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1. INTRODUCTION

Radiative scattering properties of nanoparticles/scatterers
(NPs) in visible and infrared wavelengths (vis-IR) com-
prise an intensively studied, multidisciplinary topic
with a plethora of applications in the realm of nano-
technologies [1]. At this range, NPs made from materials
such as silver, aluminum, or gold exhibit collective elec-
tron oscillations, known as plasmonic or localized surface
plasmon resonances (LSPR) [2]. These highly tunable reso-
nances place NPs in the center for both passive [3, 4], and
active [5] optical control applications. Almost in every
case the spectral behavior and the main scattering mecha-
nisms are affected by both the material and the geometry
of the inclusions. Hence, understanding these effects of
more complex geometries is of great importance, espe-
cially for novel ideas on controlling the vis-IR radiation.

A qualitative, yet fundamental perspective on explor-
ing scattering mechanisms of isolated NPs has been given
independently by Bohren [6] and Paul [7], where a Poynt-
ing flow line perspective of the scattering mechanism of a
sphere has been presented. These works have delivered
insights regarding the scattering/absorption mechanisms,
especially in the vicinity of small resonant spheres. Con-
ceptually, the electromagnetic energy flow resembles the

hydrodynamic flow [8, 9], demonstrating how the struc-
ture perturbs its near field distribution in a scattering
problem setup. From a mathematical point of view, the
perturbed near field distribution may exhibit several criti-
cal points, such as centers and saddles, whose behavior is
affected by the scatterers’ geometry [8, 9].

Recent studies shed new light on the scattering mecha-
nisms by small nano-spheres/spheroids and their energy
flow at the plasmonic resonance [10–12], where several
critical points have been identified in the near field of the
scatterers. These results elucidate the fact that the near
field power distribution is highly affected both by the
geometry and the material losses.

Later works have extended these studies to higher or-
der plasmonic resonances [13], utilizing the same analyt-
ical methods, i.e., Mie scattering theory [14]. Analytical
methods also have been used for analyzing other geomet-
rical shapes, such as core-shell spheres [15] and circular
cylinders [3, 16]. Interestingly, novel particle functionali-
ties and designs could be devised [3, 17, 18] by exploiting
the near field setup and the Poynting streamline distribu-
tion.

An alternative view on the near-field/Poynting distri-
bution problem can be obtained by matching LSPRs to
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classical antenna theory; all scattering effects can readily
be studied from an antenna point of view, as long as quan-
tum effects do not need to be explicitly taken into account.
This fact allows us to exploit almost every antenna design
tool available for device engineered purposes, especially
on understanding how the morphology affects the overall
resonant behavior. For instance in [5], a cube-like NP is
utilized as a patch nano-antenna providing a large emis-
sion rate enhancement. The key point on this analysis is
the fact that cube exhibits enhanced, corner induced field
distribution on its dipolar plasmonic resonance, qualita-
tively described as a microstrip patch antenna.

In the present work the spectral behavior and near
field properties of regular rounded hexahedral (cuboid)
and octahedral (lozenge) shapes are studied through a
surface integral equation (SIE) numerical scheme [19].
These rounded closed structures belong to the set of su-
perquadric [20] surfaces, generalizing is a sense the family
of regular Platonic solids [21]. Superquadric shapes with
rounded corners, such as cubes (regular hexahedra) and
lozenges (regular octahedra), are of particular interest ei-
ther as realistic deformations of spherical particles and
clusters, or as finely engineered nano-antennas and NPs.
Therefore, studying these shapes expands our understand-
ing towards realistic NPs and their implementation into
novel designs and applications.
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Fig. 1. Mesh view generated by Eq. (2) for the nano-
particles studied here. Left: lozenge of p = 0.7. Center:
sphere of p = 1. Right: cuboid of p = 1.75. All shapes
are described by the same scaling factor d = 25 nm.
The external field is x polarized and propagates in the z
direction.

2. THEORY

A. Surface Integral Equation Method
The field distributions and scattering cross sections of
plasmonic nano-particles are computed with the surface
integral equation (SIE) method. This widely used method
offers accurate and reliable solutions for many computa-
tional electromagnetics problems [22], and has been re-
cently extended [23] for modeling plasmonic scatterers
and nanoantennas [24–27].

