

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

'.

Pilkington Library

Author/Filing Title ~.~.~~~.~::>.,) ~

;,;::::;;;:~;~-
Vol. No

2 5 J~ 1999

, 9 Jm~ 2000

Class Mark

----(
. .. .

.'

IIII ~ IIIIIII

"

Un-Constraining the Medium: Design Software Systems to Support
Situated Action

by

Ben Anderson

A Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of Loughborough University

r' '.' ~

1998

..... ,
" '".1 ~,

(© by Ben Ande'rsori i 998

t
.'

,'. -.,.. .,,-, .

· ,

UIJn~.~~~:~ugh
p~;. . ~ ~~~

~-.. -.~-.". ..~~
.,

&<'Cbj 1.-Cf't I .;;;f:
" ...

Abstract

This dissertation is concerned with Computer Supported Cooperative Work (CSCW)

and in particular with ways in which insights from ethnomethodology can be melded

into the design of CSCW systems - a relationship that has been labelled technomethod

ology. The dissertation outlines a number of possible ways in which system design

can learn from ethnomethodology and concentrates on one particular aspect - namely

that CSCW should look closely at its foundational assumptions and, if necessary,

respecify any concepts which appear problematic in their formulation.

The dissertation provides an example of exactly this sort of respecification by

examining the nature and use of rules in everyday life. It provides a case study of the

design, implementation and use of a functional CSCW system - TelePort- that takes

account of an alternative view on rules and rule use grounded in studies of everyday

work and social activities.

The CSCW system that is described is a prototype tool to support group awareness

between users of a test-bed packet switched multimedia telecommunications network

the Internet MBONE. Whilst the design, implementation and usage of this prototype

provide a research vehicle for investigating requirements for group awareness protocols

and tools in the Internet context, it also serves as a case study of technomethodology.

The case study offers the c~nceptua[framewo~k and design methods developed as

the building blocks for the t~chnomethodology research program. Reflections on the

design, implementation and usage of the prototype provide testament to the utility

of respecifying assumptions.

11

To Claire, for keeping me sane.

111

Acknowledgements

The ideas reported by this dissertation have grown from, and been improved by,

innumerable conversations, arguments, arm-waving" and beer-drinking with friends

and colleagues at the LUTCHI Research Centre: Tim Appleyard, Adam Bridgen,

Kelvin Clibbon, Claudia Eckhert, Roger Knott, Tunu Miah, Michael Smyth and Dave

Williams have all contributed in various ways to the ideas. Jim Alty has provided

much support in his roles as Supervisor, equipment provider, ideas supplier, and

general sounding-board. Chris Hinde, as Research Director, has smoothed the often

bumpy path of post-graduate study and has been crucial to the production of this

dissertation by forcing me to do what I said I would do, when I said I would do

it. Jon Knight's attempts to get me interested in the MBONE and in his multicast

extensions to Tcl-DP started me on the path which this dissertation concludes whilst

he, Martin Hamilton and the other 'MBONEers' at LUT deserve immense credit for

helping to debug the prototype and for their patient explanations of how IP multicast

works and why it is a good thing.

This dissertation would undoubtably not have been completed but for the support

of a Research Scholarship funded by the Human Factors group at BT Labs. Dave

Linton, Charles Brennan, Nigel Clifre, Mark Courteny and other members of the

Advanced Applications and Technology Group at BT have all contributed significantly

to this work at both the conceptual and practical levels by being willing to discuss

ideas, help solve problems and cope good-naturedly with bug-ridden software. I trust

that there is something in here for them.

As with any research effort, contact and discussion with peers has variously pro

voked, goaded and convinced me that I should be thinking about, and drawing upon,

the variety of sources that have affected the outcome of this work: Bob Anderson,

Sara Bly, Graham Button, Jon Crowcroft, Paul Dourish, Mark Handley, Christian

Heath, Paul Luff and the participants of the CHI 96 Doctoral Consortium have all

influenced my thinking (whether they knew it or not) - the blame for the results rests,

IV

of course, entirely with me.

As will become clear in the dissertation, I am indebted to researchers at the

Lawrence Berkeley Laboratory for their foresight in openly distributing their IP mul

ticast audio, video and shared whiteboard tools. In combination with the University

of California at Berkeley's, and latterly Sun MicroSystems's, free distribution of Jon

Ousterhout's Tcl/Tk, and Brian Smith and Lawrence Rowe's distributed program

ming extensions (Tcl-DP), these tools have provided the possibility to build multiple

media telecommunications systems without a disproportionately large investment of

time and effort in building the individual media applications themselves. Unknow

ingly, these researchers enabled this work to take the shape that it has.

Final words of gratitude should go to my family without whose patience, support

and confidence this work would have been given up long ago. I am indebted to my

parents for their active encouragement and support irrespective of the impecunious

directions I have chosen to take.

More latterly, my wife Claire's faith that I knew what I was doing, that it was

worth the time and effort, and that, in the great scheme of things, it was of some

importance carried me through the times when I wasn't convinced on all or any of

these things.

It can't repay you but to all of you, thank you.

v

Preface (or "How to approach this dissertation")

This thesis describes an example of applying Ethnomethodology's study policy of re

specifying its foundational assumptions in the light of studies of the phenomena on

which it focuses to the field of Human Computer Interaction (HCl).

As such it attempts to show how concepts that underpin system development can

be re-specified to provide alternatives that are a viable resource for design. In so doing,

the dissertation proposes a design framework that could support a respecification, a

requirements capture method that the framework requires and a case study of the

construction of a functional prototype based upon principles and resources resulting

from this respecification.

These issues provide the conceptual backbone of the thesis and also therefore its

structure.

Specifically, Chapter 1 describes the attention that is being given in HCI and

Computer Supported Cooperative Work (CSCW) to ethnomethodology, a branch of

sociology. The chapter charts the emergence of a relationship between ethnomethod

ology and CSCW in particular and outlines ways in which such a relationship might

work. It identifies and articulates a research program that could be used to reflect on

the value of learning from ethnomethodology in various ways. In particular it focuses

on ethnomethodology's recommendation to respecify foundational assumptions and

base the reformulation on studies of, rather than assumptions about, the phenomena

in question.

Taking its lead from Part 1, Chapter 2 describes historically pervasive assumptions

about the nature of rules and the way in which they are used by human actors

in natural situations. It shows the effect that these assumptions have had on the

nature of the systems that are implemented and the way in which they can be used.

Drawing on recent critiques, it argues that these assumptions are ill-founded and

describes an alternative view of rules based on ethnomethodological studies of rule

use. It describes the implications that this view has for the design of CSCW systems.

VI

Chapter 3 proposes that systems can be characterised in terms of cues, actions and

the mappings between the two. It suggests that designing from this conceptualisation

will result in systems that take account of the view of rules developed in the previous

chapter. It uses this conceptuaiisation to describe a number of existent systems.

Part 3, the core practical work, describes a case study that used the conceptu

alisation of cues and actions to support the design of a prototype group awareness

tool and multimedia conferencing call manager, TelePorl. Chapter 4 introduces the

case study and describes an exercise in requirements elicitation that was informed by

the conceptualisation developed in the previous section. Chapter 5 describes other

resources used to develop system specifications and the implementation of the pro

totype's user interface. This prototype is related in concept to much of the Media

Space work, especially RAVE, CAVECAT and MMConf, and also draws on recent

work in the IETF's MMUSIC working group which is working on conference control

issues in wide area internetworks. The prototype has been implemented in Tcl/Tk

using a version of Tcl-DP with extensions for network programming in a multicast

unix environment and uses readily available audio and video software codecs in order

to create packet-switched multiple media connections over IP networks. Chapter 6

describes the architecture of this prototype, its functionality and the communication

protocols on which it depends. Throughout each of these chapters, issues raised by

the design conceptualisation are flagged for later comment. Chapter 7 des cri bes the

trial usage of the system and provides a discussion of issues arising from the user

interface and of the utility of the system architecture. It provides an analysis of the

protocols developed to support the prototype and illustrates how considering these

issues from the point of view developed in Chapter 3 can generate novel ideas for

future investigation.

Part 4, the last major section of the dissertation, looks back over the case study

and provides a detailed analysis and discussion of the utility of the framework and

principles proposed, discusses the benefits of this particular re-specification, and out-

VII

lines areas for further work.

Part 5 is a reference section providing the dissertation bibliography and four ap

pendices. The first details the data from the requirements exercise, the second is

an Internet Draft describing the group awareness protocol developed for use by the

prototype, and for which BT is currently seeking patent protection, the third is the

prototype code whilst the fourth is a version of Chapter 4.

This description of the work suggests that the dissertation only makes sense if

read in a linear fashion. Whilst this is certainly the intention, readers familiar with

ethnomethodology, HCI and CSCW may wish to skim Chapter 1 and the less tech

nically minded may find it best to skim Chapters 5 and 6. For those short of time

and/or attention span, the crucial ideas are to be found in Chapters 2 and 3 whilst

the discussion and analysis are to be found in Chapters 7, 8 and 9.

Contents

List of Figures

List of Tables

I Setting the Scene

1 Introduction
1.1 Framing what is to come
1.2 A brief tour of intellectual parasitism in HCI and CSCW
1.3 CSCW and Ethnomethodology: How did we get here? .
1.4 Contributions from Ethnomethdology

1.4.1 Learning from Ethnomethodologists
1.4.2 Learning from the Ethnomethodological Account
1.4.3 Learning from Ethnomethodology

II Respecifying Rules

2 Rules, and rule-use in CSCW Systems
2.1 Introduction

VU)

XII

XIV

1

2
3
4
7
9

12
16
18

24

25
26

2.2 Rules, Rule-use and System Design 27
2.3 Respecifying 'Rules-Use': Ethnomethodology, Rules and Everyday Work 34
2.4 Implications for the Design of CSCW Systems 38

3 Options for Action and Cues for Behaviour: A Framework for De-
sign 43
3.1 Introduction.................. 44
3.2 Conceptual Basis 44
3.3 Cues and Actions: Intimations of Generality 47

3.3.1 Doors: An Interface to a Media Space 47
3.3.2 GroupDesign: A Structured Drawing Tool 48

3.3.3 The Coordinator: A Structured Messaging System.
3.3.4 DIVA: A Networked Work 'Place'

3.4 Implications for the Design Process
3.5 Summary

III A Case Study in Design

4 Actions and Cues as Design Resources
4.1 Introduction
4.2 TelePort: Redesigning Doors ..
4.3 Getting at 'cues' and 'actions' .

4.3.1 Cognitive Anthropology
4.3.2 Frame Elicitation
4.3.3 Method
4.3.4 Results
4.3.5 Analysis: Generating Cues and Actions .

4.4 Limitations of the Method
4.5 Summary

5 TelePort: User Interface
5.1 Introduction......
5.2 Awareness cues and communication actions: Other sources
5.3 TelePort user interface: Specifications ..
5.4 TelePort user interface: Implementation
5.5 Summary

6 TelePort: System Architecture
6.1 Introduction
6.2 Definitions
6.3 Platform............
6.4 Software Architecture Overview
6.5 Media Services
6.6 Local Media Control
6.7 Communication Protocols .. .

6.7.1 GAP: The Group Awareness Protocol.
6.7.2 SIP: Session Invitation Protocol ...
6.7.3 USCP: User Service Control Protocol

6.S TelePort User Services
6.S.1 Glance
6.S.2 Knock
6.S.3 Knock and Enter

IX

50
51
53
54

56

57
5S
60
61
62
63
64
65
70
72
73

75
76
76
7S
SI
S5

87
SS
SS
S9
91
93
94
95
95

101
101
102
104
107
10S

6.8.4 Workspace..
6.8.5 Email
6.8.6 URI Request

6.9 Summary

7 TelePort In Use: Experiences and Analysis
7.1 Introduction........
7.2 User Interface Issues ...

7.2.1 General Comments
7.2.2 Tailorability
7.2.3 Privacy and Control

7.3 Technical Issues
7.3.1 Behaviour of the Group Awareness Protocol
7.3.2 Predefined User Services
7.3.3 Distinguishing Invitation Types
7.3.4 Awareness Information: 'Pull' vs 'Push'

7.4 Summary

x

109
111
III
112

113
114
115
115
116
117
118
118
122
124
125
126

8 Case Study Analysis: An Exercise in Respecification 129
8.1 Introduction................. 130
8.2 Cues and Actions: Characterising Systems . . . 131
8.3 Cues and Actions: Impacting Design 134
8.4 Cues and Actions: Impacting the User Interface 135
8.5 Cues and Actions: Impacting the System Architecture 137
8.6 Cues and Actions: Tailorability and Unanticipated Use 141
8.7 Cues and Actions: Privacy, Social Control and Accountability 143
8.8 Summary 144

IV Conclusions

9 Summary and Future Work
9.1 Learning from Ethnomethodology
9.2 Future Work

V Bibliography and Appendices

Bibliography

A Frame Analysis Data
A.1 Introduction

146

147
148
150

154

155

171
172

B GAP: A Group Awareness Protocol
B.l Introduction
B.2 Awareness and Group Work in The Internet
B.3 GAP Usage

B.3.1 Use of IP Multicast
B.3.2 Requirements and Extension.
B.3.3 Security
B.3.4 Multiple Parallel Sessions
B.3.5 Usage Scenario

B.4 GAP Specification
B.4.1 GAP Standard Header
B.4.2 INFO Packet
B.4.3 BYE Packet

B.5 Scaling Issues
B.6 U nresol ved Issues . .
B.7 Acknowledgments and Author

C TelePort: Source Code
C.l Introduction ..
C.2 C source
C.3 Tcl-DP source

C.3.1 Set Global Variables
C.3.2 Main Section ...
C.3.3 Main User Interface.
C.3.4 Tcl-DP initialisation of network sockets.
C.3.5 Session Invitation Protocol ..
C.3.6 Group Awareness Protocol ..
C.3.7 User Service Control Protocol
C.3.S Tcl/Tk Conference bus
C.3.9 Platform Specific Procedures.
C.3.1O Launching Media Tools.
C.3.1l Miscellaneous Utilities

D TelePort: Published Papers

Xl

174
175
175
177
177
178
179
179
179
180
181
181
183
183
184
184

185
186
186
187
187
191
194
227
229
251
256
257
259
261
264

267

List of Figures

1.1 Learning from ethnomethodologists
1.2 Learning from the ethnomethodologist's account
1.3 Learning from ethnomethodology ..
1.4 Technomethodology: The Big Picture

3.1 Cues, Rules and Actions: A Conceptualisation
3.2 Cues, Rules and Actions: The System Decides
3.3 Cues, Rules and Actions: The User Decides
3.4 Doors: Cues and Actions
3.5 GroupDesign: Cues and Actions .. .
3.6 The Coordinator: Cues and Actions.
3.7 DIVA: Cues and Actions

4.1 Frame Analysis: Actions and Door States.
4.2 Frame Analysis: Actions when 'Open' .
4.3 Frame Analysis: Actions when 'Ajar'
4.4 Frame Analysis: Actions when 'Closed'

5.1 TelePort user interface sketch
5.2 TelePort User Interface (x 0.5). . ..
5.3 Menu of options for action on a user's 'door' (x 0.5).
5.4 Using TelePort to glance at a colleague (x 0.5).

6.1 TelePortArchitecture
6.2 System States for 'Glance' Service.
6.3 System States for 'Knock' Service .
6.4 System States for 'Knock and Enter' Service
6.5 System States for 'Workspace' Service

7.1 GAP Simulation: Bandwidth = 0.25 bytes/sec
7.2 GAP Silnulation: Bandwidth = 0.5 bytes/sec
7.3 GAP Simulation: Bandwidth = 1.0 bytes/sec

XII

12
17
19
22

46
46
46
48
49
50
52

67
68
69
69

80
81
84
84

92
105
107
108
110

119
121
121

XIII

7.4 GAP Simulation: Bandwidth = 128 bytes/sec 123
7.5 GAP Simulation: Small N, bandwidth = 0.5 bytes/sec 123

B.1 GAP and the Internet Multimedia Conferencing Architecture. 177

XIV

List of Tables

4.1 Elicited Actions 66
4.2 Glosses of person phrases. 68

6.1 Example GAP 'INFO' packet 98
6.2 Example USCP 'DISCONNECT' packet 102
6.3 SIP packet for 'Glance' user-service ... 105
6.4 SIP packet for 'Knock' user-service ... 106
6.5 SIP packet for 'Knock and Enter' user-service 109
6.6 SIP packet for' Workspace' user-service 110

A.1 Percentage Frequency of Responses For Each State 172
A.2 Percentage Frequency of Responses For 'Open' State 172
A.3 Percentage Frequency of Responses For' Ajar' State . 173
A.4 Percentage Frequency of Responses For 'Closed' State 173

B.1 Payload of 'INFO' packet. 180
B.2 Payload of 'BYE' packet 183

1

Part I

Setting the Scene

2

Chapter 1

Introd uction

3

1.1 Framing what is to come

This dissertation is concerned with Human Compyter Interaction (HCI) and more

specifically Computer Supported Cooperative Work (CSCW). In particular it is con

cerned with ways in which insights from ethnomethodology can inform the design of

CSCW systems. The dissertation outlines a number of possible ways in which system

design can learn from ethnomethodology and concentrates on one particular aspect -

namely that system designers should look closely at the foundational assumptions of

their discipline and practices and, if necessary, should re-specify any concepts which

appear problematic in formulation.

In essence this approach seeks to address the primary question:

• Does system design that takes account of a respecification of particular founda

tional views in HCI produce demonstrably better computer systems?

However, in order to achieve this a number of other questions need to be addressed,

namely:

• Just how can practical system design learn from ethnomethodology? What

concepts can be re-specified and how?

• What sort of design frameworks might support this respecification? How does

this influence how practitioners think about design?

• What sort of requirements capture methods (in the loosest sense) might such

frameworks demand?

• How can the output of such methods be incorporated into the design and Im

plementation of a system?

• Can such a combination of respecified concepts, theoretical insights, design

frameworks and methods result in the implementation of functional, usable sys

tems?

4

The contribution of this dissertation is to articulate this program of work and to

provide a case-study of it in action by examining problematic assumptions about the

nature and use of rules in everyday life. The dissertation provides a case study of the

design, implementation and use of a functional CSCW system - TelePort - that takes

account of an alternative view on rules and rule use grounded in studies of everyday

work and social activities. In order to do so, the dissertation introduces a practical

design framework based on the notion of characterising systems in terms of cues,

actions and the mappings between the two, combined with a method derived from

cognitive anthropology which can be used to elicit such cues and actions from a user

population. The dissertation demonstrates the utility of these design tools in enabling

the implementation of a CSCW system to take account of the re-conceptualisation

of rules and rule-use. The dissertation also contributes to current research on tech

nologies to support group awareness and communication in the Multimedia Internet

context at the user interface, system architecture and the network protocol levels.

The dissertation therefore articulates an emerging research program linking CSCW

system design and ethnomethodology, and demonstrates how the work reported in

this dissertation can serve as a crucial enabler for that program.

1.2 A brief tour of intellectual parasitism in HCI

and CSCW

In attempting to discover ways in which human-computer interfaces can be inten

tionally engineered to improve user interaction, the field of H Cl has looked to learn

as much as it can from any discipline that would appear to offer useful methods or

relevant guidance. In each case it is hoped that the discipline can provide access to

a set of phenomena that affect the use of computer systems that hitherto may have

been ignored, or perhaps not fully appreciated; and that the discipline's methodolo

gies and theories may be of value in discovering how these influences affect design

5

and use.

Hcr has predominantly drawn upon psychology, and in particular the informa

tion processing paradigm exemplified in Card, Moran and Newell's work that called

for the use of an applied psychology in the design, rather than just the evaluation,

of human-computer interfaces [42J. Other aspects of psychology such as research on

human perceptual abilities and on motor behaviour for the ergonomic design of inter

action devices have also influenced the theoretical and practical development of user

interfaces [80J.

However, as it has become apparent that this focus on basic perceptual and cogni

tive processes misses many equally important influences on usability, there have been

significant attempts to extend the scope of HCr from simply the user interacting with

the computer, to the user interacting with the computer in a particular environment

and as part of work with other people [80, 14J. The growing interest in computer sys

tems as tools for communication and interaction with others which is represented by

the Groupware and Computer Supported Cooperative Work (CSCW) communities

has provided additional impetus to this extension. rn recognising that

Computer systems within real world organisations are set within a com
plex environment of cooperating users, complex and inter-related tasks
and organisational prejudices and practices [30, pp 255J

Hcr research has turned to disciplines which can provide access to influences on so

cial behaviour. Thus HCr (and hence CSCW) have looked to organisation theory,

management science and the social sciences for help in designing interfaces to com

puter systems that must exist and be used in the context of organisations and groups

[13, 134J. Social psychology, for example, has heavily influenced many investigations

of group decision support systems (cf. [113J for an overview) and the effectiveness of

electronic communication. Development techniques such as contextual design, where

prospective users are interviewed in their work setting [96], and participatory design,

where groups of users are drawn into the design team itself [130], have evolved as

6

ways of doing design which attempt to build organisational and social factors into

the system from the outset.

Other research, which has been driven by the perceived need to improve the

requirements capture and specification methods for CSCW systems, has turned its

attention to the development of fieldwork techniques that borrow heavily from the

participant-observer paradigm of some sociological and anthropological research in

order to access relevant aspects of group settings [98, 140, 103J. This kind of fieldwork,

which is often labelled 'ethnographyll, originally came to the attention of the HCI

community through Suchman and Wynn's work on the elicitation of office procedures

and practices [146, 148J in preparation for the subsequent installation of an office

information system. The idea of using such naturalistic studies to analyse use and

inform design was further developed in Suchman's analysis of the problems users

had with the interface to a complex photocopier [147J. It has subsequently received

much attention in the CSCW community which claims that naturalistic studies can

provide detailed descriptions of naturally occurring work settings and the acti vities

and knowledge of which they consist. In this instance, the key benefit of doing

fieldwork in this way is claimed to be the commitment to describing the work context

and knowledge that is significant to the participants, and doing so using the categories

and language which make sense to them unlike other techniques such as task analysis

and questionnaire based interviews which are said to be unable to provide this ability

[25, 98, 97J.

It is important to note that these reports on 'ethnography for design' draw their

inspiration from a particular kind of fieldwork - namely ethnomethodological studies.

Suchman's work on office procedures [146], for example, was heavily influenced by

Garfinkel's studies of how work was achieved [69], whilst her subsequent work on

the nature of planning drew quite specifically on two aspects of ethnomethodology

- a fieldwork technique for recording people's talk, and a theoretical position on the

lsee [12) and [134) for discussions of why this term may not be entirely appropriate.

7

nature of procedures and plans [147J. Recent critiques of the use of 'ethnography'

in CSCW have noted that many of the studies that followed Suchman's lead have,

whether implicitly or explicitly, been influenced by this ethnomethodological orienta

tion - they have been doing, to borrow a phrase from Shapiro, 'ethnomethodological

ethnography' [134J.

However, it is becoming clear that using ethnomethodological field studies of work

places to inform design is but one of the ways in which design and the ethnomethod

ology can inter-relate. The next section provides an overview of ethnomethodology

and briefly describes why it has been attractive to HCI in general, and CSCW in

particular.

1.3 CSCW and Ethnomethodology: How did we

get here?

Ethnomethodology is a branch of sociology derived primarily from the work of

Harold Garfinkel [69, 70J which seeks to provide sociology with an alternative research

base. Rather than assuming that people share a common culture (ie. rules and def

initions) whose elements can then be specified Garfinkel, as a result of attempting,

and failing, to do precisely that, suggested that the apparent organisation, rationality

and understandability of actions is constructed by the participants as they go along

[135J. As a result, Garfinkel recommended that sociology must re-specify many of its

foundational assumptions because, in his characterisation, sociological research pro

ceeded by theorising upon the basis of what were assumed to be cultural givens and

concepts. Garfinkel's empirical attempts to explore these theories consistently failed

because these givens, categories and concepts are not at all stable but turn out to be

re-worked and redefined by the participants in the social order themselves [69, 134J.

A classic example of this problem is the supposed differentiation between formal and

informal working practices which much organisational theorising takes for granted.

8

Bittner, in a study based on detailed field studies, showed that this distinction con

sistently fails to be useful in categorising practices because what workers classify as

formal or informal varies from situation to situation [24J. For Garfinkel then, these

findings suggested that sociology could only proceed by throwing away the idea that

theorising should come before detailed studies of the phenomena itself. According to

this approach, such studies must come first, and the theorising should come second

making use of the results of the studies in order to generate theories that were ade

quate descriptors of, and demonstrably grounded in, the real phenomena rather than

in assumptions about the nature of those phenomena.

Crucial to this approach is the use of detailed observational (viz. 'ethnographic')

studies that sought to systematically observe and describe the phenomena of interest.

In following this approach, ethnomethodologists evolved a set of research methods

that were a mix of the anthropological participant/observer together with an interest

in the minutely fine-grained detail of the activities under study. Whilst Garfinkel's

studies of work [70J are good examples of this kind of research in action, perhaps the

most clearly developed exposition is in Sacks and colleagues's ethnomethodological

investigations into turn taking in conversation [124J. In these studies, segments of

talk are recorded before being transcribed and coded in minute detail in order to

provide a detailed description of what was said and in what way.

As many recent authors have noted, these studies have been extremely attractive

to HCI and CSCW as both an alternative method of doing requirements elicitation

and also as a way of providing a view of human activities, and of work in particular,

which is based on detailed studies of what people are actually doing. Thus, the

ethnomethodological ethnographies to which Shapiro refers [134J have proceeded in

much the same way as Garfinkel's studies of work practices, and have used similar

fieldwork techniques. Suchman's studies of work practices [146J are in a similar vein,

but her later work on the interfaces to 'intelligent' systems introduced the use of Sacks'

conversation analysis techniques as a means to record and describe the ways in which

9

people interacted with and through computational artefacts [147). Her subsequent

development of these techniques into interaction analysis [145) has been influential in

CSCW and studies such as those by Heath and Luff [89, 90, 91) have continued this

development.

However, as the next section will demonstrate, it is not just from ethnomethod

ology's methods and techniques that HCr, and CSCW, can learn. Whilst this is

perhaps the most developed relationship, others are beginning to emerge. For exam

ple, ethnomethodology is a discipline that recommends looking again at foundational

concepts from which current theorising proceeds. If system designers do as Garfinkel

did for sociology and look again at some of their foundational assumption, it may be

that respecifying them in the light of studies of the phenomena themselves can raise

important issues for the design of interactive systems. The next sections address

in more detail the ways in which ethnomethodology has influenced system design,

particularly the design of CSCW systems, and addresses the question of learning

from ethnomethodology's recommendation to examine and, if necessary, re-specify

foundational assumptions.

1.4 Contributions from Ethnomethdology

Section 1.3 has des cri bed the emerging interworking between system designers

and ethnomethodologically oriented sociologists. Whilst there have been a number

of recent critiques of the mutual impacts of social science and CSCW on each other

from the point of view of sociologists interested in what a practical sociology for

design might look like, and also in demarcating their territory and clarifying possibly

misappropriated terms (cf. [12, 134)), there have been no attempts to map out exactly

how this relationship is proceeding, whether it has been successful, nor indeed of

what it, as a research program, actually consists. Given the relative recency of its

emergence, this is hardly surprising.

10

However, one exception has been Button and Dourish's attempt to articulate this

interworking in terms of their research program of 'technomethodology' [33]. Their

articulation of what is going on is built around the suggestion that ethnomethodolog

ically oriented studies tend to fall into one of two types:

Studies of Everyday Action: Such studies have focused on describing everyday

social activities at an extremely fine grained level. In particular, the use of

communication technology has been extensively studied from the perspective

of conversation analysis and has provided some detailed insights into the ways

in which human communication as mediated by Media Space technology differs

from 'normal' communication (cf. [89,91]). Other studies, with a similar ana

lytic bent, have examined the way in which activities and collaboration progress

in a variety of situations such as control rooms, surgeries and architect's offices

(cf. [90, 76, 93, 92]).

Studies of Work: Although similar in nature to the first type, these studies con

centrate more on the way in which work activities and practices are organised.

Suchman's work on office procedures [146] and more recent studies on Air Traffic

Control (eg. [143]) are prime examples, as are those that describe work practices

in various industries such as manufacturing [34] and software design [35] as well

as in government offices [28].

In discussing the ways in which such ethnomethodological studies can influence or

feed into design, Button and Dourish contend that 3 forms of 'technomethodology'

can be identified and that, whilst this characterisation is perhaps difficult to sustain

in reality, they claim that it at least serves to frame discussion:

Learning from the Ethnomethodologist: Here, an ethnomethodologist is used

as a field worker who can study the work domain for which a system is to be

designed, or into which the system has already been deployed.

11

Learning from Ethnomethodological Accounts: In this case design makes use

of the specifically ethnomethodological account of a particular work domain or

human activity as a resource for design.

Learning from Ethnomethodology: In this case the suggestion is that system

design can take heed of the way in which ethnomethodology has sought to

recast ('re-specify' in the jargon) foundational concepts within sociology. The

suggestion is that the examination and respecification of foundational concepts

in H Cl could have considerable consequences for the nature of systems and the

way in which they are built.

A great deal of effort in the CSCW community has been devoted to the first two of

these relationships - well articulated research programs have investigated the utility

of ethnomethodological (1) field work and (2) accounts in the design process. As

this chapter will briefly describe these programs are now relatively well-populated by

publications which demonstrate the utility of an ethnomethodological orientation.

But what, then, of the third relationship? In calling for more attention to be

paid to a foundational relationship between ethnomethodology and design a research

program has been articulated which is currently poorly defined.

This chapter triangulates the work described in the rest of the dissertation by

providing a brief overview of the first two relationships listed above. It illustrates

that these relationships are currently maturing as research programs and that the

utility of an ethnomethodological orientation is relatively well demonstrated. The

chapter then focuses on the idea that system design can learn j1"Om ethnomethodology

and describes an outline of a research program to explore this idea which would

require the construction of a number of conceptual and practical bridges.

In essence, this dissertation seeks to provide the first attempt to build these bridges

in order to enable the 'technomethodology' research program to move to a stage where

the utility of the initial ethnomethodological insights can be evaluated. In order to

12

Users

""" _______ u _________ (Field Studies)

Ethnomethodologist

..qu ('Debriefing'meetings)

System Designers

Figure 1.1: Learning from ethnomethodologists

do this, the dissertation describes a case study which considers the implications of

respecifying implicit assumptions within HCI and CSCW concerning the nature of

rules and their use in everyday work, and applies this respecification to the design and

implementation of an interface to a multimedia telecommunications call manager. It

therefore describes an example of design learning from ethnomethodology.

1.4.1 Learning from Ethnomethodologists

As was noted in Section 1.3, perhaps the most widely practised relationship be

tween ethnomethodology and design is the leveraging of the field work skills of an

ethnomethodologist. Section 1.3 described how ethnomethodology can be charac

terised in part by a focus on the importance of fine-grained studies, 'in the field', of

what people actually do. In this relationship then, ethnomethodologists are valued

as members of the design team who are able to study the activities of (for example)

potential user groups and can use the knowledge thus gleaned to inform design (see

Figure 1.1).

Perhaps one of the best documented design projects that illustrates this use of

ethnomethodology has been the work carried out by a team of sociologists and com

puter scientists at Lancaster University. In order to inform the design of a prototyping

13

toolkit [22], and eventual prototype interfaces for a computer based air traffic control

system, the sociologists carried out a number of detailed work place analyses at air

traffic control centres [87, 99J. As is described in the computer scientists' concluding

publication [140, p361], the design process involved periods of sociological fieldwork,

followed by 'debriefing meetings' at which the fieldworker(s) and system designers

attempted to reach some common understandings about significant characteristics of

the work domain. Once the system designers had some notion of what activities were

significant, they could then question the field workerfurther in order to gain a deeper

understanding of what kind of technological support might be required, and what

form it should take. These meetings were then followed by more focused fieldwork

that attempted to answer some of the designer's more detailed questions so that an

iterative process of debriefing meetings followed by concurrent fieldwork and design

was established.

Other examples of this kind of relationship include Heath and Luff's extensive

and detailed analysis of the way in which communication technologies, such as Media

Spaces, are used [89, 91J. In particular, these studies have been of use in highlighting

the deficiencies of such technology when compared to everyday interaction and com

munication patterns. Whilst these studies, in contrast to the Lancaster work, do not

explicitly describe the mechanisms by which these insights have been recycled into

design, it is clear that subsequent development of the Media Space technologies has

drawn heavily from them (cf. [73]).

More recent examples of these kinds of studies include fieldwork that has been de

voted to uncovering aspects of work in customer service industries [123J and in govern

mental offices [27J both of which are presumably intended to allow the field workers to

act as a resource for or otherwise influence the design or redesign of computer systems

in those particular work domains.

As can be seen, the primary resource for design, or re-design in this instance,

is the knowledge that the ethnomethodologically oriented fieldworker has about the

14

particular domain under study. As such the ethnomethodologist can be seen as, and

in some of the research described was used as, a surrogate or proxy for the real user

community themselves. The fieldworkers, in some senses, represent the interests of

the users during the design process so that

Design ideas can be "bounced off" the ethnomethodologist, who draws on
field observations ... to contribute to aspects of design. [33, p22]

Further the field workers could act as preliminary evaluators of the system by helping

... to find gross design errors which can irritate end-users and cause them
to reject a system without a thorough evaluation. [140, p362]

Button and Dourish suggest that the locus of the ethnomethodology in this in-

stance is

primarily ... in the ethnomethodologist's head. [33, p22]

As they point out, the fact that the fieldworker has an ethnomethodological orien

tation is not of direct concern to the system designers, nor to the way in which

knowledge is being transferred from the work domain to the design process. One

might therefore ask, 'What is the value of an ethnomethodological orientation in this

instance?' and answers to this are less well articulated than is the fact that some sort

of ethnographic fieldwork can be of use in system design. In partial answer, Button

and Dourish suggest that:

presumably [ethnomethodologists] will use their analytical perspective in
shaping a story about the field setting, and in evaluating and contributing
to the design. [33, p22]

What then is the value of learning from an ethnomethodologist in particular? The

answer derives for the most part from the emphasis that ethnomethodology places on

detailed studies that aim to uncover the activities in which people engage and so, it

is claimed, these studies produce rich descriptions of work practices. For the study

15

of air traffic controllers, this emphasis leads to the kinds of detailed descriptions of

practices that are found in, for example, [87J and [98J where the implicit work activ

ities are recognised as highly significant in the way they contribute to the successful

management of the flight strips (and hence the aircraft). Thus, the value of the eth

nomethodologist can be assessed by the degree to which these insights prove useful

in design. Whilst Hughes and colleagues note:

While we are confident that the ethnographic studies have been valuable
in the context of system design, we must admit that this is as much a
matter of faith as it is backed up by the evidence. [98, p250J

their colleagues are, perhaps, more convinced that such studies can be 'surprisingly

useful' [141J and, indeed, subsequent publications have set out a number of features

of ethnomethodological ethnography that are claimed to be of value [97J.

In the case of Heath and Luff's analysis of Media Space technologies, the value of

the studies is reflected firstly by their ongoing work on the redesign of such technology

to alleviate the problems of flexible access and of asymmetry that they uncovered

[73, 93J. Secondly, their studies are generally recognised within the field (see ego [117])

as providing insights that had not, in general, been apparent from earlier studies

of Media Space technologies, such as those described in Fish et al [64], that used

evaluation techniques derived from other perspectives. This then is evidence of the

value of an ethnomethodological orientation.

Of the other studies less can, as yet, be said about either their intrinsic worth or

the value of an ethnomethodological orientation in particular because the projects to

which they contribute have not yet moved from the fieldwork to the system design

and implementation stages. As these research programs reach maturity, it is likely

that they will provide the kind of reflective analysis that concludes the Lancaster

based project and so will help to answer such questions.

Overall however, it is clear that a definite research program exists - the basic

outline presented in Figure 1.1 is being followed by many of the studies referenced or

16

described. Thus, as Button and Dourish make clear, the work here is in following the

program in order to assess the value of an ethnomethodological orientation in this

kind of relationship, and to document methods of practice than can be used to realise

this value in the system design process.

1.4.2 Learning from the Ethnomethodological Account

In this relationship, the design or redesign of a system is based upon an explicitly

ethnomethodological account of a domain or activity. As is shown in Figure 1.2

this introduces a second mediating artefact between the users and the designer -

the ethnomethodologist's account. Such an account is essentially the 'write-up' or

'report' that is a result of an ethnomethodological study and which generally takes a

particular form. As evidenced by recent collections of ethnomethodological accounts

that have technology as their orientation [32J and their increasing appearance in the

CSCW and HCI literature, this form consists of an introduction to the setting for

the study (the where); detailed descriptions of work practices together with snippets

of data, such as videotaped conversations or activities, office plans and schematic

representations of work flow (the what); one or more sections highlighting phenomena

that the ethnomethodologists take to be particularly significant and, in the case of

studies motivated by the problems of system design at least, a general discussion of

the implications for system design (in many senses, the why).

Whilst there are clearly many overlaps between this relationship and the pre

vious one, Button and Dourish note that in learning from such an account, the

ethnomethodologica.l orientation makes itself far more explicit than when it merely

resides 'in the head' of the fieldworker. In contrast ethnomethodology is now

... an explicit part of the communication between field and design ...
which proceeds from an understanding that ethnomethodology is an an
alytic perspective, a form of 'writing up' rather than a form of data col
lection. [33, pp 22J

17

People engaged in Everyday Activities

(Field Studies Ethnomethooologist

'-"""
('analysis/write-up') --_.

Ethnomethodological Account

.. .".
(Findings/Abstractions)-

System Designers

Figure 1.2: Learning from the ethnomethodologist's account

It is clear that the work of Heath and Luff also fits into this form because the anal

yses they provide can also be considered as explicitly ethnomethodological accounts

(notably [89,91]). So too with a number of the studies that derive from Lancaster's

Air Traffic Control work such as the accounts reported by Harper and Hughes in [87],

and the studies reported in recent HCI and CSCW conference proceedings which take

a wide range of work domains as their subject matter (eg. [34,35,28,123]). However,

there are relatively few documented descriptions of exactly how such accounts can be

drawn into the design process although Suchman's accounts of work practices [146]

and of sense-making in human-computer communication breakdowns [147] are, per

haps, examples of studies whose implications for design have been quite thoroughly

wor ked through.

However one particular example of the use of ethnomethodological accounts de

serves attention and this is the attempt to leverage the models of turn-taking and

conversational activity provided by Ethnomethodological Conversational Analysis in

the design and implementation of 'conversational interfaces'. Specifically, this re

search program, which is reported in the collection edited by Luff et al [lO6], took as

its resource the 'findings' (in the guise of conversational rules and structures derived

from [124]) of conversational analysis and used them to implement a natural language

18

user interface to an public welfare rights advisory system for the VJ(Department of

Health and Social Security. Whilst discussion continues as to whether or not the

system and user can truly be said to be conversing (see for example the exchanges

in [106], and [151]) this is quite clearly an instance of system design learning from

an ethnomethodological account of turn-taking in conversation. That a system could

be built incorporating the product of conversational analysis is clear and is docu

mented in [68], whilst user evaluation of the system has demonstrated the value of

this particular orientation in design.

As with the previous relationship, it is clear that ongOIng research has and is

mapping out the processes by which system design can learn from ethnomethodolog

ical accounts. Whilst the use of conversation analysis is a clear cut example, the

implicit and occasionally explicit grounding of a number of recent CSCW systems

in ethnomethodological accounts of work practice illustrates the point that here too,

a research program has been articulated and it is becoming well-represented in the ,

literature (eg. [53,23]). As with the previous relationship, the work is in establishing

the value of particular ethnomethodological accounts, and the processes by which

such accounts can inform design in specific or even more general design cases.

1.4.3 Learning from Ethnomethodology

Perhaps the most radical of the relationships that could exist between ethnomethod

ology and design is the one Button and Dourish characterise as learning from eth

nomethodology. Here the suggestion is that system design needs to pay attention to

fundamental axioms and theoretical stances that are central to the ethnomethodolog

ical position. As they explain

we consider [that] the implications of foundational ethnomethodolog
ical principles - thoRe insights and perspectives which characterise the
discipline - hold for both the artifacts and process of design. In this ap
proach, design does not take on board ethnomethodological analysis and

19

People engaged in Everyday Activities

(Field Studies }-- ..

('write-up') .. ------

(Synthesis and Analysis) ---

Ethnomethodological Foundations Software Engineering

System Design and Implementation

Figure 1.3: Learning from ethnomethodology

insights, but takes on board the very study policy of ethnomethodology.
[33, p22]

One such study policy is ethnomethodology's recommendation that the concepts and

assumptions from which sociology had traditionally proceeded should be examined

and re-specified. As has been mentioned, one such example is that the traditionally

held sociological assumptions of commonly held meanings (and hence culture) and of

rational action are not borne out by empirical investigation. For ethnomethodology

the key proposal was therefore: if these assumptions have to be suspended, just how

do people achieve agreement on meaning such that this commonality appears to be

true, and how do they go about 'sensible' action [135]7 Such a re-examination of foun

dational assumptions is exactly what this aspect of technomethodology recommends

for Computer Science, and for HC! in particular.

In contrast to th" first two relationships then, this is viewed as primarily a theoret

ical connection between the foundations of system design and of ethnomethodology.

Rather than looking to learn from the practical endeavours of ethnomethodology

20

in particular system design situations, this relationship looks to draw lessons from

views or stances that are inherent in the ethnomethodological orientation itself (see

Figure 1.3).This opens the way for design to consider such issues as the situated

nature of everyday activities,

... practical action and representation, achievement and mechanism,
phenomenon of order and accountability [33, p22]

as well as

... generalisation and abstraction, configuration, data and process,
fixedness and mutability. [33, p 22]

in a more general manner, and from a different perspective than has previously been

the case. In essence then, the suggestion is that by emulating the way in which

ethnomethodology has sought to examine and then re-specify basic assumptions in

sociology, 'technomethodology' can re-examine any of the key HeI and Computer

Science concepts and in re-specifying them, can provide instructive and novel insights

into the nature of software systems, and into the assumptions that are embedded

within them.

By way of an example of this relationship, Button and Dourish describe current

efforts to design flexible systems to support group work which have been based on the

ethnomethodological notion of 'accountability'. One result of the rejection of the idea

of commonly held meaning is that for ethnomethodology all social actions must be

observable and reportable by and to the participants in those actions [135] - they are

therefore accountable and the participants explore these accounts in order to work out

what is going on. In recent work, Dourish describes the application of this idea to the

design of computer systems [51]. Specifically, he suggests that computer sY,stems can

also be considered as accountable - that is their actions are observable and reportable

by their human users. A natural result of this accountability is that humans attempt

to find out what is really going on through the account that the computer presents of

21

itself - in other words its surface representation. The crucial point for Dourish is that

the traditional software engineering approach of abstracting the underlying system

activity away from the interface breaks the link between the surface representation

(the user interface metaphor for example) and what is really going on inside. As a

result users who attempt to 'work out what is going on' when something goes wrong

are consistently frustrated because the account that the system presents of itself is

virtually never an accurate or causal 'account'.

The result of applying these ideas to software engineering forces, it is claimed, a

fundamental rethink of how to build systems in general, and systems to support group

work in particular. It leads Dourish away from the traditional notion of functional ab

straction towards that of open systems and computational reflection [51, 52J. Whilst

a full description is outwith the scope of this chapter, the idea is that a system pro

vides mechanisms by which the internal functionality of all of its constituent parts is

open to inspection and alteration. Dourish's claim isthat in the first instance, the in

spection allows the surface representation (interface) to forge causal connections with

(and so generate 'accounts' of) what is actually going on, and to actively maintain the

accuracy of those accounts. In the second instance the ability to alter the internals

of the system has implications for configurability and hence for the flexibility of the

system itself. This program of work is reported in full in [53J. What is important for

the present discussion is that it is clearly an attempt to learn from ethnomethodology

at a fundamental level. As such the work fits into the research program sketched

in Figure 1.4 which provides a diagrammatic description of how this third form of

technomethodology might work, and what needs to be done in order to concretise a

research program to explore this relationship - a research program anticipated, but

perhaps not fully articulated, in Button and Dourish's paper.

[n essence, the research program to which they look can be characterised as aiming

to answer the primary question:

Ethnomethodological Foundations

Is this valuable?

22

.............. { 'ofiw= "',,'... 1
r------''"'------___

Re-Specification

System Design

System Implementation

User Evaluation

Figure 1.4: Technomethodology: A Sketch of a Research Program

• Does system design that takes account of a respecification of particular founda

tional views in HCI produce demonstrably better computer systems?

That Dourish's work is contributing to such a program is clear when it is consid

ered in the context of Figure 1.4. This sketchy outline of the project demonstrates

that in order to be able to begin to answer the primary question, a number of concep

tual and practical bridges must be constructed before the general question of whether

this form of technomethodology is valuable can be answered. Thus technomethodol

ogy cannot proceed until the stages that are described by Figure 1.4 have been fully

worked through. Only when it is possible to evaluate functional systems which can

be shown to incorporate reformulated HCI concepts, will it then be possible to state

23

whether or not doing design in this way produces systems that are, m some sense,

'better'.

As this chapter has suggested, there is currently far less research attention be

ing given to this aspect of technomethodology than to the other forms that have

been discussed in previous sections. Indeed it is currently extremely unclear how

technomethodology can move toward answering its prime motivating interest in this

instance because there is little, if any, attention being given to building the required

enabling bridges.

It has been claimed elsewhere that learning from ethnomethodology could be of

value to system design and that recent work has provided some illustrative examples

of how this relationship might proceed [33]. What is missing however, is firstly a

clear articulation of a research program to explore this relationship, and secondly a

set of conceptual and practical design processes or frameworks that can be used to

enable the research community to assess the value of this form of technomethodology.

Mapping such a path, and evolving S1lch frameworks and practices is critical because

it is only by encouraging other researchers and developers to follow the path, use the

frameworks, and evaluate their systems, that the CSCW research community will be

able to build a consensus on the value of learning from ethnomethodology.

The remainder of this dissertation documents a case study in system design that

sought to build such bridges. More specifically the case study reports on the design

and implementation of a functional CSCW system that explicitly takes into consid

eration a respecification of rules and rule-use, turning to an account that is based on

detailed field studies of work practices, rules and cultural norms.

24

Part 11

Respecifying Rules

Chapter 2

Rules, and rule-use in CSCW

Systems

25

26

2.1 Introduction

Much of the literature in Human-Computer Interaction (HCI), Computer Sup

ported Co-operative Work (CSCW) and increasingly, Telecommunications, reports

work aimed at constructing systems to support human to human communication and

interaction. Such systems include experimentation with computer controlled audio

and video to provide 'Media Spaces' and the interaction and collaboration of dis

tributed workers through shared information systems, shared applications and other

group-oriented tools such as shared editors and multi-user whiteboards. Other sys

tems, mainly originating from work on office automation, have provided work and

workflow management systems, whilst others have sought to support decision making

in both distributed and face-to-face groups.

Inherent in much of this development has been the use of everyday norms, rules

and practices to provide users with a familiar conceptual structure for the system's

functionality and their interaction with and through it. Examples of this strategy

include systems that make use of practices from familiar activities such as meetings,

lectures, or walking down a corridor. Further, the majority of these systems have

attempted to leverage everyday rules and practices by embedding some form of model

of them in the computer system. The nature of these rules, how they are used

and how they manifest themselves in everyday work is (or should) therefore be of

considerable interest to designers of such systems [121]. Until relatively recently the

design of such systems has been based on a view of rules and rule-use that draws its

intellectual heritage from the bureaucratic view of work. As this chapter describes

recent work, predominantly in the European CSCW community, has demonstrated

that such a conception of rules has resulted in the construction of inflexible systems

which have often subsequently failed because they are incapable of supporting the

capricious nature of everyday work. This chapter recasts this critique in terms of a

respecification of the traditional view of rules. The chapter draws on these recent

27

critiques and on empirical studies of work and rule-use that empha.sise the situated,

flexible nature of work in order to describe the result of this respecification.

Thus as technomethodology recommends, this chapter examines and re-specifies

a core foundational concept - the nature of rules and their use. It then describes an

alternative view that has drawn on ethnomethodological studies of rules and rule use.

This chapter describes some of the studies that have led to this reformulation, and

discusses the implications that it has for design and for the nature of the systems to

be designed. Throughout the chapter, comparison will be made with the traditional

view of rules which has often, if implicitly rather than 'on purpose', been embedded in

system design. In conclusion, it is suggested that the construction of systems flexible

enough to support everyday work and which take account of the notion of work as

situated action and of rule-use as interpreted, negotiated and dynamic will require

a practical design framework. The remainder of this dissertation is the development

and use in a case study of just such a framework.

