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Abstract – We introduce an effective one-mode Phase-field Crystal model for studying the
commensurate-incommensurate transition and domain wall dynamics of the (

√
3×
√

3)R30◦ phase
found in systems such as Xe/Pt(111), or Xe and Kr on Graphite. The model allows us to study
large systems where the domain walls can be separated over large macroscopic distances and at
same time incorporate the microscopic details of the domain wall structures. The resulting phase
diagram shows that an intermediate stripe incommensurate phase always separates the commen-
surate phase from the honeycomb incommensurate phases. The energy of the domain wall crossing
is investigated. We also find that near a step edge, the domain walls tend to align perpendicular
to the step edge, in agreement with recent experimental observations.

In many adsorption systems the maxima (minima) of1

the adsorption potential due to the substrate form a hon-2

eycomb (triangular) lattice [1]. This has been referred3

to previously as a honeycomb substrate [2]. Examples of4

such systems, which have been investigated in detail, are5

Xe on graphite [3], Kr on graphite [4] and Xe/Pt(111) [5].6

For these adsorption systems, the ideal separation between7

the adsorbate atoms is close to
√

3a, where a is the dis-8

tance between neighboring adsorption potential minimum.9

For small strain energies, the lowest energy commensurate10

states is the one that adatoms occupy only a third of the11

minima, forming the commensurate (
√

3×
√

3)R30◦phase.12

Experimentally, an apparent continuous phase transition13

from the commensurate (
√

3×
√

3)R30◦ to an incommen-14

surate phase with a honeycomb network of domain walls15

(HoI phase) has been observed for Kr and Xe on Graphite16

as function of temperature and coverage. In addition, for17

Xe/Pt(111) another uniaxial symmetry incommensurate18

phase with a striped array of domain walls has been ob-19

served [3, 5].20

Several theoretical works [6–8], however, have deter-21

mined that the transition from the commensurate (
√

3 × 22√
3)R30◦ to the HoI phase should be first order. Bak 23

et al. [7] argued that the symmetry of the domain wall 24

patterns in the incommensurate phase is determined by 25

the energy of the domain wall crossing. For a negative 26

value of domain wall crossing energy, the HoI phase is fa- 27

vored rather than a parallel set of striped domain wall 28

(SI) phase. This theory predicts that in this case a dis- 29

continuous transition from commensurate phase to a HoI 30

phase should take place. For positive domain-wall crossing 31

energy, the number of crossings must be as small as pos- 32

sible and the transition of the commensurate phase into 33

SI phase is favored. This transition is predicted to be 34

continuous with the distance between the walls diverging 35

logarithmically as one approaches the critical point. This 36

is followed by a first-order transition from the SI phase to 37

the HoI phase. Note that the terminology of stripe, hon- 38

eycomb used here refers to the symmetry of the domain 39

wall pattern separating the commensurate domains and 40

not the lattice joining the center of domains that has also 41

been used in the literature [9]. 42
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Although these theoretical arguments about the rela-43

tion of energy of the domain wall crossing to the nature44

of the actual incommensurate phases are quite general,45

they are based on a mean field theory that ignore ther-46

mal fluctuations and wall thickness. Even within mean47

field theory, only the SI phase is well understood, while48

the domain wall crossing energy and the details of the two49

dimensional honeycomb network of domain walls and its50

energetics have not been fully investigated analytically.51

In addition computational efforts using molecular dynam-52

ics have been hindered by the large length scales required53

for examining the commensurate-incommensurate transi-54

tion. In this work, we will examine these issues using55

an amplitude representation of the phase field crystal for-56

malism [11] which allows us to study the microscopic de-57

tails of the domain wall crossings and the HoI and SI58

phases, yet allowing the sample size to be macroscopic59

[9, 10] which is particularly important near the onset of60

the commensurate-incommensurate transition.61

It has been shown [2, 9–11] that instead of the fully62

microscopic atomic model, a useful theoretical formalism63

for studying the different phases in adsorption systems64

and the transition between them is the phase field crys-65

tal (PFC) model. In this model, the free energy of the66

adsorption system is described by the functional67

F [n(~r)] =

∫
d~r

{
n(~r)

2

[
∆B +Bx(q2

0 +∇2)2
]
n(~r)(1)

− t

3
n(~r)3 +

v

4
n(~r)4 + V (~r)n(~r)

}
.

