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ABSTRACT
Strain-controlled cyclic deformation of a nickel-based 
single crystal superalloy has been modelled using three-
dimensional (3D) discrete dislocation dynamics (DDD) for 
both [0 0 1] and [1 1 1] orientations. The work focused on the 
interaction between dislocations and precipitates during 
cyclic plastic deformation at elevated temperature, which has 
not been well studied yet. A representative volume element 
with cubic γ′-precipitates was chosen to represent the 
material, with enforced periodical boundary conditions. In 
particular, cutting of superdislocations into precipitates was 
simulated by a back-force method. The global cyclic stress–
strain responses were captured well by the DDD model when 
compared to experimental data, particularly the effects of 
crystallographic orientation. Dislocation evolution showed 
that considerably high density of dislocations was produced 
for [1 1 1] orientation when compared to [0 0 1] orientation. 
Cutting of dislocations into the precipitates had a significant 
effect on the plastic deformation, leading to material 
softening. Contour plots of in-plane shear strain proved the 
development of heterogeneous strain field, resulting in the 
formation of shear-band embryos.

1. Introduction

Nickel-based superalloys are widely applied as rotating turbine blades and discs in 
the hottest sections of gas turbine engines. Their exceptional mechanical proper-
ties at high temperature are due to the coherent double-phase microstructure, i.e. 
a L12-ordered � ′-precipitate phase and a ductile �-matrix phase. The � ′ precipitates, 
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dispersed in the �-matrix, play a significant role in increasing the strength and 
enhancing the fatigue and creep behaviour of the alloys at elevated temperature 
[1–3]. In order to achieve further improved mechanical properties, new develop-
ment of nickel-based superalloys is normally pursued by increasing the � ′ volume 
fraction. For instance, the � ′ volume fraction may reach above 70% for the latest 
single crystal nickel alloys. Nickel-based superalloys are often subjected to severe 
cyclic or sustained loads in harsh environments, thus a reliable characterisation 
and prediction of their mechanical behaviour at high temperature, such as plastic 
deformation under low cycle fatigue, is critical in order to accurately assess damage 
tolerance of their components.

Discrete dislocation dynamics (DDD) has been developed during recent years 
to study plastic deformation in metals and alloys by directly modelling the evolu-
tion of collective dislocation segments. The DDD model can simulate dislocation 
motion, multiplication and interaction under applied loading conditions. For 
instance, Déprés et al. [4] modelled local plastic deformation of AISI 316L steel 
by 3D DDD simulations during low cycle fatigue. They confirmed that dislocation 
cross-slip played the crucial role for the initial strain spreading within the grain 
and also the subsequent strain localisation for forming slip bands. Huang et al. [5] 
studied crack-tip deformation of a polycrystalline nickel-base superalloy under 
model I cyclic loading condition using 2D DDD simulations. Results showed 
that the ratchetting strain ahead of the crack tip is associated with dislocation 
accumulation, climb and penetration across grain boundaries, amongst which 
dislocation climb seems to be the dominant mechanism for the cases studied at 
elevated temperature. 3D DDD simulations were also carried out to study strain 
hardening in Al-TiN nanolayered composites [6]. When the layer thickness ratio 
kept constant, the rate of strain hardening was caused by plastic incompatibility 
solely and independent of dislocation density and layer thickness. On the other 
hand, the yield stress of the composites showed a strong size effect, i.e. the depend-
ence of yield stress on the thickness of Al layer (significant increase of yield stress 
was observed with the decreasing thickness of Al layer when the layer thickness 
ratio kept unchanged).

The DDD approach is able to model the interaction between dislocations and 
material microstructures explicitly, including the formation of heterogeneous 
dislocation networks such as slip bands. Huang et al. [7] and Hafez Haghighat 
et al. [8] simulated dislocation network formation in nickel-base single crystal 
superalloys during monotonic loading, showing that the movement of dislocations 
was in the γ channels and close to the γ′ cubes, and most dislocation segments 
were deposited on the γ/γ′ interfaces to form the dislocation network. Shin et al. 
[9] modelled fatigue deformation in precipitation hardened metals, with a fixed 
precipitate volume fraction (14%). They showed that large monomodal precipitates 
(radius 400 nm) caused only a small effect on the material’s cyclic response. For 
small monomodal precipitates (radius 160 nm), strain localised into persistent slip 
bands (PSBs) with features similar to single phased materials and a large effect 
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on the cyclic mechanical response (evolution of the stress amplitude) was found 
in the initial loading cycles. In grains with a bimodal precipitate, the simulated 
mechanical behaviour (such as stress–strain behaviour, PSBs, dislocation densities 
and cyclic response) fell between the above two cases. Yashiro et al. [10] stud-
ied dislocation shearing into γ′ precipitates by applying a back-force model, and 
the model was used to explore the dependence of precipitate-shearing resistance 
on the dislocation spacing in the interfacial dislocation network for nickel-base 
superalloys.

In nickel alloys, precipitates play a very important role in obstructing dislo-
cation motion and high volume fraction of γ′ precipitates tend to confine dis-
locations in the narrow channels of the γ phase, resulting in increased material 
strength. In fact, Rao et al. [11] conducted discrete dislocation simulations to 
study the influences of � ′ volume fraction on critical resolved shear stress (CRSS) 
needed to overcome the precipitate barrier. Their simulation results showed that 
the CRSS varied with the square root of the precipitate volume fraction. Vattré 
et al. [12] also demonstrated that the CRSS increased strongly with the increase 
in precipitate volume fraction when the average spacing of precipitates was 
kept constant. However, the existing 3D DDD simulations are largely limited to 
monotonic loading condition, without considering the effect of loading reversal. 
In this paper, 3D DDD was performed to gain a better understanding of dislo-
cation–microstructure interaction under cyclic deformation of a nickel-based 
single crystal superalloy at high temperature (850 °C). A representative volume 
element (RVE), with γ′ cubic precipitates of 70% volume fraction, was chosen 
to represent a Ni-based single crystal superalloy, on which a periodic boundary 
condition was enforced. A back-force model was applied to simulate the cutting 
of superdislocations into precipitates. Detailed studies on dislocation evolution 
during cyclic loading were conducted for both [1 1 1] and [0 0 1] orientations. The 
dislocation-dynamics induced plastic deformation and the corresponding dislo-
cation networks were then discussed, including the cutting of superdislocations 
into precipitates and the formation of shear-band embryos.