2.2 Rules, Rule-use and System Design

Many current approaches to the design of CSCW systems tend to constrain users

with behaviour options based on models of work or social practices that have been

embedded within the system itself. Thus systems are built which have rule-based

mechanisms embedded within them based, in turn, on models of group work and

behaviour derived either from the literature, or from studies of the work domain

[77, 121, 132]. This section describes a number of exemplars of this approach from a

range of domains and in each case illustrates that many of their problems are due not

just to over-simplified models, but to the assumption that implementing rule-based

models in this way is an appropriate solution in the first place [121].

Perhaps the most widely discussed examples of such systems are structured mes-

28

saging tools such as The Coordinator 1 [158, 65J and COSMOS [29J. In the case of

The Coordinator, the system provides users with ways to create, send, archive and

review records of 'turns' in conversations. In particular it provides two models of

'efficient' conversation which users are encouraged to follow - a request or an offer.

Which type a user selects then affects the subsequent allowable types of responses

with the intention of forcing users to recognise the sequences of stylised conversations

in order to more efficiently bring them to conclusion. Thus requests can be answered

by 'accept' or 'decline' whilst offers of action are followed by 'report' of completion or

'revocation' of the promise. To say the least, the success of The Coordinator is still

much debated both in terms of its utility and the design assumptions that underly it

(cf. [144J and subsequent replies [159J and comments). Field studies of the system in

use have highlighted the problem of building communication systems which explic

itly enforce particular communication structures. Bullen and Bennett for example

noticed that users tended to send request messages irrespective of their content -

in many cases circumventing the structure and simply using The Coordinator as a

free-form email system [31J.

Multi-user editing and drawing tools such as QUILT [63J GROVE [62, 61J and

ShrEdit [105, 54J are also good illustrative examples of this point because many

such systems use models of organisational roles and rules to determine what editing

functionality is available to the users. In the case of QUILT, users may be readers,

annotators or co-authors but precisely which is determined by a combination of the

user's social role, the nature of the information being manipulated and the current

phase of the writing activity. As a result, changes in roles, working styles and activity

phases must involve reconfiguration of the system itself in order to maintain the

accuracy of these rules. It is interesting to note therefore that whilst GROVE had

similar role-based permissions for editing functions, its creators report that they were

very rarely used precisely because of their inherent inflexibility .. Instead GROVE's

l'The Coordinator' is a registered trademark of Action Technologies.

29

default mode of allowing all users to see and edit everything turned out to be

surprisingly useful, because social protocol mediates. [62, p47]

Recent studies of the actual process of co-authoring such as that reported by Beck

and Bellotti [18] have revealed that significant activities do not revolve around the

carrying out of pre hoc agreements but instead emphasise the

great flexibility and context sensitivity with which co-authors interpret in
formation and situations and come to decisions about appropriate courses
of action, even to the extent of unilaterally contradicting agreements.
[18, p235, emphasis in original]

Thus, even where initial roles or strategies had been agreed in order to ease the

problem of managing access to the documents, this structure gradually and unprob

lematically broke down as the writing progressed. Other studies of co-authoring have

also illustrated that access privileges in practice tend to be far removed from initially

defined roles (cf. [54],[121]). Clearly then, implementing systems based upon assump

tions of co-authoring, or indeed upon rule-based models of practice is problematic.

Instead, Beck and Bellotti call for the design of co-authoring systems that can sup

port the flexible nature of work that they have observed. As will be discussed, this

call is common to many of the analyses of the systems described in this section and,

it will be argued, has it's roots in a growing appreciation of the nature of rules and

processes in everyday work, an appreciation that can trace it's conceptual roots to

ethnomethodology.

Other obvious examples are systems which use rule-based models to regulate access

to shared information spaces [79, 136, 138]. Here, for example, rules relatirig roles

and permissible actions are used to restrict access to particular data, or to provide

particular users with specific views on that data. Clearly an access model such as

the familiar UNIX shared file system is also an eXil.mple of this type with read, write

and execute permissions being set for each file at the owner, group and public levels.

In this instance the rules for who can access which files, and with what privileges,

30

are applied by the system manager and, to a certain extent, the owner of a file. As

Greif and Sarin have noted, following experiences with a shared calendar tool [79],

such models require refinement so that operations can be performed 'on behalf' of

another user, given appropriate authorisation; permissions can be negotiable; and

restrictions can be over-ridden in situations where there is no other course of action.

It is interesting to note that these refinements are not only required if such models

are to support everyday work, but are necessitated by the very fact that the rules or

models are being inflexibly embedded in the system in the first place [121J.

Less obvious examples of the embedding of social rules in CSCW systems are

provided by workflow and office automation systems. In this case some sort of abstract

model of the 'right way' in which the work is to be done is encoded into the system.

Whether this model is derived from documented codes of practice [102J or from studies

of the work domains themselves [155J is, in many ways, an irrelevance. Whatever the

derivation, these systems assume that routine work and the flow of information, tasks

and constitution of goals are part of an external order that is a 'given' and which

people 'enact'. The consequence of this assumption is that such systems embody

the use of explicit rules and 'procedures to coordinate the internal opera
tions of the organisation.[155, p122J

Unfortunately for workflow systems this assumption turns out to be far removed from

the truth. Gasser, for example, has shown that 'routine' work is anything but routine

because offices are fundamentally open systems where the 'exceptions' (that are the

bane of rule and process oriented workflow systems) are in fact the norm [71J. It

turns out that there is no sensible demarcation between routine and exception - and

attempts to build systems based on this mythical contrast (ie. implementations based

on models of an organisation's 'routine' work procedures) have had a notable lack of

success because, as Wastell and White have noted, following Suchman [146],

such models fail to capture what is most essential about office work,
namely its contingent and problem solving character ... [so that the mod
elsJ ... become reified in inflexible and obstructive office systems. [155, p125J

31

As Wastell and White discovered, the introduction of such systems into a workplace

can meet with fierce opposition - in their case simply because the system was too

prescriptive.

Given the continuing business interest in workflow technology, these problems are

currently receiving renewed attention, and reviews of experiences with such systems

have discussed some of the issues involved in reconciling the design of workflow sys

tems with the 'real' nature of work [IJ. Indeed it is becoming clear that such troubles

are not just due to the use of sparsely detailed models of activity since an obvious

solution to that is to improve the detail in the model [21J. Rather, it is because such

systems are attempts to structure user interaction through the inflexible, mechanistic

encoding of social rules [121, 132J.

A final illustrative example of the implementation of social rules is the use of

access controls in Media Space technologies. In EuroPARC's RAVE system the con

trolling software, Godard, uses user-specified access control lists to determine whether

a particular connection of a given type ('glance' ,'vphone' ,'office share' etc) should be

created [72, 50J. Thus each user maintains a set of service specific lists detailing who

can connect and in what way. This idea has been extended by the University of

Toronto's CAVECAT system which has used an iconic depiction of an office door to

represent the 'availability state' of the user to whom that door 'belongs' [109J. Here,

the state of the office door explicitly determines which of a set of connection services

(similar to those of RAVE) can be created and the rules that govern these permis

sions are embedded within the system itself. The problem then is how to manage and

maintain these rule-sets, and how to cope with the flexibility of access that is required

since today's interruption could be tomorrow's emergency As Dourish notes in a

review of this and other systems [50], this formalisation of social conventions serves

merely to replace the social with the technical and when this transformation occurs

the resulting systems tend to be fundamentally less flexible. In this respect it is inter

esting to note that Bellcore's CRUISER system [122, 64J embodied no explicit access

32

control models but instead used a combination of the principle of reciprocity2, and

a user-set lock (such that all connections are refused) in order to provide a basis on

which to build a privacy culture. Experience with this system suggested that

people are every bit as sensitive to the possibility of committing a socially
offensive act - of intruding - as they are of being intruded upon.([41], p30)

and that

within a single work group there is often a common group norm about
privacy settings and expected availability. [ibid]

That is, users of CRUISER, were using socially constructed methods of control even

though the system itself did not necessarily explicitly support them.

Perhaps the most fully explored use of embedded access rules for Media Spaces is

that provided by Anderson et aI's Doors system [11]. Using the same representation

of availability state as CAVECAT, the Doors system explicitly altered the available

communication functionality as and when users altered their door state. Thus when

a door was set to ajar, users could 'glance' or 'knock' but not 'enter', similarly when

a door was set to closed, only a 'knock' was allowed by the system. These access rules

had been previously elicited from a representative user population in an attempt to

generate a model of 'how to enter an office' that could be of use in the design of

such an interface (cf. [10]). However, as Anderson and Alty discuss, because this

approach assumes that social models of 'what to do when a door is in position X'

can be capturable in some rule-based formalism, and that this formalism can then be

translated into a rule-based interface, the resulting system is extremely inflexible [10].

It does not, in essence, deal with the exceptions to 'the rule' that are a standard part

of normal behaviour. In fact who can do what, when and to whom, is fundamentally

context sensitive. As Anderson and Alty discovered, it is simply not possible to

generate a rule-based model that captures, even remotely, a flavour of these rules

21f I can see you then you can see me.

33

because deciding what is and is not appropriate behaviour depends on open-ended and

unforeseeable factors such as urgency, subject, context and social status. The more

rules that are elicited, the more become necessary to define additional scenarios ... 3

Thus the Doors system is as guilty of misconstruing 'the way in which rules are used,

and of ignoring the consequences of implementing normative models of those rules,

as are the other systems described in this section.

It appears then that embedding social rules into interactive systems is prevalent in

system design and implementation. It appears also that in doing so, system designers

are implicitly or explicitly drawing upon a view of work, indeed of human behaviour,

that has become widely accepted [114]. This view conceives human behaviour as fun

damentally rational, goal or plan oriented and rule governed so that orderly activities

progress from the (assumed) fact that human actors are equipped with a set of rules

that they follow. Thus whenever a human actor encounters a particular situation,

one or more of the rules they possess will be applied (see [39] for a detailed exposition

of these ideas). In the context of work and organisation, this view is often termed the

bureaucratic model and traced to Taylor's work on productivity management [150].

As Morgan suggests, this view has become pervasive not only in organisational re

search but also, perhaps due to it's firm rooting in the cognitive sciences, in many

areas of modern society [114] and so, by extension, in many areas of creati ve endeav

our - such as the development of interactive systems as CSCW researchers have noted

[132, 15, 120].

It is perhaps inappropriate at this point to digress into the metaphysics (and

psychology) of software engineering but the fact that this 'traditional' bureaucratic

view of procedures and rules has become the 'accepted truth' and led to so much

'assumption implementation' [57] is an interesting manifestation of software engi-

3Interestingly this was exactly the same phenomenon experienced by Garfinkel's students when
asked to list the implicit meanings embedded in a very short snippet of cOllversation. In the end
they could not complete the task because it was impossible to do so - defining anyone meaning
always lead to the need to define yet more ([69, p24-25) and see also [135, p30)).

34

neering's tendency to modularise, rationalise and to decompose implementation prob

lems4
. vVhatever the root cause, this conception of rules and the way in which they are

used has been foundational to the design of many interactive systems. More recently

a critique of this conception has been developing which is based on its fundamental

conceptual flaws and on evidence of its failure (cf. [132, 120]). This critique has asked

whether this particular model of rules (and of human action in general) is usefully

accurate when used to implement interactive systems, and if not, whether or not an

alternative model is available. This section has described this critique and the next

describes just such an alternative.

2.3 Respecifying 'Rules-Use': Ethnomethodology,

Rules and Everyday Work

The previous section described the way in which the design of CSCW systems

has frequently conceptualised rules as governors of behaviour. Put simply, this model

is that people act according to procedures which can be specified as rules and this

assumption (consciously or not) has underpinned the implementation of many inter

active systems [121, 127, 132J. But what if this were not the case? What if, as the

descriptions in the previous section have hinted, this conception does not seem to

work? What happens if this conception of rules and rule use is re-specified in a way

that draws upon empirical studies of how people actually do use rules. This respeci

fication is the next move in this critique and it is to ethnomethodological studies of

rule-use in everyday life that it turns.

As was discussed in Section 1.3, the ethnomethodological stance emphasises the

study of how everyday orderliness is produced, recognised and described by the people

eugaged in that order. By concentrating on everyday practices in this way, Garfinkel

4For illuminating discussions of these and related issues the reader is directed to two recent
articles by Philip Agre [7, 6].

35

and his followers have chosen to base their conceptual work on finely grained field

studies of how the practices of interest are carried out [135]. In so doing, those

ethnomethodologists who have chosen to study organisations have developed a view

of work that is considerably at odds with the traditionally accepted 'bureaucratic

view' of work that was briefly described in the previous section.

Based on their detailed studies of how work really does get done, ethnomethod

ologists propose a view of work that stresses the interpretive nature of rule use in

each individual's situation. Empirical studies of the actual use of rules, such as those

reported in Garfinkel's collections [69, 70], in Zimmerman's study of case allocation

in a Health Care Centre [160], Wieder's discussion of meaning by rules in structural

semantics [156] and in Button's recent collection [32] have all concluded

that persons continually discover the scope and applicability of rules in
the developing occasions in which they use them. [156, pl09]

According to this view, there is more to behaviour than mere rule or procedure

following because being able to apply a rule requires much more than just knowing

about the rule itself. Since rules are necessarily incomplete, it is also necessary to be

able to judge the relevance of a rule in a given situation [114].

Social rules then are not stable in meaning, nor can a finite set of rules be de

termined that can be invoked in any or all situations. Thus, as Hughes and Harper

describe:

... rules have to be applied within a setting such that what a rule or
procedure means, what actions fall under it, is a matter which has to be
decided, judged, determined on occasions of its application. Social actors,
that is, have to make judgements as to whether this rule applies here and
now in respect of these circumstances. [87, p128, emphasis in original]

The ethnomethodological stance on the nature of social rules and behaviour can

be summarised as:

36

Context Sensitive: Each member of a culture is able to make their own choice

about what is appropriate in a given situation. An excellent example is given

by Morgan:

our understanding of the nature of the [drinks party] situation will
lead us to invoke certain rules (eg., that it is OK to go to the refriger
ator to fetch another beer, or to search for a corkscrew in the kitchen
drawers), even though these rules might be considered quite inappro
priate on other occasions. The point is that the norms operating in
different situations have to be invoked and defined in the light of our
understanding of the context.[114, p130]

As a result, it is possible for two members of a culture to act differently in os

tensibly the same context; and conversely to act the same in ostensibly different

contexts.

Indefinable: That is, it is simply not possible to define a set of rules that can specify

all the possible courses of action in a given situation. An excellent example of

this is provided by Heritage who shows that the rule-governed model cannot

even cope with as supposedly simple a situation as a greetings exchange because

it is impossible to specify a complete set of contingencies over which the rules

will operate [94, pl04].

Meaning is Constructed in situ: As with the notion that the meaning of lan

guage cannot be determined outside of the context of its use, so the meaning

and importance of particular norms or rules is constructed as they are used.

Thus, rather than seen as governing behaviour, rules are seen as resources used

in the achievement of that behaviour. In a study that concentrates on the idea

of 'organisational practices as rules', Zimmerman concludes

that the notion of action-in-accordance-with-a-rule is a matter not
of compliance or noncompliance per se but of the various ways in
which persons satisfy themselves and others concerning what is or
is not 'reasonable' compliance in particular situations. [160, p233,
emphasis in original]

37

So, in order to be able to justify their actions, workers are continually exploring

the meaning of the rules of practice or accepted procedure so tllat their actions

in doing the work can be said to be in accordance with those rules. Rather than

having rules cause actions, workers actions are arranged such that they appear

to be in accordance with what the rule 'would really mean' in that situation.

Variable: The same set of criteria can have different implications for different people.

For example Hartland, reporting on the use of 'intelligent filters' on an electronic

cardiograph machine, describes that

disagreement about the criteria for an abnormal ECG is widespread.
Similarly, what constitutes a normal ECG is a source of debate amongst
medical practitioners. As one cardiologist put it: 'There are as many
definitions of what's normal as there are cardiologists' .[88, p62J

The point is clear: there can be no common definition of what 'normality' is

since each cardiologist differs in their view. Given the view that such definitions

are, in any case, constructed by the participants over time it is clear at once

that a group's common definitions can and do change over time. Thus the

ethnomethodological view emphasises that rules and definitions (such as they

are) are not only situated in context but are also situated in time.

Rule-informed: Any activity, in this view, is fundamentally not seen as rule-governed

but as rule-informed, so that rules are seen as resources to be used in deciding

what action to perform since, as Goffman has noted,

we deal not SO much with a network of rules that must be followed as
with rules that must be taken into consideration, whether as some
thing to follow or carefully to circumvent. [74, p 42J

So, what is seen as rule or procedure following"behaviour in the classic bureau

cratic image of work is inverted - what looks like rule following in fact turns out

to be the reconstruction of order so that the work can satisfactorily be seen as

38

fitting the accepted pattern or procedure. An acute example of this is provided

in Suchman's work on procedures in an accounts office where she finds that

Standard procedure is constituted by the generation of orderly
records. This does not necessarily mean, however, that orderly records
are the result, or outcome, of some prescribed sequence of steps. vVork
ers in the Accounting Office are concerned that (1) money due should
be paid, and (2) that the record should make available both the war
rant for payment and the orderly process by which it was made. In
this case, once the legitimate history of the past due invoice is estab
lished, payment is made by acting as though the record were complete
and then filling in the documentation where necessary. The practice
of completing a record or pieces of it after the fact of actions taken is
central to the work of record-keeping. Standard procedures are formu
lated in the interest of what things should come to, and not necessarily
how they should arrive there. It is the assembly of orderly records out
of the practical contingencies of the actual cases that produces ev
idence of action in accordance with routine procedure. [147, p326,
emphasis added]

Here then is a view of rule-use, and of human social behaviour in general which is

radically different from the mechanistic view of behaviour as enacting some externally

defined set of rules. Further it casts real doubt on the idea that such rules could be

determined in anything other than a partial manner and finally, it emphasises that

appropriate behaviour is determined by persons in particular contexts with reference

to features of the situation at that time. As will be described in the next section, this

re-specification of the conception of rules and rule-use has had fundamental implica

tions for the design of CSCW systems.

2.4 Implications for the Design of CSCW Systems

The view described in the previous section, which has come to be known to the

HCI and CSCW communities a.' 'situated action' initially through Suchman's work

on office procedures [146] and interfaces to 'intelligent machines' [147], acknowledges

39

that human interaction and collaboration take place in the context of richly varying

cultural and organisational norms of behaviour. Section 2.2 described the various

ways in which the accepted conception of rules and rule-use had been incorporated

into system design. By re-examining some of these systems in the light of the re

specification described in the previous section, it is possible to draw out a number of

implications for design.

For example, it is not at all surprising that the GROVE editor seemed to be most

successful in 'free-for-all' mode because it was only in this mode that participants

were able to decide the roles and access privileges themselves and to flexibly re

arrange those roles and privileges as appropriate to the course of their work [132].

Now too, it can be seen that Beck and Bellotti's observations on the flexibility of

collaborative writing are revealing many of the features that would be expected from

an ethnomethodological perspective. Thus it is not at all surprising that co-authors

are highly flexible and sensitive to contextual influences on their work activities, nor

that systems to support them must therefore cope with this flexibility. Thus systems

such as GROVE (in 'free-for-all mode') ShrEdit and MESSIE [125] have, perhaps

unintentionally, shown the way in which the ethnomethodological stance can direct

system design. That is, the system needs to provide the users with the means to be

flexible whilst also providing the objects of work. As Robinson suggests, this requires

systems to provide two levels of interaction - the level of 'doing the work', and the

level of 'talking about the work' [120]. In this way, users can rapidly rearrange their

roles and access to work objects through social protocols and it is exactly this sort of

behaviour that is found in synchronous work experiments where a shared works pace

is augmented by an audio channel. The former is. the level at which the work is

done, whilst the second, the audio channel, is the level at which the organisation of

the work is done. If these levels can be incorporated into systems, and whilst the

technical implementations will vary, it may be that system imposed roles, protocols

(such as floor control) and access controls may be unnecessary. A number of recent

40

research systems are either explicitly exploring this view or are can be seen as doing

so (eg. [17, 1.53, 101, 7S]) whilst Beck and Bellotti's paper provides a number of

important design recommendations in this context [IS].

In the context of rules and roles as access controllers for shared information or file

systems, the ethnomethodological position raises some serious concern as to whether

this approach is feasible for flexible, dynamic work groups. If the goal is to build

information spaces that have some element of privacy and protection, it seems clear

that this cannot be done by simply trying to implement a more complex 'privacy

management' model - this would be analogous to trying to get out of a hole by dig

ging ever deeper into it. With the increasing emphasis on short-term work groups

that are brought together to complete specific tasks5 the work-roles, and therefore

the information access requirements of members of an organisation are likely to by

highly dynamic. It may, for example, be perfectly fine for a worker to rummage

through another's desk in search of a particular document whilst they are working

on the same task, but not so a few minutes later when that brief passage of work

has been concluded. Drawing this example into a shared information system, the

ethnomethodological stance suggests that system designers may well have to totally

re-consider their approach to the management of privacy and access privileges. It

may be that an approach based on the explicit support of social and organisational

protocols can provide such flexibility. The trade-offs between the flexibility of access

provided by social controls and the protection afforded by system imposed control is

a research area that is currently little explored and that would seem to merit atten

tion. In particular it is interesting to note that much of the current access control

in an organisation is based upon accountability, the fact that members can be held

accountable for their actions - and hence be asked to explain them; upon organisa

tional practices which are readily learnt; and upon effort, that is the effort it would

require to behave inappropriately - breakiug open a filing cabinet for example. It may

5So-called 'virtual organisations'.

41

be that shared information systems built around these concepts can usefully combine

elements of system imposed control (through 'effort') and social and organisational

control. The architectures described by Trevor and colleagues [152] and Smith and

Rodden [138] can be seen as initial explorations of some of these ideas.

In the context of workflow and office automation, this re-specification is currently

receiving considerable attention stemming, in part, from Suchman's early articulation

of the ideas in her work on 'office procedures'. The key insight here is that treating

work as programmable is not necessarily appropriate where the work itself is anything

other than rigidly repetitive. The ethnomethodological stance suggests that it might

be far better to focus workflow on the provision of adequate work objects and rep

resentations of possible work paths, but to enable the users to control which specific

paths particular work objects follow. In addition it may be that enabling the system

to continually re-present the activities of the users will allow them to re-engineer the

process representations themselves so that the representation of work activity becomes

(again) part of the activity of doing the work. Recent reviews of workflow research

such as that of Abbot and Sarin have raised these issues [1], whilst systems such as

ConversationBtiilder [104], Freeflow [56] and those based on the Milano Conversation

Model [46] are directly feeding these ideas into system design.

Finally, in the context of the design of user interfaces to Media Space systems,

this re-specification of the notion of rules and rule-use suggests that it could be a

serious mistake to embed rules of access (based on roles or status) into the system.

In contrast, the need to cope with the flexible nature of communication situations

suggests that it may be preferable to design systems which provide a range of possible

actions, the system functionality, together with a set of information that enables users

to decide for themselves what the appropriate behaviour would be in a given situation.

Thus, rather than enforcing the rules that link door state to available functionality as

was the case with the CAVECAT [109] and Doors [11] systems, it may be preferable

to provide contextual awareness information (who the user is and what they're doing)

42

which can be used to make a decision over which of the various communication options

it is appropriate to use at that particular time. If this approach is to be followed,

then it is clear that what the potential actions are, and what information people need

in order to decide on appropriate courses of action are going to be critical resources

for design. Thus, if the goal is to redesign an interface to a Media Space system in a

such a way as to incorporate this re-specification of rules and rule use, it is clear that

some way of framing this design approach, and of generating the necessary resources

will be critical.

The next chapter provides just such a framework in the context of redesigning a

user interface to a Media Space system in order to take account of this re-specification.

As such, the chapter introduces a framework that can be seen as providing one of the

enabling bridges described in Section 1.4.3 which will be needed in order to further

the research programme of technomethodology.

Chapter 3

Options for Action and Cues for

Behaviour: A Framework for

Design

43

44

3.1 Introduction

The previous chapters have suggested that one aspect of learning from ethnomethod

ology has been the idea that foundational concepts can be re-examined, indeed respec

ified, and the implications of such a re-specification analysed in terms of its potential

impact on design. In re-specifying the concept of rules and rule-use, it has been sug

gested that rather than embedding rules for appropriate behaviour into a system, an

implementation must be able to support users in selecting and carrying out particular

activities. This re-formulation suggests that instead of focusing solely on descriptions

of work processes or practices, system designers need to be able to provide a rich set

of information which the users can use in deciding what appropriate behaviour might

be [132, 133]. So, if CSCW practitioners are to follow this reformulation through into

the design process, it is imperative that a design framework is evolved that can be

used in other situations. This chapter proposes such a framework, outlines it's basic

concepts and structure, provides an analysis of its generality and describes the key

requirements that it implies.

3.2 Conceptual Basis

In his book 'The Psychology of Everyday Things', Don Norman describes four

classes of constraints that effect the outcome of possible actions: physical, based

upon physical properties of the world; semantic, based on knowledge of the world

or situation; cultural, based on cultural conventions; and logical, based on natural

mappings [115]. Similarly, this chapter suggests that, in a literal sense, there are no

constraints on behaviour, other than those imposed by the physical world in which

we live. It is entirely possible for example, to burst through your boss' closed door

without knocking first. It is possible, but as has been shown, it is socially acceptable

in some situations, although not in others [10]. The everyday world, then, consists

of 'cues for behaviour' that allow human actors to choose the most appropriate from

45

a range of 'options for action', anyone of which is physically, although not socially,

possible. To continue the example, human actors decide whether or not to burst

through their boss' office door based upon cues of context, urgency, role and previous

expenence.

When considering the design of systems to support social interaction, this view

suggests that user interfaces to CSCW systems can be conceptualised as providing a

set of possible actions - in other words the functionality of the system, together with

a set of cues that can be used in deciding what to do. As Figure 3.1 shows, these

cues may be either detected and interpreted by the system, using whatever model

that the designer has implemented, or perceived and acted upon by the user. In the

former case, the system is responsible for mapping the cues to the actions using the

rules embedded within it. In the latter case the user perceives these cues and decides

what to do on the basis of these and other cues that may be outside of the scope of

the system itself.

The critical point here, and it is this characteristic that has been informed most

directly by the re-specification of rule-use, is that the implementors of the system

must consider very carefully how much of the mapping between the cues and the

actions is left to the system, and how much is the province of the user. In Figure 3.2

for example, which characterises many of the systems described in Section 2.2, it is

clear that much of the mapping between what has been termed 'cues' and the possible

actions is determined by the system via its explicit model of the situation - the rules

that are embedded within it. If designers consider how they might present users with

cues and actions, but not enforce a mapping between the two, then a strategy emerges

that may counter the problem of the complexity and dynamism of social relations by

avoiding the embodiment of a set of social rules as physical constraints in the system.

Such a system need embody no model of the users except those external cues that

are used to guide behaviour, and the full range of potential actions. As is shown by

Figure 3.3, the mapping from one to the other, that is determining which actions

CSCW System

Cues Actions

perceives decides

G
Figure 3.1: Cues, Rules and Actions: A Conceptualisation

CSCW System

EJ--.~[Actions]

, " , ,
. ' perceives '-

, ,

G
,

" decides

Figure 3.2: Cues, Rules and Actions: The System Decides

CSCWSystem

8 ----8 --- -1 Actions]

Figure 3.3: Cues, Rules and Actions: The User Decides

46

47

are acceptable and when, is no longer a concern of the system. Instead, the system

remains relatively neutral with respect to action, it merely supplies the cues that

the user needs, so that the problem of coping with the dynamism and complexity of

cultural constraints remains firmly in the realm of the user, rather than the system.

3.3 Cues and Actions: Intimations of Generality

In order to clarify the framework, this section provides characterisations of a num

ber of CSCW systems in terms of the options for action and cues for behaviour that

they provide for the user. The examples include a Media Space system, a group editor,

a group messaging system and an integrated CSCW workspace. Whilst not intended

to be exhaustive, it is suggested that the ability of the framework to provide useful

characterisations of a representative range of CSCW systems provides intimations of

its generality. In addition the examples will show how representation of these systems

using the concepts of cues and actions highlights the issues of embedded rules and

flexibility.

3.3.1 Doors: An Interface to a Media Space

Doors was a user interface to a multimedia teleconferencing application, or Media

Space [11, lOJ which was developed as a front-end to the Cambridge Rank Xerox

Research Centre's (formerly EuroPARC) audio visual infrastructure (cf. [72]). Doors

was a client-server system that provided an interface to a centralised database of

information about each user of the audio/video infrastructure. The user interface

was based on the concept of representing the availability states of users by an iconic

office door. Thus the door could be set to 'closed', 'ajar' or 'open' and each state

corresponded to a set of 'allowable' actions. As Figure 3.4 shows, a range of other cues

were provided by the interface. For example, a participants list kept a record of all

those who were currently running a Doors client, each door was explicitly associated

Cu ..

door stale ,
user's name

, , ,
message above door , , , , , ,

,
, ,

",les

, '8: User

, , ,

, , , ,
,

Actions

glance - a shon unidirectionaJ videoconnection wim sound effects

knock· a request for a video conference , , connect - a video/audio conference , , post-it - send a text message ,
audio mail - send an audio message

Figure 3.4: Doors: Cues and Actions

48

with a particular user who can define the name that is displayed above each door.

As was mentioned in Section 2.2, the Doors system used a model of what kind of

actions should be available based on different door states in order to determine which

of the potential actions should be possible. Thus when a door was set to ajar, all but

the 'connect' action were enabled whilst when the door was shut both the 'connect'

and 'glance' actions were disabled. Interestingly, Figure 3.4 shows that even though

the Doors system actually provides additional cues other than just the door state,

these cues cannot be used by the system (or the user) in modifying what actions are

available and when.

3.3.2 GroupDesign: A Structured Drawing Tool

GroupDesign is a multiuser editor developed byBeaudouin-Lafon and Karsenty

[17J that is similar in intention to GROVE [62J but which focuses on enabling users to

manipulate structured graphics rather than text and outlines. GroupDesign consists

of a number of pages each of which contains any number of editable structured objects.

As Figure 3.5 summarises, users are able to edit these objects in a rich variety of

ways. In order to provide users with information on who is doing (or did) what,

Cues

colour of objects

userviews

history

ownership

graphical echo

audio echo

Actions

'normal' structured graphics editing functions - changing
shape of objects. moving them. copying, altering
pixel characteristics and so forth.

Figure 3.5: GroupDesign: Cues and Actions

49

GroupDesign implements cues for history, age and identification. Thus users can see

who created which objects, how long the objects have been there and what changes

have been made to them. In order to provide real-time cues for what is going on

during synchronous editing, GroupDesign implements graphic (a user's actions are

represented to others via background animation) and audio (a user's action on part

of the page which is off-screen for another user is represented by sound) echo as well

as enabling each user to see which parts of a page other users are currently viewing.

In addition colour is used to denote which objects have been created and edited by

which users - who, in a sense, is the 'owner' of each object. When a user starts to act

on an object, it is represented in that user's 'colour' and an icon within the object

shows what that action is. Taken together, these cues provide users of GroupDesign

with a rich set of information that they can use in deciding what to do - whether or

not to edit particular objects, with whom they should discuss particular edits, and

who has access to which of the objects displayed - as Beaudouin-Lafon and Karsenty

put it, these cues provide the users with answers to the questions "where are we, how

did we get here and what can we do now?".

It is obvious from Figure 3.5 that the GroupDesign system leaves much of the

50

Actions
Cues rules Stan an action conversation

message author r:- ~ Start a conversation for possibilities
message type , ,

Create a response to a message , , , ,
message content

, , Review messages , , , , , , Send a Note , , , , , ,
, ,

,

8
Figure 3.6: The Coordinator: Cues and Actions

mapping between cues and actions to the users - Beaudoin- Lafon and Karsenty ex

plicitly state that they are interested in supporting social protocols rather than system

imposed access controls and the representation in terms of cues and actions clearly

illustrates this. As a result, GroupDesign is a good example of the kind of system

for which the previous chapters has called although it is interesting to note that the

system does impose some controls, for example it stops a user moving an object

which is also currently being moved by someone else. GroupDesign is therefore a

working example of the trade-offs between system and user control, a point which

Beaudoin-Lafon and Karsenty note but do not expand.

3.3.3 The Coordinator: A Structured Messaging System

The Coordinator! is a structured messaging system that attempts to enhance

workgroup productivity in organisations by providing users with sets of possible

message types and by enforcing particular responses to particular types [65]. The

Coordinator draws on the idea that action can be seen as constituted through lan

guage, hence a structured messaging system can provide 'action through language'

1 'The Coordinator' is a registered trademark of Action Technologies.

51

by enabling, and enforcing, certain sorts of conversations. In the context of an 'organ

isational system, The Coordinator provides different message types that reflect the

author's intention to try to improve organisational productivity. For example, The

Coordinator provides users with the ability to start a 'conversation for action' or a

'conversation for possibilities'. On receiving such a message, a user must select from

a small number of acceptable responses (including free-form) in order to reply. As

Figure 3.6 shows, the system uses it's model of how a particular kind of conversa

tion should proceed to provide users with alternatives. Thus when a user chooses to

'Answer' a message, the system determines what

actions could sensibly be taken next. [65, p162]

The problem is that the designer, not the user, has decided what that 'sensible' next

action should be. Users are actively discouraged from producing responses outside

of these limited alternatives - it is considered unhelpful to the maintenance of the

structured conversation if they step outside this embedded model of process. Unfor

tunately for The Coordinator, the result is that the 'next available action' is often

not sensible to the user at all. ..

As this characterisation makes clear, the user's experience of such a system is

likely to be very different from those which do not enforce such procedures and is as

open to criticisms of inflexibility as were the workflow systems described in earlier

sections.

3.3.4 DIVA: A Networked Work 'Place'

DIVA is an example of a complex distributed CSCW system which consists of

integrated groupware tools arranged using the metaphors of 'rooms' and 'places' [139].

Users navigate between rooms, users in the same room can automatically see and

hear each other through audio/video connections and they can also create a private

conversation with another individual in the room. Each 'room' may contain any

Cues

who's here?

what are they doing?

who are they working with?

who are they talking to?

who created which object

what changes have been made?

who's in which other office?

can I access this object?

Actions

Join an editing session

Open a document privately

Copy a document

Delete a document

Start a private cOllversation

Alter a document's access list

Lock a room

Find people by 'glancing' or searching

Figure 3.7: DIVA: Cues and Actions

52

number of objects such as written documents, spreadsheets or drawings which may

be manipulated by multiple users using integrated groupware tools. Leaving aside

the mechanics of the various tools (shared editing and drawing tools such as those

already discussed), DIVA provides a rich array of cues for users in deciding what to

do (see Figure 3.7). For example, DIVA uses similar representations to CAVECAT

in indicating the availability of a user - the door to a user's room may be locked,

shuttered or open - and enforces particular-access policies based on these states. It

is unclear whether these policies can be overridden if required, nor if such policies

can be altered if desired. Access to particular documents is managed using a simple

access list method which is configurable by anyone on that list. DIVA uses this list

to provide users with cues as to which documents they have access to (and also who

to contact in order to alter this ...), which have been changed, when and by whom.

Apart from this simple access control mechanism however, DIVA provides little

in the way of system imposed policies via rules, leaving most of the control to social

protocols. Cues such as who is in the room, who they're talking to and about which

document combine to provide users with information they can use in deciding whether

53

or not to join editing sessions or conversations, whether to work independently on a

shared document or to work closely.

As DIVA's authors note, it is clear that many of the cues users expect to find in

the real world can be directly transferred to the system by using interface objects

that mimic those of a real office. By using rooms, desks and briefcases to organise

access control, cues and actions, DIVA leverages many familiar concepts and implicit

rules. It is worth noting then, that designing systems that explicitly present such

cues in order to allow users to select appropriate actions might well turn to studies

of real world activities to furnish a set of cues that can be a starting point for an

implementation.

3.4 Implications for the Design Process

The previous section has briefly illustrated the use of the framework of cues and

actions to characterise a number of CSCW systems. In each case it has been shown

that recasting the systems in this way highlights the extent to which the system

imposes control over action through an embedded model or policy. In some cases this

turned out to be very little whilst in others it appeared to be central to the design.

Further, those systems which provided little in the way of system mappings between

cues and actions appeared to be those which provide for more flexible use.

It seems that characterising systems in this way opens up for inspection design

decisions that may otherwise pass unnoticed. For example, designers who charac

terise their systems in this way can reflect on the degree to which the system under

construction implements models and assumptions of social rules. In forcing design

ers to consider this, the trade off between system and user control can be identified

and discussed during design. If the goal is to build systems that are intended to

enforce certain social or work procedures, then it is possible to ideutify this within

the framework and develop appropriate models as needed. However, if this is not the

54

intention, then providing this characterisation forces designers to think about other

ways of providing users with the options for actions that correspond to the system's

intended functionality. Thus the key recommendation made by this framework is

that, as design progresses, practitioners must repeatedly ask themselves whether or

not the system behaviour they are currently encoding involves the implementation of

social rules. If so, then they must be aware of the dangers of doing so. If they wish

to avoid these dangers then it is recommended that they should focus on providing

users with cues for behaviour and options for action, but not implementing a mapping

between the two.

It is at this point that the framework serves a second purpose because it suggests

that designing systems to take account of the flexible nature of rules and the interpre

tive nature of their use can usefully focus on providing users with cues and actions.

As a procedure of design then, the framework calls in the first instance for the artic

ulation of the actions that the designers intend the users be able to do, and secondly

the elicitation of the cues that the users may be expected to use in deciding between

appropriate courses of action. As the discussion of the DIVA system demonstrated,

studying the real world of work and of the potential mappings between real world

objects, activities and cues may provide a rich resource for designing in this way.

3.5 Summary

This chapter introduced a design framework based on the idea of characterising

CSCW systems in terms of the actions they make available to their users, and the

cues they provide for users to decide which of the actions to choose. Further, in each

case the framework characterises the degree to which the system maps cues to actions,

and the degree to which the user is left to decide what actions are appropriate. What

is more, this characterisation can be used to describe a numher of CSCW systems

and, in eac:h case, usefully highlight important design issues. Finally, the framework

55

recommends that the design of systems that do not want to impose system constraints

on action might usefully focus on providing cues and actions in the user interface itself.

It therefore recommends that the framework can be used as a guide for doing design.

As a consequence of this recommendation, it is clear that the design of a system in

this way will require the elicitation of actions and cues that make sense to the users so

that they may leverage their own knowledge of the situation in order to decide what

is appropriate. The next chapter provides an example of exactly how cues and actions

may be elicited in order to form a foundation for design. The general motivation in

this case was to redesign and re-implement the Doors system described earlier using

the framework introduced by this chapter.

56

Part III

A Case Study in Design

Chapter 4

Actions and Cues as Design

Resources

.57

58

4.1 Introduction

The previous chapters of this dissertation have developed an argument that rec

ommends re-examining taken-for-granted concepts in HC] and CSCW in order to

explore the implications of their re-specification. In particular, this dissertation has

focused on apparently pervasive assumptions about rules and the nature of their use

by human actors. After a consideration of the implications that this re-formulation

has for the design of CSCW systems, the previous chapter recommends a framework

and an approach to design that presents users with options for action and cues for

behaviour but which does not necessarily enforce the mappings between the two.

This and subsequent chapters describe a case study of the use of this framework

in the redesign and implementation of the Doors system which was briefly described

in Section 3.3.1. The goals of this redesign are to:

Explore the Framework: By using the framework in a system development situa

tion it will be possible to reflect on the utility of the framework during design.

Provide methods: It might be expected that concentrating on cues and actions

would require particular design methods. If this dissertation is to recommend

that other systems of this kind be built from this framework, the development,

use and reflection on such methods is of great importance.

Build a Working System: By building a system using the framework as guidance,

it will be possible to reflect on the utility of the framework of cues and actions

in producing a functional CSCW system.

In addition, the prototype implemented as part of the case study will act as a vehicle

to investigate:

General support for awareness: By extending the scope of awareness information

made available and by developing a scalable group awareness protocol to pass

59

this information between clients, it will be possible to develop technological

support for awareness in the general Internet context.

Packet audio and video: Doors made use of RXRC's analogue audio and video

infrastructure, as have many of the other experimental Media Space systems.

In order to widen the applicability and increase the flexibility of the system,

packet audio and video over digital networks will be supported.

The utility of IETF draft protocols The prototype will provide the opportunity

to explore the use of evolving IETF protocols designed to support a multimedia

conferencing architecture over the Internet. By using these IP based protocols,

the possibilities for global awareness and user location services through public

access packet switched networks can be explored.

Incorporate other CSCW tools: how the incorporation of shared text editors and

whiteboard tools can improve the support for work.

[t should be clear then that this case study operates at three levels. Firstly

it serves as an example of design that is based upon providing users with 'cues for

behaviour' and 'options for action'. Secondly, it is an example of how a respecification

of widely held foundational assumptions can be incorporated into the design of a

functional CSCW system. Finally, it is a redesign and re-implementation of the

Doors system as a vehicle for exploring the technical issues of scalable support for

group awareness and group work in the Internet context. This chapter describes the

general background to the prototype and reports a study designed to elicit 'cues' and

'actions' as a resource for interface design. Chapter 5 describes the resultant interface

design and implementation whilst Chapter 6 describes the underlying architecture

developed to support group awareness in general and this prototype in particular.

The remaining chapters in this part of the dissertation provide an analysis of the

implementation and use of the prototype in the light of the aims outlined above.

60

4.2 TelePort: Redesigning Doors

TelePort is a prototype system designed to mediate communication and interac

tion between users in a distributed broad band office environment. It seems clear that

the extension from POTS' to broad band telecommunication, and the consequent en

richment of functionality and increased importance of issues of privacy and control

(cf. [50, 20]) requires a considerable re-think of the user interface to communications

devices. The TelePort system addresses this problem by displaying the availability

state of the owner of an audio-visual node using a graphical representation of dif

ferent states of an office door, and by providing socially grounded mechanisms for

communication that are consistent with this representation.

Thus, the TelePort prototype focuses on the problem of controlling point to point

multimedia conferencing calls over local and wide area packet-switched digital net

works. Specifically, the prototype enables users to request a number of different

user-oriented telecommunications services using real-time packet switched audio and

video conferencing tools. These services include short, video only glances as well as

full two-way audio, video and data conferencing. The prototype provides the user in

terface to this system and implements mechanisms for geographically dispersed users

to be 'aware' of one another through the provision of regularly updated awareness

information; and thence to communicate and interact. The prototype may be con

sidered a direct derivative of the Doors system [11 J and as being conceptually related

to CAVECAT [109J and Montage [149J.

The use of the office door as a representation of availability clearly provides users

with cues from which they can make certain sorts of predictions about the availability

state of a person based upon the state of their office door. For example it may be

acceptable to knock on a closed door, but not to enter without invitation; whereas in

the case of a, fully open door, a knock-and-enter action may be socially acceptable. If

'Plain Old Telephone System

61

the interface is to provide the cues associated with an office door as a representation of

availability in a telecommunications system, it is clearly imperative that an attempt

is made to find out what those cues are for the user group or culture for whom the

system is intended.

This chapter2 describes one way in which designers might elicit options for action

and cues for behaviour from potential users. As such it describes one of the practical

bridges that will be needed to develop technomethodology into a research programme.

The chapter reports an exercise in deriving actions from a potential user group which

could map onto given system functionality, and cues that might make sense to the

potential users. In particular, it describes the use of a method derived from Cognitive

Anthropology, namely frame analysis, in the elicitation of cues that office workers use

in deciding when to communicate with colleagues during the course of their normal

work. These cues, and the actions that are associated with them, are central to the

subsequent design of the system, TelePori .

4.3 Getting at 'cues' and 'actions'

Previous chapters have developed the idea that human behaviour can be thought of

as the selection of appropriate actions from a range of options in a particular situation.

Further it has been suggested that interface design can proceed by implementing

ranges of actions and providing users with cues which help them to decide what to

do. To be successful, it has been suggested that transferring cues and actions from

user's everyday world to the user interface can provide a 'bootstrapping' effect because

users can immediately apply the social mores with which they are familiar. Such a

transfer would therefore provide users with a ready made and understandable social

context within which they could act - many elements of the culture of usage would

effectively be known in advance and thus immediately applicable.

2This chapter is an extensively revised version of [10]. A copy of this paper is included III

Appendix D for reference.

62

Clearly then, a designer who intends to build a user interface in this way needs

to know what cues and actions are relevant to the users in question - it would be

pointless, if following this strategy, to implement a set of cues and actions that do not

make sense to the users since this 'bootstrapping' effect would be lost. It seems logical

therefore, that design in this way should make a commitment to eliciting and utilising

the user's conceptions of cues and actions. If they do not, any system will inevitably

incorporate the designer's intuitive assumptions about what actions and cues are

significant, rather than the user's. Here then is a re-iteration of the principle of user

centred design [116] except that in this context it is a recommendation to focus on

'cues' and 'actions' as they appear in the user's experiences of everyday work. What

is needed therefore, is an elicitation method that can encourage users to describe

what actions they might find appropriate in a communication situation, and what

cues they might use in deciding amongst these actions. This section introduces one

such method, frame elicitation, which is derived from fieldwork methods in cognitive

anthropology, and demonstrates its use in eliciting 'cues' and 'actions' from a potential

user group.

4.3.1 Cognitive Anthropology

In essence, the focus of cognitive anthropology has been to map out what an

individual needs to know in order to generate culturally acceptable acts in a given

social context [75]. It is claimed that the techniques used to do this can generate, as far

as is practically possible, a cultural description that is phrased in the conceptual terms

of that culture and which, crucially, would make sense to a 'native' informant if re

presented to them [142]. In the terms of the current discussion, cognitive anthropology

attempts to describe the 'cues', 'actions', and the rules that map the one to the other

using the conceptual categories and terms of the informants themselves. As was

discussed in the previous section, this is almost exactly is required by the design

strategy proposed in this dissertation. Therefore it is likely that a number of research

63

methods found in cognitive anthropology will be of use in generating descriptions of

cues and actions from the user's point of view.

4.3.2 Frame Elicitation

One such data collection method, frame elicitation, seems particularly relevant.

Frame elicitation attempts to elicit conceptual schema or scripts [2,4] from everyday

talk or from 'elicitation sessions'. A schema or script can be considered to be a

high level description of a group of related inferences which holds generally true in

a number of decision making situations. In Agar and Hobbs's study of events in the

lives of inner city drug addicts for example, an arrest schema is described which is

derived from analysis of a number of interviews describing particular arrests, and this

schema can then be applied to other similar situations [4].

Such schema are elicited by means of specifically designed questionnaires or frames.

Frames can be thought of as

simply a statement with a hole in it that can be filled in a variety of ways.
[2, p99]

such as:

If I wanted _________ I would ask my secretary to arrange it.

A selection of such frames can be presented to informants who are asked to supply

appropriate words or phrases to complete the statement. By varying the wording of

the frames, an investigator can assess the effects of such variations on the phrases used

to complete the frame. In the example provided for instance, changing the words 'my

secretary' to 'the Company Director' is likely to produce different responses if the

informants were in an organisational environment. The crucial point here is that

the frames enable the informants to construct their own context to the enquiry by

using phrases that make sense to them, rather than by selecting from amongst a

range proffered by the investigator. More importantly, from the point of view of a

64

design pJ;9cess that focuses on and seeks to elicit 'cues' and 'actions', frames provide

a relatively simple way of generating the range of options for action and cues for

behaviour in a particular context or domain. With respect to the case study then, a

frame such as

Ben's door was ___________ so 1 __________ _

can be used to generate a list of actions that people would expect to be able to take,

together with cues related to the office door which they would use in deciding what

to do.

4.3.3 Method

In order to elicit such information, a study was carried out that utilised the schema

or script elicitation techniques described above. 17 business personnel (15 male, 2

female), who were attending a week long residential course contributing towards a

part-time Master of Business Administration (MBA) qualification at the Loughbor

ough University of Technology Business School, were asked to act as informants. In

order to provide some background information and to set the results of the frame

completion in context, the informants were asked to specify their occupation and

provide a short job description. They were then presented with a frame completion

exercise designed to elicit their probable responses to different states of a person's

office door. The frames to be completed took the form of two partial statements

where each variable was to be completed by the informants.

The first statement was:

As I walked towards person's office door, I saw that it was state, so I
action.

