
For Peer Review

 

 

 

 

 

 

The effect of chronic high insulin exposure upon metabolic 

and myogenic markers in C2C12 skeletal muscle cells and 
myotubes. 

 

 

Journal: Journal of Cellular Biochemistry 

Manuscript ID JCB-17-0958.R1 

Wiley - Manuscript type: Research Article 

Date Submitted by the Author: 18-Jan-2018 

Complete List of Authors: Turner, Mark; Loughborough University, School of Sport, Exercise and 

Health Sciences 
Player, Darren; Loughborough University, School of Sport, Exercise and 
Health Sciences; University College London, Division of Surgery and 
Interventional Science 
Martin, Neil; Loughborough University, School of Sport, Exercise and 
Health Sciences 
Akam, Elizabeth; Loughborough University, School of Sport, Exercise and 
Health Sciences 
Lewis, Mark; Loughborough University, School of Sport, Exercise and 
Health Sciences 

Keywords: Hyperinsulineamia, Differentiation, Glucose Uptake, Insulin Signalling 

  

 

 

John Wiley & Sons, Inc.

Journal of Cellular Biochemistry
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288365736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For Peer Review

1 
 

Title: The effect of chronic high insulin exposure upon metabolic and 1 

myogenic markers in C2C12 skeletal muscle cells and myotubes. 2 

Running Head: Insulin exposure effects on skeletal muscle cells 3 

 4 

Authors: Mark C Turner1, Darren J Player1,2, Neil R.W Martin1, Elizabeth C 5 

Akam1, Mark P Lewis1* 
6 

 7 

1 School of Sport, Exercise and Health Sciences, National Centre for Sport and 8 

Exercise Medicine, Loughborough University, Leicestershire, United Kingdom 9 

2 Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and 10 

Interventional Science, University College London, Stanmore, Middlesex, United 11 

Kingdom 12 

 13 

 14 

 15 

 16 

Key Words: Hyperinsulineamia, Differentiation, Glucose Uptake, Insulin Signalling   17 

 18 

 19 

*Corresponding Author: 20 

Professor Mark P Lewis 21 

School of Sport, Exercise and Health Sciences 22 

Loughborough University, 23 

Loughborough, 24 

Leicestershire, 25 

United Kingdom, 26 

LE11 3TU 27 

m.p.lewis@lboro.ac.uk 28 

29 

Page 1 of 31

John Wiley & Sons, Inc.

Journal of Cellular Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 
 

Abstract 30 

Skeletal muscle is an insulin sensitive tissue and accounts for approximately 80% of 31 

post-prandial glucose disposal. This study describes the effects of insulin, delivered 32 

for 72 hours, to skeletal muscle myoblasts during differentiation or to skeletal muscle 33 

myotubes. After chronic treatment, cultures were acutely stimulated with insulin and 34 

analysed for total and phosphorylated Akt (Ser473), mRNA expression of metabolic 35 

and myogenic markers and insulin-stimulated glucose uptake. Skeletal muscle cells 36 

differentiated in the presence of insulin chronically, reduced acute insulin stimulated 37 

phosphorylation of Akt Ser473. In addition, there was a reduction in mRNA expression 38 

of Hexokinase II (HKII), GLUT4 and PGC-1α. Insulin-stimulated glucose uptake was 39 

attenuated when cells were differentiated in the presence of insulin. In contrast, 40 

myotubes exposed to chronic insulin showed no alterations in phosphorylation of Akt 41 

Ser473. Both HKII and GLUT4 mRNA expression were reduced by chronic exposure 42 

to insulin; while PGC-1α was not different between culture conditions and was 43 

increased by acute insulin stimulation. These data suggest that there are differential 44 

responses in insulin signalling, transcription and glucose uptake of skeletal muscle 45 

cells when cultured in either the presence of insulin during differentiation or in 46 

myotube cultures.  47 

WORDS: 191 48 

 49 

 50 

 51 
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Introduction 53 

In healthy individuals, an increase in post-prandial blood glucose concentration leads 54 

to an increase in plasma insulin levels (Goodyear et al., 1996). This increase 55 

enables effective glucose disposal in insulin-sensitive tissues such as adipose, liver 56 

and skeletal muscle thus maintaining blood glucose homeostasis (Wasserman, 57 

2009). Skeletal muscle is responsible for the majority of post-prandial glucose uptake 58 

(DeFronzo et al., 1983), and a diminished response of skeletal muscle to insulin 59 

(insulin insensitivity) is a characteristic of metabolic diseases such as type II diabetes 60 

mellitus (Abdul-Ghani and Defronzo, 2010).  61 

In states of metabolic disease, skeletal muscle is continuously exposed to abnormal 62 

systemic concentrations of glucose, fatty acids, insulin and cytokines (Pendergrass 63 

et al., 1998; Zierath et al., 1998), Specifically, hyperinsulinemia’, has been 64 

considered both a consequence as well as driver of insulin resistance (Corkey, 2012), 65 

and can influence insulin signalling and glucose uptake in metabolic cells types such 66 

as adipocytes and skeletal muscle (Gonzalez et al., 2011; Kumar and Dey, 2003; 67 