2. 3D DDD simulation methodology

2.1. Peach–Kohler force calculation

In 3D DDD model, a dislocation network of arbitrary topology is represented 
by sets of nodes which are connected to form straight segments with non-zero 
Burgers vectors. The evolution of dislocation segments was dependent on the 
motion of dislocation nodes. The Peach–Koehler (PK) force controls the motion 
of dislocation nodes and can be calculated by [13]:
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where Fi is the Peach–Koehler (PK) force acting on dislocation segment i, N is the 
total number of dislocation segments, ξi is the line sense vector, and Fi,i+1 and Fi,i-1 
are the interaction forces between dislocation segments i and i + 1 and i and i − 1, 
respectively, which are computed by following the method presented in Zbib et al. 
[13] and Hirth and Lothe [14], �net

j  is long range stress  from a remote segment j 
and σapp is externally applied stress on segment i.

During a simulated time increment, the glide velocity for each dislocation 
segment, vglide

i
, was governed by:

 

where Fglide

i
 is the glide component of the PK force Fi, τint is an internal stress caused 

by the anti-phase boundary in γ′ precipitate, τF is the friction stress in the γ phase, 
B is the drag coefficient and abs(x) is the absolute value of x.

For efficient computation of the PK force Fi in Equation (1), the RVE was further 
partitioned into a series of equal-sized subcells. For dislocations within a subcel 
and its neighbouring subcells, their contributions to PK force on dislocation i were 
calculated at the centre of the dislocation segment i directly, and for dislocations 
in remote subcells, their contributions to PK force were calculated at the centre of 
the subcell which contains the dislocation segment i. The dislocation stress field 
in Equation (1) was calculated by applying the analytical Hirth and Lothe formu-
lation [14]. In addition, the interaction stresses between dislocations in remote 
subcells were calculated from a multipole expansion method, which reduces the 
computational cost. Also in order to further improve the efficiency of computing, 
a parallel OpenMP interface was utilised to calculate the long-range stresses.

In the precipitates, when the screw superdislocations on the octahedral slip 
planes cross slip to {1 0 0} planes, a Kear–Wilsdorf (KW) lock was introduced to 
hinder the dislocation motion. In this paper, a KW unlocking stress τKW, acting 
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as a friction stress in the precipitates and corresponds to the term τF in Equation 
(2), was used to consider the KW locks and can be expressed as [12]:

 

where fD is a Debye frequency factor, ls is the length of the screw dislocation seg-
ment, ΔH0 is the activation enthalpy for KW locks, T is the absolute temperature 
and k is the Boltzmann constant. The KW lock inside the precipitates was not 
simulated directly but considered by a KW unlocking stress τKW, which has a 
constant value of 425 MPa as calculated from Equation (3).

In nickel-based single crystal superalloys with high precipitate volume frac-
tion, TEM imaging revealed that dislocation–precipitate interactions may result 
in shearing of precipitate by dislocation pairs separated by anti-phase boundary 
(APB), i.e. superdislocation [15,16]. Based on these experimental observations, a 
back-force model suggested by Yashiro et al. [10] was applied to simulate precipi-
tate shearing by series of superdislocations explicitly. When a leading dislocation 
cuts into a precipitate, it leaves an antiphase boundary (APB) on the slip plane 
with a back force Fb (equals to antiphase boundary energy χAPB) acting on it. 
Meanwhile, a follow-on trailing dislocation on the same slip plane is attracted by 
Fb and enters the precipitate subsequently. The leading and the trailing dislocations 
form a superdislocation which glides in the precipitate. The following criterion 
was applied in the 3D DDD code to decide whether the dislocation entering the 
γ′ phase is a trailing or a leading dislocation [7]:

•  If Fapp∙Fint ≥ 0 and abs(Fint) > 0.25χAPB, the dislocation is a leading dislocation;
•  If Fapp∙Fint < 0 and abs(Fint) > 0.25χAPB, the dislocation is a trailing dislocation.

Here, �APBrepresents the inherent APB energy density, Fappis the glide force 
caused by the externally applied load and Fint is the dislocation–interaction stress 
computed at the centre of the dislocation segment i. They are defined by the fol-
lowing two equations:

 

where n is the normal vector of the slip plane of dislocation segment i, σapp is 
the externally applied stress and σint is the centre stress of dislocation segment i 
induced by an interacting dislocation. Also, the back force (Fb, per unit length), 
acting on the pair of superdislocations (i.e. leading and trailing dislocations) 
cutting into the precipitate, literally corresponds to τintbi in Equation (2), i.e. 
Fb = �APB = �intbi.

(3)�KW =

√
�BfD

b
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(
−
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2.2. DDD short/long range interactions

The interactions of dislocations are very important because of their influence 
on the mobility of dislocations and hence on the plastic deformation of crys-
tals. Broadly, the interaction can be classified as either short range or long range. 
The local interactions between dislocations with a small distance (core level) are 
described by short-range interactions. Basically, when the distance between two 
dislocations is close to the size of the core where the elasticity field is not valid 
anymore and short-range interaction occurs [17]. In the present DDD model, 
short-range interactions included the formation of jogs and junctions as well 
as the annihilation of dislocations. Long range interactions are defined here as 
non-contact elastic interactions between dislocation segments in a three-dimen-
sional microstructure. Modelling of the interacting dislocation segments in a 
large model is far too computationally expensive, since the computation every 
step would be proportional to the square of dislocation segment numbers. The 
multipolar expansion method is a numerical technique [13] developed to reduce 
the order of computation to Ns log Ns without losing the required accuracy. In 
this method, the dislocations far away from the point of interest are grouped into 
a set of equivalent monopoles and dipoles. For numerical implementation, one 
would divide the 3D cell into a number of subcells, and the dislocations in each 
subcell are grouped into monopoles and dipoles whose far stress field can then be 
computed more efficiently using the multipolar expansion method.

In particular, the mechanisms of cross-slip and collinear annihilations have 
been implemented in the 3D DDD code. The cross slip of screw dislocation was 
determined numerically using a Monte-Carlo type simulation [18], and the 
collinear annihilations of dislocations AB and CD are possible if short-range 
interaction is possible and �AB ⋅ �CD = 1 and bAB + bCD = 0 (or �AB ⋅ �CD = −1 and 
bAB − bCD = 0). Here, b is the Burgers vector and ξ is the dislocation line sense 
vector [17]. Our simulations showed that cross slip  (threshold stress for cross 
slip was chosen to be 122 MPa) leads to softer stress–strain response and higher 
dislocation densities, which is consistent with the DDD simulation results for 
single-crystal nickel by Zhou et al. [19].

