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Abstract 

The London Congestion Charge (LCC) is a transport policy with a precise spatial footprint. As such, its 

impact on the transport system can be expected to vary over space, providing an opportunity to 

explore the geographical reach of local transport interventions. This paper assesses whether the 

exemption of Hybrid Electric Vehicles (HEVs) from the LCC affected the registration rate of these 

vehicles in Greater London and the surrounding areas. The analysis uses official data on the number 

of HEVs registered across the local authorities of the United Kingdom. This dataset is assessed using 

[1] exploratory spatial analysis to determine the degree of spatial variation in HEV registrations, [2] 

area classifications to consider if HEV registrations diminish as nearness to the LCC recedes, and [3] 

spatial regression models to evaluate the association between distance to the LCC and HEV 

registrations, controlling for other area characteristics (i.e. socioeconomic, household, and transport 

system variables). The results clearly show that nearness to the LCC is positively associated with HEV 

registrations, implying that this form of transport policy is effective at promoting the adoption of low 

emission vehicles. 
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1. Introduction 

 

Cities across the globe are facing a series of complex and interrelated challenges relating to the 

structure and operation of their urban transport systems (Banister, 2008; May, 2013). Of particular 

concern is traffic congestion and the resulting emission of global and local pollutants, which contribute 

to climate change and harm the health of citizens. Developing effective strategies which address these 

issues represents an important challenge for urban governance and public policy (Kennedy et al. 2005; 

Santos et al. 2010). 

 

One strategy for addressing these issues involves restricting the entry of motorised road vehicles to 

certain areas within the city (Hensher and Puckett, 2007). Such strategies are referred to by Dotter 

(2016) as Urban Vehicle Access Regulations and can take on multiple forms. Congestion charging, 

which involves the levy of a fee on particular vehicles from entering marked zones during a specified 

time frame, has seen application in various urban settings including Stockholm, Milan, and Singapore 

and has been extensively evaluated. These evaluations cover issues including the effectiveness of the 

schemes in delivering improvements to relevant policy objectives (Goh, 2002; Olszewski and Xie, 2005; 

Santos and Fraser, 2006; Santos, 2008; Eliasson et al. 2009), the additional impacts of the schemes on 

ancillary issues such as social equity (Santos and Rojey, 2004; Eliasson and Mattsson, 2006; Levinson, 

2010) and economic activity (Quddus, 2007) alongside the reactions of citizens to such schemes 

(Jones, 1998; Jakobsson et al. 2000; Schade and Baum, 2007; Schuitema et al. 2010; Jagers et al. 2017).  

 

A somewhat underexplored issue relates to the potential effects of congestion charging on the 

composition of the vehicle fleet. With these schemes having the capacity to specify graduated fee 

levels for different types of vehicle, the opportunity exists for schemes employing such a strategy to 

promote vehicle variants which benefit from a reduced fee. The London Congestion Charge (LCC) 

scheme incorporates such a feature, offering a charge exemption to certain low emission vehicles. 

From the initial introduction of the LCC up until June 2013, new Hybrid Electric Vehicles (HEVs) 

purchased in the United Kingdom (UK) met the criteria for exemption. The purpose of this paper is to 

consider if this exemption is connected with the uptake of HEVs in the areas surrounding the LCC. 

Particular attention is paid to the hypothesis that the association between the LCC and HEV 

registrations diminishes as nearness to the charging zone decreases. This hypothesis is considered by 

analysing the spatial distribution of vehicle registrations from the Department for Transport’s Vehicle 

Licensing Statistics database.  

 

This paper proceeds by providing an overview of the LCC followed by a summary of the relevant 

literature on congestion charging policies as well as the research which examines the demand for 

HEVs. After this, the methodology section details the data utilised in the analysis and the statistical 

approaches employed to consider the research hypothesis. The results of the analysis are interpreted 

in the discussion and conclusions section with insights for policy offered. 
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2. Background 

 

2.1 Overview of the London Congestion Charge 

 

Introduced in February 2003, the LCC involves the application of a fee to qualifying vehicles that enter 

an area of 21.42 square kilometres in the centre of London (Santos and Shaffer, 2004; Leape, 2006). 

This area was later enlarged through a western extension in February 2007 and then subsequently 

removed in January 2011. Figure 1 illustrates the extent of the LCC in the context of the Greater 

London.The charging period for the scheme runs from 07:00 to 18:00 Monday to Friday with the 

charge initially set at £5 per day which has been iteratively increased to £11.50. Automatic Number 

Plate Recognition cameras are employed to track vehicles entering the charge area. The registered 

keepers of the vehicles are required to pay the charge either before or on the day of travel, with fines 

imposed for non-compliance.  

 

The primary objectives of the LCC are to reduce congestion, improve journey time reliability, enhance 

the efficiency of goods and service distribution and to improve bus services through the redistribution 

of the revenue generated from the scheme to public transport projects (Santos and Fraser, 2006). 

These primary objectives were subsequently extended to include a series of ancillary goals covering 

improvements to road safety and enhancing the local environment (Transport for London, 2008). 

Increasing the market for HEVs is not an explicit objective of the LCC. 

 

 
Figure 1: Map illustrating the area covered by the London Congestion Charge and the defunct 

Western Extension 

 

A series of exemptions are in effect which exclude qualifying vehicles from having to pay the LCC’s 

daily fee, one of which relates to the characteristics of car propulsion systems. From the introduction 

of the LCC up until December 2010, an Alternative Fuel Discount (AFV) applied to vehicles which 

operated wholly or partly from a fuel different to petrol and diesel. This discount was superseded in 
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2011 by the Greener Vehicle Discount (GVD), which required vehicles to emit 100 grams of carbon 

dioxide per kilometre or less to qualify. The GVD was replaced in July 2013 by the Ultra Low Emission 

Discount (ULED), which is presently in effect and requires vehicles to emit no more than 75 grams of 

carbon dioxide per kilometre. Thus, from the introduction of the LCC up until June 2013, all new HEVs 

sold within the UK would have been exempt from having to pay the LCC’s daily fee. An overview of 

these different propulsion system exemptions is provided in Table 1.  

 

Table 1: Overview of the car propulsion system exemptions to the London Congestion Charge 

(expanded from Santos and Fraser (2006))  

Exemption Time Span Requirement 

Alternative Fuel Discount February 2003 to 

December 2010 

Vehicle must run wholly or partly from an 

alternative fuel (i.e. not Petrol or Diesel) 

and require emission savings of 40% over 

Euro IV standards 

Greener Vehicle Discount January 2011 to June 

2013 

Vehicle must emit 100 grams of carbon 

dioxide per kilometre or less  

Ultra Low Emission 

Discount 

July 2013 to present Vehicle must emit 75 grams of carbon 

dioxide per kilometre or less  

 

2.2 Impacts of Congestion Charging 

 

The implementation of a congestion charging scheme has the potential to generate a multitude of 

impacts across the transport, social, environmental, and economic nexus. Research evaluating these 

potential impacts is important in both monitoring the effects of existing schemes and in considering 

the likely consequences of introducing new schemes. With the public acceptability of proposed 

schemes being of central importance to schemes reaching implementation (Kocak et al. 2005), 

evidence relating to different scheme aspects will likely reduce the level of perceived uncertainty and 

thus avoid situations where the public reject the introduction of schemes (Gaunt et al. 2007; Rye et 

al. 2008).  