This frame was used to generate as many different combinations of person/state/

action as possible. Note that the wording of the partial statement in this case was

such that informants were not restricted to any particular person, state or action.

65

Following Agar ([2, p142]), the resulting phrases were grouped firstly into similar

door states, and secondly into similar actions within each state.

The second statement was derived from the results of the first exercise:

As I walked towards person's office door, I saw that it was
open/ajar/closed, so I action.

This frame was intended to examine how actions varied with the door owner's

status given a particular door state. In this case informants were presented with 3

different frames, one with open as the state, one with ajar as the state and one with

closed as the state. In this case the informants filled in the person and action slots

as appropriate.

In each case, the informants were asked to provide as many completed frames as

they could so that a range of person/state/actions triads could be examined. The

frame-completion exercise generally lasted for around 20 minutes.

Further grouping was then carried out on the words used to describe the person

whose office was being approached, so that the effect of status on acceptable actions

could be analysed. This grouping was carried out by a researcher not involved in

this investigation whose cultural and working background was similar to that of the

earlier informants. It is acknowledged that these grouping tasks should, ideally, have

been carried out by members of the original group of informants. Unfortunately this

was not possible due to the timing and limited scope of the investigation with respect

to the informants course attendance.

4.3.4 Results

The full results of this investigation, which produced a large number (127) of

completed frames, are provided in Appendix A and are summarised below.

As would be expected from the participants of an MBA (Master of Business Ad

ministration) course, the informants consistently referred to their jobs as being junior

66

Door State Inferred Implications Acceptable Options
Closed busy - not disturbable walk straight in (W)

not in office knock and wait for a reply (Kw)
leave a message (M)
check with secretary (S)
go away and try again later (La)

Partially Open busy but can be interrupted walk straight in (W)
knock and wait for invitation (Kw)
take a quick glance in (G)
go away and try again later (La)

Fully Open available for communication Walk straight in (W)
Knock and wait for invitation (Kw)
knock and walk in (Ke)
take a quick glance in (G)

Table 4.1: Glosses of informants 'action' phrases for particular states, together with
implications for communication.

or lower-management. As such they represent a horizontal slice through a number of

organisations each of which may differ markedly in the way in which communication

or interaction is socially mediated and regulated. Given that the informants could

be seen to represent a diversity of different business cultures, it is interesting to note

that the range of responses is relatively narrow. The phrases used by the informants

to fill the state frame were: 'open', 'closed', 'shut', 'ajar', 'partially open', 'half open',

'closed with do not disturb sign' and 'hanging off its hinges'. This last was paired

with the action phrase 'went to tell a policeman'3. By grouping these phrases it was

possible to reduce the states of the office door to a set of three - 'closed', 'ajar' and

'open', although there was a subtle distinction between 'closed' and 'closed with do

not disturb sign' because in the latter case the cue for non-availability is that much

more forceful and the question of whether the person is present is, at least partially,

resolved.

3The importance of humour and irony when used by an informant to reflect upon cultural norms
is one that is often discussed in the literature - e.g. [67]. It is obvious perhaps that the recognition
of these (manners of speaking' is easier if the informant and investigator share a common language
and culture, as was the case with the study reported here.

67

100
Door State:

BD D Open

• Ajar

%1 60 • Closed

40

20

0

Actions

Figure 4.1: Percentage frequency of actions for each state

From the phrases used to complete the action section of frames, it is clear that

there are different options that are acceptable in certain situations. By grouping these

options, the responses indicate that there are seven different actions that have been

identified by this study (see Table 4.1). The actions listed in the third column are

paraphrases or 'glosses' [67] covering the meanings of the actual phrases used by the

informants, the set of symbols will be used in subsequent figures to aid legibility.

Figure 4.1 shows the percentage frequency of each of the actions for a particular

state. This provides an indication of what people are likely to do (or want to do)

given a particular door state.

Even at this gross level of analysis, it is clear that there are different options that

are acceptable in certain situations. If a door is open for example, the acceptable

actions tend to be 'Walk in' or 'Knock and enter', whilst in the case of the door

being ajar the majority of responses were 'Knocking and entering', 'Knocking and

waiting' or 'Check status'. As Table 4.1 shows different inferences were made about

what the door's owner would be doing depending on this state. Further, different

ranges of actions were suggested as being appropriate. This is important because it

suggests that by providing the state of the office door as a cue, the system might

indeed support the social self-regulation of appropriate behaviour. In other words

Gloss
friend
boss
boss' boss

100

%1

Elicited phrases
friend, colleague, manager I knew well, neighbour
boss, senior manager, immediate manager,superior
boss' boss, superior

Table 4.2: Glosses of person phrases

M

Actions

Person:

a Friend

•
•

La

Boss
Boss's Boss

s

68

Figure 4.2: Percentage frequency of phrases used to fill action slot for open state,
grouped by status of door 'owner'

the users can quite easily map the cues to the actions as they see fit.

The frame analysis also addressed the issue of social status in order to provide

a more detailed analysis of one of the factors that might determine which actions

are more acceptable in certain situations. Figures 4.2 to 4.4 show the percentage

frequency of phrases used to fill the frames for each door state, subdivided into the

different categories of 'person' to whom the door belongs.

The categories of person that resulted from the grouping exercise are shown III

Table 4.2.

Figure 4.2, which shows the responses to the open door frame, demonstrates the

effect of social status quite clearly; people will 'walk straight in' to the office of a

colleague or their immediate boss if the door is open, but they will not do this to

their director or their boss boss. Similarly they a.re much more likely to 'knock ano

wait', or to 'check their availa.bility', if the person in the office is of considerably higher

80

%f 60

40

20

0
W Ke Kw G

Actions

M

Person:

•
•
•

La

Friend
Boss
Boss's Boss

s

69

Figure 4.3: Percentage frequency of phrases used to fill action slot for ajar state,
grouped by status of door 'owner'

100
Person:

80 11 Friend
• Boss

%f 60 • Boss's Boss

40

20

0
W Ke Kw G

Actions

Figure 4.4: Percentage frequency of phrases used to fill action frame for closed state,
grouped by status of door 'owner'

70

status.

Figure 4.3 shows the percentage frequency of responses when the door state was

ajar. As in the previous case, there are differences in behaviour depending on the

relative status of the people involved. Here, far fewer would 'walk straight in' and only

then if the person whose office they were entering was a colleague or friend. Rather,

people would prefer to 'check the status' of the person (usually in an unobtrusive

manner), although it is noticeable that this option was not suggested in the case of

the person being of considerably higher status, where 'knocking and waiting' is the

sole response.

Figure 4.4 shows the percentage frequency of responses when the door state is

closed and where the range of behaviours is greatest. In this case the options of

'walking in' or 'knocking and walking in' are both much less frequent. Instead there

is much more emphasis on 'knocking and waiting', on 'checking status' and on 'leaving

a note'. In the case of the person being of much higher status, the importance of a

surrogate in the form of a secretary is noticeable.

4.3.5 Analysis: Generating Cues and Actions

It is clear that the frame elicitation exercise above can provide information on both

the cues that are used, and the actions that are selected from the available options.

In the first instance, it has suggested that three significantly different door states

open, ajar, and closed may be enough to cover most situations. In the second, it

has generated a set of seven different actions that are described in Table 4.1. Finally,

the analysis suggests that informant's actions are influenced by the state of the office

door, and by their status or role with respect to the door's owner. It has therefore

shown that these are two of the cues that might be required.

These findings suggest that the TelePort system could use three different iconic

representations of an office door to represent users of an office-based broad band

telecommunications system. Further, the set of actions can form the basis for com-

71

munication functionality that makes sense to the user and which is grounded in the

user's everyday experience of communication at work. At the simplest level, the ac

tions listed in Table 4.1 can be translated into a set of menu options that are available

to users. Thus 'knock and enter' can create a bi-directional audio and video connec

tion whilst playing a suitable sound effect to warn the recipient that the connection

is being made; 'knock and wait' can invoke the sound effect alone together with a di

alogue box requesting a connection that can then be acknowledged or ignored by the

recipient; 'leave a message' invokes an email or voice mail tool; whilst 'check status'

can invoke a short unidirectional video-only connection to the recipient's office (cf.

glance service in [49]).

It can be seen that the perceived social status (i.e. role relative to the informant) of

the person has an effect on the options that are deemed to be acceptable. Few people

for example, are prepared to walk straight in to the office of their Director if the door

is open, but will do so to a colleague or to their immediate superior. Similarly, in

the case of a closed door, people will attempt to attract their superior's attention

by knocking and waiting for a reply; under no circumstances would they initiate

communication without acknowledgement from the other that such communication

would be acceptable.

This finding is important because it implies that if the final system provides

methods of initiating communication based on the phrases elicited (e.g. knock and

wait, knock and enter etc.) and uses the office door to represent availability, it is

possible that the system will not need to explicitly implement particular access rules.

This is therefore suggestive evidence that the approach outlined in previous chapters

may be successful. In the case of the TelePori system the social rules that are apparent

from the preceding results and discussion, and which are explicitly instantiated in

systems that do embed social models, are implicitly invoked by the use of the office

door as a representation.

In this situation, it may be unnecessary to explicitly define access privileges be-

72

cause users will be able to select appropriate behaviour using the same social rules

that govern the interactions involving real world office doors. Further, the social

mechanisms that prevent the breaking of those rules in their everyday world may

well act to prevent transgression in a computer-supported audio-visual environment.

If this is the case, then the system will have succeeded in lifting elements of control

from the technical to the social level (cL [50]) because the social rules are no longer

embedded within the system, but rather the user is supported in making appropriate

choices about what to do in a given situation. This hypothesis can only be confirmed

by examining the patterns of behaviour over an extended period of system usage and,

as such, is an area for future work.

4.4 Limitations of the Method

Whilst this chapter has demonstrated the utility of one specific data collection

method in the elicitation of 'cues' and 'actions', the method is certainly no panacea.

Proponents of the method from within cognitive anthropology itself have often noted

that such language oriented methods can only access information that a person can

actually articulate [67]. Thus whilst it may be a useful method of getting at what

people think they know, and can talk about, it may not be a sufficient method for

eliciting what people will actually do in given situations - rather it captures what they

say they will do, which may not be the same thing at all. Therefore, as has been

discussed elsewhere [10], 'formal' elicitation methods such as frame analysis should

not completely supplant observational field methods which, it is claimed, are more

likely to uncover the subtle details of interaction.

In addition, it is openly acknowledged that the use of glosses and grouplI1g of

phrases can effectively 'drown out' subtle details and differences between responses

[3]. The trade-off between the detail provided by observational methods and the kind

of broad 'design-ready' results of the frame elicitation method described, is one that is

73

currently attracting much attention elsewhere in CSCW and HCI (cf. [121,12,134,6].

It is an open question, and therefore a possible area for further work, whether

or not an observational study of people's behaviour with respect to their office doors

and their availability would have added significantly to the design resources generated

by the frame analysis reported in this chapter. One obvious limitation was that the

frame analysis clearly focused on the state of the door, and the identity of the door's

owner as useful cues. This precluded the elicitation of other potential cues which may

be just as significant and which may have been uncovered in previous experiments or

by other observational studies. As the next chapter will describe, a number of other

resources have been used to develop the user interface for the TelePort prototype

which draw, in turn, on both observational studies and on experimental experiences

with this kind of system. As many authors have noted, users often make use of

information that is unintentionally provided by the system and use the system III

un-anticipated ways [120]. Thus, another open research issue and one which can also

only be addressed through a long term user study, is whether TelePort users make

use of cues other than those intentionally provided by the system, and through their

use, can enhance the awareness information it provides. Such information can then

be fed into any further design cycles the system may undergo.

4.5 Summary

This chapter has introduced the case study of design that constitutes the core

practical work reported by this dissertation. The case study involved the redesign and

re-implementation of the Doors Media Space system to take account of the conception

of rules and rule use developed in Chapter 2 and the use of the design framework

developed in Chapter 3.

This chapter then reported a study that used methods derived from Cognitive

Anthropology to elicit the cues that workers use in deciding how to communicate

74

with colleagues in an office-based environment. Fur.ther, it has used these methods

to determine what actions users might expect to be supported by a system that

provides management of multimedia conferencing calls. In generating such resources

for design, these methods have demonstrated their value to a design process that seeks

to concentrate on options for action and cues for behaviour. It has been possible to

derive resources that suggest ways in which the interface can enable users to decide

for themselves what actions are appropriate in a given context. In particular it has

demonstrated how grounding the functionality in common everyday activities, such as

entering an office, can not only provide a rich resource for design but can also provide

users with ready-made and familiar cues. If systems are to support the kind of social

control that the idea of 'options' and 'actions' recommends, then such familiarity is

likely to be an important factor in the initial usability of the system.

The next chapters describe the user interface and system architecture of the Tele

Port prototype in some detail, showing how the implementation draws on the re

sources described in this chapter, and how the design focus of supporting 'cues' and

'actions' impacts on both user interface and architectural issues in a variety of ways.

75

Chapter 5

TelePort: User Interface

76

5.1 Introduction

This chapter describes the specification and implementation of the TelePort user

interface. It therefore focuses directly on how the cues and actions generated in the

previous chapter, and the general design framework developed in Chapter 3 impact

upon the user interface and the design decisions that must be taken during its im

plementation. As was mentioned in the previous chapter, the first section draws

in other resources that have identified potential cues and likely actions from other

experimental systems or from observational studies. These are used to enrich the re

sources generated by the frame elicitation. The chapter then demonstrates how these

resources can be used to generate user interface designs and how these specifications

can then be implemented'. At each stage, the impact of the focus on 'cues' and

'actions' is discussed as it affects the design process.·

5.2 Awareness cues and communication actions:

Other sources

Thus far, this dissertation has described the elicitation of the actions listed in

Table 4.1, and the cues based on the state of an office door, together with the name

and status of the door's owner. These cues appear to provide relevant information to

workers on the availability of another for communication and also, in the case where

the other is not known, the person's relative status through name, title and position

since all of these affect appropriate behaviour.

However, as was discussed in Section 4.4, the frame elicitation has focused solely on

the cues of door state and identity. Other recently reported work aimed at supporting

1 It should be noted that attention was not given to the design of the user interface in terms
of metaphors used, GUI layout and other 'usability' issues - the use of the 'door' is well-known in
awareness systems. The system reported here is a re-implementation of a previous system, 'Doors'
[11], in the context of the arguments being made by this dissertation.

77

intra-group informal awareness has suggested a number of other possible cues, actions

and/or useful information which a system such as TelePort may need to support

[108, 149, 78, 60]:

• Time and place: In a distributed group information on the local time and

the current geographical location of a user (through an active badge system for

example) can be important.

• Fine grained activity: Activity cues such as time since last keyboard action,

current login status, whether or not currently in a video conference, making a

telephone call and if so with whom.

• Contact Information: Email address, World Wide Web Home Page, Tele

phone number.

• Software in use: To enable fluid transitions from single-user to multi-user

work, cues such as what document or object is currently being used or edited

may be important.

• Coarse grained activity: Enabling users to transmit a short text message

indicating current activity.

• Capability: In a heterogeneous environment it is unlikely that all users will

have access to all the media tools through, for example, lack of appropriate

hardware. Enabling users to be aware of the constraints on potential callees

before initiating a communications action avoids the failure of calls for these

reasons.

In addition, the media space work described in previous chapters has highlighted

the need for other communications functionality:

78

• Email: If, for some reason, real time communication is not appropriate or

cannot be achieved, other methods should be provided. Electronic mail is one

such method.

• Shared work tools: Much communication is about some topic or artefact

rather than for its own sake. In order to increase the utility of a call manager

such as TelePort the integration of shared work tools such as whiteboards and

text editors is essential.

Clearly then, the development of a usefully functional system needs to incorporate

many of these features. This impacts in two ways -. firstly at the user interface and

secondly at the architectural levels. The next section shows how the user interface

elements may be combined in such a way as to remain faithful to the principle of

enabling users to exercise social control by mapping the cues to the actions themselves.

The architectural issues this raises are discussed in detail in Chapter 6.

5.3 TelePort user interface: Specifications

Thus, in re-implementing Doors to provide an integration of these cues and actions,

TelePort draws its design from both the literature and also from a study of potential

users' likely communication behaviour. This section outlines the user interface and

the describes the communications functionality (actions) provided at a relatively high

level.

TelePort is designed to provide the user with a range of telecommunications ac

tions:

• Knock: Make a request for a video conference to a particular user.

• Knock and Enter: Initiate a video conference without a request.

• Glance: Make a short one way video only connection to a particular user.

79

• Workspace: Initiate a shared whiteboard session with a particular user

• Email: Email the user.

• View WWW Home Page: View the user's world wide web home page.

In order to enable users to locate others, and then to initiate these actions, Tele

Port must provide awareness information about each user. Once a user has started

TelePort the client needs to receive information from other clients in the same 'aware

ness group'. This information can then be used used to build a participants list of

who is also in the group which would provide users with a general idea of who is

around. The availability state of each user must also be represented and the other

cues derived from the information received from that user's client must be displayed

in the interface so the users can decide which of the actions is appropriate at a given

time. The cues provided by TelePort are:

• User's name.

• Local time at user's location.

• User's iconic door state - set by each user.

• Current status of user in TelePort application - III conference, glancing etc.

Includes names of others involved so that users can see who is talking to whom,

and the nature of that communication. Note that this status information is not

linked to the state of the door - a person may be involved in a video conference

but may still have their door 'open'.

• A short textual note that users can edit.

• Audio capability: whether user can send/receive packet audio.

• Video capability: whether user can send/receive packet video.

80

-- Note ----
Olr---_ Remote user's door

Own door Configuration options
=,-~--

Participant's list

Figure 5.1: TelePort user interface sketch

The user interface for the TelePort application can integrate the functionality and

cues by providing three main user interface components a.'3 shown in Figure 5.l:

• Main Window: Should enable user to set and configure information being

sent such as their name, the state of their door, the textual note and whether

or not they can send or receive the various media.

• Participants List: Frequently updated list of who else has joined the 'aware-

ness group'.

• User Door: Individual user doors each representing one of the members of

the group. This component can also display the other awareness information or

cues and can provide the actions via standard interface widgets such as menus.

If the design is to take account of the view of rules and rule use developed in previous

chapters, it is vital that the user interface, and indeed the system in general, should

avoid implementing a set of social rules that map certain configurations of cues onto

particular 'permissible' actions. Thus, TelePort should not map awareness cues to

telecommunications actions so that, unlike the CAVECAT or Doors systems, TelePort

should not prohibit certain actions when the door is in a certain state, nor should it

81

Figure 5.2: TelePort User Interface (x 0.5).

prevent a user from making a 'knock' or 'glance' (or any other) request even if the

recipient is currently in a conference with someone else. Thus, all potential actions

should be available all the time - there should be no disabling of particular menu

items when the user's door is in a particular state, or when a user is in a conference.

As argued in previous chapters, TelePort should seek only to provide the user with

sufficient cues with which to decide upon appropriate courses of action. It should

therefore be the user who decides whether or not to knock, to glance to to 'walk in'

depending on their current knowledge of the person in question, their situation and

the context. The next sections describes how this is realised in the implementation

of these specifications.

5.4 TelePort user interface: Implementation

As will be described in more detail in Chapter 6, the TelePort system is imple

mented in Tk, the interface building portion of Tcl/Tk a freely available interpreted

scripting language [118J. Tk is based on the Xlib toolkit and provides standard in-

82

terface widgets that are compliant with the Open Software Foundation's Motif user

interface recommendations on any X Windows platform. TelePort's user interface is

implemented in approximately 1442 lines of Tcl/Tk code which is included in this

dissertation as Appendix C.

Figures 5.2, 5.3 and 5.4 show screens hots of the TelePort interface in use. Fig

ure 5.2 shows the main window on the top left, with the participants list on the top

right. The main window enables the user to alter the state of their door using the

three buttons at the bottom. The large image is updated as soon as the user changes

the state of the door and this change in state is immediately sent to the other mem

bers of the awareness group. Users can alter the information that is sent about their

media capabilities using the radio buttons on the right. The field immediately above

the large door image indicates whether or not the user is currently in a conference that

TelePort knows about. This is exactly the same text string that will be displayed to

other users. The field at the bottom of the main window, marked with an 'i', provides

the user with feedback about what TelePort is currently doing. The participants list

is a simple scroll able list box and a particular user's door can be viewed by clicking on

their name. Feedback within the list box indicates which user's doors can be viewed

- TelePort does not draw a user's own door as it would be identical to that displayed

in the main window itself. However, all members of the awareness group, including

the user, are shown in the participants list.

The Edit menu provides access to the user's preferences which consist of the

information depicted in the main window, together with:

• Users name: As it appears in the participant's list and in the title bar of 'their

door'.

• Telephone Number: For the case where reliable audio or more forced contact

is required.

• Email Address: To allow users to email a participant who is not responding

83

or is unavailable .

• World Wide Web Home page: To allow users to point other participants

to information about themselves or their group .

• Sound effects volume: To allow users to set the volume at which sound effects

are played on their works tat ion.

Each of these preferences is editable, any changes made are saved to a preferences file

and are sent to the other TelePort clients. The Show menu enables the user to view

the participants list window. It also gives access to a panel of network information.

The Help menu item provides access to built-in help and to further information via

URLs.

In the lower middle of Figure 5.2 is a smaller window representing' Adam Bridgen'.

Adam has set his door to ajar, is not currently in a conference that TelePort knows

about and can send and receive audio and video and his local time is 15:01. He has

edited his text message to indicate that he has gone to a MEMO project meeting

in the office of one of the researchers (RPK). The menu button at the bottom of

this window activates a pull-down menu which provides access to the communication

actions.

Figure 5.3 shows Ben's door and the set of options for action that are available via

a pull-down menu. As previously mentioned, these actions are available at any time

irrespective of the state of the user's door or the other cues provided by the user or

the system. It is therefore possible, at any time, to 'glance' at Ben or to 'knock and

walk in' - it is entirely up to the user to decide whether such actions are appropriate

at a gi ven time'.

Figure 5.4 provides a view of the user 'glancing' at Ben. The window on the left

shows Ben's door, the window in the lower centre is the video stream from Ben's

'Note that this policy means that the locus of control is very much with the initiator of the action
rather than with the recipient who is unable to 'physically' prevent unwanted access. This point is
examined in more detail in later sections.

84

Figure 5.3: Menu of options for action on a user's 'door' (x 0.5).

Figure 5.4: Using TelcPort to glance at a colleague (x O .. S).

85

camera and the window on the right is the main window of the vie video tool that is

used to send, receive and display video (see Chapter 6). Ben is obviously not in view

of the camera and so the glancer may resort to email or may 'knock' hoping that Ben

was simply in a part of the room that was out of camera view

5.5 Summary

This chapter has described the user interface of the TelePort prototype. It has

described the major features of the user interface has discussed the manner in which

the design principles outlined in earlier chapters have been incorporated into the user

interface.

The implementation of the user interface to TelePort had three core aims:

• The provision of a usable interface to the multimedia user services.

• Incorporate the design principles outlined in Chapter 2.

• Use the design framework outlined in Chapter 3

In order to satisfy the first aim, the user interface design drew on a number of similar
,

systems which have been shown to be effective [49, 11J. In particular, it uses the

metaphor of an 'office door' to represent the availability state of a particular user,

together with related metaphors of 'knocking' and 'glancing' to refer to particular

services as is shown in Figure 5.3. The major part of the interface therefore consists

of a set of user's doors, the state of which is set by the door's 'owner' as shown in

Figure 5.4. Each of these doors also provides the menu of service options that may be

requested so that it is clear to a user which member of the group they are attempting

to communicate with.

In order to satisfy the second and third aims, the user interface design has been

constructed using the framework of providing options for action and cues for be

haviour.

86

The next chapter shows how the functional requirements generated in this and

the previous chapters intermesh with the demands of the design framework outlined

in Chapter 3, and how this impacts upon the system architecture that underlies

TelePort's user interface.

87

Chapter 6

TelePort: System Architecture

88

6.1 Introduction

This chapter documents the design and implementation of the TelePort prototype

multimedia conference control system. After providing an overview of the system, the

prototype's architectural model and communication protocols are described with par

ticular attention given to showing how the system implementation uses the framework

of options for action and cues for behaviour.

6.2 Definitions

Given that the exact meanings of many of the terms used in this chapter vary in

the current CSCW and Telecommunications literature, the following definitions are

made:

Media Service: - low level media transmission. Examples include audio, video,

shared workspace data.

User Service: - any combination of a range of Media Services defined from the point

of view of the user. Examples include a 'glance', a 'conference' or an 'office

share'. Note that different user services may consist of identical combinations

of Media Services, differing only in their purpose (cf. [49]).

Client: - a TelePort application running on a particular workstation. A particular

client is usually associated with a single user or location.

Awareness Session: - a group of TelePort clients which are sending awareness in

formation to each other.

89

6.3 Platform

As mentioned in Chapter 5, TelePorl has been implemented using the Tcl-DP

[137) extensions to Tcl/Tk [l18)1 on a multicast enabled unix workstation running

SunOS 4.1.4 and Xl1R5.

Tcl is a freely distributed interpreted language that, combined with the Tk toolkit,

enables rapid prototyping on a variety of platforms including X, MS Windows and

Macintosh. The Tcl-DP extensions provide TCP /IP networking functionality that

are ideal for developing Internet Protocol (IP) based applications such as TelePorl.

Tcl/Tk was chosen as a development environment for the following reasons:

• Tcl/Tk provides a wide range of interface widgets that can be easily adapted

for most purposes.

• Tcl/Tk's interpreted nature means that the coding to testing cycle is foreshort

ened compared with equivalent development in a compiled language such as

C. However tcl code can also be compiled so that a binary distribution can be

made available whilst protecting intellectual and commercial rights to the code.

As a result, it has been possible to release pre-compiled binaries of TelePorl to

the Internet's multi cast backbone (MBONE) research community for trial use.

• Tcl/Tk is a widely used prototyping toolkit with significant user support through

newsgroups, mailing lists and other online and easily accessible resources.

• the Tcl-DP extensions provide sufficient IP functionality for TelePort's require

ments. It was therefore unnecessary to re-implement network code, saving con

siderable development effort.

• the video and audio tools used by TelePort are built from a a mixture of C++

(for the data processing and display) and Tcl/Tk (for the interface). As will

ISpecifically Tcl-DP3.3b and Tcl 7.4 / Tk 4.0

90

be discussed later this allows any other TcI/Tk application to remotely control

these media tools using TcI/Tk's built-in interprocess communication mecha-

nlSffi.

• Sun Microsystem's current effort to port TcI/Tk to the Windows and Macintosh

platforms mean that any TcI/Tk application will be able to run on any of

these platforms without alteration. Near future releases of TcI/Tk from Sun

will incorporate the IP functionality provided by TcI-DP. In this event, a small

amount of recoding effort should allow TelePort to be ported to these platforms

providing wider scope for future development and deployment.

• TcI/Tk is an easily extensible language - new tcl commands can be implemented

in C/C++ and added to those available in the core TcI/Tk distribution. Thus,

TcI/Tk applications can easily be extended to control new devices (such as

audio and video codecs for example) provided only that the drivers for such

devices can be controlled by C/C++ commands. Thus applications such as

TelePort that are built in TcI/Tk can easily be extended to remotely control an

immense range of telecommunications hardware across a variety of platforms.

• The combination of TcI/Tk's cross-platform portability and the use of IP mul

ticast and unicast as the network communication protocols means that the po

tential user group for TelePort is far larger than would have been the case had

a platform dependent toolkit and proprietary or untested protocols been used

2. In particular, this has enabled TelePort to be ported to the Sun's Solaris,

and Silicon Graphic's IRIX operating systems with very little effort.

TelePort is implemented completely in TcI-DP except for one additional C func-

2In essence TelePort will run on any machine that supports IP multi cast and on which Tcl
DP3.3b, and Tcl/Tk can be compiled. At the time of writing this means that TelePort can be
compiled for virtually any XII unix system. Although Macintosh and Windows95 versions of Tcl/Tk
do exist there is currently no built-in support for unicast UDP or IP multicast since a port of Tcl-DP
to these platforms is not yet complete.

91

tion used to return the current time in seconds which is unavailable through either

the Tcl-DP extensions or Tcl 7.4/Tk 4.0. The Tcl/Tk and C source code for TelePort

is included in this dissertation as Appendix C.

6.4 Software Architecture Overview

TelePort provides management of audio, video and data (media) conferencing

tools in order to provide a range of different kinds of user service. In essence, the

prototype provides users with the ability to set up, use and subsequently destroy,

communication connections. In order to do this, each TelePort client communicates

with its peers by means of a scalable group awareness protocol (GAP), which has

been developed specifically for this prototype. TelePort uses the GAP protocol to

transmit cues about the activity of each user to their colleagues in order to facilitate

the use of social cues in access control and privacy management. These cues are then

displayed by the user interface. TelePort uses the currently evolving session invitation

protocol (SIP) [85] to initiate point-to-point, and potentially multi point, user services.

It communicates with local media tools using the Tcl/Tk 'send' command [119].

Conference management, that is exchange of control information once a user service

has been initiated is supported by an extremely simple user service control protocol

(USCP) that has also been developed specifically for the TelePort prototype.

A TelePort awareness session is fully distributed; each user runs a client on their

workstation, with inter-process communication via unreliable IP multicast ensuring

that the system should be globally scalable. Each client maintains its own database

of the latest information sent by other members of the group so that the awareness

information is entirely replicated within each client - there is no centralised source of

data as was the case with the Doors system for example.

Figure 6.1 describes TelePort's general communications architecture. It shows how

TelePort clients communicate using the GAP, SIP and USCP protocols, and how each

I TelePort#l .,,, "
[MC, i

1 H video codec le

• •
j 1 audio codec I iIi

SIP

USCP

RTP

RTP

GAP

!
TelePort #2 I

~ ~ ~
i' ,,[MC

J I video codec H ~

V :

a I audio codec I ~

Y RTPISRMIUDP Y
I workspace tool I re ~ I works pace tool I

Key:

I TelePort #3 I

GAP: Group Awareness Protocol RTP: Real Time Transport Protocol

SIP: Session Invitation Protocol SRM: Scalable Reliable Multicast Protocol

USCP: User Service Control Protocol UDP: User Datagrnm Protocol

LMC: LocaJ Media Control

Figure 6.1: TelePortArchitecture

92

client controls its media tools (or other applications) using a 'local conference bus'

mechanism. In turn, each of these media tools use RTP (Real Time Transport, [131]),

SRM (Scalable Reliable Multicast, [66]) or plain UDP (User Datagram) protocols to

transmit their data as appropriate.

Note that as currently implemented, a user is able to run any number of TelePort

clients at a given time by using different multi cast addresses (usually allocated via

a multicast session directory tool, such as sdr [82]). It is unclear at present whether

this ability is beneficial - users may wish to be members of a number of different

'awareness groups' concurrently (if they are simultaneously members of a number of

different work groups for example), but this may lead to media and communication

conflicts.

93

6.5 Media Services

The user services provided by TelePort make use·of a number of 'low-level' media

tools that are responsible for the actual transmission and reception of data, be it

audio, video or some other form. In it's current implementation TelePort uses three

freely available applications that form part of the MBONE tool set.

Video Services are provided by vie [110], a software video codec developed by Steve

McCanne and Van Jacobson at Lawrence Berkeley Labs, UCB as an instanti

ation of the RTP protocol [131]. This tool, which is built as a hybrid Tcl/Tk

(for the user interface) and C++ (for the video coding/decoding) application,

is a highly flexible tool that can make use of a range of hardware devices to

capture and display video. It can also use a variety of network transport proto

cols (eg. IP multicast, ATM, RTIP) and supports a number of video encoding

formats (eg. MPEG, H261, JPEG). Whilst vic is intended to support multi

party videoconferencing, it can also be used as a point-to-point video conference

application. Further, the fact that it has a Tcl/Tk interpreter embedded within

it, means that it is highly user configurable and may be remotely controlled by

other Tcl/Tk applications. The source for vic has been made freely available as

are pre-compiled binaries for a number of systems.

Audio Services are provided by vat, a software audio codec developed by Steve

McCanne and Van Jacobson at Lawrence Berkeley Labs, UCB as an instantia

tion of the RTP protocol [131]. The tool uses a similar architecture to vic and

supports a number of audio encoding formats (eg. DVI, GSM). As with vic,

it has a Tcl/Tk interpreter embedded within it and so is ideal as a remotely

controllable audio tool. The source for vat has been made freely available as

are pre-compiled binaries for a number of systems.

94

Workspace services are provided by wb, a software whiteboard tool also developed

at Lawrence Berkeley Labs, UCB which uses reliable IP multicast to enable

distributed users to write/draw on, and import to, a common work space [66].

It is intended that future releases of the TelePort tool will enable users to add

other media services to those described above by extending the user interface to

include other media tools. Examples of these include the reliable audio tool, RAT

[154], the shared text editor, NTE [153], and other proprietary tools that are, as yet,

undeveloped.

6.6 Local Media Control

Local control of the audio and video tools is realised by the use of the Tcl/Tk

send command3 to pass procedure calls from TelePort to the local media tool. These

commands are interpreted by the tool and the result (if appropriate) is returned to

the TelePort application. Although vic and vat do not necessarily have hooks that

TelePort needs in order to provide the user services described in the previous section,

it is possible to add functionality to these tools because they automatically read in

and execute a Tcl/Tk script file from the user's HOME directory on start-up (usually

.vic.tcl or .vat.tcl as appropriate - see [111, 112]). TelePort relies on this mechanism

to add new commands to the tool's interpreter which are then used as needed during

the awareness session. As an example, when TelePort sends a 'tp-new-video' com

mand to vie, a command defined as tp-new-video in .vic.tcl will be executed - in this

case, it forces vic to create and use a new network video object. Other examples

include the ability to mute/unmute the microphone, close an audio connection, and

pause/unpause video transmission without the user needing to directly interact with

the vie/vat interfaces. Since it is important that these additional commands are not

3Due to changes in Tcl/Tk's send protocol, this means that the media tools must be using Tk
4.0. In addition, the send command will not work unless the X server is using Xauth or a similar
security mechanism - a built in security feature of Tcl/Tk

95

called by the media tool in other contexts, and so do not unexpectedly alter the

tool's standard behaviour, they are enclosed by procedures whose names are carefully

chosen to be specific to TelePort.

This mechanism is currently supported by the vic and vat tools, both of which

have an embedded Tcl/Tk interpreter. As is discussed below, the whiteboard tool,

wb, does not have an embedded Tcl/Tk interpreter and so cannot be controlled in

this manner.

6.7 Communication Protocols

As has been briefly mentioned, TelePort uses three distinct communication pro

tocols: GAP to distribute awareness information between TelePort clients, SIP to

initiate user services between those clients as requested by users and usep to control

the user service once it has been initiated.

6.7.1 GAP: The Group Awareness Protocol

The Group Awareness Protocol (GAP) is a scalable text-based protocol designed

primarily for the TelePort application, but it is also intended as a flexible protocol

that could be used and extended in future, or sibling systems" In order to act as a

general support for group awareness, GAP has the following requirements:

• It needs to support many to many transmission.

• It must be scalable so that the protocol can support groups of varying sizes

without unnecessary and excessive usage of network resources.

• It needs to be more or less reliable, that is users need to know that the awareness

information about another user is accurate or, if this is not the c"se, how likely

4BT is currently seeking patellt protection for some of the concepts and techniques reported in
this section.

96

it is to be inaccurate .

• It needs to be efficient. That is, it needs to transfer the maximum amount of

information using the minimum amount of data.

GAP draws heavily on a number of protocols that have previously been developed

for multimedia conference control such as Schooler's CCP [128] and Wakeman et

ai's CCCP [86] both of which have been suggested under the auspices of the IETF's

multimedia session control (MMUSIC) working group. It also draws inspiration from

work being carried out in the IETF's Audio-Video transport group, most notably the

Real Time Protocol (RTP) specification [131].

In order to fulfil the general requirements listed, GAP is a fundamentally lightweight

protocol that uses IP multi cast [47] to communicate awareness information between

TelePort clients. Each client is associated with a particular user on a particular

workstation and periodically multicasts awareness information about that user to the

specified IP multicast address on the specified port. The full protocol description is

provided in Appendix B, this section provides a summary of the important features

whilst an example of a GAP packet is provided in Table 6.1.

In common with other scalable IP multicast based protocols, GAP avoids the

overhead of maintaining a reliable list of members to whom information is explicitly

sent. Rather, it utilises the simple best-effort delivery of the basic IP multi cast

service model. In this model, data is sent to a particular IP multi cast address from

a given port, and any application that is listening on this address/port combination

can receive the data - there is no way for the sender to tell which, if any, of the

applications listening on the address/port actually received data, nor if there are any

such listening applications at all. As a result, network usage increases as a linear

factor of the number of group members who are actually sending data - the network

usage for a group of 10 members with one sender will be exadly the same as for

1000 members with one sender because those members do not explicitly exchange

97

any group membership data5 . As a result, GAP cannot ensure reliable delivery of a

given unit of information so there can be no guarantee that members of an awareness

session will have consistent records of each other's state. However GAP needs to

ensure some level of reliability of information about members of the group and to do

this it uses the same mechanism as other scalable multicast protocols such as RTCP

[131], namely the regular re-sending of current state information. Since each GAP

packet carries a 'sent at' time-stamp, each receiver can calculate the time elapsed

since it last received any information from that client, and hence the likelihood that

the information it has is inaccurate. Other user interface strategies outside the scope

of GAP that can also be used to offset this unreliability are discussed below.

The use of IP multicast has the secondary advantage that it enables the straight

forward capture of network activity since logging scripts can parse and record any

GAP packets received without impacting network usage since, as mentioned, members

of IP multicast groups can be receivers without being senders [47].

GAP packets consist of a standard set of header fields followed by any number

of further text fields. All of the fields are separated by the new line character. The

new line character is therefore not allowed as data in any of the fields. Each field has

the format 'x=y' where x is a unique identifier and where y is a string whose format

is determined by the identifier.

GAP's textual nature reflects it's initial implementation in Tcl/Tk. In common

with the IETF MMUSIC Working Group's Session Description Protocol [84], GAP is

not a high throughput protocol requiring many hundreds of packets to be parsed every

second, thus it's textual format (and hence human-readable nature) is not expected

to reduce computational efficiency.

GAP uses 2 different packet types:

5For a detailed explanation of the implications this model has for scalability with respect to
multiple data senders and listeners the reader is directed to Steve Deering's PhD dissertation [47].
A consideration of a scalable, reliable multicast prot.ocol for use where guaranteed delivery is essential
is provided by Floyd et aI's discussion of their whiteboard tool, wb [66].

98

Item Example Definition
0 v=GAP /1.0 INFO Version Type
1 id=8975664 ID
2 ntp-457386765 NTP Time Stamp
3 cn=ben@128.125.110.123 Canonical name
4 seq=1 Sequence number
5 n-Ben Anderson (LUT,UK) Name
6 t=14:22 Local Time
7 u=http://www-rs.cs.lut.ac.uk/ben URI for more info
8 e=B.Anderson@lut.ac.uk Email
9 p=+44 (0)1509 222689 Telephone
10 ca=158.125.5.11/5536747:Glancing at Jon Current activity
11 ca=158.125.5.11/4345667:Whiteboard with Adam Current acti vi ty
12 i=doorstate:open State of user's 'door'
13 i=note:Gone to lunch Short text message
14 i=havevideo If user can send video
15 i=havespeaker If user has speaker
16 i=havemic If user has microphone

Table 6.1: Example GAP 'INFO' packet

INFO Packet This packet contains awareness information about the particular Tele

Port client that sent it. This information consists of the cues generated in

Chapters 4 and 5 (see Table 6.1).

BYE Packet A packet multicast when a member leaves the session by quiting the

TelePort application.

As mentioned, the INFO packet is repeatedly multicast after a given random

time period. This time period is recalculated at each send and the value of the

time period depends on the number of members in a particular session so that no

TelePort session, whatever the scale, should use more than a set bandwidth for inter

peer communication purposes. The algorithm used by a GAP client is more or less

identical to that specified for RTCP and the tcl code used to implement it is provided

in Appendix C. Brieily, a client divides the allocated bandwidth (bytes per second)

by the product of the number of GAP clients it knows about and the mean GAP

99

packet size (in bytes). It then multiplies the result by a random factor in the range

0.5 to 1..5. If the resulting periodicity is less than a 5 second time interval, then the

interval is set to 5, otherwise the calculated interval is used.

In common with its use in RTCP [131]' this algorithm provides:

• protection against bursts of GAP packets that might exceed the allocated band

width when group membership is small and when the traffic is not smoothed

by random factors.

• protection against unintended synchronisation. In addition the first packet sent

is delayed by a random variation of half the minimum time interval to prevent

synchronisation between clients joining a session simultaneously.

• a dynamic calculation of the mean packet size to allow automatic adaptation

as the amount of awareness information sent varies.

• protection against extremely small resend intervals if a session has few members.

If a member of an awareness session is not heard from for a given time period,

they are kept as possible members of the session but the user interface reflects the fact

that they may be uncontactable and that their state information may be inaccurate.

Experience with the RTP tools vic (cf. [llO]) and vat suggests that this can be an

appropriate way to offset the inherently unreliable nature of the lightweight group

membership model adopted by RTCP and so it might be expected to be equally

appropriate for GAP clients. The RTP draft recommends that si tes (clients) that

have not been heard from for 5 report intervals may be marked as inactive but that

sites should not be discounted from the total number of participants for a further 30

minutes to span typical network partitions [131J. In order to investigate the utility

of these recommendations for the distribution of awareness information rather than

real-time control data, TclcPori adopts the same timeouL algorithms.

100

Note that by varying the bandwidth allocated to the GAP client, the rate of update

of awareness information within the group can be altered. It is expected that different

kinds of GAP clients will have different requirements for the rate of propagation of

such information. In addition, it may be prudent to reduce the allocated bandwidth

as the ttl (or physical scope) of the awareness session increases in order to avoid

overloading lower bandwidth wide area networks. This is common practice in the use

of other experimental IP multi cast applications at the present time.

As mentioned, the unreliable nature of basic IP multicast means that the in

formation held by a particular client about another member of the session may be

inaccurate due to network or application errors. This problem is resolved using an

implicit synchronisation mechanism which causes peers to correct the information

they hold about other members of the awareness session such that they are more

likely to be consistent without having to take any explicit action to do so. This is

supported in TelePort by the frequent multicast of state and by a two-stage check

when a service is requested.

Frequent multicasting of state: Even in a relatively high-loss network the fre

quent multicast of state should provide sufficiently up to date status informa

tion to automatically correct most state errors. As mentioned, this approach

has been experimentally illustrated elsewhere by IP multicast based RTP [131]

and SRM [66] tools. If the bandwidth allocated to a GAP client is high then

correction of inconsistencies will occur much more rapidly.

Two stage check: When a service is requested, TelePort checks it's local state ta

ble to determine whether or not the other client is currently in a SIP initiated

session before sending a service request. If the client is in such a session, the

user is presented with the option to force a service request to be sent. If the

recipient is indeed busy, this request may generate a 'busy' reply thus confirm

ing the validity of the original local state table. On the other hand, if this

101

'forced' request is accepted and a service is created then the state table will be

synchronised automatically by the service set-up procedures.

Taken individually, neither of the above could ensure a high degree of synchronisation.

When combined however, it seems likely that the two implicit mechanisms will be

effective given the relatively low frequency with which users will interact with the

system. If this is the case it may be that similar future systems will not need relatively

expensive explicit synchronisation mechanisms provided that the possibility of such

inconsistency is made clear to the user through the user interface. Note also that in

the case of the two-stage check, TelePort allows a user to send a request to another

user who appears to be already busy. Such a policy is a result of considering this

design decision in the light of the framework described in Chapter 3. This will be

discussed in more detail in Chapter 8.

6.7.2 SIP: Session Invitation Protocol

TelePort uses the SIP [85] protocol to initiate user services. SIP is a relatively

simple protocol that is being evolved by the IETF MMUSIC Working Group to

address the problem of inviting users to take part in multimedia conferencing sessions.

SIP uses the SDP [84] syntax to describe invitations and TelePort leverages this by

using it's own specific session attribute. This is described in some detail in Section 6.8.

6.7.3 USCP: User Service Control Protocol

TelePort uses a simple session control protocol to manage the user services fol

lowing initiation. In it's current instantiation, this is used to inform a TelePort client

when one member of a one-to-one user service no longer wishes to participate by

sending a 'disconnect' message.

USCP adopts the same service monel as SIP, that is it relies on best effort UDP

delivery of datagrams and uses a re-send mechanism with a linearly increasing time

102

Item Example Definition
0 v= USCP /1.0 DISCONNECT Version Type
1 ntp=888173030 NTP timestamp
2 cn=ben@128.125.11O.123 Canonical name
3 id= 128.125.110.113/237488 SIP id of conference being left

Table 6.2: Example USCP 'DISCONNECT' packet

interval to provide a level of reliability. TelePort's current restriction to point-to-point

services means that the use of unicast UDP is sufficient. In the case where a multi point

control protocol is required, if TelePort supported many to many conferences for

example, a protocol such as CCCP [86] or SCCP [26] would be needed. This is left

to future work.

An example of a USCP DISCONNECT packet is provided in Table 6.2. Lines

o and 1 form a standard USCP header; line 0 provides a definition of the protocol

version and the USCP message type whilst line 1 is an ntp timestamp which gives

receivers information on whether or not this packet has been delayed. Subsequent

lines determine the canonical name of the client that sent the packet and the SIP id

of the conference concerned.

6.8 TelePort User Services

The user services presented as options in the user interface are created by com

bining the media tools in a number of different ways:

Glance: The glancee's video tool is configured to receive video with the appropriate

parameters. The glancee's TelePort client plays a short 'door creaking' sound

effect and the video tool sends a short low bandwidth video stream to the

glancer. A dialog box indicates to the glancee who is glancing.

Knock: Request a connection - the recipient's TelePort client plays a 'knock' sound

effect and displays a dialog box requesting a connection. If the user accepts the

------------ -- --

103

request, TelePort launches vic and vat with appropriate parameters and sends

a suitable response to the sending client. This client then launches its media

tools. Both clients force their media tools to start sending video (in the case of

vic) and unmute the mic (in the case of vat).

Knock and Enter: Set up a connection without request. The recipient plays a

'knock and door clicks open' sound effect and then launches vic and vat with

appropriate parameters. On receiving a suitable response, the client that sent

the original request launches its media tools. As above, both clients force their

media tools to start sending video and unmute the mic respectively.

Workspace Launch the whiteboard tool. The TelePort client that received the

request displays a dialog box to the user. If the user accepts the request, each

client launches the whiteboard tool with the appropriate parameters.

TelePort also provides access to two other user services via external applications:

Email: Electronic Mail to contact a member of a session.

URI Request: View a member's world wide web (WWW) home page.

Users initiate a particular user service by selecting from the menu of actions on

a particular user's door (see Figure 5.3). TelePort sends this service request to the

client as a SIP request and adds this service to the list of conferences in which the

user is currently engaged. If this service should fail or when the service is completed,

it is then removed from the list of current conferences. Similarly, when a TelePort

client receives a SIP request it adds the service to its own list of current conferences.

This list is then suitably updated if the service fails, or when it is concluded.

TelePort uses the SDP session attribute tpservice: to define its user services and

to use these definitions to differentiate between kinds of invitation. This is not the

intended 11se of SDP's session attribute descrivtion mechanismG and current discussion

6Mark Handley, personal communication. See also [84J.

104

within the MMUSIC working group is focusing on whether SIP needs to support

'invitation attributes' as distinct from 'session' (ie. user service) attributes. As will

be made clear below, such a distinction allows SIP clients to differentiate between

invitation types whose media service descriptions are identical- 'knock' vs 'knock and

enter' for example. Experience with experimental media space systems such as RAVE

have suggested that this can be an important way to support user's requirements

for different kinds of communication actions even though the underlying technology

requirements might be the same [50].

It is important to note that in it's current implementation, TelePorl clients will

process user service requests from other members of the session without regard to the

current activity of the client (or user). It is therefore possible for a user to interrupt

an on-going conference by sending a 'glance' or 'knock' or even 'walk in' request to

either of the two conferees. Whilst this may appear to compromise privacy, such

an implementation policy follows the principle of not embedding rules of access into

the system itself. Instead, the fact that two members are engaged in a conference

is available from GAP and so can be displayed in a GAP client's user interface. If

that third user wishes to interrupt an ongoing conference then the system, by the

arguments outlined in earlier chapters, should not refuse access although it may, as

is the case with TelePort provide a user interface dialog warning the user{s) that an

interruption is about to take place.

