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A photoredox catalytic approach to synthetically valuable N-acyl-N’-aryl-N,N’-aminals is described. This method uses the addition 
of a radical precursor to enamides, with subsequent interception of the cationic iminium intermediate with an arylamine. The reac-
tion has been shown to be compatible with electron-rich and electron-deficient aryl amines, and moderate to good levels of dia-
stereoselectivity can be attained using a chiral enamide. Furthermore, the N-acyl-N’-aryl-N,N’-aminal reaction products can be 
readily cyclized providing a novel synthetic route to valuable γ-lactams. 

The N-acyl-N’-aryl-N,N’-aminal structural motif (Figure 1, 1) 
is prevalent within a wide range of biologically important 
compounds. It is an essential motif within γ-lactams such as 2, 
an important heterocycle within many biologically relevant 
drug candidates;1 it is core within the dihydroquinazolones (3), 
a privileged heterocyclic structure in medicinal chemistry;2 1 
is central to gem-diaminoacids (4), a significant class of amino 
acid isosters;3 and finally, 1 is key to many natural product 
classes, such as the pyrroloindolines.4  

 

Figure 1. Biologically relevant N-acyl-N’-aryl-N,N’-aminal. 

Typical approaches to the N-acyl-N’-aryl-N, N’-aminal motifs 
(1) whether cyclic or acyclic, have relied on the addition of an 
arylamine 7 to an N-acyliminium species 8, or conversely, for 
example in the construction of pyrroloindolines, the addition 
of an amide or an equivalent (9) to a N-aryliminium such as 10 
(Scheme 1). These approaches can be perceived as comple-
mentary, but their scope and functional group variability is 
ultimately predicated on the successful formation of an N-acyl 
and N-aryliminium species (8 and 10, respectively).6 Addi-
tionally, the stability of 1 is predicated on the electron with-
drawing group, as well as the electron density of the aryla-
mine. 

Scheme 1. Synthetic approaches to N-acyl-N’-aryl-N,N’-
aminals (1). 

 
Previous work by Masson and co-workers7a has established 
that radical photoredox mediated addition of a CF3 equivalent 
to electron rich styrene (11) derivatives followed by trapping 
of the intermediate carbocation by an electron-poor arylamine 
can lead to modest to good yields of the addition product 13 
(Scheme 2).  

Scheme 2. Radical/cationic approach to N-acyl-N’-aryl-
N,N’-aminals (17). 

 
In this report the authors explored the use of easily oxidizable 
anilines such as p-anisidine where they observed poor or little 
conversion to the desired products. However, the authors 
could get the reaction to take place, without oxidation, by the 
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judicious choice of an electron-deficient aniline, e.g., p-
bromoaniline and p-(ethoxycarbonyl)aniline.  

Therefore, with this report in mind we sought to employ this 
radical/cationic pathway,7b-d via the use of photoredox cataly-
sis8 on enamides9 in the presence of electron-poor and, im-
portantly, electron-rich arylamines (16) to access these N,N’-
aminals (17) (Scheme 2). The success of this approach would 
be predicated on ensuring the integrity10 and compatibility of 
electron-rich and electron-poor arylamines; and while Masson 
and co-workers had previously shown the compatibility of 
enamides within this radical/cationic pathway,7c,d they have 
not, as yet, demonstrated this approach with arylamines and 
enamides to deliver N,N’-aminals. As a consequence, we now 
report our work on the synthesis of N-acyl-N’-aryl-N,N’-
aminals such as 17 using this method, as well as the successful 
utilization of both electron-rich and electron-poor arylamines 
in the reaction pathway. Additionally, the synthetic utility of 
these product aminals will be highlighted by their successful 
cyclization yielding valuable γ-lactams. 

