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ABSTRACT
In distributed multi-agent task allocation problems, the time to �nd

a solution and a guarantee of reaching a solution, i.e. an execution

plan, is critical to ensure a fast response. �e problem is made more

di�cult by time constraints on tasks and on agents, which may

prevent some tasks from being executed. �is paper proposes a new

distributed consensus-based task allocation algorithm that reduces

convergence time with respect to previous methods, i.e. the time

required for the network of agents to agree on a task allocation,

while maximising the number of allocated tasks. �e novel idea

is to reduce the time to reach consensus among agents by using a

hierarchy or rank-based con�ict resolution among agents. Unlike

other existing algorithms, this method enables di�erent agents to

construct their task schedules using any insertion heuristic, and

still guarantee convergence. Simulation results demonstrate that

the proposed approach can allocate a greater number of tasks in

a shorter time than an established baseline method. Additionally,

the analysis delineates dependencies between optimal insertion

strategies and number of tasks per agent, providing insights for

further optimisation strategies.
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1 INTRODUCTION
Distributed multi-agent task allocation algorithms have many appli-

cation domains such as search and rescue missions [11, 13, 16, 18],

product manufacturing [5, 20], exploration [9], support in health-

care facilities [4], surveillance [1], and target tracking [17]. By

removing the need to maintain a connection with a central server,

distributed systems facilitate greater mission ranges and robustness

to failures compared with centralised methods.

�is work addresses the problem of minimising the time to con-

vergence and maximising the number of allocated tasks in scenarios

with time constraints on tasks and on agents. �e task allocation

problem considered requires that agents perform one task at a time,

and each agent can be assigned multiple tasks that they execute

based on a schedule. �e predicted cost of an agent performing

a task depends on other tasks in that agent’s schedule. Using the

iTax taxonomy [10], this is known as the single-task (ST), single ro-

bot (SR), time-extended assignment (TA) problem with in-schedule

dependencies (ID). Finding the optimal solution to this problem

quickly becomes computationally unfeasible as the numbers of

tasks and agents grow, because of the high computational complex-

ity. In complexity theory, the problem is said to be NP-hard [10].

�us, solutions are sought by means of heuristic searches that do

not guarantee optimality, but �nd good enough solutions within ac-

ceptable time. In highly dynamic environments in which new tasks

and agents may come into play during execution, a fast convergence

time to a solution is an essential quality of an algorithm [14].

�e consensus-based bundle algorithm (CBBA) [2] is a state-of-

the-art fully distributed market-based task allocation algorithm

designed to provide provably good approximate solutions to the

ST-SR-TA problem over networks of heterogeneous agents. CBBA

iterates over two main phases [2]. In the �rst phase, agents con-

struct schedules of selected tasks using a scoring function. In the

second phase, agents communicate bids on their selected tasks

and resolve con�icting task allocations. �e number of times the

two phases repeat until all agents reach consensus determines the

time to convergence. �is is largely determined by the number of

con�icting task allocations.

�e property of guaranteed convergence is vital as it ensures

that agents will at some point reach a solution shared by all agents.

CBBA guarantees convergence, provided that the scoring function

satis�es certain constraints [2]. �ese constraints, however, also

limit the search capability of the algorithm [6], which as a result may
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deliver poorer solutions. �e authors in [6] address this limitation

by introducing the Bid Warped CBBA (BW-CBBA) that removes

some of the constraints on score functions while maintaining the

property of guaranteed convergence.

In this study, we seek to reduce the convergence time by intro-

ducing a decision-making approach to resolving con�icting task

allocations that is based exclusively on the agents’ ranking in a

hierarchy. �is method guarantees convergence and removes re-

strictions on how tasks are included into agents’ schedules. As a

consequence of the rank-based con�ict resolution method intro-

duced in this paper, agents may simultaneously utilise di�erent

heuristics to construct their schedules, granting more �exibility

to the distributed algorithm. We hypothesise that the proposed

approach can reduce convergence time while maintaining the same

or a higher number of task allocations.

