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Abstract—Parity RAIDs are used to protect storage systems
against disk failures. The idea is to add redundancy to the system
by storing the parity of subsets of disks on extra parity disks. A
simple two-dimensional scheme is the one in which the data disks
are arranged in a rectangular grid, and every row and column
is extended by one disk which stores the parity of it.

In this paper we describe several two-dimensional parity
RAIDs and analyse, for each of them, the probability for data
loss given that f random disks fail. This probability can be used
to determine the overall probability using the model of Hafner
and Rao. We reduce subsets of the forest counting problem to
the different cases and show that the generalised problem is #P-
hard. Further we adapt an exact algorithm by Stones for some
of the problems whose worst-case runtime is exponential, but
which is very efficient for small fixed f and thus sufficient for
all real-world applications.

Index Terms—RAID, complexity, data loss, graph, Tutte poly-
nomial, counting problem

I. INTRODUCTION

Data storage is one of the corner stones of information
technology, and the amount of data stored on tapes and disks
grows at an impressive rate [1]. Since more and more data are
stored on disks, there is ongoing research on how they can be
efficiently secured using RAID schemes and erasure codes,
e.g. [2]–[10]. The idea is to prevent data loss due to failing
disks by adding redundancy and by automatically restoring the
data of failed disks on new ones (forward error correction).

This paper considers two-dimensional RAID schemes with
data and parity disks. The most common scheme arranges the
disks in a two-dimensional grid such that each row and each
column forms a parity set together with an extra parity disk;
i.e., the XORed contents of the data disks are stored on the
parity disk. This allows to restore any disk of the parity set
by XORing the contents of the other disks. In the remainder
of this section, we will describe this standard scheme and
variations of it, explain in which situations data loss occurs
and phrase the specific problems.

Generally, we are interested in the following problem: What
is the probability for data loss given that a fixed number of
disks, randomly chosen, fails? The solution to this problem is
a requirement for computing the overall data loss probability
using, for example, the model by Hafner and Rao [11]. This
model has been applied in the past [2], [4], [5] to solve the

problem for specific RAID schemes, but only for a limited
number of disk failures.

Our contributions are:
• We formally describe the known two-dimensional

schemes and define the new general scheme as the
superset of two of them (Section II).

• For each parity scheme, we define the problem of com-
puting the probability for data loss given that f random
disks fail and describe how the general probability can
be computed based thereon (Section III).

• We show that computing the data loss probability for the
general scheme is #P-hard and that, for the other schemes
considered, the problem is (at least) as hard as evaluating
the Tutte polynomial T (G;x, y) for complete bipartite
graphs G at (2, 1) (Section IV-B).

• We describe exact algorithms for two types of the
schemes which use the algorithm of Stones [12] as a
subroutine. Although their worst-case runtime is expo-
nential, they are efficient for a fixed number of disk
failures (Section IV-C).

• Finally, we demonstrate that having a lower data loss
probability in case of f failed disks does not imply that
the probability of the RAID is also lower for f ′ > f
(Section IV-C).

The related work is discussed in Section V before we
conclude the paper in Section VI.

II. PARITY SCHEMES

The parity schemes that we consider can each be arranged
in a two-dimensional grid. They are obviously a special case
of k-dimensional parity schemes, k ∈ N, which would arrange
data and parity disks in a k-dimensional grid. RAID 4 [7] is
an example for k = 1, the schemes in Figure 1 are examples
for k = 2.

This paper investigates only schemes which keep the parity
information on extra disks (like in RAID 4). Schemes in which
the parity information is distributed over the data disks (like
RAID 5 and RAID 6 implementations [7], [9], [10]), are not
considered.