The SIE method is based on Love’s equivalence prin-
ciple, allowing the reformulation of the original problem
of solving Maxwell’s equations in the entire 3D space
as an equivalent problem of solving equivalent sources

(currents) on the surfaces and interfaces. The method is
thus especially well suited for modeling LSPRs where
important physical phenomena take place on the surfaces.

The method used here is described in detail in [19],
and the singular integrals involved are evaluated with the
singularity subtraction technique available in [28, 29]. Ac-
curate evaluation of these integrals is important to main-
tain the accuracy of the solution, particularly in the near
field region. The scattered and absorbed power can be
efficiently evaluated using the associated SIE matrices as
explained in [30].

B. Remarks on superquadric shapes
The systematic implementation of the SIE method to an
arbitrarily shaped scatterer requires the proper discretiza-
tion of the particle’s surface [19]. Often, a mathematically
convenient way to describe a given surface is by using its
parametric description.

Here we focus mainly on three special cases of the su-
perquadric surfaces, i.e., a sphere, a rounded hexahedron
(cuboid), and a rounded octahedron (lozenge). The afore-
mentioned shapes are parametrically represented as a set
of sinusoidal equations [20], viz.,

r(θ, φ) =


a1 |sin ϑ cos ϕ|1/p

a2 |sin ϑ sin φ|1/p

a3 |cos ϑ|1/p

 , (1)

where 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π are the spheri-
cal coordinate system variables. The a1, a2, and a3 terms
are the axial scaling factors, and p is the superquadric
rounding/squareness factor ( 1

p also known as round-
ness [20]). In our case the scaling factors are equal to
a1 = a2 = a3 = d/2, where d is sphere’s diameter. Note
that Eq. (1) can be easily transformed to its inside-out
equivalent function [20]

f (x, y, z) =
∣∣∣∣ x
a1

∣∣∣∣2p
+

∣∣∣∣ y
a2

∣∣∣∣2p
+

∣∣∣∣ z
a3

∣∣∣∣2p
, (2)

where x, y, and z are the Cartesian coordinates.
As an example, when p = 1 Eq. (2) describes a sphere

of radius d
2 (Fig. 1 center). Squareness values above unity

(p > 1) result in a superquadric cube with rounded cor-
ners (cuboid, Fig. 1 right), leading to a perfect cube for
p→ ∞. For values between 1

2 < p < 1 a rounded lozenge
shaped surface is formed (Fig. 1 left). Finally, for smaller
values (p < 1

2 ), pinched superquadric surfaces occur. In
our analysis we will study structures within p ∈ [ 1

2 , ∞)
range.

Another interesting property of these surfaces is that
the normal vector with respect to surface expressed in
Eq. (1) can be described as a parametric expression by
mutually substituting the corresponding scaling factors
with the inverse 1

ai
(i = 1, 2, 3), and the rounding factor by
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Fig. 2. Shape transformation mappings as a function of the rounding factor p for silver NPs. Left: the extinction ef-
ficiency (ratio of the extinction cross section over the geometrical cross section, i.e., Qext = σext/Cg) in the range
0.6 ≤ p ≤ 5. The electrical dipole-like (ED) resonance is visible (red line). Right: the plasmonic albedo, i.e., the ra-
tio between the scattered over the extinction cross sections (w = σsca/σext) [31]. Notice that the ED resonance exhibits a
smooth albedo transition, while lower albedo values for the higher modes are manifested.

the following expression

pd =
p

2p− 1
(3)

The surface obtained is characterized as dual to the
original one [20] obtained by Eq. (1). Interestingly, this
observation gives a direct connection between cuboid and
lozenge-like shapes, based to the above fact, e.g., a cuboid
of p = 1.75 (Fig. 1 right) corresponds to a dual lozenge
surface of pd = 0.7 (Fig. 1 left). For the case of a perfect
hexahedron (p → ∞) and octahedron (p = 1

2 ) the du-
ality is expressed by the Euler characteristic rule for the
Platonic polyhedra: Vertices+ Faces = Edges+ 2 [32]. Ac-
cording to this rule an octahedron is dual to a hexahedron
by mutually substituting their number of vertices with
the number of edges.

