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ABSTRACT 
 
An exact differential equation governing the motion of an axially loaded Timoshenko beam supported on 
a two parameter, distributed foundation is presented.  Attention is initially focused on establishing the 
provenance of those Timoshenko frequencies generated from the hinged-hinged case, both with and 
without the foundation being present.  The latter option then enables an exact, neo-classical assessment of 
the ‘so called’ two frequency spectra, together with their corresponding modal vectors, to be undertaken 
when zero, tensile or compressive static axial loads are present in the member.  An alternative, ‘precise’ 
approach, that models Timoshenko theory efficiently, but eliminates the possibility of a second spectrum, 
is then described and used to confirm the original eigenvalues.  This leads to a definitive conclusion 
regarding the structure of the Timoshenko spectrum.  The ‘precise’ technique is subsequently extended to 
allow, either the full foundation to be incorporated, or either of its component parts individually.  An 
illustrative example from the literature is solved to confirm the accuracy of the approach, the nature of the 
Timoshenko spectrum and a wider indication of the effects that a distributed foundation can have. 
 
1.  Introduction 
 
   A knowledge of the vibration of beams and beam systems is a modern requirement across a diverse 
range of engineering and scientific disciplines, no better typified than in the aerospace industry.  Of the 
vibration theories available, Bernoulli-Euler theory is the simplest and most widely understood.  It 
underpins the majority of practical applications, which involve members with moderate to high 
slenderness ratios, but requires modification when the members carry a static axial force of significant 
value.  In similar fashion, when members have a low slenderness ratio or vibrate at high frequency, the 
second order effects of rotary inertia of the cross-section and shear deformation must be taken into 
account; the so-called Timoshenko theory. 
   Since its inception in 1921 [1], Timoshenko beam theory has generated an almost relentless flow of 
research on virtually every aspect of its sphere of influence.  Despite this, there are still a surprising 
number of topics that can benefit from further attention and subsequent explanation.  One of these 
concerns the provenance of frequencies determined through Timoshenko beam theory.  Unlike Bernoulli-
Euler theory, which is well understood for single members, there has long been conjecture regarding a 
particular aspect of Timoshenko theory, namely the point discontinuity in the governing differential 
equation and the subsequent division of frequencies into two spectra.  Background to this area of work 
can be found, for example, in the following papers [2-9], which themselves contain a wide variety of 
references. 
   In the work that follows, a unified, exact member theory that incorporates all the second order effects of 
static axial load, rotary inertia and shear deformation is presented in a way that enables a critical 
assessment to be made of the point discontinuity in the Timoshenko equation.  This leads to a clarification 
of the status of the corresponding cut-off frequency, which in turn enables a definitive conclusion to be 
drawn about the Timoshenko spectrum.  The evidence thus gathered is further used to cast light on the 
corresponding modal vectors and other related topics of interest. 
   Initially, the exact differential equation governing the motion of a Timoshenko beam supported on a 
two parameter, distributed foundation is presented in a convenient, non-dimensional form that allows for 
the possibility of a zero, tensile or compressive static axial load in the member.  The basic hinged-hinged 
relationships required in the remainder of the paper are then developed concisely, in such a way that 
shows how the continuous spectrum of Bernoulli-Euler (B-E) frequencies are related to their Timoshenko 
counterparts.  The paper then focuses in more detail on the case of an axially loaded, hinged-hinged 
Timoshenko beam in the absence of an elastic foundation.  It is shown how the frequency equation 
factorizes, the nature of the second spectrum is discussed, together with its influence on mode shape 
recovery, and a simple, physical comparison is made between any combination of hinged and guided 
boundary conditions. 
   A ‘precise’ approach for converging upon any required Timoshenko frequency in an extremely efficient 
way, is then described.  In the absence of a distributed foundation, this involves establishing a stiffness 
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matrix using Bernoulli-Euler theory that allows exactly for static axial load and shear deformation and 
then augmenting it with a close approximation to the distributed rotational inertia.  Such an approach 
eliminates the possibility of a second spectrum and when used in conjunction with the Wittrick-Williams 
algorithm [10], ensures convergence to any required natural frequency with the certain knowledge that 
none have been missed. This theory is subsequently used to confirm the exact results from the 
corresponding equations presented earlier, by mapping the step-by-step transformation of the B-E 
frequencies to their equivalent Timoshenko values. This process underlines the need to reassess the 
discontinuity in the Timoshenko equation and hence the status of the cut-off frequency. 
   Attention is then focused on establishing the corresponding eigenvalues when the member is supported 
on a two-parameter, distributed foundation.  Exact solution of the Timoshenko problem in such cases has 
been considered previously by Capron and Williams [11] and has been shown to be intractable.  In 
contrast, it is shown herein that equivalent solutions to the hinged-hinged case, can be generated through 
the ‘precise’ approach, to good accuracy, by implementing a minor modification, and furthermore, that 
extension to any possible combination of elastic end conditions is equally straightforward.  An additional 
point of note that emerges from the above is that, for the hinged-hinged case, two possible discontinuities 
in the governing differential equation can now be identified. 
   Finally, the theory of this paper is applied to a well-known, illustrative problem, from which a number 
of conclusions are drawn and recommendations made. 
 
2.  Theory 
 
   An exact, fourth order differential equation governing the motion of an axially loaded Timoshenko 
beam of length, L, that is supported on a two parameter, distributed foundation, whose lateral and 
rotational restraining stiffnesses per unit length are 𝑘𝑘𝑦𝑦 and 𝑘𝑘𝜃𝜃, respectively, has been given by Capron 
and Williams [11] and can be written in the following non-dimensional form  
 
                                                0]/)()(2[ 2

22
1

4 =−−−+ ∗∗ Θ∆ tkqbDkD                                                  (1) 
 
where ξddD /= ,  Lx /=ξ  is the non-dimensional length parameter and ΨΘ orV= , where V and Ψ  
are the amplitudes of the lateral displacement and bending slope, respectively. 
 
                tsrbqp 2/)]([ 2222 ++=∆      2221 srbq −=      EIALb /242 ωρ=     221 pst −=                  (2a) 
 
                                     𝑘𝑘1∗ = (𝑠𝑠2𝑘𝑘𝑦𝑦∗ + 𝑡𝑡𝑘𝑘𝜃𝜃∗) ∕ 2𝑡𝑡     𝑘𝑘2∗ = 𝑞𝑞𝑘𝑘𝑦𝑦∗ − 𝑠𝑠2𝑘𝑘𝜃𝜃∗(𝑏𝑏2 − 𝑘𝑘𝑦𝑦∗)                                     (2b) 
 
           EIPLp /22 =      22 / ALIr =      22 / AGLEIs κ=      𝑘𝑘𝑦𝑦∗ = 𝑘𝑘𝑦𝑦𝐿𝐿4 ∕ 𝐸𝐸𝐸𝐸     𝑘𝑘𝜃𝜃∗ = 𝑘𝑘𝜃𝜃𝐿𝐿2 ∕ 𝐸𝐸𝐸𝐸            (2c) 
 
where GE and,ρ  are the density, Young’s modulus and shear modulus of the member material 
respectively, A and I are the area and second moment of area of the cross-section, κ is the section shape 
factor, ω  is the radian frequency of vibration and P is the static axial load in the member, which is 
positive for compression, zero, or negative for tension.  The non-dimensional parameters 

2222 and,, srpb  uniquely define the effects of frequency, axial load, rotary inertia and shear 
deformation, respectively [12,13]. For generality, the work that follows is developed in terms of 2and bb  
which, for conciseness, are merely referred to as frequencies, while any combination of the remaining 
effects can be neglected by setting the relevant parameter to zero.  Finally, it can be demonstrated that, t, 
defined by the last of Eqs.(2a), is always positive so long as P is less than the elastic critical buckling load  
(when in compression and does not cause inelastic behaviour when in tension. 
 