Standard scheme: The common two-dimensional scheme
arranges the data disks in a (n1− 1)× (n2− 1) grid; n1 ≥ 2,
n2 ≥ 2. Additionally every row and every column has a
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(a) Standard scheme (b) Full scheme (c) Lonestar scheme (d) Lonestar scheme stretched

Fig. 1. Two-dimensional parity schemes. The shaded disks are the parity disks; row parity disks are shaded at the top, column parity disks at the bottom,
superparity disks completely.

parity disk which is in the n2-th column or n1-th row, respec-
tively; the corner (n1, n2) is left empty (see Figure 1(a)). For
i1 ∈ {1, ..., n1 − 1}, each parity disk di1,n2

=
⊗n2−1

i2=1 di1,i2
contains the bitwise XORed contents of the row’s first n2− 1
disks. Likewise, for i2 ∈ {1, ..., n2−1}, dn1,i2 =

⊗n1−1
i1=1 di1,i2

contains the XORed contents of the column disks. Together
with their parity disk, each row and each column forms a parity
set: If one disk fails in this set, but all other disks remain intact,
the data of the faulty disk can be restored on a new disk (which
then replaces the faulty one). We call this scheme the standard
scheme. When data are written to a data disk di1,i2 , its parity
disks, di1,n2 and dn1,i2 , must be updated, too. The standard
scheme can correct any two errors.

Full scheme: A simple way of making the standard scheme
3-error correcting is adding a corner disk as a superparity disk
(Figure 1(b)). It stores the parity of the parity disks in the last
row and thus also the parity of the parity disks of the the
last column which is identical. Whenever data are written to a
disk, it is now necessary to update the corner disk as well. We
call this scheme, which is described in [4], the full scheme.

Lonestar scheme: A generalisation of the full scheme is the
scheme that was developed for the Lonestar archival system
[2], [3]. Here the horizontal parity groups do not have to fill
one row exactly, but can be shorter. The next group is simply
added behind the previous and wrapped into the next row if it
does not fit into the current one. The last row consists of disks
which each hold the parity of their column. For simplicity, we
demand that the first n1− 1 rows are completely filled by the
groups and that the group size y does not divide n2 unless
y = n2. Note that the latter condition is no restriction because
every scheme with y | n2 actually consists of n2/y separate
full schemes. In case y = n2, the Lonestar scheme is a full
scheme.

It is easy to prove that the last row also forms a parity set
if y - n2. An example with group length y = 3 and row length
n2 = 4 is given in Figure 1(c).

General scheme: For the theoretical analysis we introduce

the general scheme which generalises the full scheme as well
as the Lonestar scheme (if every horizontal parity set gets its
own row as in Figure 1(d)). The general scheme is based on
an n1×n2 grid, but there does not have to be a disk at every
grid point. The only requirements are:
• every row / column forms a parity set (in between write

operations), and
• the set of disks is 2-connected

where 2-connected is defined as follows: Let a cycle be a
sequence d1, d2, ..., d` of disks such that a pair of disks is in
the same parity set if and only if the disks are successive (i.e.,
di and di+1 for i ∈ {1, ..., ` − 1}) or the first and the last
disk of the sequence (i.e., d1 and d`). Then a set of disks
is 2-connected if and only if every pair of disks shares a
cycle. For an example refer to Figure 2(c), in which the disks
marked with an x form a cycle together with disk d1,2, i.e. the
second disk in the first row. All disks, marked or unmarked,
in this figure are 2-connected. (We use the terms cycle and
2-connectedness because of their equivalence to the ones in
graph theory that we will use later.)

One can easily prove that every instance of the full and
the Lonestar scheme fulfils the two requirements above. An
instance of the standard scheme, on the other hand, is never
of the general scheme: The last row and column do not form
a parity set, and this also implies that the RAID is not 2-
connected.

In the following lemma we show that every grid which
fulfils these two conditions can indeed be used as a parity
RAID scheme.

Observation 1. If a set of disks on an n1×n2 grid, in which
every row and column forms a parity set, is 2-connected, it
can be used as a parity RAID, where n1 + n2 − 1 disks are
parity disks.