Last, the required cross sectional area, Cg, and volume,
V of each NP for the simple case of a1 = a2 = a3 = d/2 is
analytically obtained from the following formulas [33]

Cg =
d2

2p
B
(

1
2p

,
1

2p
+ 1
)

; (4)

V =
d3

4p2 B
(

1
p

,
1

2p
+ 1
)

B
(

1
2p

,
1

2p

)
, (5)

where B is the beta function [34]. Note that the volume of
a sphere is Vs =

π
6 d3. For perfect polyhedra the volume

of a hexahedron is Vc = d3, while an octahedron occupies
one sixth of the volume, i.e., Vl =

d3

6 .

3. RESULTS & DISCUSSION

A. Extinction, absorption, and single plasmonic albedo
Let us begin by introducing the reference NP, a silver
sphere of diameter dsphere = 25 nm (Fig. 1 center). Silver is

a widely used reference material, mostly due to its strong
plasmonic resonances occurring naturally at the optical–
near ultraviolet spectrum [2]. The material parameters
used follow a simple Drude-like dispersion model,

εAg(λ) = ε∞ +
(λ/λp)2

1− jλ/λd
, (6)

where ε∞ = 5.5, λp = 130 nm, and λd = 30 µm, intro-
duced in [35]. This model is a curve fit on Johnson’s and
Christy’s [36] experimental data for bulk silver.

Despite the fact that the optical response of small par-
ticles is expected to be slightly different from the bulk
limit [37], our analysis concentrates in exploring and com-
paring the general behavior of the main plasmonic res-
onances resulting in a commonly modeled Drude-like
medium reference, i.e., simple Ag-Drude model experi-
encing low-to-moderate level of dissipative losses. In that
sense the analysis is readily expanded for any natural or
artificial dispersive material following the simple Drude
model.

It is well known that spherical Ag particles exhibit
pronounced plasmonic resonances approximately at λ =
360 nm, i.e., size parameter x ≈ 0.2. This LSPR is de-
scribed by an electric, dipole-like behavior [2]. Note that
a z propagated, x polarized field is assumed throughout
the whole study (see Fig. 1).

Since the geometries studied can be defined by the
same set of parametric equations, unified transformation
mappings can be easily extracted, revealing the extinc-
tion efficiency spectrum as a function of both the wave-
length λ and the squareness factor p (Fig. 2). Moving
away from the sphere p = 1 the resonant spectrum be-
comes richer and the main dipole resonance is red-shifted.
These higher order resonances verify already known re-
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sults, see e.g. Fuchs [38], that more than one pronounced
resonance may appear for the case of small cubic parti-
cles. Here, in Fig. 2 these results are further extended for
the case of lozenge particles where a vibrant resonance
spectrum is obtained. Indeed, corners are able to induce
distinctive plasmonic resonances [39], even for the case of
subwavelength particles.

An alternative way to quantify the triggered scattering
mechanisms is by plotting the single particle plasmonic
albedo, as illustrated in Fig. 2. Albedo is defined as the
ratio between the scattered over the extincted power [31];
a qualitative figure exposing the balance between the ab-
sorption and scattering mechanisms [40]. Here the maxi-
mum albedo level is ≈ 0.3, a value indicating absorption
being the main extinction mechanism in all cases. This is
a common feature for all subwavelength NPs where ex-
tinction is mainly attributed to materially induced absorp-
tion while scattering is almost three orders of magnitude
smaller [31].

Another interesting feature occurs by comparing both
panels in Fig. 2, where the main resonance has disap-
peared from the albedo map. The main dipole-like reso-
nance exhibits a smoother albedo for all the shapes in the
transformation mapping (Fig. 2, right panel). This result
points to the fact that the absorptive characteristics of a
subwavelength particle can be geometrically enhanced
especially for the higher order resonances, i.e., appearance
of valleys in Fig. 2 in both the cuboid (log10(p) > 0) and
the lozenge (log10(p) < 0) regions. Lower albedo values
are observed at the lozenge region, with respect to the
cuboid. This is mainly attributed to the overall volume
difference between the cuboid and lozenge.
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Fig. 3. Volume-normalized extinction, Ce = σext/V
(dashed lines), and absorption, Ca = σext/V (solid lines),
for the case of a silver sphere (blue, p = 1), a cuboid
(green, p = 1.75), and a lozenge (red, p = 0.7) NPs.
Utilizing Eq. (5), the volume ratio between the cuboid
and lozenge is approximately Vc/Vl = 2.32.