�e performance of the new method is quanti�ed with compar-

isons with an extension of CBBA, the best known algorithm for

these speci�c types of problems. Measuring the performance in

terms of both number of allocated tasks and time to convergence

revealed relationships between insertion heuristics and parameters

in the problem domain. Such insights permit the design of be�er

search strategies that take into account, e.g., whether scenarios

have tight time restrictions and the ratio between tasks and avail-

able agents. Additionally, results revealed that agents employing

di�erent insertion heuristics from each other can reduce the com-

petition for the same tasks and therefore also reduce convergence

time.

2 PROBLEM STATEMENT
Given a team of n agents and m tasks, the problem of interest is

to allocate tasks to agents with the following assumptions: agents

autonomously decide which tasks to take on using a scoring func-

tion that computes a score for that agent to perform a certain task.

Agents then communicate with each other to reach consensus on

which agents take which tasks. To do so, agents place bids on

their selected tasks, share the bids by communicating with each

other, and the agent with the highest bid wins the task. Agents

co-operate to maximise the number of allocated tasks and to reach

an agreed allocation (consensus). Tasks and agents are subject to

time constraints.

Formally, V = [v1, . . . ,vn ] and T = [t1, . . . , tm ] represent the

set of n agents and m tasks, respectively. Each agent vi ∈ V is

initialised with the following data structures:

• A bundle bi of tasks assigned tovi ordered chronologically

based on when the tasks were added. Newly assigned tasks

are appended to the end of the bundle.

• A path pi , same as bi , but with tasks in the order in which

vi will execute them.

To select which tasks to add to the bundle, an agent computes

a score ciq for each task tq ∈ T using a function Fiq (). Agents

can take on up to Lt tasks. �e length of the bundle and path,

represented by |bi | and |pi | respectively, must be therefore less

than or equal to Lt .

• A winning agent list zi = [zi1, . . . , zim ] where an element

ziq stores the index of the agent who has won the task tq

according to the latest communication received by vi . If

vi has not received or made a bid on tq , then ziq = 0 .

• A winning bid list yi = [yi1, . . . ,yim ] where an element

yiq stores the winning bid for tq corresponding to the

winner ziq . If there is no winner for task tq , then yiq = 0.

2.1 Problem Constraints
Agents can perform at most one task at a time, and each agent can be

assigned multiple tasks that they execute based on a schedule, with

travel times between tasks. Each agent has a maximum operating

time fi , which is the latest time at which vi can arrive at a task tq
before running out of fuel. Each task tq has a latest start time ξq
a�er which the task expires. �e predicted time of execution of

tq ∈ pi by vi is ςiq . �is time includes the duration of earlier tasks

in pi and travel time to and from those earlier tasks. �us,

ςi,q ≤ min(ξq , fi ) . (1)

Due to these time constraints, it may not be possible to assign all

tasks. If a task is not already in pi and satis�es the time constraints,

it is a candidate task and can be considered for inclusion.

Agents communicate with each other via links determined by

a network topology. �is topology may be restricted, e.g. by com-

munication range. In dynamic se�ings, the topology may change

and become disconnected when agents move [15]. In this study,

the agents are stationary during the task allocation process, the

topology remains the same and is connected. Once a plan has been

agreed, the agents set o� to perform their assigned tasks.

2.2 Objective Function
�e primary global objective J? for the problem of interest is to

maximise the number of allocated tasks, formally de�ned as

J? =max

{ n∑
i=1

|pi |
}

(2)

s.t. pi ∩ pj = ∅,where i , j (3)

Where |pi | denotes the number of tasks in pi . �e constraint states

that the tasks in pi may not be in any other agents’ paths i.e. a task

may be assigned to one agent’s task list at most.

3 RELATED RESEARCH
3.1 CBBA and Extensions
�e consensus-based bundle aglorithm (CBBA) [2] is a distributed

multi-agent multi-assignment algorithm. CBBA iterates over the

following two phases:

(1) �e bundle building phase: each agent greedily builds up a

bundle through a repeating process of computing scores

for each candidate task and selecting the task with the

highest score to add to their bundle.