Proof. We show that the set of disks can be used for storing
and securing data by the following construction: First choose
any disk di1,i2 as the superparity disk and make every row



(a) General scheme (b) Parity RAID (c) Failed disks (d) Restoring data

Fig. 2. (a) Example general scheme on a 5 × 4 grid. (b) 5 + 4 − 1 disks are turned into parity disks. (c) Example pattern of failed disks. (d) One way
of restoring the data. (The shaded disks are the parity disks; row parity disks are shaded at the top, column parity disks at the bottom, superparity disks
completely.)

disk di1,c the parity disk of their respective column c and
every column disk dr,i2 the parity disk of their respective row
r. In the next step go through all these columns c and rows r
and turn every disk into a parity disk of their respective row
or column, unless there is already a parity disk in it. Repeat
this step for the resulting set of parity disks, until there are no
more disks that can be turned into parity disks.

Note that, by this construction, every row (column) has at
most one row (column) parity disk and that no parity disk but
the superparity disk is the parity disk for its row and column
at the same time. It remains to show that every row / column
has a parity disk after the construction. Assume some column
c does not have a parity disk. Then all rows r which contain a
disk dr,c have no parity disks, otherwise dr,c would have also
been chosen. Since the RAID is 2-connected, there is a path
to a superparity disk, and this recursive argument will result
in the contradiction that there is no parity disk in the row or
column of the superparity disk.

Due to symmetry, we can apply the same argument to rows.
When data are written to a data disk di1,i2 , the parity disks

di1,c and dr,i2 in the same column and row are updated,
followed by the updates of the parity disks in column c and
row r, and so on, until the superparity disk is reached. (In the
full scheme, the second step already updates the superparity
disk, but in the general scheme a few more iterations might be
necessary before the superparity disk is reached.) The disks
involved form a cycle and, thus, in every row and every column
zero or two disks are changed. Since the same operation is
performed on all these disks, the XORed contents of each
row and each column will not change and remain zero.

Note that, in between write operations, every disk di,j
contains the parity of the other disks in its row and the parity of
the other disks in its column. Due to this symmetry, a parity
or superparity disk is, at least for our purposes, in no way
exceptional.

An example for constructing a parity RAID on top of a
general scheme is given in Figure 2(a) and 2(b). We use the
algorithm provided in the proof of Lemma 1 and arbitrarily
select the corner disk d5,4 as the superparity disk. Then all
disks in its row and column are turned into parity disks of
their column or row, respectively. In the next step the first
column having a parity disk itself, i.e. column 1, is checked
whether any of the disks can be turned into a row parity disk.
None of them can. In the next such column, column 3, d4,3 is
turned into a parity disk of row 4. The search for row parity
disks can be stopped then because every row has one. Finally,
for finding column parity disks the same procedure is used for
the rows that have a parity disk themselves. In the first row
d1,2 is turned into a parity disk for column 2, and then the
process stops completely because all columns have a parity
disk as well.

III. PROBLEM STATEMENT

Data loss occurs if a failed disk d cannot be restored. This
happens only if, in all parity sets of d, there is at least one
other disk that cannot be restored. This recursive argument
leads to the conclusion that there must be a set of failed disks
such that each such disk has at least one other failed disk
in each of its parity sets. We call such a set of disks a fatal
pattern.

The smallest fatal pattern in a two-dimensional general
scheme is a subset of four disks which form the corners of
a rectangle – as we can easily show: Assume any disk di1,i2
fails. Then its data are only lost if some other disk di1,c in its
row and some other disk dr,i2 in its column fail and if these
two disks cannot be recovered themselves. This last condition
implies that at least a fourth disk must fail to cause data loss.
(As we will see in the proof of Lemma 2, this observation can
actually be generalised to the statement that data loss happens
if and only if the failed disks form a pattern containing at least
one cycle.)



Figure 2(c) and 2(d) show an example failure pattern for a
general scheme that is not fatal and one way how the data can
be restored: Since there is only one failed disk in column 2,
namely d4,2, it can immediately be restored. Afterwards there
is only one failure in row 4 (d4,3); and after correcting that,
there is only one failed disk in column 3 (d5,3), which can
also be restored. Finally, the chain of restorations is continued
and concluded with d5,1 and d1,1. Note that the pattern would
be fatal if d1,2 were included.