Ricort et al., 1995). The precise mechanisms underpinning skeletal muscle insulin 68 

insensitivity in metabolic diseases is yet to be fully understood, however, the culture 69 

of skeletal muscle cells in vitro provides a system to understand cellular mechanisms 70 

regulating muscle adaptation and the pathogenesis of skeletal muscle insulin 71 

resistance, independent of the systemic environment (Aas et al., 2013). Various 72 

models of skeletal muscle insulin resistance have been developed using both cell 73 

lines and primary human cells (Aas et al., 2013; Jové et al., 2006; Nedachi et al., 74 

2008). Indeed, these in vitro cellular models have investigated the effects of a variety 75 

of factors such as pro-inflammatory cytokines, fatty acids and insulin upon skeletal 76 

muscle insulin signalling and glucose uptake (del Aguila et al., 2011; Jové et al., 77 
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2006; Kumar and Dey, 2003; Philp et al., 2010). In particular, exposure to high levels 78 

of insulin, as are common in metabolic disease states, have been reported to impair 79 

proximal insulin signalling in skeletal muscle cells (Kumar and Dey, 2003). 80 

Although progress has been made in establishing in vitro models of insulin resistant 81 

skeletal muscle, little attention has been paid to the potential influence of the 82 

myogenic programme. Both in vivo and in vitro, proliferating mononuclear myoblasts 83 

undergo myogenesis to form multinucleate terminally differentiated myotubes 84 

(Buckingham et al., 2003), characterised by elevations in the expression of the 85 

myogeninc regulatory factor Myogenin (Zammit, 2017). As such, two distinct phases 86 

exist whereby an insulin resistant muscle model could be established; either during 87 

myogeneis, such that the nascent myotubes are insulin resistant, or following 88 

myogenesis, where insulin resistance is induced in pre-existing myotube cultures. 89 

Indeed, although both methods have been used to investigate development of insulin 90 

insensitivity in muscle cells in vitro (del Aguila et al., 2011; Kumar and Dey, 2003), a 91 

consensus on the most suitable method for inducing this response is not currently 92 

clear. 93 

Therefore, the current experiments sought to determine if culture of skeletal muscle 94 

cells in the presence of insulin, which is a common symptom during the onset of 95 

insulin resistance and diabetes, would lead to disturbances in insulin-stimulated 96 

intracellular signalling, mRNA expression of key myogenic and metabolic genes and 97 

glucose uptake in C2C12 skeletal muscle cells. In this report, we show that 98 

myogenic cells cultured in the presence of insulin affects these cells more during 99 

myogenesis, whereas there were minimal effects of insulin exposure in post-mitotic 100 

skeletal muscle myotubes.   101 
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Methodology 102 

Cell Culture 103 

C2C12 myoblasts were grown using standard growth medium (GM) (Dulbecco’s 104 

Modified Eagle’s Medium (DMEM)) (Fisher –Scientific, Loughborough, UK), 20% 105 

fetal bovine serum (FBS) (Dutscher Scientific, EU approved, Essex UK), and, 1% 106 

Penicillin/Streptomycin (P/S) (Gibco, Invitrogen, Paisley, UK). Cells were harvested 107 

with the use of trypsin–EDTA (Sigma-Aldrich, Dorest, UK) at 80-90% confluence and 108 

subsequently counted using the trypan blue exclusion method and seeded at a 109 

density of 15,000 cells�cm2 in 6 well plates. Conditions were conducted in triplicate 110 

wells and repeated across a minimum of three independent experiments. 111 

Exposure of differentiating myoblasts to insulin 112 

C2C12 myoblasts were grown to confluence before being changed to either a control 113 

differentiation media (CONTROL) (DMEM + 2% Horse Serum (HS) (Sigma-Aldrich, 114 

Dorset, UK)), or an insulin supplemented media (INSULIN) (DMEM + 2% HS and 115 

100 nM Insulin). Human recombinant insulin was purchased from Sigma-Aldrich 116 

(Sigma-Aldrich, Dorset, UK). Myoblasts were incubated in their respective medias for 117 

three days with the media changed twice daily as described previously (Kumar and 118 

Dey, 2003) (Figure 1a). The culture media was changed one hour prior to acute 119 

insulin stimulation. Cells were then washed twice in Krebs Ringer HEPES (KRH) 120 

buffer (10 mM HEPES pH 7.4, 138 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 1.25 mM 121 

MgSO, 5 mM Glucose and 0.05% BSA) and subsequently incubated twice in KRH 122 

buffer for 30 minutes before being stimulated for five minutes in KRH with insulin 123 