 

The direct impact of congestion charging schemes on the transport system represents a central issue 

in evaluating the realised and potential scheme effects. Transport for London conducted a series of 

annual impact monitoring studies for the LCC between 2003 and 2008, noting that the entrance of 

cars and minicabs to the central charge zone decreased from over 180,000 per day pre-

implementation to around 120,000 per day post-implementation (Transport for London, 2008), with 

a concurrent 30% reduction in traffic congestion in the immediate post-implementation period. An 

analogous evaluation of Stockholm’s six month congestion charge trial by Eliasson et al. (2009) found 

similar effects in terms of car entry to the charge zone and congestion levels as those observed in 

London. Examining Milan’s congestion charge, Percoco (2014a) utilised a fifty day suspension in the 

scheme’s operation to investigate changes in the composition of vehicles circulating within the charge 

zone. With drivers charged varying amounts to enter the zone depending on the emissions ratings of 

their vehicles, expectations are that the suspension will demonstrate the substitution effect which 
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occurs in car type when schemes with graduated charging levels are introduced. Their analysis shows 

that the suspension of the scheme coincided with a 17% reduction in bi-fuel and HEVs entering the 

charge zone (i.e. vehicles exempt from the charge) whilst the circulation of cars with Euro 0 to 3 

emissions standards increased by 13% (i.e. vehicles paying the highest rate to enter the zone). 

 

As a result of the decreased level of vehicles entering congestion charge zones and lower levels of 

congestion observed inside the zones, the general expectation is that emissions generated within the 

zone from road traffic should decrease. The estimation of cumulative emissions reductions is 

reasonably straightforward given accurate data on vehicle emission factors and anticipated reductions 

in vehicle kilometres travelled. Santos and Fraser (2006), for example, estimated a 12% decrease in 

carbon dioxide emissions resulting from the Western extension of the LCC. However, isolating the 

effect of congestion charges on the concentration of local air pollutants is more challenging. Carslaw 

and Beevers (2002) noted that decreases in ambient air pollution levels might not uniformly follow 

due to the non-linear chemistries of pollutant formation. These complexities are compounded by 

challenges associated with accurately measuring the effect of schemes on emissions levels both in 

terms of the appropriate site to locate measurement instruments and in separating the effects of the 

scheme from other policies aimed at reducing emissions (Atkinson et al. 2009). As a result of these 

complexities and challenges, a diverse array of results have been observed in terms of changes in 

emissions concentrations in the vicinity of congestion charge zones (Beevers and Carslaw, 2005; 

Atkinson et al. 2009).  

 

Similarly, estimating the economic effect of such schemes can represent a complicated undertaking. 

Santos and Bhakar (2007) illustrate this through a demonstration of how alternative approaches to 

estimating the economic value of travel time savings can generate significantly different results. Whilst 

the direct costs and benefits of scheme introduction represent a focal point in the economic appraisal 

(Prud’homme and Bocarejo, 2005; Eliasson 2009; Rotaris et al. 2010), a range of additional economic 

effects may also emerge, with research attesting to the influence (or lack thereof) of congestion 

charging over retail business (Quddus et al. 2007; Daunfeldt et al. 2009) and house prices (Percoco, 

2014b). 

 

Congestion charging affects individuals in different ways depending on their income levels, travel 

behaviours, and their access to or capability with alternative forms of transport. Rajė (2003) outlines 

how the potential introduction of a congestion charge into the city of Bristol, UK, is perceived by citizen 

groups which are more at risk of social exclusion (i.e. ethnic minorities and the elderly). Bonsall and 

Kelly (2005) build on this by demonstrating an approach to geographically identifying groups at risk of 

social exclusion effects resulting from the introduction of different configurations of a congestion 

charge in the city of Leeds, UK. The general consensus seems to be that congestion charging has the 

potential to produce regressive impacts on certain groups, but these impacts can be addressed 

through solicitous scheme characteristics alongside mechanisms designed to appropriately incentivise 

travellers and allocate scheme revenues (Levinson, 2010). 

 

Whilst existing research has generated useful insights across various issues, very little has been 

dedicated to the effects such schemes have over car fleet composition. Coming closest to this issue is 

the research of Ellison et al. (2013) who evaluated the effects of the introduction of the Low Emission 

Zone (LEZ) around London on the composition of the commercial fleet (i.e. light commercial vehicles 



6 
 

and heavy goods vehicles). Their results suggest the LEZ encouraged fleet renewal, with registrations 

of non-compliant commercial vehicles within the LEZ decreasing by 20% above the natural 

replacement rate. These findings are complemented by the analysis of Ozaki and Sevastyanova (2011) 

who found that the exemption of HEVs from the LCC represented a salient issue in private car driver’s 

motivations to purchase a HEV. As the LCC represents a policy with a specific location, the effect of 

the LCC on HEV adoption will likely diminish as nearness to the LCC reduces. This is the particular issue 

investigated in this paper, which examines if the LCC is significantly associated with the registrations 

of HEVs and, if this in indeed the case, if this association tends to decay with distance. 

 

2.3 Hybrid Electric Vehicle Demand  

 

The body of research evaluating the impact of demographic characteristics, attitudes, and policy 

initiatives on the demand for HEVs is already extensive, providing insights concerning what conditions 

and approaches are effective at motivating the purchase of vehicles which embody advanced 

propulsion system technologies. The majority of this literature focuses on demographic correlates 

with HEV uptake, generally concluding that factors relating to age, education, income, and commuting 

patterns are useful explanatory factors (Caulfield et al. 2010; Saarenpää et al. 2013; Bansal et al. 2015; 

Pridmore and Anable, 2016; Dimatulac and Moah, 2017; Liu et al. 2017). However, several studies 

have also attempted to understand the impact of policy interventions although none of these, to our 

knowledge, specifically evaluate the role of congestion charging. This section summarises these policy-

related studies as important context to the evaluation of the impact of the LCC on HEV adoption.  

 

The impact of the preferential access for HEVs to high occupancy vehicle (HOV) lanes in the USA and 

Canada has been studied on several occasions, but with mixed results. Providing an initial evaluation 

of consumer response to policy incentives at a disaggregated scale, Sangkapichai and Saphores (2009) 

conducted a survey to elicit consumer interest in HEVs in California, USA, with their model integrating 

socioeconomic characteristics, attitudes, and proximity to counties which allow HEVs to access HOV 

lanes as explanatory variables. Whilst their results support the significant association of personal 

characteristics including age, education, and attitudes, their model also suggested that consumers 

who live in counties adjacent to those which allow HOV lane access appear more likely to display 

interest in HEV adoption. In contrast, Diamond (2009) utilised aggregated data of HEV sales between 

2001 and 2006 across the states of the USA to examine the influence of fiscal incentives and HOV lane 

access over adoption patterns whilst controlling for socioeconomic variation and fuel price 

fluctuations. The results indicate that fuel prices are the most significant factor in explaining variation 

in HEV adoption, with vehicle miles travelled per capita also proving significant. The importance of 

income per capita as well as fiscal incentives and HOV lane access was more mixed, displaying 

significant yet small coefficients under some model conditions whilst holding insignificant coefficients 

in others.  