(2) �e consensus phase: agents communicate zi and yi to

neighbouring agents i.e. those with communication links

based on a network topology. When there are con�icting

assignments, the highest bid wins and losing agents remove

the task from their bundles as well as all tasks that were

added to the bundle a�er that task. If bids are tied then the

agent with the lowest index wins the task. [3]
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Figure 1: Example of the task allocation process. Dashed
arrows represent a travel distance and are labeled with the
estimated time to reach a task. Dashed link between agents
represents communication. �e bundle building phase (a),
agents independently include tasks into their bundles to de-
termine which tasks to execute and in which order. �e
consensus phase (b), agents communicate their task assign-
ments among networked agents and resolve con�icting task
assignments.

�ese two phases are illustrated with an example shown in Fig-

ure 1. As the consensus phase results in agents removing tasks

from their bundles and creating time in their schedules, the bundle

building phase is repeated to a�empt to assign more tasks in the

free time that is available. �e two phases alternate until agents

can no longer add tasks into their schedules and consensus has

been reached by the team on all task assignments, such that all

agents have an identical list zi . CBBA converges in polynomial

time, withinmax{m,Ltn} · D iterations where D is the diameter of

the network, provided that the scoring function satis�es diminish-

ing marginal gain (DMG) [2]. DMG means that the score that vi
computes for candidate task tq , de�ned as ciq , cannot increase as

a result of other tasks being added to the bundle bi before tq [2],

such that:

ciq (bi ) ≤ ciq (bi ⊕end tz ) , (4)

where ⊕end tz denotes the append of tz to the end of bi . �e trade-

o� of the DMG condition is a possible performance degradation in

certain scenarios.

Notable extensions of CBBA include the following: Choi et al. [3]

address heterogeneous networks, and tasks that need to be serviced

by multiple robots; Ponda et al. [15] address dynamic network

topologies and scenarios with time constraints by incorporating

time windows of validity on tasks as part of the scoring scheme;

Johnson et al. [8] extend CBBA with an asynchronous communica-

tion protocol to enable agents to run the consensus phase on their

own schedule; and BW-CBBA [6, 7] that addresses the limitations

of utilising DMG score functions to rank tasks within an agent’s

internal decision making process.

3.2 Bid Warped CBBA
�e Bid Warped CBBA (BW-CBBA) [6] decouples the scores that

inform task selection in the bundle building phase from the bids
that are communicated to networked agents. �e idea is that the

internal score function need not satisfy DMG and the external bids

need not be identical to the internal scores. Only the bids that

agents share with each other need to satisfy DMG to guarantee

convergence. A proof is provided in [6].

3.3 Score Functions
To determine the score of a candidate task tq , CBBA inserts tq into

pi at each index l one at a time. A constraint is that the insertion

cannot impact the current start times for the tasks already in the

path [15] and - for the implementation in this study - satis�es the

time constraints in equation (1). �e score is computed at each

index l and the highest score is stored as ciq . �e score function is

de�ned as:

Fiq (pi ⊕l tq ) = Riql −Ciql , (5)

and

ciq = maxl Fiq (pi ⊕l tq ), (6)

where pi ⊕l tq denotes the inclusion of tq into pi at index l . Riql
denotes the reward and Ciql the cost for including tq into pi at

index l . If the insertion of tq cannot meet the constraints at any

index in the path, then ciq = 0.

BW-CBBA applies a bid warping function to ciq that produces a

DMG satisfying score c̄iq . �e bid warping function G is de�ned

as:

c̄iq = Giq (ciq , bi ) = min(ciq , c̄iqj ) ∀j ∈ {1, . . . , |bi |} (7)

where c̄iqj is the score of the jth element in the current bundle [6].

In other words, the bid for a candidate task must be lower than, or

is made to be equal to, the lowest bid of all other tasks already in

agent vi ’s bundle.