(100 nM) or left un-stimulated. Cells were then washed twice in PBS before being 124 

lysed for protein or RNA extraction. 125 
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Exposure of skeletal muscle myotubes to insulin 126 

C2C12 myoblasts were cultured until confluence, and differentiated in DM media for 127 

three days to encourage the formation of multinucleate myotubes. Subsets of wells, 128 

in triplicate, were acutely stimulated with insulin for five minutes prior to sampling for 129 

protein and RNA extraction (PRE). Further wells of myotubes, in triplicate, were 130 

either chronically treated with insulin (INSULIN) or kept in control DM for three days 131 

(CONTROL), prior to the acute five-minute insulin treatment as described above. 132 

Myotubes were sampled immediately following this acute insulin stimulation, for 133 

protein and RNA extraction. This protocol allowed for the examination of both basal 134 

chronic and acutely insulin-stimulated effects of chronic insulin treatment (Figure 1b). 135 

[INSERT FIGURE 1] 136 

Measurement of 3H-Deoxy-D-Glucose uptake. 137 

Glucose uptake was determined using 3H-Deoxy-D-Glucose (3H-2DG) as previously 138 

described (Nedachi and Kanzaki, 2006), with some slight modifications. Briefly, 139 

following 4 hr serum starvation, experimental plates (chronic treatments only) were 140 

washed twice in KRH buffer and incubated for 15 minutes in either the absence or 141 

presence of 100 nM insulin. Glucose uptake was determined by the addition of 3H-142 

Deoxy-D-Glucose (0.1 mM, 1µCi�mL; PerkinElmer Life and Analytical Science) for 30 143 

minutes. After incubation, cells were washed in PBS and lysed in 0.2 M Sodium 144 

Hydroxide (NaOH) in phosphate buffered saline (PBS). Glucose uptake was 145 

assessed by liquid scintillation counting (Pakard-Bell). Data was normalised to total 146 

protein collected from parallel experimental plates.  147 

Western Blotting 148 

Cells were homogenised in lysis buffer (50 mM HEPES, 150 mM NaCl, 1.5 mM 149 

MgCl2, 1 mM EGTA, 50 mM NaF, 50 mM β-Glycerophosphate, 1 mM Na3VO4, 1% 150 
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Triton X-100, 2 mM PMSF) and protein content of the samples was determined using 151 

the Pierce 660nm protein assay (Thermo-Fisher, Loughborough, UK). Prior to 152 

analysis, samples were mixed in Laemmli buffer (4 mL H2O, 1mL 1M TRIS HCl pH 153 

6.8, 0.4mL Glycerol, 0.4mL 2-β-mercaptoethanol, 0.05% bromophenol blue), and 154 

boiled for 5 minutes at 95ºC. Thereafter, 20µg of protein per sample was loaded into 155 

SDS-polyacrylamide gels (4% stacking and 12% resolving) for separation by 156 

electrophoresis (SDS-PAGE). Proteins were then wet transferred on to nitrocellulose 157 

membranes (Whatman Proton, Sigma-Aldrich, Dorset, UK), for 2 hr at a constant 158 

current of 0.35 Amps. Membranes were blocked for 1h with bovine serum albumin 159 

(BSA) (Sigma-Aldrich, Dorset, UK) at 4ºC and rinsed three times in Tris Buffered 160 

Saline with Tween (Tris, NaCl, pH 7.4, Tween-20, TBST), before being incubated 161 

with primary antibody overnight at 4ºC. Primary antibodies used in the experiments 162 

were, Akt, phospho Akt (Ser473) and β-Actin (Cell Signalling, MA, USA). Following 163 

overnight primary antibody incubation, membranes were washed in TBST and 164 

subsequently incubated with anti-rabbit horseradish peroxidase-conjugated 165 

secondary antibody (Cell Signalling, MA, USA). Proteins were visualised using 166 

chemiluminescence substrate (Supersignal, ThermoFisher Scientific, Rockford, IIL, 167 

USA) and band densities were quantified using Quantity One image analysis 168 

software (Quality One 1-D analysis software version 4.6.8).  Phosphorylation of 169 

proteins was normalised to the respective total protein and a housekeeping protein 170 

(β-Actin).   171 

RNA extraction and qPCR analysis 172 

RNA was extracted using TRI Reagent (Sigma-Aldrich, Dorset, UK) according to 173 

manufacturer’s instructions and concentrations (ng/µL) and purity of RNA samples 174 

were determined using UV spectroscopy (NanoDrop, Fisher Scientific, 175 
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Loughborough, UK). Gene expression was analysed by One-step reverse 176 

transcription-PCR using a Stratagene Mx3005p thermocycler (Agilent Technologies 177 

LDA UK Limited, Cheshire, UK). Primer sequences were synthesised by Sigma 178 

Aldrich (Sigma-Aldrich, Dorset, UK) as shown in Table 1. Each reaction consisted of 179 

