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Abstract

Reduced order Disturbance OBservers (DOB) have been proposed in Kim et al (2010) and Kim and Rew (2013) for continuous-
time and discrete-time linear systems, respectively. The existence condition of the promising algorithm has been established
but is not straightforward to check. This work further improves the reduced order DOB design by formulating it as a functional
observer design problem. By carefully designing the state functional matrix, a generic DOB is resulted with an easily-checked
necessary and sufficient existence condition and an easily-adjusted convergence rate. It is also shown that both the reduced
order DOB in Kim and Rew (2013) and the full order DOB in Chang (2006) are special cases of this new DOB.
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1 Introduction

Motivated by the prosperous applications in distur-
bance rejection control and fault diagnosis (see, Wei and
Guo (2010); Wei et al (2016); Su and Chen (2017);
Yang et al (2018)), a discrete-time Disturbance OBserver
(DOB) was proposed in Chang (2006). To relax observer
existence conditions and reduce the observer order, a re-
duced order DOB was designed in Kim et al (2010) to
reconstruct disturbances/faults with a minimal observer
order for continuous-time linear systems. Recently, this
innovative work was further extended to the discrete-time
case in Kim and Rew (2013), where the systems under
consideration are{

xk+1 = Φxk + Γuk +Gdk

yk = Cxk
, (1)

where xk ∈ Rn, uk ∈ Rm, dk ∈ Rq and yk ∈ Rl are
the states, inputs, disturbances and measurements at
kth step. Disturbance distribution matrix G has a full
column-rank (i.e., rank(G) = q); otherwise, the redun-
dant inputs can be removed (see, Su et al (2015)). The
disturbances dk are assumed to be unknown but slowly
time-varying, i.e., the following assumption is assumed

dik+1 = dik + ∆dik+1, (2)
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with dk := [d1
k, · · · , d

q
k]T , |∆dik+1| = |dik+1 − dik| ≤ Tµi

where T is the sampling time, µi is a small positive value.
Remark 1 : The disturbance assumption in (2), in

comparison with the ones in Gillijns and De Moor (2007)
and Su et al (2015) where no particular disturbance mod-
els are assumed, can relax the observer existence con-
dition. However, this is usually at the expense of a de-
graded performance when the disturbance assumption is
violated.

Following the same notations as in Kim and Rew
(2013) (see, pp. 970), define Nc := (In − C+C) with C+

being the Moore-Penrose inverse of C and He as

He :=

[
KNc

K(Φ− In)Nc

]
=

[
H1

H2

]
V T ,

with K being a gain matrix to be designed, H1 ∈ Rq×h,
H2 ∈ Rq×h and V T ∈ Rh×n with h = rank(He).

Defining ηk := V Txk ∈ Rh, the reduced order DOB
constructed in Kim and Rew (2013) is given by



ξk+1 = Rξk + Syk +Wuuk +Wdd̂k

η̂k = ξk +Qyk

zk+1 = zk +K{(Φ− In)C+yk + Γuk}
+KGd̂k +H2η̂k

d̂k = KC+yk − zk +H1η̂k

, (3)

where zk ∈ Rq and ξk ∈ Rh, Wu = (V T − QC)Γ , Wd =
(V T −QC)G with matrices S,Q,R satisfying

(V T −QC)Φ−R(V T −QC)− SC = 0. (4)
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Denote disturbance and state function estimation er-
ror as ek = dk− d̂k and εk = ηk− η̂k. The composite error
dynamic is given by Kim and Rew (2013)[

ek+1

εk+1

]
= Ae

[
ek

εk

]
+

[
∆dk+1

Oh×1

]
,

where the composite error matrix Ae is defined as

Ae =

 Iq −KG+H1(V T −QC)G H1R−H1 −H2

(V T −QC)G R

 . (5)

As pointed by Kim and Rew (2013), the existence of a
stable reduced order DOB (3) depends on whether there
exists a gain matrix K and other design parameters so
that: (i) the Sylvester equation (4) holds; (ii) matrix Ae

in (5) is asymptotically stable (i.e., the amplitudes of its
eigenvalues are less than 1). Condition (i) is implied by
the matrix rank equality

rank(

[
Z1

V TΦ

]
) = rank(Z1) , Z1 := rank(


C

CΦ

V T

).