2.3. Evaluation of plastic strains and computation of external stress

Glide of many dislocations results in plastic deformation in crystalline materials. 
The motion of each dislocation segment produces plastic deformation, which is 
associated with the macroscopic plastic strain �p

ij
. In the 3D DDD model, a homo-

geneous macroscopic stress state is assumed in the RVE, and thus a macroscopic 
plastic strain �p

ij
 is computed by [20]

 

(6)�
p

ij
=

1

V ∫Aslip

1

2

(
nibj + njbi

)
dA
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where dA represents the area incrementally swept over by the segment of dislo-
cation, ni is the vector normal to the glide plane, V is the volume of the RVE and 
Aslip is the collection of deforming surfaces. Equation (6) describes the rigorous 
relationship between the macroscopic plastic strain and the dislocation motion.

If the external load is applied along the z axis of the RVE with a strain rate of 
�̇�, the total strain �totz  along the loading axis should be:

 

By referring to Equations (6) and (7), the elastic strain �ez(t) is written as:
 

Then, the time-dependent external stress �ext
z (t) is:

(7)𝜀totz = �̇�t

(8)�ez(t) = �totz (t) − �
p
z(t)

Figure 1. (colour online) RVes with (a) 1, (b) 8 and (c) 27 precipitates, where initial Frank-Read 
dislocation sources are randomly distributed in the �-phase matrix.
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where E is the Young’s modulus.

2.4. RVE model

Representative volume elements (RVE) containing 1, 8 and 27 cubic � ′ precipitates, 
as sketched in Figure 1, were built, representing a new-generation nickel-based 
single-crystal superalloy MD2. The RVE has a precipitate volume fraction of 70% 
and a channel width of 0.0475  μm. The γ′ volume fraction in MD2 was esti-
mated based on the assumption that the γ′ precipitate is perfectly cubic. Periodical 
boundary conditions (PBCs) were imposed on dislocation movement which is 
critical in 3D DDD simulations and should always be considered. Basically, when 
a dislocation leaves the RVE from one side, it enters the RVE from the opposite 
side to maintain the continuity of dislocation lines [21]. The corresponding elas-
tic stress fields were calculated directly from the updated dislocation networks. 
In addition, the elastic stress field induced by imaging dislocations in the rest 
of periodical RVEs were considered by the multipolar expansion method [13]. 
Transmission electron microscopy (TEM) observations have revealed that dislo-
cations are initially contained in the γ matrix, whereas no dislocations were found 
in the γ′ precipitates [22]. Also, the TEM observations [23,24] demonstrated that 
dislocation motion was not found on cubic slip planes. Consequently, in this 
work random initial dislocations were distributed on 12 octahedral slip systems 
in γ phase as Frank-Read sources. These initial dislocations are also randomly 
oriented on the slip plane. The dependency of initial dislocations on loading axis 
was not considered in this work. When an initial length of dislocation sources is 
less than γ channel width, unreal macroscopic mechanical behaviour is produced 
[25]. To prevent such issues, the initial lengths of all dislocation sources were set 
to be 0.0875 μm (>channel width of 0.0475 μm). The initial dislocation density 
of nickel-based superalloy adopted in previous 3D DDD simulations [7,8,25,26] 
ranged from 1.4 × 1012 to 6.7 × 1013 m−2. In this study, the initial dislocation density 
was chosen to be 2.5 × 1013 m−2, which fell within the range reported in literature.

Both the � and � ′ phases were treated as isotropic and have the same elastic 
constants (modulus and Poisson’s ratio). Due to the PBCs imposed to the RVE, 
portions of dislocation loops may self-annihilate to reduce the mean free-path 
of dislocations [27], which may affect the microstructure arrangement as well 
as the strain hardening behaviour. To avoid these, a non-perfect cubic shape is 
applied to the RVE. The dimensions of the RVE with 1, 8 and 27 precipitates are 
1420b × 1500b × 1580b, 3220b × 3380b × 3540b and 4830b × 5070b × 5310b, 
respectively (see Figure 1), corresponding to 70% precipitate volume fraction and 
a channel width of 190b (0.0475 μm), where b is the Burgers vector magnitude.

(9)�ext
z (t) = E�ez(t) = E(�totz (t) − �

p
z(t))
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2.5. Contour plot of maximum plastic shear strain

The RVE is divided into equal-sized sub-cells in 3D DDD model, and the plastic 
strain produced by the dislocation segments in sub-cells is computed at the centre 
of each sub-cell in the 3D DDD simulations. The plastic strain at nodes of sub-
cells was calculated by a written post-processing program in the present study. 
The plastic strain at a node k is computed by averaging the plastic strains at the 
centre of all sub-cells sharing the node k:

 

where n is the number of neighbouring sub-cells sharing the node k, �cm is the 
plastic shear strain at the centre of the mth sub-cell.

Then the maximum plastic shear strain is computed by:
 

where i and j refer to coordinate axes. In the present simulation, we used Equation 
(11) to calculate the in-plane maximum plastic shear strain on the surface of the 
3D RVE model. The contour plot of maximum plastic shear strain can be created 
easily with the assistance of commercial software Tecplot once the nodal values 
are determined by Equations (10) and (11).

3. Results

3.1. RVE size and model parameter identification

Using the 3D DDD framework given in the above section, numerical analyses were 
conducted for three RVEs, consisting of 1, 8 and 27 precipitates with randomly 

(10)�k =

∑n

m=1 �cm

n

(11)�max =

√(
�i − �j

2

)2

+

(
�ij

2

)2

Figure 2. (colour online) stress–strain response for RVes with different number of precipitates for 
(a) [0 0 1] orientation; (b) [1 1 1] orientation.
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distributed Frank–Read dislocation sources in the γ-phase matrix as shown in 
Figure 1. The stress–strain response and the dislocation density evolution for 
the RVEs with different number of precipitates were compared in Figures 2 and 
3 for both [0 0 1] and [1 1 1] orientations. It was seen that a good convergence 
was achieved for an 8-precipitate RVE, especially for the evolution of dislocation 
density. Consequently, a RVE with 8-precipitates was adopted in our simulations.

To determine the DDD model parameters for the actual material (MD2), we 
adopted a fitting procedure based on iterative simulations of monotonic and 
cyclic stress–strain responses for both [0 0 1] and [1 1 1] orientations. Prior to the 
fitting process, some fundamental material parameters such as Poisson’s ratio 
and modulus were directly obtained from experimental measurements. Initial 
values of other dislocation-dynamics related parameters were estimated based 
on the literature [7,26]. Following each simulation, the stress–strain responses 
were obtained and compared with those measured experimentally to assess the 
difference. This essentially is an inverse parameter-fitting process. Basically, we 
manually change the values of the parameters until the simulated stress–strain 
responses matched the low-cycle-fatigue test data for both [0 0 1] and [1 1 1] ori-
entations. Here, we focused on monotonic and the first cycle of fatigue loading. 
The procedure consisted of a series of iterations until an acceptable agreement 
was achieved between model simulations and experimental data. The material 
parameters obtained for 3D DDD simulations are given in Table 1, where the 
elastic moduli for [0 0 1] and [1 1 1] orientation were taken from the linear part 

Figure 3.  (colour online) Dislocation density against time for RVes with different number of 
precipitates for (a) [0 0 1] orientation; (b) [1 1 1] orientation.