B. Dual shapes and plasmonic resonances
Smoothly cornered cuboid structures can be perceived as
perturbed spheres exhibiting dipole resonance red-shift
with enhanced higher multipole spectrum [40, 41]. This
fact is generalized here also for the the octahedron case,
where a similar trends are observed.

Since these dual shapes can be conveniently described
by the same parametric expression through the rounding
factor p, a point of novel interest would be the connection
of their resonant behavior based on this parameter. Stud-
ies on polarizable NPs possessing sharp corners reveal a
wealth of resonances, attributed to their corners [2, 38, 40–
42]. Some of these corner induced resonant properties
have been studied also through an eigenvalue perspective
for the 2D case [39].
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Fig. 4. Comparison of the position of the dipole plas-
monic resonances as a function of the rounding factor p:
Green lines depict the resonant position of a d = 10 nm
(dotted line), d = 25 nm (dashed line), and d = 40 nm
(dotted-dashed line) cuboid, respectively. The red lines
depict the lozenge resonant values for each size. Note
that both cube and lozenge are commonly described
through the duality formula found in Eq. (3).

The main dipole resonance of Fig. 2 (left) reveals that
there is a value of p where both the cuboid and lozenge
resonate at the same wavelength. Indeed, Fig. 3 depicts
the extinction and absorption volume normalized effi-
ciencies for the d = 25 nm case, where both dual shapes
(p = 1.75, pd = 0.7) resonate at the same wavelength.
Additionally, their normalized extinction is almost at the
same level, while there is an observed absorption differ-
ence. This difference is also visible in the albedo diagram
(Fig. 2 right) where the albedo level is slightly smaller for
the lozenge case and hence its absorption is enhanced. An
intuitive explanation is that both particles’ vertices and
volume contribute to the overall scattering amplitude and
the absorptive characteristics.

The picture above gives a hint whether this is true for
the whole range of p values, i.e., that the dual shapes
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resonate at the same frequency. Further analysis reveals
that this trend is not accurately followed either for smaller
or larger NPs, as can be seen in Fig. 4. For the case of a
smaller scatterer (d = 10 nm), the position of the resonant
dipole diverges with increasing p, allowing only a small
region with similar resonant wavelengths, i.e., up to p =
1.5. For the d = 25 nm case the region is extended for
values up to p = 2. However, the largest NPs (d = 40 nm)
do not exhibit any similar effect except for a resonant
crossing around p = 4.25.

For all cases in Fig. 4 the lozenge resonates for longer
wavelengths than the cuboid, for increasing values of
p. Since all the particles studied can be characterized
as subwavelength (size ≈ λ/10), the above observation
agrees with the predicted electrostatic values for perfect
Platonic solids, where the octahedra exhibit their first
plasmonic resonance at larger wavelengths in comparison
to the hexahedra (see the Appendix for details).

The rounding effect, combined with the albedo infor-
mation (Fig. 2) could be potentially used as a guideline for
designing NPs with enhanced absorption characteristics
(lozenge). Again, the volume ratio between the cuboid
and lozenge can be up to 6 times for the sharp cornered
cases. In this sense lozenge shaped NPs might be suitable
candidates for applications where enhanced absorption
with less material volume is required.

C. Surface fields and Poynting flowlines
The extinction and albedo characteristics describe a
smooth resonant transition with respect to the rounding
factor for the main dipole resonance. Similar qualitative
pictures can be extracted also by the surface charge and
current distributions, illustrated in Fig. 5. Indeed, all
scatterers exhibit similar dipole-like charge distributions,
displaying small differences on the charge confinement
amplitude, seen in Fig. 5 (a.1)-(a.3).

Specifically, Fig. 5 (a.3) depicts four distinctive regions
for the cuboid NP. This result demonstrates the corner
induced effects on a cuboid and its surface charge distri-
bution, verifying already know results found in [41]. Here
we extend these results to the lozenge case for which the
surface charge distribution closely resembles the dipole-
like charge distribution of the sphere, illustrated in Fig. 5
(a.2).