6.8.1 Glance

A 'glance' consists of a 5 second one-way vicleo only connection analogous to

looking briefly through an office door. The state transitions for the 'glance' user

servIce are shown in Figure 6.2 whilst the format of the SIP request is given in

Table 6.3.

At start-up, TelePort launches one instantiation of the video tool which runs

permanently in the background. This particular video tool is used exclusively by

Item
0
1
2
3
4
5
6
7
9
10
11
12
13
14
15

Example Definition
SIP/l.O REQ Version Type
PA=158.125.5.11 Path
AU=none Authority
ID=158.125.5.11/5536747 Invitation ID
FR=B.Anderson@lut.ac.uk From
TO=J .P.Knight@lut.ac.uk To
v=O SDP version
o=ben 5536747 0 IN IP4 158.125.5.11 Origin
s=Glancing at Jon Name
i=left blank Information
e=B.Anderson@lut.ac.uk Email
c=IN IP4 158.125.5.11 Connection Details
t= 3452334100 3452334150 Timing Information
a=tpservice:GLANCE A ttri bu te field
m=video 5646 RTP H261 Media field

Table 6.3: SIP packet for 'Glance' user-service

!
TrlrPort'l Tdr 112

······•··· •........ Sll'.Rrfl'!.m
·····iip .. R~~~;;;,~:··················· .. '

.................................. r-----'-__.,
Initlali!ICI rodec (vie)

StartJ ""nding vllb)

DispLayl video

Usu ScrvK:c IIddW III

cunwUy .. "live list

User SCl"iicc rcmov.:d
Imm C1.IrrenUy active list

Figure 6.2: System States for 'Glance' Service

105

106

Item Definition Example
0 SIP/l.O REQ Version Type
1 PA=158.125.5.11 Path
2 AU=none Authority
3 ID=158.125.5.11/5536747 Invitation ID
4 FR=B.Anderson@lut.ac.uk From
5 TO=J .P.Knight@lut.ac.uk To
6 v=O SDP version
7 o=ben 5536747 1 IN IP4 158.125.5.11 Origin
9 s=Knocking at Jon Name
10 i=left blank Information
11 e=B.Anderson@lut.ac.uk Email
12 c=IN IP4 158.125.5.11 Connection Details
13 t= 0 0 Timing Information
14 a=tpservice:KNOCK Attribute field
15 m=video 52345 RTP H261 Media field
15 m=audio 20101 RTP PCMU Media field

Table 6.4: SIP packet for 'Knock' user-service

the 'glance' user service in order to provide a sufficiently rapid response to a 'glance'

request by avoiding the delay needed to launch the tool before video can be sent.

As Figure 6.2 shows, TelePort #1 (glancer) sends a glance request and, if suc

cessful, adds the service to its 'currently active' list and configures its glance video

tool to receive and display video from TelePort #2 (glancee). If able to send video,

TelePort #2 adds the service to its 'currently active' list and configures its glance

video tool to send video to the glancer. ~t then sends video for a period of 5 seconds.

If TelePort #2 is unable to send video for any reason, the request fails and both

clients remove the service from their 'currently active' lists. This also occurs when

the glance is complete - ie. after 5 seconds of video. No uscr messages are sent.

6.8.2 Knock

TckPol1 11
~~I(SJP'

··················c····"'.· ----,

......... ;!.~~ ... _ ... _ !~~ ylCl ServIa: ad<b,I 10

lnitlafuel aJ4ea (vie.viII) J InItlallies adea (vic.YaI.)