Table 1. The parameters used in 3D DDD simulations.

Orientation [0 0 1] [1 1 1]
Young’s modulus (gPa) 99.3 247.3
Poisson ratio 0.402 0.24
aPB energy (mJ/m2) 150
Drag coefficient (Pa s) 1.0e–4
KW unlocking stress (MPa) 425
Friction stress in γ phase (MPa) 180
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of the stress–strain responses. Shear modulus for [1 1 1] orientation was also cal-
culated using the following equation [28]:

 

where

Here, E[0 0 1] and v[0 0 1]are the elastic modulus and Poisson’s ratio in [0 0 1] orien-
tation, respectively. For single crystals, the elastic modulus in [1 1 1] orientation is 
higher while the corresponding shear modulus is lower when compared to those 
in [0 0 1] orientation [29]. In the code, the shear modulus G[1 1 1], calculated as 
43.7 GPa, was used for calculations of Orowan stress and critical resolved shear 
stress, which control the dislocation glide on {1 1 1} slip planes.

Experimental stress–strain responses were obtained from our own low-cy-
cle-fatigue tests. The tests were carried out using standard cylindrical specimens 
(a diameter of 6.4 mm and a gauge length of 36.5 mm) at a temperature of 850 °C 
which reflects the typical working environment of nickel superalloys. The speci-
mens were subjected to strain-controlled cyclic loading, with 2 s–2 s–2 s–2 s (2 s 
dwell at both maximum and minimum load levels) and 200 s–200 s–200 s–200 s 
(200 s dwell at both maximum and minimum load levels) loading waveforms, 
for both 〈0 0 1〉 and 〈1 1 1〉 directions. The maximum level of strain applied to the 
specimen was 1%, with a strain ratio of -1.

(12)G
[111] =

3(c11 − c12)c44
c11 − c12 + 4c44

c11 =
E
[001](1 − v

[001])

(1 + v
[001])(1 − 2v

[001])
, c12 = c11

v
[001]

1 − v
[001]

, c44 = G
[001]

Figure 4. (colour online) cyclic stress–strain response simulated with 3D DDD model at �̇� = 0.01∕s 
for (a) [0 0 1] and (b) [1 1 1] orientations.
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3.2. stress–strain response

The simulated macroscopic stress–strain responses by the DDD model under 
monotonic and cyclic loading (1st cycle) are presented in Figure 4(a) and (b) 
for [0 0 1] and [1 1 1] orientations, respectively, in a direct comparison with the 
experimental results. It is noted that the model simulations have a good agreement 
with the experimental data for the two cases. Both the stress–strain responses and 
the shape of cyclic loops were captured by 3D DDD model. Results exhibited the 
narrow hysteresis loop for the [0 0 1] orientation, which demonstrated the very 
limited amount of plastic deformation for this orientation. While for the [1 1 1] 
orientation, the stress–strain loop is much fatter (see Figure 4(b)), indicating con-
siderably more plastic deformation in the alloy for this orientation. It is noted from 
Figure 4(b) that the present 3D DDD model could not capture the strain harden-
ing behaviour very well followed by load reversal in the [1 1 1] loading direction, 
which may be attributed to a lack of additional hardening mechanisms for the 
material. In nickel-based single crystal superalloys, majority of dislocations are 
deposited at the γ/γ′ phase interfaces rather than in the γ channels, which is also 
the dominant hardening mechanism. There is an absence of additional hardening 
mechanisms such as Taylor hardening. Specifically, a generalised form for Taylor 

hardening can be written as �m = �b
�∑

n

amn�
n [30], for which the coefficients 

amn are the components of a matrix that describe the average interaction strength 
between slip system m and slip system n, and they are related with the formation 
of dislocation junctions and jogs. This implies that the formation of junctions and 
jogs will lead to high hardening rate, as also reported in Rhee et al. [17]. However, 
as reported in our previous work [7], the density of dislocations with jogs and 
junctions (5.2 × 1011 and 6 × 1013 m−2 at 0.4% plastic strain) are two to four orders 
less than the total dislocation density 1.25 × 1015 m−2 for nickel-based superalloys. 
Basically, junction and jog dislocations make negligible contributions to the total 
dislocation density in nickel-based superalloys, indicating an absence of Taylor 
hardening. This is also the case for our current simulations.

3.3. Evolution of dislocation networks

Dislocation networks developed at different loading stages are shown in Figures 5 
and 6 for [0 0 1] and [1 1 1] orientations, respectively. During the loading stage, the 
initial dislocation segments of Frank-Read sources are activated and tend to bow 
out (i.e. multiplication process) when an applied resolved shear stress exceeds a 
critical value [31]. The activated dislocations in the slip plane can climb over, shear 
or loop around precipitates, which results in the deposition of most dislocation 
segments on the γ/γ′ interfaces. These deposited dislocations constituted a type of 
dislocation network, in which dislocation lines are normal to each other, as shown 
in Figures 5 and 6, consistent with the TEM observation by Tian et al. [32]. These 
dislocations on the γ/γ′ interfaces can cause high internal back stresses that lower 
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Figure 5. (colour online) Dislocation networks for [0 0 1] orientation at (a) time = 1 s, (b) time = 4 s, 
(c) time = 5 s, (d) time = 8 s and (e) time = 9 s.
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Figure 6. (colour online) Dislocation networks for [1 1 1] orientation at (a) time = 1 s, (b) time = 4 s, 
(c) time = 5 s, (d) time = 8 s and (e) time = 9 s.
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the PK force and subsequently the dislocation mobility in the channels, leading to 
strain hardening. When the applied stress is reduced (the unloading stage), the dis-
location loop tends to shrink due to the reduction of dislocation line tension and 
some of the deposited segments would disappear if not hindered [33]. Moreover, 
the mutual dislocation annihilation can happen during the reversed loading stage 
[34]. Therefore, a reduction of dislocation density, as shown in Figures 5 and 6, is 
a direct outcome of the annihilation and shrinkage of dislocations.