2.1.  Frequency relationships for the hinged-hinged case 
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   For this case, it is convenient to consider Eq.(1) with V=Θ  and to assume a general solution of the 
form πξiCV sin= , where C is an arbitrary constant and V satisfies the boundary conditions.  
Substituting for V in Eq.(1) then yields 
 
                                  0/)())((2)( 2

22
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4 =−−−− ∗∗ tkbqiki iii π∆π          ∞= ,....2,1i                                     (3) 
 
Eq.(3) can now be used to find any frequency, ib , for any combination of the non-dimensional parameters 
defined in Eqs.(2).  However, for the context of this paper, it is first necessary to consider the simple B-E 
beam, for which 0222 ===== ∗∗

θkksrp y .  Substituting these parameters in Eq.(3) yields the thi  B-E 
frequency, ib ,0 , as 

                                                             2
,0 )( πib i =             ∞= ,....2,1i                                                        (4) 

 
   Attention is now focused on relating the 𝑖𝑖𝑡𝑡ℎ B-E frequency to its counterparts emanating from any 
desired combination of non-dimensional parameters.  This is most easily achieved by embedding Eq.(4) 
into Eq.(3), to yield 
 

(1 − 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖
2 − �𝑝𝑝2 + (𝑏𝑏𝑖𝑖2𝑟𝑟2 − 𝑘𝑘𝜃𝜃∗)(1 − 𝑠𝑠2𝑝𝑝2) + 𝑠𝑠2�𝑏𝑏𝑖𝑖2 − 𝑘𝑘𝑦𝑦∗��𝑏𝑏0,𝑖𝑖 

 
                                                −�𝑏𝑏𝑖𝑖2 − 𝑘𝑘𝑦𝑦∗�{1 − 𝑠𝑠2(𝑏𝑏𝑖𝑖2𝑟𝑟2 − 𝑘𝑘𝜃𝜃∗)} = 0                                 ∞= ,....2,1i    (5) 
 
which, upon expansion, yields the quadratic frequency equation in the non-dimensional frequency 
parameter, 𝑏𝑏𝑖𝑖2, as 
                                       𝑏𝑏𝑖𝑖4𝑟𝑟2𝑠𝑠2 − �1 + �𝑟𝑟2(1 − 𝑠𝑠2𝑝𝑝2) + 𝑠𝑠2]𝑏𝑏0,𝑖𝑖 + 𝑠𝑠2�𝑟𝑟2𝑘𝑘𝑦𝑦∗ + 𝑘𝑘𝜃𝜃∗���𝑏𝑏𝑖𝑖2 
 
                +(1 − 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖

2 − �𝑝𝑝2 − 𝑠𝑠2𝑘𝑘𝑦𝑦∗ − (1 − 𝑠𝑠2𝑝𝑝2)𝑘𝑘𝜃𝜃∗ �𝑏𝑏0,𝑖𝑖 + (1 + 𝑠𝑠2𝑘𝑘𝜃𝜃∗)𝑘𝑘𝑦𝑦∗ = 0        ∞= ,....2,1i    (6) 
 
   A further closed form relationship of interest can be established by ignoring the effects of rotary inertia, 
i.e. setting 𝑟𝑟2 = 0 in Eq.(6), to yield 
 
                          𝑏𝑏𝑝𝑝𝑝𝑝𝑦𝑦𝜃𝜃,𝑖𝑖

2 = �(1− 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖
2 − �𝑝𝑝2 − (1 − 𝑠𝑠2𝑝𝑝2)𝑘𝑘𝜃𝜃∗ − 𝑠𝑠2𝑘𝑘𝑦𝑦∗ �𝑏𝑏0,𝑖𝑖 + (1 + 𝑠𝑠2𝑘𝑘𝜃𝜃∗)𝑘𝑘𝑦𝑦∗� 

 
                                                             /�1 + 𝑠𝑠2�𝑏𝑏0,𝑖𝑖 + 𝑘𝑘𝜃𝜃∗��                                                ∞= ,....2,1i    (7) 
 
where the lowercase subscripts on the left hand side of the equation, other than i, denote the non-
dimensional parameter(s) retained. 
 
2.2.  Equivalent equations in the absence of a distributed foundation 
 
   The effects of a two parameter foundation can be eliminated simply from Eqs.(1), (5), (6) and (7) by 
setting 𝑘𝑘𝑦𝑦∗ = 𝑘𝑘𝜃𝜃∗  = 0 to yield 
                                                                 0]/2[ 224 =−+ Θ∆ tqbDD                                                      (8) 
 
           (1 − 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖

2 − {𝑝𝑝2 + 𝑏𝑏𝑖𝑖2𝑟𝑟2(1− 𝑠𝑠2𝑝𝑝2) + 𝑏𝑏𝑖𝑖2𝑠𝑠2}𝑏𝑏0,𝑖𝑖 − 𝑏𝑏𝑖𝑖2(1 − 𝑏𝑏𝑖𝑖2𝑟𝑟2𝑠𝑠2) = 0       ∞= ,....2,1i      (9) 
 
              𝑏𝑏𝑖𝑖4𝑟𝑟2𝑠𝑠2 − �1 + [𝑟𝑟2(1 − 𝑠𝑠2𝑝𝑝2) + 𝑠𝑠2]𝑏𝑏0,𝑖𝑖�𝑏𝑏𝑖𝑖2 + (1 − 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖

2 − 𝑝𝑝2𝑏𝑏0,𝑖𝑖 = 0       ∞= ,....2,1i    (10) 
 
                                                 𝑏𝑏𝑝𝑝𝑝𝑝,𝑖𝑖

2 = �(1 − 𝑠𝑠2𝑝𝑝2)𝑏𝑏0,𝑖𝑖
2 − 𝑝𝑝2𝑏𝑏0,𝑖𝑖�/�1 + 𝑠𝑠2𝑏𝑏0,𝑖𝑖�                ∞= ,....2,1i     (11) 
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respectively. 
   Solutions to Eq.(8) can now be found easily, for any required combination of boundary conditions, 
using the dynamic stiffness technique in conjunction with the Wittrick-Williams algorithm, as described 
in detail in references [12,13].  Since such solutions are founded in exact member theory and can be 
converged upon to the accuracy of the host computer, the accuracy of such results is commensurate with 
that of closed form solutions. 
   Eq.(8) yields Eq.(9) exactly for the case of hinged-hinged boundary conditions which, on expansion, 
yields the quadratic equation in 𝑏𝑏𝑖𝑖2 that is given in Eq.(10). Thus either equation can be used to generate 
the required frequency parameters, the former by trial values of 𝑏𝑏𝑖𝑖 and the latter from a classical route. 
   Finally, it is clear that Eqs.(7) and (11) are simple, exact closed form solutions and are typical of a 
family of such equations formed from various combinations of the non-dimensional parameters, in which 
either 𝑟𝑟2, 𝑠𝑠2 or both are zero.  In both equations presented, the effects of axial load and shear deformation 
are accounted for exactly, while the effects of rotary inertia are ignored.  Once more it is straightforward 
to show that the right hand side of Eq.(11) is always positive, with the result that each frequency 
generated is related uniquely to a single B-E frequency, which thus forms part of a single continuous 
spectrum. Such an argument must also hold for Eq.(7), since adding stiffness to a structure cannot reduce 
the values of its natural frequencies. Furthermore, it is a requirement of any theory that seeks to improve 
the accuracy of B-E theory, that each frequency is modified without loss or addition of any frequencies.  
This is clearly satisfied by Eqs.(7), (11) and all similar equations that constitute the family. 
   In contrast, Eq.(10) shows that although the complete spectrum of Timoshenko frequencies can be 
determined through an entirely consistent approach, each pair of frequencies now stems from a single B-E 
frequency and hence the one-to-one relationship between a developed frequency and a unique B-E 
frequency appears to have been lost. 
   Consider therefore the lower and upper solutions to Eq.(10), which can be written as, respectively, 
 
                                       222/12

, 2/)( srb iiiL bα −=      and     222/12
, 2/)( srb iiiU bα +=                         (12a,b) 

where 
                         ])1([1 2222

,0 spsrb ii +−+=α    and   ])1([4 222
,0,0

222 ppsbbsr iiii −−−= αb         (13a,b) 
 
It is then straightforward to show that ib , the discriminant of Eq.(10), is always positive and that both 
roots are also positive, subject to the constraints imposed earlier on P. 
 
