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Abstract 23 

 24 
This study focuses on the detection of temporal changes in annual maximum gage height (GH) 25 
across the continental United States and their relationship to changes in short- and long-term 26 
precipitation. Analyses are based on 1805 U.S. Geological Survey records over the 1985-2015 27 
period and are performed using quantile regression. Trends were significant only at a limited 28 
number of sites, with a higher number of detections at the tails of the distribution. Overall, we 29 
found only weak evidence that the annual maximum GH records have been changing over the 30 
continental United States during the past 30 years, possibly due to a weak signal of change, large 31 
variability, and limited record length. In addition to trend detection, we also assessed to what 32 
extent these changes can be attributed to storm total rainfall and long-term precipitation. Our 33 
findings indicate that temporal changes in GH maxima are largely driven by storm total rainfall 34 
across large areas of the continental United States (east of the 100th meridian, U.S. West Coast). 35 
Long-term precipitation accumulation, on the other hand, is a strong flood predictor in regions 36 
where snowmelt is an important flood generating mechanism (e.g., northern Great Plains, Rocky 37 
Mountains), and is overall a relatively less important predictor of extreme flood events.  38 
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1. Introduction 40 
The issue of temporal changes in flooding is one that has received extensive attention in the 41 

peer-reviewed literature (consult Villarini and Slater (2017) for a recent review). Changing flood 42 
patterns and the existence of increasing or decreasing flood trends (both in terms of flood 43 
frequency and magnitude) have important implications for the design of water-related projects 44 
and flood mitigation measures, even though it is recognized that such trends cannot and should 45 
not be directly extrapolated into the future. The approach most widely used to detect changes in 46 
flooding resorts to: 1) the use of annual maximum discharge records, and 2) the application of 47 
the Mann-Kendall test to these time series. Statements about the presence of statistically 48 
significant increasing/decreasing trends are generally made as the outcome of these analyses. 49 
While this traditional approach has several advantages (e.g., it is easy to perform, standardized, 50 
and results can be compared across different areas), it can be complemented and improved upon 51 
by working with different flood-related quantities and by using other methodologies.  52 

Most of the attention in the literature has been on annual maximum discharge data. As 53 
discussed in Slater et al. (2015) and Slater (2016), the use of discharge data for detecting changes 54 
in flood hazard is not ideal, as high flow measurements are subject to errors associated with 55 
rating curve uncertainty, and discharge trends may conceal the effect of changes in the river 56 
channel capacity on the flood hazard. To address these issues, Slater and Villarini (2016) 57 
recently focused on gage height (GH) rather than discharge, and showed that the changes in 58 
flood risk across the continental United States were not uniform. Broadly speaking, we found 59 
that large areas of the northern (southern) United States exhibited increasing (decreasing) trends 60 
in the number of times that the flood thresholds established by the National Weather Service 61 
(NWS), in particular for action and minor flooding, were exceeded. Working with GH time 62 
series has some key advantages over discharge, since water level measurements are a more direct 63 
measure of flood hazard and are less prone to errors. Yet, little is known about the trends in the 64 
annual maximum GH records across the continental United States.  65 

A second issue is related to the use of the Mann-Kendall test (e.g., Helsel and Hirsch 1993) 66 
to identify the presence of monotonic patterns in the time series of interest. While the Mann-67 
Kendall test is perfectly appropriate, it focuses on the detection of changes in the central part of 68 
the distribution of the variable of interest, and does not test for the presence of trends in different 69 
parts of the distribution (e.g., in cases where the largest annual maxima are increasing while the 70 
lowest annual maxima are decreasing; Kinsvater and Fried 2017). To examine the presence of 71 
changes in different quantiles of the distribution, quantile regression (Koenker and Basset 1978, 72 
Koenker 2005) represents a viable and well-established framework. Few studies have used 73 
quantile regression in the hydrologic literature. For instance, Allamano et al. (2009) examined 74 
the presence of temporal trends in the annual maximum discharge at 27 Swiss stream gages, and 75 
found increasing trends, in particular for large floods. Villarini et al. (2011b) found limited 76 
evidence of changes in the magnitude of flooding for the Tiber River across different quantiles 77 
once step changes were accounted for. Kormos et al. (2016) found that low flow extremes 78 
declined in numerous sites across the U.S. Pacific Northwest. Villarini et al. (2011a) focused on 79 
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annual maximum precipitation across the central United States and found that about 10% of the 80 
rain gage records exhibited increasing trends, mostly for low-to-moderate quantiles (see also 81 
Choi et al. (2014) for analyses focused on Wisconsin). Using quantile regression, Kim and Jain 82 
(2011) found significant trends in the tail of the distribution of extreme precipitation in Korea, 83 
but not in the median. 84 

