investigated the crack initiation strain of a Cu–Ni multilayer on a polyimide substrate. They explored
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the critical value of strain for increasing crack density. In addition, Köckritz et al. [6] studied the
modification of the layered structure according to the requirements of each layer of material to improve
its lifetime and performance. Yan et al. [7] studied the effect of the environmental factors temperature
and humidity on the bending fatigue strength of a Cu–Si interface. The thermal fatigue lifetime of
a Si–Ceramic–Cu interface was predicted with the finite element method (FEM) also by Rodriguez and
Shammas [8].

Previous studies have revealed that critical failure modes in multilayer structures include interface
delamination, micro cracking, and thermal fatigue [9,10]. Moreover, our coauthors have conducted
some studies about the failures of micro multilayers, including thermal fatigue, cracking, and interface
delamination, utilizing the Physics of Failure method [9,11,12]. However, little attention was given
to the effect of the manufacturing process (both residual stresses and variation of design parameters)
on the long-term reliability of multilayer structures. This factor is important for failure initiation
and propagation in microscale devices because of the size and surface effects, as emphasised by the
manufacturing manual and the reliability analysis reports of MEMSCAP® actuators in the Polynoe
program [13–15]. In addition, Huang and Zhang [16,17] analysed the effects of residual stresses
on the development of bilateral (SiNx–Al) micro cantilevers based on IR (Infrared Range) detectors.
Furthermore, Zhang and coworkers [18,19] evaluated the curvature induced by residual stresses
(strains) and combined the effects of creep and stress relaxation in a thin film employing finite element
simulations. Li et al. [20] studied the effect of residual stress on a SiNx film and the corresponding
improvement. In some works [21,22], the effects of parameter uncertainties on the function of MEMS
were evaluated by stochastic finite element method (SFEM).

The objective of this research was to evaluate the effects of these manufacturing factors on
thermomechanical deformation mechanisms as well as on failure onset and propagation in a multilayer
structure. These variables are of vital importance for the design and analysis of micro actuators and for
the improvement of their performance in the submicron scale. Since it is still difficult to detect damage
in the internal structure of such devices by experimental testing approaches without destructing the
specimens, the finite element (FE) analysis method based on a subdomain method was employed,
which required the accurate assessment of stress and strain distributions to evaluate the failures.
Hence, the verification of the subdomain model was granted by the adjusted geometry, material,
and dynamic loadings that were obtained from the functional model of actuators, which was validated
by experimental measures and specified analytical solutions.

2. MEMSCAP® Actuator

2.1. Micro Actuator Presentation

The MEMSCAP® actuator studied in this research is bistable and consumes no power in either
the ON or the OFF position [12,13]. In order to make a latching switch, two actuators were utilized.
Their assembly in MEMS devices is shown in Figure 1. The key component of an actuator is the
U-shaped structure (“heatuator”) containing two thin “hot” beams and a wide “cold” beam (Figure 2).
The “cold” beam, which was used to carry an electrical signal, was electrically isolated from the
“hot” beams, actuating the switch. Different thermal expansions were used to achieve motion along
the wafer.
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Figure 1. Micro actuator assembled in micro electromechanical systems (MEMS) devices. Reproduced 
with permission from [23]. 

 
Figure 2. Two-hot-beam thermal actuator: A passive beam (“cold” arm) carries the electrical 
information, and two active beams (“hot” arms) are used for actuation; a dielectric barrier is between 
the passive and active beams. Reproduced with permission from [23]. 

In the studied actuator, joint layers of different materials (from substrate to flexible metal 
cantilevers) were designed for better electrical continuity and thermal insulation. The well-
established MetalMUMPs (Metal Multi User MEMS Processes) were used to manufacture this micro 
actuator [12]. Figure 3 represents a cross-sectional scheme of the multilayer cantilever micro actuator, 
where the various material layers are identified by a colour chart. 
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Figure 3. Cross section of the actuator and corresponding materials of the joint layers. 
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Figure 1. Micro actuator assembled in micro electromechanical systems (MEMS) devices. Reproduced
with permission from [23].
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Figure 2. Two-hot-beam thermal actuator: A passive beam (“cold” arm) carries the electrical
information, and two active beams (“hot” arms) are used for actuation; a dielectric barrier is between
the passive and active beams. Reproduced with permission from [23].