Since the full scheme and the Lonestar scheme are special
cases of the general scheme, it follows that up to 3 failures can
always be corrected in these schemes as well. The standard
scheme, on the other hand, allows fatal patterns of three disks,
namely all sets {di1,i2 , dn1,i2 , di1,n2} [4].

But, as one can easily see, more disk failures (than three or
four) do not necessarily imply data loss. If the set of failed
disks does not contain a fatal pattern, all data can be restored.
In the following we will investigate the probability for data
loss in case f disks fail; in particular we will consider the
following four problems:

Problem: DATALOSSPROBSTD

Input: Standard scheme on n1 · n2 − 1 disks including
n1 + n2 − 2 parity disks; positive integer f .
Output: The probability for data loss if f randomly chosen
disks fail.

Problem: DATALOSSPROBFULL

Input: Full scheme on n1 ·n2 disks including n1 +n2− 1
parity disks; positive integer f .
Output: The probability for data loss if f randomly chosen
disks fail.

Problem: DATALOSSPROBLS
Input: Lonestar scheme on n1 · n2 disks including (n1 −
1) · n2/y + n2 parity disks; positive integer f .
Output: The probability for data loss if f randomly chosen
disks fail.

Problem: DATALOSSPROBGEN

Input: A general scheme; positive integer f .
Output: The probability for data loss if f randomly chosen
disks fail.

DATALOSSPROBLS, DATALOSSPROBSTD and
DATALOSSPROBFULL were analysed in [2] and [4].
Using the reliability model introduced in [11], these papers
compute the mean time to data loss (MTTDL) of a data
storage system which – as the name suggests – is the
expected time until disk failures lead to (irreparable) data
loss. But the analysis in [2] considers only a small number
of scenarios with a fixed number of disks, and both studies
limit the number of disk failures to 5. We will show in the
next section that the generalised problem, while easy for
small numbers, is in fact #P-hard for an arbitrary number of
disk failures and provide an exponential-time algorithm for
DATALOSSPROBSTD and DATALOSSPROBFULL.

0 1 ... t-1 t DL
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Fig. 3. Reliability model (picture taken from [2], [11]).

The reliability model [11] is generally meant for erasure
codes for which the Hamming distance d of the code does
not strictly separate the reparable from the irreparable error
patterns. In contrast, assume a code that can recover from any
number of errors less than d, but from no error pattern with
at least d failures. Then computing the error probabilty for
any number f of failed disks would be trivial. Codes having
this property are equated with maximum distance separable
(MDS) in [11] (which is not completely accurate because the
separation is not necessarily strict for MDS codes), and thus
the model addresses non-MDS codes which include the RAID
schemes discusssed in this paper, but also many other codes
(e.g. [5]). Examples for MDS codes are the row-diagonal
parity code [9] and the EVENODD code [10].

As shown in Figure 3, the reliability model is based on a
simple Markov model consisting of t+2 states and transition
probabilities σi, µi and δi where t is the maximum size of
any non-fatal error pattern; i.e., any t+1 errors will definitely
cause data loss. The states i, i ∈ {1, ..., t}, merge all non-
fatal system states with i failures, the state DL all states
with definite data loss. In this paper we do not focus on
the probability for another disk to fail, but on the probability
whether the system is in state f or in state DL given that f
failures occur. Together with the probabilities for disk failures,
one can determine the transition probabilities of the Markov
model. For the computation of the MTTDL, see [11].

IV. ANALYSIS

In this section we provide properties, complexity results and
algorithms for the DATALOSSPROB problems defined in the
previous section. For this we make use of the equivalence
subsequently described which links bipartite graphs to parity
RAIDs.