(6)
However, condition (ii) is not straightforward to check. Its
existence is related to a static output feedback problem. As
pointed out in Kim et al (2010) and Kim and Rew (2013),
although numerical solutions exist, the general solvability
of the static output feedback is not known.

To further develop this promising approach, this pa-
per improves the results in Kim and Rew (2013) by
presenting a generic reduced order DOB with an easily-
checked existence condition. We transform the reduced
order DOB design problem into a State Functional Ob-
server (SFO) design problem (see, Darouach (2000), Fer-
nando et al (2011) for SFO theory). This is achieved
by first augmenting the disturbances with the states and
then carefully designing the state functional matrix. Con-
sequently, a generic DOB is resulted with its necessary
and sufficient existence condition. There are two promis-
ing features in the newly developed DOB in comparison
with the existing results:

(i) The existence condition is easy to check, where two
easily-checked matrix rank equalities are required;

(ii) The observer convergence rate can be easily ad-
justed via the existing pole assignment techniques.

On this basis, we further investigate the relationship be-
tween the proposed DOB with the reduced order DOB in
Kim and Rew (2013) and the full order DOB in Chang
(2006) in terms of the observer structure and existence
conditions. Both of them are shown to be special cases of
the newly developed DOB.

2 DOB design using SFO technique

SFO, firstly introduced in Luenberger (1966), re-
ceived much attention in control engineering (see,
Darouach (2000)) owning to its fine properties such as
a lower observer order and a relaxed existence condition.
Its existence condition has been rigorously established
in Darouach (2000). However, little attention has been
paid to its applications in disturbance/fault estimation.

Consequently, this paper aims to exploit its potential in
DOB design, which can provide a framework unifying
the existing DOB for discrete-time linear systems.

2.1 Observer design

Combining system (1) and disturbance (2), and defin-
ing x̄k = [xTk , d

T
k ]T , an augmented system is resulted

{
x̄k+1 = Āx̄k + Γ̄ uk + ∆d̄k

yk = C̄x̄k
, (7)

where the gain matrices and ∆d̄k are given as follows

Ā =

[
Φ G

Oq×n Iq

]
, Γ̄ =

[
Γ

Oq×m

]
,

C̄ =
[
C Ol×q

]
,∆d̄k =

[
On×1

∆dk

]
.

Remark 2 : For the case that measurement outputs are
also subject to disturbances, i.e., yk = Cxk +G2dk, this
approach is also applicable by choosing C̄ = [C G2]. Then
the remaining design procedures are the same, although
the existence condition will be slightly different.

To obtain disturbance estimates, the state functional
matrix L (see, Darouach (2000) for its definition) is cho-
sen with a special structure

L =

[
L0 Oh̄×q

Oq×n Iq

]
, (8)

where the design of sub-matrix L0 ∈ Rh̄×n with full row-
rank will be discussed in Section 2.3. Define

vk = Lx̄k, with dk = [Oq×n, Iq]vk, (9)

which is the state function to be estimated.
Now the problem of DOB design can be transformed

into the problem of state functional observer design for
the augmented system (7) with state function vk in (9)
to be estimated.

According to SFO theory (see, Darouach (2000) and

Fernando et al (2011)), the disturbance observer for d̂k
along with the state functional observer for vk takes the
following form

wk+1 = Nwk + Jyk +Huk,

v̂k = Bwk + Eyk,

d̂k = [Oq×n Iq]v̂k.

(10)

Defining an intermediate error χk = P̄ x̄k − wk with
P̄ being an intermediate matrix, its dynamics is given by

χk+1 = Nχk + (P̄ Ā−NP̄ − JC̄)x̄k

+ (P̄ Γ̄ −H)uk + P̄∆d̄k.
(11)
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Moreover, the state function estimation error ek =
vk − v̂k can be written as

ek = Bχk + (L− EC̄ −BP̄ )x̄k, (12)

from which one can obtain ek → 0 as k →∞ for any x̄k if
and only if the following two conditions hold concurrently:

(i) χk → 0 as k →∞ ;
(ii) L− EC̄ −BP̄ = O.