3.4 Bid Warped CBBA Bundle Building Phase
�e bundle building phase of BW-CBBA [6] that runs independently

on each agent vi is summarised in Algorithm 1: For each candidate

tq , vi computes a score ciq with its internal score function Fiq
(line 4). A DMG satisfying bid c̄iq is then created with the function

Giq (line 5). c̄iq is compared with the current winning bid yiq for

Algorithm 1 CBBA: Bundle Building with Non-DMG Scores [6]

1: procedure BUILD BUNDLE

2: while |pi | < Lt do
3: for tq ∈ T \ pi do
4: ciq = maxl Fiq (pi ⊕l tq ), ∀l ≤ |pi | + 1

5: c̄iq = Giq (ciq , bi )
6: hiq = Π(c̄iq > yiq )
7: end for
8: q? = argmaxqciq · hiq
9: if c̄iq? > 0 then

10: ziq? = i
11: yiq? = c̄iq?
12: bi ⊕end tq?
13: pi ⊕l tq? where l yielded ciq?
14: else
15: break

16: end if
17: end while
18: end procedure
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tq . �e boolean hiq = true if vi outbids the current winner (line 6).

�e candidate task selected to be added to vi ’s task list (using task

index q?) is the task that has the highest score ciq that also outbids

the current winner (line 8). �e new winning agent for tq? is set

as vi ’s index in zi (line 10). �e winning bid for tq? is set as c̄iq?
in yi . �en, tq? is appended to the bundle, and inserted into the

path where it yielded the highest score ciq? . �e bundle building

phase terminates when no candidate tasks can outbid the current

winning bids, or the maximum bundle length is reached.

4 CBBAWITH FAST CONVERGENCE DESIGN
�is section introduces the rank-based con�ict resolution method

that reduces the time to convergence, implemented in this study

as a modi�cation to CBBA. �e insertion heuristics used in combi-

nation with the rank-based con�ict resolution to demonstrate the

proposed method’s performance are also detailed in this section.

�e proposed method is not limited to CBBA but may be imple-

mented into similar distributed consensus based task allocation

algorithms.

4.1 Rank-based Con�ict Resolution
In standard task allocation algorithms, bids on task assignments

give an indication of the optimality of an assignment with respect

to an optimisation objective. When con�icting assignments oc-

cur, the agent that can perform the task most optimally keeps the

assignment. �is process requires that bids be comparable and

therefore that agents must share a function to assign scores to their

assignments. �e novelty in this study is to introduce bids that are

invariant to factors such as the agent’s path and score function.

Constant bids add stability to the convergence process and there-

fore speed up the rate of convergence. Additionally, this method

enables agents to simultaneously use di�erent score functions from

each other. As a result of losing information from bids, a trade-o�

is the possible reduction in quality of the task allocation with re-

spect to the objective being optimised by the score function. In this

study we consider the number of allocated tasks and the time to

convergence as the highest priority optimisation objectives, and it

is therefore worth a possible reduction in optimality of secondary

objectives, such as distance covered by the agents. Future work

may look at autonomously adapting the task allocation method

in line with the most appropriate optimisation objective given the

problem domain.

Inbuilt into CBBA’s con�ict resolution phase is a tie-breaking

heuristic based on agent identi�cation numbers [2]. �is unique

numerical ID is initialised at the outset as the agent’s index. When a

tie occurs between bids on the same task, the agent with the lowest

index wins the task. To implement con�ict resolution based on

agent ranking requires therefore simply that agents’ bids are made

to be identical at all times. �e modi�cation to the bundle building

phase is shown in Algorithm 2 line 5 where a constant bid value

de�ned as constantBid is applied to all bids. It is worth noting that

a constant bid value satis�es the condition of DMG in equation (4)

and therefore preserves CBBA’s guarantee of convergence.