In the studied actuator, joint layers of different materials (from substrate to flexible metal
cantilevers) were designed for better electrical continuity and thermal insulation. The well-established
MetalMUMPs (Metal Multi User MEMS Processes) were used to manufacture this micro actuator [12].
Figure 3 represents a cross-sectional scheme of the multilayer cantilever micro actuator, where the
various material layers are identified by a colour chart.
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MetalMUMPs require 12 steps: (1) preparing a base wafer (N-silicon); (2) growing silicon oxide
(Oxide 1) on the wafer surface and depositing a phosphosilicate glass layer as a sacrificial release layer;
(3) coating the wafer with a UV(Ultraviolet)-sensitive photo-resist film, lithographically patterning it
by exposing to UV light through the phosphosilicate glass layer, and then developing it; (4) adding
a blanket layer of silicon nitride (Nitride 1); (5) doping and annealing a polysilicon film (Poly);
(6) etching the second layer of silicon nitride (Nitride 2); (7) patterning and wet chemical etching the
second sacrificial oxide layer (Oxide 2); (8) repeating the same procedure as in (7) to pattern the anchor
metal; (9) plating the base layer with copper; (10) electroplating the nickel layer (Metal); (11) plating
the gold layer (Sidewall metal) and removing the plating base from any exposed regions using wet
chemical etching; (12) releasing and etching a Si trench.

2.2. Preliminary Analysis of the Multilayer Structure

Typical failure modes observed in the studied micro actuator include thermal fatigue, interface
delamination, initiation and propagation of microcracks, material’s plastic deformation, and contact
resistance degradation. These failure modes are closely linked to the heating of the flexible beams
and the connected multilayer anchors. Different thermal expansions and geometries generate thermal
stresses that vary along layer films and depend on the material properties, e.g., the Young’s moduli,
the coefficients of thermal expansion, the thermal conductivity, etc. Also in [24], the scholars reached
a similar conclusion: when manufacturing MEMS, the manufacturing process variations led to
mismatches between the original designs and the final products.

Additionally, in the MetalMUMPs flow presented above, some nonuniformities could be observed
on some wafers because of the insufficient quality of the final structure’s line width, which may have
been caused by UV exposure or by the final thickness of the metal layers that could not be precisely
defined in the electrodeposition process. Hence, it was decided to perform a process sensitivity study
of the dimensions, critical for the selected modes of failure.

For the mentioned manufacturing process, it also should be noticed that multilayer thin-film
materials with various thicknesses, compositions, and deposition methods for each layer typically
exhibit residual stresses. Occasionally, the presence of such stresses and strains can enhance or
decrease the performance of the functional devices. To optimize the application of multilayer thin
films, it is crucial to understand the nature of residual stresses and their effect on the reliability of
a multilayer structure.

Therefore, these factors related to the control of the manufacturing processes interact with
in-service loadings and bring uncertain effects on the onset and propagation of failures. This should
be explored before fabrication in the failure analysis of the multilayer structure in micro actuators for
a better design.

Undoubtedly, an experimental analysis such as transmission electron microscope (TEM) could
be employed for estimating the mentioned problems in multilayer designs. However, its destructive
character for the studied actuators limits its application in the failure analysis. Therefore, a numerical
modelling method was employed and it is explained in the following sections, followed by a discussion
of micromechanical modelling and simulation results.