l!:aIaMli~J

~~~~~:~~::;~;::~~ 

K-- -- - -- - -- - - - - ------
I Cotrf~~n(~C(IftlrolfUSCP} 

~y..:tiVl:list 

User Service n:moved £mm 

C\II'TentlyllCti\'l: lisl 

Figure 6.3: System States for 'Knock' Service 

107 

The 'Knock' user service is a request for a two way audio and video conference. The 

successful initiation of the conference requires explicit acceptance by the receiver of 

the request. The state transitions for the 'knock' user service are shown in Figure 6.3 

whilst the format of the SIP request is given in Table 6.4. 

As Figure 6.3 shows, TelePort #1 sends a knock request to TelePort #2 which 

plays a 'knocking' sound effect and draws a dialog box requesting user #2 to accept, 

reject or ignore the request. If the user does not respond, a BUSY SIP response is sent 

after a timeout period. If user #2 accepted the request, TelePort #1 adds the service 

to its 'currently active' list and launches a new video and audio tool configured with 

the connection information returned in TelePort #2's response. If a success reply was 

sent, TelePort #2 adds the service to its 'currently active' list and launches a new 

video and audio tool configured with the connection information it just sent back to 

TelePort #1. Both TelePort clients force the video tool to start sending video and 

force the audio tool to unmute the microphone so that audio and video connectivity 

is as rapid as possible. If the processing of the request fails at any point a FAILED 



fflIIIUt(SJP) 

........... 

·~(SIP' 

....... ;:: ... ~ .. ~ .. !!:.i~·~~ ...... l· = .. ~"':.:::; ... n __ •• n ____ ~~~~m _______ •• __ :::;~U:IO 
(lnitialisa ~ (vie .... ) ) (lnitialilcl co:kca (vie ..... ) 

I j 

r~~~l r=~~l 

(C'OICaudioromcction.l rcloseaudioCDlllleClion l 
......... I··:1·"""················~~r::········· User Service rrmoved from 

curnntly active list 

Figure 6.4: System States for 'Knock and Enter' Service 

108 

SIP response is sent and both clients remove the service from their 'currently active' 

lists. 

Either of the two participants can terminate the subsequent conference by sending 

a USCP DISCONNECT message which causes each TelePort client to kill the relevant 

media tools. At this point the two TelePort clients remove the service from their 

'currently active' lists. 

Note that since this request is for a potentially unbounded conference, the time 

values are set to zero (cf. [84]). 

6.8.3 Knock and Enter 

The 'knock and enter' user service is a two way audio and video conference created 

without requesting permission from the other participant, analogous to walking in to 

someone's office and announcing your presence by tapping on the door as you do so. 

The state transitions for the 'knock and enter' user service are shown in Figure 6.4 

whilst the format of the SIP request is given in Table 6.5. 

As Figure 6.4 shows, there is very little difference between this user service and a 



109 

Item Definition Example 
0 SIP/l.O REQ Version Type 
1 PA=158.125.5.ll Path 
2 AU=none Authority 
3 ID= 158.125.5.11/5536747 Invitation ID 
4 FR=B.Anderson@lut.ac.uk From 
5 TO=J .P.Knight@lut.ac.uk To 
6 v=O SDP version 
7 o=ben 5536747 1 IN IP4 158.125.5.ll Origin 
9 s=Connecting to Jon Name 
10 i=left blank Information 
II e=B.Anderson@lut.ac.uk Email 
12 c=IN IP4 158.125.5.ll Connection Details 
13 t= 0 0 Timing Information 
14 a=tpservice:CONNECT Attribute field 
15 m=video 52345 RTP H261 Media field 
15 m=audio 20101 RTP PCMU Media field 

Table 6.5: SIP packet for 'Knock and Enter' user-service 

'knock' with the notable exception that the conference is initiated without requiring 

permission from the receiver of the request. 

Note that there is no difference between the SIP requests made for a 'Knock' user 

service and a 'Knock and Enter' user service other than the SDP session attribute 

line. This is a pertinent example of how the media service description (ie. the SDP 

description) of two user services can be fundamentally the same but the invitation 

type, and therefore the way in which the application's user interface presents it, is 

distinctly different. 

6.8.4 Workspace 

The 'whiteboard' user service provides a persistent shared whiteboard connection 

between the participants. Normally such a whiteboard service would be requested 

during an ongoing conference but this is not necessarily the case and TelePort does 



110 

Item Definition Example 
0 SIP/l.O REQ Version Type 
1 PA=158.125.5.11 Path 
2 AU-none Authority 
3 ID=158.125.5.11/ 55367 4 7 Invitation ID 
4 FR=B.Anderson@lut.ac.uk From 
5 TO=J .P.Knight@lut.ac.uk To 
6 v=O SDP version 
7 o=ben 5536747 1 IN IP4 158.125.5.11 Origin 
9 s= Whiteboard session with Jon Name 
10 i=left blank Information 
11 e=B.Anderson@lut.ac.uk Email 
12 c=IN IP4 158.125.5.11 Connection Details 
13 t= 0 0 Timing Information 
14 a=tpservice: WHITEBOARD Attribute field 
15 m=whiteboard 34858 UDP WB Media field 

Table 6.6: SIP packet for 'Workspace' user-service 

Tdf,Portfl TdrPort'2 
mtUU1(SJP/ 

starts workspacc tool J 

[<::::::: ""'""':::::. 
Worbpau (RTP/SRMPIUDPI 

User quits w<.rl3p8cc tool UIoeI quits worbpao:: wo. 

I I 

Figure 6.5: System States for 'Workspace' Service 



111 

not enforce this. Here again is an example of how TelePort avoids embedding any 

assumptions about what users may want to do and when - instead users can request a 

whiteboard service at any time, even if not currently involved in a conference with the 

other user. The state transitions of the service are shown in Figure 6.5. An example 

of the format of the SIP request sent is given in Table 6.6. 

Note that in it's current implementation, the whiteboard tool, wb, does not contain 

an embedded Tcl/Tk interpreter. This means that it cannot be remotely controlled 

via TelePort's media control mechanism. As a result, a TelePort client does not 

update its 'current activity' list if a whiteboard request is received because it cannot 

force the whiteboard application to quit (or know when the user has done so), and 

therefore could not know when to remove the record from the list. 

6.8.5 Email 

The current version of TelePort does not implement an integrated email tool. 

Thus this service is no more than a dialog box displaying the particular member's 

email address. The user can use the X-selection mechanism to copy this to their 

normal email tool. 

6.8.6 URI Request 

As with Email, the current version of TelePort does not implement an integrated 

WWW browser. Thus this service is no more than a dialog box displaying the partic

ular member's home URI. The user can use the X-selection mechanism to copy this 

to their normal WWW browser. 



112 

6.9 Summary 

This chapter has described the system architecture of the TelePort prototype. It 

has described the architectural model upon which the implementation is based and 

given an overview of the communication protocol by which peer TelePort applica

tions exchange session information. It has also described the manner in which the 

design principles outlined in earlier chapters have been incorporated into the TelePort 

system. 



Chapter 7 

TelePort In Use: Experiences and 

Analysis 

ll3 



114 

7.1 Introduction 

TelePort was used as a research prototype between May and July 1996 as part 

of ongoing experimentation with multi cast IP tools at Loughborough University of 

Technology. In particular it has provided support for a loosely associated group of 4 

to 6 graduate students and researchers based in the Departments of Computer Studies 

and Electrical Engineering. TelePort has also been used experimentally within BT 

Labs both as a demonstration of current IETF activity and as part of a suite of 

evolving tools for integrated services on digital networks. In addition, TelePort has 

been made available in binary form to the IETF's multiparty multimedia session 

control working group (MMUSIC) as one of only two current implementations of 

the group's SIP protocol. Experience gained during the implementation and use of 

TelePort have been fed back into this working group. Compiled alpha level binaries 

for a number of unix platforms are freely available from 

http://pipkin.lut.ac.uk/-ben/PHD/alpha/ 

for evaluation purposes!. These binaries have been compiled using the freely available 

Embedded Tk [95J processing macros which process Tcl/Tk scripts into strings that 

are embedded within compilable C code. Compiling the resultant C code against the 

Tcl/Tk libraries produces an executable binary which can then be distributed whilst 

maintaining protection of copyright or patented material. 

This chapter provides an analysis of TelePort as a group awareness tool- it reports 

user experiences with the TelePort prototype and the issues that usage has raised, 

and it provides an analysis of technical issues such as the scalability of GAP and the 

utility of different invitation types in SIP. 

1 Note that BT retains all rights to these binaries and is seeking legal protection for the ideas and 
concepts contained wi thin them 



115 

7.2 User Interface Issues 

Whilst formal or systematic usability trials were never intended to form part of 

the work reported in this dissertation, the usage of TelePorl over a period of time has 

achieved two aims. Firstly, it has demonstrated that the prototype is a functional, 

usable CSCW system and secondly it has raised a number of interesting issues related 

to this particular user interface and to awareness tools in general. 

7.2.1 General Comments 

During trials at LUT, TelePorl has been used as a way of discovering the where

abouts and availability of researchers in preparation for more focused meetings. One 

particular example involved an awareness session that was run to 1) test an alpha 

version of the TelePorl client and 2) to support awareness between the small group 

who were helping to debug that version. On a number of occasions, members of the 

group glanced at each other to see who was around and currently in which office so 

that they could initiate debugging conversations. Since most of the members of this 

group were working on different research projects, they were often not all available at 

the same time due to meetings and off-site visits. As a result of being aware of this, 

TelePorl users would circulate bug reports and possible solutions by email. They 

would often then refer to this permanent resource when, for example, a serendipi

tous meeting in one researcher's office was discovered by a remote member, via a 

'glance'. This remote member would then join in the discussion and often start a 

shared whiteboard so that they could look, together, at the code itself. 

It was noticeable that earlier versions of the TelePort tool which did not enable 

users to start the whiteboard would often force the group to physically meet in an 

office in order to have the code in front of them. Once TelePorl enabled them to ex

arnille the code together without having to co-locate, this practice generally stopped. 

Whilst, again, this is an informal observation, it appears that even though a system 



116 

that provides glances and video conferences can be a good way to coordinate work, 

it does not actually support the work itself when that work is artefact based. Similar 

findings have been reported in the Media Space literature and it implies that systems 

such as TelePort must be able to smoothly integrate work tools as well as audio or 

video based coordination tools. Further, it must be possible to move smoothly from 

single-user situation to a multi-user situation with the minimum of effort [93J. 

In general there have been few comments on the ease of use, or otherwise, of 

the user interface itself. This is probably due to the use of the familiar Motif-like 

widgets provided by Tcl/Tk. In addition the user groups have been, for the most 

part, interested researchers who tend to focus attention more on system and network 

functionality than on the interface itself. 

A number of users have noted that the ability to reduce the volume of the auditory 

icons is particularly important when TelePort is used in an open or shared office 

situation. In addition there was often some confusion as to the origin of a knock 

- some users reported checking their workstation screen for a TelePort dialog box 

when in fact someone was outside their physical door and, vice versa, checking to see 

if someone was outside their door when in fact it was a TelePort request. 

7.2.2 Tailorability 

Users quite quickly discovered that they could edit the graphical icons used in 

TelePort. The icons used to represent door states are read in from GIF files by 

TelePort at start-up time and it was suggested that a simple way to enable users 

to tailor their representations would be for TelePort to distribute these images in 

real time. Thus if a user wanted to 'change their door' in any way, all they would 

need to do is create their own G IF files and have their TelePort client display and 

hence circulate them to the other members of the group. A number of mechanisms 

for achieving this could be considered. It would, for example, be trivially easy for 

TelePorl to read in all the GIF files with a certain name (such as door-state-x.gif) 



117 

and enable the users to select from amongst these using buttons or a menu. These 

images could then be multicast in real time to the other members of the session using 

an implementation of Floyd et ai's scalable reliable multicast framework [66J. 

Some users discovered that TelePort also used' external audio files to provide 

auditory icons and that by replacing these files with sounds of their own making, 

they could avoid the "where did that knock come from?" problem mentioned above. 

Again, it would be trivially easy to implement a mechanism for users to select from 

amongst a range of sounds for any particular event as has been implemented in 

the RAVE system [72J. It should be noted however that this could result in users 

incorrectly expecting certain sounds to be played at another user's workstation which 

may cause a certain amount of confusion. 

7.2.3 Privacy and Control 

The ability to immediately see from the user interface who was involved in 'con

ferences' with others provoked considerable debate. Some users suggested that this 

was an invasion of privacy whilst others mentioned particular instances when it had 

been useful such as interrupting an ongoing conference to announce the start of a 

meeting that both participants should have been attending. 

As was mentioned in Section 5.4 the policy of not embedding social rules into 

the system has resulted in the locus of control being passed to the initiator rather 

than the recipient. In the light of the various studies of MediaSpace technologies 

mentioned previously, it might be expected that in this situation users may choose to 

disconnect their cameras and microphones or even quit the application in cases where 

they feel social constraints or the cues provided by the system are insufficient. The 

point at which users feel social control must be augmented by embedded constraints 

indicates the limits of the approach proposed by this dissertation. The location of 

this limit for particular situations or systems is currently unclear. What does seem 

clear is that a system such as TelePort needs to be able to provide a range of privacy 



ll8 

measures that are under user control. One of the key issues appears to be knowing 

who had access to 'your' awareness information - in larger, more public groups, it was 

clear that users would not want details of activities to be broadcast whilst in smaller 

groups where the members knew each other relatively well, this was less important. 

A number of users remarked that they might be interested in being members of 

multiple awareness sessions at anyone time which raises a number of interface, and 

also architectural issues. It is not at all clear how much awareness information should 

be shared between different awareness sessions in order to enable users to regulate 

their access through social controls based on cues derived from that information. 

7.3 Technical Issues 

7.3.1 Behaviour of the Group Awareness Protocol 

The behaviour of the group awareness protocol was an important consideration in 

the design of the TelePort prototype. Figures 7.1 to 7.5 show the results of a number 

of simulations of the behaviour of GAP under different conditions. As previously 

described, GAP uses the same algorithm as RTCP to calculate the interval between 

multicasts of the INFO packet. This time interval is therefore dependent upon the 

bandwidth that is reserved for the awareness session, the number of members of the 

session and the mean INFO packet size. Informal observations have suggested that 

the mean packet size tends to vary between 230 and 280 bytes with most of the 

within-session variation due to changes in member's current activity lists. Each of 

the simulations reported in this section assumed a mean packet size of 240 bytes, 

maintained a constant bandwidth value, and varied the group membership randomly 

to provide 100 data points representing the calculated time interval. The authors of 

the RTP protocol suggest that the algorithm provides fast response for small sessions 

where identification, and in the case of GAP, 'freshness' of information might be crit-



119 

ical but also provides automatic adaptation for large sessions. These figures illustrate 

precisely this principle. 

1300 

1200 

1100 , 
1000 

900 

5 800 

700 : 

600 .. 
500 : 

.' 

400 .. . . 
300 ;0 ... 

. . 
. . . 

200 • °
0

' • • 

100 -.\0:. 
.. 

0 
0 200 400 600 800 1000 

N 
Figure 7.1: GAP resend interval (5 seconds) against number of session members (N) 
where 0 < N < 1000, bandwidth = 0.25 bytes/s and mean GAP packet size = 240 
bytes 

Figure 7.1 shows a simulation of the behaviour of GAP given a set bandwidth of 

0.25 bytes/s as group membership varies between 1 and 1000. As would be expected 

from the algorithm, there is clear linear relationship between group membership and 

the length of the time interval whilst the interval varies randomly between an upper 

and lower bound. The lower bound is set by the bandwidth limitation and ensures 

scalability through self-regulation of network usage whilst the upper bound ensures 

that the time interval is as reasonably small as possible to ensure that information 

is sent in a timely manner. It is interesting to note that a GAP session with a 

set bandwidth of 0.25 bytes/s rapidly forces intervals in excess of 300 seconds (5 



120 

minutes) once group membership exceeds about 200. At present there appears to be 

no empirical evidence to determine whether or not this is an adequate rate at which to 

circulate awareness information. Further, there appears to be no evidence suggesting 

how large awareness groups are likely to get nor what fraction of an organisation's 

network resources may be usefully dedicated to sessions of varying size and purpose. 

It may be that large sessions such as 'everyone in the organisation' are appropriate 

for low bandwidth, and hence low periodicity and low reliability of information whilst 

more focused sessions such as for a project group may need to be more reliably and 

rapidly updated, requiring a higher set bandwidth. It is for this reason that GAP 

does not define a particular bandwidth, and hence periodicity, but assumes that 

this decision is made on a per-session basis and handed to the GAP client by an 

appropriate session management application. Indeed it may be appropriate for GAP 

clients to allow users to increase the bandwidth devoted to the session in which they 

are involved, in which case GAP must provide a means for clients to exchange this 

information in order that they can continue to calculate appropriate time intervals. 

The authors of RTP suggest the the RTCP report interval is only expected to usefully 

scale to 2-5 minutes, but it is unclear whether this also holds for awareness information 

and hence for GAP. 

Figures 7.2 and 7.3 show the effect of increasing the available bandwidth for a GAP 

session. Clearly, as bandwidth increases, the calculated time interval for a given mem

bership does not need to be as great. This confirms the suggestion made in Chapter 6 

that GAP clients requiring a greater frequency of information update need only in

crease the bandwidth devoted to the session. Thus a session with a set bandwidth 

of only 1.0 bytes/s ensures that the time interval when membership approaches 1000 

is about 300 seconds (5 minutes). This membership size is apprmtchiug that which 

would be expected for a campus-sized organisation and, as previously mentioned, it 

may be that a 300 second time interval for such a general awareness session may be 

sufficient. Again, only longer term empirical studies of usage and user feedback can 



121 

700 

600 ... .. 
500 .. .. . 
400 . . .: .. . 
300 

. . 
8 .. . . 

200 •• 0 .. . . 
. .. . , . 

100 . ,. 
,: I' 

00. :: 0" . 
0 

. 
0 200 400 600 800 1000 

N 
Figure 7.2: GAP resend interval (8 seconds) against number of session members (N) 
where 0 < N < 1000, bandwidth = 0.5 bytes/s and mean GAP packet size = 240 
bytes 

8 

700 

600 

500 

400 

300 
200 .- • ...... 

0 0 : °
0 

'"0 • • • . ... . 
100 .... .... ... . .... . ..,.. '. 

.. .. 
'. .' . . 

.. ... .. . o ~~~-----,----,----.----~ 
o 200 400 600 800 1000 

N 
Figure 7.3: GAP resend interval (8 seconds) against number of session members (N) 
where 1 < N < 1000, bandwidth = 1.0 bytes/s and mean GAP packet size = 240 
bytes 



122 

confirm this. 

As a further example of GAP's scalability, Figure 7.4 shows the effect of increasing 

the available bandwidth to 128 bytes/sec whilst allowing membership to reach 10000. 

Such a membership size would be appropriate for a campus or enterprise-wide aware

ness session, perhaps where each workstation runs a GAP client. It is clear from the 

graph that, given this bandwidth, even a group size as large as 10000 does not force 

a time interval greater than 30 seconds thus ensuring that awareness information is 

updated relatively frequently. Given that even an ethernet-based enterprise network 

could provide a shareable bandwidth resource of up to 10Mb/s, the reservation of 

a continuous 128 bytes/s stream for a campus-wide GAP session may not be prob

lematic. As above, only further implementation and trial usage in various network 

contexts can confirm this. 

The final simulation, shown III Figure 7.5, shows the behaviour of GAP where 

membership is small and bandwidth is maintained at 0.5 bytes/so Here, the time 

interval can be seen to correspond to the minimum resend interval (set to 5 sec

onds) until the membership approaches 14 or 15. The time interval then increases 

to about 70 seconds when membership approaches 100. As could be seen from Fig

ure 7.4, increasing the allocated bandwidth would have the primary effect of allowing 

a larger membership before the time interval starts to be significantly larger than the 

minimum. It also reduces the rate at which the interval subsequently increases. 

7.3.2 Predefined User Services 

Tt has been noted elsewhere that it can be useful to predefine a number of user 

services - examples of this include 'office share', 'glance' and 'video conference' [49J. 

In this context, TelePort provides two predefined user services - a 'glance' and a 

video conference which can be initiated in one of two ways ('knock' or 'knock and 

enter'). By providing such predefined user services, it is possible to hide much of 

the service description from the user, and to remove the need for extensive parsing 



140 

120 

100 

5 80 

60 

40 
20 .00 0 oO~o . . "... " ~ . . .° 0 _ .... __ ... ,:e. "'10.:° ,0' •. , ••••• o +----,----,----,----,----, 

o 2000 4000 6000 8000 10000 
N 

123 

Figure 7.4: GAP res end interval (5 seconds) against number of session members (N) 
where 1 < N < 10000, bandwidth = 128 bytes/s and mean GAP packet size = 240 
bytes 

75 

60 

45 
00 

0
0 

0 

5 30 
0 

0
0 

15 r. -0 00 

°0 • .:. • 

-0 0 • 0 _o-
D 

0 20 40 60 80 100 
N 

Figure 7.5: GAP resend interval (5 seconds) against number of session members (N) 
where 1 < N < 100, bandwidth = 0.5 bytes/s and mean GAP packet size = 240 
bytes 



124 

of that description. In the case of TelePort's 'glance' service for example, the media 

description is largely redundant because the SDP session attribute field defines the 

request (see Section 6.8). However such an approach would prevent a SIP client that 

did not understand the service definition from parsing a 'glance' request and it is for 

this reason that the SDP authors recommend using implicit mechanisms for defining 

user services2
• Currently, the title and session description fields in SDP are used by 

session creators to provide information on what the session might be expected to be 

- a meeting, a lecture or a conference - which, together with the other fields, enable 

an extremely rich yet compact description of a user service. As an example, a glance 

service can be described as a low bandwidth, send-only video session with a timespan 

of a few seconds all of which can easily be encoded using SDP. 

However, experience with TelePort coupled with that from other trials of Media 

Space systems, suggests that extending the use of SDP from announced sessions 

to descriptions of personal calls (as is envisaged with SIP) might necessitate the 

provision of a number of predefined user services, such as glance, videophone or office 

share, in order to 'bootstrap' the user by providing familiar communications actions. 

However, once users become familiar with these predefined user services, the ability 

to manufacture and define their own from the basic media services available is likely 

to support flexible usage over time. Which predefined services will be necessary in 

particular contexts and for particular SIP clients such as TelePorl is an interesting 

area for future work. 

7.3.3 Distinguishing Invitation Types 

In providing two ways of initiating an audio/video conference - 'knock' and 'knock 

and enter' - TelePort is an illustration of the advantage of distinguishing between dif

ferent kinds of invitation. In the first instance, users request participation whilst 

2M. Handley, email to MMUSIC Working Group mailing list. 
ftp://ftp.isi.edu/confctrl/confcrtl.mail. 

Archived at 



125 

In the second it is forced. That these two methods of starting an interaction are 

distinctly different was demonstrated in Chapter 4 and is confirmed hy informal ob

servation - users make specific choices about which to use in particular circumstances. 

It therefore seems likely that an invitation protocol, such as SIP, needs to provide a 

mechanism by which different kinds of invitation can be defined. Indeed the imple

mentation in TelePort of a range of potential actions that are initiated using SIP has 

necessitated it. Since SIP does not currently support this, TelePort uses the SDP 

session attribute to define invitation types in addition to user services. A cleaner 

solution would be to redefine SIP to allow an invitation attribute field so that clients 

that understand particular attributes can act accordingly. As with the SDP session 

attribute, it is likely that SIP clients will need to be configurable in their interpreta

tion and presentation of different attributes. It is currently unclear if it is possible, or 

even desirable, to attempt to define a set of invitation types. Whilst those defined by 

TelePorl namely KNOCK and CONNECT, may be a sufficient basis, different appli

cation developers and user groups will have different requirements. It may be that, 

as with user service descriptions, SIP needs to provide some way in which users can 

define their own invitation types. Quite how SIP clients should deal with unknown 

invitation types is, however, an open question. 

7.3.4 Awareness Information: 'Pull' vs 'Push' 

Approaches to the provision of awareness information can be categorised in two 

ways: 

• Information Pull 

• Information Push 

In the case of information pull, a user who wants information about someone 

else explicitly requests it from some sort of awareness server or daemon process. 

Examples of this include the unix finger, ruser and who commands as well as 



126 

more recently developed examples that use http servers as front ends to 'directory' or 

location services (cf. [78, 81 D. In contrast, information push categorises systems such 

as TelePort which do not require explicit action by the receiver of the information 

because a process associated with each user pushes out information on a regular basis. 

Which of these methods is the most efficient largely depends on the context of use, 

in particular the size of the group involved and the likelihood of anyone member of 

the group needing to see information about any other member. Thus, whilst it would 

be possible to build a global user location service on a push system such as TelePort 

a more efficient architecture may be a mix of the two so that a person's location and 

current activity can be pulled from a server in much the same way as querying a 

remote finger daemon. The results of this query could be returned to the enquirer in 

a form suitable for passing to a SIP client such as TelePort or sdr [82]. Such a server 

might, in turn, maintain up to date information about all the users on that campus 

by listening on a locally scoped low bandwidth GAP session. A similar architecture 

has been proposed as part of the MMUSIC User Location service [129] and it may be 

that a composite of these proposals and GAP can provide an infrastructure for both 

user location and group awareness on a global scale. 

7.4 Summary 

In Chapter 4 it was stated that this case study was to act as a vehicle for the 

investigation of: 

• general support for workplace awareness 

• issues arising from the use of JP multicast tools and evolving IETF protocols 

to implement Media Spaces 

• the smooth integration of tools other than audio and video into ~ Media Space 



127 

This chapter has described how the usage of the TelePort prototype has enabled 

reflection on these issues. 

User feedback from trials of the TelePort prototype have raised general issues such 

as problems that arise when real world cues that might be expected to naturally occur 

in the user's physical works pace are used in a Media Space system. Thus there can 

be confusion about the source of the knock sound effect if it is too realistic it lwise. 

Future Media Space systems may therefore need to use sound effects that, whilst 

evoking concepts from the real world, are different enough to prevent confusion. It is 

interesting to note that this reflects the finding that highly realistic metaphor based 

interfaces can cause users severe usability problems because the interface objects are 

assumed to behave as they would in the real world, when in fact they do not [11]. 

At the technical level, TelePort has provided an excellent vehicle for the imple

mentation and review of a number of communication protocols that are crucial to the 

IETF's efforts to define a multimedia conferencing architecture for the Internet. In 

particular TelePort is one of only two existent implementations of the SIP protocol 

and, as this chapter has described, it has provided considerable feedback on the draft 

proposal. In particular, it has highlighted the need to distinguish between different 

invitation types and to provide predefined user services. TelePort also serves as an 

example of information push and this chapter has briefly discussed this in the context 

of current 'awareness servers' and of draft plans for a global user location service for 

the Internet. The TelePort prototype provides an excellent research vehicle for the 

further investigation of these issues. 

Finally, the chapter has provided an analysis of the group awareness protocol used 

by TelePort. It has shown, through the use of simulation, how GAP scales as group 

membership increases from a few users to thousands. It has also shown that the 

mechanisms for distributing awareness information provided by GAP can be effective 

in at leest the local area network environment. Future trials of TelePort in the wide 

area are needed to confirm that these simulations are reliable. Such trials, and the 



128 

implementation of other GAP clients are also essential to determine whether or not 

GAP as defined in this dissertation can effectively support a range of awareness groups 

each of which may have different information dissemination requirements. 



129 

Chapter 8 

Case Study Analysis: An Exercise 

in Respecification 



130 

8.1 Introduction 

Chapters 4 to 7 have described the design, implementation and use of the TelePort 

prototype as a case study in design that has been based on the framework developed 

in Chapters 2 and 3. The introduction to this case study in Chapter 4 set out its 

primary aims which were to: 

• explore the framework through a practical example 

• explore methods required by the framework 

• show that design using the framework could produce a working system 

The discussions in the previous chapter have shown that the TelePort prototype 

is a working, functional system that can be, and has been, used to support awareness 

between groups of workers who share a common interest. It should therefore be 

apparent that the case study has achieved its aim of building a functional CSCW 

system. The remainder of this chapter provides an analysis of, and reflection upon 

the case study in order to demonstrate the practical implications of the framework 

for the design process. It therefore shows how the case study explored the framework 

and demonstrates its utility. 

Chapter 2 described a conception of rules and rule-use that has far-reaching im

plications for the nature of interactive systems, and for the way in which they are 

implemented. In order to provide a framework that practitioners can use to take 

account of this alternative view during design, Chapter 3 proposed a characterisation 

of interactive systems, and of CSCW systems in particular, as the mapping of cues to 

actions. It was shown that in some systems, this mapping is enforced by an embed

ded rule-based model, whilst in others the mapping has been left to the users. The 

chapter showed that it is possible to characterise a range of systems in this way and 

provided examples such as The Coordinator, where the mapping from cues to actions 

is enforced by the system; and GroupDesign, where the mappings are left to the users. 



131 

As Chapter 3 made clear, characterising the systems in this way emphasises the dif

ferences between those which enable flexible use by not enforcing the mappings, and 

those which do not provide flexible use because the mappings are under system con

trol. The discussion of the range of examples provided, coupled with the discussion 

of the use of these systems in Chapter 2, suggests that these distinctions are reflected 

in practice and therefore that this conceptualisation is valid. 

Previous chapters have suggested that conceptualising the system in this way has 

proved useful in flagging design issues and subsequently informing implementation de

cisions at both the user interface and the architectural levels. Whilst recognising that 

interface and architectural issues are often intimately linked, this chapter discusses 

each of these in turn. 

8.2 Cues and Actions: Characterising Systems 

The conceptualisation of systems in terms of cues and actions has shown that 

any system will have some system imposed constraints or rules because the practical 

nature of design is an articulation of for whom and to do what [127J.As a result systems 

are designed and built to do certain things and generally for particular groups of 

users. This design base provides the constraints within which any practitioner works 

and which, therefore, determine the scope of the system - as users, we would not 

necessarily expect a system such as TelePort to provide word processing functions 

- such functionality lies outside the basic design constraints. However, within this 

design 'space' it is also clear that constraints can be made physical or can be left 

to cultural regulation. Systems can therefore be seen to exist on a continuum from 

an extreme position where all constraints are encoded, to the other where virtually 

none are encoded. Examples of the former include The Coordinator [158J and many 

experimental workflow systems (cL [ID, whilst examples of the latter include a number 

of recent realtime collaborative work systems (eg. [105, 62, 153D and, in fact, most 



132 

email systems. If systems are considered to lie on this continuum, then a key design 

question becomes "how much of the mappings should be encoded, and how much 

should be left to the users?" This is quite clearly a decision on implementation 

policy and as such is highly dependent on the intent behind design. As was argued 

in previous chapters, designers who want to build flexible systems need to be made 

aware of when their implementation policy is leading them to encode social rules. 

Thus designers need to keep asking themselves "is encoding this model/rule going to 

constrain users? Do I want to do that?" 

Thus far, this dissertation has argued that characterising systems in terms of the 

cues they provide, the actions they afford and the mappings between the two can be 

used to aid the design of flexible systems. If systems can be characterised in this way, 

and the dissertation suggests that they can, designers can proceed by making decisions 

about which of the mappings should be enforced and which should not. However, it is 

currently extremely unclear what kinds of rules should and should not be embedded 

in systems for particular contexts and activities although this dissertation argues that 

systems to support predominantly social behaviour and to support work activities do 

need to be highly flexible. 

Taken to an extreme the principle of not embedding the mappmgs within the 

computational system might suggest that no rules or constraints should be built into 

the system at all. In the context of an awareness system such as that developed as 

part of this dissertation this may not be problematic although, as was mentioned 

earlier, users may wish to be able to set system imposed constraints on behaviour in 

order to ensure privacy. However, there are clearly types of system where embedding 

rules could be an advantage. An obvious example of such a system is that of safety

critical process control systems where certain rules regarding permissable actions 

may be required to prevent disasterous operator error. What does seem clear is that 

the continuum of flexibility can be articulated in terms of the degree to which the 

mappings between cues and actions are encoded or embedded within the system. 



133 

Mapping this continuum in these terms may therefore be a fruitful area for future 

work. 

The appraisal, in terms of cues and actions, of the range of systems described in 

Chapter 3 has also demonstrated that many applications can be characterised as if 

they had been implemented using this framework. In many cases it can be seen that 

the mappings between the two have become physical constraints on action so that 

even where users can perceive cues, they are subject to the system (ie. the designer's) 

interpretation of the meaning of those cues with respect to the model of interaction 

that is embedded within it. It is quite clear that users faced with these kinds of 

constraints become extremely frustrated - the computer will not let them do things 

that they feel are appropriate because their intended actions don't fit the system's 

model of what they should be doing. Recent studies of user's experiences with nascent 

Virtual Reality based CSCW systems have demonstrated precisely this effect [40J. 

Recent research in many groups interested in such systems has focused on developing 

more detailed and fine-grained models of interaction in order that they may form 

the basis for more flexible implementations (cf. [21]). However, the arguments put 

forward in this dissertation suggest that this is entirely the wrong approach. Rather 

than trying to develop an effective model of the mappings between cues (context) 

and actions, far more effective and flexible support for multi user interactions in such 

systems might be provided by developing more effective models of what cues people 

use in deciding what to do. These models can then be used to inform the design of VR 

CSCW systems which support social rather than technical regulation of behaviour. 

The characterisation of systems in terms of cues and actions also suggests that if a 

system is to enforce the mappings between cues and actions, it needs to access those 

cues in order to determine the context and so decide what the user is allowed to do. 

As Suchman made abundantly clear, the vast majority of the cues that humans use 

to work out the significance of prior responses or of the current situation are com

pletely inaccessible to current computational systems [147, pages 119-132J. Therefore, 



134 

systems that are intended to provide flexibility and context sensitivity through the 

application of models based on the interpretation of environmental cues, whatever 

their nature, are bound to fail. This is an extremely strong argument against the 

idea that 'intelligent' systems of any sort can be built on the basis of these concepts, 

and it is this which froms the core content of Suchman's book. In the context of this 

dissertation, these arguments suggest that systems which enforce mappings between 

cues and behaviour are likely to fail not just because their models are inflexible or 

partial, but simply because they are embedded within computational devices. 

8.3 Cues and Actions: Impacting Design 

Chapter 3 recommends using the conceptualisation of systems in terms of cues 

and actions to actually drive design. The premise is that by doing so, the design 

process will take into account the view of rules described in Chapter 2. 

If design is to progress from these concepts then it is clear that some way of 

generating or eliciting the cues that users might require, and the actions they might 

deem appropriate is needed. Chapter 4 describes the elicitation of cues and actions 

for the TelePort prototype using fieldwork methods derived from Cognitive Anthro

pology. Specifically, it proposed that frame analysis, where informants are asked to 

complete phrases or partial sentences, can produce cues and actions for particular cir

cumstances. The chapter then reported an exercise in the use of frames to generate 

cues for accessibility based on the state of a person's office door, and their relative 

social status within the organisation. The chapter therefore serves as an illustration 

of how design might begin to proceed on the basis of cues and actions. 

This exercise not only produced a tangible resource for design in terms of lists 

of cues that needed to be supported by the system, and actions users might expect, 

but also provided strong evidence that the approach of enabling users to make the 

mappings between cues and actions was likely to succeed. For example, it is clear from 



135 

the results reported in Chapter 4 that people will adjust their behaviour depending 

on the state of the door and who it belonged to. Furthermore, the elicitation of 

phrases such as "it was hanging off its hinges" coupled with "so I went to tell a 

policeman" demonstrates the fundamentally social nature of this regulation. Real 

transgressions are acted upon in situationally appropriate ways so it may be expected 

that transferring the ability for users to act in this way to a telecommunication system 

would, similarly, support social regulation of 'electronic transgressions'. 

Whilst the frame analysis approach appears to have derived cues and actions with 

some success, it is clear that, as a method, it is not comprehensive. Future design 

and implementation projects that use the conceptualisation of cues and actions might 

assess the utility of other, more naturalistic, fieldwork methods in the elicitation of 

cues and actions. It is interesting to note that many of the naturalistic studies of work 

cited in earlier chapters have tended to concentrate on work processes, presumably 

because the motivation is often an attempt to automate or 'otherwise improve' them 

(eg. [34, 87, 28]). It would be interesting to investigate the utility of these approaches 

given the refocusing from processes onto cues and actions that this dissertation rec

ommends. 

8.4 Cues and Actions: Impacting the User Inter

face 

Chapter 5 describes the way in which the results of the frame elicitation served as 

a resource for the user interface specification and implementation. It makes clear that 

such eiicitation, on its own, is not likely to be sufficient and may be supplemented by 

resources derived from other studies or from prior experience. 

By premising the TelePort system on the neen to provide cues and actions via the 

user interface, Chapter 5 shows how a range of system functionality can be specified 

that is consistent with what the user might expect to be able to do, and which is 



136 

presented in a familiar way. Thus, the options for action are labelled in ways that are 

directly derived from the frame elicitation - 'glance', 'knock', 'knock and enter' and 

so forth. Furthermore, the system functionality defined by these phrases is designed 

to correspond to the cues that the users might expect to initiate interaction. Thus 

a 'glance' is associated with a door creaking open and then shut, whilst a 'knock' 

generates a knocking sound. This functionality is then made available using a menu 

(in the case of TelePort) of possible actions that are always available for use. Whilst 

this point has been made before, it is worth reiterating: Chapters 2 and 3 suggest 

that the implementation of a flexible system must not embed social rules that might 

constrain use. Therefore, unlike the CAVECAT and Doors systems, TelePort does 

not disable any menu items - all potential actions are available all the time so that 

the users can decide what it is appropriate to do. Instead of explicit control TelePort, 

informed by the arguments of previous chapters, implements an implicit warning 

mechanism so that it warns users when they are about to do something that might 

effect others. Thus, if a user 'knocks' on the door of someone who is currently in a 

conference of some sort, it does not stop them from doing so, it merely warns them 

that this is about to happen. This then is another cue that supports social control -

users must decide whether or not it is appropriate to continue with the interruption. 

A similar mechanism for reminding users that they are about to do something that 

may go outside the system's model of what is appropriate is described in Dourish et 

aI's report of experience with the constraint based Freeflow workflow tool [53]. 

Similarly, the cues that are presented in the interface are based on the cues derived 

from the frame analysis - the state of the door, and the ability to make clear whose 

door it is - as well as from other sources. In implementing the user interface to display 

these cues, it became apparent that design choices on how to display the information 

were almost as influential on the use of the system as the presence or absence of the 

cues themselves. Thus it is extremely important to explore the designer's assumptions 

about what cues are best displayed in which ways. Users are well known to attend to 



137 

system features in many unanticipated ways in order to develop some understanding 

of what is going on [120J. It therefore seems vital that interfaces built around the 

provision of cues need to be, in some sense, transparent as well as configurable so that 

users can access cues that system designers had not anticipated they would require. 

This suggestion clearly parallels Dourish's work on reflective systems that can present 

accounts of themselves [51J in order to support tailorability and flexible use. It may 

be that open systems that are deeply configurable via computational reflection can 

provide an ideal basis for design based on the concepts of cues and actions since 

it might allow the user to configure the cues and actions themselves. This is an 

intriguing area for future work. 

8.5 Cues and Actions: Impacting the System Ar

chitecture 

It became clear at a number of points in the design process that design assump

tions were leading to the implementation of social rules as physical constraints. For 

example, early versions of the system used the information disseminated by the GAP 

protocol to prevent users from making SIP requests to other members who were 

currently involved in a conference. At this time, TelePort was implemented as a 

state-based system which could be either BUSY or IDLE and any TelePort client 

that was in the BUSY state refused to accept any SIP connections. On reflection, it 

was apparent that this was a clear instance of a simplified social rule - that interrup

tions should not be allowed - being embedded as a physical constraint in the system. 

There is clearly no justification for implementing this rule (ie. policy) in the TelePort 

system - interruptions are very often necessary and it is not for the system to make 

decisions in this respect. As a result, the system a.rchitecture was radically a.ltered to 

one that was stateless. Now, a TelePort client would not refuse a SIP request, relying 

instead on the user knowing that they were about to interrupt something, and having 



138 

decided that this was warranted. As a result, TelePorl needed to be able to display 

who was currently in a conference with whom, rather than merely that the client was 

'busy'. This could only be achieved by extending the GAP protocol to enable it to 

send reports of all the conferences in which it was currently active. As a result, the 

ca= fields described in Appendix B were added to the GAP specification. Thus, as a 

result of considering a design decision in the light of the arguments presented in ear

lier chapters of this dissertation, the architecture of the TelePort prototype, and the 

requirements for the GAP protocol were radically altered. Furthermore, the change 

in the TelePort architecture made the system far easier to implement because it no 

longer had to behave in accordance with specific system states, and did not reqUIre 

that its record of the state of another client be necessarily accurate. 

The GAP protocol was also influenced by the likelihood that future designers 

and users would want to be able to add additional cues (and actions) to their group 

awareness tools. Thus, GAP is designed to be openly extensible through the use of 

as many i= fields as necessary, and by the stipulation that GAP clients should ignore 

any fields whose contents they cannot parse. So, whilst GAP defines an initial core 

set of cues that might be useful for providing awareness, it makes no claims that 

these are sufficient or comprehensive. Further, GAP makes no stipulations about 

what information should be included (ie. what cues should be sent) since this is a 

policy decision that can be made during design, or by the users. In the latter case, 

the arguments put forward in earlier chapters suggest that users should be able to 

modify and hence control what information is sent. It is worth noting that users who 

decide not to send particular information do not necessarily impair the utility of the 

system because even the non-dissemination is a cue in itself. ... 

In addition, the use of the RTCP algorithm means that even if a GAP tool requires 

extra fields, the awareness session will continue to scale its network usage because the 

algorithm takes account of the size of the packets being sent. Finally, since the 

bandwidth allocated to a GAP session can be defined on a per-session basis, and the 



------------------------- ~ 

139 

value of that allocation automatically alters the rate at which GAP information is 

disseminated, a GAP session that requires information 'freshness' can achieve this by 

requesting higher bandwidth. These then are excellent examples of how designing on 

the basis of cues and actions can influence a system at all levels, not just at the user 

interface. 

Other design decisions that were influenced by the concepts of cues and actions, 

and of not enforcing the mappings between the two were: 

• Connection termination: In the Doors system, the model had been one of 'who

ever initiated the connection should close it' which was based on an analogy of 

walking into and out of offices via the door. However, usage of the Doors system 

suggested that this caused considerable confusion about who could and could 

not terminate the connection [ll]. As a result, TelePort makes no assumptions 

about who should terminate the call and allows each user to do so if they wish . 

• Whiteboard requests: TelePort allows a whiteboard service to be initiated at 

any point, irrespective of whether or not the participants are already in a con

ference. Thus, TelePort makes no assumptions about when a whiteboard can be 

used, relying on the users to have created the context for its use for themselves. 

Currently, if a user who is running two TelePort clients, and so is a member of 

2 sessions, requests a conference with a person in group #2, members of group #1 

would not become aware of this. A group #1 member could initiate a 'walk in' 

service with the member in both sessions who is not, apparently, in conference only 

to find that this action creates an interruption. Thus it would be important for users 

to be able to see with whom another session member is currently interacting, and 

what the nature of that interaction is, appears crucial in enabling them to decide 

what appropriate actions might be. One possible solution to this problem would be 

for multiple TelePort clients to adopt a local 'conference bus' mechanism similar to 

that used by a number of the media tools mentioned earlier to coordinate access to 



140 

hardware resources [110]. In this model, TelePort Clients on the same workstation 

would share a 'currently active' list so that each of these clients will be sending a 

list of all the current activity on that workstation. However, this also raises difficult 

privacy issues because a member of group #1 (Alice) may request a conference with 

another member of group #1 (Bob) and the existence of that conference may then be 

announced to all the awareness sessions of which Alice is a member, without Bob's 

knowledge. Therefore, it is extremely unclear what should be displayed to group #1 

about the activity of members of both group #1 and group #2. This is an interesting 

avenue of research because it is a problem that needs to be overcome if either GAP

based or awareness tools in general are to realise their potential [38]. 

Conceiving of, designing, and implementing the prototype in terms of cues and 

actions has prompted the inspection of TelePod's architecture for assumptions that 

have been embedded, and the provision of a rationale where this is the case. One 

such is the decision to force the video tools to start sending video and to force the 

audio tools to unmute their microphone as soon as a connection has been made. 

The decision to implement the assumption that users would prefer immediate audio 
I 

and video connectivity was based on literature suggesting that asymmetric audio and 

video connectivity can cause users to experience serious problems in coordinating the 

start of their interaction [91]. It may be that recipients of connection requests do not 

wish their audio channel to be automatically opened (for privacy reasons) in which 

case this implementation may need to be rethought. On the other hand, the warning 

that TelePod provides by way of sound effects may mean that this is not necessary 

because the imminence of an interruption is apparent and so users can adjust their 

behaviour accordingly. Only lengthy user evaluation could provide evidence for this. 

Other embedded assumptions include the nature of the telecommunications services 

available from the actions menu. For example, it is assumed that a glance should be 

unidirectional even though the occupier of an office often sees a person who peeks in; 

and that audio-only calls are not necessary when a combined video and audio call is 



141 

available. 

Perhaps the most important embedded constraint is that requests for video con

nections force the abortion of any current use of the video frame-grabber. This is 

not a design 'feature' made out of choice by TelePort but is forced by the inability of 

most current video capture cards to support more than one software codec at·a time. 

TelePort's policy of not preventing interruptions ought to mean that a particular 

user (Alice, say) can glance at another (Bob) who is currently in a videoconference 

with someone else (Charles) without affecting Bob and Charles' ability to see each 

other. However, this is impossible to achieve with current video capture hardware 

and software codecs which insist on exclusive access by a particular capture process. 

As a result, Bob and Charles's video· is interrupted whilst Alice is glancing because 

the video output cannot be replicated. Two solutions to this are possible - one is 

to enable a single codec to replicate its output, the second is to allow two or more 

codecs to share simultaneous access. It appears that current hardware and software 

codec architectures assume that access is required by only one process at a time and 

it seems equally clear that, in the case of multimedia telecommunications systems at 

least, this is not necessarily true. 

8.6 Cues and Actions: Tailorability and U nantici-

pated Use 

It was noted in Chapter 7 that users quite quickly noticed ways in which they 

could tailor TelePort to their own taste. In particular, some wanted to be able to 

introduce new cues into the system by altering the way in which their door was 

represented. Given the effect that personal status has on what is deemed to be , 
appropriate behaviour (cf. Chapter 4), it might be hypothesised that supporting such 

personalisation could make the social control of access even more effective. 

In addition, the ability to add new and different cues to the system is vital if it is 



142 

to support the ever changing nature of social circumstances and cultural norms. As 

Chapter 2 emphasised, cultural norms are fundamentally situated in time - they will 

change as members of a culture change their views on what is or is not appropriate 

behaviour. Such changes may be imposed from outside the group, such as by inten

tional organisational change, or be emergent through users finding unanticipated uses 

for the system [120], or simply through cultural evolution. Whatever the cause of the 

changes, it should be clear that any system which encodes the mappings between cues 

and actions cannot allow for cultural change without significant re-engineering. 

In contrast, a system that does not attempt to map cues to actions is neutral 

with respect to cultural change. Provided that the users continue to attend to the 

same cues, and require the same actions, the significance of each does not matter 

to the system. Thus users may completely reverse their view of what is and is not 

appropriate behaviour or they may attach new significances to the cues. The point 

is that it is the users who are attaching those significances and so it is they, not the 

system, which copes with the complexity of this change. 

In the case where users do want to add new cues and new actions, it is clear that 

systems need to be able to support them in doing so. As was made clear in previous 

sections of this chapter, TelePort provides a limited degree of tailorability - it supports 

the addition of new cues through the extendability of the group awareness protocol 

but does not, as yet, provide any way for these additional cues to be displayed in the 

user interface. Currently TelePort does not enable users to add new user services in 

order to define new actions. Whilst providing some sort of application programming 

interface (API) to systems of this sort may enable sufficient scope for tailorability, 

recent work suggests that an API may not suffice because it constrains the potential 

configurability according to the designer's assumptions about what may be needed 

[53]. The whole area of tailorable systems based on the concepts of cues and actions 