2.3.  The two frequency spectra 
 
   Timoshenko beam theory, as defined by Eq.(8), has a discontinuity when 
 
                                                01 222 =−= srbq     i.e. when     222 /1 srbco =                                     (14a,b) 
 
where 2

cob  defines the cut-off frequency.  Beyond this point, the natural frequencies stem from two 
sources, the first (original) spectrum and the ‘so-called’ second spectrum, as discussed later in this 
section. 
  Before that, it is important to deal with the lack of clarity surrounding the cut-off frequency, which lies 
at the heart of the current debate on this aspect of Timoshenko theory.  The problem stems from the fact 
that the cut-off frequency corresponds to the point discontinuity in the Timoshenko equation and as such 
has never been ascribed any intrinsic value, over and above defining the lower limit of the second 
spectrum.  However, there are a number of indications that this should not be so.  For example, the cut-off 
frequency can be captured using Timoshenko theory, since Eq.(8) is valid in the range 010 222 <−< srb  
and therefore offers the possibility of infinitely close upper and lower bounds on the cut-off frequency, 
subject only to the accuracy of the host computer.  i.e. the accuracy to which any other frequency can be 
converged upon.  Furthermore, it can be shown that the cut-off frequency and its mode shape correspond 
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exactly to the lowest frequency and mode shape of an infinite family of pure shear modes that are 
governed by a second order differential equation [2].  Since the pure shear mode corresponding to the cut-
off frequency is clearly a possible mode of a hinged-hinged member, it implies that the determinant in a 
transcendental dynamic stiffness approach must change sign through zero rather than infinity.  Thus any 
theory, exact or approximate, that seeks to converge on Timoshenko frequencies can include the cut-off 
frequency in its spectrum by ensuring that its root count algorithm increases by one as the trial frequency 
passes through the cut-off frequency.  Finally, it is shown in Section 3 that there is always a Bernoulli-
Euler frequency that maps to the cut-off frequency.  The implications stemming from the above points are 
discussed later in Sections 4 and 5. 
   The factorisation of the hinged-hinged frequency equation, which leads to the two frequency spectra of 
Timoshenko beam theory, has been dealt with by a number of authors, as alluded to in the Introduction.  
Stephen [8] has also described the extensions necessary to include the related cases of guided-guided and 
hinged-guided boundary conditions. However, there are also some simple physical relationships that exist 
between these boundary conditions that are of interest and these are presented in the Appendix. 
   In order to facilitate further comparison, it is necessary to establish the manner in which Eq.(8) 
factorises in the case of a hinged-hinged member to yield the two spectra of Timoshenko frequencies. 
This is described in detail in [12] and in outline below. Thus from [12], and with the current notation, the 
required natural frequencies correspond to  
 
                                                             0sin =iΦ         when     0>iq                   ∞= ,....2,1i               (15a) 
and 
                                                        0sinsin =ii ΛΦ         when      0<iq              ∞= ,....2,1i               (15b) 
where 
                                   2/1222 )/( tbq iiiii ++= ∆∆Φ      and     2/1222 )/( tbq iiiii +−= ∆∆Λ                       (16a,b) 
 
and the right hand sides of Eqs.(16) are defined by Eqs.(2).  The frequencies, ib ,Φ , corresponding to 

0sin =iΦ  constitute the first spectrum, while those frequencies, ib ,Λ , corresponding to 0sin =iΛ  
constitute the second.  The frequencies in the first and second spectrum can therefore be found from, 
Eqs.(16) by substituting, respectively, 
 
                                                     πΦ ii =      and     πΛ ii =           ∞= ,....2,1i                                   (17a,b) 
 
   The frequencies ib ,Φ  and ib ,Λ  are evidently the solutions of Eq.(9) and hence of Eq.(10).  They must 
therefore be identical to the solutions of Eq.(10) that stem from Eqs.(12), with the result that 
 
                                                               iLi bb ,, =Φ      and     iUi bb ,, =Λ                                                (18a,b) 
 
2.3.1.  Mode shape retrieval and interpretation 
 
   The mode shapes corresponding to those frequencies obtained through Timoshenko theory are 
straightforward to develop by any appropriate method.  In the current context of converging on the 
required frequencies using a stiffness formulation and the Wittrick-Williams algorithm [10], the method 
of mode extraction used is described in detail by Hopper and Williams [14] and implemented in the 
computer program described in [13].  The mode shape corresponding to the cut-off frequency is the only 
possible pure shear mode and is easy to recognise, since the lateral displacement is zero and the bending 
slope is a constant value along the length of the member.  Hence the modal number is either known by 
inspection or can be calculated a priori through Eq.(21).  All other modes are flexural with those below 
the cut-off frequency stemming from the first spectrum and those above the cut-off frequency stemming 
from either.  For those modes occurring above the cut-off frequency, it is helpful to identify their origin 
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either from Eqs.(12) or (16) and these will be designated 𝛷𝛷𝑚𝑚 and 𝛬𝛬𝑛𝑛 modes, corresponding to the first and 
second spectrum, respectively.  Since the modes are functions of sine terms and the member has hinged-
hinged supports, all modes will have m or n half sine waves along the full length of the member and the 
lateral displacement will be either symmetric or antisymmetric about its mid-length depending on whether 
m or n is odd or even, respectively, with the corresponding rotational displacement being out of phase by 
3𝜋𝜋/2 for 𝛷𝛷𝑚𝑚 modes and 𝜋𝜋/2 for 𝛬𝛬𝑛𝑛 modes.  This is due to the fact that the sign of the shear slope and the 
sign of the bending slope can be shown to be the same for the 𝛷𝛷𝑚𝑚 modes and opposite for the 𝛬𝛬𝑛𝑛 modes 
[15].  It also confirms that the corresponding 𝛷𝛷𝑚𝑚 and 𝛬𝛬𝑛𝑛 modes, in which 𝑚𝑚 = 𝑛𝑛, satisfy the necessary 
condition of independence between themselves and every other mode.  These points are further clarified 
in Tables 4 and 5 and Figs. 1 and 2, which highlight a selection of mode shapes stemming from the results 
of the Numerical Example of Section 3. 
 
2.4.  A ‘precise’ approach 
 
   In the ‘precise’ approach used herein, the original uniform member of length, L, is notionally divided 
into NS segments of equal length, LS, such that 
 
                                                               NSLLSNS M /and2 ==                                                  (19a,b) 
 
where M is an integer that ultimately defines the numerical accuracy of the solution.  An ‘appropriate’ 
dynamic stiffness matrix is then formulated for a single datum segment of length LS, using a theory that 
reflects, as accurately as possible, the behaviour of the original member, but which lends itself to simpler 
solution.  The first step is then to determine the number of clamped ended frequencies of the datum 
segment that have been passed by the trial frequency.  An approximation to the original member is then 
reconstituted from the datum segment in M doubling procedures.  In the first of these, two datum 
segments are joined together end to end to form a new segment of length LS×2 .  This implies the 
addition of two datum stiffness matrices followed by Gauss elimination to eliminate the central node.  
This is also a necessary step in the Wittrick-Williams algorithm [10] for accumulating the number of 
natural frequencies passed by the trial frequency.  This doubling procedure is then used recursively [16-
18] a further 1−M  times, until an approximation to the original member has been formed in terms of its 
dynamic stiffness matrix.  Once this has been achieved, the boundary conditions are imposed on the 
resulting stiffness matrix and the Wittrick-Williams root counting algorithm [10] is completed by 
establishing the ‘sign count’ of the final matrix i.e. the number of negative leading diagonal elements of 
the matrix following Gauss elimination in its standard form.  Iterative use of this process enables 
convergence upon the currently required natural frequency, and subsequently on all required natural 
frequencies to any desired accuracy with the certain knowledge that none have been missed. 
 
2.4.1.  The hinged-hinged case in the absence of a distributed foundation 
 
   In this case, the ‘appropriate’ datum stiffness matrix is developed using exact B-E theory with exact 
allowance for axial load and shear deformation.  i.e. the dynamic stiffness equivalent of Eq.(11) that 
clearly has a single, continuous frequency spectrum.  The distributed rotary inertia of the datum segment 
is then calculated and half is allocated as a lumped inertia to each of the direct rotational stiffness 
locations of the datum stiffness matrix.  The member is then reconstituted from the datum matrix in the 
way described above, with the result that an equivalent Timoshenko member has been formed through a 
route that has eliminated the possibility of a second spectrum.  It can be seen that the ‘precise’ results 
presented for the numerical example of Section 3 show exceptionally good accuracy when compared to 
the equivalent exact results. 
 