A. Equivalences

Every bipartite graph G = (A,B,E) can be expressed as a
(reduced) adjacency matrix M in which the |A| rows represent
the vertices of A and the |B| columns the vertices of B. Let
ai be the vertex of row i and bj be the vertex of column
j. If (ai, bj) ∈ E, then Mi,j = 1, otherwise Mi,j = 0.
The same matrix also describes the grid of a two-dimensional
parity RAID. If there is a disk at the grid position (i, j), then
Mi,j = 1; otherwise Mi,j = 0.



Let the parity RAID described by a matrix be of the general
form in that every row and every columns forms a parity set.
Then, if a bipartite graph contains cycles, the respective parity
RAID (i.e., described by the same matrix) also contains cycles.
One can easily prove that the same bits inducing a cycle in
one also induce a cycle in the other. From this it also follows
that a bipartite graph is 2-connected if and only if the parity
RAID is 2-connected.

The following lemma expresses the probability for data loss
via graph properties, more precisely, as a function of φ(G, f)
which denotes the number of cycle-free subgraphs (subforests)
of the respective graph G with f edges.

Lemma 2. Let G = (A,B,E) be a bipartite graph such that
every vertex in G has degree at least 2, and let P denote the
equivalent parity RAID whose rows and columns form parity
sets. Further let DP denote the event of data loss in P . Then,

Pr[DP | f disks fail] = 1− φ(G, f)(|E|
f

) .

Proof. Consider the reduced adjacency matrix of G and the
parity RAID it describes. If f disks fail and if the matrix
entries of all healthy disks are set to 0, then the resulting
matrix describes a subgraph of G with f edges. And since
every subgraph also describes a pattern, this mapping is a
simple bijection between the set of subgraphs with f edges
and the set of patterns with f disks. Both sets have therefore
size

(|E|
f

)
.

In order to prove the statement, we additionally show that
a subgraph of G contains a cycle if and only if the respective
pattern causes data loss in the parity RAID. Assume that an
acyclic graph (i.e. a forest) T maps to a fatal pattern and that
T is minimal in the sense that no proper subgraph of it maps
to a fatal pattern. Note that, since every vertex in G has degree
at least 2, each parity set of the respective RAID contains at
least two disks. Since T is a forest with at least one edge, there
must be at least one vertex having degree 1 and thus one parity
set with only one faulty disk. Hence, this disk can be repaired,
which is a contradiction to the minimality of the subgraph. For
the other direction, consider a minimal fatal pattern. Due to the
minimality, every row and every column of this pattern must
contain at least two failed disks because otherwise it would
be intact or could be repaired. So each vertex of the resulting
subgraph has degree at least 2 for which reason the subgraph
cannot be a forest and must contain a cycle.

Due to the equivalences shown, the probability for data loss
equals the number of cyclic subgraphs on f edges divided by
the number of all graphs on f edges:

Pr[DP | f disks fail] =

(|E|
f

)
− φ(G, f)(|E|
f

) .

B. Complexity

In this section we will provide reductions of graph problems
to the data loss probability problems. Here, ≤pT denotes the

polynomial Turing reduction, ≤p1 and ≡p1 the polynomial one-
one reduction and equivalence. We assume that all graphs are
labelled and simple; i.e. they are undirected and do not have
loops or multiple edges. A spanning forest of a graph is a
cycle-free spanning subgraph.

The graph problems are:

Problem: FORESTCOUNT[G]
Input: Graph G ∈ G.
Output: Number of spanning forests of G.

Problem: FORESTCOUNTE[G]
Input: Graph G ∈ G, positive integer f .
Output: Number of spanning forests of G with exactly f
edges.

Based on these definitions, we can phrase the following
observation:

Observation 3. Let G be any graph class, then:

FORESTCOUNT[G] ≤pT FORESTCOUNTE[G].

Proof. FORESTCOUNT[G] ≤pT FORESTCOUNTE[G] holds be-
cause the number of forests can be determined by summing
up the number of forests with f ≥ 0 edges.