The literature so far has largely focused on the refinement of trend detection methods to 85 
detect changes in flooding. While trend detection is useful, it remains limited if one does not 86 
attempt to understand the drivers that are responsible for the observed changes (see Merz et al. 87 
(2012) for a discussion). For instance, Slater and Villarini (2016) found that the frequency of 88 
exceedance of the NWS flood thresholds by GH can generally be described in terms of 89 
precipitation and basin wetness. Here we focus on precipitation occurring in the 10-day period 90 
prior to a GH annual maximum event (“storm precipitation”) and in the 365 days prior to the 91 
storm (“basin wetness”) as the key drivers of the observed changes in GH extremes, similar to 92 
Slater and Villarini (2016). Moreover, we explore the dependence of these results on the 93 
different quantiles of the GH distribution using quantile regression. The main contributions of 94 
this work are therefore the use of GH instead of discharge, the use of quantile regression instead 95 
of the more traditional Mann-Kendall test, and the attribution of the observed changes in GH to 96 
storm precipitation and basin wetness.  97 

The research questions we focus on in this study are: 98 
1) What trends in GH annual maxima can we detect across the continental United States? 99 

How do these results change across different quantiles of the GH distribution? 100 
2) Do storm precipitation and basin wetness explain the changes in GH annual maxima 101 

across the continental United States? Is there a dependence of these results on the 102 
quantile of the GH distribution? 103 

 104 
2. Data and Methodology 105 

We analyze 1805 U.S. Geological Survey (USGS) stream gages with at least 14 water years 106 
of daily GH data over the 1985-2015 period (Figure 1). These data are a subset of those used in 107 
Slater and Villarini (2016), where all of the data processing details are provided. At each site, we 108 
identify the largest daily GH value in every complete water year (defined as having at least 330 109 
daily observations). In water years where two identical GH maxima were selected, we retain only 110 
the earliest of the two. 111 

To explain the year-to-year variations in GH annual maxima, we compute antecedent 112 
wetness over the short term (“storm precipitation”) and long term (“basin wetness”) using 113 
precipitation data from the PRISM Climate Group (e.g., Daly et al. 2002; available at 114 
http://prism.oregonstate.edu). The spatial and temporal resolutions of this product are ~4km and 115 
daily. Basin-averaged daily values are computed using the basin boundaries from USGS 116 
Streamgage NHDPlus Version 1 Basins 2006. We use both shorter and longer precipitation 117 
accumulations to reflect the relative role that storm precipitation and overall basin wetness play 118 
for different quantiles of the GH distribution. As in Slater and Villarini (2016), storm 119 
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precipitation is computed for each annual GH maximum at every site by aggregating the basin-120 
averaged precipitation over the 10 days preceding and including the day of the peak; the basin 121 
wetness is computed by aggregating the precipitation over the 365-day period that preceded the 122 
storm precipitation. All 1805 sites had at least 14 annual GH maxima with antecedent storm 123 
precipitation and basin wetness values.  124 