is therefore an obvious avenue for further research. 

These aspects of the design recommendations made by this thesis have far-reaching 









143 

implications. For example, systems built in this way may be easily adaptable to a 

range of customer requirements through the re-configuration of cues and actions. 

Systems can be designed to suit a particular culture and can then, if necessary be 

carefully redesigned if new cues and actions become necessary. Further, systems built 

in this way may turn out to be flexible enough to avoid becoming legacy systems when 

an organisation's practices change, since the practices of use are not rigidly enforced. 

8.7 Cues and Actions: Privacy, Social Control and 

Accountability 

In current design practice the electronic 'world' is commonly treated as if it were 

distinct from the physical 'world'. By this logic, the electronic world therefore needs 

to have its own regulatory policies to ensure that users do not abuse it (or each other) 

and it has been argued in previous chapters that this leads to the implementation of 

social rules. However, it seems that this distinction between 'real' and 'electronic' is 

not made by users in practice - a number of previous studies have demonstrated that 

people's behaviour in and through a media space is as available for social control as 

their real world behaviour (eg. [64,50]). People feel as acutely aware of the danger 

of invading another's privacy in a media space as they would in a physical space. 

As a result, cultures of use spontaneously develop around communication systems. 

Nowhere is this more apparent than in the online communities who use bulletin 

boards, usenet news and MUDs. These systems, which have virtually no imposed 

controls on behaviour, have been extremely successful and one of the primary reasons 

for this has been shown to be the way in which their users spontaneously develop a 

culture of accepted usage around the cues that the technology provides [126]. 

This dissertation suggests that system design can use this phenomenon to design 

more flexible, and more useful systems through intentional support for social self

regulation. Thus systems that provide users with cues and actions encourage them 



144 

to see actions through or in the system as influenced by fundamentally the same 

factors as those in the physical world so that there is no difference between 'actions 

in the system' and 'actions in the world' in terms of their social significance. As a 

result, transgression in the electronic medium becomes a real social issue which is 

subject to real social or organisational regulatory pressures. Once this is achieved, 

the requirement for technical regulation recedes because social, organisational or legal 

pressures take over. 

TelePort has also, not surprisingly, raised questions about privacy and the control 

of awareness information. Bellotti and Sellen have suggested a framework for use by 

designers in this context which emphasises that in order to feel comfortable with Me

dia Space systems, users need to be able to control what information is made available 

and to whom [20]1. As discussed, TelePort provides a suitable vehicle for developing 

user interfaces to explore this framework. One such strategy, which was suggested 

in Section 2.4, is an implementation based on effort and accountability. Thus, users 

may choose to make it harder for others to access particular information about them 

and, if a user does make the effort to do so, that user can be held accountable for 

his/her actions at a social and, if necessary, legal level. Repeated 'electronic' trans

gressions of socially accepted behaviour are therefore punishable in exactly the same 

ways as would physical transgressions. This strategy suggests that access to infor

mation should not be anonymous since anonymity confounds accountability - users 

should always know, or be able to find out, who accessed information about them 

and when. 

8.8 Summary 

This chapter has discussed the way in which the case study has explored the 

design framework outlined in Chapter 3. It has reflected on the design methods 

lSee also [38] for a wide-ranging review of privacy issues in media space systems 



, 

145 

that were developed as a result of the recommendation to view systems in terms 

of 'cues' and 'actions' and, together with Chapter 7, has demonstrated that this 

conceptualisation can produce functional, working CSCW systems. It has therefore 

moved this exercise in technomethodology a step closer to its goal since it has shown 

that taking account of the ethnomethodological view of rules, and rule use, during 

design can be a successful implementation strategy. It is therefore an affirmation 

that 'doing technomethodology' can work and, in a sense, provides the beginnings of 

a technomethodological 'design cookbook' of conceptual tools and practical methods. 

The chapter has also shown that this view can have a fundamental influence on the 

design of an interactive system because it makes recommendations about all aspects 

of an implementation from the network protocol level to that of the user interface. In 

common with other recent research on configurable systems, this view suggests that 

the traditional separation of user interface and system architecture into independent 

units cannot suffice because architectural design decisions can have just as great an 

impact on the flexibility of the system. 

However, this chapter has also shown that viewing systems in terms of cues, ac

tions, and the mappings between the two can provide novel approaches to a number of 

current research issues including support for system tailorability, support for cultural 

change over time and privacy and control in information spaces. 



-------------

146 

Part IV 

Conclusions 



147 

Chapter 9 

Summary and Future Work 



148 

9.1 Learning from Ethnomethodology 

This dissertation began by outlining a number of possible relationships between 

system design and the sociological subdiscipline of ethnomethodology. In particular 

it focused on the potential for HCI (and CSCW) to learn from one of the key method

ological recommendations of ethnomethodology, namely for a discipline to re-examine 

the taken-for-granted assumptions and concepts upon which its theory and practice 

are based. If these assumptions turn out to be problematic, then ethnomethodology 

recommends respecifying them in the light of detailed studies of the phenomena in 

question. 

In the case of H Cl and CSCW, this leads to the re-examination of foundational 

concepts such as system transparency, process, representation, abstraction, account

ability and generalisation. Chapter 1 noted that, seen as a research program, the 

goal of this form of technomethodology is to ask if certain basic assumptions in HCI 

are misconceived and whether or not developing alternative views based on studies 

of what is really going on can lead to the implementation of demonstrably better 

systems. The chapter noted that a number of conceptual and practical bridges need 

to be in place before technomethodology can achieve this goal: 

• Just how can practical system design learn from ethnomethodology? 
I 

Chapter 2 introduced an examination of the nature of rules and rule use in the 

design of systems that are too inflexible to support real use. An alternative view 

was developed which drew on detailed studies of how people interact and achieve 

apparently rule-based action, and from recent critiques of inflexible systems in 

the CSCW literature . 

• What sort of design frameworks might support this respecification? 

Chapter 3 builds on this re-specification by outlining an approach to design 

which characterises systems in terms of cues, actions and the mappings between 



149 

the two. In essence, it was suggested that users are able to perceive information 

about other participants, and about the system, by means of cues, whilst the 

system provides a range of actions - the system functionality. The mapping 

between the two, that is determining what users may do next can then be 

viewed as under a mixture of user and system control - in some cases the user 

decides, in others it is the system. 

• What sort of requirements capture methods might such frameworks 

demand? 

Chapter 4 reported a study that used methods. derived from Cognitive Anthro

pology to elicit the cues that workers use in deciding how to communicate with 

colleagues in an office-based environment. Further, it has used these methods 

to determine what actions users might expect to be supported by a system that 

provides management of multimedia conferencing calls. 

• How can the output of such methods be incorpomted into the design 

and implementation of a functional system? 

Chapters 5 and 6 demonstrated how the cues and actions derived using these 

methods when combined with the principle of not embedding models of the 

mappings between cues and actions can influence all levels of system design and 

implementation. Finally Chapter 8 demonstrates that the result is a functional, 

usable system. 

Thus, as an exercise in technomethodology, this dissertation has achieved its goals. 

It has 

• identified a foundational concept, 

• re-specified that concept, 

• examined the implications of this respecification for design, 



150 

• proposed a design framework which can enable practitioners to build systems 

that take account of this respecification, 

• described methods that this design framework requires, 

• explored these methods, and the design framework, through the implementation 

of a proof-of-concept prototype. 

As a result, the conceptual bridges that were noted as necessary in Chapter 1 are 

now in place. It has been shown that technomethodological respecification is possible, 

can lead to new design insights and can impact design practice in useful ways. Real, 

functional interactive systems can be built with these respecifications in mind. 

What remains to be seen is whether or not such systems are, in some sense, better. 

There is powerful evidence that systems built in this way will prove to be better able 

to support real work than current systems that were not. However, only long term 

user evaluation of 'technomethodological systems' can provide indicators of their true 

value. The project of technomethodology is now in a: position to begin this last stage 

- it is hoped that the path mapped out by this dissertation can encourage others to 

follow, re-examining and re-using the design framework as they do so. 

9.2 Future Work 

This dissertation has highlighted a number of potentially interesting avenues of 

further work, not only from the respecification of rules, but also from experiences 

with the group awareness prototype. 

To concentrate firstly on the implications of the respecification of rules and rule 

use, the dissertation suggests that attention should be given to: 

Work Process Tools - whether the work involved is the asynchronous editing of 

a particular document or the achievement of day-to-day tasks in general, it 

seems clear that supporting flexible, situated action is vital. It would therefore 



151 

be extremely interesting to pursue Beck and Bellotti's design recommendations 

for collaborative writing and to implement systems that can provide resources 

for work rather than processes of work [18]. Recent work such as the MILAN 

Conversation Model [46] and subsequent system development [5], Oval [107] and 

Freeflow [23] are all examples of this reconceptualisation . 

Privacy and Control III Shared File Systems - it may be that designing such 

systems in terms of cues for privacy and mechanisms of accountability can 

remove the need for pervasive technical access controls. In the context of matrix 

work teams and the notion of virtual organisations where membership of teams 

may vary on a day-by-day basis, a flexible approach is clearly required [14]- and 

this dissertation has argued that technical controls cannot provide it. Instead 

a focus on cues and on effort may provide an alternative. As Bellotti notes in 

a recent paper, social control can provide this flexibility if systems are suitably 

engineered [19]. As yet few such systems exist and there appear to be no user 

studies of their effectiveness. 

Flexible Systems and User Tailorability - it was argued that systems that do 

not encode social rules are substantially more flexible than those that do be

cause they can allow for the inevitable changes in culturally accepted practices 

over time, a factor which most current CSCW system implementation ignores. 

Further, if users are able to add their own cues and actions to a system then the 

flexibility is further enhanced. The development of user-tailorable systems in 

. terms of cues and actions, and studies of their utility may be extremely worth

while as might exploring the affect that personalisation of an interface can have 

on the effectiveness of social controls. 

The Trade-Off between Social and System Control - it was noted that there 

will always be certain system imposed constraints on users actions - if only 

because systems are designed to do particular things rather than everything. 



152 

It would be interesting to examine the trade-off between system imposed con

straints and flexibility through the framework of cues and actions in order to 

attain some idea of the appropriateness of each in different contexts. For ex

ample, should a safety-critical system always impose system control, and would 

such a strategy actually be successful given that there may be quite legitimate 

reasons for an operator to over-ride system constraints? 

The Use of Field Studies - this dissertation has argued that refocusing design 

from processes onto cues and actions might produce better systems. It would 

be interesting to explore the utility of naturalistic fieldwork methods (such as 

those found in ethnography and ethnomethodology) in the elicitation of cues 

and actions as a resource for design. 

Secondly, the issues raised by the use of the prototype, which might prove an 

extremely useful research vehicle for their exploration: 

Privacy of Awareness Information - controlling what people can find out about 

each other in different contexts is the crux of designing for privacy. In the con

text of a global user location service, users may not wish certain information to 

made available to the general public but in the context of a local, focused group 

of colleagues, it may be useful to 'publish' more. There have been no user based 

studies of the affect that such awareness can have on people's perceptions and 

requirements for privacy and this would seem to merit considerable attention 

since without it, the multimedia telecommunications 'revolution' may never get 

far beyond the current telephone metaphor of binary access with no account 

taken of social factors [38J. 

Information Push vs Pull - the effectiveness of push vs pull for the distribution of 

information seems to have been little studied. An exploration of the viability of 

a global Internet based location service based on local 'push' GAP tools (such 



153 

as TelePort), campus-based location demons and public 'pull' clients (such as 

World Wide Web browsers) would be of interest in this regard. 

User Services and Invitation Types in MultiMedia Telecommunications - it 

was suggested that users will need to be presented with a set of given user 

services that have been designed for their context. It is unclear at present 

what these might be (although the Media Space work is providing some early 

indications for office workers) but an exploration of different communication 

and invitation types in different contexts of work may offer telecommunications 

companies a rich resource for the presentation of multimedia services and hence 

product differentiation. 

Behaviour of the GAP protocol - whilst trial use and extensive simulation of the 

protocol have provided evidence of its utility and scalability, longer term and 

more wide-spread usage is required before its value can truly be assessed. 

There is obviously much work to be done ... ! 



Part V 

Bibliography and Appendices 

154 



155 

Bibliography 

[1] K.R. Abbott and S.K. Sarin. Experiences with workflow management: Issues 

for the next generation. In cscw94 [44], pages 113-120. 

[2] M.H. Agar. The Professional Stranger: An Informal Introduction to Ethnology. 

Academic Press, 1980. 

[3] M.H. Agar. Speaking of Ethnography: Qualitative Research Methods Vol. 2. 

Sage, London, 1988. 

[4] M.H. Agar and J.R. Hobbs. How to grow schemata out of interviews. In J.W.D. 

Dougherty, editor, Directions In Cognitive Anthropology. University of Illinois 

Press, 1985. 

[5] A. Agostini, G. De Michelis, M.A. Grasso, W. Prinz, and A. Syri. Contexts, 

work processes, and workspaces. Computer Supported Cooperative Work, 5:223-

250, 1996. 

[6] P.E. Agre. Conceptions of the user in computer systems design. In P.J. Thomas, 

editor, The Social and Interactional Dimensions of Human-Computer Inter

faces, pages 67-106. Cambridge University Press, 1995. 

[7] P.E. Agre. From high tech to human tech: Empowerment, measurement, and 

social studies of computing. Computer Supported Cooperative Work, 3:167-195, 

1995. 



156 

[8J B. Anderson. Teleport - a group awareness tool. Ouline Resource: 

http://pipkin.lut.ac. uk/ben/PHD /teleport.html. 

[9J B. Anderson. Gap: A group awareness protocol. Internet Draft: draft-ietf

mmusic-anderson-gap-1.0.ps, September 1996. Work in Progress. 

[10J B Anderson and J.L. Alty. Everyday theories, cognitive anthropology and user

centred system design. In People and Computers X, HC! '95, pages 121-135. 

Cambridge University Press, Cambridge, August 1995. 

[11J B Anderson, M Smyth, R Knott, M Bergan, J Bergan, and J.L. Alty. Min

imising conceptual baggage: Making choices about metaphor. In G. Cockton, 

D. Draper, and G. Weir, editors, People and Computers IX, HCI '94. Cambridge 

University Press, Cambridge, August 1994. 

[12J R.J. Anderson. Representations and requirements: The value of ethnography 

in system design. Human Computer Interaction, 9:151-182, 1994. 

[13J R.J. Anderson, C.C. Heath, P. Luff, and T.P. Moran. The social and the cog

nitive in human computer interaction. International Journal of Man-Machine 

Studies, 38:999-1016, 1993. 

[14J L. Bannon. From human factors to human actors: The role of psychology and 

human-computer interaction studies in system design. In J. Greenbaum and 

M. Kyng, editors, Design at Work: Cooperative Design of Computer Systems, 

pages 25-44. Lawrence Erlbaum Associates, 1991. 

[15J L. Bannon and J. Hughes. The context of cscw. In K. Schmidt, editor, Devel

oping CSCW Systems: Design Concepts. Report of COST14 'Co Tech ' W01·king 

Group 4 (1991-92), pages 9-36. 1993. 



157 

[16] L. Bannon, M. Robinson, and K Schmidt, editors. Proceedings of the 2nd 

European Conference on Computer-Supported Cooperative Work - ECSCW '91. 

Kluwer Academic Publishers, London, September 1991. 

[17] M. Beaudouin-Lafon and A. Karsenty. Transparency and awareness in a real

time groupware system. In Proceedings of UIST '90, pages 171-180. New York: 

ACM Press, November 1992. 

[18] E Beck and V. Bellotti. Informed opportunism as strategy: Supporting coordi

nation in distributed collaborative writing. In ecscw93 [58], pages 233-248. 

[19] V. Bellotti. What you don't know can hurt you: Privacy in collaborative com

puting. In cscw96 [45]. To Appear. 

[20] V. Bellotti and A. Sellen. Design for privacy in ubiquitous computing environ

ments. In ecscw93 [58], pages 77-92. 

[21] S.D. Benford. Requirements of activity management. In J.M. Bowers and S.D. 

Benford, editors, Studies in Computer Supported Co-operative Work: Theory, 

Practice and Design, pages 285-297. North-Holland, Amsterdam, 1991. 

[22] D. Bentley, T. Rodden, P. Sawyer, and I. Somerville. Architectural support for 

cooperative multi-user interfaces. IEEE Computer, ?(?):???, 1994. 

[23] R. Bentley and P. Dourish. Medium versus mechanism: Supporting collabora

tion through customisation. In ecscw95 [59], pages 133-148. 

[24] M. Bittner. The concept of organisation. In R. Turner, editor, Ethnomethodol

ogy, pages 69-81. Penguin, 1974. 

[25] J. Blomberg, J. Giacomi, A. Mosher, and P. Swenton-Wall. Ethnographic field 

methods and their relation to design. In Schuler and N amioka [130], pages 

123-155. 



"' '- "- "" 

158 

[26J C Bormann, J. Ott, and C. Reichert. Simple conference control protocol. IETF 

Internet Draft: draft-bormann-mmusic-sccp-OO-pre-O.txt, February 1996. Work 

in Progress. 

[27J J. Bowers. The work to make a network work: Studying cscw in action. In 

cscw94 [44], pages 287-298. 

[28J J. Bowers, G. Button, and W.W. Sharrock. Workflow from within and without. 

In ecscw95 [59J, pages ?-? 

[29J J. Bowers and J. Churcher. Local and global structuring of computer medi

ated comunication: Developing linguistic perspectives on cscw in cosmos. In 

L. Suchman, editor, Proceedings of ACM SIGCHI CSCW 88, pages 125-139, 

September 1988. 

[30J J. Bowers and T. Todden. Exploding the interface: Experiences of a cscw 

network. In interchi93 [100], pages 255-262. Amsterdam, NI. 

[31J C.Y. Bullen and J.L. Bennett. Groupware in practice: An interpretation of 

work experiences. In C. Dunlop and R. Kling, editors, Computerization and 

Controversy, pages 257-287. New York: Academic Press, 1991. 

[32J G. Button, editor. Technology in Working Order: Studies of work, interaction 

and technology. Routledge, London, 1993. 

[33J G. Button and P. Dourish. Technomethodology: Paradoxes and possibilities. 

In Proceedings of ACM SIGCHI CHI'96, pages 19-26, 1996. 

[34J G. Button and R. Harper. Taking the organisation into accounts. In Button 

[32], pages 98-107. 

[35J G. Button and W. W. Sharrock. Occasioned practices in the work of software 

engineers. In Requirements Engineering: Social and Technical Issues [103J. 



159 

[36J ACM Conference on Human Factors m Computing Systems, CHI'91. ACM 

Press, New York, April 1991. 

[37J ACM Conference on Human Factors in Computing Systems, CHI'92. ACM 

Press, New York, May 1992. Moneterey, Ca. 

[38J A. Clement. Considering privacy in the development of IIlulti-media cOIIlmuni

cations. Computer Supported Cooperative Work, 2:67-88, 1994. 

[39J P. Collett. Social Rules and Social Behaviour. Oxford: Basil Blackwell, 1975. 

[40J C. Condon. The compnter won't let me: Cooperation, conflict and the owner

ship of information. In S. Easterbrook, editor, CSCW: Cooperation or Conflict, 

pages 171-185. Springer Verlag, Berlin, 1993. 

[41J C Cool, R.S. Fish, R.E. Kraut, and C.M. Lowery. Iterative design of video 

communication systems. In cscw92 [43], pages 25-32. 

[42J S. K. Crad, T.P Moran, and A. Newel!. The Psychology of Human-Computer 

Interaction. London: Lawrence Erlbaum Associates, 1983. 

[43J ACM Conference on Computer Supported Co-operative Work, CSCW '92. ACM 

Press, New York., November 1992. 

[44J ACM Conference on Computer Supported Co-operative Work, CSCW '94. ACM 

Press, New York., November 1994. 

[45J ACM Conference on Computer Supported Co-operative Work, CSCW '96. ACM 

Press, New York., November 1996. 

[46J G. De Michelis and M.A. Grasso. Situating conversations within the lan

guage/action perspective: The milan conversation model. In cscw94 [44], pages 

89-100. 



---- -- ----------

160 

[47J S Deering. Host extensions for ip multicasting. Master's thesis, Stanford Uni

versity, 1987. 

[48J J .D. Douglas, editor. Understanding Everyday Life. Routledge and Kegan Paul, 

London, 1970. 

[49J P. Dourish. Godard: A flexible architecture for av services in a media space. 

Technical report, Rank Xerox EuroPARC, Cambridge U.K, 1991. 

[50J P. Dourish. Culture and control in a media space. In ecscw93 [58], pages 

125-137. 

[51 J P. Dourish. Accounting for system behaviour: Representation, reflection and 

resourceful action. In Computers in Context, CIC '95, pages 125-137, August 

1995. 

[52J P. Dourish. Developing a reflective model of collaborative systems. A CM Trans

actions on Computer-Human Interaction, ?(?):?, 1995. 

[53J P. Dourish. Open Implementations and Flexibility in CSCW Toolkits. PhD 

thesis, Dept Computer Science, University College, London, 1996. 

[54J P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. 

In cscw92 [43], pages 107-114. 

[55J P. Dourish and S. Bly. Portholes: Supporting awareness in a distributed work 

group. In chi92 [37], pages 541-547. Moneterey, Ca. 

[56J P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and A. Zbyslaw. Freeflow: 

Mediating between representation and action in workflow systems. In cscw96 

[45J. To Appear. 

[57J E.A. Dykstra and R.P. Carasik. Structure and support in cooperative envi

ronments: the amsterdam conversation environment. In S. Greenberg, editor, 



161 

Computer Supported Cooperative Work and Groupware, pages 295-310. New 

York: Academic Press, 1991. 

[58J Proceedings of the third European Conference on Computer-Supported Cooper

ative Work - ECSCW '93. Kluwer Academic Publishers, London, September 

1993. 

[59J Proceedings of the European Conference on Computer-Supported Cooperative 

Work - ECSCW '95. Kluwer Academic Publishers, London, 1995. 

[60J W.K. Edwards. Session management for collaborative applications. In cscw94 

[44J, pages 323-330. 

[61J C.A. Ellis, S.J. Gibbs, and G.L. Rein. Design and use of a group editor. In 

G. Cockton, editor, Engineering for Human Computer Interaction, pages 13-25. 

Amsterdam: North Holland, 1990. 

[62J C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences. 

Communications of the ACM, 34(1):39-58, 1991. 

[63J R. Fish, R. Kraut, M. Leland, and M. Cohen. Quilt: A collaborative tool for 

co-operative writing. In Proc. of the A CM Conference on Office Information 

Systems, pages 30-37. ACM Press, New York, March 1988. 

[64J R.S. Fish, R.E. Kraut, R.W. Root, and R.E. Rice. Evaluating video as a 

technology for informal communication. In chi92 [37J. Moneterey, Ca. 

[65J F. Flores, M. Graves, B. Hartfield, and T. Winograd. Computer systems and the 

design of organizational interaction. A CM Transactions on Office Inf01·mation 

Systems, 6(2):153-172, 1988. 

[66J S. Floyd, V. Jacobson, S. McCanne, Ching-Gung. Liu, and L. Zhang. A reliable 

multicast framework for light-weight sessions and application level framing. In 

Proceedings of AGM SIGCOMM '95. ACM Press, 1995. 



162 

(67) C. O. Frake. Note on quenes lil ethnography. American Anthropologist, 

66(3):132-145, 1964. 

(68) D. Frohlich and P. Luff. Applying the technology of conversation to the tech

nology for conversation. In Computers and Conversation (106). 

(69) H. Garfinkel. Studies in Ethnomethodology. Prentice-Hall, London, 1967. 

(70) H. Garfinkel. Ethnomethodological Studies of Work. Routledge and Kegan Paul, 

London, 1986. 

(71) L. Gasser. The integration of computing and routine work. AGM Transactions 

on Office Information Systems, 4:205-225, 1986. 

(72) W. Gaver, T. Moran, A. MacLean, L. Lovstrand, P. Dourish, K. Carter, and 

W. Buxton. Realising a video environment: Europarc's rave system. In chi92 

(37), pages 27-35. Moneterey, Ca. 

(73) W. Gaver, A. Sellen, C Heath, and P. Luff. One is not enough: Multiple views 

in a media space. In interchi93 [100), pages 335-341. Amsterdam, NI. 

(74) E Goffman. Behaviour in Public Places: Notes on the Organisation of Gather

ings. Free Press, New York, 1963. 

(75) W. Goodenough. Cultural Anthropology and Linguistics, volume 9 of George

town University Monograph Series on Language and Linguistics. Georgetown 

University Press, 1957. 

(76) D Greatbatch, P. Luff, C Heath, and P. Campion. Interpersonal communication 

and human-computer interaction: An examination of the use of computers in 

medical consultations. Interacting with Computers, 5:193-216, 1993. 



163 

[77J S Greenberg. Personalizable groupware: Accomodating individual roles and 

group differences. In Proc. ECSCW '91, pages 17-32. Kluwer Press, Amster

dam, 1991. 

[78J S Greenberg. Peepholes: Low cost awareness of one's community. In A CM 

SIGCHI Conference Companion, CHI '96, pages 206-207. ACM, New York, 

1996. 

[79J I Greif and S Sarin. Data sharing in group work. ACM Transactions on Office 

Information Systems, 7(2):187-211, 1987. 

[80J J. Grudin. The computer reaches out: The historical continuity of interface 

design. In Proc. CHI '90, pages 261-268. ACM Press, New York, April 1990. 

[81J C. Gutwin, S. Greenberg, and M. Roseman. Supporting awareness of others 

in groupware. In ACM SIGCHI Conference Companion, CHI '96, page 205. 

ACM, New York, 1996. 

[82J M Handley. Sdr: Session description tool. ftp://cs.ucl.ac.uk/mice/sdrf. Public 

Software Release. 

[83J M. Handley, J. Crowcroft, and C. Bormann. The internet multimedia conferenc

ing architecture. IETF-MMUSIC-INTERNET-DRAFT, February 1996. Work 

III progress. 

[84J M. Handley and V. Jacobson. Sdp: Session description protocol (draft 02.1). 

IETF-MMUSIC-INTERNET-DRAFT, November 1995. Work in progress. 

[85J M. Handley and E. Schooler. Session invitation protocol. IETF-MMUSIC

INTERNET-DRAFT, February 1996. Work in progress. 

[86J M. Handley, I. Wakeman, and J. Crowcroft. The conference control channel 

protocol: A scalable base for building conference control applications. In SIG

COMM '95, 1995. 



164 

[87] R.H.R. Harper and J.A. Hughes. 'what a f-ing system! send 'em all to the same 

place a expect us to stop 'em hitting': Making technology work in air traffic 

control. In Button [32], chapter 7, pages 127-144. 

[88] J. Hartland. The use of 'intelligent' machines for electrocardiograph communi

cation. In Button [32], pages 55-80. 

[89] C Heath and P Luff. Disembodied conduct: Communication through video in 

a multimedia office environment. In chi91 [36], pages 99-103. 

[90] C Heath and P Luff. Collaboration and control: Crisis management and mul

timedia technology in Ion don underground control rooms. Computer Supported 

Cooperative Work, 1(1-2):69-95, 1992. 

[91] C Heath and P Luff. Media space and communicative asymmetries: Prelimi

nary observations of video-mediated interaction. Human Computer Interaction, 

7(3):315-346, 1992. 

[92] C. Heath and P. Luff. System use and social organisation: Observations on 

human-computer interaction in an architectural practice. In Button [32], pages 

184-210. 

[93] C. Heath, P. Luff, and A. Sellen. Rethinking media space: The need for flexible 

access in video-mediated communication. In Proc. CSCW 93, page?? ACM 

Press, New York., 1993. 

[94] J. Heritage. Garfinkel and Ethnomethodology. Cambridge: Polity Press, 1984. 

[95] D.R. Hipp. Embedded tk. Online Tcl/Tk archive resource: 

ftp://src.ic.ac.uk/packagesj. 

[96] K. Holtzblatt and S .. Jones. Contextual inquiry: A participatory technique for 

system design. In Schuler and Namioka [130], pages 177-219. 



165 

[97] J. Hughes, V. King, T. Rodden, and H. Andersen. Moving out of the control 

room: Ethnography in system design. In cscw94 [44], pages 429-439. 

[98] J. H ughes, I. Somerville, R. Bentley, and D. Randall. Designing with ethnog

raphy: making work visible. Interacting with Computers, 5(2):239-253, 1993. 

[99] J .A. Hughes, D. Randall, and D. Shapiro. Faltering from ethnography to design. 

In cscw92 [43], pages 115-122. 

[lOO] Proceedings of ACM INTER CHI '93. ACM Press, April 1993. Amsterdam, NI. 

[101] H. Ishi, M. Kobayashi, and K. Arita. Iterative design of seamless collaboration 

media: From teamworkstation to clearboard. Communications of the A CM, 

37(8):83-97, 1994. 

[102] H. Ishi and M Ohkubo. Message driven groupware design based on an office 

procedure model. Journal of Information Processing, 14(2):184-191, 1990. 

[103] M. Jirotka and J.A. Goguen. Requirements Engineering: Social and Technical 

Issues. Academic Press, 1994. 

[104] S. M Kaplan, W.J Tolone, D.P Bogia, and C. Bignoli. Flexible, active support 

for collaborative work with conversationbuilder. In cscw92 [43], pages 378-385. 

[105] L. Killey. Shredit 1.0: A shared editor for apple macintosh. user's guide and 

technical description. Technical report, Cognitve Science and Machine Intelli

gence Laboratory, University of Michigan, 1990. unpublished. 

[106] P. Luff, N Gilbert, and D. Frohlich. Computers and Conversation. London: 

Academic Press, 1990. 

[107] Y. Malone, K-Y. Lai, and C. Fry. Experiments with oval: A radically tailorable 

tool for cooperative work. In cscw92 [43], pages 289-297. 



166 

[10SJ S. Manandher. Activity server: You can run but you can't hide. In Proceedings 

of Usenix Summer Conference '91, pages 299-311, 1991. 

[109J M.M. Mantei, R.M. Baecker, A.J. Sellen, W.A.S. Buxton, T. Milligan, and 

B. Wellman. Experiences in the use of a media space. In chi91 [36], pages 

203-20S. 

[llOJ S. McCanne and V. Jacobson. VIe: A flexible framework for packet video. In 

Proceedings of ACM MultiMedia '95, page ??, 1995. 

[lllJ S. McCanne and V. Jacobson. vat unix man pages, 1996. 

[1l2J S. McCanne and V. Jacobson. vic unix man pages, 1996. 

[113J P.L. McLeod. An assessment of the experimental literature on electronic support 

of group work: Results of a meta-analysis. Human Computer Interaction, 7:257-

2S0, 1992. 

[1l4J G. Morgan. Images of Organization. Sage, London, 1986. 

[115J D. A. Norman. The Psychology of Everyday Things. Basic Books, New York, 

19S5. 

[1l6J D.A. Norman and S. Draper, editors. User Centered System Design: New 

Perspectives on Human-Computer Interaction. Lawrence Erlhaum Associates, 

19S6. 

[1l7J G.M. Olson and J.S. Olson. Introduction to this special issue on computer

supported cooperative work. Human Computer Interaction, 7(4):251-256, 1994. 

[llSJ J.K. Ousterhout. Tcl and the Tf{ toolkit. Addison Wesley, New York, 1994. 

[119J John K. Outserhout. Tk 4-0: Unix Manual Pages. 

[120J M Robinson. Design for unanticipated use ... In ecscw93 [5S], pages lS7-202. 



167 

[121J M. Robinson and L. Bannon. Questioning representations. In Bannon et al. 

[16], pages 219-233. 

[122J R. W. Root. Design of a multimedia vehicle for social browsing. In Proceedings of 

the Second Conference on Computer Supported Cooperative Work, pages 25-38. 

New York: ACM, September 1988. 

[123J M. Rouncefield, J.A. Hughes, T. Rodden, and S. Viller. Working with "constant 

interruption": Cscw and the small office. In cscw94 [44], pages ?-? 

[124J H. Sacks, E.A. Schegloff, and G. Jefferson. A simplest systematics for the 

organisation of turn-taking for conversation. Language, 50:696-735, 1974. 

[125J M.A. Sasse, M.J. Handley, and S.C. Chuang. Support for collaborative author

ing via email: The messie environment. In ecscw93 [58], pages 249-? 

[126J B. Schatz. Building an electronic community system. Journal of Management 

Information Systems, 8(3):87-107, 1991-92. 

[127J K. Schmidt. Riding a tiger, or computer supported cooperative work. In Bannon 

et al. [16J, pages 1-16. 

[128J E Schooler. The connection control protocol: Specification. Technical report, 

USC/Information Sciences Institute, Marina del Rey, Ca., 1992. 

[129J E. Schooler. A 

MMUSIC Working 

multicast based user directory service. IETF

Group Presentation., 1996. Slides available at 

ftp:/ /ftp.isi.edu/confctrl/minutes/slides.3.96.tar.Z. 

[130J D. Schuler and A. Namioka, editors. Participatory Design: Principles and 

Practices. Lawrence Erlbaum Associates, 1993. 



168 

[131] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp: A transport pro

tocol for real-time applications. IETF-AVT-INTERNET-DRAFT, 1995. Work 

III progress. 

[132] K. Scmidt and L. Bannon. Taking cscw seriously supporting articulation work. 

Computer Supported Cooperative Work, 1:7-40, 1992. 

[133] K. Scmidt and C. Simone. Coordination mechanisms: Towards a conceptual 

foundation of cscw systems design. Computer Supported Cooperative Work, 

5:155-200, 1996. 

[134] D. Shapiro. The limits of ethnography: Combining social sciences for cscw. In 

cscw94 [44], pages 417-428. 

[135] W.W. Sharrock and R.J. Anderson. The Ethnomethodologists. Ellis Horwood, 

1992. 

[136] H. Shen and P. Dewan. Access control for collaborative environments. In cscw92 

[43], pages 51-58. 

[137] Brian Smith and Lawrence Rowe. Tcl-DP 3.3bl. Available from ftp:!/mm

ftp.cs.berkeley.edu/pub/multimedia/Tcl-DP. 

[138] G. Smith and T. Rodden. An access model for shared interfaces. In cscw94 

[44], page ?? 

[139] M. Sohlenkamp and G. Chwelos. Integrating communication, cooperation, and 

awareness: The diva virtual office environment. In cscw94 [44], pages 331-343. 

[140] I. Somerville, R. Bentley, T. Rodden, and R. Sawyer. Cooperative systems 

design. The Computer Journal, 37(5):357-366, 1994. 



169 

[141J 1. Somerville, T. Rodden, P. Sawyer, and R. Bentley. Sociologists can be supris

ingly useful in interactive systems design. In People and Computers VJJ, Proc. 

HCI '92, page ?? Cambridge University Press, 1992. 

[142J W.C. Sturtevant. Studies in ethnoscience. In S.P. Spradley, editor, Culture and 

Cognition, pag<'" 129-167. Chandler, 1972. 

• 
[143J L. Suchman. Technologies of accountability: Of lizards and aeroplanes. In 

Button [32], pages 113-126. 

[144J L. Suchman. Do categories have politics? the language/action perspective 

reconsidered. In ecscw93 [58], pages 1-14. 

[145J L. Suchman and R. Trigg. Understanding practice: Video as a medium for 

reflection and design. In J. Greenbaum and M. Kyng, editors, Design at Work: 

Cooperative Design of Computer Systems, pages 75-89. Lawrence Erlbaum As

sociates, Hillsdale, New Jersey, 1991. 

[146J L.A. Suchman. Office procedures as practical action. AGM Transactions on 

Office Information Systems, 1:320-328, 1983. 

[147J L.A. Suchman. Plans and Situated Actions. The problem of human-machine 

communication. Cambridge University Press, Cambridge, 1987. 

[148J L.A. Suchman and E. Wynn. Procedures and problems in the office. Office: 

Technology and People, 2:133-154, 1984. 

[149J J.C. Tang and M. Rua. Montage: Providing teleproximity for distributed 

groups. In Proc. ACM SIGCHI Conference on ComputeT Human Interaction 

(CHI) '94, pages 37-43, April 1994. 

[150J F.W. Taylor. The Principles of Scientific Management. Harper, New York, 

1923. 



170 

[151J P. Thomas, editor. The Social and Interactional Dimensiolls of Human-

Computer Interfaces. Cambridge University Press, 1995. 

[152J J. Trevor, T. Rodden, and G. Blair. Cola: A lightweight platform for cscw. 

Computer Supported Cooperative Work, 3:197-224, 1995. 

[153J UCL. Nte - a network text editor, 1996. Software available from: http://www

mice.cs. uel. ac. uk/ mice/ nte/. 

[154J UCL. Rat - a reliable audio tool, 1996. Software available from: http://www

mice. cs. uel.ac.uk/mice/rat/. 

[155J D.G. Wastell and P. White. Using process technology to support co-operative 

work: Prospects and design issues. In D Diaper and C. Sanger, editors, CSCW 

in Practice: all Introduction and Case Studies, pages 105-126. Springer-Verlag, 

London, 1993. 

[156J D.L. Wieder. OIL meaning by rule. In Douglas [48], pages 107-135. 

[157J R Williams. User location service. IETF-MMUSIC-INTERNET-DRAFT, 

February 1996. Work in progress. 

[158J T. Winograd. A language/action perspective on the design of cooperative work. 

Human Computer Interaction, 3(1):3-30, 1987-88. 

[159J T. Winograd. Categories, disciplines, and coordination. Computer Supported 

Collaborative Work, 2(3):191-197, 1994. 

[160J D. H. Zimmerman. The practicalities of rule use. In Douglas [48J, chapter 9, 

pages 221-238. 



171 

Appendix A 

Frame Analysis Data . 



172 

A.1 Introduction 

This appendix provides the numerical data from which the figures in Chapter 4 

were derived. 

Action Open Ajar Closed 
Walk in 55 9 9 
Knock and Enter 37 27 13 
Knock and Wait 5 27 23 
Glance 3 36 26 
Leave a Message 0 0 9 
Come back later 0 0 12 
Talk to Secretary 0 0 0 

Table A.l: Percentage Frequency of Responses For Each State 

Action Friend Boss. Boss's Boss 
Walk in 75 43 0 
Knock and Enter 20 57 50 
Knock and Wait 5 0 25 
Glance 0 0 25 
Leave a Message 0 0 0 
Come back later 0 0 12 
Talk to Secretary 0 0 0 

Table A.2: Percentage Frequency of Responses For 'Open' State 



173 

Action Friend Boss Boss's Boss 
Walk in 20 0 0 
Knock and Enter 40 20 0 
Knock and Wait 0 40 100 
Glance 40 40 0 
Leave a Message 0 0 0 
Come back later 0 0 0 
Talk to Secretary 0 0 0 

Table A.3: Percentage Frequency of Responses For' Ajar' State 

Action Friend Boss Boss's Boss 
Walk in 13 6 0 
Knock and Enter 21 6 0 
Knock and Wait 18 29 25 
Glance 31 23 12 
Leave a Message 5 10 25 
Come back later 8 19 0 
Talk to Secretary 5 6 38 

Table A.4: Percentage Frequency of Responses For 'Closed' State 



Appendix B 

GAP: A Group Awareness 

Protocol 

174 



175 

B.l Introduction 

This document is a very drafty draft of a group awareness protocol for the dis

tribution of awareness information between user-awareness tools. An awareness tool 

provides critical support for effective group work by enabling users to assess the 

current activity of potential co-workers. The aim of this document is to prompt dis

cussion and research within the MMUSIC WC that focuses on the development of 

awareness tools for distributed groups in order to provide further support for effective 

collaborative work via the Internet Multimedia Conferencing Architecture. This work 

can be considered complimentary to the User Location service and as an enabler for 

SIP. 

This Appendix is also available as an intern et draft [9J 

B.2 Awareness and Group Work in The Internet 

A recent Internet Draft [83J describes the evolving architecture to support mul

timedia conferencing, and hence synchronous, focused, group work in the Internet 

context. At present two models of user discovery and participation in such multime

dia sessions exist: session announcement, and session invitation. In the first instance 

users see the 'public' announcement of a 'conference' of interest and choose to join. 

In the second, users are explicitly invited to join a 'conference' by another user who 

must have access to some sort of directory [129J or location service [157J. Whilst 

such an architecture provides the basic capability to support group work, a number 

of user-oriented requirements are, as yet, unsupported. 

One such requirement is the need to support informal awareness: 

In everyday work, informal awareness involves knowing who's currently 
around, whether they're available or busy, and what sort of activity they're 
engaged in. [81, pp 205J 

General informal awareness of what other members of a work group are doing; how 



176 

busy they are, whether they can be interrupted, who they are talking to and whether 

they are available for collaboration has been identified as being a critical enabler of 

group work [20, 55, 78J. As these studies have shown, the ability to move smoothly 

between single-user and collaborative working very much depends upon users being 

able to assess the activity of others. 

Therefore distributed work groups need to have a sense of who's around and 

what they are doing in order to successfully coordinate their work. At present there 

is little support for such 'informal awareness' in the evolving Internet Conferencing 

Architecture and as a result, the potential for effective, synchronous, group work over 

the Internet may not be fully realised. If the MMUSIC WG is to further the goal of 

supporting effective group work in the Internet context then we suggest that there is a 

need, and a place, for research on the development of such general informal awareness 

tools as part of the Internet Multimedia Conferencing Architecture (see Figure B.l). 

This document attempts to provide a start point for such an effort and is a first at

tempt to draw together common strands from the CSCW, CHI and Communications 

research communi ties. 

This document describes a proposed group awareness protocol (GAP) to support 

the distribution of "low-cost" awareness information to a user group which have some 

interest in that information. GAP draws its inspiration primarily from ongoing work 

in the IETF's MMUSIC and AVT working groups, most notably the CCP [128J, 

CCCP [86], SDP [84J and RTP [131 J protocols. It may be considered complimentary 

to the User Location service [157J and as an enabler for SIP [85J since users running 

a GAP tool may become aware of another user's activity and move smoothly, using 

SIP, into collaborative work. 



Multicast 
Address 
Allocation 

Session Invitation 

Figure B.1: GAP and the Internet Multimedia Conferencing Architecture 

B.3 GAP Usage 

B.3.1 Use of IP Multicast 

177 

GAP uses IP multicast to distribute 'awareness information' between each user's 

GAP tool. Under normal conditions, a GAP tool will periodically multicast an infor

mation packet on a multicast address and port that are assigned at the tool's start-up 

time. GAP tools are not required to multi cast to a well-known address/port combi

nation. Rather, an awareness session is created using a multicast address allocation 

and session announcement tool (eg. sdr [82]). The awareness session must therefore 

be suitably scoped at this point in order to include all relevant participants. Users 

interested in a particular 'awareness session' can then launch their GAP tool from 

the SDP announcement. 

The use of IP multicast provides a number of advantages: 

Scalability /Efficiency - GAP tools send only one announcement to the group ad

dress rather than multiple announcements to each participant. Periodicity con

trols can regulate bandwidth requirements. 

Scoping - Administrative scoping allows 'awareness sessions' to have a high ttl (in 

order to reach all potential participants) but are guaranteed not to be visible 

outside a scope zone. 

Resistance to failure - Periodic multi cast ensures that even if network outages 



178 

occur, GAP tools do not completely fail due to loss of a centralised resource. 

GAP therefore makes no assumptions about the consistency of global state, relying 

on the user interface to inform participants when a discrepancy is likely, and on the 

tendency for global state to re-converge following, for example, network outages. 

B.3.2 Requirements and Extension 

Since GAP was designed to support the sharing of 'awareness information' by 

groups of users, this draft outlines a core set of GAP information that may be con

sidered necessary in any awareness sharing situation. An extension mechanism to 

enable particular GAP tools to add other information to this core set in order to 

enhance their 'awareness' support is defined below. Given the diverse information 

that different applications may require, such an extension mechanism appears vital. 

Proposed requirements: 

User's Name - User editable. 

Local Time - Important for cross-time-zone groups. 

URI of information relevant to session - ego project group home page. 

User's Email address 

User's telephone number 

User's current location - to be handed to a SIP tool to initiate a more focused 

sesSIOn. 

User's current activity status - ego on phone or currently in a SIP-initiated ses

sion .. 

Other information - any application dependent information. This constitutes the 

extension mechanism. 



179 

In general, GAP should convey sufficient information about a particular user to 

enable a colleague to determine whether or not they are available for communication, 

and to enable that communication to be initiated. 

B.3.3 Security 

Security may be provided by en crypt ion of GAP packets as has been suggested 

for SDP, RTP and SIP. 

B.3.4 Multiple Parallel Sessions 

By providing the ability to describe and announce GAP sessions using SDP, users 

may choose to join more than one GAP session at a time. This implies issues of 

conflict for resources that are not dealt with by the GAP protocol. 

B.3.5 Usage Scenario 

A distributed organisation with a broad band infrastructure may choose to provide 

multimedia conferencing applications at each employee's workstation. A particular 

project group may create a GAP announcement using an SDP aware tool which is 

suitably scoped to include the location of all members of that group. Each member of 

the group may then join that GAP session (or as many sessions as they are interested 

in) by launching a GAP-aware tool from their session directory. This GAP tool may 

then enable them to initiate more focused interaction with other members of the 

project group by initiating conferencing calls. In this case, the GAP application will 

have informed the others of information relevant to its user's current activity (and, 

potentially, media transport preferences), and can then hand over the creation of a 

range of multimedia conferencing services to SIP. 



180 

Item Example Definition 
0 v=GAP /1.0 INFO Version Type 
1 id-8975664 ID 
2 ntp=457386765 NTP Time Stamp 
3 cn=ben@128.125.110.123 Canonical name 
4 seq=l Sequence number 
5 n=Ben Anderson (LUT,UK) Name 
6 t=14:22 Local Time 
7 u=http://www-rs.cs.lut.ac.uk/ben URI for more info 
8 e=B.Anderson@lut.ac.uk Email 
9 p=+44 (0)1509 222689 Telephone 
10 ca=158.125.5.11/5536747:Glancing at Jon Current activity 
11 ca=158.125.5.11/4345667:Whiteboard with Adam Current activity 
12 i=doorstate:open State of user's 'door' 
13 i=note:Gone to lunch Short text message 
14 i=havevideo If user can send video 
15 i=havespeaker If user has speaker 
16 i=havemic If user has microphone 

Table B.l: Payload of 'INFO' packet 

BA GAP Specification 

GAP awareness information is entirely text-based. Each GAP packet is made up 

of a number of lines of text of the form: 

identifier=value 

where identifier is a unique character or short string and where value is a text 

string whose structure depends on the preceding identifier. As with SDP [84] no 

white space is allowed each side of the '=' and the line is terminated by the new line 

character. Newline characters are, therefore, not allowed in the value text string. 

Two packet types, 'INFO' and 'BYE', are currently defined each of which share a 

standard header. 



181 

B.4.1 GAP Standard Header 

The first 5 elements of any GAP packet form a fixed header (see Table B.1 or B.2). 

v= Protocol/Version Type 'Version' identifies the version of GAP (1.0 in the 

example above). This document describes version 1.0. Applications should 

ignore version numbers they do not recognise l . 'Type' denotes the kind of 

packet - currently defined to be one of INFO, BYE. 

id= ID Unique identifier for source that sent the packet. This is generated at start

up after x seconds so that generation can take into account the ID of other 

sources. For this reason, no packets are sent by a source immediately following 

start-up (cf RTCP). 

ntp= Time Stamp Time at which the packet was sent. NTP format. 

cn= CName Canonical name (cf RTCP) of source. Unlike ID this does not change 

when a GAP tool is restarted. Provides location information for user and can 

be handed to a SIP tool. 

seq= Sequence Sequence number for packet. Starts from 1 at start-up time (and 

hence may return to 1 for a particular source if the tool is restarted within a 

session). 

B.4.2 INFO Packet 

This packet contains awareness information from each source. A description, with 

examples, can be found in Table B.1. 

The core awareness information suggested above .is encoded as: 

n= Name (and affiliation) of source for display in participant's list etc. Must be 

human readable and user editable. 

1 Although this may be a useful way of informing users that a new version is available and being 
used ... 



182 

t= Local time of source. Useful where participants are spread across time zones. 

Intended to be associated with source and displayed in user interface. 

u= Universal Resource Identifier as used by World Wide Web clients. Can point to 

ego a home page, a page giving information on the work grou p etc. 

e= Email address of user. For format see (84). 

p= Telephone number of user. For format see (84). 

ca= Zero or more lines listing SIP (or otherwise) initiated sessions in which the user 

is participating2
. 

1= Zero or more lines which provide additional information. This provides the main 

extension mechanism for GAP. 

As an example of the extension mechanism, our experimental GAP tool - TelePort 

- [8) uses the following information fields (see Table B.l): 

i=doorstate:state State of user's iconic door - defined to be one of "open", "ajar" 

or "closed". 

i=note:note Text message displayed in user interface. User editable. 

i=havevideo Source's video capability - presence indicates user can send video. 

Note assumption that reception requires no extra hardware. 

i=havespeaker As above but for audio output. 

i=havemic As above but for audio input. 

Other examples might include the user's media preferences profile (eg H261 for 

video, maximum bandwidth of 128kb/s) or the url of documents currently being 

viewed or edited. 

2Integration or communication with a conference control module is needed here . .. 



183 

Item Example Definition 
0 v-GAP/l.O INFO Version Type 
1 id=8975664 ID 
2 ntp=457386765 NTP Time Stamp 
3 cn-ben@128.125.110.123 Canonical name 
4 seq=132 Sequence number 
5 t=(Text message) t=Bye Bye 

Table B.2: Payload of 'BYE' packet 

A GAP tool should gracefully ignore awareness information it does not know how 

to use. 

B.4.3 BYE Packet 

This packet is sent when a participant leaves a session and/or when a GAP tool 

intentionally quits. The packet is sent only once. A description, with example, is 

provided in Table B.2. 

t=message Carries a text string providing a reason for sending the BYE packet. 

This is entirely optional and may be used in the user interface if present. 

B.5 Scaling Issues 

Since GAP relies on periodic multicast of state information, the greater the num

ber of participants, the greater the number of packets being sent at anyone time. 

In order to attempt to scale this bandwidth usage it is intended that GAP, as with 

RTCP, should keep track of the number of participants and the mean packet size and 

adjust the time interval between sending of INFO packets accordingly. 

GAP uses the algorithms described in the RTP Draft Specification [131J and 

divides the bandwidth allocated to the session equally between the members. There 

is nothing in GAP analogous to the RTP data stream (RTCP is allocated 5% of the 



---- - - -- --- - ---------

184 

RTP data stream's bandwidth), and the required bandwidth is likely to be determined 

by the speed with which users want awareness information to be propagated. Since 

this will be dependent on the function of the tool using GAP, it is likely that the 

maximum bandwidth allocated to GAP will be defined on a per-application, or even 

per-session basis. 

The goal of these methods is to attempt to ensure that the network activity of 

GAP sessions is relatively independent of the number of participants and generates 

more or less smooth data traffic. 

B.6 Unresolved Issues 

[s the arbitrary extension mechanism (ie. multiple information lines) a sensible 

solution? 

Interworking with [TU T.120 suite? 

Privacy of information. 

B.7 Acknowledgments and Author 

The research leading to this document was supported by a BT graduate scholar

ship. 

Ben Anderson 
Department Computer Studies 
Loughborough University 
Loughborough 
Leicestershire 
UK. 
Email:B.Anderson~lut.ac.uk 

WWW:http://pipkin.lut.ac.uk/-ben 



185 

Appendix C 

TelePort: Source Code 



186 

C.l Introduction 

This appendix contains a listing of the C and Td-D P source code for the TelePort 

prototype. The listing has been split into two main sections - the C-like Embedded 

Tk source, and the Td-DP source with the latter further divided into logical units. 

C.2 C source 

The following listing contains the Embedded Tk code that is run through the ET 

macros in order to compile a binary of TelePort. The listing is in two parts - the 

mainO function processes the Td-DP source code for compilation whilst the function 

defined as ET _PROC (get secs ) returns the current time of day in seconds. The latter 

is written using the Embedded Tk syntax for defining external C commands to be 

compiled into a td interpreter. 

#------------------------------------------------
** Copyright Cc) 1995 Loughborough University of Technology. 
** Copyright Cc) 1995 British Telecommunications plc. 
** All rights reserved. 

** 
** Author: B.Anderson~lut.ac.uk 

** 
** This file contains C code for a group awareness tool written uS1ng 
** Embedded Tk. 

** 
** It adds one C function - 'getsecs' which returns the seconds since 
** the epoch. Needed because Tcl 7.4 doesn't offer 'clock' functions. 
** ------------------------------------------------------------------

#include <stdio.h> 
#include "tcl.h" 

#include <time.h> 

int mainCint argc, char **argv){ 
Et_InitC&argc,argv); 



} 

if( Tdp_Init(Et_Interp)!=ET_OK){ 
fprintf(stderr, "Tdp_Init failed. \n"); 
exit(l); 

} 

ET_INSTALL_COMMANDS; 
ET_INCLUDE( dp_init.tcI ); 
ET_INCLUDE( teleport2.1-sunos.tcl ); 
Et_MainLoopO; 
return 0; 

ET_PROC( get secs ) { 
time_t t; 1* Number of seconds since epoch *1 
t = time(O); 

sprintf(interp->result, "%d" ,t); 
return ET_OK; 
} 

C.3 Tcl-DP source 

187 

The following listing contains the Tcl-DP source for the TelePort prototype di

vided into logical units. 

C.3.1 Set Global Variables 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson~lut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#create some useful global variables 



# T - holds all important app info 
global T 
set T(play) audioplay 
set T(Lname) "TelePort 2. la3" 
set T(Sname) "TP 2. la3" 
set T(DialogTimer) 10 
set T(ef) {-*-times-medium-r-normal--*-*-*-*-*-*-*-*} 
set T(bgc) {linen} 
set T(inactive) gray50 
set T(active) black 
set T(preferences_file) {-/.GAPdefaults} 
set T(logfile) {-/.GAP-TP2.1-log} 
set T(icon_vol) 9 
set T(DebugWin) .a 
set T(waitDialogWin) .b 
set T(CONNECT) "In a/v conference with" 
set T(KNOCK) "Knocking on/at " 
set T(GLANCE) "Glancing at " 
set T(WHITEBOARD) "Working with" 
set T(IDLE) {Not in conference} 

# initialise winCount (used to set WinIDs) 
global WinCount 
set WinCount 1 

# default list of media formats 
global ]ORMATS 
set FORMATS(vic) [list H261 JPEG MPV CelB] 
set FORMATS(vat) [list PCMU PC MA IDVI GSM] 
set FORMATS(wb) [list wb] 
set FORMATS(text) [list nt] 

# default list of transports 
global TRANSPORTS 
set TRANSPORTS [list UDP RTP] 

# list of apps 
global APPS 
set APPS(video) [list vic] 
set APPS(audio) [list vat] 
set APPS(whiteboard) [list wb] 
set APPS(text) [list nt] 

188 



# defaults for user's GAP values (overwritten by preferences file) 
global GAP 

# Initialise GAP header data 
set GAP(Version) {GAP/l.0} 

# Don't get ID yet, wait until we have recieved others 
# so we can check for clashes 
set GAP(BusyWith) 0 
set GAP(Min_Time) 5000 
set GAP(SendAfter) 5000 
set GAP(TimeOut) 180 
set GAP(TotalPackets) 0 
set GAP(TotalBytes) 0 
# GAP(MaxBandwidth) = total bw glven over to GAP in bytes per sec 
set GAP(MaxBandwidth) 0.5 
# Mean packet size in bytes (ie. octets, characters) 
# calculated from: 20 (IP) + 8 (UDP) + 4 (tcl-dp) + ?? 
set GAP(MeanPacketSize) 280 
set GAP (Name) "Fred Bloggs, Useless Inc" 
set GAP(Email) .. fred@useless.com .. 
set GAP(Uri) {http://www.useless.com/-fred} 
set GAP (Pots) {+01 (0)123456 7890} 
set GAP (Sequence) 1 
set GAP(LastReceived) 0 
set GAP (Sources) 1 

# X-TP (Teleport) specific data 
set GAP (Code) X-GAPl 
set GAP (State) closed 
set GAP(Note) "Being useless ... " 
set GAP (Have_Video) {1} 
set GAP (Have_Mic) {1} 
set GAP (Have_Speaker) {1} 

#set some USCP (Conference control protocol) data 
global USCP 
set USCP(Version) USCP/l.0 
set USCP(Logname) $env(USER) 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 

189 



# set some SIP data 
set SIP (Version) {SIP/l.O} 
set SIP(Logname) $env(USER) 
set SIP (Authority) {none} 
set SIP(ReqCount) 0 
set SIP (Sequence) 0 
set SIP(ResendMax) 5 
set SIP(ResendAfter) 1000 
set SIP (Port) 9864 

# set default media as SDP types (see Internet Draft IETF-MMUSIC 
# SDP v2 - Handley & Jacobson) 
global MEDIA 

# video 
set MEDIA(videoA) "vie" 
set MEDIA(videoP) "video port not set" 
set MEDIA(videoT) "RIP" 
set MEDIA(videoF) "H261" 
set MEDIA(videoR) 11128" 

# audio 
set MEDIA(audioA) "vat" 
set MEDIA(audioP) "audio port not set" 
set MEDIA(audioT) "RTP" 
set MEDIA(audioF) "PCMU" 

# whi teboard 
set MEDIA(whiteboardA) "wb" 
set MEDIA(whiteboardP) "whiteboard port not set" 
set MEDIA(whiteboardT) "UDP" 
set MEDIA(whiteboardF) "WB" 

# text 
set MEDIA(textA) "ntll 

set MEDIA(textP) "text 
set MEDIA(textT) "UDP" 
set MEDIA(textF) "ntll 

# define some urls 
global URLS 

port not set" 

190 



191 

set URLS(GAP) {http://pipkin.lut.ac.uk/-ben/PHD/public_docs/GAP.html} 
set URLS(SIP) {http://pipkin.lut.ac.uk/-ben/PHD/public_docs/SIP.html} 
set URLS(teleport) {http://pipkin.lut.ac.uk/-ben/PHD/teleport.html} 