2.4.2.  The hinged-hinged case in the presence of a distributed foundation 
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   The relatively simple boundary conditions of this case enable Eq.(1) to be written in the form of Eq.(5) 
and subsequently Eq.(6).  However, the difficulties in solving Eq.(1) exactly, are also apparent in Eq.(6), 
where the discriminant of the quadratic equation can be awkwardly volatile and difficult to deal with.  
Thus it is useful to adopt once more the approach described in Section 2.4.1 above, but this time based on 
Eq.(7).  This presents a more difficult problem than previously, until it is noted that Eq.(11) is Eq.(7) with 
the foundation stiffnesses removed.  It is then a simple matter to use the original datum segment matrix, 
but now augmented with lumped stiffnesses, equivalent to the original distributed foundation stiffnesses, 
which are divided equally between the appropriate direct stiffness locations at each end of the datum 
segment.  The process of reconstitution is then undertaken as before. 
   Finally, it is interesting to note from either Eq.(1) or Eq.(5), that there now appears to be two possible 
discontinuities, namely at  
                                                   𝑏𝑏𝑖𝑖2 = (1 + 𝑠𝑠2𝑘𝑘𝜃𝜃∗)/𝑟𝑟2𝑠𝑠2    and    𝑏𝑏𝑖𝑖2 = 𝑘𝑘𝑦𝑦∗                                           (20a,b) 
 
The first is a variation of the original cut-off frequency, modified solely by the rotational component of 
foundation stiffness, which therefore maintains its identity as a pure shear mode, while the second is a 
function of the lateral foundation stiffness only.  In the ‘precise’ approach proposed herein, the 
substitution of approximate lumped foundation stiffnesses to replace the original distributed stiffnesses, 
relegates the root counting procedures necessary to account for Eqs.(20), to the purely mechanical task of 
establishing the ‘sign count’ of the reconstituted, dynamic member stiffness matrix, as discussed in 
Section 2.4.2.  In contrast, the complexities imposed by these discontinuities in an exact environment 
have been discussed in detail by Capron and Williams [11]. 
 
2.4.3.  The ‘precise’ solution of Eq.(1) with any combination of elastic end conditions 
 
   It should be noted that the problem described in Section 2.4.2 requires no specific knowledge of Eq.(1), 
but only the datum segment matrix of the equivalent Timoshenko beam developed in Section 2.4.1 and its 
augmentation with equivalent foundation stiffnesses in Section 2.4.2.  Thus the only difference between 
the hinged-hinged case and this one, is the imposition of any combination of nodal elastic boundary 
conditions at the end of each iteration of the Wittrick-Williams process and their subsequent effect on the 
‘sign count’, as discussed in Section 2.4. 
 
3.  Numerical example 
 
   The problem of a hinged-hinged Timoshenko beam, originally solved by Levinson and Cooke [5] and 
extended by Stephen [8] is now considered in a variety of ways. The basic member data are as follows.  
Young’s modulus 210=E  GN/m2, density =ρ  7850 kg/m3, Poisson’s ratio =ν  0.3, the shear 
coefficient )56/()1(5 ννκ ++= , length =L 0.5m, depth =d  0.125m and breadth equal to unity.  The 
axial load in the member when not zero is 675.0± GN, which is approximately half its Euler load when in 
compression. 
 
4.  Results and discussion 
 
   The results emanating from the analysis of the above data are presented in Tables 1 to 7 and Figs. 1 and 
2.  In each of Tables 1 to 3 and 6 to 7, the columns are numbered to facilitate description and the core 
results forming the body of the table are the required non-dimensional frequency values, 𝑏𝑏𝑖𝑖.  Each table is 
divided into three sections, depending on whether the axial load is zero, tensile or compressive.  The 
results in the tensile and compressive sections follow the results for the unloaded member in a predictable 
way and create no anomalies.  The descriptions given thus relate to all three sections of the tables.  Tables 
4 and 5 are structured differently and together with Figs. 1 and 2 describe the attributes of a selection of 
mode shapes that typify the motion over the range of frequencies examined. 
   Table 1 lists the non-dimensional frequency parameters, 𝑏𝑏𝑖𝑖, stemming from Eq.(11) with 𝑠𝑠2 = 0 
(columns 2, 4 and 6) and 𝑠𝑠2 ≠ 0 (columns 3, 5 and 7). Consider first the odd numbered columns. It is 
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clear that each of these results, which allow exactly for the effects of axial load and shear deformation in 
the member, but make no allowance for rotary inertia, bare a unique relationship to their corresponding 
B-E frequencies.  These results therefore constitute part of an infinite, unbroken single spectrum of 
frequencies. In contrast, the equivalent Timoshenko frequencies listed in Table 2 are generated in pairs, 
being the lower and upper solutions of Eq.(10), the governing quadratic equation, which is seeded by a 
single value.  Thus the notion that a single B-E frequency is uniquely related to a single Timoshenko 
frequency appears to be unfounded.  In turn, this throws doubt on a theory that purports to improve the 
accuracy of all frequencies stemming from the simpler B-E model. 
   Table 3 compares results from a number of equations in the body of the paper, together with additional 
supporting information. The exact results in column 2 are generated from Eq.(11) with 𝑠𝑠2 ≠ 0 and 
provide an upper bound datum for the remainder of the frequencies shown in the table. The results from 
the ‘precise’ approach, which is described in Section 2.4, are presented in columns 3-6 and correspond to 
the number of doubling procedures undertaken in each case. M = 3 indicates that the reconstituted 
member would be modelled by eight segments.  In contrast, 12=M  indicates that it would be modelled 
by 4096 segments in only twelve doubling procedures.  In the latter case, the segment length for the 
current problem would be less than 0.125mm long. Columns 3-6 therefore chart the convergence of the 
‘precise’ frequencies to their exact counterparts in column 7, with increasing M.  It should be noted that 
the ‘precise’ results of column 6 are identical to the exact Timoshenko results of column 7, which were 
determined from a general computer program based on Eq.(8) and using exact member theory [12,13]. 
Columns 8 and 9 give the lower (first spectrum) and upper (second spectrum) frequencies satisfying 
Eqs.(12), but now written in ascending order and retained in their respective columns for comparison.  
The table is rounded off by columns 10 and 11, which note the values of Φ  and Λ  for each of the first 
and second spectrum frequencies, respectively. This confirms that all first and second spectrum 
frequencies correspond to integer multiples of π  and that the values in columns 8 and 9 also satisfy 
Eqs.(16). Table 3 is important because it shows beyond all doubt that the ‘precise’ model, which cannot 
have a second spectrum, yields results for sufficiently large M, that match identically with the exact 
Timoshenko results from any of the sources described in the paper, when written in ascending order. 
Furthermore, if the results of the precise approach given in column 6, which comprise a single continuous 
spectrum, are now taken as the datum, there is no indication, to the accuracy of the results presented, that 
the inherent accuracy of second spectrum frequencies is any different to that of the first spectrum, as has 
been suggested elsewhere [8]. 
   Table 4 identifies the modal type associated with each of the fifteen frequencies identified in Table 3 
according to the procedure described in Section 2.3.1., which clearly parallels the data of Table 3.  Thus it 
can be gleaned from either table, that the frequency/mode sequencing does not adhere to a fixed pattern 
and hence that, in any analysis, it will always be beneficial to be in a position to define frequency/modal 
provenance. 
   Table 5 gives numerical values of the mode shape corresponding to the cut-off frequency, together with 
a selection of typical first and second spectrum flexural modes, taken across the load categories and 
which occur predominantly around the cut-of frequency or at higher frequencies.  In each case the mode 
has been scaled by the absolute value of its largest element.  It is interesting to note that on close 
comparison between mode (𝑝𝑝2 = 0, 𝛷𝛷5) and mode (𝑝𝑝2 < 0, 𝛷𝛷5) there is very little difference between 
them, thus confirming that an axial load has little effect on such squat members at high frequencies.  
Although not shown, this pattern is typical across all modes in Table 4 with the same m value and 
likewise with all modes with the same n value. 
   The flexural mode shapes given in Table 5 are also reproduced in diagrammatic form in Fig. 1.  In this 
case, each mode shape was constructed by calculating a scale factor for the lateral displacement by 
dividing the reciprocal of the logarithm of peak rotational displacement by peak lateral displacement.  
This has the effect of amplifying smaller displacements to make them visually identifiable while 
imposing negligible effects on the larger values.  This is particularly helpful in the case of second 
spectrum (𝛬𝛬𝑛𝑛) modes, where it can be shown that the lateral displacements are particularly small over a 
wide range of frequencies [15].  Fig. 2 highlights the important difference that exists between 
corresponding first and second spectrum modes in which m = n.  In the first pair, m = n = 1, 𝑝𝑝2 < 0 and 
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the lateral displacement is symmetric about the mid-length of the member, while in the second pair m = n 
= 2, 𝑝𝑝2 < 0 and the lateral displacement is anti-symmetric.  The difference between the modes in each 
pair is clear, thus confirming their mutual independence, as discussed in Section 2.3.1. 
   Table 6 presents the results determined from the ‘precise’ approach for 12=M  when the distributed 
rotary inertia of the member is scaled by the factors shown.  Factors of zero and one therefore yield the 
results for Eqs.(11) and (8), in columns 2 and 12, respectively.  The intermediate values then indicate a 
smooth and monotonic transition between the two.  This shows that there is a unique, one-to-one 
correspondence between each B-E frequency and its Timoshenko counterpart, which most importantly 
includes the cut-off frequency.  Furthermore, the modal number of the B-E frequency that maps to the 
cut-off frequency can be determined a priori from the problem data, as follows.  Eqs.(14) define the cut-
off frequency.  Thus, substituting these in Eq.(16a) and noting that the cut-off frequency corresponds to 
the first value of Φ  that is not an integer multiple of π , the required modal number is given by  
 