We detect linear trends in the GH records using quantile regression (Koenker and Basset 125 
1978, Koenker 2005). Briefly, quantile regression can be viewed as an expansion of the ordinary 126 
least squares (OLS) approach. In OLS, the conditional mean of the response variable Y is 127 
modeled with respect to one or more predictors, and the sum of the squared errors is minimized. 128 
The idea behind quantile regression is to model the conditional quantile of Y in terms of 129 
predictors. For instance, in median regression, where the quantile τ is equal to 0.5, the sum of the 130 
absolute errors is minimized. By extending this approach to other τ quantiles, we minimize an 131 
asymmetrically weighted sum of absolute errors to estimate the intercept and slope term(s). Here 132 
we focus on τ quantiles ranging from 0.05 to 0.95 with a step of 0.05. The significance level for 133 
the slopes is set at 5% (two-sided) and computed using bootstrap (no correction for potential 134 
autocorrelation). In terms of predictors, we use time (year of event) to detect the presence of 135 
temporal trends in the GH records, and total precipitation accumulated in a given window (10 136 
days prior to maximum annual GH, and 365 days prior to the 10-day window), to improve our 137 
understanding of what may have driven the inter-annual variability in different parts of the 138 
extreme GH distribution.  139 

An extensive discussion about the theoretical framework, application and references related 140 
to quantile regression can be found in Koenker (2005). All the calculations were performed in R 141 
(R Core Team 2016) using the freely available quantreg package (Koenker 2016). 142 

 143 
3. Results 144 

Analyses of temporal changes in the GH records using the Mann-Kendall test (Figure 2, 145 
bottom-right panel) indicate that just 35 (77) sites have statistically significant increasing 146 
(decreasing) trends, with the majority of the decreasing trends generally located in the southern 147 
part of the United States. As previously discussed, however, the Mann-Kendall test focuses on 148 
the central part of the conditional distribution of GH, potentially missing changes that occur at 149 
the tails. Figure 2 shows that the broad separation of increasing/decreasing trends in the 150 
northern/southern half of the continental United States is generally still detected using quantile 151 
regression. However, as shown in Figure 2 and Supplementary Figure 1, more changes are 152 
detected when we focus on low and high τ values, which suggests that the temporal changes in 153 
GH are stronger at the lower and upper tails of the distribution. Furthermore, there are areas like 154 
the U.S. Pacific Northwest where the lower quantiles of the GH distribution show increasing 155 
trends, while the higher quantiles display the opposite tendency; this discrepancy points to a 156 
narrowing of the GH distribution in the most recent years. Given the limited number of sites with 157 
statistically significant results, we applied the Walker’s test and the false discovery rate test 158 
(Wilks 2006), and found that they were not field significant. The lack of a strong indication of 159 
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statistically significant trends may be due to the weak signal, the large noise associated with the 160 
extremes, and to the limited (i.e., 30 years) record length. 161 

Broadly speaking, these results are consistent with Slater and Villarini (2016), who found 162 
that the frequency of exceedance of NWS flood levels was not uniform with the United States, 163 
but rather characterized by a broad north/south divide. Slater and Villarini (2016), however, 164 
found a greater proportion of sites with statistically significant trends in the number of annual 165 
days above the NWS flood levels. By comparing all of these results, we find that the GH has not 166 
been increasing in magnitude over the past 30 years, but rather that there have been changes in 167 
the duration of flood level exceedance (increases or decreases depending on the location). One 168 
possible research direction moving forward is to focus on the persistence of large-scale climate 169 
conditions that are conducive to wetter/dryer periods, and to examine how these conditions may 170 
have changed over the past 30 years.  171 

In addition to the detection of temporal changes in GH extremes, we use quantile regression 172 
to quantify the role played by storm precipitation and basin wetness for different parts of the GH 173 
distribution (Figure 3). Storm precipitation is identified as a statistically significant predictor of 174 
GH magnitude across large areas east of the 100th meridian and along the U.S. West Coast 175 
(Figure 3, left panels). This is consistent with the expectation that liquid precipitation (i.e., 176 
rainfall) drives the occurrence of these flood events (e.g., Villarini 2016, Berghuijs et al. 2016). 177 
In contrast, in the northern Great Plains, the Rocky Mountains, and the north-eastern United 178 
States the flood events do not exhibit a statistically significant relationship with storm 179 
precipitation, likely because the vast majority of these events are driven by snowmelt (e.g., 180 
Berghuijs et al. 2016). Overall, the central part of the GH distribution tends to be more closely 181 
related to storm precipitation (Figure 4, top panel), possibly due to the use of a 10-day window 182 
across all sites.  183 