set URLS(mbone) {http://pipkin.lut.ac.uk/-ben/video/} 

C.3.2 Main Section 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 
# Author: B.Anderson~lut.ac.uk 
# 

# For SunDS - tested under SunDS 4.1.4 
#------------------------------------------

# maln part of program 

# make sure popups don't stay popped 
bind Menubutton <ButtonRelease-1> { 
tkMenuUnpost {} 
} 

proc start_Tools {} { 
# Launch video tool but not audio tool 

init_Video 
} 

proc get_Args {} { 
global argc argv T MEDIA 
# Get the command line arguments 

set argslist [split $argv "-"] 
foreach e $argslist { 

set T([lindex $e 0]) [lrange $e 1 end] 
} 

set MEDIA(videoP) [expr $T(mport) + 2] 
set MEDIA(audioP) [expr $T(mport) + 4] 
set MEDIA(whiteboardP) [expr $T(mport) + 8] 
check_mcaddress 



set T(sessionName) $T(N) 
set_cb_channel 
} 

proc init_GAP {} { 
# get our IP address and a unlque identifier 
global GAP 

set GAP(IP) [get_IP] 
set GAP (ID) [set_ID] 

} 

proc start_Up {} { 
global T 
set f $T(preferences_file) 

destroy $T(initDialogWin) 
if [file exists $f] { 
source $f 
Init 
} else { 
newuserDialog 
} 
} 

proc Init {} { 
global T GAP SIP 
fb "Initialising network" 
update idletasks 
# Initalise multicast socket 
set N(address) $T(maddr) 
set N(port) $T(mport) 
set N(ttl) $T(ttl) 
new GAP N 

set N(port) $SIP(Port) 
new SIP N 

#create main window 
build_ui_mainWin 
wm deiconify $T(mainWin) 

# calculate first timer 
set GAP(SendAfter) [new_Timer 1] 

192 



# Enter 'after' loop to 
# multicast GAP packets 
after $GAP(SendAfter) loop 

# after Timeout seconds, decrease state of pts in case 
# of network failure etc 
fb 1111 

decrease_State 
update idletasks 
} 

proc loop {} { 
global T PTS GAP 
set me $GAP(CName) 
set PTS($me,netStatus) 4 
send_GAP INFO 

set GAP(SendAfter) [new_Timer oJ 
after $GAP(SendAfter) loop 
} 

wm withdraw. 

# initialise random number generator 
randomInit [pidJ 

193 

image create bitmap tp_grey -file "$env(TPHDME)/picsnds/tp_grey.xbm" 
set img tp_grey 
set msg "TelePort is starting up" 
initDialog $img $msg 

update idletasks 

fb "Getting Arguments" 
update idletasks 
get_Args 

fb "Initialising Protocol" 
update idletasks 



# initilise conference bus 
fb "Initialising Conference Bus" 
update idletasks 
confbus_init 

# initilise audio and video tools 
fb "Initialising Video Tool" 
update idletasks 

start_Tools 

# horrible, but this stops vie running out of colours 
# might need to be longer timer if machine is slower 
# Might go away as and when icons are internally defined (?) 

after 5000 
# initilise audio and video tools 
fb "Configuring Video Tool" 
update idletasks 

# get_interp_narne video 
set GAP(CNarne) [get_CNarne] 
set T(CName) $GAP(CNarne) 
confbus video tp_no_quit 

# do this last to try to avoid colour problems with vie 
fb "Loading UI resources" 
update idletasks 
load_Images 

C.3.3 Main User Interface 
#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

194 



# Author: B.Anderson@lut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#------------------------------------------
# ui-main.tcl 
# 

# Builds but does not show the main window. 
#------------------------------------------

proc change_State {door} { 
global GAP T 
set GAP (State) $door 
$T(mydoorName) configure -lmage b$door 
send_GAP INFO 
} 

proc Leave {} { 
global GAP_SENT GAP_GOT T GAP 

send3AP BYE 
set msg [list tp_exit] 
confbus video $msg 
set f [open $T(logfile) a+] 
puts $f "#next_record: [get_NTP]" 
puts $f "#GAP_received" 

foreach name [lsort [array names GAP_GOT]] { 
puts $f "GAP_GOT($name) = $GAP_GOT($name)" 

} 

puts $f "#GAP_sent" 
foreach name [lsort [array names GAP_SENT]] { 

puts $f "GAP_SENT($name) = $GAP_SENT($name)" 
} 

close $f 
exit 
} 

proc restart {} { 
init_Video 
init_Audio 

} 

195 



proc build_ui_mainWin {} { 
global T GAP URLS USCP 
set w . 

wm withdraw $w 
set T(mainWin) $w 

#wm resizable $w 0 0 
wm title $w "$T(Lname): $T(sessionName)" 
wm iconname $w "$T(sessionName)" 

frame .menubar -relief {raised} -bd 2 

menubutton .menubar.file -menu {.menubar.file.m} \ 
-text {File} 

menu .menubar.file.m 
.menubar.file.m add command \ 
-command {Leave} \ 
-label {Quit} 

menubutton .menubar.help \ 
-menu {.menubar.help.m} \ 
-text {Help} 

menu .menubar.help.m 

.menubar.help.m add command \ 
-command {help info} \ 
-label "On TelePort" 

.menubar.help.m add command \ 
-command {help mbone}\ 
-label {On the MBONE} 

menubutton .menubar.edit \ 
-menu {.menubar.edit.m} \ 
-text {Edit} 

menu .menubar.edit.m 
.menubar.edit.m add command -label {Preferences}\ 
-command { 
if [winfo exists .pJ { 

196 



wm deiconify .p 
raise .p 

} else { 
build_ui_preferencesWin 

} 
} 

menubutton .menubar.show \ 
-menu {.menubar.show.m} \ 
-text {Show .. } 

menu .menubar.show.m 
.menubar.show.m add command \ 
-label {Participants} \ 
-command { 
if [winfo exists .plistJ { 
wm deiconify .plist 
raise .plist 
} else { 

} 

} 

create_List 
wm deiconify .plist 
raise .plist 

.menubar.show.m add command \ 
-command { 
if [winfo exists .niJ { 
wm deiconify .ni 
raise .ni 
} else {build_ui_infoWin} 
}\ 
-label {Network Info} 

pack append .menubar \ 
.menubar.file {left frame cent er} \ 
.menubar.edit {left frame cent er} \ 
.menubar.help {right frame center} \ 
.menubar.show {left frame cent er} 

frame .doors 
frame .doors.current -relief {groove} -bd 2 
label .doors.current.name -textvariable GAP (Name) 

197 



entry .doors.current.note \ 
-font $T(ef) \ 
-bg $T(bgc) \ 
-relief {sunken} \ 
-text variable GAP(Note) 
bind .doors.current.note <Return> {send_GAP INFO} 

198 

label .doors.current.act -textvariable USCP(CurrentActivity) -relief sunken 
label .doors.current.icon -image b$GAP(State) -relief flat 
set T(mydoorName) {.doors.current.icon} 
frame .doors.current.options -relief {groove} -bd 2 
label .doors.current.options.l -text {Options:} 
button .doors.current.options.c -image sclosed\ 
-command {change_State closed} \ 
-relief raised -bd 2 
button .doors.current.options.a -lmage sajar \ 
-command {change_State ajar}\ 
-relief raised -bd 2 
button .doors.current.options.o -image sopen\ 
-command {change_State open}\ 
-relief raised -bd 2 
pack .doors.current.options.l .doors.current.options.c \ 
.doors.current.options.a \ 
.doors.current.options.o -side left 

pack .doors.current.name .doors.current.note \ 
.doors.current.act\ 
.doors.current.icon .doors.current.options\ 
-side top -fill x -padx 2 -pady 2 

frame .doors.media 

frame .doors.media.v -relief groove -bd 2 
frame .doors.media.a -relief groove -bd 2 

pack .doors.media.v .doors.media.a -side top \ 
-expand 1\ 
-fill both 

label .doors.media.v.l -text {Video Capability:} 
radiobutton .doors.media.v.O -image vO -text {Can't Send Video}\ 
-value 0 -anchor w -variable GAP (Have_Video) 
radiobutton .doors.media.v.1 -image v1 -text {Can Send Video}\ 



199 

-value 1 -anchor w -variable GAP (Have_Video) 

pack .doors.media.v.l .doors.media.v.O .doors.media.v.l -fill both -expand 1 

label .doors.media.a.l -text {Audio Capability:} 
radiobutton .doors.media.a.O \ 
-text {No speaker}\ 
-image speakerO -anchor w\ 
-value 0 -variable GAP (Have_Speaker) 
radiobutton .doors.media.a.l \ 

-text {Have speaker}\ 
-image speakerl -anchor w\ 

-variable GAP (Have_Speaker) -value 1 
radiobutton .doors.media.a.2 \ 

-text {No microphone}\ 
-image micO -anchor w\ 
-value 0 -variable GAP (Have_Mic) 
radiobutton .doors.media.a.3 \ 
-text {Have microphone}\ 
-image micl -anchor w\ 
-value 1 -variable GAP (Have_Mic) 

pack .doors.media.a.l .doors.media.a.O\ 
.doors.media.a.l .doors.media.a.2\ 
.doors.media.a.3 -fill x 

pack .doors.current .doors.media -side left 

frame .feedback 
label .feedback.i -bitmap info -bd 2 
label .feedback.t -textvariable T(fb) -anchor w -bd 2 
pack .feedback.i .feedback.t -side left -padx 2 -pady 2 

pack append . \ 
.menubar. {top frame cent er fillx} \ 
.doors {top frame center fillx} \ 
.feedback {top frame cent er fillx} 

update idletasks 

Set_Geom $w both 
} 



proc build_ui_infoWin {} { 
global T GAP GAP_STATS 
toplevel .ni 
wm title .ni "$T(Sname): Debuging Information" 
#wm resizable .ni 0 0 

frame .ni.params -relief ridge -bd 2 

frame .ni.params.address 
label .ni.params.address.l -text {Address:} 
label .ni.params.address.v -anchor {w} -textvariable T(maddr) 
pack .ni.params.address.l .ni.params.address.v -side left 

frame .ni.params.port 
label .ni.params.port.l -text {Port:} 
label .ni.params.port.v -anchor {w} -textvariable T(mport) 
pack .ni.params.port.l .ni.params.port.v -side left 

frame .ni.params.ttl 
label .ni.params.ttl.l -text {TTL:} 
label .ni.params.ttl.v -anchor {w} -textvariable T(ttl) 
pack .ni.params.ttl.l .ni.params.ttl.v -side left 

200 

pack .ni.params.address .ni.params.port .ni.params.ttl -side top -fill x 

frame .ni.gap -relief ridge -bd 2 
set w .ni.gap 

frame $w.sources 
label $w.sources.l -text {Number of Sources:} 
label $w.sources.i -anchor w -textvariable GAP (Sources) 
pack $w.sources.l $w.sources.i -side left 
pack $w.sources -fill x 

frame $w.timing 
label $w.timing.l -text {Next INFO sent after:} 
label $w.timing.i -textvariable GAP(SendAfter) 
pack $w.timing.l $w.timing.i -side left 
pack $w.timing -fill x 



frame $w.psize 
label $w.psize.l -text {Mean Packet Size (bytes):} 
label $w.psize.i -anchor w -textvariable GAP(MeanPacketBytes) 
pack $w.psize.l $w.psize.i -side left 
pack $w.psize -fill x 

frame $w.bw 
label $w.bw.l -text {Bandwidth Devoted to GAP (bytes/s):} 
label $w.bw.i -anchor w -textvariable GAP(MaxBandwidth) 
pack $w.bw.l $w.bw.i -side left 
pack $w.bw -fill x 

frame $w.gs 
label $w.gs.l -text {Packets received per second:} 
label $w.gs.p -anchor w -textvariable GAP_STATS(pps) 
pack $w.gs.l $w.gs.p -side left 
pack $w.gs -fill x 

frame $w.m 
label $w.m.l -text {Multiplier (should be 0.5 - 1.5):} 
label $w.m.p -anchor w -textvariable GAP(Multiplier) 
pack $w.m.l $w.m.p -side left 
pack $w.m -fill x 

frame $w.g -relief ridge -bd 2 
canvas $w.g.c -height 200 -width 200 
pack $w.g.c 
pack $w.g -fill x -expand yes 
set T(viewgraph) $w.g.c 
set T(viewgraphyoffset) [$T(viewgraph) cget -height] 

frame $w.fb 
label $w.fb.l -text {Feedback:} 
label $w.fb.p -anchor w -textvariable GAP(statsfb) 
pack $w.fb.l $w.fb.p -side left 
pack $w.fb -fill x 

frame .ni.but 
button .ni.but.d -text {Dismiss} -command {destroy .ni} 
pack .ni.but.d 
pack .ni.params .ni.gap .ni.but\ 
-fill x -side top -expand 1 

201 



pack .n1.params 
} 

proc add_point {x y tag} { 
global T GAP 
set y [expr $y/l000] 
# the next line inverts the graph to standard x y coordinates 
set y [expr $T(viewgraphyoffset) - $y] 

set GAP(statsfb) "Adding point at x=$x y=$y" 
set new [$T(viewgraph) create oval [expr $x - 2] [expr $y - 2] \ 
[expr $x + 2] [expr $y + 2] -outline black -fill red -tags $tag] 
} 

############################################################### 
# Procedures to manage the doors 

202 

# build_ui_userDoorWin {source} - creates door window for a source, called 
# by clicking on participants list names 
############################################################### 

proc update_Door {w src} { 
global PTS 

if [winfo exists .$w] { 
wm title .$w $PTS($src,n) 

#.$w configure -bg $PTS($src,Nstate) 
# assumes this info exists - dangerous! 
# .$w.info.status.l configure -text $status 

.$w.door.icon configure -image b$PTS($src,doorstate) 

.$w.info.hw.sp configure -image speaker$PTS($src,havespeaker) 

.$w.info.hw.mic configure -image mic$PTS($src,havemic) 

.$w.info.hw.v configure -image v$PTS($src,havevideo) 
} 

# otherwise do nothing 
} 

proc build_ui_userDoorWin {cname} { 
global PTS T WINID GAP 
set s $WINID($cname) 
set sme $T(Sname) 
set w .$s 



# if the source already has a window then just update 
# images (textvariable look after the other updates), 
# otherwise create the window. 

if [winfo exists $w] { 
wm title $w "$PTS($cname,n)" 

$w.door.icon configure -image b$PTS($cname,doorstate) 
$w.info.hw.mic configure -image mic$PTS($cname,havemic) 
$w.info.hw.sp configure -image speaker$PTS($cname,havespeaker) 
$w.info.hw.v configure -image v$PTS($cname,havevideo) 
} else { 
toplevel $w 
wm title $w "$PTS($cname,n)" 
wm iconname $w "$sme: $PTS($cname,n)" 
wm resizable $w 0 0 
frame $w.info -relief ridge -bd 3 
pack $w.info -fill x 

frame $w.info.lt -relief sunken -bd 2 
label $w.info.lt.l -text "Local Time:" -anchor w 
label $w.info.lt.time -textvariable PTS($cname,t) 
pack $w.info.lt -side top -fill x 
pack $w.info.lt.l $w.info.lt.time -side left -fill x -expand 1 

frame $w.info.status -relief sunken -bd 2 
pack $w.info.status -fill x -side top 
label $w.info.status.l -textvariable PTS($cname,status) -anchor w 
pack $w.info.status.l -fill x 

frame $w.info.hw -relief sunken -bd 2 
pack $w.info.hw -side top -ipadx 2 -ipady 2 -fill x -expand 1 
label $w.info.hw.l -text "A/V Hardware:" 
label $w.info.hw.mic -image mic$PTS($cname,havemic) 
label $w.info.hw.sp -image speaker$PTS($cname,havespeaker) 
label $w.info.hw.v -image v$PTS($cname,havevideo) 

203 

pack $w.info.hw.l $w.info.hw.mic $w.info.hw.sp $w.info.hw.v -side left -expanc 

frame $w.door -borderwidth 2 -relief ridge -bd 3 
label $w.door.motd -textvariable PTS($cname,note) 
label $w.door.icon -image b$PTS($cname,doorstate) 
pack $w.door.motd 
pack $w.door.icon 



pack $w.door -expand 1 -fill x 

frame $w.m -borderwidth 2 
menubutton $w.m.b -relief raised \ 
-menu $w.m.b.options \ 
-text {Actions ... } 

menu $w.m.b.options 
$w.m.b.options add command \ 
-command "glance $cname" \ 
-label {Glance} 

$w.m.b.options add command \ 
-command "knock $cname" \ 
-label {Knock} 

$w.m.b.options add command \ 
-command "connect $cname" \ 
-label {Knock and Enter} 

$w.m.b.options add separator 

$w.m.b.options add command \ 
-command "workspace $cname" \ 
-label {Open whiteboard} 

$w.m.b.options add separator 

$w.m.b.options add command \ 
-command .. do_Email $cname $PTS($cname, e)" \ 
-label {Send Email} 

$w.m.b.options add command \ 
-command "call_Browser $PTS ($cname, u)" \ 
-label {View WWW homepage} 

pack $w.m.b -fill x 
pack $w.m -fill x 
} 
fb 1111 

} 

204 



proc glance {s} { 
global PTS T SIP GAP SIP_TAB env 
set result 1 
if ! [string match $PTS($s,havevideo) 1] { 

205 

set result [tk_dialog {.hum} {Are you sure?} {User cannot send video} {} 
} 

if [string match $result 1] { 
set S(To) $s 

set S(Type) REQ 
set S(tpservice) GLANCE 

# increment the request counter 
incr SIP(ReqCount) 

set ID "$SIP(Logname)@$GAP(IP)/[get_SIP_ID]" 
set SIP($ID,Count) 0 

set GAP(BusyWith) $PTS($s,cn) 
set SIP_TAB($ID,ResendAfter) 1000 
send_SIP S $ID 
fb "Sent GLANCE, waiting for reply" 
} 
} 

proc knock {s} { 
global PTS T SIP GAP SIP_TAB MEDIA env 

set S(To) $s 
set S(Type) REQ 
set S(tpservice) KNOCK 
fb "Waiting for knock response" 

incr SIP(ReqCount) 
set ID "$SIP(Logname)@$GAP(IP)/[get_SIP_ID]" 
set SIP_TAB($ID,ResendAfter) 1000 
set SIP($ID,Count) 0 
set GAP(BusyWith) $PTS($s,cn) 
send_SIP S $ID 
} 

proc connect {s} { 
global MEDIA PTS T SIP GAP SIP_TAB env 
fb {Waiting to create connection} 



incr SIP(ReqCount) 
set ID "$SIP(Logname)<D$GAP OP) / [get_SIP _ID]" 
set SIP($ID,Count) 0 
set GAP(BusyWith) $s 

set SIP_TAB($ID,ResendAfter) 1000 
set S(To) $s 
set S(Type) REQ 
set S(tpservice) CONNECT 
send_SIP S $ID 
} 

proc workspace is} { 
global T SIP GAP SIP_TAB env 

set S(To) $s 
set S(Type) REQ 
set S(tpservice) WHITEBOARD 
# there's no point launching this until we get a reply 
incr SIP(ReqCount) 
set ID "$SIP(Logname)<D$GAP(IP)/[get_SIP_ID]" 
set SIP_TAB($ID,ResendAfter) 1000 
set SIP($ID,Count) 0 
send_SIP S $ID 
fb "Sent WHITEBOARD, waiting for reply" 
} 

Va.rious dialog procedure': 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson<Dlut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 

#------------------------------------------
#------------------------------------------
# ui-dialogs.tcl 
# 

206 



# procs for drawing various dialog boxes - also procs 
# called by them 
#---------------------------------------------------------

proc newuserDialog {} { 
global T 

set w . intro 
toplevel $w 
wm title $w "$T(Lname): New User'" 
frame $w.t 
frame $w.b 
pack $w.t 
pack $w.b 
label $w.t.label -bitmap error -anchor nw 
pack $w.t.label -side left -fill y 
label $w.t.msg -width 40 -relief ridge -justify left \ 
-wraplength 250 \ 
-text "Aha, a NEW USER! \n\n There are a number of things \ 
that $T(Lname) needs to know before it can start using the \ 

207 

GAP protocol. Since $T(Lname) can't find the file: $T(preferences_file)\ 
, you will need to edit the 'best guess' \ 
entries that have just been created for you." 

pack $w.t.msg -side left 
button $w.b.ok -width 10 -text {OK} \ 
-command "destroy $w; newuserPrefs" 
button $w.b.q -text "Quit now" -command exit 
pack $w.b.ok -side right 
pack $w.b.q -side left 
} 

proc newuserPrefs {} { 
build_ui_preferencesWin 
.p.b.cancel configure -state disabled 
tkwait window .p 
Init 
} 

proc initDialog {img msg} { 
global T 
toplevel .init 
set w .init 



set T(initDialogWin) $w 
wm title $w "$T(Lname): Starting Up" 
frame $w.f -relief ridge -bd 2 
set w $w.f 
label $w.icon -image $img 

208 

label $w.fb -textvariable T(fb) -bg DarkSlateBlue -fg white -width 30 
pack $w.icon $w.fb -side top -fill x -fill y -expand 1 
pack $w -fill x -fill y -expand 1 
} 

proc waitDialog {img msg} { 
global T 
if [winfo exists .wait] {destroy .wait} 
toplevel .wait 
set w .wait 
set T(waitDialogWin) $w 
wm title $w "$T(Lname): Please Wait .... " 
frame $w.f 
set w $w.f 
label $w.icon -relief ridge -bitmap $img 
label $w.msg -text $msg 
pack $w.icon $w.msg -side top -fill x -fill y -expand 1 
pack $w -fill x -fill Y 
} 

proc connectDialog {s id} { 
global T GAP 
toplevel .cd 
set w .cd 
set T(connectDialogWin) $w 
wm title $w "$T(Lname): Connection Control" 
frame $w.text -relief raised -bd 2 
frame $w.but 

pack $w.text -fill both -expand 1 
pack $w.but -fill both -expand 1 

label $w.text.icon -bitmap info -anchor w 
label $w.text.t -wraplength 200 
pack $w.text.icon -side left -fill y 
pack $w.text.t -side left -fill both -expand 1 -padx 2 -pady 2 
set msg {Use the button below to close the connection} 



209 

button $w.but.c -text {Close Connection} -command "close_connection $s $id" 
$w.text.t configure -text $msg 
if $GAP(Have_Video) { 
button $w.but.pv -text {Pause Video} -command "video_toggle_pause $w" 
set msg {Use the buttons below to pause/un-pause the video, and to close the ( 
pack $w.but.pv -side left 
pack $w.but.c -side right 
} else { 

} 

pack $w.but.c 
} 

proc video_toggle_pause {w} { 
global videoIsPaused 
if $videoIsPaused { 
confbus video tp_start_sending 
set videoIsPaused 0 
$w.but.pv configure -text {Pause Video} 
} { 
confbus video tp_stop_sending 
set videoIsPaused 1 
$w.but.pv configure -text {Start Video} 
} 
} 

proc close_connection {s id} { 
global PTS T GAP USCP 
if $GAP(Have_Video) {confbus video tp_stop_sending} 
set msg [list tp_exitJ 
confbus audio $msg 
unset T(vatPID) 
unset T(vat) 
if [winfo exists $T(connectDialogWin)J {destroy $T(connectDialogWin)} 
set S(To) $s 
set S(ID) $id 
set S(Type) DISCONNECT 
send_USCP S 
fb 1111 

set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} 



proc todoDialog {url label msg} { 
global T 
toplevel .todo 
set w .todo 
wm title $w "$T(Lname): Unsupported Feature" 
frame $w.top -bd 2 
frame $w.but 
set b $w.but 
set w $w.top 

pack $w -fill both -expand 1 
pack $b 

label $w.icon -bitmap warning -anchor w 
frame $w.t -bd 2 -relief ridge 
label $w.t.l -text $label 
entry $w.t.e -justify center 
$w.t.e insert end $url 
label $w.t.t -text $msg -anchor w -wraplength 300 
pack $w.icon -side left -fill y -padx 2 -pady 2 
pack $w.t -side left -fill both -expand 1 
pack $w.t.l -fill x -ipadx 2 -ipady 2 
pack $w.t.e -fill x -ipadx 2 -ipady 2 
pack $w.t.t -fill x -ipadx 2 -ipady 2 
button $b.d -text Dismiss -command "destroy .todo" 
pack $b.d 
} 

proc errorDialog {t} { 
# create a window to monitor $errorlnfo variable 
global T errorlnfo 
toplevel .ew 
set w .ew 
wm title $w "$T(Lname): Something bad happened" 
frame $w.f 
set w .ew.f 
label $w.icon -bitmap warning 
label $w.msg -relief ridge -textvariable $t -fg red 
pack $w.icon $w.msg -side left 
button .ew.d -text Dismiss -command "destroy .e" 
pack .ew.f -fill x -fill y 
pack .ew.d -side right 

210 



} 

# dialog.tcl -
# 

# This file defines the procedure tk_dialog, which creates a dialog 
# box containing a bitmap, a message, and one or more buttons. 
# 

# @(#) dialog.tcl 1.19 95/09/27 09:51:36 
# 

211 

# Copyright (c) 1992-1993 The Regents of the University of California. 
# Copyright (c) 1994-1995 Sun Microsystems, Inc. 
# 

# See the file "license. terms" for information on usage and redistribution 
# of this file, and for a DISCLAIMER OF ALL WARRANTIES. 
# 

# 

# tk_dialog: 
# 

# This procedure displays a dialog box, waits for a button in the dialog 
# to be invoked, then returns the index of the selected button. 
# 
# Arguments: 
# w -Window to use for dialog top-level. 
# title -Title to display in dialog's decorative frame. 
# text -Message to display in dialog. 
# bitmap -BitGAP to display in dialog (empty string means none) . 
# default -Index of button that is to display the default ring 
# (-1 means none). 
# args -One or more strings to display in buttons across the 
# bottom of the dialog box. 

# Edited a bit by Ben Anderson (LUT, 1995) to display a canvas to represent 
# a timer. When the timer runs out, the dialog sends a mouse up event 
# to the default button (be careful here ... !) 

proc timedDialog {w title text bitmap t default args} { 
global tkPriv T 

# 1. Create the top-level window and divide it into three 
# parts. 



catch {destroy $w} 
toplevel $w -class Dialog 
wm title $w $title 
wm iconname $w Dialog 
wm protocol $w WM_DELETE_WINDOW { } 
wm transient $w [winfo toplevel [winfo parent $wJJ 
frame $w.top -relief raised -bd 1 
pack $w.top -side top -fill both 
frame $w.mid -relief flat 
pack $w.mid -fill both 
frame $w.bot -relief raised -bd 1 
pack $w.bot -side bottom -fill both 

# 2. Fill the top part with bitmap and message (use the option 
# database for -wraplength so that it can be overridden by 
# the caller). 

option add *Dialog.msg.wrapLength 3i widgetDefault 
label $w.msg -justify left -text $text \ 
-font -Adobe-Times-Medium-R-Normal--*-180-*-*-*-*-*-* 

212 

pack $w.msg -in $w.top -side right -expand 1 -fill both -padx 3m -pady 3m 
if {$bitmap ,= ""} { 

label $w.bitmap -bitmap $bitmap 
pack $w.bitmap -in $w.top -side left -padx 3m -pady 3m 

} 

# 2.1 Put the canvas in the middle and draw a small rectangle 
# get the canvas width from the time value 

canvas $w.canvas -relief sunken -width $t\c -height O.5c -bd 2 
$w.canvas create rectangle 0 0 0 0 -tags rect 

pack $w.canvas -in $w.mid -fill x 

# 3. Create a row of buttons at the bottom of the dialog. 

set i 0 
foreach but $args { 

button $w.button$i -text $but \ 
-command "set tkPri v(button) $i; after cancel do_Timer" 
if {$i == $default} { 

frame $w.default -relief sunken -bd 1 
raise $w.button$i $w.default 



213 

pack $w.default -in $w.bot -side left -expand 1 -padx 3m -pady 2m 
pack $w.button$i -in $w.default -padx 2m -pady 2m 
bind $w <Return> "$w. button$i flash; set tkPriv (button) $i; after cancel c 

} else { 

} 

pack $w.button$i -in $w.bot -side left -expand 1 \ 
-padx 3m -pady 2m 

incr 1 

} 

# 4. Withdraw the window, then update all the geometry information 
# so we know how big it wants to be, then cent er the window in the 
# display and de-iconify it. 

wm withdraw $w 
update idletasks 
set x [expr [winfo screenwidth $wJ/2 - [winfo reqwidth $wJ/2 \ 
- [winfo vrootx [winfo parent $wJJJ 
set y [expr [winfo screenheight $wJ/2 - [winfo reqheight $wJ/2 \ 
- [winfo vrooty [winfo parent $wJJJ 
wm geom $w +$x+$y 
wm deiconify $w 

# 5. Set a grab and claim the focus too. 

set oldFocus [focusJ 
set oldGrab [grab current $wJ 
if {$oldGrab != ""} { 

set grabStatus [grab status $oldGrabJ 
} 

grab $w 
if {$default >= O} { 

focus $w.button$default 
} else { 

focus $w 
} 

# 6. Wait for the user to respond, then restore the focus and 
# return the index of the selected button. Restore the focus 
# before deleting the window, since otherwise the window manager 
# may take the focus away so we can't redirect it. Finally, 
# restore any grab that was in effect. 



set T(DialogTimer) $t 
after 500 do_Timer $w $t $default 

tkwait variable tkPriv(button) 
after cancel do_Timer 
catch {focus $oldFocus} 
destroy $w 
if {$oldGrab != ""} { 

if {$grabStatus == "global"} { 
grab -global $oldGrab 

} else { 
grab $oldGrab 

} 

} 

return $tkPriv(button) 
} 

proc do_Timer {w t d} { 
global tkPriv T 
# puts stdout "Doing timer at time = $t" 
set length [expr ($T(DialogTimer) - $t)J 
if [winfo exists $w.canvasJ { 

$w.canvas delete rect 

214 

$w.canvas create rectangle 0.2c 0.2c $length\c O.Sc -fill red -tags rect 
} 

set t [expr $t - 0.5J 
if {$t < O} {set tkPriv(button) $d} {after 500 do_Timer $w $t $d} 

} 

#---------------------------------------------------------
# Creates the preferences window 
#---------------------------------------------------------

proc Save_Prefs {} { 
global GAP T MEDIA 
fb "Saving preferences" 
set fp [open $T(preferences_file) wJ 
puts $fp "# Teleport preferences file, do not edit or overwrite'" 
puts $fp "global GAP" 
puts $fp "set GAP (Note) {$GAP(Note)}" 
puts $fp "set GAP (Name) {$GAP(Name)}" 



puts $fp "set GAP(Uri) {$GAP(Uri)}" 
puts $fp "set GAP(Email) {$GAP(Email)}" 
puts $fp "set GAP (Pots) {$GAP(Pots)}" 
puts $fp "set GAP (Have_Video) {$GAP(Have_Video)}" 
puts $fp "set GAP (Have_Mic) {$GAP(Have_Mic)}" 
puts $fp "set GAP (Have_Speaker) {$GAP(Have_Speaker)}" 
foreach i [array names MEDIA] { 
puts $fp "set MEDIA($i) {$MEDIA($i)}" 
} 

puts $fp "set T(icon_vol) {$T(icon_vol)}" 
close $fp 
fb "Save complete" 
set A(To) all 
} 

# create the preferences window - this window has three maln panels 
# between which the user can toggle 
proc build_ui_preferencesWin {} { 
global T GAP 
set T(dfgc) red 
fb "Getting Preferences" 
toplevel .p 
wm withdraw .p 
wm title .p "$T(Lname): Preferences" 
wm iconname .p "$T(Sname): Prefs" 
# create 2 frames, one for the info, one for buttons 
frame .p.t 
frame .p.b 
button .p.t.pd -text {Personal} -relief raised\ 

-disabledforeground $T(dfgc)\ 
-state disabled\ 
-command { 

.p.b.help configure -command {help prefs} 
#.p.t.ha configure -state active 
.p.t.hc configure -state active 
.p.t.int configure -state active 
.p.t.pd configure -state disabled 
build_ui_personalDetailsWin} 

# button .p.t.ha -text {Media Tools}\ 
# -disabledforeground $T(dfgc)\ 
# -command { 

215 



# .p.b.help configure -command {help ha} 
# .p.t.ha configure -state disabled 
# .p.t.hc configure -state active 
# .p.t.int configure -state active 
# .p.t.pd configure -state active 
# build_ui_appsWin} 

button .p.t.hc -text {Hardware}\ 
-disabledforeground $T(dfgc)\ 
-command { 
.p.b.help configure -command {help hc} 
#.p.t.ha configure -state active 
.p.t.hc configure -state disabled 
.p.t.int configure -state active 
.p.t.pd configure -state active 
build_ui_hardwareWin} 

button .p.t.int -text {Interface}\ 
-disabledforeground $T(dfgc)\ 
-command { 
.p.b.help configure -command {help interface} 
#.p.t.ha configure -state active 
.p.t.hc configure -state active 
.p.t.pd configure -state active 
.p.t.int configure -state disabled 
build_ui_interfaceWin} 

pack .p.t.pd .p.t.hc .p.t.int -side left 

# three buttons to cancel, to save and to get help 
button .p.b.help -width 10 \ 
-text {Help} \ 
-command {help prefs} 
button .p.b.cancel -width 10\ 
-text {Cancel} \ 
-command {destroy .p} 
button .p.b.save -width 10\ 
-text {Save} \ 
-command { 
Save_Prefs 
destroy .p} 

216 



pack .p.b.help -side left -padx 2 -pady 2 
pack .p.b.cancel -side left -padx 2 -pady 2 
pack .p.b.save -side right -padx 2 -pady 2 

#pack the frames 
pack .p.t -fill x 
pack .p.b -fill x -side bottom 

build_ui_personalDetailsWin 
wm deiconify .p 
} 

proc build_ui_personalDetailsWin {} { 
# create 5 frames, each with a label and an entry widget 
# to hold user's preferences 
global GAP T 
if [winfo exists .p.int] {destroy .p.int} 
if [winfo exists .p.m] {destroy .p.m} 
if [winfo exists .p.h] {destroy .p.h} 
if I [winfo exists .p.u] { 
set width 20 
frame .p.u -relief groove -bd 2 
pack .p.u -after .p.t -fill x 

# Name 
frame .p.u.name 
label .p.u.name.l -text {Name:} -width $width -anchor w 
entry .p.u.name.e -relief sunken -font $T(ef) \ 
-width 40 -background $T(bgc) \ 
-textvariable GAP (Name) 

bind .p.u.name.e <Return> { 
set S(To) all 
send_GAP INFO 
} 

pack .p.u.name -fill x 
pack .p.u.name.l -side left 
pack .p.u.name.e -side right -expand 1 -fill x 

# Email 
frame .p.u.email 

217 



label .p.u.email.l -text {Email:} -width $width -anchor w 
entry .p.u.email.e -relief sunken \ 
-text variable GAP(Email) \ 
-font $T(ef) -background $T(bgc) 
pack .p.u.email -fill x 
pack .p.u.email.l -side left 
pack .p.u.email.e -side right -expand 1 -fill x 

# WWW URL 
frame .p.u.url 
label .p.u.url.l -text {WWW Home Page:} -width $width -anchor w 
entry .p.u.url.e -relief sunken \ 
-textvariable GAP(Uri)\ 
-font $T(ef) -background $T(bgc) 
pack .p.u.url -fill x 
pack .p.u.url.l -side left 
pack .p.u.url.e -side right -fill x -expand 1 

# POTS phone number 
frame .p.u.pots 
label .p.u.pots.l -text {Telephone:} -width $width -anchor w 
entry .p.u.pots.e -relief sunken \ 
-textvariable GAP(Pots)\ 
-font $T(ef) -background $T(bgc) 
pack .p.u.pots -fill x 
pack .p.u.pots.l -side left 
pack .p.u.pots.e -side right -fill x -expand 1 

# MOTD (displayed over door) 
frame .p.u.m 
label .p.u.m.l -text {Message above Door:} -width $width -anchor w 
entry .p.u.m.e -relief sunken \ 
-textvariable GAP(Note)\ 
-font $T(ef) -background $T(bgc) 
pack .p.u.m -fill x 
pack .p.u.m.l -side left 
pack .p.u.m.e -side right -fill x -expand 1 
} 
fb 1111 

} 

218 



global GAP FORMATS T MEDIA APPS 
if [winfo exists .p.int] {destroy .p.int} 
if [winfo exists .p.u] {destroy .p.u} 
if [winfo exists .p.h] {destroy .p.h} 
if I [winfo exists .p.m] { 
frame .p.m 
pack .p.m -after .p.t 

# Video 
frame .p.m.v -relief ridge -bd 2 
label .p.m.v.t -text {Video:} -width 20 
pack .p.m.v.t 

set w .p.m.v.app 
frame $w 
pack $w -fill x -expand 1 
label $w.l -text {Application:} -anchor w -width 15 
pack $w.I -side left 
foreach i $APPS(video) { 
set f [string tolower $i] 
radiobutton $w.$f -text $i \ 
-variable MEDIA(videoA) \ 
-command 1111\ 

-relief flat -value $i -width 5 -anchor w 
pack $w.$f -side left 
} 

set w .p.m.v.p 
frame $w 
pack $w -fill x -expand 1 
label $w.pt -text {Port:} -anchor w -width 15 
label $w.po -textvariable MEDIA(videoP) 
pack $w.pt -side left 
pack $w.po -side left 
set w .p.m.v.bw 
frame $w 
pack $w -fill x -expand 1 
label $w.l -text "Max B/W (kb/s):" -anchor sw -width 15 
scale $w.s -from 0 -to 500 -orient horizontal\ 
-length 200 -variable MEDIA(videoR) 

219 



----------------------

pack $w.l -side left 
pack $w.s -fill x -side left -expand 1 
pack .p.m.v -fill x -padx 2 -pady 2 

# Audio 
set w .p.m.a 
frame $w -relief ridge -bd 2 
label $w.t -text {Audio:} -width 20 
pack $w.t 

set w $w.app 
frame $w 
pack $w -fill x -expand 1 
label $w.l -text {Application:} -anchor w -width 15 
pack $w.l -side left 
foreach i $APPS(audio) { 
set f [string tolower $iJ 
radiobutton $w.$f -text $i \ 
-variable MEDIA(audioA) \ 
-command 1111\ 

-relief flat -value $i -width 5 -anchor w 
pack $w.$f -side left 
} 

set w .p.m.a.p 
frame $w 
pack $w -fill x -expand 1 
label $w.pt -text {Port:} -anchor w -width 15 
label $w.po -textvariable MEDIA(audioP) 
pack $w.pt -side left 
pack $w.po -side left 
pack .p.m.a -fill x -padx 2 -pady 2 

# Workspace tools 
frame .p.m.ws -relief ridge -bd 2 
set w .p.m.ws 
label $w.l -text {Workspace Tools:} -width 20 
pack $w.l 
# this will have to cycle through a number of them 
frame $w.wb 

220 



pack $w.wb -fill x -expand 1 
checkbutton $w.wb.n -text {LBL whiteboard} \ 
-relief flat -width 15 -anchor w\ 
-onvalue WB -variable MEDIA(whiteboardF) 
label $w.wb.l -text {Port:} 
label $w.wb.p -textvariable MEDIA(whiteboardP) 
pack $w.I 
pack $w.wb.n $w.wb.l $w.wb.p -side left 
pack $w -fill x -padx 2 -pady 2 
} 
fb 1111 

} 

proc build_ui_hardwareWin {} { 
# hardware configs 
if [winfo exists .p.int] {destroy .p.int} 
if [winfo exists .p.m] {destroy .p.m} 
if [winfo exists .p.u] {destroy .p.u} 
if I [winfo exists .p.h] { 
global ef bgc GAP 
frame .p.h -relief groove -bd 2 
pack .p.h -after .p.t -fill both 
frame .p.h.v -relief groove -bd 2 
frame .p.h.a -relief groove -bd 2 

pack .p.h.v .p.h.a -side left \ 
-padx 2 -pady 2 \ 
-expand 1\ 
-fill both 

label .p.h.v.l -text {Video} 
radiobutton .p.h.v.O -image vO -text {Can't Send}\ 
-value 0 -variable GAP (Have_Video) 
radiobutton .p.h.v.1 -image v1 -text {Can Send}\ 
-value 1 -variable GAP (Have_Video) 

pack .p.h.v.I .p.h.v.O .p.h.v.1 -fill x -expand 1 

label .p.h.a.l -text {Audio} 
radiobutton .p.h.a.O -image speakerO \ 
-text {No speaker}\ 
-value 0 -variable GAP (Have_Speaker) 

221 



radiobutton .p.h.a.l -text {Have speaker}\ 
-image speakerl -value 1\ 
-variable GAP (Have_Speaker) 

radiobutton .p.h.a.2 -image micO\ 
-text {No microphone}\ 
-value 0 -variable GAP (Have_Mic) 
radiobutton .p.h.a.3 -image micl\ 
-text {Have microphone}\ 
-value 1 -variable GAP (Have_Mic) 
pack .p.h.a.l .p.h.a.O .p.h.a.l .p.h.a.2\ 

.p.h.a.3 -fill x -expand 1 
} 
fb 1111 

} 

proc build_ui_interfaceWin {} { 
# interface configs 
if [winfo exists .p.m] {destroy .p.m} 
if [winfo exists .p.u] {destroy .p.u} 
if [winfo exists .p.h] {destroy .p.h} 
if I [winfo exists .p.int] { 

frame .p.int 
pack .p.int -fill x -expand 1 

scale .p.int.s -from 100 -to 0 -variable T(icon_vol) \ 
-showvalue 1 -orient vertical 

label .p.int.l -text {Audio Icon Volume} 
pack .p.int.s -fill y -side left 
pack .p.int.l -fil x -side left 
} 

wm deiconify .p 
fb 1111 

} 

proc build_ui_Formats {m} { 
global FORMATS MEDIA 
switch -exact -- $m { 
audio { 
if [winfo exists .p.m.a.format] {destroy .p.~.a.format} 
set w .p.m.a.format 
frame $w 
pack $w -fill x -expand 1 -after .p.m.a.app 
label $w.t -text {Format:} -anchor w -width 15 
pack $w.t -side left 

222 



set app $MEDIA(audioA) 
foreach i $FDRMATS($app) { 
set f [string tolower $i] 
radiobutton $w.$f -text $i \ 
-variable MEDIA(audioF)\ 
-relief flat -value $i -width 5 -anchor w 
pack $w.$f -side left 
} 
} 

video { 
if [winfo exists .p.m.v.format] {destroy .p.m.v.format}. 
set w .p.m.v.format 
frame $w 
pack $w -fill x -expand 1 -after .p.m.v.app 
label $w.t -text {Format:} -anchor w -width 15 
pack $w.t -side left 
set app $MEDIA(videoA) 
foreach i $FORMATS($app) { 
set f [string tolower $i] 
radiobutton $w.$f -text $i \ 
-variable MEDIA(videoF)\ 
-relief flat -value $i -width 5 -anchor w 
pack $w.$f -side left 
} 

} 

} 

} 

The help dialogs: 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson@lut.ac.uk 
# 
# For SunDS - tested under SunDS 4.1.4 
#------------------------------------------

223 



#------------------------------------------
# ui-help.tcl 
#------------------------------------------

proc help {subject} { 
global URLS helptext T 
set w .help 
set p $w.f.pics 
if I [winfo exists $w] { 
toplevel $w 
wm iconname $w "$T(Sname): Help" 
wm withdraw $w 
frame $w.f 
pack $w.f 
frame $p 
pack $p -side left -fill y 
label $p.icon -image tp 
pack $p.icon -padx 2 -pady 2 -fill x 

224 

label $w.f.l -width 40 -wraplength 3i -relief ridge -justify left -textvariabl 
button $w.b -text {Dismiss} -command "destroy $w" 
button $w.cb -text {See WWW pages} 
pack $w.f.l -side right -fill x -fill y -padx 2 -pady 2 
pack $w.cb -side left -expand 1 

pack $w.b -side right -expand 1 

wm deiconify $w 
} 

switch -exact -- $subject { 
prefs { 
wm title $w "Help on ... Preferences" 
set helptext "Please provide this information, it will identify you in any GAF 
as well as providing the means for others to contact you. If you have not usec 
before, a 'best guess' has been entered which will probably need to be edited. 
to the file -/.GAPdefaults so you should not have to re-enter them. \n\n More 
found at the url $URLS(GAP)" 
$w.cb configure -state normal 
$w. cb conf igure -command " 
call_Browser $URLS(GAP) 
destroy $w" 
} 

ha { 
wm title $w "Help on ... Media Tools" 
set helptext "$T (Lname) uses these tools to enable you to communicate and intE 



other participants. $T(Lname) expects to find the tools listed via your \$PATI 
error if it cannot do so.\n One day $T(Lname) will allow you to define your 0; 

add new ones.\n\nMore information on the audio and video tools can be found\ 
at the url $URLS(mbone)" 
$w.cb configure -state normal 
$w.cb configure -command" 
call_Browser $URLS(mbone) 
destroy $w" 
} 

hc { 
wm title $w "Help on ... Hardware Capabilities" 
set helptext "This dialog allows you to be explicit about the audio/video hare 
disposal - you may have a video card but nO.camera, or a speaker but no micro, 

used here are replicated in the actual user-interface so you can see who has 
trying to contact them ... " 

$w.cb configure -state disabled 
} 

info { 
wm title $w "Help on ... TelePort" 
set helptext "TelePort is an experimental system built as a vehicle for a PhD 
aspects of user interfaces for broadband telecommunications services. More inj 
TelePort can be found at the url $URLS(teleport) \n\n Author = Ben Anderson,\ 
Dept Computer Studies, Loughborough University of Technology, Loughborough, LE 
\n\nErrors and bug reports to: B.Anderson~lut.ac.uk\ 
\n\nThis research is supported by a Research Scholarship funded by British Te] 
$w.cb configure -command "call_Browser $URLS(teleport); destroy $w" 
} 

email { 
wm title $w "Help on ... Email" 
set helptext {TelePort has no built in email tool - you will\ 
need to use the X-selection to copy a participant's email\ 
address to your email tool.} 
$w.cb configure -state disabled 
} 

mbone { 
wm title $w "Help on ... M80NE" 
set helptext "The MBONE is a multicast backbone implemented within the curren1 
using unicast tunnelling of multicast IP packets. This allows efficient, scal' 
which is particularly useful for multiparty conferencing and broadcasting.\n\I 
on a number of applications currently under development for the MBONE can be j 
$w.cb configure -command "call_Browser $URLS(mbone); destroy $w" 
} 



-----------

226 

default { 
wm title $w {Default Help} 
set helptext "There is no specific help for·this context. You can get more det 
this application from the online help pages at $URLS(teleport)" 

$w.cb configure -command "call_Browser $URLS(teleport); destroy $w" 
} 
} 

} 

Ima.ge loa.ding: 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 
# Author: B.Anderson~lut.ac.uk 
# 
# For SunDS - tested under SunDS 4.1.4 
#------------------------------------------

#------------------------------------------~---------- ----
# ui-images.tcl 
# 
# tcl script to load all gifs in picsnds directory 
# Looks for" .gif" extension (exact match only) and ignores 
# everything else. 
#---------------------------------------------------------

proc load_Images {} { 
# location of sounds and 1mages 
global picdir env 
set picdir "$env(TPHDME)/picsnds" 

# automagically load all gifs 
set popd [pwd] 
cd $picdir 
set imagelist [glob *.gif] 
set loaded [image names] 
foreach i $imagelist { 
regsub ".gif" $i 1111 P 
if {[lsearch $loaded $p] -- -1} { 



- -- ----------

image create photo "$p" -file $i 
# puts stdout "Loading $i" 
} else { 

} 
} 

# puts std out "$p already loaded, skipping" 

cd $popd 
} 

C.3.4 Tcl-DP initialisation of network sockets 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson~lut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#---------------------------------------------------------
# tcldp.tcl 
# All the Tcl-DP network procedures are defined in this file 
#---------------------------------------------------------

proc new {what N} { 
global T 
upvar $N d 
switch -exact -- $what { 
GAP { 
set T(gap) [lindex [dp_connect -mudp $d(address) \ 
$d(port) \ 
$d(ttl)] 0] 

set T(net_addr) [dp_address create $d(address) \ 
$d(port)] 
# what to do if there's data on the net port 
dp_filehandler $T(gap) r GAP_receive 
} 

confbus { 

227 



set T(confbus) [lindex [dp_connect -mudp $d(address) \ 
$d(port) \ 
$d(ttl)] 0] 

set T(confbus_addr) [dp_address create $d(address) \ 
$d(port)] 
# what to do if there's data on the confbus port 
dp_filehandler $T(confbus) r cb_Receive 
} 

SIP { 

} 
} 

set T(sip) [lindex [dp_connect -udp $d(port)] 0] 
dp_filehandler $T(sip) r SIP_receive 
} 

proc GAP_send {content} { 
global T 
dp_sendTo $T(gap) $content $T(net_addr) 
#puts "Just multicast $content" 
} 

proc SIP_send {content id} { 
global T SIP_srcs 
dp_sendTo $T(sip) $content $SIP_srcs($id) 
#puts "Just unicast sent $content" 
} 

proc USCP_send {content id} { 
global T SIP_srcs 
dp_sendTo $T(sip) $content $SIP_srcs($id) 

} 

proc SIP_receive {mode ufp} { 
global T SIP SIP_srcs USCP 
# puts stdout "Got $ufp" 

set incoming [dp_receiveFrom $ufp] 
set from [lindex $incoming 0] 
set addr [dp_address info $from] 
set temp [lrange $incoming 1 end] 
set p [string trim $temp "/ { n"] 
set d [split $p \n] 
set IP [lindex $addr 0] 

228 



set first line [1 index $d 0] 
set proto [1 index $firstline 0] 
if [string match $proto $SIP(Version)] { 

# get the id 
set id_line [split [lindex $d 3] "="] 
set id [lindex $id_line 1] 

# set the tcl-dp address id for sending replies 
set SIP_srcs($id) $from 

set type [lindex $firstline 1] 
process_SIP_$type $id $d 
} elseif [string match $proto $USCP(Version)] { 

set type [lindex $firstline 1] 
process_USCP_$type $d 
} else {warn "Received unknown protocol packet: $proto"} 

} 

proc GAP receive {mode mfp} { 
global T GAP 
set incoming [dp_receiveFrom $mfp] 
# if sent by tcl-dp, first element IS a tcl-dp address identifier 
# that should be ignored - might need to tidy this up to deal with 
# GAP packets from a different tool. 
set temp [lrange $incoming 1 end] 
set p [string trim $temp "/{ /}"] 
set d [split $p \n] 
set v [split [1 index $d 0] =] 

if [regexp $GAP(Version) $v] { 
receive_GAP $d 
} else { 
warn "Received unknown protocol packet: [1 index [1 index $v 1] 0]" 
} 
} 

C.3.5 Session Invitation Protocol 
Parsers for SIP and also procedures to deal with responses. 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 

229 



# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson~lut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#------------------------------------------------------------------
# Procs for processing Session Invitation Protocol Packets 
# 

# Based on SIP v 1.0 IETF-ORAFT-MMUSIC-SIP-OO 
#------------------------------------------------------------------
proc get_SIP_ID {} { 

global GAP 

} 

# returns a large random number 
return [expr int(100000 * [randomJ)J 

proc process_SIP_REQ {id d} { 
global PTS GAP SIP_TAB USCP SIP T 
set me $GAP (IP) 
set busy $USCP(CurrentSession) 

# split the SIP data packet into header, seSS10n desc, media desc 
set h [lrange $d 1 5J 
set sd [lrange $d 6 13J 
set md [lrange $d 14 endJ 
set src [I index [split $id "I"J OJ 
set origin [lindex [split [lindex $d lJ = J lJ 
set version [I index $origin 2J 
set result [catch {lindex $SIP_TAB($id,v) 2} oldversionJ 
if [string match $result oJ { 
# we've seen this id before 
if [string match $version $oldversionJ { 

# new version so need to parse it 
warn "Got new version of request $id" 

} else { 
# ignore it 
say "Ignoring repeated request id = $id" 

} 

} else { 

230 



# we haven't seen this id before 
unpack_SIP_Header $id $h 
unpack_SIP_REQ $id $sd $md 

if {[string match $busy 0] I I [string match $busy $id]} { 
# we're not busy, or we're busy with sender, so proceed 
# update the service control table 
set USCP(CurrentSession) $id 

if [info exists SIP_TAB($id,session_attr_tpservice)] { 
# then it is a teleport service 
received_$SIP_TAB($id,session_attr_tpservice) $id $src 

} else { 
# it wasn't 
received_SIP_REQ $id 
} 

} else { 
# if none of them were true then 
# we're busy with someone else so send BUSY 
set S(Type) REP 
set S(Category) 2 
set S(ReplyTypeName) BUSY 

send_SIP S $id 
} 
} 

} 

proc unpack_SIP_Header {id h} { 
global SIP_TAB 
set SIP_TAB($id,header) [1 index $h 0] 
foreach line $h { 
set 1 [split $line =] 
set type [lindex $1 0] 
set data [lindex $1 1] 
set SIP_TAB($id,$type) $data 
} 
} 

proc unpack_SIP_REQ {id sd md} { 
global SIP SIP_TAB 
#say "Processing SIP request: Desc=$sd Media=$md" 
# the rest of it is an SDP packet. 

231 



# 1. Unpack the description 
foreach line $sd { 

set 1 [split $line "="J 
switch -exact -- [lindex $1 oJ { 

a { 

set d [split [lindex $1 1J ": "J 
set result [llength $dJ 
set flag [lindex $d oJ 
if [string match $result 1J { 

set value 1 
} else { 

set value [lrange $d 1 endJ 
} 

set SIP_TAB($id,session_attr_$flag) $value 
} 

default { 

} 

} 

set SIP_TAB($id, [lindex $1 OJ) [lindex $1 1J 
} 

# 2. Get the media info 
foreach line $md { 
set 1 [split $line "="J 
set type [lindex $1 OJ 
set desc [lindex $1 1J 
switch -exact -- $type { 
m { 

# media field 
set media [lindex $desc OJ 
set SIP_TAB($id,$media\Port) [lindex $desc 1J 
set SIP_TAB($id,$media\Transport) [lindex $desc 2J 

set SIP_TAB($id,$media\Formats) [lrange $desc 3 endJ 
} 

b { 

# bandwidth field 
set SIP_TAB($id,$media\_b) [lindex [split $desc ":"J 1J 

} 

a { 
# attribute field 
set d [split $desc ": "J 

set result [llength $dJ 

232 



} 

set flag [lindex $d 0] 
if [string match $result 1] { 
set value 1 

} else { 
set value [lrange $d 1 end] 
} 

set SIP_TAB($id,media_attr_$flag) $value 

default { 

} 

} 

} 

} 

# any other field 
set SIP_TAB($id,$media\_$type) $desc 

proc process_SIP_REP {id d} { 
global PTS GAP SIP SIP_TAB T 
set Category [lindex [lindex $d 0] 2] 
set ReplyTypeName [lindex [lindex $d 0] 3] 

foreach line $d { 
set 1 [split $line "="] 
set SIP_TAB($id,[lindex $1 0]) [lindex $1 1] 
} 

set src [lindex [split $SIP_TAB($id,To) "/"] 0] 
set SIP_TAB($id,Got) $ReplyTypeName 
fb "Response: $ReplyTypeName" 
received_$ReplyTypeName $id $src 
} 

233 

#-------------------------------------------------------------------
# Procedures to deal with replies 
#-------------------------------------------------------------------
proc received_SUCCESS {id src} { 

global PTS T SIP_TAB SIP 
if [ regexp $SIP_TAB($id,Sent) "GLANCE KNOCK CONNECT WHITEBOARD TEXT"] { 

if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin)} 
complete_$SIP_TAB($id,Service)\_sent $id $src 
fb "Got SUCCESS in response to $SIP_TAB($id,Sent)" 

} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id), got SUCCESS" 



} 

} 

proc received_UNSUCCESSFUL {id src} { 
global SIP_TAB PTS T 

234 

if [ regexp $SIP _ TAB($id ,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 
set msg "Sorry, your $SIP_TAB($id,Sent) request was unsuccessful" 

tk_dialog {.busy} {Request unsuccessful} $msg {info} {a} {OK} 
fb 1111 

} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id), got UNSUCCESSFUL" 
} 
} 

proc received_BUSY {id src} { 
global SIP_TAB PTS T 

if [ regexp $SIP 3AB($id,Sent) "GLANCE KNOCK CONNECT IIORKSPACE"] { 
set msg "Sorry, $PTS($src,n) did not respond - try again later" 

tk_dialog {.busy} {Participant is busy} $msg {info} {a} {OK} 
fb "" 
} else { 
return "Odd reply: sent $SIP 3AB ($id ,Sent) (id=$id), got BUSY" 
} 

} 

proc received_DECLINE {id src} { 
global SIP_TAB PTS T 
if [ regexp $SIP_TAB($id,Sent) "KNOCK IIORKSPACE"] { 

set msg "Sorry, your $SIP_TAB($id,Sent) request was declined by 
$PTS($s,n)" 

tk_dialog {.busy} {Request declined} $msg {info} {a} {OK} 
fb "" 
} else { 
return "Odd reply: sent $SIP3AB($id,Sent) (id=$id), got DECLINE" 
} 
} 

proc received_UNKNOWN {id src} { 
global SIP_TAB PTS T 
set s $SIP_TAB($id,To) 
if [ regexp $SIP _ TAB ($id ,Sent) "GLANCE KNOCK CONNECT WDRKSPACE"] { 

set msg "Sorry, $PTS($src,n) was unknown." 
tk_dialog {.busy} {User Unkown} $msg {info} {a} {OK} 



fb 1111 

} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id), got UNKOWN" 
} 

} 

proc received_FAILED {id src} { 
global SIP_TAB PTS 
if [ regexp $SIP_TAB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 

set msg "Sorry, your $SIP _TAB($id,Sent) request failed because 
$SIP_TAB($id,NO)" 

tk_dialog {.busy} {Request failed} $msg {info} {O} {OK} 
fb 1111 

} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id), got FAILED" 
} 
} 

proc received_FORBIDDEN {id src} { 
global SIP_TAB PTS 
if [ regexp $SIP_TAB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 

msg "Sorry, your $SIP _ TAB ($id ,Sent) request was forbidden." 
tk_dialog {.busy} {Request forbidden} $msg {info} {O} {OK} 
fb 1111 

} else { 
return "Odd reply: sent $SIP _TAB($id,Sent) (id=$id), got FORBIDDEN" 
} 
} 

proc received_RINGING {id src} { 
global SIP_TAB PTS T 
if [ regexp $SIP_TAB($id,Sent) "KNOCK WORKSPACE"] { 

play_sound knock 
if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin)} 

} else { 
return "Odd reply: sent $SIP3AB($id,Sent) (id=$id), got RINGING" 
} 

} 

proc received_TRYING {id src} { 
global SIP_TAB PTS T 
if [ regexp $SIP _TAB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 

235 



if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin)} 
} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id), got TRYING" 
} 

} 

proc received_REDIRECT {id} { 
global SIP_TAB PTS T 
if [ regexp $SIP_TAB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 

set msg "Got a redirection for $PTS($src,n). Unimplemented" 
if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin} 
waitDialog info $msg 
} else { 
return "Odd reply: sent $SIP_TAB($id,Sent) (id=$id) , got REDIRECT" 
} 

} 

proc received_ALTERNATIVE {id src} { 
global SIP_TAB PTS T 
if [ regexp $SIP_TAB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 

set msg "Got an alternative for $PTS($sre,n). Unimplemented" 
if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin} 
waitDialog info $msg 
fb 1111 

} else { 

236 

return "Odd reply: sent $SIP3AB($id,Sent) (id=$id), got ALTERNATIVE" 
} 

} 

proe received_NEGOTIATE {id src} { 
global SIP_TAB PTS T 

if [ regexp $SIP3AB($id,Sent) "GLANCE KNOCK CONNECT WORKSPACE"] { 
set msg "Got a negotiate from $PTS($sre,n). Unimplemented" 

if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin} 
waitDialog info $msg 
fb "It 

} else { 
return "Odd reply: sent $SIP3AB($id,Sent) (id=$id), got NEGOTIATE" 
} 

} 



237 

#-------------------------------------------------------------------
# Procedures to deal with requests 
#-------------------------------------------------------------------
proc received_SIP_REQ {id} { 

# this wasn't a teleport request 
say "received non-teleport request id = $id" 

} 

proc received_CONNECT {id src} { 
global PTS USCP T 
# Received a CONNECT 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) "In conference with $PTS($src,n)" 
set ip $PTS($src,IP) 

set who $PTS($src,n) 
fb "$PTS($src,n) is coming in!" 
play_sound knock 
complete_CONNECT_recvd $id $src 
} 

proc complete_CONNECT_recvd {id src} { 
global T GAP videoIsPaused MEDIA SIP SIP_TAB PTS USCP 
# 1. Got a CONNECT 

# 2. Got a KNOCK which we accepted 
play_sound door2 

fb {Launching/configuring media tools} 

#since we received the request 
# we use the ip address given in the c field 

set ip [lindex $SIP_TAB($id,c) 2] 

# configure vic 
set vport $SIP_TAB($id,videoPort) 
# create new network video object using default bw if not set 
if I [info'exists SIP_TAB($id,videoBandwidth)] { 
set SIP_TAB($id,videoBandwidth) 128 
} 

set msg [list tp_new_video $ip $vport $SIP_TAB($id,videoBandwidth)] 
set result [confbus video $msg] 

# launch audio tool 



-----------------------------------------

set aport $SIP_TAB($id,audioPort) 
init_Audio $ip $aport 

if [string match $result ""J { 
# send the reply (might need some error handling here) 
set S(Type) REP 
set S(Category) "1" 
set S(ReplyTypeName) "SUCCESS" 
send_SIP S $id 
# start sending video if we can 
if $GAP(Have_Video) { 

confbus video tp_start_sending 
set videoIsPaused 0 
} 

# switch vic focus to src 
set msg [list focus $srcJ 

confbus video $msg 
if [winfo exists .waitJ {destroy .wait} 

# create connection dialog 
connectDialog $src $id 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) "In conference with $PTS($src,n)" 

} else { 
set S(Type) REP 
set S(Category) "2" 
set S(ReplyTypeName) "FAILED" 
send_SIP S $id 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) $T(IDLE) 
} 

} 

proc complete_CONNECT_sent {id src} { 
global T GAP videoIsPaused MEDIA SIP SIP_TAB PTS USCP 
# 1. received SUCCESS after sending CONNECT 
# 2. received SUCCESS after sending KNOCK 

play_sound door2 
fb {Launching/configuring media tools} 
# we sent the request so we use IP address glven by CH field 

# of the reply 
set ip [1 index $SIP_TAB($id,CH) 2J 

238 



------------------------

# configure vic 
set vport $SIP_TAB($id,videoPort) 
# create new network video object using default bw if not set 
if I [info exists SIP_TAB($id,videoBandwidth)] { 
set SIP_TAB($id,videoBandwidth) 128 
} 

set msg [list tp_new_video $ip $vport $SIP_TAB($id,videoBandwidth)] 
set result [confbus video $msg] 

# launch audio tool 
set aport $SIP_TAB($id,audioPort) 
init_Audio $ip $aport 

##X What if a/v set-up here has failed? 
# start sending video if we can 

if $GAP(Have_Video) { 
confbus video tp_start_sending 
set videoIsPaused 0 
} 

# switch vic focus to src 
set msg [list focus $src] 

confbus video $msg 

} 

if [winfo exists .wait] {destroy .wait} 
# create connection dialog 
connectDialog $src $id 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) "In conference with $PTS($src,n)" 

proc received_KNOCK {id src} { 
global PTS GAP T SIP SIP_TAB USCP 

set who $PTS($src,n) 
fb "$who is knocking" 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) "Knocked at by $PTS($src,n)" 
set S(Type) REP 
set S(Category) "3" 
set S(ReplyTypeName) "RINGING" 
send_SIP S $id 

239 



play_sound knock 

set result [timedDialog .dialog {Knock Knock .. anyone there?} \ 
"$who is knocking .. " {} 10 0 {Ignore} {Answer} {Refuse}] 
switch -exact -- $result { 
o { 
# send reply code BUSY 
set S(Type) REP 
set S(Category) "2" 
set S(ReplyTypeName) "BUSY" 
send_SIP S $id 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} 

1 { 

complete_CONNECT_recvd $id $src 
} 

2 { 
# send reply code DECLINE 

set S(Type) REP 
set S(Category) "2" 
set S(ReplyTypeName) "DECLINE" 
send_SIP S $id 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} 

} 

} 

proc complete_KNOCK_sent {id src} { 
global T SIP_TAB 
# sent KNOCK, got SUCCESS 
fb {Knock successful, launching audio tool} 

set USCP(CurrentSession) $id 
complete_CONNECT_sent $id $src 
} 

proc received_GLANCE {id src} { 
global PTS GAP MEDIA T SIP SIP_TAB USCP 
fb "Glanced at" 

240 



set who $SIP_TAB($id,FR) 
set USCP(CurrentSession) $id 
set USCP(CurrentActivity) "Glanced at by $PTS($src,n)" 
set IP [lindex $SIP_TAB($id,c) 2] 

set S(Type) REP 
set S(Category) "3" 
set S(ReplyTypeName) "TRYING" 
send_SIP S $id 

if $GAP(Have_Video) { 
play_sound creak 
# create new network video object 
set msg [list tp_new_video $IP $MEDIA(videoP) $MEDIA(videoR)] 
set result [confbus video $msg] 

# send the reply (might need some error handling here) 

set S(Type) REP 
set S(Category) "1" 
set S(ReplyTypeName) "SUCCESS" 
send_SIP S $id 
# start sending video 
set msg [list tp_start_sendingJ 
confbus video $msg 
after 10000 
set msg [list tp_stop_sending] 
confbus video $msg 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} else { 
set S(Type) {REP} 
set S(Category) "2" 
set S(Reason) "User cannot send video" 
set S(ReplyTypeName) "FAILED" 
send_SIP S $id 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} 
} 

proc complete_GLANCE_sent {id src} { 

241 



242 

global T SIP_TAB MEDIA PTS USCP 
# we sent a glance and we just got a 'success' 
# Glance happens on a hardwired port (vic tool already running) and low bw 

set ip [I index $SIP_TAB($id,CH) 2] 
set msg [list tp_new_video $ip $MEDIA(videoP) $MEDIA(videoR)] 
set result [confbus video $msg] 

play_sound creak 

# set focus of vic 
# XX this might not work 
set msg [list focus $src] 
confbus video $msg 
# use same wait time as 'glance' 
after 10000 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
fb 1111 

} 

proc received_WHITEBOARD {id src} { 
global T PTS GAP SIP_TAB USCP 
fb "Workspace request" 
set who $PTS($src,n) 

set S(Type) REP 
set S(Category) "3" 
set S(ReplyTypeName) "RINGING" 
send_SIP S $id 

set msg "$who wants to start a workspace session ... " 
set result [timedDialog .wbr "WorkSpace Request" $msg \ 
{info} 10 1 {Ignore} {Refuse} {OK}] 

switch -exact -- $result { 
o { 
# send reply code 0 (ignored) with msg (this ought 
# to be user-editable ... 
set S(Type) REP 
set S(Category) "2" 
set S(ReplyTypeName) "BUSY" 
send_SIP S $id 



set USCP(CurrentSession) 0 
} 

1 { 

# send reply code 1 (refused) with msg (this ought 
# to be user-editable ... 
set S(Type) REP 
set S(Category) "2" 
set S(Reason) "Refused by user" 
set S(ReplyTypeName) "FAILED" 
send_SIP S $id 
set USCP(CurrentSession) 0 
} 

2 { 
complete_WHITEBOARD_recvd $id $src 

} 

} 
} 

proc complete_WHITEBOARD_recvd {id src} { 
global T SIP_TAB USCP 
# Received whiteboard request 
fb {launching whiteboard tool} 
#since we received the request 
# we use the ip address given in the c field 

set ip [lindex $SIP_TAB($id,c) 2] 
set port $SIP_TAB($id,whiteboardPort) 
set t $SIP_TAB($id,s) 
set command "exec nice wb -C \"$t\" $ip/$port &" 
# say $command 
set result [catch $command T(whiteboardPID)] 
if [string match $result 0] { 
# send the reply (might need some error handling here) 
set S(Type) REP 
set S(Category) "1" 
set S(ReplyTypeName) "SUCCESS" 
send_SIP S $id 
set USCP(CurrentActivity) $t 
} else { 
set S(Type) REP 
set S(Category) "2" 
set S(ReplyTypeName) "FAILED" 
send_SIP S $id 

243 



} 

set USCP(CurrentSession) 0 
fb 1111 

} 

proc complete_WHITEBOARD_sent {id src} { 
global T SIP_TAB USCP 
if [winfo exists $T(waitDialogWin)J {destroy $T(waitDialogWin)} 
# sent whiteboard request 

fb {launching whiteboard tool} 
# we sent the request so we use IP address given by CH field 

# of the reply 
set ip [lindex $SIP_TAB($id,CH) 2J 
set port [lindex $SIP_TAB($id,m) lJ 
set t $SIP_TAB($id,s) 
set command "exec nice wb -C \" $t \" $ip/$port &" 
# say $command 
set result [catch $command T(whiteboardPID)J 
set USCP(CurrentSession) 0 
fb 1111 

} 

proc received_TEXT {id src} { 
global T PTS GAP SIP_TAB 
fb "Workspace request" 

set who $PTS($src,n) 

set S(Type) REP 
set S(Category) "3" 
set S(ReplyTypeName) "RINGING" 
send_SIP S $id 

set msg "$who wants to start a text editing session ... " 
set result [timedDialog .wbr "Text Editing Request" $msg \ 
{info} 10 2 {Ignore} {Refuse} {OK}J 

switch -exact -- $result { 
o { 
# send reply code 0 (ignored) with msg (this ought 
# to be user-editable ... 
set S(Type) REP 

244 



set S(Category) "2" 
set S(ReplyTypeName) "BUSY" 
send_SIP S $id 
} 

1 { 

# send reply code 1 (refused) with msg (this ought 
# to be user-editable ... 
set S(Type) REP 
·set S(Category) "2" 
set S(ReplyTypeName) "UNSUCCESSFUL" 
send_SIP S $id 
} 

2 { 
# send reply code 2 (OK) with msg 

set S(Type) REP 
set S(Category) "1" 
set S(ReplyTypeName) " SUCCESS" 
send_SIP S $id 
start_Workspace text $s $id 
} 

} 

} 

proc complete_TEXT_sent {id src} { 
global T 
# we sent a TEXT and just got a SUCCESS 
if [winfo exists $T(waitDialogWin)] {destroy $T(waitDialogWin)} 
start_Workspace text $src $id 
fb "" 
} 

proc send_SIP {S id} { 
global SIP PTS SIP_TAB GAP T SIP_srcs 
# Send an SIP packet 
# S is the array holding details about the SIP to send 
# id is the id of the request/reply to be sent, or to reply to 
upvar $S s 
set cname $GAP(CName) 
# increment sequence number 
incr SIP (Sequence) 
switch -exact -- $s(Type) { 
REQ { 

245 



# send a request 
set to $s(To) 
set tpservice $s(tpservice) 
set SIP_TAB($id,Version) 0 
set SIP_TAB($id,Count) 1 
# create the standard header 
set SIPheader "$SIP(Version) REQ\n" 
append SIPheader "PA=$GAP(IP)\nAU=$SIP(Authority)\nID=$id\n" 
append SIPheader "FR=$GAP(Email)\nTO=$PTS($to,e)\n" 
# create standard session description 
set sd "v=O\n" 

246 

append sd "o=$SIP (Logname) [get_NTP] $SIP _ TAB ($id, Version) IN IP4 $GAP (IP) \ 
append sd "s=$T($tpservice) $PTS($to,n)\n" 
append sd "i=field left blank\ne=$GAP(Email)\n" 
append sd "c=IN IP4 $GAP(IP) \nt=O O\n" 
# create the appropriate media description 
set media [build_req_$tpservice $id] 
# set the appropriate records 
set SIP_TAB($id,Service) $tpservice 
set SIP_TAB($id,To) $to 
set SIP_TAB($id,Got) 0 
set SIP_TAB($id,Sent) $s(tpservice) 
lappend SIP_TAB(Sent) $id 
set content "$SIPheader$sd$media" 
set SIP_TAB($id,REQ) $content 

foreach line [split $content "\n"] { 
set theline [split $line "="] 
set SIP_TAB($id,[lindex $theline 0]) [lindex $theline 1] 

} 

# need to create a dp address record 
set SIP_srcs($id) [dp_address create $PTS($to,IP) $SIP(Port)] 
after $SIP_TAB($id,ResendAfter) "resend $id" 

} 

REP { 
# send a reply - of which there are 4 categories (at present) 
set SIPhead "$SIP(Version) REP $s(Category) $s(ReplyTypeName)\n" 
set content "$SIPhead" 
append content [build_$s(ReplyTypeName) $id s $cname] 
foreach line [split $content "\n"] { 

set the line [split $line "="] 



} 

} 

set SIP_TAB($id,[lindex $theline oJ) [lindex $theline 1J 
} 

set SIP_TAB($id,REP) $content 