 

Unlike Diamond (ibid.), Chandra et al. (2010)’s evaluation of the impact of different HEV sales rebate 

policies across the provinces of Canada identified rebates as having a substantial effect on HEV 

adoption, with 26% of sales being attributed to the presence of rebates. The disparity in the results 

observed by Diamond (ibid.) and Chandra et al. (ibid.) concerning the effectiveness of fiscal policies 

aimed at stimulating HEV adoption could be due to the diversity of fiscal policies which have been 

applied in the USA. To evaluate this diversity, Gallagher and Muehlegger (2011) considered the 
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effectiveness of sales tax waivers and income tax credits separately over sales of HEVs in the USA and 

found that sales tax waivers are significantly more effective at motivating HEV adoption. Furthermore, 

the analysis indicates that the effect of HOV lane access is inconsistent, with only the access scheme 

implemented in the state of Virginia positively associated with HEV sales. The findings of Gallagher 

and Muehlegger (ibid.) are generally supported by the analysis of Jenn et al. (2013) who found that 

HEV sales increased in the USA by 0.0046% for every dollar of incentive, though they note that this 

effect only becomes active once the incentive is in excess of $1,000.  

 

To summarise, research has already started to consider the effect of policies which have clear spatial 

boundaries, such as the work which explores the impact of HOV lane access on HEV demand in the 

USA. Such policies can have lasting implications for the structure of the car fleet, as the promotion of 

certain vehicle variants will likely persist until the cars are scrapped, with the average lifetime of a car 

in the UK being around 13 years. The research reported in this paper will extend insight into the role 

of local policies targeted at accelerating the introduction of alternatively fuelled vehicles by using 

vehicle registration data to evaluate the association between HEV exemptions from the LCC over 

ownership rates of these vehicles. By investigating the impact of this policy at a fine spatial scale 

around the charge zone, it will offer a unique perspective on the reach of such a policy on HEV demand 

alongside the link with socioeconomic, household, and transport system characteristics. 

 

3. Methods 

 

3.1 Data Sources 

 

The Department for Transport’s Vehicle Licensing Statistics Database (VLSD) is the source of the 

registration numbers for HEVs utilised in the analysis (Department for Transport, 2015). The VLSD 

holds an individual record for each vehicle registered for use on the roads of the UK, with vehicle level 

characteristics such as make, model, age, propulsion system, and the location of the registered keeper. 

The data pertaining to HEV registrations, total number of cars registered, and total number of cars 

registered as company cars (i.e. cars owned and operated by a corporate or public sector fleet) has 

been extracted from the VLSD up to the end of 2012 to correspond to the removal of the HEV 

exemption from the LCC. Demographic data has been sourced from the UK population census (Office 

of National Statistics, 2011; National Records for Scotland, 2011) as well as Her Majesty’s Revenues 

and Customs (2015). Descriptive statistics regarding the data utilised in the analysis are summarised 

in Table 2. 
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Table 2: Descriptive statistics of the variables related to the socioeconomic, household, and transport 

system characteristics of the local authorities of the United Kingdom included in the analysis (n = 374) 

Variable Mean 
Std. 

Dev. 
Min Max 

Socioeconomics 

Mean Age (years) A 40.27 2.82 30.9 47.7 

No Qualifications (%) A 22.80 5.14 6.72 36.04 

Level 1 Qualification (GCSE grades D-G) (%) A 14.30 3.43 4.30 28.26 

Level 2 Qualification (GCSE grades A*-C) (%) A 15.55 1.98 6.58 18.55 

Level 3 Qualification (A-Levels) (%) A 12.08 2.03 7.16 32.59 

Level 4 Qualification (University Degree) (%) A 26.93 7.71 1.42 68.36 

Mean Personal Income (000’s GBP) B 29.73 10.58 20.20 131.00 

Full Time Employment (%) A 38.83 3.97 26.41 51.45 

Part Time Employment (%) A 14.03 1.60 5.71 17.08 

Self Employed (%) A 10.01 2.76 4.77 17.45 

Unemployed (%) A 4.06 1.23 2.01 8.02 

Retired (%) A 14.79 3.51 4.71 24.06 

Disabled (%) A 3.99 1.60 1.35 9.64 

Household  

Population Density (per hectare) A  15.02 22.52 0.09 138.70 

No Car in Household (%) A 23.06 10.48 8.04 69.40 

One Car in Household (%) A 42.27 2.93 25.09 50.20 

Two Cars in Household (%) A 26.45 7.14 3.95 42.09 

Three or More Cars in Household (%) A 6.03 2.20 0.51 11.19 

Mean Household Size (residents) A 2.33 0.13 1.64 2.99 

Transport System  

Hybrid Electric Vehicles per 1000 cars C 6.25 6.54 .83 60.59 

Company Cars per 1000 cars C 77.68 143.12 24.66 1620.43 

Private Mode of Transport to Work (%)A 66.68 13.82 4.76 83.33 

Public Mode of Transport to Work (%)A 13.01 12.80 1.80 65.51 

Active Mode of Transport to Work (%)A 13.42 5.26 4.31 53.70 

A: data sourced from the UK census (England and Wales: Office of National Statistics (2011); Scotland: National Records for 

Scotland (2011)) 

B: data sourced from Her Majesty’s Revenue and Customs (2015) 

C: data sourced from the Department for Transport (2015) 

 

3.2 Geographical Resolution 

 

The data used in the analysis is aggregated at the lower-tier local authority level of UK administrative 

geography. This directly relates to the primary layout of local government in the UK and represents a 

common means through which to consider spatial variation in government statistics. There are 391 

geographical units covering the unitary authorities of England, the non-metropolitan districts of 
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England, the metropolitan districts of England, the boroughs of London, the council areas of Scotland, 

the unitary authorities of Wales, and the districts of Northern Ireland.  

 

3.3 Data Preparation 

 

The dataset has been prepared in the following ways to make it suitable for analysis. First, non-

contiguous geographical units which relate to the six island local authorities of Great Britain and the 

eleven districts of Northern Ireland have been removed. Second, variables utilised in the analysis have 

been standardised to ensure the varying sizes of the local authority populations do not unduly 

influence the results. For instance, HEV registrations are considered in terms of registrations per 

thousand cars, whilst education levels are considered in terms of the percentage of the population 

that have attained certain levels of qualification. The dataset has been spatially joined to a shapefile 

(Office on National Statistics, 2013) which records the geometric configuration of the local authority 

polygons relating to the lower-tier local authority geographical resolution.  

 

3.4 Research Limitations 

 

The data has been derived from an official source and represents the total population of people and 

vehicles, ensuring comprehensive coverage of the vehicle fleet. However, the interpretation of the 

results should take into account the following limitations. First, the geographical units of analysis are 

quite large, potentially masking intra-local authority variation. Second, there is a slight temporal 

disparity in the collection of the data which comprise the dataset. For example, the characteristics of 

the population were observed in 2011 whilst the registrations of HEVs were observed in 2012. 