3. Micromechanical Modelling

3.1. Geometrical and Material Property Characterization

The numerical method begins with creating the geometry of the studied structure and analysing its
material behaviours through the FE model using the COMSOL Multiphysics® software (4.0, COMSOL,
Stockholm, Sweden). The entire numerical model of the multilayer cantilever micro actuator is shown
in Figure 4. Despite the very large number of elements in the mesh (more than 18,000,000) needed to
detect the failure onset within the micro-scale multilayer structure, a fatal “out of memories” error
occurred. Consequently, a subdomain method was chosen, in which a specific material structure and
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dynamic boundary conditions related to the powering up and down of the device were imported from
a simplified multiphysics functional model (See Figure 5a).
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Figure 5. (a) Von mises stresses obtained with the verified function model of actuators and (b)
subdomain multilayer structure of the micro actuator.

To demonstrate the efficiency and feasibility of the proposed approach, two groups of data were
employed to verify the multiphysics model using a set of figures: (i) comparisons of temperature,
stress, and tip deflection value with validated analytical solutions and experimental data when the
applied voltage (U) changed from 1 V to 10 V (as shown in Figure 6a–c) [23]; (ii) comparisons of the
temperature distribution along the length of the “hot” arms, Lh1 and Lh2, with analytical solutions
(as shown in Figure 6d,e) [23]. The power dissipated in a resistor is always proportional to U. Therefore,
the temperature is also proportional to U, explaining the parabola observed in Figure 6a–c. As shown
in Figure 6d,e, it was found that the temperature was largely uniform in the middle of the arms except
near the ends, which is coincident with the conclusions in [25,26]. The results of the comparisons
demonstrated that this multiphysics model was acceptable for the thermomechanical analysis to output
boundary conditions for the subdomain model.
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Figure 6. Verification of the simplified multiphysics simulations by analytical solutions and
experimental data: (a) peak values of temperature with applied voltages (U) from 1 V to 10 V;
(b) maximum stresses with applied voltages (U) from 1 V to 10 V; (c) displacement of the contact tip
with applied voltages (U) from 1 V to 10 V; (d) transient temperature distribution of Lh1 at U = 5 V for
type I boundary conditions; (e) transient temperature distribution of Lh2 at U = 5 V for type I boundary
conditions. Reproduced with permission from [23].

Additionally, the multiphysics simulations arrived at the same conclusion as the practical
observations, i.e., that the multilayer structure was one of the sites prone to failures in MEMSCAP®

actuators [12]. The geometry of the studied domain of the multilayer structure is shown in Figure 5b.
This multilayer structure contains seven layers from the top to the bottom: gold, electroplated

nickel, plating copper, polysilicon, silicon nitride, silicon oxide, and N-type silicon. This design
allows a gradual electro transition from conductive to insulating properties for better performance.
Some of the material properties in the metal layers are temperature-dependent, requiring the use of
thermomechanical coupling. The thermal conductivity of gold varies sufficiently over the temperature
range of interest to require the use of temperature-dependent values [27].

k(T) = 497T + 41T2 − 10.4T3 + 0.56T4 − 0.01T5, (1)

The variation of the Young’s modulus E (GPa) and of the coefficient of thermal expansion α(◦C−1)

with the temperature for the nickel layer can be calculated as [9,27]:

E(T) = 230× (1− 0.000286T), (2)

α(T) = 13× 10−6 × (1 + 0.000343T), (3)
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The nickel layer demonstrated a linear kinematic hardening behaviour, and the kinematic strain
hardening rate, HNi, was experimentally evaluated to be 4 GPa (±2%) [9].

For the plating copper base, the material properties of the passivized copper films and the
kinematic hardening model were utilized. The linear dependence of initial yield strength on
temperature can be described by the following relationship [28]:

σy = σ0·(1− T/T0), (4)

where σ0 and T0 are reference constants. For passivized copper films, reliable results were obtained
with σ0 = 305 MPa, T0 = 1090 K. The kinematic strain hardening rate of copper is HCu = 77 GPa [29].

All other properties are listed in Table 1 [9,27–30], where Th denotes the thickness of various
layers, ν is the Poisson’s ratio, Tan represents the tangent modulus, and H is the kinematic strain
hardening rate.

Table 1. Material and geometrical properties of the multilayer structure.