A key feature of this approach is that the distribution of rank is

transitive i.e. every agent is either dominant or submissive relative

to every other agent. As a consequence, agents lose con�icts only

Algorithm 2 CBBA: Bundle Building with EDF and agent rank

bidding

1: procedure BUILD BUNDLE

2: while |pi | < Lt do
3: for tq ∈ T \ pi do
4: ciq = maxl Fi (pi ⊕l tq ), ∀l ≤ |pi | + 1

5: c̄iq = constantBid
6: hiq = Π(c̄iq > yiq )
7: end for
8: q? = argminqξq · hiq , ∀ciq > 0

9: if ξq? > fi then
10: q? = argmaxqciq · hiq
11: end if
12: if c̄iq? > 0 then
13: ziq? = i
14: yiq? = c̄iq?
15: bi ⊕end tq?
16: pi ⊕l tq? where l yielded ciq?
17: else
18: break

19: end if
20: end while
21: end procedure

to agents of higher rank. Consider that the relative rank of each

agent matches its index such that v1 is the highest ranked and vm
the lowest ranked agent. v1 will win all con�icts on tasks that

it selects from T. v2 will win all con�icts on tasks that it selects

from T \ b1. vi will win all con�icts on tasks that it selects from

T \ bh , ∀h ∈ {1, . . . , i − 1}. By selecting only tasks that have

not been included by higher ranking agents, an agent is ensured to

have winning bids, because lower ranking agents cannot challenge

that. When there are no more con�icts, the system converges. A

network where agents are ranked in topological order, such as in

Fig. 2(a), will propagate more e�ciently the assignments of higher

ranked agents to lower ranked agents such as to reduce the number

of con�icts, compared with a network where agents are not ranked

in topological order such as in Fig. 2(b).

�e topology of the network is a determining factor in time to

convergence. If agents bidding on the same tasks are not directly

connected, such as in Fig. 2(c) where agents of the same type are

connected through agents of a di�erent type, it may take many

iterations to receive bids on con�icting assignments and therefore

longer to resolve con�icts and converge. A �nding in section 5 is

that the proposed consensus strategy is most e�ective at reducing

convergence time with the ordered row topology (Fig. 2(a)) and

least e�ective with the unordered hybrid topology (Fig. 2(c)).

4.2 Earliest Deadline First Task Inclusion
A main bene�t of decoupling scores from bids, as shown by BW-

CBBA, is the capability to match more closely the agent’s internal

decision making process to the optimisation objective, while main-

taining convergence guarantees. �is extension was shown to yield

higher quality task allocations than baseline CBBA regardless that

the communicated bids were required to be approximated [6].
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Figure 2: Network topologies that determine the communi-
cation links between agents with two agent types (circles
and pentagons). Agent indexes correspond to the agents’
ranks. Agents 1-7 service medicine tasks and agents 8-14
service food tasks. Agents with or without a star (*) employ
di�erent insertion heuristics as explained in section 5.1.

EDF is a well known scheduling algorithm in which tasks with

the earliest deadlines are given highest priority. EDF has recently

theoretically and empirically been shown to be fast and e�ective at

maximising the number of allocated tasks in a similar scenario [12].

An inclusion strategy such as EDF can cause a high number of

con�icts as all agents prioritise tasks in the same order. By applying

EDF task inclusion to a subset of agents, with the remaining agents

using a di�erent strategy, the number of con�icts can potentially

be reduced and therefore speed up convergence compared with all

agents using EDF (this is tested in section 5). EDF is implemented

on line 8 of Algorithm 2. �e best task, with index q?, is selected as

the task with the earliest deadline for which hiq evaluates as true.

If the agent’s fuel limit is earlier than the earliest deadline, the

agent selects the task with the highest score. �is condition is added

on lines 9–11. A scenario with fuel constraints and no deadlines on

tasks is used to further evaluate the performance of the proposed

method in section 5.

5 PERFORMANCE ANALYSIS
In this section, the performance of the proposed rank-based con-

�ict resolution is tested and compared using 3 di�erent heuristics

against the baseline BW-CBBA that is used as a benchmark. �ese

di�erent combinations are evaluated as a function of the number

of iterations until convergence, the number of allocated tasks, and

the distance travelled per task. A range of topologies is used to

assess these performances since, as described in section 4.1, the

topology a�ects the allocation dynamics. An increasing number

of tasks with a �xed number of agents is also used to assess the

performance of the algorithms ranging from when the system is

under-constrained to over-constrained. Over-constrained signi�es

that there are a greater number of tasks than can be assigned given

the time constraints, while under-constrained signi�es that there

is enough capacity to assign all tasks. A variation in the time con-

straints is also applied to further demonstrate the performance of

the proposed method.