 

Second, the analysis is cross-sectional in nature, exploring the variation in HEV ownership at the end 

of 2012 without examining how the adoption of these vehicles varied temporally. This means that the 

identification of causation between HEV demand and the LCC cannot be substantiated by the evidence 

that is presented.  Moreover, the analysis considers the total level of HEV ownership in 2012 and does 

not distinguish between new and existing registrations, meaning that the dynamics of the used car 

market cannot be accounted for. 

 

Third, the analysis is only applied at the lower-tier local authority level of geographical resolution. This 

limitation prohibits the analysis from considering if the results can be observed across different 

geographical resolutions and thus the degree of spatial transference of the results cannot be 

evaluated. Fourth, the possibility exists that other issues that are not accounted for by the model and 

which are local to London could be stimulating the adoption of HEVs. For instance, some London 

boroughs have previously provided free parking permits (i.e. domestic parking) for HEVs, though 

information concerning this is fragmented. However, as the monetary value of these parking permits 

is around £100 annually, it is arguable if they would have represented an effective stimulus to demand. 

 

3.5 Area Classification 

 

Three alternative approaches for exploring the association between the LCC and the registrations of 

HEVs are implemented. These approaches provide different perspectives on how the nearness of a 
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local authority to the LCC can be conceptualised. In the analysis, all three approaches are employed 

to assess whether the association is persistent. 

 

1. Contiguity Approach: the first method considers the geometric layout of the local authority 

geographical units and how they relate to the boundary of the LCC. Geographical units are 

categorised in accordance with their degree of separation from the LCC. Four categories are 

proposed, covering [1] the local authorities which represent boroughs of London and 

constitute Greater London (n = 32), [2] the local authorities which are first order neighbours 

to Greater London (n = 16), [3] the local authorities which are second order neighbours to the 

Greater London (n = 23), and [4] the local authorities which represent the rest of the UK (n = 

303). This classification system is illustrated in Figure 2. The hypothesis here is that as 

contiguity to the LCC recedes, the registration rates of HEVs will tend to decrease. 

2. Proximity Approach: the second method considers the Euclidean distance between the 

geometric centroids of the local authorities and the LCC polygon. Each local authority is 

assigned a value which measures their spatial proximity to the centre of the LCC in kilometres. 

The hypothesis here is that as proximity to the LCC decreases, the registration rates of HEVs 

will tend to decrease. 

3. Interaction Approach: the third method considers the degree of interaction which exists 

between the local authorities and the LCC. This is applied by evaluating the number of 

residents (per thousand) that drive a car to work to the City of London local authority (which 

represents the only local authority entirely encapsulated by the LCC). This is achieved through 

the specification of an origin destination matrix concerning commuting patterns recorded by 

the 2011 UK population census. The hypothesis here is that as interaction with the LCC 

increases, the registration rates of HEVs will tend to increase.  
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Figure 2: Illustration of the four area categories distinguishing level of contiguity of the local 
authorities to the London Congestion Charge zone 
 

3.6 Statistical Analysis 

 

The analysis of the dataset progresses through a series of five stages. The stages comprise a mixture 

of spatial and non-spatial statistics which are detailed in the following paragraphs. In terms of the 

spatial statistics, the analysis primarily relies upon the GeoDa software (Anselin et al. 2006) and the 

MatLab scripts prepared by Elhorst (2014). 

 

Stage One 

In the first stage, exploratory spatial statistics are applied by locating HEV registrations at local 

authority level in order to visualise the data and consider its geographical variation. A choropleth map 

is produced with equal bin counts to separate the data into intensity categories.  

 

Stage Two 

In the second stage, the area classifications (detailed in section 3.5) are evaluated to determine if HEV 

registrations are associated with the LCC. As the data pertaining to the area classifications is in two 

distinct forms (i.e. categorical and continuous), alternative statistical approaches are required to 

evaluate this association. Firstly, descriptive statistics are specified for the contiguity approach, 

whereby the range, dispersion, and central tendency of HEV registrations across the four area 

categories are illustrated. In order to determine if HEV registration levels are statistically different 

across these four categories, the Kruskal-Wallis test is applied. Secondly, scatterplots are formatted 

for the proximity and interaction approaches, with HEV registrations charted alongside [1] distance to 
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the LCC and [2] drivers commuting to the City of London. To determine if these variables are related 

to one another, Spearman’s rank order correlation analysis is applied. 

 

Stage Three 

In the third stage, spatial autocorrelation analysis (Getis, 2009) is applied in order to evaluate if 

observations of HEV registrations in particular local authorities are related to observations of HEV 

registrations in neighbouring local authorities. This type of analysis is contingent on the specification 

of a spatial weights matrix which classifies the space for which the georeferenced data pertains 

according to the configuration of the geographical units (Haining, 2009). Specifically, the spatial 

weights matrix measures the contiguity between the geographical units by noting those which share 

common borders and are thus spatial neighbours. This allows for spatial lags of variables to be 

calculated, which measure the mean value of a variable in neighbouring geographical units. In the 

analysis reported in this paper, a binary spatial weights matrix is specified which follows a first order 

queen contiguity approach that classifies geographical units which share either point or line segment 

borders as neighbours. The structure of the spatial weights matrix is reported in Equation 1 in which 

Wij represents the contiguity between geographical units i and j and n represents the total number of 

geographical units within the dataset.  

 

 

 

𝑊 = ||

𝑊11 … 𝑊𝑛1

⋯
𝑊𝑖𝑗

𝑊1𝑛 𝑊𝑛𝑛

|| 

 

𝑊𝑖𝑗 = {
1
0

𝑖𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡 𝑗 𝑎𝑛𝑑 𝑖 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑖𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡 𝑗 𝑎𝑛𝑑 𝑖 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
 

(1) 

 

Spatial autocorrelation analysis can generally be conducted in two different ways. Firstly, the global 

approach to spatial autocorrelation determines the degree to which a variable is related to its spatial 

lag for the entire dataset. A common variant of global spatial autocorrelation is Moran’s I test (Moran, 

1948) which extends Pearson’s product moment correlation analysis through the integration of a 

spatial weights matrix. The structure of Moran’s I is reported in Equation 2 where yi and yj represents 

the observed value of the variable in the geographical unit i and j while ȳ represents the mean of the 

variable. 

 

 
𝐼 =  

𝑛

∑ ∑ 𝑊𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑊𝑖𝑗 (𝑦𝑖 − 𝑦 ) −  (𝑦𝑗 − 𝑦 )𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦 )2𝑛
𝑖=1

 
(2) 

 

Secondly, the local approach to spatial autocorrelation evaluates the occurrence of spatial patterns 

by noting the presence of groups of geographical units which either share similar or divergent values 

for a variable. Often referred to as Local Indicators of Spatial Association (LISA), this approach assists 

in identifying spatial clusters which either tend to gravitate around relatively low (cold-spots) or high 
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(hot-spots) values for a variable (Anselin, 1995). Additionally, this approach assists in the identification 

of geographical units which are spatial outliers that exhibit values for a variable which are distinctly 

different form their neighbours. The structural form of the LISA is reported in Equation 3 where 𝐼𝑖  

represents the degree of spatial autocorrelation in geographical unit i. 