Materials Colour Th
(µm)

E
(GPa) ν

α(T)
(×10−6◦C−1)

σy/σult
(MPa)

Tan
(MPa)

H
(GPa)

k
(W/(m ·K))

Si
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3.2. Dynamic Loadings for Failure Analyses

The concern over the reliability of multilayer structures arises from the large mismatch of thermal
expansions between different materials in the through-thickness y-direction (as shown in Figure 5b).
This mismatch generates a concentration of thermomechanical stresses when the multilayer structure
is subjected to changes in temperature. The metal parts of the studied symmetric multilayer structure
were connected to the flexible cantilevers of the actuators, hence, the displacement conditions should
be consistent with their movement. Therefore, the dynamic loadings in the studied approach should
include temperature changes and dynamic displacement boundary conditions.

(1) Thermal cooling and cycling

As already mentioned, residual stresses may be induced during the manufacturing processes
because of the different thicknesses, compositions, and deposition methods of each layer. Theoretically,
they can be either flow-induced (chain preferential orientations, freeze-off packing pressure, etc.) or
thermally induced. In the studied thin films, the electroplating technique was used in MEMSCAP®

MetalMUMPs to form the multilayer structure. Thin films were deposited at elevated temperatures,
followed by cooling to room temperature. Therefore, residual stresses could arise from the
differential materials shrinkage as the temperature dropped from the process settings to the ambient
postprocess conditions.

The electroplating process in MetalMUMPs takes place at relatively low temperatures (<140 ◦C),
but other manufacturing processes might reach higher temperatures. As it was experimentally shown,
in general, thermal cooling from temperatures about 60 ◦C–90 ◦C can cause yielding processes in
the plating base (copper layer), which may result in nonrecovery expansions [9–11]. In order to
overconstrain the structure, the boundary conditions applied were a combination of the kinematic
constrain and the free boundary conditions. Thus, the following four cases of thermal cooling rate
applied to the metal layers were analysed to examine the different effects on MetalMUMPs: Rate I,
temperature difference ∆T from 30 ◦C to 0 ◦C, Rate II, ∆T from 60 ◦C to 0 ◦C, Rate III, ∆T from 80 ◦C
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to 0 ◦C, Rate IV, ∆T from 150 ◦C to 0 ◦C. The other materials were assumed to be stress-free. The total
strain induced on the layers by thermal cooling could be derived from:

dεij = δijα(T)∆T, (5)

where dεij denotes the total strain increment and δij is the Kronecker delta.
Several thermal cycles were repeated in all layers, as shown in Figure 7, until the change in

magnitude of the plastic strain reached a steady-state value. The cyclic temperature increased from
0 ◦C to 150 ◦C, and then decreased from 150 ◦C to 0 ◦C.
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Figure 7. Thermal loadings include cooling and cycling process.

(2) Dynamic displacement conditions

It was shown [9–11] that boundary axial and bending displacements represented critical
configurations especially for the copper layer, where damage is expected because of the effect of
a highly-localised stress–strain field. Therefore, these displacements should be simulated as close to
the operation condition of the actuator (movement of flexible nickel cantilevers) as possible.

The subdomain configuration of multilayers is shown in Figure 8, where metal layers are shown
in blue and nonmetal layers in grey. The bottom surface of the structure at y = 0 was fully constrained
in x-, y-, and z-axis. The symmetry boundary conditions were applied in the planes at x = 0 and z = 0.
The nonmetal faces B1 and B2 were assumed to be fixed substrates, thus the displacement along the x-,
y-, and z-axis were constrained. The remaining surfaces A1 and A2 underwent dynamic displacement
conditions caused by the thermo-induced mechanical deformation of the flexure beams (See Figure 5a).
Such loading conditions were obtained by the multiphysics functional model, shown in Figure 9 [23].
The main task of this research was to identify a different combination of cooling and cycling thermal
loadings and boundary conditions which might lead to damage (e.g., interfacial delamination, micro
cracking, plastic deformation, and thermal fatigue) within the multilayer structure.
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is shown in the inset.