We consider FORESTCOUNTE[G] and FORESTCOUNT[G]
for the subsequently defined graph classes. As formally de-
scribed in Lemma 5, the graph classes Gbv and Gcb are
equivalent to the data loss problems of the general and the
full scheme, respectively.
• Gb = {G | G bipartite}
• Gbv = {G | G bipartite and 2-connected}
• Gcb = {G | G complete bipartite and 2-connected}
Our next observation provides an equation which sets the

data loss probability of the standard and the full scheme in
relation. It follows from the observation that the standard
scheme equals the full scheme with a broken corner disk.

Observation 4. Let Dfulln1,n2
and Dstdn1,n2

respectively denote
the event of data loss in the full and standard scheme on an
n1 × n2 grid. Then

Pr[Dstdn1,n2
| f disks fail] = Pr[Dfulln1,n2

| f + 1 disks fail].

The next lemma reduces different flavours of
FORESTCOUNTE to the DATALOSSPROB problems:

Lemma 5. Let Gbv and Gcb be the graph classes defined above.
Then:

(i) FORESTCOUNTE[Gbv] ≡p1 DATALOSSPROBGEN
(ii) FORESTCOUNTE[Gcb] ≡p1 DATALOSSPROBFULL

(iii) FORESTCOUNTE[Gcb] ≡p1 DATALOSSPROBSTD
(iv) FORESTCOUNTE[Gcb] ≤p1 DATALOSSPROBLS

Proof. We use that every n1×n2 bit matrix uniquely describes
a bipartite graph as well as a RAID scheme in which every
row and column forms a parity set and that data loss occurs
exactly if the graph contains a cycle. Hence, for (i) and (ii),
we only need to show for each of the graph classes that the



underlying reduced adjacency matrices describe excactly the
RAID schemes of the respective data loss probability problem.
For (i) this follows from the fact that a bipartite graph is 2-
connected if and only if the respective RAID scheme is 2-
connected. For (ii) it is sufficient to observe that every full
scheme is described by an n1×n2 bit matrix in which every bit
is set to 1 and for which n1 ≥ 2 and n2 ≥ 2. These matrices
are exactly the reduced adjacency matrices of the complete
bipartite, 2-connected graphs. Statement (iii) follows from (ii)
and Observation 4. Statement (iv) follows from the fact that
the full scheme is a special case of the Lonestar scheme.

Due to Gcb ⊂ Gbv , this lemma immediately implies:

Corollary 6. If FORESTCOUNT[Gcb] is #P-hard, then all data
loss probability problems described in this paper are #P-hard.

To the best of our knowledge there is no precise classifi-
cation of FORESTCOUNT[Gcb]. (We discuss work related to
FORESTCOUNT in Subsection V.)

But nonetheless we can classify DATALOSSPROBGEN.
FORESTCOUNT equals the evaluation of the Tutte polynomial
T (G;x, y) at (2, 1) (e.g. [12], [13]). Jaeger et al. showed in
[13] that evaluating T (G;x, y) at (x, y) is #P-hard unless
(x, y) is in a certain set which they define in their theorem
and which does not contain (2, 1). This result was extended
to (planar) bipartite graphs by Vertigan and Welsh:

Theorem 7 (Vertigan et al. [14]). The evaluation of the
Tutte polynomial T (G;x, y) of planar bipartite graphs
G at a point (a, b) is #P-hard except when (a, b) ∈
{(1, 1), (−1,−1), (j, j2), (j2, j) | j = e2πi/3}∪ {(x, y) | (x−
1)(y − 1) = 1 ∨ (x− 1)(y − 1) = 2}.

Corollary 8. FORESTCOUNT[Gb] is #P-hard.

Proof. As mentioned, T (G; 2, 1) is the number of (spanning)
forests of G, and from the theorem it follows that evaluating
T (G; 2, 1) remains hard for the class of bipartite graphs G.

Lemma 9. FORESTCOUNT[Gbv] is #P-hard.

Proof. We show that FORESTCOUNT[Gb] is reducible to
FORESTCOUNT[Gbv]. Note that isolated vertices in the base
graph can be ignored because spanning forests only differ in
the number and distribution of the edges.