 

 𝐼𝑖 = 𝑛 (𝑦𝑖 − 𝑦 ) ∑𝑊𝑖𝑗 (𝑦𝑗 − 𝑦 )

𝑗

 (3) 

 

Stage Four 

In the fourth stage of the analysis, registrations of HEVs are compared with other area characteristics 

covering the socioeconomic and household characteristics of the population as well as characteristics 

of the transport system. The purpose of this stage is to provide insights concerning which other area 

characteristics can act as valid indicators of HEV registrations and should be considered as 

independent variables in the regression models (stage five). The comparison is conducted through the 

application of Spearman’s rank order correlation analysis in order to assess how these variables are 

related to one another. The analysis is arranged in two different batches with the first batch evaluating 

the correlations between HEV registrations and socioeconomic characteristics whilst the second batch 

assesses the correlations between HEV registrations and household and transport system 

characteristics. 

 

Stage Five 

In the fifth stage of the analysis, two varieties of regression models are specified which utilise HEV 

registrations (per thousand cars) as the dependent variable. The purpose of these models is to explore 

the association between the LCC and HEV registrations having controlled for the effect of 

socioeconomic, household, and transport system variables. These models take a log-log approach, 

whereby both the dependent and independent variables (expect for the dummy variables associated 

with the local authority area categories) are transformed into their natural logarithms. 

 

A series of benchmark ordinary least squares (OLS) regression models are specified which have the 

following independent variable configurations: 

 

OLS Model 1: incorporates area characteristics covering socioeconomic, household, and transport 

system attributes as independent variables (i.e. omitting a measurement of nearness to the LCC). The 

structural form of OLS Model 1 is reported in Equation 4, where 𝑦 represents a vector of dependent 

variable observations, 𝛼 represents a constant term coefficient, 𝛽𝑎 represents a vector of coefficients 

associated with the area characteristics, 𝑥𝑎  represents a vector set containing observations of the area 

characteristic variables and 𝜀 represents the model residual. 

 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 +  𝜀 (4) 

 

OLS Model 2: incorporates the area characteristics of OLS Model 1 as well as dummy variables covering 

the local authority categories outlined in the contiguity approach. The structural form of OLS Model 2 

is reported in Equation 5 where 𝛽𝑐  represents a vector of coefficients associated with the local 
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authority category dummy variables and 𝑥𝑐  represents a vector set of observations of the local 

authority category dummy variables. 

 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 + 𝛽𝑐𝑥𝑐 +  𝜀 (5) 

 

OLS Model 3: incorporates the area characteristics of OLS Model 1 as well as the distance to the LCC 

centroid as outlined in the proximity approach. The structural form of OLS Model 3 is reported in 

Equation 6 whereby 𝛽𝑝 represents a coefficient for the variable measuring distance to the LCC and 𝑥𝑝 

represents a vector of observations of distance to the LCC.  

 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 + 𝛽𝑝𝑥𝑝 +  𝜀 (6) 

 

OLS Model 4: incorporates the area characteristics of OLS Model 1 as well as the proportion of 

residents driving a car to work in the City of London outlined in the interaction approach. The 

structural form of OLS Model 4 is reported in Equation 7 where 𝛽𝑖  represents a coefficient for the 

variable measuring the proportion of residents driving a car to work in the City of London and 𝑥𝑖  

represents a vector of observations of the proportion of residents driving a car to work in the City of 

London. 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 + 𝛽𝑖𝑥𝑖 +  𝜀 (7) 

 

  

The selection of area characteristics, which cover socioeconomic, household, and transport system 

attributes, to include in the model as independent variables is based on two rationales. First, the 

results of past research provide insights concerning which particular characteristics represent valid 

indicators of HEV demand. The work of Sangkapichai and Saphores (2009), Caulfield et al. (2010), 

Saarenpää et al. (2013), Bansal et al. (2015), Pridmore and Anable (2016), Dimatulac and Moah (2017), 

and Liu et al. (2017) suggest that age, education, income, journey to work, population density, and 

household size are characteristics which are useful in explaining variance in HEV registrations and 

preferences. Secondly, the results of the correlation analysis (stage four of the analysis) are inspected 

to identify significant and strong relationships between HEV registrations and socioeconomic, 

household, and transport system characteristics to consider if any additional variables might be useful 

as indicators of HEV registrations.  

 

The occurrence of spatial autocorrelation in the model dependent variable can indicate the presence 

of spatial dependence regarding the phenomenon being evaluated. If this spatial autocorrelation is 

not accounted for through the inclusion of the independent variables, the possibility exists for the 

models specified to produce biased estimates. Anselin et al. (1996) advises the calculation of the 

robust Lagrange Multipliers in order to identify model misspecification resulting from the omissions 

of a spatially lagged dependent variable or a spatial lag of the model residual. If these tests return 

significant results, the implication is that extending the model through the inclusion of spatial 

interaction effects could improve model performance. Such extensions are generally referred to as 

spatial regression models (LeSage and Pace, 2009; Arbia, 2014), which allow the model to consider if 
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observations of the model’s dependent variable in particular geographical units are associated with 

observations of variables in neighbouring geographical units.  

 

A series of spatial regression models are specified using Maximum Likelihood estimation which include 

two different spatial interaction effects. Firstly, the Spatial Lag Model (SLM) is specified which 

incorporates a spatially lagged variant of the model dependent variable as an independent variable. 

The structural form of the SLM is reported in Equation 8 where 𝑝 represents the spatial interaction 

coefficient for the spatially lagged dependent variable and 𝑊𝑦 represents a vector of spatially lagged 

observations of the dependent variable. 

 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 + 𝛽𝑖𝑥𝑖 + 𝑝𝑊𝑦 +  𝜀 (8) 

 

Secondly, the Spatial Error Model (SEM) is specified which integrates a spatial lag of the benchmark 

OLS model’s residual as an independent variable. The structural form of the SEM is reported in 

Equations 9 and 10 where 𝜆 represents a spatial interaction coefficient associated with the spatial lag 

of the OLS model’s residuals and 𝑊𝑢 represents a vector of observations of spatially lagged OLS model 

residuals. 

 

 𝑦 =  𝛼 + 𝛽𝑎𝑥𝑎 + 𝛽𝑖𝑥𝑖 +  𝑢 (9) 

 𝑢 =  𝜆𝑊𝑢 +  𝜀 (10) 

 

4. Results 

 

4.1 Exploratory Spatial Analysis 

 

The registrations of HEVs across the UK at the end of 2012 have been spatially located across the local 

authorities and standardised by considering the number of registrations per thousand cars. Figure 3 

depicts a choropleth map which illustrates the spatial variation in the registration of HEVs. A 

substantial degree of spatial variation is observed, with the local authority of Blaenau Gwent (central 

Wales) representing the geographical unit with the lowest level of registrations (0.43 HEV registrations 

per thousand cars) whilst the local authority of City of London is the geographical unit with the highest 

registration level (55.55 HEV registrations per thousand cars). 

 



16 
 

 
Figure 3: Choropleth map illustrating the spatial variation in Hybrid Electric Vehicle registrations (per 

thousand cars) across the local authorities of the United Kingdom 
 

4.2 Area Classification Analysis 

 

Table 3 reports the descriptive statistics concerning the observed levels of HEV registrations across 

the different categories of local authorities (i.e. the contiguity approach detailed in section 3.5). The 

Kruskal-Wallis test returns a significant result (χ2 = 110.52, p-value < 0.01), which indicates that the 

observed levels of HEV registrations are distinct across these different categories of local authorities. 