where V (~r) is the periodic adsorption potential due to the68

adatom substrate interaction with a lattice constant a as69

depicted in Fig. 1a, and n(r) is a coarse grained dimen-70

sionless density field measured from the average density71

n̄ characterizing the real space configuration of the ad-72

sorbate film. The adatoms form a hexagonal phase in73

the absence of the substrate potential with lattice con-74

stant af = 4π/
√

3q0 and the commensurate
√

3×
√

3R30◦75

phase has lattice constant ac =
√

3a. The lattice misfit76

parameter is defined as ε = (ac − af )/ac. We are inter-77

ested in the various phases which can occur due to the78

competition of the strain energy of the film resulting from79

the lattice mismatch and the potential coupling between80

substrate and film. The equilibrium density n(~r) is deter-81

mined by minimizing the free-energy functional in Eq.(1).82

However, solving for the minimum free energy phase using83

the full PFC model is limited to relative small size sys-84

tems because of the fine-grid mesh required to resolve all85

the atomic scale details of the various phases. In the past,86

an alternate amplitude expansion has been developed to87

overcome this problem [9,10,12–17].88

When applying this formalism to the adsorption system,89

it is useful to expand the density in terms of the commen-90

surate sublattices states that are depicted in Fig. 1b, i.e.,91

92

n(~r) =
∑
kl

[
ηkle

i ~Gkl·~r + c.c.
]
, (2)

where ηkl are complex amplitudes, ~Gkl = k~q1 + l~q2, 93

(~q1, ~q2) are the principal reciprocal lattice vectors and kl 94

are the Miller indices for a film of two dimensional triangu- 95

lar symmetry the reciprocal vectors are ~q1 = qc(1, 0) and 96

~q2 = qc(−1,
√

3)/2, where qc = 4π/
√

3ac. For the com- 97

mensurate (
√

3 ×
√

3)R30◦ phase, there are three equiv- 98

alent sublattices with the lattice constant ac =
√

3a as 99

shown in Fig. 1b. A given sublattice is a triangular lat- 100

tice with lattice constant ac and displaced from the other 101

sublattices by ~∆1 = [0, 0], ~∆2 = [a, 0] and ~∆3 = [2a, 0]. 102

Fig. 1: Schematic of a) graphite surface and b) possible
commensurate sublattices. In a) the grey circles and black
points represent potential maxima and minima, respectively.
In b) the red, blue and green points (or three shades of
grey in monochrome rendering) represent the three equivalent
(
√

3×
√

3)R30◦ commensurate sublattices.

Fig. 2: The phases found numerically for ε = 3%. The colors
correspond to the closest sublattice (shown in Fig. 1b) that the
adsorbed atoms sit at for the a) HoI and b) SI (

√
3×
√

3)R30◦

phases.

Note that the potential for the Xe/Pt(111) has exactly 103

the same symmetry shown in Fig. 1 since the adsorp- 104

tion sites for this systems are the on-top positions for the 105

Pt(111) substrate [1] with triangular symmetry, and the 106

density field n(~r) for the (
√

3 ×
√

3)R30◦ phase of this 107

system can be described by the same Fourier expansion 108

as the Kr/Graphite and Xe/Graphite systems. Through- 109

out the present study, we will adopt the simplest peri- 110

odic adsorption potential with the right triangular sym- 111

metry containing the lowest-order harmonics as given by 112

V (~r) = −V0

∑
kl e

i ~Gs
kl·~r, where ~Gskl are the same as ~Gkl 113

given following Eq. (2) except rotated by 30o and larger 114

by a factor of
√

3. In the commensurate phase, the ampli- 115

tudes, ηkl, in Eq. (2) are constant. To allow for the devel- 116
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Fig. 3: Phase diagram from the effective single mode model,
defined by Eq. (4). The red (upper) and blue (lower) points
correspond to the C-SI and SI-HoI transitions, while the lines
are guides the eye. The dashed black line corresponds to
the Sine-Gordon prediction [31] for the C-SI transition, i.e.,
fad/K = (π2/16)ε2. Note in the inset the blue and red points
almost overlap.