Consider now the current distribution in Fig. 5 b.1-3.
In this case the cuboid (Fig. 5 b.3) exhibits an enhanced
current amplitude but with a wider low current region on
its sides. Surprisingly, the lozenge charge setup resembles
almost a double-stream distribution (Fig. 5 b.1), with an
overall decrease of the current amplitude. Therefore, sev-
eral differences can be identified even for the simplest case
of the first dipole resonance between the particles studied.
These differences may be expected to have a significant
impact on the near field distribution. Indeed, Figs. 6 and 7
illustrate the time averaged Poynting field distribution
(background colormap) normalized to the incident power
(P0) for each case (in logarithmic scale). The time averaged
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Fig. 5. The normal electric field (charges) for the first
resonance of the d = 25 nm lozenge (p = 0.7), sphere
(p = 1), and cuboid (p = 1.75) is depicted in (a.1)–(a.3),
respectively. The values indicate the sign and charge
confinement. The tangential magnetic field (currents)
can be found similarly in (b.1)–(b.3). All values are nor-
malized with respect to sphere’s tangential field. Notice
that the cuboid exhibits an enhanced circulating cur-
rent, while the lozenge has two current paths of reduced
intensity, with respect to the sphere.

Poynting field is defined as 〈S〉t = 〈E×H〉t, assuming
an e−iωt time dependence. It is important to notice that
a similar Poynting "signature" is observed, for all NPs in
the aforementioned figures. This fact justifies the char-
acterization of the main resonance as a dipole also from
the Poynting streamline perspective [43]. Likewise, each
scatterer exhibits a similar near field power distribution
lobe, while the minimum point (blue dot in Fig. 6 and 7)
confirms the existence of the same saddle point (described
also in [12] for the spherical case).

The color distinction between the streamlines quanti-
fies the extinction efficiency area (or length) [8, 12], de-
termining the effective cross sectional length for each NP,
at each plane (E and H). In other words, the Poynting
streamline perspective allows us to visualize and mea-
sure roughly the effective area of the scatterer [6, 7]. By
combining these two effective lengths a rough estimate
on NPs effective area can be obtained. For instance, the
cuboid has an increased extinction efficiency which is also
visible by the width of the blue streamlines in both Figs. 6
and 7. Another interesting fact is that the H-plane ef-
fective length is slightly larger than that of the E-plane,
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Fig. 6. Time-averaged Poynting amplitude (colormap) normalized with respect to the incident power in dB for (a) a
lozenge of p = 0.7, (b) a sphere of p = 1, and (c) a cuboid of p = 1.75, depicted in the the E-plane, assuming z propa-
gation and Ex polarization. The red and blue lines illustrate the Poynting vector flow lines; blue-colored streamlines
indicate the boundary of the effective extinction area.
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Fig. 7. Similarly to Fig. 6 the Poynting amplitude (colormap) in the the H-plane (kz, Ex). Notice different critical points
and regions different from those in Fig. 6.

an indication that the cross sectional effective area is not
symmetric. This observation can be connected with the
effective area of a small dipole antenna where in general
may have elliptical or even stranger shapes, as has been
reported in [43].

Further analysis reveals more regions of interest in the
cuboid and lozenge cases. To start with, the lozenge par-
ticle exhibits a smaller effective area, while new critical
points appear inside and near its surface in both the E
and H-planes (Figs. 6 (a) and 7 (a)), respectively. One
interesting aspect is that in the H-plane, (Fig. 7 (a)) the
streamlines are concentrated right on the surface of the
particle. This observation might be of particular interest
especially for applications that require part of the energy
focused just on the particle surface.

The streamline pattern of the cuboid is equally interest-
ing and rich. Here the effective area is increased, while
new critical points appear near its corners, revealing two
vortices where streamlines converge. Again, this kind of

pattern might be of particular interest not only for energy
harvesting applications but also for applications exploit-
ing optical forces on single scatterers [18]. This can be
understood through the fact that the Maxwell stress ten-
sor contains a Poynting vector component [18]. Therefore,
any change in the Poynting field distribution may change
the tensor distribution and hence the forces acting on the
scatterer.