70 ng of RNA diluted in 9.5µL of nuclease free water, 0.15 µL forward primer, 0.15 180 

µL reverse primer (100 µM), 10 µL Quantifast SYBR Green Mix (Qiagen, Crawley, 181 

UK) and 0.2 µL of reverse transcriptase (RT)-Mix (Qiagen, Crawley, UK) to constitute 182 

a final 20 µL reaction volume (Qiagen Chemistries, Crawley, UK). RT-PCR was 183 

conducted using the following steps: 10 min hold at 50 °C (reverse transcription), 184 

followed by a 5 min hold at 95 °C, and cycling between 95 °C for 10 s (denaturation) 185 

and 60 °C for 30 s (annealing and extension). Fluorescence was detected after every 186 

cycle (40 cycles) and data was analysed using the ∆∆CT method using RNA 187 

polymerase II beta (POLR2B) as an endogenous control gene. 188 

[INSERT TABLE 1] 189 

 190 

Statistical Analysis 191 

Data is presented as Mean ± S.E.M. Differences between conditions were analysed 192 

by ANOVA with post-hoc Bonferroni using SPSS (IBM SPSS, Version 19, NY, USA). 193 

When variances between conditions were found to be significant, Welch’s F ratio 194 

was used to analyse significance with post-hoc Games-Howell to show differences 195 

between conditions. Significance level was set at equal to or less than p < 0.05.  196 
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Results 197 

3H-Deoxy-D-Glucose uptake following acute and chronic insulin exposure in 198 

differentiating myoblasts and skeletal muscle myotubes 199 

 200 

Firstly, the effect of chronic insulin treatment on insulin stimulated glucose uptake 201 

was investigated in C2C12 cells during myogenesis or in pre-existing myotubes.As 202 

expected, skeletal muscle cells differentiated in control media showed a significant 203 

increase in glucose uptake when stimulated with insulin for 30 minutes compared to 204 

basal control (p <0.05) (Figure 2a). However, this response was not replicated in 205 

myoblasts differentiated in the presence of insulin (p >0.05), which were found to 206 

have an increased basal level of glucose uptake. This increase in basal uptake was 207 

significantly greater than the basal uptake in myoblasts differentiated in control 208 

conditions (p < 0.01), suggesting that chronically elevated levels of insulin in this 209 

system results in elevated basal glucose uptake, independent of the action of 210 

exogenous insulin (Figure 2a). What is more there was no added effect of acute 211 

insulin stimulation upon glucose uptake following differentiation in the presence of 212 

insulin (p > 0.05).  213 

Glucose uptake in skeletal muscle myotubes was analysed following differentiation 214 

and following culture in the presence of insulin (Figure 2b). Despite small increases 215 

in glucose uptake, there was no significant difference between basal and insulin 216 

stimulated myotubes differentiated for 3 days (PRE) (p >0.05). Similarly, myotubes 217 

cultured in control media for a further 3 days (CONTROL) showed a small increase 218 

in glucose uptake following acute insulin stimulation compared to basal conditions 219 

however this was not statistically significant (p >0.05).  In myotubes cultured in the 220 

presence of insulin (INSULIN), there was an increase in basal uptake, similar to that 221 
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observed in skeletal muscle cells differentiated in the presence of insulin, however 222 

the differences between conditions, and the effect of acute insulin stimulation, were 223 

not found to have any significant effect (p > 0.05). 224 

 225 

[INSERT FIGURE 2] 226 

  227 
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The effects of chronic insulin exposure on Akt Ser473 phosphorylation in 228 

myoblasts during differentiation. 229 

 230 

To investigate the effect of insulin exposure on intracellular signalling proteins, 231 

expression of the phosphorylated Akt Ser473 was analysed due to its central role in 232 

recruitment of downstream insulin signalling proteins. Myoblast differentiation in the 233 

presence of insulin had a significant main effect upon the phosphorylation of Akt 234 

Ser473 (p < 0.05, Figure 3). Acute insulin stimulation increased the phosphorylation of 235 

Akt Ser473 compared to basal levels in skeletal muscle cells differentiated in control 236 

media (p < 0.05, Figure 3). However, stimulation with insulin did not increase 237 

phosphorylated Akt Ser473 in cells differentiated in the presence of insulin (p > 0.05, 238 

Figure 3), which remained similar to basal levels in the control untreated condition (p > 239 