                                             the smallest integer πrspssr /)]1/()[( 2/12222 −+>                                    (21) 
 
which can be tested easily using the current data and results. 
  These facts, together with the fact that Timoshenko theory provides infinitely close bounds on the cut-
off frequency, provide a compelling argument that the cut-off frequency should be thought of as a true 
Timoshenko frequency. 
   Table 7 gives the non-dimensional frequency parameters, 𝑏𝑏𝑖𝑖, from the ‘precise’ approach with M = 12, 
for a variety of foundation stiffness combinations. The distributed foundation stiffnesses are additionally 
incorporated into the original ‘precise’ model by adding equivalent lumped stiffnesses into the 
appropriate locations of the datum segment stiffness matrix. The table shows that; the cut-off frequency 
remains unchanged when 𝑘𝑘𝜃𝜃 = 0 and rises otherwise; there are no additional frequencies as a 
consequence of the term �𝑏𝑏𝑖𝑖2 − 𝑘𝑘𝑦𝑦∗� = 0 and that the effect of a distributed rotational foundation stiffness 
is greater than that of its lateral counterpart. 
 
5.  Conclusions 
 
The main conclusions that can be deduced from the body of the paper are set out below.  Initially, 
however, it is useful to consider two generic areas of note. 
   Firstly, the general equations presented allow for any combination of second order effects, including 
static axial load.  Traditionally, this latter option has rarely been considered in Timoshenko theory, 
despite the fact that it often influences the lower frequencies, creates no anomalies and offers a more 
complete description of the problem. 
   Secondly, the addition of a distributed elastic foundation generates an intractable problem from which 
exact solutions are difficult to obtain.  One exception to this is a simple formula that shows how the 
rotational component of foundation stiffness uniquely raises the cut-off frequency, while retaining its 
identity as a pure shear mode.  On the other hand, the ability to provide general solutions to such 
problems has been achieved through the use of a simple and extremely efficient ‘precise’ approach that 
has been shown to offer excellent accuracy. 
   The remaining conclusions assume the absence of a distributed foundation, but are unaffected by 
whether or not a static axial load is present in the member.  In the first of these, it has been shown that 
both spectra of Timoshenko frequencies can be determined from the single quadratic equation governing 
their exact solution.  This classical problem is easily solved, but fails to determine the cut-off frequency, 
since it corresponds to a singularity in the equation at that point.  However, this is easily remedied by use 
of a simple, exact formula or, conversely, the value can be converged upon to any desired accuracy, since 
the theory is valid at infinitely close lower and upper bounds.  The modal vectors corresponding to all 
such frequencies are easy to obtain by conventional methods, such as forward elimination and backward 
substitution of the stiffness equations in the present case.  A typical selection are presented, both in 
numerical and graphic form, with particular attention given to confirming the necessary independence of 
the second spectrum modes. 
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   The complete range of exact Timoshenko frequencies, described in the paragraph above, can also be 
generated using the ‘precise’ technique, when programmed to emulate Timoshenko theory.  In this form, 
it generates a single spectrum of frequencies that, to the accuracy of presentation, match identically the 
exact Timoshenko frequencies, including the cut-off frequency.  When this is linked to the following 
facts, namely: that one frequency from the continuous B-E spectrum, whose modal value can be identified 
a priori from the problem data, maps exactly to the cut-off frequency; that all remaining B-E frequencies 
each map uniquely to a single Timoshenko frequency in either the first or second spectrum; that any 
theory which seeks to improve accuracy must do so without loss or gain of any frequencies; it is our 
conjecture that all frequencies in the first and second spectra, together with the cut-off frequency, 
comprise the single spectrum of Timoshenko frequencies. 
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Appendix     Some simple physical relationships 

The uniform beam shown in Fig. A1 (a) and (b) is symmetric about its mid-length. Therefore 
the modes of vibration in each case may be divided into a set that is symmetric about the mid-
length, which may be found, respectively, from the half members of Fig. A2 (aS) and (bS), 
and an anti-symmetric set given by the half members of Fig. A2 (aA) and (bA). 

 
 
Fig. A1.  Two alternative sets of boundary conditions of a uniform beam of length L. The 
hinged-hinged supports of (a) allow rotation, but prevent displacement, while those of (b) 
allow precisely the opposite. 

 
 
Fig. A2.  Half members used to find the symmetric (S) and anti-symmetric (A) modes of the 
beam of Fig. A1. 
 
Fig. A2 (aS) and (bA) clearly both define the same physical problem and therefore give the 
same natural frequencies. Equally clearly, Fig. A2 (aA) and (bS) are related to each other in 
exactly the same way as the two cases of Fig. A1 (a) and (b). Hence the argument used to 
obtain Fig. A2 from Fig. A1, and the associated deductions given above, can be applied 
recursively until the members of Fig. A2 are of infinitesimal length. Thus it follows that all 
natural frequencies for the case of Fig. A1 (a) are identical to those of Fig. A1 (b), except that 
the former has any natural frequencies possessed by an infinitesimally short beam of the type 
shown in Fig. A2 (aA), whereas the latter has any natural frequencies possessed by an 
infinitesimally short beam of the type shown in Fig. A2 (bS). This accounts for the fact that 
the beam of Fig. A1 (a) does not have a rigid body mode, while that of Fig. A1 (b) does. 
   In the physical argument used above, it is only assumed that the member is uniform. The 
arguments must therefore apply to any member with any uniform combination of member 
properties, second order effects and other externally imposed conditions, such as distributed 
foundations. 
   The corollary to the above, is that a uniform member of length, L, with hinged-guided 
boundary conditions will have all the natural frequencies corresponding to either the 
symmetric modes of a hinged-hinged beam or the anti-symmetric modes of a guided-guided 
beam, of length 2L in each case. 
   The conclusions that can be drawn from the above are: 

1. that the non-zero frequencies of a guided-guided beam are identical to those of a 
hinged-hinged beam; and 



2. the frequencies stemming from a beam with any combination of the above boundary 
conditions, can always be found from a beam in which the frequency equation 
factorises. 



 

Fig. 1.  Diagrammatic representation of the flexural mode shapes given in Table 5.  The dashed and solid lines 
represent lateral displacement and bending slope respectively. 

(a) Mode Φ 5 , p2=0 

(b) Mode Λ 1 , p2=0 

(c) Mode Φ 4 , p2<0 

(d) Mode Φ 5 , p2<0 

(e) Mode Λ 3 , p2>0 

(f) Mode Φ 9, p2>0 



 

 

Fig. 2.  Comparison of modes (𝑝𝑝2 < 0, 𝛷𝛷1, 𝛬𝛬1) and modes (𝑝𝑝2 < 0, 𝛷𝛷2, 𝛬𝛬2) in order to illustrate the 
independence of second spectrum modes with respect to their first spectrum counterparts. 