Arguably, a point of particular interest is the accuracy
of the method used. It is known that cubic and other
shapes with corners suffer from solution convergence is-
sues. For example, plasmonic resonances for very sharp-
cornered structures may cause numerical inaccuracies [42].
Here, the rounding values used are small in order to avoid
any sharp corner induced inaccuracies. Note that recent
studies indicate SIE to be an accurate method for simu-
lating plasmonic phenomena for certain shapes, such as
cuboids [44] with respect to other available methods such
the discrete dipole approximation.
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The findings above make clear that the scattering prop-
erties of small nanoparticles may exhibit important and
critical differences in their near field distribution. There-
fore, how and when does the streamline distribution
change, with respect to the rounding factor? A series
of illustrations in Fig. 8 depict that changes in certain
streamline trends start to appear for values above p = 1.2
(Fig. 8 (b)), for the cuboid case. The lozenge case exhibits
its first streamline perturbation for values below p < 0.9,
illustrated in Fig. 9 (b). In this case, new critical points
appear, affecting the streamline distribution mostly in the
H-plane. Sharper corners are able to create pronounced

(a) (b) (c) (d) 

<S>
t
=P

0 
 

Fig. 8. Poynting streamline distribution in the E-plane
for different rounding factors. (a) p = 1, (b) p = 1.2,
(c) p = 1.4, and (d) p = 1.6. Notice that for values
above p = 1.2 new critical points (vortex and saddle) are
gradually formed.
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Fig. 9. Poynting streamline distribution in the H-plane
for different rounding factors. (a) p = 0.8, (b) p = 0.85,
(c) p = 0.9, and (d) p = 0.95. Notice that for values
below p = 0.9 several critical points gradually appear.

vortices in the Poynting streamline setup in both planes.
This feature may be exploited for sensing, sorting, and
measuring applications that take into account particles’
roundness. Due to the fact that these differences appear
in the Poynting field distribution, corners may facilitate
the optical sorting of particles with many corners. Alter-
natively, cornered particles can be excellent candidates
for biomedical or energy harvesting applications where
enhanced power density is required close to the particles’
surface.

4. SUMMARY AND CONCLUSIONS
In summary, several aspects on the plasmonic resonances
of subwavelength, rounded nanoparticles with corners
have been presented. Superquadric shapes, such as
cuboids and lozenges, have been numerically studied gen-
eralizing the spherical NP case. Results on their extinction
efficiency, surface and near field distributions have been
obtained.

In particular, several qualitative results have been
extracted, demonstrating corner effects in the scatter-
ing/absorption spectrum. The main dipole resonance
exhibits smooth albedo level, featuring enhanced absorp-
tive characteristics for all shapes. The Poynting streamline
distribution reveals some geometrically induced peculiar-
ities. Small shape perturbations lead to large streamline
differences in both E and H planes. These qualitative
observations can be further used as designing rules for
synthesizing smooth or sharp cornered NPs, appropri-
ately exploiting their functionalities for sensing, sorting,
harvesting, and radiation control applications.
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APPENDIX

Electrostatic polarizabilities of regular hexahedral and
octahedral structures
The dual regular hexahedron (cube) and octahedral
(lozenge) structures are smooth versions of the Platonic
solids [21]. Their electrostatic polarizabilities have been
numerically extracted and a [4/4] Padé approximant has
been calculated. The expression reads

α = α∞(τ − 1)
τ3 + n2τ2 + n1τ − α0

τ4 + d3τ3 + d2τ2 + d1τ + α∞
(7)

where τ = εinclusion/εh is the contrast permittivity, εAg is
the inclusion and εh the host environment permittivity,
respectively. The following table gives the coefficients for
both the hexahedral and octahedral cases, with five digit
accuracy.

Notice that a fourth order Padé expansion of the calcu-
lated polarizability gives four poles and thus four distinc-
tive resonances for the extinction spectrum, depicted in
Fig. 10. Moreover the main dipole resonance appears at
higher frequencies for the octahedral case.

This trend matches the results of Fig. 4, where for large
values of the rounding factor p the octahedron resonates
at slightly higher wavelengths than the hexahedron. As
an example the first resonant value of octahedron is at
ε = −4.37, while for the octahedron at ε = −4.74
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Table 1. Padé coefficients of the polarizabilities

Hexahedron Octahedron

α0 -1.6383 -1.5871

α∞ 3.6442 3.5507

n2 4.83981 5.13936

n1 5.54742 5.86506

d3 8.0341 8.26227

d2 19.3534 19.8267

d1 15.4349 15.6191

λ [nm]
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Fig. 10. Absolute value of the polarizability as a func-
tion of the wavelength (Ag Drude-model of Eq. (6)), for
the hexahedral (green) and octahedral (red) nanoscat-
terer. Notice that octahedral solids resonate at slightly
higher wavelengths than the hexahedral at their first,
dipole resonance.
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