Inspecting the mean values of HEV registrations across the different categories, the descriptive 

statistics indicate that as contiguity to the LCC diminishes, registrations of HEVs tend to decrease.  
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Table 3: Descriptive statistics of Hybrid Electric Vehicle registrations (per thousand cars) across the 

four local authority categories  

Local Authority Category Mean 
Std. 

Dev. 
Min. Max. 

London Boroughs  (n = 32) 10.58 6.81 2.00 30.98 

First Order Neighbours to Greater London ( n = 16) 8.34 8.88 2.61 38.96 

Second Order Neighbours to Greater London (n = 23) 4.31 1.33 2.27 6.90 

Rest of the United Kingdom (n = 303) 3.22 4.00 0.43 55.56 

 

Figure 4 (a) illustrates the association between HEV registrations and the distance between the LCC 

and the local authority (i.e. the proximity approach). The scatterplot indicates that these two variables 

are divergent, which is supported by the observation of a significant negative correlation (rs: -0.621; 

p-value < .001). Thus, as proximity to the LCC reduces, registrations of HEVs tend to decrease. Similarly, 

Figure 4 (b) displays the association between HEV registrations and the proportion of local authority 

residents that drive a car to the City of London local authority for work (i.e. the interaction approach). 

In this instance, the scatterplot suggests that these two variables are concurrent, which is 

substantiated through the presence of a significant positive correlation (rs: 0.634; p-value < .001). 

Thus, as interaction with the LCC increases, registrations of HEVs tend to increase. 

 

  

Figure 4: Scatterplots of Hybrid Electric Vehicle registrations (per thousand cars) against (a) distance 

to London Congestion Charge and (b) residents that drive a car to work in the City of London (per 

thousand residents) 

 

4.3 Spatial Autocorrelation Analysis 

 

The global Moran’s-I spatial autocorrelation analysis returns a significant result (I = 0.62, p-value < 

0.01), which implies that the observations of HEV registrations in local authorities tend to be related 

to the mean observations of HEV registrations in neighbouring local authorities. Figure 5 illustrates 

the results of the LISA analysis, with the output indicating that clusters of local authorities with similar 

rates of HEV registrations are present across the UK. The local authorities shaded deep blue represent 

cold-spot regions, where local authorities display relatively low values in terms of HEV registrations. 

These regions cover the South-West of England, Wales, parts of East Anglia, parts of the North of 
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England, and parts of Scotland. Conversely, the local authorities in and around London shaded deep 

red represent a hot-spot region with high levels of HEV registrations 

 

 
Figure 5: Local Indicator of Spatial Association map of Hybrid Electric Vehicle registrations (per 
thousand private cars) across the local authorities of the United Kingdom 
 

The occurrence of spatial outliers is less common. For instance, one local authority in central Scotland 

(Stirling) is categorised as a high-low area (light red shading), implying that it has relatively high levels 

of HEV registrations but that the local authorities in its vicinity tend to display relatively low levels of 

HEV adoption. Three local authorities (Fareham, Gosport, and Havant) which surround the city of 

Portsmouth on the south coast of the UK represent low-high areas and are shaded in light blue. This 

indicates that these local authorities have comparatively low levels of HEV adoption though they are 

in close vicinity to local authorities which tend to display high values of HEV adoption.    



19 
 

 

Greater London not only represents a hotspot of HEV uptake, but is also a distinct area in terms of the 

structure of the population that reside in its vicinity (e.g. levels of income and education) and its 

transport system (e.g. travel to work patterns and levels of car availability). As such, it can be 

challenging to isolate the association of one particular issue (i.e. the LCC’s exemption policy) over HEV 

demand, as the demand is likely to be motivated by a series of factors which are themselves spatially 

connected. As such, a multivariate analysis which simultaneously estimates the association between 

HEV registrations and area characteristics seems appropriate to evaluate if nearness to the LCC is 

linked with higher rates of HEV uptake.  

 

4.4 Correlation Analysis 

 

The relationships which exist between HEV registrations and other characteristics of the local 

authorities are considered in two batches. The first batch evaluates the relationships between HEV 

registrations and the socioeconomic characteristics of the population with the results of the analysis 

reported in Table 4 (appendix). A strong positive relationship is observed with the mean income of the 

population (rs: 0.656), implying that wealth is an effective indicator of HEV demand. A similar 

magnitude of association is observed with level of education, with the proportion of the population 

that has no formal qualification (rs: -0.667) and a university degree (rs: 0.656) both displaying 

significant correlation coefficients. The economic status of the population also appears to be 

connected with HEV registrations, with the proportion of the population that are classified as 

employed part-time (rs: -0.426) and retired (rs: -0.522) displaying significant negative correlations 

whilst the proportion of the population categorised as employed full-time (rs: 0.322) and self-

employed (rs: 0.327) hold significant positive correlations. The mean age of the population is 

negatively associated with HEV registrations (rs: -0.350). 

 

In the second batch, the level of HEV registrations across the local authorities is compared with a 

number of characteristics relating to local authority household structure and transport system. The 

results of the analysis are reported in Table 5 (appendix) and imply that certain characteristics are 

significantly correlated with HEV registrations. HEV registrations appear to be negatively related to 

the proportion of one car households (rs: -0.233) and the proportion of the population that use a 

private mode to travel to work (rs: -0.428). Conversely, significant positive correlations are observed 

with population density (rs: 0.379), mean household size (rs: 0.381) and the proportion of the 

population that use a public mode to travel to work (rs: 0.477) 

 

4.5 Regression Analysis 

 

The series of benchmark OLS regression models aimed at explaining the observed variation in HEV 

registrations is reported in Table 6. The highest Variance Inflation Factor (VIF) observed is 4.4, with a 

mean VIF of 2.8, indicating that the models are not unduly biased by multicollinearity. The results of 

OLS Model 1 indicate that around three quarters of the observed variation in HEV registrations can be 

explained through a small set of independent variables.  

 

The Results of OLS Models 2 through 4 indicate that the expansion of OLS Model 1 through the 

integration of the area classifications which measure nearness to the LCC produces a slight 
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improvement to model fit. The variables associated with the three different approaches to measuring 

nearness to the LCC all display significant coefficients. There has also been a reduction in the size of 

the coefficients of a number of the area characteristics, notably mean age and mean household size. 

These findings indicate that the results of OLS Model 1 are biased by the omission of the nearness 

measurement. 

 

Table 6: Ordinary least squares log-log regression models with Hybrid Electric Vehicle registrations 

(per thousand cars) as the dependent variable  

Variable 

OLS Model 1 

Beta 

(Std. Err.) 

OLS Model 2 

Beta 

(Std. Err.) 

OLS Model 3 

Beta 

(Std. Err.) 

OLS Model 4 

Beta 

(Std. Err.) 