0.05, Figure 3b). This suggests that three days of insulin treatment throughout the 240 

differentiation period, contributes towards a reduced capacity for Akt Ser473 241 

phosphorylation by acute insulin stimulation, compared to myoblasts differentiated in 242 

normal DM conditions.  243 

[INSERT FIGURE 3] 244 

 245 

mRNA expression in response to acute and chronic insulin exposure in 246 

skeletal muscle cells during myogenesis. 247 

 248 

In order to investigate how the differences in insulin signalling between conditions 249 

had an effect upon transcriptional markers, the mRNA expression of genes which 250 

play a role in metabolism and myogenesis were analysed. Acute stimulation with 251 

insulin, significantly increased HKII mRNA expression in cells cultured in control 252 

media (p <0.01), however no change was observed in myoblasts differentiated in the 253 
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presence of insulin (p > 0.05, Figure 4). GLUT4 mRNA expression reduced following 254 

acute insulin stimulation in skeletal muscle cells differentiated in control media (p < 255 

0.05). Cells differentiated in the presence of insulin were found to express lower 256 

GLUT4 mRNA expression, compared to the expression in cells cultured in control 257 

media (p < 0.05, Figure 4) which was not affected by acute insulin stimulation. In 258 

contrast, PGC-1α mRNA expression was different between conditions (p < 0.01), 259 

increasing following acute insulin stimulation in cells cultured in control media to a 260 

level which approached significance (p = 0.07), whereas there was no difference in 261 

PGC-1α mRNA expression as a result of acute insulin stimulation in skeletal muscle 262 

cells differentiated in the presence of insulin (p > 0.05, Figure 4). In addition to 263 

investigating metabolic genes, the effect of insulin exposure on the myogenic 264 

transcription factor, myogenin, was investigated, as it is a pivotal regulator of skeletal 265 

muscle differentiation. Myoblasts differentiated in control media showed an increase 266 

in myogenin mRNA expression (p < 0.05), compared to basal when stimulated with 267 

insulin. In contrast, culture with insulin resulted in lower expression of myogenin 268 

mRNA when stimulated with insulin, compared to basal when differentiated in the 269 

presence of insulin (p < 0.05, Figure 4). This would suggest that acute insulin 270 

stimulation can induce changes in the mRNA expression of metabolic genes and 271 

subsequent culture in the presence of insulin can attenuate the induction of these 272 

genes by acute insulin stimulation. In contrast, myogenin expression is influence 273 

more by chronic culture in insulin rather than acute insulin stimulation.  274 

[INSERT FIGURE 4] 275 

  276 
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The effects of acute and chronic insulin exposure on the expression of key 277 

signalling proteins in post-mitotic skeletal muscle myotubes. 278 

 279 

After three days differentiation, acute insulin stimulation significantly increased the 280 

phosphorylation of Akt Ser473 compared to basal levels (p < 0.05). Myotubes cultured 281 

in control media for a further three days also increased phosphorylation of Akt Ser473 282 

as a result of insulin stimulation compared to basal control; however, the differences 283 

between the basal control and insulin stimulation were not significantly different (p > 284 

0.05). In contrast, myotubes cultured in the presence of insulin showed no changes 285 

in phosphorylated Akt Ser473 between basal and acute insulin stimulation (p > 0.05) 286 

(Figure 5). Together this suggests that, acute insulin stimulation was not effective in 287 

significantly inducing phosphorylation Akt in skeletal muscle myotubes cultured in 288 

control media or in the presence of insulin.   289 

[INSERT FIGURE 5] 290 

  291 
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mRNA expression of metabolic and myogenic markers in response to acute 292 

and chronic insulin exposure in skeletal muscle myotubes. 293 

 294 

In myotube cultures, a significant main effect was observed in HKII mRNA 295 

expression (p <0.05). Myotubes which were cultured in the presence of insulin 296 

showed a reduction in expression of HKII compared to differentiated myotubes (p < 297 

0.05) (Figure 6), with a similar response observed for GLUT4 mRNA expression (p < 298 

0.05) (Figure 6). Acute insulin stimulation had no effect upon HKII or GLUT4 mRNA 299 

expression in any of the conditions over basal control (p > 0.05), but acute insulin did 300 

significantly increase mRNA expression of PGC-1α (p < 0.05), independent of 301 

condition (p > 0.05) (Figure 6). Myogenin mRNA expression showed no significant 302 

main effects for culture condition or acute insulin stimulation (p > 0.05); however, 303 

there was a significant interaction effect (p < 0.05). Acute insulin stimulation 304 

significantly increased myogenin expression in differentiated skeletal muscle 305 

myotubes (p < 0.05), although this effect was not observed in myotubes cultured in 306 

control media (p > 0.05). There was however, a trend for a reduction in myogenin 307 

expression following acute insulin stimulation in myotubes cultured in the presence 308 

of insulin (p = 0.06) (Figure 6), demonstrating a divergent response in the early and 309 

late myotube conditions.  310 

 [INSERT FIGURE 6] 311 

  312 
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Discussion 313 

Insulin stimulates glucose uptake in a wide variety of cell types and contributes to a 314 

number of other cellular functions however, insulin stimulated glucose disposal is 315 

highest in metabolic tissues such as skeletal muscle (DeFronzo et al., 1983). Despite 316 

of the fact that insulin-mediated glucose utilisation is high in metabolic tissues such 317 

as skeletal muscle, continuous exposure to elevated levels of insulin, such that occur 318 

in metabolic diseases, can have negative effects on cellular metabolism (Kumar and 319 