opment of domain walls and the incommensurate phases,117

these amplitudes are allowed to be a function of position118

but only slowly varying in space, i.e., containing only small119

wave vectors (compared to the reciprocal lattice vectors120

for the commensurate phase).121

From a practical point of view, one needs to limit the122

number of amplitudes or modes ηkl in the expansion. Pre-123

viously, it has been demonstrated that even a single mode124

approximation including all the amplitudes corresponding125

to the reciprocal lattice vectors of the smallest magnitude126

(i.e., the set η10, η01 and η1̄1̄) works well for the (1 × 1)127

phase and yields all the interesting qualitative results for128

the phase diagram [2, 9–11]. For the present commensu-129

rate (
√

3 ×
√

3)R30◦ phase of interest here, the smallest130

amplitudes do not couple directly to the substrate adsorp-131

tion potential and the essential physics would be lost in132

this “one” mode approximation. The minimal number of133

sets of modes of the same magnitude that is required for134

coupling to the substrate potential is two.135

For the purpose of illustration, it is useful to derive an136

explicit expression for the free energy in the commensurate137

(
√

3×
√

3)R30◦ phase when only the first two sets of modes138

(corresponding to the set first set above and the second set139

η12, η11̄ and η2̄1̄). Setting the magnitude of the first and140

second sets to be the constants Φ and Ω, respectively, gives141

a free energy per unit area A as, 142

Fc[Φ,Ω]/A = FL + 3∆B
(
Ω2 + Φ2

)
− 6V0Ω (3)

+ 3Bx

(
Ω2
(
q2
0 − 3q2

c

)2
+ Φ2

(
q2
0 − q2

c

)2)
− 4t

(
Ω3 + 3ΩΦ2 + Φ3

)
+ v

(
45

2
Ω4 + 90Ω2Φ2 + 36ΩΦ3 +

45

2
Φ4

)
,

where FL is a constant independent of Φ and Ω. Note that 143

in the (
√

3×
√

3)R30◦ phase, the adsorption potential V (~r) 144

only couples to the second mode amplitude Ω. Minimizing 145

the free energy with respect to Ω first, we can solve for Ω 146

as a function of Φ. Substitution of this back into the free 147

energy then yields a free energy functional F (Φ) that de- 148

pends only on the amplitude of the first mode Φ. This free 149

energy describes a first order phase transition from a dis- 150

ordered or liquid state (i.e., Φ) to an ordered or crystalline 151

state (Φ finite) as a function of ∆B as illustrated in Fig. 4. 152

This procedure can obviously be generalized to eliminate

Fig. 4: Free energy density as a function of Φ for (from top
to bottom) ∆B = 0.05, 0.047 and 0.02. For ∆B < 0.047 the
free energy density is minimized by a crystalline state (finite
Φ) and a liquid state for ∆B > 0.047.

153

all higher modes to yield an effective one-mode free energy 154

F (Φ). Note that aside from the modification of all the co- 155

efficients of the various powers of the first mode amplitude 156

Φ in the free energy, the crucial modification is in the cou- 157

pling term to the adsorption potential, which in this case 158

will yield nonlinear terms of the form V0(aΦ2 + bΦ3 + ....). 159

Similar non-linear coupling terms would also appear if 160

a non-linear coupling of the density, n, to the surface po- 161

tential, V were included in Eq. (1.) In this spirit we will 162
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consider the lowest-order non-linear coupling term that163

couples the first set of modes to the potential. Replac-164

ing nV with λn2V in Eq. (1) gives for the first set of165

amplitudes,166

Fη =

∫
d~r

[∑
kl

(
Bx|Gklηkl|2 −

3v

2
|ηkl|4

)

+
∆B

2
A2 +

3v

4
A4 − 2t

(∏
kl

ηkl + c.c.

)
+2λV0 (η10η01 + η01η1̄1̄ + η1̄1̄η10 + c.c.)] , (4)

where the sums and products are over only the first set of167

modes, A2 ≡ 2
∑
kl |ηkl|2, Gkl ≡ ∇2 + 2iα ~Gfkl · ~∇+ q2

0 − q2
c168

and c.c. is the complex conjugate. As can be seen in the169

last line of Eq. (4) the density is now explicitly coupled170

to the potential, showing that this approach is an effective171

one-mode model for studying the (
√

3 ×
√

3)R30◦ phase172

and its transition into an incommensurate phase. In fact,173

all other similar higher-order commensurate states such174

as the (
√

7 ×
√

7)R19.1◦ p(2 × 2) phases can be studied175

with a similar effective one-mode model, in spite of the176

much more complicated domain wall structures and larger177

number of equivalent sublattices [28].178

In the commensurate (
√

3 ×
√

3)R30◦phase, one of the179

three sublattices shown in Fig. 1b of the adsorption sites180

is occupied. As the amplitude of adsorption potential V0181

decreases and/or the misfit ε increases, the adsorbate sys-182

tem undergoes a transition to an incommensurate phase,183

consisting of commensurate regions occupying one of the184

sublattices, separated by domain walls. Depending on the185

values of the misfit parameter ε and the coupling strength186

of the adsorption potential V0, such domain-wall structure187

can form a HoI phase (Fig. 2a) or a SI phase (Fig. 2b).188

We have determined the phase diagram as a function of189

the lattice mismatch and strength of the adsorption poten-190

tial by minimizing the free-energy functional using the ef-191

fective single mode model of Eq. (4). The patterns emerge192

essentially due to a competition between the elastic and193

adhesion energies. For easy comparison with experiment194

we define the adhesion free energy per unit length, fad as195

fad = f com − f elas, (5)