For any invertible matrix B, the aforementioned condi-
tion (ii) is implied by choosing P̄ as

P̄ = B−1L−B−1EC̄. (13)

Ignoring the term P̄∆d̄k as it does not affect the anal-
ysis, Eq. (11) implies that χk → 0 as k →∞ if and only
if the following conditions hold simultaneously
(a) P̄ Ā−NP̄ − JC̄ = O (Sylvester equation);
(b) P̄ Γ̄ −H = O;
(c) N is asymptotically stable.

Choosing P̄ according to (13) with any invertible B
andH according to Condition (b), then the existence con-
dition reduces to Condition (c), i.e. N being asymptoti-
cally stable under the constraint Sylvester equation Con-
dition (a). The existence condition in the form of easily-
checked matrix rank equalities has been established in
Darouach (2000) with B = I and later in Fernando et al
(2011) with B being any invertible matrix, summarized
in Theorem 1.
Theorem 1 For system (1) under disturbance assump-
tion (2), there exists a stable generic DOB (10) for system
(1) if and only if the following conditions hold:

i) the following matrix rank equality is satisfied:

rank(


L0Φ

CΦ

C

L0

) = rank(


CΦ

C

L0

), (14)

ii) the pair (F,M) in Eq. (20) is detectable or equiva-
lently ∀s ∈ C with Re(s) ≥ 1,

rank(


sL0 − L0Φ −L0G

Oq×n sIq − Iq
CΦ CG

C Ol×q

) = rank(


CΦ

C

L0

) + q. (15)

Proof: The existence condition is established by substi-
tuting the state function matrix (8) and the definition of
the variables to be estimated as in (9) into the existence
conditions in Lemmas 1 and 2 of Darouach (2000) and
Theorem 3 of Fernando et al (2011). After a number of
standard manipulations, Eqs. (14) and (15) are resulted.

2.2 Relationship with the existing results

In this section, we investigate the relationship of the
developed DOB using SFO technique with the reduced
order DOB in Kim and Rew (2013) and the full order
DOB in Chang (2006).

2.2.1 Relationship with reduced order DOB in Kim and
Rew (2013)

Inserting η̂k of (3) into d̂k yields

d̂k = KC+yk − zk +H1(ξk +Qyk). (16)

Combing η̂k of (3) and (16), one can obtain η̂k
d̂k


︸ ︷︷ ︸

v̂k

=

 I Oh×q

H1 −I


︸ ︷︷ ︸

B

 ξk
zk


︸ ︷︷ ︸

wk

+

 Q

KC+ +H1Q


︸ ︷︷ ︸

E

yk.
(17)

Substituting the dynamics of η̂k and d̂k in (17) into
that of ξk and zk in (3), a compatible form with SFO
based DOB (10) for ξk and zk is given by ξk+1

zk+1


︸ ︷︷ ︸

wk+1

=

 R+WdH1 −Wd

KGH1 +H2 I −KG


︸ ︷︷ ︸

N

 ξk
zk


︸ ︷︷ ︸

wk

+

 S +Wd(KC+ +H1Q)

KG(KC+ +H1Q) +K(Φ− In)C+ +H2Q


︸ ︷︷ ︸

J

yk

+

 Wu

KΓ


︸ ︷︷ ︸

H

uk,

(18)

which means the reduced order DOB (3) proposed in Kim
and Rew (2013) is a special case of the proposed DOB
(10) with L0 = V T in (8) and B in a special form as in
(17). All other corresponding matrices are defined in (17)
and (18) (see, the under-braces notations).

It shall be noticed that the existence condition (14)
in Theorem 1 is actually the same as condition (i), i.e.,
Eq. (6) of Kim and Rew (2013) with L0 = V T . However,
condition (15) with L0 = V T in Theorem 1 is a matrix
rank equality, which is much easier to check than Condi-
tion (ii) of Kim and Rew (2013) as discussed above, i.e.,
no general solvability for the existence of a static output
feedback problem exists.