(a) Mode Φ 1 , p2<0 

(b) Mode Λ 1 , p2<0 

(c) Mode Φ 2 , p2<0 

(d) Mode Λ2 , p2<0 



Table 1 
Exact non-dimensional frequency parameters, 𝑏𝑏𝑖𝑖, stemming from Eq.(11) with 𝑠𝑠2 = 0 (columns 2, 4 and 
6) and 𝑠𝑠2 ≠ 0 (columns 3, 5 and 7). These results are for the data given in Section 3 and it should be 
noted that iip bb ,0, =  when 02 =p  etc. 
 

1 2 3 4 5 6 7 
i  ipb ,  ipsb ,  ipb ,  ipsb ,  ipb ,  ipsb ,  
 02 =p  02 <p  02 >p  

1 9.86960 9.18664 12.0887 11.5379 6.97721 5.97217 
2 39.4784 31.0474 41.8743 34.0419 36.9274 27.7314 
3 88.8264 57.4822 91.2616 61.1780 86.3226 53.5318 
4 157.914 84.8043 160.363 89.2827 155.426 80.0757 
5 246.740 111.978 249.196 117.291 244.259 106.399 
6 355.306 138.812 357.766 144.993 352.829 132.343 
7 483.611 165.329 486.073 172.399 481.136 157.943 
8 631.655 191.590 634.118 199.563 629.181 183.271 
9 799.438 217.650 801.903 226.536 796.966 208.386 

10 986.960 243.555 989.426 253.361 984.489 233.337 
11 1194.22 269.337 1196.69 280.069 1191.75 258.160 
12 1421.22 295.023 1423.69 306.685 1418.75 282.882 
13 1667.96 320.632 1670.43 333.227 1665.49 307.522 
14 1934.44 346.178 1936.91 359.708 1931.97 332.098 
15 2220.66 371.673 2223.13 386.141 2218.19 356.619 

 



Table 2 
Exact, non-dimensional, Timoshenko frequency parameters, 𝑏𝑏𝑖𝑖, corresponding to the lower, 𝑏𝑏𝐿𝐿,𝑖𝑖, and 
upper, 𝑏𝑏𝑈𝑈,𝑖𝑖, solutions of Eq.(10), which are calculated from Eqs.(12) using the data given in Section 3. 
 

1 2 3 4 5 6 7 
i  iLb ,  iUb ,  iLb ,  iUb ,  iLb ,  iUb ,  
 02 =p  02 <p  02 >p  

1 9.01341 121.381 11.3196 121.389 5.85991 121.374 
2 29.8430 146.642 32.7095 146.695 26.6651 146.590 
3 55.0459 178.879 58.5478 178.992 51.2947 178.768 
4 81.5627 214.619 85.8052 214.781 77.0711 214.463 
5 108.361 252.411 113.416 252.603 103.038 252.227 
6 135.097 291.539 141.012 291.746 128.888 291.342 
7 161.670 331.595 168.475 331.807 154.541 331.394 
8 188.062 372.323 195.777 372.534 179.992 372.123 
9 214.287 413.552 222.924 413.758 205.262 413.358 

10 240.366 455.164 249.934 455.363 230.377 454.977 
11 266.321 497.074 276.826 497.265 255.361 496.894 
12 292.171 539.219 303.617 539.402 280.236 539.047 
13 317.934 581.553 330.323 581.728 305.021 581.390 
14 343.623 624.042 356.958 624.209 329.729 623.886 
15 369.250 666.657 383.531 666.817 354.373 666.508 

 
 
 



Table 3 
The non-dimensional frequency parameters, 𝑏𝑏𝑖𝑖, given by the ‘precise’ approach for various values of M, 
are compared with those from relevant equations in the body of the paper, together with illustrative 
supporting results. 𝑏𝑏𝑐𝑐𝑐𝑐 is the cut-off frequency and the data are those given in Section 3. 
 

1 2 3 4 5 6 7 8 9 10 11 
 
i  

 
ipsb ,  

bi from 
‘precise’ with M = 

Exact 
solution  

of 

iLb ,  
)( ,ibΦ  

iUb ,  
)( ,ibΛ  

 
Φ  

 
Λ  

 Eq.(11) 3 5 8 12 Eq.(8) Eq.(12a) 
Eq.(16a) 

Eq.(12b) 
Eq.(16b) 

Eq.(17a) Eq.(17b) 

02 =p  
1 9.18664 9.01332 9.01341 9.01341 9.01341 9.01341 9.01341  3.14159  
2 31.0474 29.8355 29.8425 29.8430 29.8430 29.8430 29.8430  6.28319  
3 57.4822 54.9890 55.0426 55.0458 55.0459 55.0459 55.0459  9.42478  
4 84.8043 81.3692 81.5525 81.5626 81.5627 81.5627 81.5627  12.5664  
5 111.978 106.498 108.339 108.360 108.361 108.361 108.361  15.7080  
6 138.812 107.898 110.564 110.847 110.851 110.851            𝒃𝒃𝒄𝒄𝒄𝒄 = 𝟏𝟏𝟏𝟏𝟏𝟏. 𝟖𝟖𝟖𝟖𝟏𝟏 16.0000  
7 165.329 115.888 121.018 121.375 121.381 121.381  121.381 17.2359 3.14159 
8 191.590 134.144 135.061 135.097 135.097 135.097 135.097  18.8496 4.99281 
9 217.650 137.414 146.029 146.632 146.642 146.642  146.642 20.2119 6.28319 
10 243.555 159.687 161.616 161.669 161.670 161.670 161.670  21.9911 7.80459 
11 269.337 162.458 177.782 178.861 178.879 178.879  178.879 24.0372 9.42478 
12 295.023 179.344 187.989 188.061 188.062 188.062 188.062  25.1327 10.2549 
13 320.632 186.333 212.719 214.285 214.287 214.287 214.287  28.2743 12.5381 
14 346.178 205.965 214.193 214.589 214.619 214.619  214.619 28.3143 12.5664 
15 371.673 208.340 240.250 240.364 240.366 240.366 240.366  31.4159 14.7207 

02 <p  
1 11.5379 11.3194 11.3196 11.3196 11.3196 11.3196 11.3196  3.14159  
2 34.0419 32.6995 32.7089 32.7094 32.7095 32.7095 32.7095  6.28319  
3 61.1780 58.4774 58.5438 58.5477 58.5478 58.5478 58.5478  9.42478  
4 89.2827 85.5705 85.7929 85.8050 85.8052 85.8052 85.8052  12.5664  
5 117.291 106.503 110.564 110.847 110.851 110.851 𝒃𝒃𝒄𝒄𝒄𝒄 = 𝟏𝟏𝟏𝟏𝟏𝟏. 𝟖𝟖𝟖𝟖𝟏𝟏 15.4164  
6 144.993 112.856 113.391 113.416 113.416 113.416 113.416  15.7080 1.50519 
7 172.399 115.903 121.025 121.383 121.389 121.389  121.389 16.6145 3.14159 
8 199.563 137.486 140.969 141.012 141.012 141.012 141.012  18.8496 5.66742 
9 226.536 139.850 146.083 146.686 146.695 146.695  146.695 19.4982 6.28319 
10 253.361 162.625 168.411 168.474 168.475 168.475 168.475  21.9911 8.44825 
11 280.069 166.011 177.897 178.975 178.992 178.992  178.992 23.1992 9.42478 
12 306.685 185.449 195.690 195.775 195.777 195.777 195.777  25.1327 10.9262 
13 333.227 186.641 212.884 214.752 214.781 214.781  214.781 27.3303 12.5664 
14 359.708 206.609 222.812 222.922 222.924 222.924 222.924  28.2743 13.2545 
15 386.141 214.708 249.488 249.932 249.934 249.934 249.934  31.4159 15.4903 

02 >p  
1 5.97217 5.85989 5.85991 5.85991 5.85991 5.85991 5.85991  3.14159  
2 27.7314 26.6599 26.6648 26.6651 26.6651 26.6651 26.6651  6.28319  
3 53.5318 51.2500 51.2921 51.2947 51.2947 51.2947 51.2947  9.42478  
4 80.0757 76.9142 77.0628 77.0710 77.0711 77.0711 77.0711  12.5664  
5 106.399 102.660 103.020 103.037 103.038 103.038 103.038  15.7080  
6 132.343 106.491 110.564 110.847 110.851 110.851 𝒃𝒃𝒄𝒄𝒄𝒄 = 𝟏𝟏𝟏𝟏𝟏𝟏. 𝟖𝟖𝟖𝟖𝟏𝟏 16.6553  
7 157.943 115.871 121.010 121.368 121.374 121.374  121.374 17.9340 3.14159 
8 183.271 128.114 128.858 128.888 128.888 128.888 128.888  18.8496 4.22236 
9 208.386 137.340 145.977 146.580 146.590 146.590  146.590 21.0147 6.28319 
10 233.337 152.956 154.497 154.540 154.541 154.541 154.541  21.9911 7.10596 
11 258.160 162.288 177.670 178.750 178.768 178.768  178.768 24.9811 9.42478 
12 282.882 172.640 179.932 179.991 179.992 179.992 179.992  25.1327 9.53681 
13 307.522 186.007 205.185 205.261 205.262 205.262 205.262  28.2743 11.7771 
14 332.098 200.999 212.560 214.433 214.463 214.463  214.463 29.4232 12.5664 
15 356.619 205.192 230.281 230.375 230.377 230.377 230.377  31.4159 13.9070 

 
 



Table 4 

Modal identification for the fifteen exact frequencies of the hinged-hinged Timoshenko beam for each load 
category, as set out in Table 3.  S signifies the Shear mode, while m and n denote the flexural mode numbers 
corresponding to those frequencies stemming from the first and second spectrum, respectively. 