4. Results and Discussion

The principal factors to consider with respect to failure mechanisms of a multilayer structure
are: (1) stress concentration resulting in the amplification of local stresses and strain because of
thermal changes; (2) thermal fatigue caused by in-service thermal cycling; (3) residual stresses and
predeformation of thin films caused by material cooling and the packaging process; and (4) the
degree of local parameter variations at failure onsets. The seven-layer structure was meshed with the
187,425 hexahedral and quadrilateral elements of the vulnerable layer (copper layer) described with
a finer mesh.

4.1. Stress Concentration and Strain Amplification under Thermal Transients

The stress and strain distributions take a significant part in defining the failure behaviours in
MEMS devices, especially mechanically-induced problems. In a case used as a reference, the initial
condition of the developed model did not include residual stresses in each layer. After several thermal
cycles for the powering of the device, von Mises stresses and the elastic–plastic strain in the multilayer
structure at ∆T = 150 ◦C of the last cycle were determined and are shown in Figures 10 and 11,
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respectively. Yielding and plastic deformation were detected in the three layers (copper, nitride,
and gold). The copper plating base was exposed to a severe stress concentration at the interface
with the polysilicon, and to strain amplification at the interface with nitride. The high interfacial
stresses generated the onset of initial yielding and a probable, successive interfacial delamination and
micro cracking.
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The character of the evolution of von Mises stresses with thermal changes along the edge of
Cu–polysilicon in the last half cycle from 0 ◦C to 150 ◦C is shown in Figure 12a,b. As expected,
the highest stress concentration was located at the interface centre corresponding to the thin layers of
copper and polysilicon, and reached up to 463 MPa (when the temperature change ∆T was 150 ◦C).
It was shown that the applied loading and boundary conditions are of crucial importance for the
yielding onset. Compared with that at the interface of copper and nitride, the general behaviour of the
copper layer was characterized by both thermoelastic and plastic regimes, as shown in Figure 12c,d.
Similar results were found by our research partners within the Polynoe program [12,13].
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Additionally, the distribution of stress and plastic strain along the central edge of the copper layer
from the polysilicon to the nitride layer are shown in Figure 12e,f. When the temperature change
exceeded 90 ◦C, the corner part of the copper layer near the polysilicon layer could transit into the
yielding process and, when the temperature change approached 120 ◦C, it totally underwent plastic
deformation. In this loading condition, the multilayer actuator experienced a shear force at the interface
of the different layers, while actuated. Consequently, delamination could occur after a long-term
operation, decreasing the actuator's lifetime.

The results of the simulation, presented in Figure 12e,f, also demonstrated the presence of
a singular point at the interface between different layers. This can be explained by the fact that the
layers of different materials with varying coefficients of thermal expansions were assumed to be
perfectly bonded together at their interfaces; consequently, the distorted shape was different from the
ideal configuration.
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4.2. Estimation of the Thermal Fatigue Lifetime

Since, when in service, the power was repeatedly switched on and off, the components were
subjected to thermal cycling. Our stress and strain analysis showed that the most critical area was
the thin copper layer. In particular, the maximum stress was concentrated at the interface with the
polysilicon layer, and the maximum strain at the interface with nitride. These thermal and mechanical
cycles and their coupling can result in the variation of the grain size (because of annealing in hottest
regions), grain boundaries, and surface roughness, and they can accelerate the growth of micro- and
nanoflaws in the structure. Ultimately, the progressive and localized structural damage can be caused
by thermomechanical fatigue.

To estimate the thermal fatigue lifetime of the multilayer structure, the strain-based fatigue
properties were introduced in the Coffin–Manson relationship:

∆εpl

2
= ε(2N f )

c, (6)
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where ∆εpl is the plastic strain amplitude (shown in Figure 13), c is known as the fatigue ductility
exponent that, in general, varies from −0.5 to −0.7, Nf is the fatigue life (in cycles), and ε denotes the
fatigue ductility coefficient.
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Thus, the thermal fatigue lifetime computed by employing the results of simulations was equal
to 1819 for c = −0.5, and to 174 for c = −0.7 for the reference case, without accounting for residual
stresses. These values were compared with those for cases with residual stresses and variation of
design parameters, as shown below.