2.2.2 Relationship with full order DOB in Chang (2006)
An observer simultaneously estimating full states and

disturbances was proposed in Chang (2006) for system
(1), given by

{
x̂k+1 = Φx̂k + Γuk + L1(yk − Cx̂k) +Gd̂k

d̂k+1 = d̂k + L2(yk − Cx̂k)
. (19)

One can put (19) into an equivalent form to have a com-
patible structure with the generic DOB (10).



 x̂k+1

d̂k+1


︸ ︷︷ ︸

wk+1

=

 Φ− L1C G

−L2C I


︸ ︷︷ ︸

N

 x̂k
d̂k


︸ ︷︷ ︸

wk

+

 L1

L2


︸ ︷︷ ︸

J

yk +

 Γ

Oq×m


︸ ︷︷ ︸

H

uk,

v̂k = In+q︸ ︷︷ ︸
B

wk +O(n+q)×l︸ ︷︷ ︸
E

yk,

d̂k = [Oq×n, Iq ]v̂k. (20)
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That means the full order DOB proposed in Chang (2006)
is a special case of the proposed DOB with L0 = In and
consequently L = In+q.

In addition, with L0 = In the existence condition (14)
in Theorem 1 always holds and the condition (15) reduces
to ∀s ∈ C with Re(s) ≥ 1,

rank(


sIn − Φ −G
Oq×n sIq − Iq
C Ol×q

) = n+ q,

which is equivalent to that of Chang (2006).
Remark 3 : Comparing (10) and (20), it can be discov-
ered that the filtered states rather than raw sensor mea-
surements yk are adopted to derive disturbance estimates
in full order DOB. As a result, in comparison with re-
duced order DOB, full order DOB is less sensitive to sen-
sor noises.

2.3 Design procedure of the generic DOB

The design of generic DOB using SFO technique starts
from choosing L0 to satisfy the existence conditions in
Theorem 1. In practice, an observer with a small order
may be more desirable. So the selection of L0 could start
with a low order in the complement space of C and then
increase the order until the conditions in Theorem 1 are
satisfied. This could make sure a disturbance observer
with a minimal order is designed. The complete proce-
dures are summarized below:
(1) Form a state functional matrix L according to (8)

and choose an invertible matrix B (default, B = I).
(2) Define matrices F and M as


F = B−1LĀL+B −B−1LĀNLΣ

+

 C̄ĀL+B

C̄L+B

 ,
M = [I −ΣΣ+]

 C̄ĀL+B

C̄L+B

 , (20)

where Σ =

[
C̄ĀNL

C̄NL

]
, L+ is the Moore-Pensrose

pseudo-inverse inverse of the matrix L, given by
L+ = LT (LTL)−1 due to L being of full-row rank,
NL = (I − L+L).

(3) Calculate matrix N by the existing pole placement
techniques for the matrix pair (F,M) as

N = F − ZM, (21)

where Z is the matrix obtained from the pole place-
ment of the pair (F,M). The observability of the
pair (F,M) is guaranteed by condition (15).

(4) Obtain gain matrices J andE based on the following
relationship

[B−1E J −NB−1E] = B−1LĀNLΣ
+ + Z

[
I −ΣΣ+

]
.

(5) Obtain matrix H via

H = (B−1L−B−1EC̄)Γ̄ .

Remark 4 : From (11) and (12), one can obtain ek+1 =
BNB−1ek +BP̄∆d̄k, which means the convergence rate
of the DOB is determined by the eigenvalues of N . It
follows from Eq. (21) that the convergence rate of the
generic DOB can be easily adjusted by using the existing
pole assignment techniques for the matrix pair (F,M).

3 Conclusions

In this work, state functional observer technique is ap-
plied to reduced-order Disturbance OBserver (DOB) de-
sign by augmenting the disturbances as additional states
and carefully selecting the state functional matrix. As a
result, the existence condition of a fixed order DOB is
represented in the form of two easily-checked matrix rank
equalities. Besides, the convergence rate of the DOB can
be easily adjusted via the existing pole assignment tech-
niques. It is also shown that both the reduced order DOB
in Kim and Rew (2013) and full order DOB in Chang
(2006) are special cases of the developed generic DOB.
Further work can be done to reduce the adverse effects of
sensor noises on disturbance estimate performance.
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