 Modal No., i in Table 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

p2=0 
Flexural Modal No. m (Φ m) 1 2 3 4 5 

S 
 6  7  8 9  10 

Flexural Modal No. n (Λ n)      1  2  3   4  

p2<0 
Flexural Modal No. m (Φ m) 1 2 3 4 

S 
5  6  7  8  9 10 

Flexural Modal No. n (Λ n)      1  2  3  4   

p2>0 
Flexural Modal No. m (Φ m) 1 2 3 4 5 

S 
 6  7  8 9  10 

Flexural Modal No. n (Λ n)      1  2  3   4  

 



Table 5 

Numerical examples for a selection of typical, normalised mode shapes that can be identified by their i or b 
values (Table 3) or their m or n values (Table 4).  𝑉𝑉𝜉𝜉 , 𝛶𝛶𝜉𝜉  and 𝛹𝛹𝜉𝜉 are the amplitudes of the lateral displacement, 
shear slope and bending slope, respectively, at a distance 𝜉𝜉 from the left hand end of the member. 

  

 

p2=0 p2<0 p2>0 

  bco=110.851 b=108.361 b=121.381 b=85.8052 b=113.416 b=178.768 b=205.262 

  

Shear Mode 
p2=0, p2<0 

p2>0 

i=5, m=5 
(Φ 5) 

 

i=7, n=1 
(Λ 1) 

 

i=4, m=4 
(Φ 4) 

 

i=6, m=5 
(Φ 5) 

 

i=11, n=3 
(Λ 3) 

 

i=13, m=9 
(Φ 9) 

 

ξ=x/L Vξ 𝛶𝛶𝜉𝜉  V ξ Ψξ V ξ Ψξ V ξ Ψξ V ξ Ψξ V ξ Ψξ V ξ Ψξ 

0.0 0.000 -1.000 0.000 -1.000 0.000 -1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 -1.000 
0.1 0.000 -1.000 -0.124 0.000 0.002 -0.951 0.109 0.309 0.121 0.000 -0.009 0.588 -0.055 0.951 
0.2 0.000 -1.000 0.000 1.000 0.004 -0.809 0.067 -0.809 0.000 -1.000 -0.011 -0.309 0.105 -0.809 
0.3 0.000 -1.000 0.124 0.000 0.006 -0.588 -0.067 -0.809 -0.121 0.000 -0.003 -0.951 -0.144 0.588 
0.4 0.000 -1.000 0.000 -1.000 0.007 -0.309 -0.109 0.309 0.000 1.000 0.007 -0.809 0.169 -0.309 
0.5 0.000 -1.000 -0.124 0.000 0.007 0.000 0.000 1.000 0.121 0.000 0.011 0.000 -0.178 0.000 
0.6 0.000 -1.000 0.000 1.000 0.007 0.309 0.109 0.309 0.000 -1.000 0.007 0.809 0.169 0.309 
0.7 0.000 -1.000 0.124 0.000 0.006 0.588 0.067 -0.809 -0.121 0.000 -0.003 0.951 -0.144 -0.588 
0.8 0.000 -1.000 0.000 -1.000 0.004 0.809 -0.067 -0.809 0.000 1.000 -0.011 0.309 0.105 0.809 
0.9 0.000 -1.000 -0.124 0.000 0.002 0.951 -0.109 0.309 0.121 0.000 -0.009 -0.588 -0.055 -0.951 

1.0 0.000 -1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 -1.000 0.000 -1.000 0.000 1.000 

 

 



Table 6 
Non-dimensional frequency parameters, , from the ‘precise’ approach with M = 12 when the distributed 
rotary inertia is scaled by the factors shown. The data are those given in Section 3. 
 
1 2 3 4 5 6 7 8 9 10 11 12 
i Eq.(11)          Eq.(8) 
    Precise with M = 12 

and distributed rotary inertia factor = 
   

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
     02 =p      

1 9.18664 9.16896 9.15136 9.13384 9.11640 9.09903 9.08175 9.06455 9.04743 9.03038 9.01341 
2 31.0474 30.9254 30.8037 30.6823 30.5613 30.4406 30.3202 30.2003 30.0807 29.9616 29.8430 
3 57.4822 57.2478 57.0111 56.7721 56.5310 56.2879 56.0429 55.7961 55.5475 55.2974 55.0459 
4 84.8043 84.5108 84.2105 83.9032 83.5892 83.2682 82.9405 82.6060 82.2647 81.9170 81.5627 
5 111.978 111.667 111.346 111.014 110.671 110.316 109.949 109.571 109.180 108.777 108.361 
6 138.812 138.506 138.188 137.856 137.510 137.148 136.772 132.493 123.935 116.847 110.851 
7 165.329 165.038 164.733 164.412 164.076 156.767 143.108 136.379 135.198 127.706 121.381 
8 191.590 191.316 191.028 190.724 175.271 163.723 155.523 144.260 135.969 135.542 135.097 
9 217.650 217.394 217.124 202.386 189.752 170.043 163.352 162.963 162.553 153.962 146.642 

10 243.555 243.316 243.063 216.839 190.404 190.066 186.334 173.197 162.655 162.122 161.670 
11 269.337 269.114 247.871 218.689 216.536 203.312 189.709 189.331 188.932 187.697 178.879 
12 295.023 294.814 267.325 242.795 226.412 216.216 215.875 210.926 198.186 188.509 188.062 
13 320.632 320.436 268.877 260.406 242.510 242.208 226.823 215.514 215.130 214.722 214.287 
14 346.178 345.994 294.593 268.626 268.358 247.390 241.886 241.543 237.904 225.250 214.619 
15 371.673 350.542 317.674 294.356 275.401 268.073 267.769 253.279 241.176 240.785 240.366 

     02 <p      

1 11.5379 11.5156 11.4935 11.4715 11.4495 11.4276 11.4059 11.3842 11.3625 11.3410 11.3196 
2 34.0419 33.9080 33.7742 33.6405 33.5069 33.3734 33.2401 33.1071 32.9743 32.8417 32.7095 
3 61.1780 60.9282 60.6751 60.4189 60.1597 59.8976 59.6327 59.3651 59.0950 58.8225 58.5478 
4 89.2827 88.9732 88.6552 88.3288 87.9939 87.6504 87.2983 86.9377 86.5686 86.1910 85.8052 
5 117.291 116.965 116.627 116.275 115.910 115.532 115.138 114.731 114.308 113.870 110.851 
6 144.993 144.673 144.338 143.987 143.620 143.235 142.831 132.493 123.935 116.847 113.416 
7 172.399 172.095 171.774 171.436 171.079 156.767 143.108 142.408 135.203 127.713 121.389 
8 199.563 199.277 198.975 198.654 175.271 170.046 155.527 144.264 141.964 141.499 141.012 
9 226.536 226.269 225.986 202.386 189.754 170.703 170.306 169.885 162.693 154.008 146.695 