# say "Sending SIP: $content" 
SIP_send $content $id 

} 

proc send_USCP {S} { 
global T USCP GAP 
upvar $S s 

} 

# create standard header 
set h "$USCP(Version) $s(Type)\n" 
append h "s=$GAP(CName)\n" 

append h "t=[get_NTPJ\n" 
#build_USCP_$s(Type) $s(To) 
USCP_send $h $s(ID) 

#----------------------------------------------------------
# 

# Procs to build SIP REQUESTS 
# 

#---------------------------------------------------------

proc build_req_GLANCE {id} { 
global MEDIA 
# create session attribute 

set msg "a=tpservice:GLANCE\n" 
append msg "m=video $MEDIA(videoP) $MEDIA(videoT) $MEDIA(videoF)\n" 
return $msg 

} 

proc build_req_KNOCK {id} { 
global MEDIA SIP_TAB 
# create session attribute 

set msg "a=tpservice:KNOCK\n" 
append msg "m=video $MEDIA(videoP) $MEDIA(videoT) $MEDIA(videoF)\n" 
append msg "b=AS:$MEDIA(videoR)\n" 

247 

append msg "m=audio $MEDIA(audioP) $MEDIA(audioT) $MEDIA(audioF)\n" 
# set appropriate records - may be altered later during negotiation 
set SIP_TAB($id,videoPort) $MEDIA(videoP) 



} 

set SIP_TAB($id,videoTransport) $MEDIA(videoT) 
set SIP_TAB($id,videoFormat) $MEDIA(videoF) 
set SIP_TAB($id,videoBandwidth) $MEDIA(videoR) 
set SIP_TAB($id,audioPort) $MEDIA(audioP) 
set SIP_TAB($id,audioTransport) $MEDIA(audioT) 
set SIP_TAB($id,audioFormat) $MEDIA(audioF) 
return $msg 

proc build_req_CONNECT {id} { 
global MEDIA SIP_TAB 
# create session attribute 

set msg "a=tpservice:CDNNECT\n" 

248 

append msg "m=video $MEDIA(videoP) $MEDIA(videoT) $MEDIA(videoF)\n" 
append msg "b=AS:$MEDIA(videoR)\n" 
append msg "m=audio $MEDIA(audioP) $MEDIA(audioT) $MEDIA(audioF)\n" 
# set appropriate records - may be altered later during negotiation 
set SIP_TAB($id,videoPort) $MEDIA(videoP) 
set SIP_TAB($id,videoTransport) $MEDIA(videoT) 
set SIP_TAB($id,videoFormat) $MEDIA(videoF) 
set SIP_TAB($id,videoBandwidth) $MEDIA(videoR) 
set SIP_TAB($id,audioPort) $MEDIA(audioP) 
set SIP_TAB($id,audioTransport) $MEDIA(audioT) 
set SIP_TAB($id,audioFormat) $MEDIA(audioF) 

return $msg 
} 

proc build_req_WHITEBOARD {id} { 
global MEDIA SIP_TAB 
# create session attribute 

} 

set msg "a=tpservice:WHITEBDARD\n" 
append msg "m=whiteboard $MEDIA(whiteboardP) $MEDIA(whiteboardT) $MEDIA(wh' 
return $msg 

proc build_req_TEXT {id} { 
global MEDIA SIP_TAB 
# create session attribute 

set msg "a=tpservice:TEXT\n" 
append msg "m=text $MEDIA(textP) $MEDIA(textT) $MEDIA(textF)\n" 
return $msg 

} 



#----------------------------------------------------------
# Procs to build SIP REPLIES 
#---------------------------------------------------------

proc build_SUCCESS {id s cname} { 
# a success 
global GAP SIP SIP_TAB 
upvar $s p 

249 

set msg "PA=$SIP_TAB($id , PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id , FR)\n" 
append msg "TO=$SIP_TAB($id,TO)\n" 
append msg "CH=IN IP4 $GAP(IP)" 
return $msg 
} 

proc build_UNSUCCESSFUL {id s cname} { 
# request not successful 
global GAP SIP SIP_TAB 
set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id,FR)\n" 

append msg "TO=$SIP_TAB($id,TO)\n" 
return $msg 
} 

proc build_BUSY {id s cname} { 
# user is busy (a progress report) 
global GAP SIP SIP_TAB 
set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id,FR)\n" 

append msg "TO=$SIP3AB($id,TO)\n" 
return $msg 
} 

proc build_FAILED {id s cname} { 
# request failed 
global GAP SIP SIP_TAB 
upvar $s p 
set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id,FR)\n" 

append msg "TO=$SIP_TAB($id,TO)\n" 
append msg "NO=$p(Reason)\n" 
return $msg 
} 

proc build_RINGING {id s cname} { 



# found user, getting attention (a progress report) 
global GAP SIP SIP_TAB 

250 

set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP3AB($id,FR)\n" 
append msg "TO=$SIP_TAB($id,TO)\n" 
return $msg 
} 

proc build_TRYING {id s cname} { 
# trying to reach user (a progress report) 
global GAP SIP SIP_TAB 
append msg "PA=$SIP3AB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id,FR)\n" 

append msg "TO=$SIP_TAB($id,TO)\n" 
return $msg 
} 

proc build_DISCONNECT {id s cname} { 
# request cancelled/disconnected 
global GAP SIP SIP_TAB 
# the connection could have been started.by receiving a request or sending 
if [info exists SIP_TAB($id,ID)] { 
set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id, FR)\n" 

append msg "TO=$SIP_TAB($id,TO)\n" 
} elseif [info exists SIP_TAB($id,ID)] { 

set msg "PA=$SIP_TAB($id,PA)\nAU=none\nID=$id\nFR=$SIP_TAB($id, FR)\n" 
append msg "TO=$SIP_TAB($id,TO)\n" 
} else { 

say shit 
} 

return $msg 
} 

proc build_FURTHER {id s cname} { 
# further action required by initiator 
gglobal GAP SIP SIP_TAB 

set msg "PA=$SIP _TAB ($id ,PA) \nAU=none\nID=$id\nCN=$cname \nFR=$SIP _TAB ($id ,I 
append msg "TO=$SIP_TAB($id,TO)\n" 

upvar $s p 
switch -exact -- $p(ReplyTypeName) { 

REDIRECT { 
append msg "CH=IN IP4 $GAP(IP)" 
append msg "$SIP(RE)" 



} 

ALTERNATIVE { 
# do some fancy stuff 
} 

NEGOTIATE { 
# do some fancy stuff 
} 

} 

return $msg 
} 

#----------------------------------------------------------
# Proc to res end SIP packets by id 
#---------------------------------------------------------
proc resend {id} { 
# resends the SIP message with given id if no reply has been 
# received 
global SIP GAP T SIP_TAB 
set SIP_TAB($id,ResendAfter) [expr $SIP_TAB($id,ResendAfter) * 2] 

251 

if ([string match $SIP _TAB($id,Got) "0"] && [expr $SIP _TAB($id,Count) < $SIPCF 
# then we haven't received a reply and we haven't hit 
# the max resend yet 
incr SIP_TAB($id,Count) 
# need to alter '0' field 
set msg "$SIP_TAB($id,REQ)" 
say "Resending request id $id" 
SIP_send $msg $id 
fb "No response: Resent request after $SIP _TAB ($id ,ResendAfter) ms (Attempt $~ 

after $SIP_TAB($id,ResendAfter) res end $id 
} else { 

} 

say "Cancelling resend id = $id (# times sent = $SIP_TAB($id,Count»" 
} 

C.3.6 Group Awareness Protocol 
Parsing and sending procedures for GAP. 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 



# All rights reserved. 
# 
# Author: B.Anderson0Iut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#-----------------------------------------------------------
# GAP.tcl 
# 

# All Multicast Awareness Protocol procs are defined here 
#-----------------------------------------------------------
# First the procs for dealing with incoming data 
#-----------------------------------------------------------

# GAP receiving proc 
proc receive_GAP {d} { 
global GAP 
# increment the packet count 
incr GAP(TotaIPackets) 
# update total bytes received (includes those sent by default) 
# NB: this is not entirely accurate as IP adds 20, UDP adds 8 and 
# Tcl-DP adds some more (5?) 
set GAP(TotaIBytes) [expr $GAP(TotalBytes) + [string length $d]] 
set GAP(MeanPacketBytes) [expr $GAP(TotalBytes)/$GAP(TotaIPackets)] 

set type [lindex [1 index $d 0] 1] 
process_GAP_$type $d 
} 

proc process_GAP_INFO {d} { 
global PTS GAP SOURCES WINID 

# Add CName to list of sources 
# there must be a more elegant way to do this 
set src [lindex [split [lindex $d 3] =] 1] 
set SOURCES($src) $src 

# check if source is in array maplng CName to window id. 
# If not, give it an id 
if I [info exists WINID($src)] {set_win_ID $src} 

252 



# record IP address (shouldn't change after first time ... ) 
set PTS ($src, IP) [lindex [split $src "@"] 1] 

# increment netStatus 
set PTS($src,netStatus) 2 
set PTS($src,Colour) Black 

# parse packet - nice and simple ;-) 
foreach 1 $d { 
set t [split $1 =] 
set def [lindex $t 0] 
set data [lindex $t 1] 
switch -exact -- $def { 
i { 

set i [split $data :] 
set PTS($src,[lindex $i 0]) [lindex $i 1] 
} 

default {set PTS($src,$def) $data} 
} 

} 

# if packet is not ours and the ID clashes with ours, reset 
# our ID. 
if I [isme $src] { 
if [string match PTS($src,id) $GAP(ID)] {set_ID} 
} 

update_GAP_received $src $PTS($src,ntp) 
update_Sources 
} 

proc process_GAP_BYE id} { 
global PTS SOURCES WINID 
set src [lindex [split [lindex $d 3] =] 1] 
unset SOURCES($src) 
set win .$WINID($src) 
if [winfo exists $win] {destroy $win} 
set PTS($src,netStatus) -6 
} 

proc update_GAP_received {src time} { 

253 



} 

global GAP SOURCES T GAP_GOT 
set now [get_NTP] 
set n [array size SOURCES] 

set GAP_GoT($src/$time) $n 

proc update_GAP_sent {} { 
global GAP GAP_SENT SOURCES 
set n [array size SOURCES] 
set s $GAP(Sequence) 
set GAP_SENT($s) "$GAP(SendAfter):$n" 

} 

#------------------------------------------~------

# Second, the procs for dealing with sending data 
#-------------------------------------------------

proc send_GAP {type} { 
# send a Multicast Awareness Packet 
global GAP T USCP SIP_TAB 
incr GAP (Sequence) 

set status $USCP(CurrentActivity) 

# build the header 
set H "v=$GAP(Version) $type\n" 
append H "id=$GAP (ID) \n" 
append H "ntp=[get_NTP]\n" 
append H "cn=$GAP(CName)\n" 
append H "seq=$GAP(Sequence)\n" 

#build the INFo or BYE packet 
switch -exact -- $type { 

INFo { 
# build the standard content 
append m "n=$GAP(Name)\n" 
append m "t=[get_LocalTime]\n" 
append m "u=$GAP(Uri)\n" 
append m "e=$GAP(Email)\n" 
append m "p=$GAP(Pots)\n" 

# Create Teleport info lines 

254 



set i "i=doorstate: $GAP(State) \n" 
append i "i=stat.us: $status\n" 
append i "i=note:$GAP(Note)\n" 
append i "i=havevideo:$GAP(Have_Video)\n" 
append i "i=havespeaker:$GAP(Have_Speaker)\n" 
append i "i=havemic:$GAP(Have_Mic)\n" 
set Content "$H$m$i" 
} 

BYE { 
append H "t=GAP Tool quiting\n" 
set Content $H 
} 

} 

set packetSizeChar [string length $Content] 
set packetSizeBits [expr $packetSizeChar * 8] 
# set GAP(MeanPacketSize) 
GAP_send $Content 
# say "sent GAP: $Content" 
update_GAP_sent 
} 

proc new_Timer {initial} { 
global T GAP SOURCES 
# Uses same algorithms as RTCP and divides bw equally 
# For full details see: DRAFT-IETF-AVT-RTP-* Appendix 7 
set GAP_min_time $GAP(Min_Time) 
set n [array size SOURCES] 
set GAP (Sources) $n 

if $initial { 
# first time we called this proc (ie at start-up) 
set t [expr $GAP_min_time / 2] 
return $t 
} else { 
set GAP_bw $GAP(MaxBandwidth) 
set t [expr $n * $GAP(MeanPacketSize) / $GAP_bw] 
# we need a random number in range 0.5 - 1.5 to multiply t by 
set m [randomRange 0.5] 
set GAP (Multiplier) $m 
set interval [expr $t * $m] 
# if the value is less than 5 seconds, set it to 5 
if [expr $interval < $GAP_min_time] {set interval $GAP_min_time} 



256 

# update the graph if it exists 
if {[info exists T(viewgraph)] && [winfo exists $T(viewgraph)]} {add_point $n 
return [expr round($interval)] 
} 

} 

proc set_ID {} { 
global GAP PTS SOURCES 
# Generate random number to use as Id, check none of the 
# other sources are using it. If so, regenerate 
set src [array names SOURCES] 
set inuse 0 
while {$inuse != "-1"} { 
set ID [randomRange 1000] 
set inuse [lsearch $src $ID] 
} 

set GAP (ID) $ID 
} 

C.3.7 User Service Control Protocol 
Parsing and sending procedures for USCP. 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 
# Author: B.Anderson~lut.ac.uk 
# 

# For SunoS - tested under SunoS 4.1.4 
#------------------------------------------

# USCP.tcl - User Service Control Protocol 

proc process_USCP_DISCoNNECT {d} { 
global PTS GAP SIP SIP_TAB T USCP 
set src [I index [split [lindex $d 1] = ] 1] 
set msg "$PTS($src,n) has closed the audio/video connection." 
tk_dialog .disc {Disconnect Dialog:} $msg {info} 0 {OK, Close Media Tools} 



if $GAP(Have_Video) {confbus video tp_stop_sending} 
confbus audio tp_exit 
if [winfo exists .cd] {destroy .cd} 
after 1000 
set USCP(CurrentSession) 0 
set USCP(CurrentActivity) $T(IDLE) 
} 

C.3.8 Tcl/Tk Conference bus 
Remote control of other tk applications such as vic and vat. 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson@lut.ac.uk 
# 

# For SunOS - tested under SunOS 4.1.4 
#------------------------------------------

#-----------------------------------------------------------
# tk-confbus.tcl 
# 

# Conference bus using Tcl/Tk send command. To be superceded by 
# LBL's confbus arch when there is time. 
# 

# This will work for vic and vat ONLY if they have been compiled 
# with the versions of Tcl/Tk that are compatible with the versions 
# TelePort is using. This is because the implementation of the 
# 'send' command changed between Tk 3.X and 4.0 
#-----------------------------------------------------------

proc confbus_init {} { 
say "Initialising Tcl/Tk conference bus" 
} 

# conference bus recelvlng proc if using Tcl/Tk bus 
proc cb_Receive {msg} { 
# can't happen' 
} 

257 



# conference bus sending proc if using Tcl/Tk bus 
proc cb_Send {msg int} { 
# force the tool's interpreter to use it's own confbusHandler proc 
# to minimise possibilities of errors. Note that confbusHandler 
# in cf-confbus.tcl (for vic 2.7a / vat 4.0a) requires 
# two parameters but doesn't seem to use the first (?) 

set args [list $msg] 
# say "Sent this on Tcl/Tk conference bus: $int $args" 
if [string match $msg tp_exit] { 

} 

} 

return [send -async $int confbusHandler 1 $args] 
} else { 
return [send $int confbusHandler 1 $args] 

proc set_cb_channel {} { 
} 

proc get_interp_name {which} { 
global T 
# this is called in order to make sure we know 
# which interp we are sending to 
if [info exists T($which)] { 
# we did this before and got the name of the tool 
# so just return it 
return $T($which) 
} else { 
foreach int [winfo interps] { 
if [string match $which\* $int] { 

# say "sending to $int" 
catch {send $int pid} p 
if I [regexp -nocase {[a-z]} $p] { 
# then we got the pid (might find a pre tk4.0 tool) 

if [string match $p $T($which\PID)] { 

} 

} 

set T($which) $int 
return $int 

} 

} 

258 

# if we got this far then we can't contact the tool (probably a pre tk4.0 app; 



return 0 
} 
} 

proc confbus {media msg} { 
global MEDIA 
set tool $MEDIA($media\A) 
set int [get_interp_name $tool] 
if [string match $int 0] { 

259 

say "$tool tool unreachable - it's probably either a pre tk4. 0 app or you c 
} else { 

set result [cb_Send $msg $int] 
# puts stdout "Sent $msg to $T($tool), got $result" 
if [info exists result] {return $result} 
} 

} 

C.3.9 Platform Specific Procedures 
#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 
# Author: B.AndersonOlut.ac.uk 
# 

# For SunDS - tested under SunDS 4.1.4 

#------------------------------------------
proc get_CName {} { 
global GAP env 
# Generate canonical name using userOhost 
# XXX Fix this. For now ... 
return "$env(USER)O$GAP(IP)" 
} 

proc get_LocalTime {} { 
# return local time in 24 hour clock format 
# XXX Fix this. For now ... 
catch {exec date +%H:%M:%S} t 



return $t 
} 

proc get_NTP {} { 
# return NTP time stamp 
set now [getsecsJ 

260 

# shamelessly stolen from sdr (c) 1996, Mark Handley & University College Lone 
set off 2208988800 
if {$now==O} {return O} 
return [format %u [expr $now + $offJJ 
} 

proc get_IP {} { 
# figure out our IP address 
# XXX Fix this. For now ... 
global GAP 
# puts "Fix get_lP, net.tcl line 82" 
catch {exec hostname} hn 
catch {exec grep $hn /etc/hosts} hI 
set ip [lindex $hl oJ 
set GAPCIP) $ip 
return $ip 
} 

proc play_sound is} { 
global T env 

set dir "$env(TPHOME)/picsnds" 
set popd [pwdJ 
cd $dir 
catch "exec $T(play) -i -v $T(icon_vol) $s. au &" result 
# check result is alphanumeric (ie a pid) , if not 
# there was an error of some sort. 
# if [regexp [a-zJ $resultJ { 

# warn "$result (so beeped instead)" 
# bell 
# } 

cd $popd 
} 



C.3.10 Launching Media Tools 
Procedures to launch media tools with appropriate parameters. 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson~lut.ac.uk 
# 

# For SunDS - tested under SunDS 4.1.4 
#------------------------------------------

#--------------------------------------------------------------
# externals. tcl 
# 

# Procedures to launch media tools 
# Also procedures to show email and www resources. 
#---------------------------------------------------------------

# The following procedures initialise the audio and video tools 
proc init_Video {} { 
global MEDIA T GAP 
set app $MEDIA(videoA) 
fb "Launching $app tool" 
switch -exact -- $app { 
V1C { 

set r $MEDIA(videoR) 
set f [string tolower $MEDIA(videoF)] 
set p $MEDIA(videoP) 
set a $GAP (IP) 
# dougal needs this line to switch off shared memory for vic 
# catch {exec nice vic -s -C $T(sessionName) -B $r -f $f \ 
catch {exec nice vic -C $T(sessionName) -B $r -f $f \ 
-I $T(ch) \ 
$a/$p &} result 
fb "Video tool launched" 
set T(vicPID) $result 
} 

default {tperror "Can't launch video tool: $app, editing\ 
the code in externals.tcl might help"} 

261 



} 

fb "Video Tool Launched" 
} 

proc init_Audio {ip port} { 
global MEDIA GAP T PTS 
set app $MEDIA(audioA) 
fb "Launching $app tool" 
switch -exact -- $app { 
vat { 
set f [string tolower $MEDIA(audioF)] 
catch {exec nice vat -f $f \ 
-I $T(ch) \ 
$ip/$port &} result 

set T(vatPID) $result 
} 

default {warn "Can't launch audio tool: $app, editing the\ 
code in externals.tcl might help"} 
} 

after 5000 
get_interp_name audio 
confbus audio tp_no_quit 
fb "Audio Tool launched" 
} 

proc start_Workspace {app source id} { 
global MEDIA GAP PTS SOURCES SIP_TAB 
# this proc fires up your workspace tool in unicast mode and points 
# it at the source destination. 
switch -exact -- $app { 
wb { 
fb "Launching $app tool" 
set t "wb shared with $PTS($source,n)" 
# if received a request: 
if [info exists SIP_TAB($id,ID)] { 

set port $SIP_TAB($id,whiteboardPort) 
set ip [I index $SIP_TAB($id,c) 2] 
} 

# or sent one: so should have got a SUCCESS reply 
if [info exists SIP_TAB($id,ID)] { 

set port [lindex $SIP_TAB($id,m) 1] 
set ip [lindex $SIP_TAB($id,CH) 2] 
} 

262 



catch {exec nice wb -C $t $ip/$port &} T(whiteboardPID) 
} 

text { 
fb "Launching $app tool" 
set t "nt shared with $PTS($source,n)" 
set myP $MEDIA(textP) 
set myIP $GAP(IP) 
set yourP $PTS($source,textP) 
#XX elementary check - needs work 
if I [string match $myP $yourpJ { 
set myP $yourP 
} 

set a $PTS($source,IP) 
catch {exec nice nt $a/$myP &} T(textPID) 
} 

default {warn "Can't launch workspace tool: $app, editing the code\ 
at about line 2808 might help. ,,} 
} 

fb "Workspace tool, $app, launched" 
} 

# script to show email resource 

proc do_Email {s to} { 
global T PTS 
set label "The Email address of $PTS($s,n) is:" 

263 

set msg {Use the X-selection to copy this to your favourite Email tool. 
One day there may be an integrated email system here ... but probably not!} 

todoDialog $to $label $msg 
} 

# script to show a URL 

proc call_Browser {url} { 
global T 
set label "The URI requested is:" 
set msg {Use the X-selection to copy this to your favourite WWW browser.\ 
One day there may be an integrated browser here .... but probably not!} 
todoDialog $url $label $msg 
} 



C.3.11 Miscellaneous Utilities 

#-------------------
# TelePort 2.1a3 
# Copyright (c) 1995 Loughborough University of Technology. 
# Copyright (c) 1995 British Telecommunications plc. 
# All rights reserved. 
# 

# Author: B.Anderson~lut.ac.uk 
# 

# For Sun OS - tested under SunOS 4.1.4 

#------------------------------------------
#---------------------------------------------------------
# Various useful procedures: 
#---------------------------------------------------------

# 
# Set Geom: Sets a window's minimum size to the min width and 
# height requested for it - stops user shrinking window horribly 
# 

proc Set_Geom {w which} { 
set mwidth [winfo reqwidth $wJ 
set mheight [winfo reqheight $wJ 

wm minsize $w $mwidth $mheight 
if {$which -- "both"} {wm maxsize $w $mwidth $mheight} 
} 

# procs to generate random numbers for timer 
# Borrowed from Welch's book and hacked about a bit 

proc randomlnit {seed} { 
global RAND 
set RAND(ia) 9301 
set RAND(ic) 49297 
set RAND(im) 233280 
set RAND(seed) $seed 
} 

proc random {} { 

264 



26.5 

global RAND 
set RAND(seed) [expr ($RAND(seed) * $RAND(ia) + $RAND(ic)) 'l. $RAND(im)] 
return [expr $RAND(seed)/double($RAND(im))] 
} 

proc randomRange {lower} { 
set r [expr [random] + $lower] 
return $r 
} 

proc warn s { 
global T 
if [winfo exists $T(DebugWin)] { 

$T(DebugWin) insert end "$s\n" 
$T(DebugWin) yview -pickplace end 

} { 
puts stdout "$T(Sname) warns: $s" 
} 

} 

proc say s { 
global T 
if [winfo exists $T(DebugWin)] { 

$T(DebugWin) insert end "$s\n" 
$T(DebugWin) yview -pickplace end 

} { 
puts stdout "$T(Sname) says: $s" 
} 

} 

proc check_mcaddress {} { 
global T 

# carry out same checks as Mark Handley's SDR 

set MIP [split $T(maddr) .] 
if {[llength $MIP] != 4} { 
warn "$MIP is invalid: Wrong number of digits In multicast address, must be 4. 
exit 
} 

set a [lindex $MIP 0] 



if {($a < "224") I ($a> "239")} { 
warn "$MIP is invalid: First digit not in range 224 to 239." 
exit 
} 

for {set t 1} {$t <= 3} {iner t} { 
set e [lindex $MIP $t] 
if {($e < "0") I ($e > "255")} { 

266 

warn "$MIP is invalid : digits 2 to 4 need to be in range 1 to 255." 
} 

} 

} 

proe set_win_ID {s} { 
global WINID WinCount 
set WINID($s) $WinCount 
lner WinCount 
} 

proe toggle_noisy {} { 
global T 
if $T(noisy) {set $T(noisy) O} {set $T(noisy) 1} 
} 

proe fb {rnsg} { 
global T 

} 

set T(fb) $rnsg 
update idletasks 



267 

Appendix D 

TelePort: Published Papers 



268 

This chapter contains a reprint of a version of Chapter 7 which was published in 

the Proceedings of the BCS HCr '95 Conference - People and Computers X. The full 

reference is given as [10J. 



Everyday Theories, Cognitive 
Anthropology and User-centred System 
Design 

Ben Anderson & James LAIty 

LUTCH1 Research Centre, Department of Computer Studies, 
Loughborough University of Technology, Loughborough, 
Leicestershire LEIl 3TU, UK. 

Tel: +44 (0)1509222681 

Fax: +44 (0)1509211586 

EMail: {B.Anderson.l.L.Alty}@lut.ac.uk 

This paper introduces the notion of everyday theories and outlines their role in 
the design of human-computer interfaces. The paper provides a case study of 
the use of techniques from cognitive anthropology in eliciting user's everyday 
theories as an aid to system design. It concludes that cognitive anthropology 
appears to offer valuable analytic tools for user-centred system design; and that 
the relationship between researcher and informant in anthropological investi
gations provides a useful model for the required relationship between interface 
designer and potential user. 

Keywords: cognitive anthropology. system design. everyday theories. 

1 Everyday Theories of The World 

In attempting to understand and interact with the world around them. humans can be thought 
of as developing knowledge strucrures that are based on their everyday experiences and 
the communicated experiences of other members .of their social group. Such knowledge 
strucrures have been variously referred to as 'folk theories', 'mental models'. 'naive problem 
representations' and 'naive theories' (Kempton. 1987; Norman. 1988). 

According to Kempton naive theories can be characterised as: 



122 Ben Anderson & J ames L Airy 

1. Being based on everyday experience and. 

2. Varying among individuals. although important elements are shared. 

(Kempton. 1987. p.223) 

Examples of such theories include those that inform us how to behave appropriately in a wide 
range of social siruations (such as who speaks when in meetings) and those that enable us to 
use the anefacts creared by others (such as the video-recorder, the microwave and the cenn-a1 
heating thermos[Jlt). These sO'Ucrures will be referred to in this paper as 'everyday theories' 
in order to emphasise two of their key characteristics. Firstly that they are the basis for our 
everyday understanding of the world. as distinct from the kinds of 'logical' and 'rigorous' 
theories that are grounded in the so-called 'rational' scientific explanation of the world; and 
secondly that. in the context of social interaction at least, they cannot be considered to be 
literally 'naive' since we are experts in their use from an extremely early age - see e.g. 
(Corsaro, 1975). 

2 Everyday Theories and User-Centred System Design 

Human-computer interfaces make reference to entities in the everyday world in order to 
present an explanatory framework for the computer system's functionality. This is achieved 
by gaining 'purchase' on semantic aspects of the potential user's everyday theory of that 
entity'. It could be said for example that file operations in direct manipulation interfaces. 
and the feedback provided about them. make reference to the user's everyday theories of 
'moving' and 'copying' objects: that current instantiatIons of graphicai user interfaces make 
reference to everyday theories of commonplace office Objects such as documents. folders 
and wastebaskets; whilst meeting-suppOrt software makes reference to the user's everyday 
theories of meetings and what takes place in them. 

It would seem logical. therefore, that current design practices should make a commitment to 
describing and utilising users everyday theories. If they do not. any system will inevitably 
incorporate the designers' intuitive conception of that theory. nor the user's conception. 
Whilst this may not be significant in a situation where the designer and user share similar 
everyday theories (if they share the same culture for example). this is by no means guaranteed 
to be the case. Thus. any design practice that fails to make a commitment to exploring the 
user's conceptions of the everyday theory. runs the very real risk of generating systems that 
embody everyday theories which do not match those of the eventual users. because they are 
based on designer's intuitions - see also (Grudin. 1994). One can imagine. for example. 
a situation in which a groupware system presents functionality by making reference to an 
everyday theory of meetings and the practices and rituals that take place in them. As Blomberg 
et al. (1993) note with respect to work practices in general. if the everyday theory of meetings 
that is embedded in the system does not match that of the members of the organisation for 
whom the system is designed, and is not phrased in terms that the organisation itself uses 
about its meetings (and many business 'cultures' have very different ways of carrying out 
and talking about meetings, cf. (B0dker & Pedersen. 1991). then it seems likely that serious 

r An inverse argument is developed by Owen (1986) who suggestS that a user's understanding of a computer is 
based on anaive theory of computation similar in narure to the user'severyday undersranding of other mechanical 
or electronic artefacts. 



124 Ben Anderson & James L Airy . 

3 Cognitive Anthropology 

The description of everyday theories of the world. most particularly in unfamiliar cultures. 
is a concern that has been the focus of much research in cognitive anthropology. In essence. 
the focus of cognitive anthropology has been to map OUt what an individual needs to know in 
order to generate culrurally acceptable acts appropriate to a given social context (Goodenough. 
1957). Any culture can be viewed as a collection of interrelated everyday theories. each of 
which provides infonnarion on specific events. entities or activities within that culture so that 
the products of such 'cognitive mapping' exercises are precisely the kinds of descriptions of 
everyday theories for which the previous discussion calls. 

Further, cognitive anthropologists emphasise repeatedly - cf. (Goodenough. 1957) - that 
what they are trying to do is 'map' the conceptual structures of their informants using the 
informants own perceptual and categorical systems. and hence their own language. In other 
words the cognitive anthropologist is interested in the world as seen from their informant's 
point of view. as interpreted by the informant. and as described in the informant's own 
linguistic terms. They are not interested in. and are very careful to avoid. any temptation to 
impose their own categorical systems and hence conceptual structures on the informants or 
the data elicited. as Frake notes: 

" ... the logic of this methodology insists that any eliciting conditions not 
themselves part of the cultural-ecological system being investigated cannot be 
used to define categories purporting to be those of the people under study. It 
is those elements of our informants' experience. which they heed in selecting 
appropriate actions and utterances. that this methodology seeks to discover." 
(Frake. 1962. p.81. italics in original) 

Finally. groups within cognitive anthropology have developed a number of analytic tools that. 
in the words of one proponent. should imply a task more challenging than "writing up one's 
notes" (Frake. 1 964b. p.lll) so that an ethnographic statement can be: 

" ... demonstrated to be wrong and not simply judged to be unpersuasively 
written." (Frake, 1 964a, p.142, italics in original) 

These techniques seek to impose some SOrt of recognisable. and in particular, repeatable. 
methodology on the tasks of data capture and analysis. in order that the resultant anthropo
logical record can be independently assessed in terms of its adequacy. and is not merely a 
collection of "what it means (to me)" statements, (Frake. 1980, p.46, parenthesis in original). 
It is claimed that such techniques can be used to generate (as far as is practically possible) a 
cultural description that is phrased in the conceptual terms of that culture and which. crucially, 
would make sense to a native informant if re-presented to them - cf. (Sturtevant. 1972). 

3.1 Frame Elicitation 

Given these characteristics. it could be expected that a number of research methods found 
in cognitive anthropology will be of use in generating descriptions of the user's everyday 



Everyday Theories, Cognitive Anthropology and User-centred Sysrem Design 125 

theories. One such data collection method attempts to elicit conceptual schema or scripts 
(Agar. 1980: Agar & Hobbs. 1985) from everyday talk or from 'elicitation sessions'. A 
schema or script can be considered to be a high level description of a group of related 
inferences which holds generally true in a number of decision making situations. In Agar & 
Hobbs's (1985) stUdy of events in the lives of inner city drug addicts for example. an 'arrest' 
schema is described which is derived from analysis of a number of interviews describing 
particular arrests. and this schema can then be applied to other similar situations. 

Such schema are elicited by means of specifically designed questionnaires or frames. Frames 
can be thought of as: 

" ... simply a statement with a hole in it that can be filled in a variety of ways." 
(Agar. 1980. p.99) 

see also Johnson. as in the example: 

"[ saw that my secretary's office door was ____ so I _____ _ 
(Johnson. 1978) 

A selection of such frames can be presented to informants who are asked to supply appropriate 
words or phrases to complete the statement. By varying the wording of the frames. an 
investigator can assess the effects of such variations on the phrases used [0 complere the frame. 
In the example provided for instance. changing the words' my secretary' to . the Company 
Director' is likely to produce different responses if the informants were in an organisational 
environment. The crucial point here is that the frames enable the infonnants to conStruct their 
own context to the enquiry by using phrases that make sense to them. rather than by selecting 
from amongst a range proffered by the investigator. 

The remainder of this paper is a more detailed consideration of the potential uses of the 
formal description and analysis of an office culture's everyday theory of 'how to enter an 
office'. as a resource for use in the design of an interface to a prototype office-based advanced 
telecommunications infrastructure. As such, it provides a case study investigating the utility 
of the frame elicitation techniques to derive user-centred descriptions of an everyday theory. 

4 How to Enter an Office 

4.1 1 ntroduction 

As part of research into the use of metaphor in interface design being undertaken within 
the RACE funded 'Metaphors for Integrated Telecommunications Services' (!v!ITS. R:209") 
project at the LUTCHI Research Centre. a number of systems have been developed within 
the multimedia telecommunicationslCSCW arena. One of these systems is DOORS (.".nder
son et a!.. 1994). a pilot interface to a broadband telecommunications infrastructure that is 
designed to mediate communication and interaction between users in a distributed office 
environment. The principle behind DOORS is that the current telephone interface is an 
extremely inefficient and intrusive means of supporting communication because it does not 



126 Ben Anderson & lames L Airy 

provide any of the social cues that are a vital pan of the social regulation of everyday com
munication and interaction. It seems clear that with the extension from POTS' to broadband 
telecommunication. and the consequent increased imparlance of issues of privacy and control 
- cf. (Dourish. 1993; Bellorti & Sellen. 1993) - as well as the enrichment of functionality. 
a considerable re-tltink of the interface to communications devices may be needed. The 
DOORS system addresses tltis problem by displaying the availability state of the owner of an 
audio-visual node using a graphical representation of different states of an office door. and 
by providing socially grounded mechanisms for communication that are consistent with this 
representation. 

Such a representation clearly relies on what could be termed the user's everyday theory of 
how to enter an office. This everyday theory makes certain sorts of predictions about the 
availability state of a person based upon the state of their office door. Further. the theory also 
incorporates social knowledge and rules concerning what actions are acceptable given certain 
door states. For example it may be acceptable to knock on a closed door. but not to enter 
without invitation; whereas in the case of a fully open door. a knock-and-enter action may be 
socially acceptable. If designers wish to use the office door as a representation of availability 
in a telecommunications system. it is clearly imperative that an attempt is made to elicit an 
everyday theory of the office door that is generally applicable in the user group or culture 
for whom the system is intended. Thus. to rerum to the characteristics of everyday theories 
proposed above. it is necessary to elicit those elements of an everyday theory of office doors 
that are shared berween individuals in order to make explicit (as an aid to design) the user's 
social knowledge and rules that are invoked by using the office door as an indicator of the 
availability state of a person. Note that. in this study at least. this analysis takes place following 
an initial period of work·place analysis. but before the first prototyping of the system. 

The aim of this case study. therefore. was to elicit the inferences that potential users would 
make from the state of a person's office door. and the cultural knowledge and rules that are used 
to detennine what communication oriented behaviour is appropriate in any given situation. 

4.2 Method 

In order to elicit such information. a study was carried out that utilised the schema or script 
elicitation techniques described above. 17 business personnel (15 male. 2 female) who were 
attending a week long residential course as part of part-time Master of Business Administra
tion (MBA) qualification at the Loughborough University of Technology's Business School 
were asked to act as informants. In order to provide some background information and to 
set the results of the frame completion in context. the informants were asked to specify their 
occupation and provide a short job description. They were then presented with a frame 
completion exercise designed to elicit their probable responses to states of a person's office 
door. The frames to be completed took the form of partial statements such as: 

"As I walked towards <person>'s office door. I saw that it was <state>. so I 
<action>," 

tPlain Old Telephone System. 
: A similar interface has been developed as part of the CA'lECAT project (Mantc::i d al.. 1991) at the university 

of Toron[Q. 



Everyday Theories, Cognitive Anthropology and User-centred Sysrem Design 127 

where each variable was to be completed by the informanL Each informant was asked to 
produce as many completed frames as they could so that a range of person/state/actions aiads 
could be examined. Note that the wording of the partial statements was such that informants 
were not resaicted to any particular person, state or action. The frame-completion exercise 
generally lasted for around 20 minutes. 

Following Agar (1980, p.142), the resulting phrases were grouped firstly into similar door 
states, and secondly into similar actions within each state. Further grouping was then carried 
out on the words used to describe the person who's office was being approached. so that 
effects of status on acceptable actions could be analysed. This grouping was carried out 
by a researcher not involved in this investigation who's cultural and working background 
was similar to that of the earlier informants. It is acknowlenged that these grouping tasks 
should. ideally, have been carried out by members of the original group of informants - cf. 
(Agar. 1980). Unfortunately this was not possible due to the timing and limited scope of this 
investigation with respect to the informants' course attendance. 

4.3 Results 

The full and detailed results of this investigation. which produced a large number (127) of 
completed frames. are reported in Anderson (1994) and are summarised below. 

As would be expected from the participants of an MEA (Master of Business Administration) 
course. the infonnants consistently referred to their jobs as being junior or lower-management. 
As such they represent a horizontal slice through a number of organisations each of which 
may differ markedly in the way in which communication or interaction is socially mediated 
and regulated. Given that the informants could be seen to represent a diversity of different 
'business culrures'. it is interesting to note that the range of responses is relatively narrow. The 
phrases used by the informants to fill the <srare> frame being: 'open'. ·closed'. ·shut'. 'ajar', 
'partially open', 'half open'. 'closed with do not disturb sign' and 'hanging off its hinges'. 
This last was almost cenainly offered as a joke. not least because it was paired with the action 
phrase 'went to tell a policeman'T. By grouping these phrases it was possible to reduce the 
states of the office door to a set of three - 'closed', 'ajar' and 'open'. although there was a 
subtle distinction between 'closed' and 'closed with do not disturb sign' because in the latter 
case the cue for non-availability is that much more forceful and the question of whether the 
person is present is, at least partially, resolved. 

From the phrases used to complete the <acrion> section of frames, it is clear that there are 
different options that are acceptable in certain situations. By grouping these options. the 
responses indicate that there are seven different actions that have been identified by this study 
(see Table I). The actions listed in the first column are paraphrases or 'glosses' (Frake. 1964a) 
covering the meanings of the actual phrases used by the informants. the set of symbols in the 
second column will be used in subsequent figures to aid legibility. 

Figure I shows the percentage frequency of frames for each <scare> that were paired with a 
particular <action>. 

TThe importance of humour and irony when used by an informa.nt to reflect upon culrural norms is one rh::!.! 
is often discussed in the literature - e.g. (Frake. 196-la). It is. perhaps. obvious that the recognition of these 
'manners of speaking' is easier if the informant and investigator share a common language and culture, as was 
lhe case with the study reponed by this paper. 



128 Ben Anderson & James L Airy 

I Action I Symbol I 
I I. Knock and enter I Ke 
! 2. Knock and wait I Kw 
I 3. Leave a message I M 
I 4. Check StatUS I C 
I 5. Try again later I La 
I 6. Walk straight in L W 
I 7. Check with secretary I S 

Table 1: Symbols used to refer to glosses of informants' <action> phrases. 

lCtWKwC H L. s 
lIet:ion 

Figure 1: Percentage frequency of phrases used [Q fill <action> frame for any <state> irrespective 
of social status. 

Even at this gross level of analysis. it is clear that there are different options that are acceptable 
in certain situations. If a door is open for example. the acceptable actions tend to be 'Walk in' 
or 'Knock and enter', whilst in the case of the door being ajar the majority of responses were 
'Knocking and entering', 'Knocking and waiting' or 'Check status'. 

The frame analysis also addressed the issue of social status in order to provide a more detailed 
analysis of one of the factors that might detennine which actions are more acceptable in certain 
situations. Figures 2 to 4 show the percentage frequency of phrases used to fill the frames 
for each door state, subdivided into the different categories of <person> to whom the door 
'belongs'. 

The categories of person that resulted from the grouping exercise were as shown in Table 2. 

Figure 2, which shows the responses to the 'open door' frame. demonstrates the effect of 
social status quite clearly; people will walk straight in to the office of a 'colleague' or their 
'immediate boss' if the door is open. but they will not do this to their 'director' or their 'boss' 
boss'. Similarly they are much more likely to 'knock and wait', orto 'check their availability', 
if the person in the office is of considerably higher status. 



Everyday Theories, Cognitive Anthropology and User-centred System Design 129 

I Gloss I Elicited phrases 

'friend' I 'friend', 'colleague', 'manager I knew well', 'neighbour' 
'boss' 1 'boss'. 'senior manager', 'immediate manager', 'superior' 
'boss' boss' I 'boss' boss', 'superior' 

80 

60 

't.£ 40 

20 

o 

Table 2: Glosses of infannant's <person> phrases, 

• I ...... 

IB \0" 
m bo:u'~ 'be" 

Figure 2: Percenrage frequency of phrases used to fill <action> slot for 'open' <state>. 

100 • fn..u 
f1J! 'bo·" 

80 
liD 'bo~:s' 'bo" 

60 
'!of 

11 L. s 

Figure 3: Percentage frequency of phrases used to fill <action> slot for 'ajar' <state>, 



130 

40 

30 

'1.f 
20 

10 

o 
LVlKwC 11 L. 

Ben Anderson & James LAlry 

• !.w.l 
P.llI ~., 

lIB ~:f:f'\ou 

s 

Figure 4: Percentage frequency of phrases used to fill <action> frame for 'closed' <state>. 

Figure 3 shows the percentage frequency of responses when the door state was . ajar'. As in 
the previous case. there are differences in behaviour depending on the relative Status of the 
people involved. Here, far fewer would walk straight in and only then if the person whose 
office they were entering was a 'colleague' or . friend' . Rather, people would prefer to check 
the status of the person (usually in an unobtrUsive manner), although it is noticeable that this 
option was not suggested in me case of the person being of considerably higher staIUs, where 
'knocking and waiting' is the sole response. 

Figure 4 shows the percentage frequency of responses when the door state is 'closed' where 
the range of behaviours is greatest. In this case the options of 'walking in' or 'knocking and 
walking in' are both much less frequent. Instead there is much more emphasis on 'knocking 
and waiting', on 'checking status' and on 'leaving a note', In the case of the person being of 
much higher status. the importance of a surrogate in the form of a secretary is noticeabie. 

4.4 Analysis and lmplicationsjor Design 

4.4.1 How (0 Enter an Office 

In choosing [0 use an office door as an indicator of availability. the designers of the DOORS 
system intend [0 make use of pans of the user's everyday theories of office doors. As a result. 
the designers need [0 know what users will infer about a door's 'owner' from particular states 
of the door; and what kinds of communication possibilities would be acceptable for various 
states. It is clear that the frame elicitation exercise above can provide information on both 
these points. In the first instance, it has suggested that three significantly different door states 
'Open', . Ajar'. and 'Closed' may be enough to cover most situations. In the second. it has 
generated a set of seven different actions that constitute part of the informant's everyday theory 
of how to emer an office (see Table 1). Finally, the analysis suggest that informants' actions 
are. [0 a certain extent. determined by the state of the office door. and by their status or role 
with respect to the door's owner. a poim to which this paper returns. 

Such infonmation can have a direct inftuence on design because it suggests that the DOORS 
system could use three different iconic representations of an office door to represent users of an 



Everyday Theories, Cognitive Anthropology and User-centred System Design 131 

office-based broadband telecommunications system. Further. the set of actions can form the 
basis for communication functionality that makes sense to the user and which is grounded in 
the user's everyday theory. At the simplest level, the actions listed in Table I can be translated 
into a set of menu options that are available to users. Thus 'Knock and enter' can create a 
bi-directional audio and video connection whilst playing a suitable sound effect to warn the 
recipient that the connection is being made: 'Knock and wait' can invoke the sound effect 
alone together with a dialogue box requesting connection that is acknowledged or ignored by 
the recipient; 'Leave a message' invokes an email or voice mail tool; whilst 'check starus 
can invoke a short unidirectional video-only connection to the recipient's office (cf. "glance' 
service in Dourish (1991)). For further details on the implementation of the DOORS system, 
and subsequent evaluations of its effectiveness in a real world situation, the reader is directed 
to Anderson et al. (1994). 

4.4.2 The Socialisation of Control 

It can be seen that the perceived social status (i.e. role relative to the informant.l of the person 
has an effect on the options that are deemed to be acceptable. Few people for example, are 
prepared to walk straight in to the office of their' director' if the door is open, but will do so to 

a 'colleague or to their . immediate superior'. Similarly, in the case of a closed door. people 
will attempt to attract their superior's attention by 'knocking and Waiting' for a reply: under no 
circumstances would they initiate communication without acknowledgement from the other 
that such communication would be acceptable. 

This finding is important because it implies that if the final system provides methods of 
initiating communication based on the phrases elicited (e.g. 'knock and wait'. 'knock and 
enter' etc.) and uses the office door to represent availability, it is possible that the system 
will not need to explicitly control particular access rules, as is the case with the Godard 
(Dourish. 1991), and CAVECAT (Mantei et al.. 1991) systems. In Godard for example. access 
is controlled by a combination of a user's pre-set preferences (i.e. who can connect and in 
what way) and. if necessary. interactive input (Gaver et al.. 1992). In the case of the DOORS 

system. this layer of software may not be needed because the social rules that are apparent 
from the preceding results and discussion. and which are explicitly instantiated in the Godard 
cODlrol mechanisms for each user. are implicitly invoked by the use of the office door as a 
representation. 

In this situation. it may be unnecessary to explicitly define access privileges because users will 
be able to select appropriate behaviour using the same social rules that govern the iDleractions 
involving real world office doors. Further. the social mechanisms that prevent the breaking 
of those rules in current environments may well act to prevent transgression in a computer
supported audio-visual environment. If this is the case, then the system will have succeeded 
in lifting elemems of control from the technical to the social level- cf. (Dourish. 1993) 
- because the social rules are no longer embedded within the system, but rather the user is 
supported in making appropriate choices about what to do in a given situation. This hypothesis 
can only be confirmed by examining the patterns of behaviour over an extended period or 
system usage and, as such. is an area for future work. 



132 Ben Anderson & lames L Airy 

4.4.3 Possibilities for Novel Communication Situations 

Whilst a system such as DOORS can be designed to make use of everyday theories of the 
world in order to explain its functionality, the design need not be restricted to the functionality 
suggested by those everyday theories. In other words, functionality that is not 'covered' by 
the everyday theories can be included in the system provided it does not seriously contradict 
that theory. 

In the cases where the door was said to be partially or fully open for example, the wording of 
informants' responses made it clear that they would not leave messages unless they acrually 
knew that the door's 'owner' was either busy or temporarily absent. Thus 'message leaving' 
would tend to follow' glancing' (i.e. checking starus) or if a 'knock' had received no reply. In 
normal office interaction then, asynchronous communication of this kind tends only to occur 
as a last resort. If the participants are co-present. and aware of each other (as would tend to 
be true with open or partially open doors), then it seems socially unacceptable to avoid face· 
to-face interaction. This is particularly true in the case of a glance into an office because such 
an action tends to ensure that both the 'glancer' and the 'glance" are aware of each other's 
presence. This is not the case, however, with a system such as DOORS. Here participants 
can be effectively co-present. but there are no social constraints that prevent the use of 
asynchronous communication because, for example. I cannot see you 'outside' my 'open 
door'. Thus messages (bot.lJ audio and text) can be left ior a door's owner in place of initiating 
possibly short. and interruptive, synchronous communication. Novel options for interaction 
can thus be suggested by the consideration of current norms of communicative behaviour. 

It may be that systems such as DOORS, when introduced to an office environment. will tend to 

encourage the use of asynchronous communication in much the same way that email has done 
in some organisations (Summer. 1988). The control of the interruptive nature of interaction 
is thus shifted irom the sender to the recipient. because it is the latter who now decides when 
and how to interrupt current activities in order to read their email for example. The reader 
may care to ponder the advantages and disadvantages of such a shift. 

5 Conclusions 

This paper began with the suggestion that humans can be thought of as using 'Everyday 
Theories' in order to make sense of the world around them. Further. it was suggested that 
such everyday theories are utilised in human-computer interfaces in order to present system 
functionality using terms and conceptual structures familiar to the user. A consequence of 
this argument is that if the user's everyday theories are to be used in such a way. it seems vital 
that system developers elicit the user's everyday theories and not rely on their own intuitive 
assumptions about what those theories are. 

This paper has proposed that elicitation techniques from cognitive anthropology could pro
vide one means of accessing user's everyday theories and has provided a case srudy as an 
illustration. Tnis case srudy involved an attempt to elicit what might be termed an everyday 
theory of how to enter an office from the point of view of potential users of a broadband 
telecommunications system, and suggested how the results of such an elicitation can feed into 
the design of a system that makes use of this theory. An evaluation of the resulting system can 
be found in Anderson et al. (1994). 

·1 
-' 



Everyday Theories. Cognitive Anthropology and User-centred System Design 133 

From the point of view of an assessment of the utility. in system design, of elicitation 
techniques borrowed from cognitive anthropology. this srudy raises a number of issues. In 
particular. it has demonstrated that frame elicitation may be an appropriate method of getting 
at what people know (Frake. 1964a) or. perhaps more accurately, what they think they know. 
However. as. a means of uncovering what it is that infonnants actually do in any given 
situation. it cannot supplant observational techniques which are more likely to uncover the 
subtle details of interaction that may be missed by more fonnal elicitation. This is a point that 
is often made in the anthropological literature. for example Frake. in his study of the social 
rules surrounding the entering of a Yakan house (Frake. 1975). bases his analysis on both 
observationally derived. and linguistically elicited data. In addition. the methods of grouping 
and sorting may also have the effect of 'drowning' subtle details. The point here. as in all 
other similar situations. is that the techniques from cognitive anthropology must be applied 
selectively and with a full understanding of what such techniques can and can not provide 
as resources for interface design. Interesting areas for furtlher work would be an evaluation 
of the methods described by this paper. and other methods derived from the ethnographic 
stand-point, in terms of which provides the 'richest' resource for design. and which are most 
appropriate to use in particular design circumstances. 

On a more general note. this paper suggests that user-centred interface design might be more 
effective if designers' role with respect to users is modelled upon that between cogniti\'e 
anthropologists and their informants. As was discussed above. cognitive anthropologists 
repeatedly emphasise that they are attempting to build a description of the world from the 
point of view of their infonnants. using categories. concepts and language that make sense to 

the culture under study. As a result of this. cognitive anthropologiSts approach their task with 
an explicit commitment to avoid viewing the culture under study through their own conceptual 
or analytic models. In common with statements in the recent Iiteramre on participatory and 
ethnographic design teChniques. this paper argues that interface designers should approach 
their task with a similar commitment. Further. this paper proposes that cognitive anthropology 
may provide powerful techniques that supplement those already proposed. There is clearly 
much scope for further work in assessing the utility of these elicitation techniques. and also 
of the methodology that underlies cognitive anthropology itself. and it has been the aim of this 
paper to begin an exploration of this fertile area. 

Acknowledgements 

The work reported in this paper was supported by the RACE funded' Metaphors for Integrated 
Telecommunications Services' project (MITS. R:2094). The authors would like to thank Chris 
Marples of Loughborough University'S Business School for providing the informants: and 
Chris Hinde, Roger Knot! and Michael Smyth for the many discussions and comments thJt 
have shaped the ideas presented in this paper. 

References 

Agar. M. H. (1980), The Professional Stranger: An Injormal Introduction to Ethnology, Academic 
Press. 

Agar. M. H. (1988). Speaking of Ethnography: Qualitative Research Me/hods. Vo!. 2. Sa~e 

Publications. 



134 Ben Anderson & J ames L Airy 

Agar, M. H. & Hobbs. 1. R. (1985). How to Grow Schemata out oflnterviews. in I. W. D. Dougherty 
(cd.), "Directions In Cognitive Anthropology". University ofminois Press, pp.120-142. 

Anderson. B. (1994). Everyday Theories of the World: The application of techniques from Cognitive 
Anthropology to User·Centred System Design. LUTCHI Internal Repon 941M1LUTCHIlOI73. 
Loughbourough University of Technology. 

Anderson. B .. Smyth. M .. KnOIt. R. p .. Bergan, M .. Bergan. I. & Alty, 1. L. (J994), Minimising 
Conceptual Baggage: Making Choices about Metaphor, in G. Cockton, S. Draper & G. Wier 
(eds.). "People and Computers IX (Proceedings of HO'94)", Cambridge University Press, 
pp.l 79-1 94. 

Bellolti. V. & Sellen. A. (1993), Designing for Privacy in Ubiquitous Computing Environments, in 
de Michelis et al. (1993), pp.77-92. 

Blomberg, I .. Giacomi. I .. Mosher. A. & Swenton-Wall. P. (1993). Ethnographic Field Methods and 
their Relation to Design. in Schuler & Namioka (1993). pp.123-155. 

BOOker. K. & Pedersen. I. S. (1991), Workplace Cultures: Looking at Artifacts. Symbols and Practices. 
in J. Greenbaum & M. Kyng (eds.), "Design at Work: Cooperative DesignofComputer Systems", 
Lawrence Erlbaum Associates. 

Corsaro, W. A. (1975), '''We're friends right?' Children's Use of Access Rituals in a Nursery School", 
Language in Society 8. 315-336. 

de Michelis. G .. Simone. C. & Schmidt. K. (eds.) (1993). Proceedings ofECSCW·93. the 3rd European 
Conference on Compucer·SupportedCooperan .... ·e Work. Kluwer (Academic Press). 

Diaper. D. (ed.) (1989), Task Analysisfor Human-Computer Interaction. Ellis Horwood. 

Dourish. P. (1991), Godard: A Flexible Architecture for AV Services in a Media Space, Technical 
Report EPC-91-134, Rank Xerox EuroPARC. 

Dourish, P. (1993), Culture and Control in a MediaSpace, in de ~!ichelis ell!. (1993), pp.125-137. 

Frake. C. O. (1962), The Ethnographic Study of Cognitive Systems, in T. Gladwin & W. Sturtevant 
(eds.), "Anthropology and Human Behaviour", Anthropological Society of Washington. pp.72-
93. 

Frake. C. O. (1964a), "Notes on Queries in Ethnography", American Anthropologisr 66(3). 132-145. 

Frake. C. O. (1964b). A Structural DeSCription of Subanum 'Religious Behaviour', in W. Goodenough 
(ed.). "Explorations in Cultural Anthropology: Essays in Honor of Peter Murdock", McGraw
Hill. pp.lII-130. 

Frake, C. O. (1975). How to Enter a Yakan House. in M. Sanchez & B. Blount (eds.). "Socio-cultural 
Dimensions of Language Use", Academic Press, pp.214-232. 

Frake, C. O. (1980), Language and Cultural Description: Essays By Charles Frake, SLltlford 
University Press, chapter Plying Frames Can Be Dangerous: Some Reflections on Methoaology 
in Cognitive Anthropology, pp.45~0. 

Gaver, W. W., Moron. T., MacLean. A .. Lovstrand. L .. Dourish. P .. Carter, K. & Buxeon. W. (1992), 
Realizing a video Environment: EuroPARC's RAVE system. in P. Bauersfeld. J. Bennelt & 
G. Lynch (eds.), "Proceedings of CHI'92: Human Factors in Computing Systems", ACM Press, 
pp.27-35. 



Everyday Theories. Cognitive Anthropology and User-centred Systempesign 135 

Goodenough. W. H. (1957), Cultural AnThropology and Linguistics, Vol. 9 of Georg.rown University 
Monograph Series on lAnguage and linguistics. Georgetown Universiry Press. 

Grudin, 1. (1994), "Groupware and Social Dynamics: Eight Challenges for Developers", Communica
tions ojThe .4CM 37(1), 92-105. 

Holtzblan, K. 8< 10nes, S. (1993), Contextual Inquiry: A Panicipatory Technique for System Design. 
in Schuler 8< Namioka (1993), pp.l77-2l0. 

Hughes. 1. A .. SOITUllerville. I., Bentley, R. 8< Randall. D. (1993). "Designing with Ethnography: 
Making Work Visible".lnreracting wiTh CompuTers 5(2).239-253. 

lohnson. A. W. (1978), Research Merhods in Social Anrhropology. Edward Arnold. 

Kempton. W. (1987). Two Theories of Home Heat Control. in D. Holland & N. Quinn (eds.), "Cultural 
Models in Language and Though'''. Cambridge Universi'y Press, pp.122-242. 

Mantei, M. M.. Baecker. R. M .. Sellen. A. 1 .. Buxton. W. A .. Milligan. T. 8< Wellman. B. (1991), 
Experiences in the use of a Media Space. in S. P. Robenson. G. M. Olson & 1. S. Olson 
(eds.). "Proceedings of CHI'91: Human Factors in Computing Systems (Reaching through 
Technology)", ACM Press, pp.203-208. 

Norman. D. A. (1988). The Psychology oj Everyday Things. Basic Books. 

Norman. D. A. & Draper, S. W. (eds.) (1986), User Centered SYSTems Design: New Perspectives on 
Human-Computer Interaction, Lawrence Erlbaum Associates. 

Owen. D. (1986). Naive Theories ofC~mputation. in Norman & Draper (1986). pp.187-200. 

Rasmussen. 1. (1986), Information Processing and Human-,\1achine Interaction: An Approach to 

Cogniti\'e Engineering. Nonh-Holland. 

Schuler. D. & Namioka. A. (eds.) (1993). ParriciparoryDesign: Principles and Practices. Lawrence 
Erlbaum Associates. 

SOITUllerville. I.. Bentley, R .. Rodden. T. & Sawyer. P. (1994). "Coopera'ive Systems Design". The 
Computer Journal 37(5). 357-366. 

Sturtevant. W. C. (1972), S,udies in Ethnoscience, in 1. P. Spradley (ed.). "Culture and Cognition", 
Chandler, pp.129-167. 

Summer. M. (1988). The Impact of Electronic Mail on Managerial and Organizational Communica
tions. in "Proceedings of Office Information Systems Conference". 

Watson. R. T .. Ho. T. H. & Raman. K. S. (1994). "Culture: A Fourth Dimension of Group SUppOI1 
Systems", Communications ojrhe ACM 37(10),44-55. 

Wixon, D .. Holtzblatt. K. & Knox. S. (1990), Contextual Design: An Emergent View of System 
Design. in 1. C. Chew & 1. Whiteside (eds.). "Proceedings of CH1'90: Human Factors in 
Computing Systems". ACM Press. pp.329-336. 



I 

I 

I 
I 
I 
I 
I 
1 
1 