It is noted that simulated dislocation density was much higher for the [1 1 1] 
orientation (compared with the density for [0 0 1] orientation), which is because 
cross slip and junction formation take place more easily for [1 1 1] orientation 
[35]. The evolution of dislocation density has a direct influence on plastic strain 
or plastic deformation, and a lower yield stress is shown for [1 1 1] orientation 
which is associated with the higher density of dislocations for this orientation 
(compared to [0 0 1] orientation). This also reflects different Schmid factors for 
these two orientations. From the Orowan formula (�̇�p = 𝜌bv), which relates the 
plastic strain rate �̇�p to the mobile dislocation density ρ, Burgers vector magnitude 
b, and average dislocation velocity v, the higher density of mobile dislocations 
would result in a softer response due to the increasing plastic strain rate, and, con-
sequentially, reduce the flow stress. Our work showed that dislocation networks 
for both [0 0 1] and [1 1 1] orientations are similar to those reported in Vattré’s 
work [25]. For the [0 0 1] orientation, dislocations deposited on the surface of 
precipitates form a network and are normal to each other; for the [1 1 1] orienta-
tion, due to the multiplication of dislocations in one single crystallographic direc-
tion, the dislocations on the surface of precipitates are restricted to one direction. 
On the other hand, this work showed that [1 1 1] orientation had a significantly 
higher dislocation density than [0 0 1] orientation (as opposed to the results in 
Vattré et al. [25]), which is consistent with the more severe plastic deformation 
observed experimentally for the [1 1 1] orientation (Figure 4). It should be noted 

Figure 7. (colour online) Maximum-shear plastic strain contour at strain = 1% for (a) [0 0 1] and 
(b) [1 1 1] orientations.
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that Vattré et al. [25] used the same modulus for [0 0 1] and [1 1 1] orientation in 
their simulations. In fact, [1 1 1] orientation has much higher modulus than [0 0 1] 
orientation (i.e. 247.3 GPa for [1 1 1] and 99.3 GPa for [0 0 1]) and also experiences 
more plastic deformation. This is measured by our experiments, but not reflected 
in Vattré et al.’s work [25]. In our work, we used the correct modulus which was 
able to capture the behaviour.

3.4. Contour plot of maximum shear strain

To examine shear-related material deformation behaviour, contour plots of the 
maximum shear plastic strain were also produced for both [0 0 1] and [1 1 1] orien-
tations at a total strain of 1% and shown in Figure 7(a) and (b), respectively. Again, 
the simulations showed heterogeneous shear deformation at precipitate level. It 
was particularly noted that shear-band embryos were formed in the RVE, with 
an inclination of 45° with respect to the loading direction (z-axis). Here, we used 
shear-band ‘embryos’ to reflect the modest RVE size (0.355 × 0.375 × 0.395 μm) 
used in our simulations (due to the high computing cost for 3D DDD simu-
lations). The shear-band embryos developed with a characteristic orientation 
and a regular spacing, similar to those observed in f.c.c. polycrystalline metals 
using digital image correlation method [36]. Due to more plastic deformation 
developed for the [1 1 1] orientation the intensity of shear deformation in the 
shear-band embryos is much stronger for [1 1 1] orientation than that for [0 0 1] 
orientation. These shear-band ‘embryos’ will eventually develop into shear bands 
at large scale. This has been confirmed by our 2D DDD simulations using a larger 
RVE (3  ×  3  μm2), showing a direct correlation between dislocation networks 
and shear bands. Basically, ‘bands’ of localised high-density dislocations tend to 
develop along certain slip planes, which are discrete and accommodate a signifi-
cant amount of shear strain. They also appear as shear bands in the contour plots 
of maximum in plane shear strain.

4. Discussions

4.1. Dislocation-precipitate interaction

Discrete dislocation dynamics and its computer simulation have advanced signif-
icantly over the past two decades, where such important features as dislocation 
intersection, slip geometry, multiplication, line tension effects and cross-slip have 
been successfully modelled to simulate dislocation patterning observed in exper-
iments. However, almost all studies are limited to isotropic and homogeneous 
media, and the interactions between dislocations and material microstructure, 
which is the major source for heterogeneous dislocation arrangements and the 
generation of internal stress concentration and initiation of cracks, is generally 
excluded for simplicity. One of our aims is to understand how the dislocation–
microstructure interaction affects the global stress–strain behaviour during plastic 
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deformation, which cannot be captured by the classical continuum model (e.g. 
crystal plasticity).

To illustrate this, DDD simulaitons were carried out for RVE without precipi-
tates for both [0 0 1] and [1 1 1] orientations. For like-to-like comparison, the DDD 
parameters and the initial dislocation distributions were kept exactly the same as 
the RVEs with precipitates. The stress–plastic strain curves obtained are shown 
in Figure 8, in direct comparison with those for RVEs with precipitates. It was 
noted that stress–plastic strain response for RVE without precipitates has a sharp 
drop after the initial elastic stage and is well below those for RVE with precipiates. 
Following a sharp drop, the stress tends to reach a steady level for both [0 0 1] and 
[1 1 1] orientations and no further strain hardening occurs. This confirms that the 
strength of nickel alloys is mainly controlled by the dislocation–precipitates inter-
action, especially the accumulation of dislocation loops at the matrix–precipitate 
interfaces. These accumulated dislocation loops form a strong network and make 
the mobile dislocations more difficult to bow-out between the precipitates, leading 
to significant strain-hardening effect [37,38]. As also demonstrated in Huang et 

Figure 8. (colour online) stress–strain response with and without precipitate for (a) [0 0 1] and (b) 
[1 1 1] orientations.

Figure 9.  (colour online) stress–strain response with and without shearing of precipitate by 
dislocations for (a) [0 0 1] and (b) [1 1 1] orientations.
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al. [7], the morphology of precipitates also affects the evolution of dislocation 
networks in the matrix channel, leading to alteration of mechanical behaviour 
of the material. The effect of varied internal microstructure features (e.g. volume 
fraction, shape and morphologies of precipitates) on material behaviour will be 
further studied in future research.

4.2. Shearing of precipitates by superdislocations

The simulated stress–plastic strain responses for single-precipitate RVE along 
[0 0 1] and [1 1 1] orientations are presented in Figure 9 for the cases with and 
without introducing precipitate shearing in the 3D DDD model. It can be seen 
that shearing of precipitates had a great effect on the stress–strain response for 
both [0 0 1] and [1 1 1] orientations, and three-stage deformation (elastic, harden-
ing and softening stages) was observed (Figure 9). During the elastic stage, since 
the initial sources of dislocations in the γ channels are not activated or just move 
slightly to the γ/γ′ interfaces, both the γ and γ′ phases remain elastic and no plastic 
deformation or increase of dislocation density is expected. When the resolved 
shear stress on the slip systems exceeds the critical shear stress, dislocations bow 
out and the initial yielding occurs. With the increase of load level, more Orowan 
dislocation loops are produced and most of them are deposited at the γ/γ′ surface, 
which results in strain hardening, i.e. the second stage deformation. With further 
increase of strain level (beyond ~1%), shearing of precipitates by superdislocations 
occurred, which reduced the resistance of the material to further slip and produced 
a softer mechanical response of the material [39,40]. Based on our simulations, it 
is concluded that the shearing of precipitates by dislocations is a major cause of 
the softening behaviour of nickel superalloys, especially at high strain levels. These 
findings have also been observed in experimental studies [22,41–43].