where f com and f elas are the free energies of the commen-196

surate and incommensurate states at the lattice spacing197

ac per unit area, respectively. For Eq. (4), fad = 8λV0Φ2.198

For the elastic contribution the relevant elastic modulus199

K or a displacement from one sublattice to another is200

K = (C11 + C12)2/C11, (6)

which can be measured experimentally. For the free en-201

ergy given in Eq. (4), K = 16Φ2Bx. Thus for easy com-202

parison we plot the phase diagram in the plane of two203

dimensionless variables, the ratio of adhesion to elastic204

free energy densities fad/K and the mismatch parameter205

ε. The result is shown in Fig. 3.206

For a large misfit there is a SI phase between the com- 207

mensurate and HoI phases. It can be shown [28] in the 208

small-displacement limit that Eq. (4) can be mapped 209

into a Sine-Gordon model for the C-SI transition (in the 210

mean field limit) and a continuous transition occurs when 211

fad/K = (π2/16)ε2. As can be seen in Fig. 3 this pre- 212

diction works very well at small strains. It appears that 213

the C-SI and SI-HoI transition lines become very close at 214

small strains, but to the limit of the numerical simula- 215

tions they never merge indicating that the SI state region 216

is present at all strains. It is important to note that it is 217

very difficult to examine the strains less than 1% as the 218

length scale of the patterns scale as the inverse of the mis- 219

fit strain. For the smallest strain examined, ε = ±1% the 220

SI phase was present for some values of fad/K. Finally, we 221

have also evaluated the phase diagram using the full PFC 222

model of Eq. (1) without using the effective one-mode 223

approximation and using the latter approximation with a 224

V n3 non-linear coupling instead of the V n2 coupling used 225

here. Although there are small quantitative changes in 226

the location of the phase boundaries, the topology of the 227

phase diagrams obtained from these models are essentially 228

the same as that shown in Fig. 3 for the effective one mode 229

model. 230

Close to the phase transition we found that for large 231

misfit parameters, |ε|, the free energy of the wall crossing 232

is greater than that of the walls themselves. This can be 233

inferred from the local free energy (i.e., the integrand of 234

Eq. (4)) plot shown in Figs. 5a and b. For the case ε = 8% 235

it can be seen that the free energy density is higher at the 236

point where three domain walls cross. On the other hand, 237

for lower misfits the free energy density reduces slightly 238

at the crossing. For strong adsorption potential and large 239

misfit, we find wide regions where the SI phase (Fig. 2 b)) 240

is the lowest energy. Surprisingly, the SI to commensurate 241

transition in this limit is of first order. For lower values of 242

pinning the lowest energy phase is the HoI phase (Fig. 2 243

a)). The transition from SI to HoI is discontinuous. When 244

the misfit parameter |ε| is decreased the stability range of 245

the SI phase (Fig. 3) decreases quickly. For misfit parame- 246

ters between 1% and −1%, it is numerically very costly to 247

analyze the stability of the SI phase, but it reasonable to 248

assume that the SI phase is present for all misfit param- 249

eters in the absence of fluctuations. The narrow region 250

of the stability of the stripe phase in the phase diagram 251

for decreasing misfit is consistent with the corresponding 252

decrease of the wall crossing energy. In fact, according 253

to the domain-wall arguments of Bak et al. [7], for any 254

negative value of the domain wall crossing, a HoI struc- 255

ture would be favoured rather than a SI phase. Our re- 256

sults for the phase diagram imply that the commensurate- 257

incommensurate transition proceeds first via a transition 258

from the commensurate phase into an SI phase and then 259

from a SI phase into a HoI phase. For small misfit param- 260

eters and weak coupling to the substrate, the stripe phase 261

occurs in such a narrow region of the phase diagram that it 262

may not be experimentally observable. It should be kept 263
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in mind, however, that our results are at the level of mean264

field theory since it does not take into account the effects265

of thermal fluctuations, which may eliminate the SI phase.266

Fig. 5: In a) the local free energy density is displayed as a
function of space for ε = 1% very close to the HoI/SI transition
for a system of size 111af × 111af . In this figure the dark and
light shades correspond to high and low free energy densities,
respectively. In b) the normalized local free energy is plotted
as function of x along the grey line shown in a).