4.3. Effects of Different Levels of Residual Stresses on the Long-Term Reliability of the Multilayer Structure

The studied multilayer structure was subjected to thermal-induced residual stresses related to its
manufacturing process. Different thermomechanical parameters (e.g., different cooling rates), as the
material solidifies from the mold wall to the centre, would produce various levels of residual stresses.
In addition, from the analysis of stress and strain concentrations, it was found that at about 90 ◦C
the yielding process started in the copper layer. Therefore, to fully investigate the effects of different
regimes of postmanufacturing cooling, five cases were designed (See Figure 7): (i) without residual
stresses, i.e., the reference group, (ii) Rate I, (iii) Rate II, (iv) Rate III, (v) Rate IV.

The simulation results for maximum levels of von Mises stress concentration along the copper
and polysilicon interface for the five cases are shown in Figure 14; Table 2 presents a comparison of
maximum strains and thermal fatigue lifetime in these cases.
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Table 2. Estimation of fatigue lifetime for different cooling rates.

Case Residual Stresses Maximum Plastic
Strain ∆εpl(%) Parameter c Fatigue Life Nf

i None 0.663
−0.5 1819
−0.7 174

ii Rate I 0.655
−0.5 1864
−0.7 177

iii Rate II 0. 660
−0.5 1836
−0.7 175

iv Rate III 0.778
−0.5 1321
−0.7 139

v Rate IV 0.98
−0.5 832
−0.7 100

From the analysis of the results shown in Figure 14, it is clear that material shrinkage
during injection molding can be conveniently described by a typical state of stress characterised
by compression in the multilayers balanced by expansions in the following loadings of thermal
cycling. Residual stresses caused by cooling in the manufacturing process would help decrease stress
concentration in the layers; cooling from higher temperatures was not found to be more beneficial.
The analysis of the maximum plastic strain and fatigue lifetime shown in Table 2 demonstrated that an
appropriate cooling regime did not significantly affect the plastic deformation and thermal fatigue.
However, for cases with initial temperatures exceeding 80 ◦C, more plastic deformation accumulates
in the thermal cycling, greatly reducing the lifetime of the multilayer structure.

Thus, when changing the state of the actuator between the “on” and “off” positions, appropriate
residual stresses caused by thermal cooling could play a positive role in the actuator's thermal
expansion. However, if the residual stresses and strains are beyond the elastic limit of the copper layer,
they may accelerate the actuator's plastic deformation and affect detrimentally its reliability.

4.4. Effects of the Variation of Geometrical and Material Parameters on the Long-Term Reliability of the
Multilayer Structure

The complex and highly variable nature of the microactuator’s manufacturing processes and
of the electroplated deposition makes it difficult to empirically assess the influence of the involved



Micromachines 2017, 8, 348 15 of 17

parameters on the device performance. Thus, in this research, the FEM method was employed for
this purpose. Both geometry and material variations could be examined with high levels of control
and efficiency.

The results of the numerical analysis mentioned before demonstrated that the copper layer was
the vulnerable area, presenting high concentrations of stresses and plastic strain. This was also
supported by the experimental findings that both interface delamination and micro cracking arose
in the copper layer. Thus, variations of the design parameters for the copper layer were considered
to assess their effects on the fatigue behaviour of the studied multilayer structure under thermal
cycling. Four cases of variations were considered, as listed in Table 3. In each case, only one of four
parameters, i.e., the Young’s modulus, the coefficient of thermal expansion, the thermal conductivity,
or the thickness of the copper layer was changed, while the reference values for the others were
retained. Therefore, in case (a) there were five groups of data corresponding to different values of the
Young’s modulus of copper; similarly, each of the other cases had five groups of data corresponding to
different values of one of the other parameters, as shown in Table 3.