The results differ when we focus on the role played by basin wetness (Figure 3, right panels; 184 
Figure 4, bottom panel). Most of the regions for which we did not find a statistically significant 185 
relationship with storm precipitation (e.g., northern Great Plains and Rocky Mountains) do 186 
present a statistically significant relationship with basin wetness. The dependence of these results 187 
on conditional quantiles is also different from the results that were found using storm 188 
precipitation as a predictor. As shown in Figure 4 (bottom panel), the number of significant sites 189 
decreases for increasing τ values; basin wetness is a significant predictor for 489 sites at τ=0.05, 190 
but only for 298 sites at τ=0.95. These results are consistent with Wood et al. (1990) and Smith 191 
et al. (2013), who found that the role played by antecedent soil moisture conditions diminishes as 192 
flood events become more extreme.  193 

 194 
4. Summary and Conclusion 195 

We analyzed daily GH records at 1805 USGS sites across the continental United States using 196 
quantile regression. Our focus was on the detection of trends in the annual maximum GH series, 197 
and the relationship between these maxima and precipitation accumulated in the 10 days (i.e., 198 
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storm precipitation) and 365 days (i.e., basin wetness) prior to their occurrence. Our findings can 199 
be summarized as follows: 200 

- The temporal changes in the United States exhibit regional differences, with the northern 201 
(southern) half pointing to increasing (decreasing) trends. These trends vary across 202 
different parts of the GH distribution, and are generally more frequently detected towards 203 
the tails of the distribution. 204 

- Results based on the Mann-Kendall test, which focuses on the central part of the 205 
distribution, suggested a more muted signal of change. The use of quantile regression, in 206 
contrast, provides a more comprehensive perspective on the changes occurring in 207 
different parts of the distribution.  208 

- The results from the trend detection analyses are not field significant, suggesting that 209 
when a signal of change is present, the signal may be weak or the level of noise in the 210 
data may be large, likely due to the shortness of record length.  211 

- Storm precipitation is an important explanatory variable for the areas of the country 212 
where flood events are tied to rainfall (e.g., east of the 100th meridian, U.S. West Coast). 213 
The role of basin wetness becomes more relevant in areas where snowmelt represents a 214 
more dominant flood generating mechanism (e.g., northern Great Plains, Rocky 215 
Mountains).  216 

- The role of basin wetness decreases as events become more extreme, consistent with a 217 
diminished role played by antecedent soil moisture conditions for more extreme flooding.  218 

The examination of changes in annual maximum precipitation and annual precipitation 219 
(Supplementary Figure 2) indicates that the broad north-south divide found in GH is equally 220 
reflected in the precipitation records, with local differences likely driven by changes in land 221 
surface / land cover and water management. Future studies could take our attribution results 222 
further by examining the role of human-induced climate change on precipitation and 223 
consequently on flooding across the United States (e.g., van der Wiel et al., 2016; Wang et al., 224 
2016). 225 
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 291 

Figure 1: Descriptive statistics for the 1805 USGS sites considered in this study. Map indicating 292 
seven broad regions in the continental United States; Histograms showing the number of stations 293 
with data in every year, record length, and catchment size.  294 
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 295 

Figure 2: Temporal trends in flood stage at the 1805 USGS sites. The results are based on 296 
quantile regression (τ from 0.05 to 0.95 with a step of 0.05) and the Mann-Kendall test (bottom-297 
right panel). The results are significant at the 5% level.  298 
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 299 

Figure 3: Maps showing the USGS stations for which storm precipitation (left panels) and basin 300 
wetness (right panels) are statistically significant predictors (at the 5% level). Rows indicate 301 
different values of τ (0.05, 0.25, 0.50, 0.75, 0.95). 302 
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 303 

Figure 4: Histogram showing the number of sites for which storm precipitation (top panel) and 304 
basin wetness (bottom panel) are positively and statistically significantly (at the 5% level) related 305 
to the gage height records for different τ values.  306 
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