Consider the subset En of edges that are not contained
in any cycle. Computing the number of forests for a con-
nected component of G′ = (V,E \ En) is a problem in
FORESTCOUNT[Gbv]. Computing the number of forests for
Gn = (V,En) can be done in polynomial time because Gn is
a forest. The number of forests of the connected components
and Gn are independent. Therefore the number of forests of
G is the product of the counts, and FORESTCOUNT[Gb] can
be reduced to FORESTCOUNT[Gbv].

From Lemma 5 and Lemma 9 we can finally derive:

Theorem 10. DATALOSSPROBGEN is #P-hard.

C. Algorithm

Although FORESTCOUNTE[Gcb] is not yet precisely clas-
sified, there Stones [12] developed an exponential algorithm
for this problem and gave a rough bound on the worst case
runtime:

Theorem 11 (by Stones [12]). Let n = max{n1, n2}, then
FORESTCOUNTE[Gcb] can be computed in time O(econst·

√
n ·

n0.5·
√
n+const). For a fixed number f of edges, the runtime is

O(log(n1 · n2)).

This algorithm can be used to compute
DATALOSSPROBFULL and DATALOSSPROBSTD:

Corollary 12. The problems DATALOSSPROBFULL and
DATALOSSPROBSTD can be computed in time O(econst·

√
n ·

m0.5·
√
n+const). For a fixed number of failures, the runtime is

O(log(n1 · n2)).

Proof. The algorithm of Stones computes the number φ(G, f)
of subforests of the complete bipartite graph G with f edges.
Now, to compute the solution to a DATALOSSPROBFULL
problem with f failed disks, one only has to interpret the
binary matrix representation of the full scheme instance as
the reduced adjacency matrix of a complete bipartite graph G,
compute φ(G, f) and apply the formula of Lemma 2. Similarly
one can solve DATALOSSPROBSTD. Given any grid and any
f , one obtains the data loss probability for the standard scheme
by computing the probability for the full scheme for f+1 (see
Observation 4). Hence, one can again apply the algorithm of
Stones to get the result.

In order to compare parity RAIDs with each other, it is not
necessary to calculate the exact probability for data loss, but
it would be sufficient to show that one RAID is better than
the other. This raises the question whether some RAID A is
better than another RAID B for all numbers of errors f if it
is better for f = 4. Unfortunately, this is not the case.

Claim 13. If some parity RAID A of the full (standard,
Lonestar, general) scheme is better than some parity RAID
B of the full (standard, Lonestar, general) scheme for f = 4,
then it is also better for f = 5. But this does not hold for
arbitrary m, n, f and f + 1.

Proof. We show the statements for the full scheme. Since the
Lonestar and the general scheme are generalisations of the
full scheme and since the probability for the standard scheme
can be derived from the probability of the full scheme, the
statements must also hold for them.

There is exactly one fatal pattern of four disks, namely the
one in which the failed disks form the corners of a rectangle.
Yet, there is no fatal pattern of five disks because one of the
five failed disks must be the only one in its row or its column
such that its data can be restored. The probability for f =
4 is the number of rectangles divided by the number of all
possibilities:

Pr[Dfullm,n | 4 fail] =

(
m
2

)
·
(
n
2

)(
m·n
4

) .



For f = 5, it is the number of rectangles times the possibilities
to add another disk divided by all possibilities:

Pr[Dfullm,n | 5 fail] =

(
m
2

)
·
(
n
2

)
· (m · n− 4)(
m·n
5

)
=

(
m
2

)
·
(
n
2

)
· 5(

m·n
4

)
= 5 · Pr[Dfullm,n | 4 fail].

This equality expressing that the probability grows by a
constant factor and thus independent of m, n and f , implies
the first statement.

The second statement can be shown by presenting examples.
The RAID with m = 2 and n = 7, for instance, has a greater
probability for f = 5 than the RAID with m = 4 and n = 4,
but a smaller one for f = 6. (This was calculated using the
algorithm given in the proof of Corollary 12.)