Finite element simulations of all 20 sets of parameters for the chosen four cases were used for
a critical evaluation of the influence of significant design and material parameters on the fatigue life of
the vulnerable parts in the micro actuator multilayer structure. The obtained maximum magnitudes
of its plastic strain and the estimates of the thermal fatigue lifetime for the four cases are shown in
Table 4. The bold font is used to highlight the reference set of parameters.

Table 3. Parameters of cases used to study the effect of variations of geometrical and material parameters.

Case Young’s Modulus
E (GPa)

Coefficient of Thermal
ExpansionCTE

α (×10−6◦C−1)

Thermal Conductivity k
(W/(m·K))

Thickness of Copper:
Th (µm)

a {70, 90, 110, 130, 150} 17 400 0.55
b 110 {13, 15, 17, 19, 21} 400 0.55
c 110 17 {200, 300, 400, 500, 600} 0.55
d 110 17 400 {0.35, 0.45, 0.55, 0.65, 0.75}

Table 4. Estimates of fatigue life.

Case Maximum Plastic Strain ∆εpl (%) Parameter c Fatigue Life Nf

a {0.82, 0.75, 0.735, 0.68, 0.66}
−0.5 {1189, 1422, 1480, 1730, 1836}
−0.7 {129, 146, 150, 168, 175}

b {0.591, 0.661, 0.733, 0.8, 0.8}
−0.5 {2290, 1830, 1488, 1250, 1250}
−0.7 {206, 175, 151, 133, 133}

c {0.733, 0.733, 0.711, 0.733, 0.733}
−0.5 {1488, 1488, 1582, 1488, 1488}
−0.7 {151, 151, 158, 151, 151}

d {1.02, 0.93, 0.733, 0.6, 0.55}
−0.5 {768, 924, 1488, 2222, 2283}
−0.7 {94, 107, 151, 201, 264}

The analysis of the obtained results indicated that the most sensitive parameters to fatigue lifetime
were: (1) the mismatch in thermal expansion between the copper and nickel layers (as shown in Case
b) and (2) the thickness difference between the copper and polysilicon layers (as shown in Case d),
which significantly decreased the stress concentrations. Thus, the most significant improvement to
fatigue lifetime could be obtained by balancing these parameters. A ratio of 1:1 of these parameters
appeared to enhance the life of the actuator, as compared with the reference groups. No significant
change in the fatigue life was observed for other variations. These results also indicate that improved
reliability may be obtained at the cost of performance. The designers of micro actuators should consider
a balanced relationship between performance and reliability.
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5. Conclusions

The long-term reliability of the MEMSCAP® actuators can be greatly reduced because of failures of
their multilayer structure wherein large stress concentration and delamination can emerge. Thus, it is
necessary to predict the failure behaviours of the multilayer structures and investigate the effects
of both the manufacturing process and the in-service On–Off operation loadings. Finite element
simulations based on the subdomain method were employed in this research. To guarantee the validity
of the numerical approach, dynamic displacement loading was adjusted employing the practical
function model of micro actuator, validated with the experimental data and analytical solutions.

The obtained simulation results demonstrated that the maximum local stresses concentrate along
the copper–polysilicon interface and the maximum strains were found along the copper–nitride
interface. Both factors can result in potential failures, such as yielding or creep of materials, interface
delamination, micro cracking, and thermal fatigue, as it was found by studies within the POLYNOE
program on the same device [13–15].

Additionally, this research could provide important insights into the effects of the manufacturing
processes on the performance of the actuator under conditions of thermal fatigue observed in the
multilayer structure:

(i) the manufacturing processes could produce beneficial residual stresses at a specific range of
cooling rates, lower than 90 ◦C;

(ii) sensitively adjusting the level of the coefficient of thermal expansion of copper and selecting
a suitable thickness of the copper layer could help improve the reliability of the multilayer
structure. These changes, though, should be balanced with the actuator's performance in terms
of electrical and thermal continuity.
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