Figure 10.  (colour online) shearing of dislocations into precipitate for [0 0 1] orientation at: (a) 
strain = 1% and (b) strain = 2%.
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As mentioned in Section 2.1, precipitates are generally sheared by a series of 
superdislocations formed by leading and trailing dislocations. When a leading 
dislocation enters into the precipitate, it destroys the L12 order in the slip plane, 
thus creating an antiphase boundary (APB) [44]. The following trailing disloca-
tion moving on the same slip plane intends to restore the initial L12 structure. 
We checked the dislocation networks of single-precipitate RVE under monotonic 
loading conditions (strain rate = 1%/s and strain level = 2%), and superdisloca-
tions clearly sheared into the precipitate for both [0 0 1] and [1 1 1] orientations 
at strain levels of 1 and 2%, as shown in Figures 10 and 11. It is noted that, when 
loading level reached to a higher value, more superdislocations sheared into the 
precipitate, which further demonstrated that precipitate shearing resulted in the 
softening of material’s stress–strain response.

In fact, TEM images have confirmed that the � ′ precipitates were cut by super-
dislocations for nickel-based superalloys, especially at elevated temperature and 
increased loading level [15,16]. For example, TEM study in Grant et al. [16] 
revealed that the precipitates were cut by series of superdislocations for a nick-
el-based superalloy tested under tensile loading at 500 °C (with a strain rate of 
10−4/s). Cui et al. [45] studied the creep deformation mechanisms of a nickel-base 
superalloy, and pointed out that, at low temperature region, the favourable defor-
mation mechanism for shearing of γ′ precipitates was dominated by stacking faults. 
However, it changed to antiphase boundaries (APBs) shearing (e.g. superdisloca-
tions) at high temperatures. Their TEM observations confirmed the shearing of γ′ 
precipitates by superdislocations under creep (760 MPa) and at high temperature 
(800~1000 °C). In our simulations, the stress levels for both [0 0 1] and [1 1 1] 
orientations are up to 1000 MPa and the temperature is 850 °C, so the cutting of 
γ′ precipitates by superdislocations should be considered in our 3D DDD model. 
To study such phenomenon in simulations, we artificially put some dislocation 

Figure 11.  (colour online) shearing of dislocations into precipitate for [1 1 1] orientation at: (a) 
strain = 1% and (b) strain = 2%.
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sources on the same slip planes, which allowed an increased chance (probability) 
of formation of superdislocations. For comparison purposes, we are currently 
carrying out systematic TEM studies of the tested samples to investigate the cutting 
of precipitates by superdislocations, which will be reported in our future work.

4.3. Evolution of dislocation densities during cyclic loading

The evolution of the dislocation density for [0 0 1] and [1 1 1] orientations is shown 
in Figure 12(a) for the 1st loading cycles. Density reached the peak at the end 
of monotonic loading (time = 1 s), then kept increasing during the dwell period 
(despite the stress relaxation behaviour). Decrease in dislocation density was 
observed during the unloading and reached a minimum value at the end of load 
reversal. Following subsequent re-loading, density was increasing again with the 
time and reached another peak value, larger than the 1st peak, at the maximum 
load level (time = 9 s). These are consistent with the in situ measurements by 
Huang et al. [34], who obtained dislocation densities at seven points within the 
1st fatigue cycle using Neutron diffraction method (see Figure 12(b)). The meas-
urement at point 7 (end of the 1st loading cycle) has a higher dislocation density 
than that at point 1 (beginning of the 1st loading cycle), which shows the strain 
hardening even within the 1st cycle. The measured dislocation densities for the 
1st and 100th cycles were also compared in the work, as shown in Figure 12(b). 
Although the same load level was maintained during the fatigue test, the observed 
dislocation density for 100th cycle is several times higher than that for the 1st 
cycle, indicating the significant accumulation of dislocations during the cyclic 
plastic deformation. Due to the excessive amount of computing time required for 
simulating a large number of cycles under dwell-fatigue, only one cycle was mod-
elled in this paper. However, additional simulations were carried out by removing 
the dwell period in the fatigue cycles. The dislocation density against time for 
the 1st and the 5th cycles are shown in Figures 13(a) and 14(a) for [0 0 1] and 
[1 1 1] orientations, respectively. The increase in dislocation density with cyclic 

Figure 12.  (colour online) evolution of the dislocation density: (a) simulations in this work for 
both [0 0 1] and [1 1 1] orientations and (b) the in situ measurements by huang et al. [34].



PHILOSOPHICAL MAGAZINE   21

loading number is clearly shown, indicating the accumulation of dislocations 
during fatigue. The dislocation networks at the end of the 1st and the 5th cycles 
are shown in Figure 13(b) and (c) for [0 0 1] orientation and Figure 14(b) and (c) 
for [1 1 1] orientation, respectively, which further confirmed the accumulation of 
dislocations with the number of fatigue cycles. This is consistent with the in situ 
neutron measurements by Huang et al. [34] and the 3D DDD simulation results 
by Shin et al. [9].

4.4. Limitations of current work

The misfit strains and the associated coherency stress, produced by the lattice 
mismatch between the γ/γ′ phases in nickel-base single crystal superalloys, are 
not considered in this work. However, the work of Huang et al. [7] demonstrated 
that the influence of coherency stress on stress–strain behaviour can be negligi-
ble, which is also confirmed by the work of Vattré et al. [12]. The simulations in 

Figure 13. (colour online) (a) evolution of dislocation density; dislocation networks at the end of 
the first (b) and the fifth (c) cycles for [0 0 1] orientation.
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this study focused on the macroscopic stress–strain responses and dislocation 
networks for [0 0 1] and [1 1 1] loading directions, which should not be much 
affected by the misfit strain. But further work is needed to fully understand the 
effects of lattice mismatch.

The dislocation climb was not considered in our 3D DDD code, so its effect 
on relaxation of hardening was not simulated in our work. The recent 3D DDD 
simulation results on nickel-based superalloys by Gao et al. [46] demonstrated that 
dislocation climb was capable to promote dislocation glide and multiplication, and 
rearrange the dislocation configuration to relax the hardening due to dislocations 
filling in the γ channel. 2D DDD simulations by Huang et al. [47] also showed that 
dislocation climb decreased significantly the flow stress and hardening rate while 
increased the dislocation density by relieving the dislocation pile-ups against the 
grain boundaries (GBs). We are in the process of incorporating climb into our 3D 
DDD code, but it requires a significant amount of efforts and additional work. Also 
in this paper, we are more focused on the interaction between dislocations and 

Figure 14. (colour online) (a) evolution of dislocation density; dislocation networks at the end of 
the first (b) and the fifth (c) cycles for [1 1 1] orientation.
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precipitate, especially looping and cutting of precipitates by dislocations, under 
cyclic loading. The effect of climb on dislocation-precipitate interaction will be 
reported in our future work.