We began our study by examining the use of arylamines in the 
photoredox addition of bromide 20 to enamides (Scheme 3). 
Using adapted conditions of Masson,7c we explored the Ir-
catalysed (complex 22) reaction of enamide 18 and bromide 
20 with a large excess of the arylamine, aniline 19 (Table 1). 
Pleasingly, these conditions with 10 equiv. of 19 and after 18h 
reaction time, gave the desired product 21a in a promising 
56% isolated yield (entry 1).  

Scheme 3 and Table 1. Optimization of the synthesis of 
N,N’-aminal 21a.[a] 

 
entrya 22 [mol %] time [h] equiv 19 yield [%]b 

1 2.5 18 10 56 

2 2.5 18 5 62 

3 1.5 18 5 60 

4 1.5 6 5 61 

5 1.5 3 5 72 

6 1.5 3 2 38 

7c 1.5 3 5 0 
aReactions were performed under an Ar atmosphere in MeCN (10 mL) 
with 22 (for mol % see Table), light (465 nm), 18 (1.00 mmol), 20 (2.00 
mmol), Et3N (2.00 mol) and the arylamine unless otherwise stated. bIsolat-
ed chemical yields. cIn the absence of light (465 nm). 

Isolation of the N,N’-aminal product 21 was non-trivial, and 
was further complicated by the reversibility of the nucleophile 
addition highlighted in Scheme 1. The identification of 21 was 
determined using a mixture of 1H NMR and 13C NMR; with a 
key signal for the CH aminal being seen at δ 5.37 (t, J = 7.2 
Hz, 1H). We were able to reduce the amount of 19 within the 
reaction mixture to 5 equiv (entry 2) as well as the amount of 
22 (entry 3), and the reaction time to 3 h (entries 4 and 5); 
ultimately giving 21 in a higher isolated yield of 72%. A re-
duction to 2 equiv of 19 had a detrimental effect in yield (entry 
6); and no conversion to the product 21 was observed in the 
absence of light (entry 7). 

With conditions identified for the synthesis of 21a, a range of 
electron-rich and electron-deficient anilines were examined to 
ascertain substrate scope (Scheme 4).  

Scheme 4. Arylamine substrate scope. 
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p-Toluidine delivered N,N’-aminal 21b in a significantly high-
er yield (84%) than 21a, presumably due to its increased nu-
cleophilicity; additionally, we were able to obtain suitable 
crystals for single crystal X-ray analysis.11 m-Toluidine also 
reacted, giving N,N’-aminal 21c in 88% isolated yield. The 
2,3- and 2,6-dimethylaniline gave the N,N’-aminals 21d and 
21e in 71% and 60% yields, respectively; furthermore, steri-
cally encumbered 2,4,6-trimethylaniline gave N,N’-aminal 21f 
in 64% yield. o-Anisidine furnished N,N’-aminal 21g in 76%, 
though, it was found that this product slowly degraded upon 
standing to give the imine, possibly due to the electron-rich 
nature of the aniline. However, we were able to obtain crystals 
of 21g, suitable for single crystal X-ray analysis, which defi-
nitely assigned the structure as shown.11 The 2-OCF3 analogue 
21h could also be obtained in 77% isolated yield, and this 
product 21h also demonstrated increased stability compared to 
21g. The reaction could accommodate electron-withdrawing 
groups, highlighted by 3-trifluoromethylaniline and 3,5-
bistrifluoromethyl aniline, giving derivatives 21i and 21j, re-
spectively. Anilines with halogen substitutions such as the 3,4-
dichloro, 4-bromo, and 2-fluoroaniline all performed well in 
this reaction, with the latter two generating products with suit-
able crystals for single crystal X-ray analysis.11 3-
(Ethoxycarbonyl)aniline also gave the desired N,N’-aminal 
21m in 70% isolated yield. N-Methylaniline was acceptable 
within these reaction conditions, with no observed oxidation 
of the N-methyl group,12b delivering N,N’-aminal 21o in 61% 
yield; and diphenylamine gave N,N’-aminal 21p in 56% iso-
lated yield, illustrating that sterically encumbered anilines are 
also tolerated.11 Finally, disubstituted E-enamide 23 was ex-
posed to our conditions with p-toluidine. Pleasingly, this gave 
the N,N’-aminal 21q in 53% isolated yield and essentially as a 
single diastereoisomer, in line with the results previously re-
ported by Masson.7c,d 