From the phase diagram of Fig. 3, the intermediate SI267

phase is more pronounced for large coupling parameter268

fad/K. For lower couplings, the SI phase exist only in a269

very narrow region. Experimentally it could appear as a270

direct transition from commensurate to HoI phase when271

the temperature and/or the coverage is varied. This be-272

havior is consistent with the existing experimental data273

for Xe and Kr on Graphite [1]. Since for Xe/Pt(111) the274

corrugation potential is much larger, corresponding to a275

large coupling parameter, the transition from commensu-276

rate to HoI phase should clearly involve an intermediate277

SI phase, as observed experimentally [1, 5]. Of course, for278

this interpretation to hold, we have to identify qualita-279

tively the change of temperature as effectively changing280

the coupling parameter, and the change of coverage as ef-281

fectively changing the mismatch parameter ε.282

The effective single mode model allows us to study the283

domain wall pattern in the incommensurate phase at large284

length scales, but still retaining atomistic resolution. One285

interesting question that can be addressed with this ap-286

proach is the influence of adsorbate step edges on the ori-287

entation of the domain-wall structure. Recently, it has288

been observed experimentally by STM imaging of Xe over-289

layers on Graphite [27] that the domain walls orient per-290

pendicularly to Xe island step edges on the surface. We291

can verify this behavior with the present model. To mimic292

a step edge on the overlayer, we set the pinning potential293

to a constant value on one side of the step edge and zero294

on the other size, and then follow the time development295

from an initial condition of a uniformly strained film (cor-296

responding to the average strain of the equilibrium state)297

assuming non-conserved dissipative dynamics [9,10], given298

by the equation of motion299

∂ηj
∂t

= − ∂Fη
∂ηj∗

. (7)

Fig. 6: Snapshots of a portion of a domain pattern at times
t = 50 in a) and c) and t = 50000 in b) and d) for a strain
of ε = 7%. In a) and b) the colors correspond to the three
sublattices and in c) and d) the color is proportional to the
energy as in Fig. 5. Inside the central region fad = 0 and
fad = 0.27× 10−2 outside.

Fig. 6 shows the pattern in the HoI phase for increasing 300

times near a step of a curved edge. The domain wall struc- 301

ture undergoes a reorientation near the step edge such that 302

domain walls are preferentially perpendicular to the step 303

edge, as observed experimentally [27]. 304

In this work, we have introduced an effective one mode 305

PFC model designed for studying higher order commensu- 306

rate states such as the (
√

3×
√

3)R30◦ phase found in sys- 307

tems such as Xe/Pt(111), Xe/Graphite, and Kr/Graphite, 308

and the corresponding phase diagrams as the temperature 309

and/or lattice mismatch is varied. Our model allows us 310

to study systems at macroscopic scales where the domain 311

walls in the incommensurate phases can be separated over 312

large distance scale. It also allows us to study the micro- 313

scopic details of the domain wall structures both in the 314

honeycomb incommensurate (HoI) phase and the stripe 315

incommensurate phase (SI) phases. In particular, we are 316

able to evaluate the domain wall crossing energy as a func- 317

tion of the adsorption potential strength and lattice mis- 318

match. New results such as the general persistence of a 319

SI phase in between the commensurate phase and the HoI 320

phase is found. Our results are qualitatively in agree- 321

ment with the experimental observation where both the 322

HoI and SI phases have been found in the Xe/Pt(111) 323

system whereas only the HoI phase have been observed 324

for the Xe/Graphite and Kr/Graphite systems. We have 325

also found that near a step edge of the adsorbate, the do- 326

main walls tend to align perpendicular to the step edge, in 327

agreement with recent experimental observation [27]. In 328

p-5



K. R. Elder et al.

the future, it would be interesting to follow up the present329

study with inclusion of thermal fluctuation effects. We330

have demonstrated before [30] that thermal fluctuations331

can be effectively incorporated in the PFC model by treat-332

ing the PFC free energy functional as an effective Hamil-333

tonian. It is known that thermal fluctuations can lead334

to generation of dislocations in the domain wall structure,335

possibly resulting in a fluid phase in between the commen-336

surate and incommensurate phases [29].337
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