Dey, 2003; Pagel-Langenickel et al., 2008). The development of in vitro models of 320 

skeletal muscle insulin resistance are undoubtedly useful tools for defining the 321 

underpinning mechanisms, and as such the most suitable methods to induce this 322 

phenotype should be explored.  323 

Using a model of hyperinsulinemia to induce insulin resistance, we investigated the 324 

impact of exposure to insulin during myogenesis of skeletal muscle cells and in 325 

differentiated skeletal muscle myotubes. Our results indicate that insulin stimulated 326 

glucose uptake was altered as a result of exposure to insulin during myogenesis. 327 

Similar responses have been observed previously in C2C12 skeletal muscle cells 328 

using a similar model of hyperinsulineamic induced insulin resistance (Kumar and 329 

Dey, 2003, 2002). The similar findings between our work and those of Kumar and 330 

Dey provides validation of the use of this method of exposing skeletal muscle cells to 331 

insulin during myogenesis for induction of insulin insensitivity. To see if the findings 332 

could be translated into skeletal muscle myotubes, we next investigated the method 333 

in inducing skeletal muscle insulin resistance following myogenic differentiation. 334 

While the trends were similar to those observed in skeletal muscle cells during 335 

myogenesis, the changes were not significant, suggesting that the changes in 336 
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glucose uptake following hyperinsulinemic induced insulin resistance were more 337 

prominent during the differentiation of skeletal muscle cells.  338 

In order to investigate the impact of the changes in glucose uptake which were 339 

observed, analysis of the phosphorylation of Akt (Ser473) was investigated. Acute 340 

insulin stimulation significantly augmented Akt phosphorylation in skeletal muscle 341 

cells following myogenesis; however, phosphorylation of Akt was not increased 342 

following acute insulin stimulation following chronic culture in control or insulin media 343 

during cell differentiation. Often an indicator of insulin signalling activation, impaired 344 

Akt phosphorylation is attenuated in insulin resistant skeletal muscle (Karlsson et al., 345 

2005). Other in vitro research in skeletal muscle and adipocyte cells has reported 346 

impaired proximal insulin signalling, specifically at the site of the insulin receptor, in a 347 

model of hyperinsulineamic induced insulin resistance (Kumar and Dey, 2003; Ricort 348 

et al., 1995). Therefore, the changes in Akt phosphorylation observed in skeletal 349 

muscle cells following insulin exposure are most likely a result of impaired signalling 350 

upstream of Akt.  351 

In order to further characterise the model of hyperinsulinemia induce insulin 352 

resistance in skeletal muscle, important genes involved in metabolism, which are 353 

differentially expressed in states of insulin resistance were analysed (Ducluzeau et 354 

al., 2001). Hexokinase II is important in metabolic regulation and can be seen as a 355 

potential bio-marker of insulin resistance, due to the reduction in expression 356 

observed in skeletal muscle of insulin resistant subjects (Mandarino et al., 1995; 357 

Pendergrass et al., 1998; Vestergaard et al., 1995). While skeletal muscle cells 358 

differentiated in the presence of insulin showed an attenuated response in HKII 359 

mRNA expression following acute insulin stimulation, skeletal muscle myotubes did 360 

not respond in a similar manner. Insulin has been shown to act as a regulator of HKII 361 
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mRNA expression in skeletal muscle (Printz et al., 1993), specifically through a PI-3 362 

kinase dependent pathway (Osawa et al., 1996).  363 

The transcriptional coactivator PGC1alpha appears to play a key role in energy 364 

metabolism (Wu et al., 2016). Overexpression of PGC1alpha increases GLUT4 365 

expression and glucose uptake in skeletal muscle (Benton et al., 2008) whereas its 366 

deletion leads to abnormal glucose homeostasis (Handschin and Spiegelman, 2006). 367 

The reduction in PGC-1α mRNA expression in response to chronic exposure to 368 

insulin in differentiating skeletal muscle cells was somewhat expected based on 369 

Akt’s role in mediating Foxo1 localisation with PGC1 in the nucleus (Brunet et al., 370 

1999; Fernandez-Marcos and Auwerx, 2011). This finding lends further support to 371 

the notion that this method represents a strong model for inducing insulin resistance 372 

since PGC1 alpha levels are attenuated in diabetic skeletal muscle. In contrast, the 373 

increase in PGC1alpha in response to acute insulin stimulation in both differentiating 374 

control cells and pre-existing myotubes regardless of chronic insulin treatment was 375 

surprising. Ling and colleagues have previously observed an increase in PGC1alpha 376 

mRNA levels following a hyperinsulinaemic euglycaemic clamp in young and elderly 377 

twins (Ling et al., 2004), however the mechanisms which underpin this observation 378 

are not well understood and are beyond the scope of the present investigation. 379 