5.1 Assessing Performance
�e combinations of the proposed rank-based con�ict resolution

with three di�erent heuristics, and the benchmark algorithm, are

detailed as follows:

(1) EDF-Rank: Selecting tasks based on EDF (section 4.2) and

rank-based con�ict resolution (section 4.1) - (Algorithm 2).

(2) Score-Rank: Selecting tasks based on score function (sec-

tion 3.3) and rank-based con�ict resolution (section 4.1).

�is con�guration is Algorithm 2 with lines 8, 9 and 11

removed.

(3) Mixed-Rank: Selecting tasks based on either EDF (sec-

tion 4.2) or score function (section 3.3) and rank-based

con�ict resolution (section 4.1). �is con�guration applies

EDF task selection to 4 agents and applies task selection

based on scores to the other 10 agents.

(4) Score-Bids: Selecting tasks based on score function and

convergence with varying bids. �is con�guration is the

benchmark Algorithm 1, �rst introduced in [6].

5.2 Experimental Setup
A simulated search and rescue scenario is used to test the perfor-

mance of the algorithms, with a rescue team equally split into two

agent types with di�erent functions. �e scenarios in this paper

build on the environment types described in [19, 21]. One agent

type provides medicine, the other provides food. �e survivors are

likewise equally split into those requiring food and those requiring

medicine. �e scenario speci�cations are summarised in Table 1.

�e mission takes place in a 3D space. �e task locations are uni-

formly distributed within this 3D space, while the agents’ starting

positions are uniformly distributed on the 2D ground space. �e

deadlines for starting each rescue and the ba�ery limits on each

agent are uniformly distributed. Given the random initialisation of

task and agent locations and deadlines, it is sometimes impossible

for some tasks to be started by any agent before its deadline.
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�e reward and cost for the scoring function (equation 5) were

set as R = 10 000 and Ciql = ∆Diq (pi )/veli where ∆Diq (pi ) is the

distance travelled by the agent to reach the candidate task location

from its previous location in pi , and veli is the velocity of agent i .
�e total iterations for one simulation is expressed as the last

iteration number at which an allocation change was made, either

through inclusion or removal. �e travel distance is represented

as the average travelling distance per task for all agents with the

�nal task allocation. �e number of agents was �xed at 14 and the

number of tasks tested was 84, 112, 140, 168, 196, and 266. �ese

numbers were selected to cover a range from under-constrained to

over-constrained. �e increase in the number of tasks was arbitrar-

ily selected. �e number of agents 14 was selected as the largest

number to �t within computer performance limitations. �e agent

network topologies used are illustrated in Fig. 2. �e topology

is initialised at the outset and remains constant through the task

allocation process. Each setup was run 50 times with the same

con�guration but di�erent initial conditions. Results are shown as

averages over those 50 runs.

5.3 Results
Figure 3 plots the results of Score-Rank, EDF-Rank, Mixed-Rank

and the benchmark Score-Bids across the di�erent topologies as

a function of the total number of tasks. �e trend in the number

of allocations is consistent across topologies. �e algorithm using

EDF allocates the highest average number of tasks for the lower

3 task numbers. In the best case, EDF-Rank allocates 17.4 more

tasks on average than Score-Bids with ordered row topology. For all

task numbers, Score-Rank allocates more tasks than Score-Bids. In

the best case, Score-Rank allocates 8.2 tasks more on average than

Score-Bids. Compared with EDF-Rank, �e algorithms using Score

allocate the most tasks for the highest 2 task numbers. A general

trend is that EDF allocates the most tasks when the system is under-

constrained i.e. the lower 3 task numbers. When the system is

over-constrained, i.e. the higher 3 task numbers, Score allocates

the most tasks by a clear margin.