Constant  -16.942** 

(2.002) 

-14.504** 

(2.108) 

-13.780** 

(2.174) 

-13.547** 

(2.115) 

Area Characteristics     

Mean Age (ln) 2.157** 

(0.441) 

1.863** 

(0.446) 

1.650** 

(0.458) 

1.691** 

(0.445) 

% University Degree (ln) 0.656** 

(0.095) 

0.701** 

(0.096) 

0.724** 

(0.010) 

0.685** 

(0.093) 

Mean Personal Income (ln) 0.894** 

(0.118) 

0.777** 

(0.132) 

0.696** 

(0.130) 

0.677** 

(0.126) 

% One Car Households (ln) 0.565* 

(0.266) 

0.241 

(0.280) 

0.595* 

(0.262) 

0.471 

(0.261) 

% Private Transport to Work (ln) -0.440** 

(0.077) 

-0.231* 

(0.107) 

-0.256** 

(0.093) 

-0.374** 

(0.077) 

Population Density (ln) 0.123** 

(0.017) 

0.112** 

(0.017) 

0.104** 

(0.017) 

0.105** 

(0.017) 

Mean Household Size (ln) 3.461** 

(0.397) 

2.487** 

(0.495) 

2.661** 

(0.454) 

2.341** 

(0.470) 

Company Cars per ‘000 (ln) 0.385** 

(0.027) 

0.401** 

(0.028) 

0.384** 

(0.027) 

0.398** 

(0.027) 

Area Classifications     

London Borough A  0.316** 

(0.107) 

  

First Order Neighbour A  0.227* 

(0.089) 

  

Second Order Neighbour A  0.067 

(0.074) 

  

Distance to City of London in km 

(ln) 

  -0.084** 

(0.024) 

 

Drive to City of London per ‘000 (ln)    0.068** 

(0.016) 

Model Fit     

R2 0.774 0.779 0.781 0.784 

Log Likelihood -73.150 -67.179 -67.097 -64.151 
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AIC 164.300 158.358 154.194 148.301 

SC 199.618 205.449 193.436 187.544 

Spatial Diagnostics     

Robust Lagrange Multiplier (lag) 15.174** 6.761** 9.371** 7.797** 

Robust Lagrange Multiplier (error) 3.904* 7.906** 5.742** 6.495** 

**: p-value < .01; *: p-value < 0.05 

A: dummy variable with [1] to signify the local authority represents the specified category and [0] to signify the local 

authority does not represent the specified category 

 

To ascertain whether the inclusion of the independent variables specified in the OLS log-log regression 

has corrected for the observed spatial dependence, the results of the robust Lagrange Multiplier 

spatial diagnostics prove useful (reported at the bottom of Table 6). Across all 4 of the specified 

models, the results of the diagnostics indicate that spatial autocorrelation in both the model 

dependent variable and model residual remains. In order to account for this persisting spatial 

autocorrelation, the SLM and SEM have been specified using the variable structure of OLS Model 4 

which includes the interaction approach to accounting for the effect of the LCC. The reason for 

selecting OLS Model 4 to be extended is that it outperforms the other OLS models in terms of its model 

fit. The results of the spatial regression models are reported in Table 7. 

 

In the SLM, the spatial interaction coefficient (𝑝) associated with the spatial lag of the model 

dependent variable proves to be significant. This result indicates that observations of the registration 

rates of HEVs is particular local authorities are associated with the observations of HEV registrations 

in neighbouring local authorities. In the SEM, the spatial interaction coefficient (𝜆) which is measured 

through the spatial lag of the residual of OLS Model 4 is also significant. This finding implies that spatial 

autocorrelation remains an issue in the variables which are omitted from the analysis. 

 

Out of all of the regression models specified (OLS log-log models 1 through 4, SLM, and SEM) the SEM 

model provides the best model fit. Exploring the variables which are included in the SEM and their 

association with HEV registrations, a number of notable findings can be discerned. The variable 

measuring the mean age of the population holds a significant positive coefficient in the model (Beta: 

1.729), which is in agreement to the findings of Caulfield et al. (2010) though is counter to the results 

of Saarenpää et al. (2013) and Bansal et al. (2015) who identified a negative association between mean 

age and HEV registrations. The variable measuring the proportion of the population that have attained 

a university degree holds a significant positive coefficient in the model (Beta: 0.822), which is in 

agreement with the findings of past research (Sangkapichai and Saphores 2009; Caulfield et al. 2010; 

Saarenpää et al. 2013; Bansal et al. 2015; Pridmore and Anable, 2016). The average income of the 

population has a significant positive coefficient in the model (Beta: 0.441), which is in agreement to 

the findings of Caulfield et al. (2010) and Saarenpää et al. (2013) though Sangkapichai and Saphores 

(2009) observed a non-linear income effect. Whilst Bansal et al. (2015) found that the proportion of 

individuals driving a car to work to be positively associated with HEV registrations, the opposite is 

observed in the SEM reported in this paper (B: -0.360). A similar situation is also present regarding 

population density, with Bansal et al. (2015) reporting a significant negative association whilst the SEM 

reports a significant positive coefficient (B: 0.092). The mean size of the household (in terms of 

residents) holds a significant positive coefficient in the model (Beta: 2.425), which agrees with the 
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results of Saarenpää et al. (2013) though is counter to the results of Bansal et al. (2015) whose model 

indicates that this variable has a negative association with HEV registration rates. 

 

Table 7: Spatial log-log regression models with Hybrid Electric Vehicle registrations (per thousand 

cars) as the dependent variable 

Variable 
SLM SEM 

Beta Std. Err. Beta Std. Err. 

Constant  -12.687** 1.951 -12.208** 2.067 

Area Characteristics     

Mean age (ln) 1.504** 0.411 1.729** 0.442 

% University Degree (ln) 0.651** 0.087 0.822** 0.094 

Mean Personal Income (ln) 0.481** 0.117 0.441** 0.125 

% One Car Households (ln) 0.518* 0.241 0.161 0.273 

% Private Transport to Work (ln) -0.229** 0.073 -0.360** 0.097 

Population Density (ln) 0.070** 0.016 0.091** 0.019 

Mean Household Size (ln) 1.724** 0.444 2.271** 0.456 

Company Cars per ‘000 (ln) 0.404** 0.025 0.408** 0.024 

Area Classifications     

Drive to City of London per ‘000 (ln) 0.041** 0.015 0.061** 0.017 

Spatial Interaction Effects      

Spatial lag of HEV registrations (𝑝) 0.336** 0.050   

Spatial lag of OLS model residual (𝜆)   0.455 0.061 

Model Fit     

R2 0.816  0.820  

Log Likelihood -43.123  -43.292  

AIC 108.247  106.584  

SC 151.414  145.826  

**: p-value < .01; *: p-value < 0.01 

 

In addition to evaluating the level of agreement between the results of the SEM to observations of 

past research, the SEM also includes a number of additional area characteristics to consider their 

effect over HEV registrations. First, the proportion of households with access to one car appears to be 

insignificant in the SEM, indicating that the level of car availability may not affect HEV registrations. 

Second, the number of company cars registered (per thousand cars) has a significant positive 

coefficient in the model (Beta: 0.397), implying that the presence of company car fleets in an area is 

associated with registration rates of HEVs.  