Interestingly however, in our study, the transcription of PGC1alpha in myoblasts 380 

differentiated in the presence of insulin was impaired, further suggesting that 381 

metabolic control is somewhat supressed with this intervention. 382 

In the current set of experiments, differentiating myoblasts but not myotubes, 383 

showed a reduction in GLUT4 mRNA expression following chronic exposure to 384 

insulin. The repression of GLUT4 mRNA transcription is a common physiological 385 

response following response exposure to a hyperinsulinemic environment in insulin 386 
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sensitive tissues (Flores-Riveros et al., 1993), leading to a reduction in insulin 387 

stimulated glucose uptake. Importantly hyperinsulinaemia has been shown to 388 

diminish GLUT4 translocation upon insulin stimulation and increased basal glucose 389 

uptake in L6 skeletal muscle cells exposed to high glucose and insulin (Huang et al., 390 

2002). In addition, although not measured in our experiments, other glucose 391 

transporters such as GLUT1 have been reported to increase following prolonged 392 

exposure to insulin (Taha et al., 1999). This change in glucose transporter 393 

expression could explain the increased basal uptake observed in C2C12 skeletal 394 

muscle cells cultured in the presence of insulin during differentiation and to an extent, 395 

in differentiated myotubes.  396 

In conclusion, these experiments show that alterations in glucose uptake, insulin 397 

signalling, and gene transcription were affected by exposure to insulin during 398 

differentiation. This therefore describes a putative model of hyperinsulineamic 399 

induced skeletal muscle cell insulin resistance. This contrasts with the effects of 400 

hyperinsulineamia on post-mitotic skeletal myotube cultures, myotubes, where by 401 

alterations in gene transcription and glucose uptake were not characteristic of an 402 

insulin resistant phenotype. Therefore, based on our findings and the biomarkers 403 

used as indicators of potential insulin resistance (Table 2), skeletal muscle cells 404 

exposed to insulin during differentiation appears to be an effective method for the 405 

development of a hyperinsulinemia-induced insulin resistant skeletal muscle. This 406 

model has potential to be used as a method for inducing skeletal muscle insulin 407 

resistance in vitro, which could be used to investigate potential lifestyle interventions 408 

such as exercise, upon insulin resistant skeletal muscle.  409 

[INSERT TABLE 2]  410 
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Figure Legends 537 

Figure 1. Protocol schematic for investigating chronic insulin exposure upon A; 538 

skeletal muscle cells during myogenesis and B; post-mitotic skeletal muscle 539 

myotubes.  540 

Figure 2. A; 3H-Deoxy-D-Glucose uptake in C2C12 skeletal muscle cells during 541 

myogenesis.B C2C12 skeletal muscle myotubes. Skeletal muscle myotubes were 542 

exposed to low serum media supplemented without (Control) or with (Insulin) the 543 

addition of insulin (100 nM). Open bars represent unstimulated filled bars 544 

represented acute 30 minutes insulin stimulation. * Significantly different to control 545 

(p<0.05). † Significantly different to control unstimulated (p<0.05). * Significantly 546 

different from control unstimulated sample (p<0.05). 547 

Figure 3. Akt (Ser473) phosphorylation following insulin exposure in C2C12 skeletal 548 

muscle cells during myogenesis. Open bars represent unstimulated filled bars 549 

represented acute 30 minutes insulin stimulation. * Significantly different to control 550 

(p<0.05). † Significantly different to control unstimulated (p<0.05).  551 

Figure 4. Gene expression analysis (∆∆Ct) of C2C12 skeletal muscle cells 552 

differentiated in control media (CON) or chronically exposed to insulin (100 nM) (IT). 553 

A; GLUT4, B; HKII, C; PGC-1α, D; MyoG. Open bars represent unstimulated filled 554 

bars represented acute 30 minutes insulin stimulation. * Significantly different from 555 

control unstimulated sample (p<0.05).  556 

Figure 5. Akt (Ser473) phosphorylation C2C12 skeletal muscle myotubes following 557 

differentiation (PRE), control media (CON) or chronically exposed to insulin (100 nM) 558 