V. RELATED WORK

In this section we give an overview of the work related to the
description and analysis of two-dimensional RAID schemes
as well as to the Tutte polynomial and the forest counting
problem.

A. Two-dimensional RAID Schemes

Except for the general scheme, the parity schemes are taken
from the literature. The standard and the full scheme are well-
known “folklore”, and it is not clear when they were described
for the first time. A description and analysis of both schemes
can be found in a paper by Pâris et al. [4]. The authors point
out that the standard scheme can tolerate only two failed disks
in the worst case and suggest the full scheme which tolerates
at least three failed disks. For their analysis of the data loss
probability, they use the model by Hafner and Rao [11], but
the computation is only accurate up to five failed disks.

An improved version of the standard scheme is described
in [6]. The authors suggest to make the n×n standard scheme
adaptive: Whenever a first parity disk fails, the parity sets are
rearranged in such a way that each data disk is again part
of two parity sets. The authors argue that the reorganisation
involves only n out of n2 disks and doubles the mean time to
data loss. Further reorganisations are not performed.

The Lonestar scheme was first described by Grawinkel et
al. [3] who use it as the basis for a disk-based archival system.
They also use the model by Hafner and Rao to determine the
data loss probability, and their analysis is also inaccurate for
more than five disk failures. The description and analysis of
the Lonestar archival system was recently extended in [2].

B. Tutte Polynomial and Forest Counting

Aside from the papers already mentioned [12]–[14], there
is a multitude of publications on Tutte polynomials and forest
counting of which we only cite the most relevant ones. For
a more extensive overview, see the references in the papers
named in this subsection.

An exponential-time algorithm for evaluating T (G;x, y)
at any (x, y) (including (2, 1)) for general graphs G was

developed by Björklund et al. [15]. A representation of the
Tutte polynomial for complete graphs was found by Pak [16].
The formula provided can be evaluated at (2, 1) in polynomial
time. Martin and Reiner [17] found an exponential generating
function for the Tutte polynomial of a complete bipartite
graph, but it is not applicable in the case (2, 1). Jaeger et
al. [13] showed that evaluating T (G;x, y) at (x, y) is #P-hard
for all pairs – including (2, 1) – that are not in a certain set
that they provide in their paper. Vertigan et al. [14] extended
this result to (planar) bipartite graphs and thus to our use
case (general scheme). Gebauer and Okamoto [18] proved
#P-completeness of FORESTCOUNT for the three classes of
bounded-degree, regular and chordal graphs and also present
exponential-time algorithms for these problems. Stones [12]
introduced and analysed the exponential-time algorithm for
FORESTCOUNT on complete bipartite graphs that we use in
this paper.

Another related problem is the enumeration of rooted span-
ning forests of complete bipartite graphs. Jin and Liu [19]
give an easy-to-compute formula and prove that it equals the
number of rooted spanning forests for any tuple (n1, r1, n2, r2)
where ni is the number of vertices and ri the number of roots
of vertex set i.

VI. CONCLUSION

In this paper we have characterised various two-dimensional
RAID schemes and analysed the probability for data loss for
each of them. More precisely, we considered the probability
for data loss in the case that f disks fail. While previous
analyses [2], [4] are only precise for at most five erasures,
we have shown that the algorithm of Stones, which works for
any f , can be applied to two of the schemes. Although this
algorithm has an exponential worst-case running time, it is
fast for small f . It remains open to find algorithms for the
Lonestar and the general scheme, and in our future work we
will also address the k-dimensional cases for k > 2 and other
non-MDS codes.

We have further proven that the generalised prob-
lem, DATALOSSPROBGEN, is #P-hard. The exact classifi-
cation of DATALOSSPROBSTD, DATALOSSPROBFULL and
DATALOSSPROBLS remains open even though we have
shown that this question would be automatically answered (at
least for the first two problems) by classifying the evaluation of
the Tutte polynomial T (G;x, y) at (2, 1) for complete bipartite
graphs G. So far the best known algorithm is the one by
Stones.
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