The DDD method seems to be phenomenological to a certain extent, as it still 
relies on some governing laws to describe generation, evolution and interaction 
of dislocations. But it makes sense to say that DDD is a more physically based 
approach compared to crystal plasticity model. For instance, the dislocation net-
works can naturally introduce strain hardening without the need of phenome-
nological hardening variables. Specifically, the long-range dislocation interaction 
may contribute to the isotropic hardening, while the short-range interaction to 
the kinematic hardening. Finally, it needs to be noted that the DDD simulations 
are based on isotropic response and further work is required to incorporate ani-
sotropic elastic constants into the 3D DDD code.

5. Conclusions

Cyclic deformation of a nickel-based single crystal superalloy has been mod-
elled by 3D DDD at high temperature (850 °C). RVE-size study confirmed the 
convergence of stress–strain behaviour and dislocation density for 8-precipitate 
RVE, which was used in simulations of stress–strain response and dislocation 
evolution. The DDD model parameters were calibrated from strain-controlled 
cyclic experimental data at 850  °C. Simulation results are in good agreement 
with experimental data for both [0 0 1] and [1 1 1] loading orientations, in terms 
of stress/strain responses (monotonic and cyclic loading). The simulation results 
also confirmed the orientation-dependence of the global stress–strain response 
([0 0 1] vs. [1 1 1]). The dislocation networks deposited on the γ/γ′ interface made 
major contributions to strain hardening while the precipitate shearing by super-
dislocations played a significant role in the material softening. The dislocation 
densities also evolved accordingly with the cyclic loading, and increased with 
the number of loading cycles. Maximum shear plastic strain contour plots of the 
deformed RVE at total strain of 1% showed heterogeneous shear deformation, 
which led to the development of shear bands.

Acknowledgments

The authors also would like to thank Prof. Philippa Reed at the University of Southampton 
and Prof. Michael Preuss and Dr. João Quinta da Fonseca at the University of Manchester for 
several useful discussions of the results. Research data for this paper is available on request 
from the project principal investigator Prof Liguo Zhao at Loughborough University.

Disclosure statement

No potential conflict of interest was reported by the authors.



24   B. LIN ET AL.

Funding

The work was funded by the EPSRC [grant number EP/M000966/1], [grant number EP/
K026844/1] of the UK and in collaboration with GE Power, Dstl (Matthew Lunt) and Rolls-
Royce (Mark Hardy).

References

 [1]  M.V. Nathal, R.A. MacKay, and R.V. Miner, Influence of precipitate morphology on 
intermediate temperature creep properties of a nickel-base superalloy single crystal, Metall. 
Trans. 20 (1989), pp. 133–141.

 [2]  J.-B. le Graverend, J. Cormier, M. Jouiad, F. Gallerneau, P. Paulmier, and F. Hamon, Effect 
of fine γ′ precipitation on non-isothermal creep and creep-fatigue behaviour of nickel base 
superalloy MC2, Mater. Sci. Eng. A 527 (2010), pp. 5295–5302.

 [3]  M.J. Wong, P.G. Sanders, J.P. Shingledecker, and C.L. White, Design of an eta-phase 
precipitation-hardenable nickel-based alloy with the potential for improved creep strength 
above 1023 K (750 °C), Metall. Mater. Trans. A 46 (2015), pp. 2947–2955.

 [4]  C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in AISI 316L steel surface 
grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles I. 
Dislocation microstructures and mechanical behaviour, Philos. Mag. 84(22) (2004), pp. 
2257–2275.

 [5]  M.S. Huang, J. Tong, and Z.H. Li, A study of fatigue crack tip characteristics using discrete 
dislocation dynamics, Int. J. Plast. 54 (2014), pp. 229–246.

 [6]  S.X. Huang, J. Wang, and C.Z. Zhou, Effect of plastic incompatibility on the strain hardening 
behavior of Al–TiN nanolayered composites, Mater. Sci. Eng. A 636 (2015), pp. 430–433.

 [7]  M.S. Huang, L.G. Zhao, and J. Tong, Discrete dislocation dynamics modelling of mechanical 
deformation of nickel-based single crystal superalloys, Int. J. Plast. 28 (2012), pp. 141–158.

 [8]  S.M. Hafez Haghighat and G. Eggeler, Effect of climb on dislocation mechanisms and creep 
rates in γ′-strengthened Ni base superalloy single crystals: a discrete dislocation dynamics 
study, Acta Mater. 61 (2013), pp. 3709–3723.

 [9]  C.S. Shin, C.F. Robertson, and M.C. Fivel, Fatigue in precipitation hardened materials: 
a three-dimensional discrete dislocation dynamics modelling of the early cycles, Philos. 
Mag. 87(24) (2007), pp. 3657–3669.

[10]  K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, and H.M. Zbib, Discrete dis-
location dynamics simulation of cutting of γ′ precipitate and interfacial dislocation net-work 
in Ni-based superalloys, Int. J. Plast. 22 (2006), pp. 713–723.

[11]  S.I. Rao, T.A. Parthasarathy, D.M. Dimiduk, and P.M. Hazzledine, Discrete dislocation 
simulations of precipitation hardening in superalloys, Philos. Mag. 84 (2004), pp. 3195–
3215.

[12]  A. Vattré, B. Devincre, and A. Roos, Dislocation dynamics simulations of precipitation 
hardening in Ni-based superalloys with high γ′ volume fraction, Intermetallics 17 (2009), 
pp. 988–994.

[13]  H.M. Zbib, M. Rhee, and J.P. Hirth, On plastic deformation and the dynamics of 3D 
dislocations, Int. J. Mech. Sci. 40(2–3) (1998), pp. 113–127.

[14]  J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1982.
[15]  S. Nategh and S.A. Sajjadi, Dislocation network formation during creep in Ni-base superalloy 

GTD-111, Mater. Sci. Eng. A 339 (2003), pp. 103–108.
[16]  B.M. Grant, E.M. Francis, J.Q. da Fonseca, M.R. Daymond, and M. Preuss, Deformation 

behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron 
microscopy, Acta Mater. 60 (2012), pp. 6829–6841.