(IT). Open bars represent unstimulated filled bars represented acute 30 minutes 559 

insulin stimulation. * Significantly different to control (p<0.05). † Significantly different 560 
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to control unstimulated (p<0.05). * Significantly different from control unstimulated 561 

sample (p<0.05).   562 

Figure 6. Gene expression analysis (∆∆Ct) of C2C12 skeletal muscle myotubes 563 

following differentiation (PRE) and chronic incubation in control media (CON) or high 564 

insulin (100 nM) media (IT). A; GLUT4, B; HKII, C; PGC-1α, D; MyoG. Open bars 565 

represent unstimulated filled bars represented acute 30 minutes insulin stimulation. # 566 

significantly different to unstimulated sample (p<0.05). * Significantly different to pre-567 

unstimulated sample (p<0.05). § Significantly different to Pre (p<0.05). 568 

 569 

Table Legend 570 

Table 1. Primer sequences of mouse mRNA genes used for one-step qPCR 571 

Table 2. Summary of findings in skeletal muscle cells during myogenesis 572 
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Figure 1. Protocol schematic for investigating chronic insulin exposure upon A; skeletal muscle cells during 
myogenesis and B; post-mitotic skeletal muscle myotubes.  
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Figure 2. A; 3H-Deoxy-D-Glucose uptake in C2C12 skeletal muscle cells during myogenesis.B C2C12 skeletal 
muscle myotubes. Skeletal muscle myotubes were exposed to low serum media supplemented without 
(Control) or with (Insulin) the addition of insulin (100 nM). Open bars represent unstimulated filled bars 

represented acute 30 minutes insulin stimulation. * Significantly different to control (p<0.05). † Significantly 
different to control unstimulated (p<0.05). * Significantly different from control unstimulated sample 

(p<0.05).  
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Figure 3. Akt (Ser473) phosphorylation following insulin exposure in C2C12 skeletal muscle cells during 
myogenesis. Open bars represent unstimulated filled bars represented acute 30 minutes insulin stimulation. 
* Significantly different to control (p<0.05). † Significantly different to control unstimulated (p<0.05).  

 
84x87mm (300 x 300 DPI)  

 

 

Page 26 of 31

John Wiley & Sons, Inc.

Journal of Cellular Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 4. Gene expression analysis (∆∆Ct) of C2C12 skeletal muscle cells differentiated in control media 
(CON) or chronically exposed to insulin (100 nM) (IT). A; GLUT4, B; HKII, C; PGC-1α, D; MyoG. Open bars 
represent unstimulated filled bars represented acute 30 minutes insulin stimulation. * Significantly different 

from control unstimulated sample (p<0.05).  
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Figure 5. Akt (Ser473) phosphorylation C2C12 skeletal muscle myotubes following differentiation (PRE), 
control media (CON) or chronically exposed to insulin (100 nM) (IT). Open bars represent unstimulated filled 

bars represented acute 30 minutes insulin stimulation. * Significantly different to control (p<0.05). † 

Significantly different to control unstimulated (p<0.05). * Significantly different from control unstimulated 
sample (p<0.05).    
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Figure 6. Gene expression analysis (∆∆Ct) of C2C12 skeletal muscle myotubes following differentiation (PRE) 
and chronic incubation in control media (CON) or high insulin (100 nM) media (IT). A; GLUT4, B; HKII, C; 

PGC-1α, D; MyoG. Open bars represent unstimulated filled bars represented acute 30 minutes insulin 

stimulation. # significantly different to unstimulated sample (p<0.05). * Significantly different to pre-
unstimulated sample (p<0.05). § Significantly different to Pre (p<0.05).  
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Table 1 Primer Sequences of mouse mRNA used for one-step PCR 

 

 

 

 

 

 

 

 

 

 

Gene Primer Sequence Accession No: 

RNA Polymerase II -Beta (POLR2B ) F: 5’-GGTCAGAAGGGAACTTGTGGTAT 

R: 5’-GCATCATTAAATGGAGTAGCGTC 

NM_153798 

Myogeninn (MyoG) F: CCAACTGAGATTGTCTGTC  
R: GGTGTTAGCCTTATGTGAAT  

NM_031189 

Peroxisome Proliferator-Activated coactivator (PGC1-α) F: 5’-AGACTATTGAGCGAACCT 

R: 5’-TATGAGGAGGAGTTGTGG 

NM_008904.2 

Hexokinase II (HKII) F: 5’- GGAGGAGGAGCAGTATGG 

R: 5’-TTCAGCCGTGTGAGGTAA 

NM_013820 

GLUT4 F: 5’-CATCAGGATAAACAGCAGGG  
R: 5’-GGAGGCAGGGCTAGATTT 

NM_011480 
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Table 2 Findings summary 

Findings Summary 

• Chronic exposure to insulin impaired phosphorylation of insulin signalling proteins in differentiating skeletal 

muscle cells. 

• The mRNA expression of metabolic genes was impaired following acute stimulation in differentiating skeletal 

muscle cells chronically exposed insulin. 

• Basal glucose uptake in differentiating skeletal muscle cells was increased following chronic insulin exposure. 

This increase hindered any observation of insulin stimulated glucose uptake in these cultures. 

• Acute insulin stimulation did not change mRNA expression of skeletal muscle myotubes. 

• Chronic insulin exposure increased GLUT4 mRNA expression while reducing HKII mRNA expression. 

• Chronic insulin exposure in skeletal muscle myotubes did not alter insulin stimulated glucose uptake. 
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