 

5. Discussion and Conclusions 

 

The adoption of HEVs across the local authorities of the UK has occurred in a spatially heterogeneous 

manner.  This fact is clearly visible in Figure 3, which illustrates that HEVs have been assimilated into 

the car fleets of some local authorities to a much greater degree than others. This process of spatially 

locating the registrations of HEVs and comparing them across different areas (stage one of the 
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analysis) represents the first step in understanding the geographical issues that might be generating 

the spatial variation which is apparent.  

 

A result that stands out from the exploratory spatial analysis is that the City of London has the highest 

level of HEV registrations (55.55 HEVs per thousand private cars). A number of reasons could explain 

this. First, the population of the City of London is, on average, the wealthiest in the UK, meaning they 

would have the resources to afford the price premium associated with the purchase of a HEV. Second, 

as the City of London sits entirely within the LCC, its residents are provided with a 90% discount on 

their first car from having to pay the daily fee associated with the LCC. With this in mind, the high 

levels of HEV registrations observed within the City of London could be the result of households in this 

area purchasing HEVs to act as second cars, as these would not be granted an exemption from the LCC 

unless they were HEVs. Third, residents of the City of London will likely be exposed to HEVs at a much 

higher rate compared to residents of other local authorities, which could lead to HEVs being more 

salient in their minds when considering their next vehicle purchase. Mau et al. (2008) has already 

demonstrated the presence of a neighbour effect in vehicle purchasing decisions, meaning individuals 

are more likely to purchase an alternatively fuelled vehicle if these vehicles are visible in their vicinity. 

Thus, the high degree of HEV registrations within the City of London could be due to residents imitating 

the vehicle preferences of drivers circulating within the LCC. This explanation is further supported by 

the significance of the spatial lag of HEV registrations included in the SLM, which implies that the 

registration rates of these vehicles in a particular local authority are positively associated with the 

rates observed in neighbouring local authorities, which could signify the presence of an imitation 

effect. Indeed, such an effect has already been identified in a mixed-methods analysis of HEV uptake 

within London (Pridmore and Anable, 2016), whereby social influence is found to be an important 

motivator of adoption. Fourth, the discount to the LCC for zone residents does not extend to firms and 

companies which are located within the LCC. Thus, it is possible that the LCC has influenced firms and 

companies within the LCC to purchase HEVs in order to reduce the total cost of ownership of their 

vehicle fleets. All of these reasons could apply, to varying degrees, although demonstrating causation 

would require additional research.   

 

The three approaches to considering the effect of the LCC over HEV registrations all indicate an 

association between the LCC and HEV registrations. As local authorities recede in contiguity and 

proximity to the boundary of the LCC, registration rates of HEVs tends to decrease. This is further 

supported by the interaction approach, which indicates that registrations of HEVs are significantly 

related to the proportion of local authority residents that drive a car to work in the City of London. 

The results of the spatial autocorrelation analysis add support to the view that an association exists 

between nearness to the LCC and HEV registrations. This is apparent in the LISA analysis which clearly 

demonstrates that London and the South East of England represent a hot-spot for adoption.  

 

Whilst the results of stage two and three of the analysis indicate that nearness to the LCC corresponds 

to increased registration rates of HEVs, there is the possibility that other factors are at play in and 

around London which are effecting registration rates. The results of past research highlight the role 

that demographic characteristics can play in HEV registrations (Sangkapichai and Saphores 2009; 

Caulfield et al. 2010; Saarenpää et al. 2013; Bansal et al. 2015; Pridmore and Anable, 2016; Dimatulac 

and Moah, 2017; Liu et al. 2017). Thus it could be that it is the characteristics of the population which 

reside in and around London which are affecting HEV registrations and not the presence of the LCC. 
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Indeed, stage four of the analysis clearly demonstrates that registration levels of HEVs are significantly 

correlated with a variety of different area characteristics, with a number of large correlation 

coefficients being observed with the variables measuring such characteristics as income and level of 

education. To evaluate if nearness to the LCC has a significant association with registration rates of 

HEVs having controlled for the effect of socioeconomic, household, and transport system 

characteristics, the results of the regression models (stage five of the analysis) are of interest. Across 

the OLS log-log regression models which include variables that aim to evaluate the association of 

nearness to of the LCC over HEV registrations (Models 2-4), the results of the analysis imply that as 

contiguity, proximity and interaction with the LCC diminishes, so too do registrations of HEVs. This is 

a robust result, having controlled for the area characteristics which are likely to be effecting HEV 

demand. Moreover, the significance of the variable measuring the proportion of population that drive 

a car to the City of London (i.e. the interaction approach) remains having accounted for the effect of 

spatial interaction of the model dependent variable (SLM) and the effect of the spatial interaction in 

the model error term (SEM). Taken as a whole, the results of the analysis support the view that the 

LCC and the rate of HEV registrations are connected issues. 
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Appendix 

 

Table 4: Spearman’s correlation analysis between Hybrid Electric Vehicle registrations (per thousand cars) and socioeconomic characteristics of the population 

Variable A B C D E F G H I J K L M 

HEVs (A) 1.000                         

Mean Age (B) -.350** 1.000                       

No Qualification (C) -.667** .157** 1.000                     

Level1 Qualification (D) -.425** .080 .607** 1.000                   

Level2 Qualification (E) -.267** .393** .154** .465** 1.000                 

Level3 Qualification (F) -.016 -.031 -.206** -.299** .175** 1.000               

Level4 Qualification (G) .644** -.060 -.914** -.692** -.360** .068 1.000             

Part Time Employment (H) -.426** .651** .275** .244** .539** .168** -.301** 1.000           

Full Time Employment (I) .322** -.349** -.431** .113* .039 -.024 .268** -.223** 1.000         

Self Employment (J) .327** .418** -.587** -.416** .111* -.121* .607** .105* -.016 1.000       

Unemployed (K) -.176** -.527** .589** .329** -.212** -.253** -.550** -.286** -.195** -.685** 1.000     

Retired (L) -.522** .925** .408** .208** .410** -.032 -.302** .673** -.456** .166** -.289** 1.000   

Mean Personal Income (M) .656** -.032 -.819** -.391** -.119* -.037 .813** -.250** .483** .598** -.556** -.282** 1.000 

**: p-value < .01; *: p-value < 0.05 
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Table 5: Spearman’s correlation analysis between Hybrid Electric Vehicle registrations (per thousand cars) and characteristics of the 

transport system and households 

Variable A B C D E F G H I J K 

HEVs (A) 1.000                     

 No Car (B) -.059 1.000                   

One Car (C) -.233** .275** 1.000                 

Two Cars (D) .078 -.978** -.383** 1.000               

Three or More Cars (E) .022 -.968** -.348** .954** 1.000             

Private Mode (F) -.428** -.389** -.129* .457** .397** 1.000           

Public Mode (G) .477** .536** -.076 -.507** -.531** -.676** 1.000         

Active Mode (H) -.040 .185** .282** -.259** -.220** -.328** -.196** 1.000       

Population Density (I) .379** .655** .055 -.620** -.667** -.387** .746** -.020 1.000     

Household Size (J) .381** -.217** -.279** .270** .237** .024 .312** -.440** .254** 1.000   

Company Cars (K) .055 .510** .050 -.464** -.507** -.044 .215** .055 .315** -.047 1.000 

**: p-value < .01; *: p-value < 0.05   

 

 

 

 

 

 