10 253.361 253.112 247.871 218.690 198.315 197.954 186.359 173.228 169.441 168.972 168.475 
11 280.069 279.836 252.847 225.685 225.364 203.331 197.571 197.164 196.731 187.793 178.992 
12 306.685 306.467 267.326 252.564 226.425 225.022 224.658 210.991 198.266 196.269 195.777 
13 333.227 333.022 279.588 260.415 252.263 247.429 226.874 224.268 223.851 223.404 214.781 
14 359.708 350.542 306.235 279.323 275.429 251.940 251.595 251.224 238.015 225.386 222.924 
15 386.141 359.516 317.679 305.986 279.040 278.736 272.539 253.369 250.825 250.396 249.934 

     02 >p      

1 5.97217 5.96067 5.94924 5.93787 5.92656 5.91531 5.90411 5.89298 5.88190 5.87088 5.85991 
2 27.7314 27.6225 27.5142 27.4062 27.2988 27.1919 27.0855 26.9796 26.8742 26.7694 26.6651 
3 53.5318 53.3138 53.0943 52.8734 52.6512 52.4277 52.2030 51.9773 51.7506 51.5230 51.2947 
4 80.0757 79.7991 79.5171 79.2296 78.9368 78.6387 78.3353 78.0268 77.7132 77.3945 77.0711 
5 106.399 106.105 105.802 105.489 105.168 104.837 104.497 104.147 103.787 103.417 103.038 
6 132.343 132.052 131.750 131.437 131.112 130.775 130.425 130.062 123.935 116.847 110.851 
7 157.943 157.666 157.376 157.074 156.758 156.428 143.108 132.493 129.685 127.700 121.374 
8 183.271 183.010 182.736 182.449 175.271 156.767 155.520 144.255 135.193 129.294 128.888 
9 208.386 208.142 207.885 202.386 182.148 170.041 156.083 155.723 155.346 153.917 146.590 

10 233.337 233.109 232.868 207.615 189.750 181.832 181.500 173.166 162.617 154.953 154.541 
11 258.160 257.947 247.871 218.687 207.330 203.293 186.309 181.151 180.784 180.398 178.768 
12 282.882 282.682 257.721 232.615 226.398 207.031 206.715 206.381 198.107 187.602 179.992 
13 307.522 307.335 267.324 257.483 232.347 232.064 226.772 210.862 206.029 205.656 205.262 
14 332.098 331.921 282.471 260.397 257.232 247.352 231.765 231.448 231.112 225.119 214.463 
15 356.619 350.542 307.136 282.247 275.374 256.965 256.682 253.192 237.796 230.755 230.377 
 



Table 7 
Non dimensional frequency parameters, 𝑏𝑏𝑖𝑖, from the ‘precise’ approach with M = 12 and the data given in 
Section 3, for a selection of two parameter foundations.  The values in bold type correspond to the cut-off 
frequencies and the units of 𝑘𝑘𝜃𝜃 and 𝑘𝑘𝑦𝑦 are N and Nm-2 respectively. 
 

1 2 3 4 5 6 7 8 9 10 11 
 𝑘𝑘𝜃𝜃 = 0 𝑘𝑘𝜃𝜃 = 0 𝑘𝑘𝑦𝑦 = 0  
i 𝑘𝑘𝑦𝑦 = 0 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝜃𝜃 = 𝑘𝑘𝜃𝜃 = 𝑘𝑘𝑦𝑦 = 
  106 108 1010 106 108 1010 106 108 1010 

02 =p  
1 9.01341 9.01351 9.02317 9.94181 9.01634 9.29886 18.7933 9.01644 9.30833 19.2689 
2 29.8430 29.8430 29.8458 30.1237 29.8448 30.0280 39.5820 29.8449 30.0308 39.8057 
3 55.0459 55.0459 55.0474 55.1965 55.0470 55.1621 62.5707 55.0471 55.1636 62.7104 
4 81.5627 81.5627 81.5637 81.6649 81.5635 81.6379 87.0397 81.5635 81.6389 87.1394 
5 108.361 108.361 108.361 108.438 108.361 108.411 112.317 108.361 108.412 112.394 
6 110.851 110.851 110.851 110.851 110.858 111.483 137.982 110.858 111.483 138.046 
7 121.381 121.381 121.381 121.384 121.387 121.937 162.270 121.387 121.937 162.270 
8 135.097 135.097 135.098 135.160 135.098 135.132 163.807 135.098 135.133 163.861 
9 146.642 146.642 146.642 146.647 146.646 147.082 168.834 146.646 147.082 168.834 

10 161.670 161.670 161.670 161.723 161.670 161.695 186.738 161.670 161.695 186.740 
11 178.879 178.878 178.879 178.883 178.882 179.235 189.674 178.882 179.235 189.720 
12 188.062 188.062 188.062 188.108 188.062 188.080 212.499 188.062 188.081 212.501 
13 214.287 214.287 214.287 214.328 214.287 214.300 215.523 214.287 214.301 215.564 
14 214.619 214.619 214.619 214.623 214.622 214.918 241.330 214.622 214.918 241.367 
15 240.366 240.366 240.366 240.402 240.366 240.376 243.272 240.366 240.377 243.274 

02 <p  
1 11.3196 11.3197 11.3274 12.0717 11.3219 11.5496 20.0358 11.3220 11.5572 20.4826 
2 32.7095 32.7095 32.7120 32.9654 32.7112 32.8813 41.9047 32.7112 32.8839 42.1159 
3 58.5478 58.5478 58.5492 58.6892 58.5489 58.6602 65.8379 58.5489 58.6616 65.9705 
4 85.8052 85.8052 85.8062 85.9020 85.8059 85.8793 91.1962 85.8060 85.8803 91.2913 
5 110.851 110.851 110.851 110.851 110.858 111.483 117.354 110.858 111.483 117.428 
6 113.416 113.416 113.417 113.490 113.417 113.466 143.908 113.417 113.467 143.969 
7 121.389 121.389 121.389 121.392 121.394 121.944 162.270 121.394 121.944 162.270 
8 141.012 141.012 141.013 141.073 141.013 141.048 168.835 141.013 141.048 168.836 
9 146.695 146.695 146.695 146.700 146.700 147.135 170.634 146.700 147.135 170.686 

10 168.475 168.475 168.476 168.526 168.475 168.500 186.753 168.475 168.501 186.755 
11 178.992 178.992 178.992 178.997 178.996 179.348 197.413 178.996 179.348 197.457 
12 195.777 195.777 195.777 195.821 195.777 195.795 212.544 195.777 195.796 212.546 
13 214.781 214.781 214.781 214.785 214.784 215.078 224.184 214.784 215.078 224.224 
14 222.924 222.924 222.924 222.963 222.924 222.938 243.352 222.924 222.938 243.354 
15 249.934 249.934 249.934 249.969 249.934 249.945 250.920 249.934 249.945 250.955 

02 >p  
1 5.85991 5.86006 5.87491 7.20701 5.86438 6.28750 17.4626 5.86453 6.30149 17.9735 
2 26.6651 26.6651 26.6683 26.9794 26.6672 26.8685 37.1134 26.6672 26.8716 37.3520 
3 51.2947 51.2947 51.2963 51.4568 51.2959 51.4161 59.1200 51.2959 51.4177 59.2679 
4 77.0711 77.0711 77.0722 77.1796 77.0719 77.1478 82.6676 77.0719 77.1489 82.7729 
5 103.038 103.038 103.038 103.120 103.038 103.088 107.033 103.038 103.089 107.114 
6 110.851 110.851 110.851 110.851 110.858 111.483 131.777 110.858 111.483 131.843 
7 121.374 121.374 121.374 121.376 121.379 121.929 156.668 121.379 121.930 156.724 
8 128.888 128.888 128.889 128.955 128.889 128.923 162.270 128.889 128.924 162.270 
9 146.590 146.590 146.590 146.595 146.594 147.031 168.832 146.594 147.031 168.833 

10 154.541 154.541 154.542 154.597 154.541 154.566 181.587 154.541 154.566 181.636 
11 178.768 178.768 178.768 178.772 178.771 179.125 186.723 178.771 179.125 186.725 
12 179.992 179.992 179.993 180.041 179.992 180.010 206.481 179.992 180.011 206.524 
13 205.262 205.262 205.262 205.305 205.262 205.275 212.455 205.262 205.276 212.457 
14 214.463 214.463 214.463 214.466 214.466 214.762 231.324 214.466 214.762 231.363 
15 230.377 230.377 230.377 230.415 230.377 230.387 243.195 230.377 230.387 243.197 
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