To the best of our knowledge, there have been limited investi-
gations7c,d on the diastereoselectivity or the enantioselectivity 
of radical/cationic reactions with enamides, and none that in-
volve the formation of N,N’-aminals.12 As a consequence, we 
exposed chiral enamide 24 (Scheme 5; R1 = Bn) to our condi-
tions with three anilines.  

Scheme 5. Enamide (S)-24 and its influence on diastereose-
lectivity. 

 
p-Toluidine and m-toluidine both gave their N,N’-aminal 
products 25a and 25b, respectively, in good isolated yields 
(58% and 61%, respectively) and appreciable levels of dia-
stereoselectivity. This diastereoselectivity could be improved 
by the use of a more electron-withdrawing arylamine such as 
3,5-bistrifluoromethyaniline, which gave the N,N’-aminal 25c 
in 60% yield and essentially as one single enantiomer. Please 

note that in all of the additions described, the separation of the 
two diastereomers could not be undertaken, and the diastere-
omeric ratio most likely represents an equilibrium (see 
Scheme 1). 

To highlight the synthetic utility of these products, they were 
cyclized to their corresponding γ-lactams.1,13 This was 
achieved via acid catalyzed cyclization with N,N’-aminals 
21a-c, 21i, 21l and 21n (Scheme 6). In each case, the cycliza-
tion proved effective, but regrettably, modest diastereoselec-
tivity was observed for all.14 The major and minor diastereoi-
somers were identified using a combination of nOe experi-
ments, and the major diastereoisomer in each is shown in 
Scheme 6; furthermore, the diastereomeric ratio for each could 
be determined using diagnostic signals around the γ-lactam 
ring.15 Essentially, all cyclized products exhibited a slight 
preference for the anti-product, with the one exception being 
the p-tolyl γ-lactam 26b. The diastereoselectivity ratio could 
also be partially influenced by the inclusion of an ortho sub-
stituent on the aryl ring, as exemplified by the 2-fluoroaryl γ-
lactam 26f.  

Scheme 6. Synthesis of N-aryl γ-lactams. 

 
With this cyclization strategy in mind, we then applied it to the 
synthesis of γ-lactam 28, as this would resemble the core 
structure of the gram-positive antibiotic Linezolid, and could 
plausibly function as new building block platform through 
palladium-catalyzed coupling of the bromide (Scheme 7). 

Scheme 7. Formation of γ-lactam 28. 

 
Treatment of enamide 18 with 2-fluoro-4-bromoaniline fur-
nished the addition product 27 in good isolated yield, which 
upon treatment with acetic acid gave the aryl γ-lactam 21. 
Pleasingly, this γ-lactam gave crystals upon standing that were 
identified as the major diastereoisomer 28a after performing-
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single crystal X-ray analysis.11 Interestingly, upon dissolving 
the crystals in d-chloroform, this single diastereoisomer re-
verted back to the mixture indicated in Scheme 7. This evi-
dence plausibly suggests that the diastereomeric ratio observed 
for the γ-lactam 28 (and 26a-f) is an equilibrium mixture. 

In summary, we have used a photoredox method for the syn-
thesis of medicinally valuable N-acyl-N’-aryl-N,N’-aminals 
from readily available enamides. The process demonstrates 
that electron rich and poor arylamines are tolerant of the pho-
toredox reaction conditions, and that moderate to good levels 
of diastereoselectivity can be achieved when using a chiral 
enamide. Additionally, we have demonstrated that these reac-
tion products can be conveniently cyclized to give valuable γ-
lactams. Our efforts in expanding this protocol using allenyl 
substrates is in progress, and will be reported on in due course. 
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