�e performances of the algorithms using Rank consistently

average at 7 iterations, with below 0.5 standard deviation, at all

numbers of tasks with the ordered row topology. In comparison,

the benchmark Score-Bids ranges from 13.5 to 17.5 average with

between 4 and 5 standard deviation. �e average number of iter-

ations for the Rank algorithms increases with the unordered row

topology, but remain lower than for Score-Bids. With the hybrid

topology, Score-Rank consistently converges in fewer iterations on

Table 1: Scenario Speci�cation

Medicine Food

Agent Speed 30m/s 50m/s

Agent Ba�ery Between 2500 and 5000 seconds

Agent Start Position 10 000m x 10 000m x 0m ground space

Task Duration 300 seconds 350 seconds

Task Deadline Between 0 and 5000 seconds

Task Location 10 000m x 10 000m x 1000m 3D space

average than Score-Bids, whereas EDF-Rank converges slower on

average than Score-Bids 5 out of 6 times.

With the unordered row and hybrid topologies, Mixed-Rank

achieves higher average allocations than the Score algorithms 5

out of 6 times. Similar results are achieved with the ordered row

topology. With the unordered row and hybrid topologies, the cor-

responding average iterations for Mixed-Rank are second lowest.

In the best case for the hybrid topology, Mixed-Rank allocates 11.7

tasks more than Score-Bids in 3.9 iterations on average fewer than

Score-Bids.

�e average travel distances per task are consistent across the

three topologies. EDF-Rank gives the highest travel distance by a

signi�cant margin, between 3 and 4 times greater than Score-Bids,

which achieves the lowest average distance. As might be expected,

Mixed-Rank falls between EDF-Rank and Score-Rank proportion-

ally to the split of agents using either heuristic. Interestingly, while

Score-Rank gives higher average distances than Score-Bids, there

remains a clear advantage towards optimising travel distances by

using Score-Rank compared with EDF-Rank. With the higher num-

bers of tasks, there is not a signi�cant di�erence in average travel

distance between Score-Rank and Score-Bids. �ese results give

an indication of the trade-o� for speeding up convergence with a

marginal increase in average travel distance, using the proposed

method.

Figure 4 shows the results for the scenario with time constraints

on agents without deadlines on tasks, using the unordered row

topology. Score-Rank and Score-Bids are compared. �e numbers

of allocations consistently match for both algorithms. In the best

case, Score-Rank converges in less than half the number of itera-

tions compared with Score-Bids. �e average travel distance per

task is signi�cantly higher with Score-Rank for the lower two task

numbers. However, for the higher task numbers, the average travel

distance is the same for both Score-Rank and Score-Bids.

6 DISCUSSION AND CONCLUSIONS
Simulation results showed that the proposed rank-based con�ict

resolution combined with insertion heuristics proved successful for

minimising time to convergence while maximising task allocations.

�e �ndings suggest that the proposed approach of rank-based

con�ict resolution is most e�ective and can strongly reduce con-

vergence time when agents’ ranks are determined by the network

topology. Future work may look at a theoretical analysis of the

proposed method to formally compare the average and worst case

convergence times with previous methods. �e proposed method

may also be extended to assign agents’ ranks based on the network

topology. �e performance of the proposed method may be fur-

ther assessed under time-varying topologies. Another result in this

study is that fast consensus can be e�ectively achieved by employ-

ing multiple selection strategies across agents. Although intuitive,

the proposed experiments showed for the �rst time in simulation

the advantage of such an approach. �ese results motivate further

studies to devise algorithms that can select the appropriate strategy

autonomously and accordingly to a dynamically changing number

of tasks, number of agents and network connectivity links.
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Figure 3: Average allocations, iterations, and travel distance per task across di�erent network topologies in a scenario with
time constraints on tasks and on agents. �e number of agents is 14 and the numbers of tasks are 84, 112, 140, 168, 196, and
266. �e error bars represent standard deviation.
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Figure 4: Average allocations, iterations, and travel distance
per task for a scenario with fuel constraints on agents and
without deadlines on tasks using the unordered row topol-
ogy.
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