PHILOSOPHICAL MAGAZINE   25

[17]  M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T.D. de La Rubia, Models for long-/short-
range interactions and cross slip in 3D dislocation simulation of BCC single crystals, Model. 
Simul. Mater. Sci. Eng. 6 (1998), pp. 467–492.

[18]  H.M. Zbib and T.D. de la Rubia, A multiscale model of plasticity, Int. J. Plast. 18 (2002), 
pp. 1133–1163.

[19]  C.A. Zhou, S.B. Biner, and R. LeSar, Discrete dislocation dynamics simulations of plasticity 
at small scales, Acta Mater. 58 (2010), pp. 1565–1577.

[20]  J.R. Rice, On the structure of stress–strain relations for time-dependent plastic deformation 
in metals, J. Appl. Mech. 37 (1970), pp. 728–737.

[21]  B. Devincre, L.P. Kubin, C. Lemarchand, and R. Madec, Mesoscopic simulations of plastic 
deformation, Mater. Sci. Eng. A 309–310 (2001), pp. 211–219.

[22]  T.M. Pollock and A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single 
crystals, Acta Metall. Mater. 40 (1992), pp. 1–30.

[23]  L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Orientation and 
temperature dependence of yielding and deformation behavior of a nickel-base single crystal 
superalloy, Mater. Sci. Eng. A 505 (2009), pp. 144–150.

[24]  Z.Q. Wang, I.J. Beyerlein, and R. Lesar, Plastic anisotropy in fcc single crystals in high rate 
deformation, Int. J. Plast. 25 (2009), pp. 26–48.

[25]  A. Vattré, B. Devincre, and A. Roos, Orientation dependence of plastic deformation in 
nickel-based single crystal superalloys: discrete-continuous model simulations, Acta Mater. 
58 (2010), pp. 1938–1951.

[26]  S. Gao, M. Fivel, A. Ma, and A. Hartmaier, Influence of misfit stresses on dislocation glide 
in single crystal superalloys: a three-dimensional discrete dislocation dynamics study, J. 
Mech. Phys. Solids. 76 (2015), pp. 276–290.

[27]  R. Madec, B. Devincre, and L.P. Kubin, On the use of periodic boundary conditions in 
dislocation dynamics simulation, in IUTAM Symposium on Mesoscopic Dynamics in 
Fracture Process and Strength of Materials, Vol. 115, Y. Shibutani and H. Kitagawa, eds., 
Kluwer, Dordrecht, 2003, pp. 35–44.

[28]  D. Siebörger, H. Knake, and U. Glatzel, Temperature dependence of the elastic moduli of 
the nickel-base superalloy CMSX-4 and its isolated phases, Mater. Sci. Eng. A 298 (2001), 
pp. 26–33.

[29]  J.K. Tien and T. Caufield, Superalloys, Supercomposites and Superceramics, Academic 
Press, New York, 1989.

[30]  L. Kubin, B. Devincre, and T. Hoc, Towards a physical model for strain hardening in fcc 
crystals, Mater. Sci. Eng. A 19 (2008), pp. 483–484.

[31]  D. Hull and D.J. Bacon, Introduction to Dislocations, 3rd ed., Pergamon Press, Oxford, 
1984.

[32]  S. Tian, H.H. Zhou, J.H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu, Formation and role of 
dislocation networks during high temperature creep of a single crystal nickel-base superalloy, 
Mater. Sci. Eng. A 279(1–2) (2000), pp. 160–165.

[33]  T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Time-incremental creep-fatigue damage 
rule for single crystal Ni-base superalloys, Mater. Sci. Eng. A 508 (2009), pp. 200–208.

[34]  E.W. Huang, R.I. Barabash, Y.D. Wang, B. Clausen, L. Li, P.K. Liaw, G.E. Ice, Y. Ren, 
H. Choo, L.M. Pike, and D.L. Klarstrom, Plastic behavior of a nickel-based alloy under 
monotonic-tension and low-cycle-fatigue loading, Int. J. Plast. 24 (2008), pp. 1440–1456.

[35]  G.S. Kim, M.C. Fivel, H.J. Lee, C. Shin, H.N. Han, H.J. Chang, and K.H. Oh, A discrete 
dislocation dynamics modeling for thermal fatigue of preferred oriented copper via patterns, 
Scripta Mater. 63 (2010), pp. 788–791.

[36]  F. Di Gioacchino and J. Quinta da Fonseca, An experimental study of the polycrystalline 
plasticity of austenitic stainless steel, Int. J. Plast. 74 (2015), pp. 92–109.



26   B. LIN ET AL.

[37]  L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica, Philos. Mag. 23 (1971), 
pp. 1185–1199.

[38]  J.D. Atkinson, L.M. Brown, and W.M. Stobbs, The work hardening of copper silica: VI. The 
Bauschinger effect and plastic relaxation, Philos. Mag. 30 (1974), pp. 1247–1280.

[39]  V.G. Ramaswamy, D.C. Stouffer, and J.H. Laflen, Unified constitutive model for the inelastic 
uniaxial response of Rene’ 80 at temperatures between 538C and 982C, J. Eng. Mater. 
Technol. 112 (1990), pp. 280–286.

[40]  T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Cube slip and non-Schmid effects in 
single crystal Ni-base superalloys, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 1–31.

[41]  S.S.K. Gunturi, D.W. MacLachlan, and D.M. Knowles, Anisotropic creep in CMSX-4 in 
orientations distant from 〈0 0 1〉, Mater. Sci. Eng. A 289 (2000), pp. 289–298.

[42]  V. Sass and M. Feller-Kniepmeier, Orientation dependence of dislocation structures and 
deformation mechanisms in creep deformed CMSX-4 single crystals, Mater. Sci. Eng. A 
245 (1998), pp. 19–28.

[43]  J. Svoboda and P. Lukas, Creep deformation modelling of superalloy single crystals, Acta 
Mater 48 (2000), pp. 2519–2528.

[44]  D.P. Pope and S.S. Ezz, Mechanical properties of Ni3Al and nickel-base alloys with high 
volume fraction of gamma prime, Int. Met. Rev. 29 (1984), pp. 136–167.

[45]  L.Q. Cui, J.J. Yu, J.L. Liu, T. Jin, and X.F. Sun, The creep deformation mechanisms of a newly 
designed nickel-base superalloy, Mater. Sci. Eng. A. 710 (2018), pp. 309–317.

[46]  S. Gao, M. Fivel, A. Ma, and A. Hartmaier, 3D discrete dislocation dynamics study of creep 
behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy 
diffusion model, J. Mech. Phys. Solids. 102 (2017), pp. 209–223.

[47]  M.S. Huang, Z.H. Li, and J. Tong, The influence of dislocation climb on the mechanical 
behavior of polycrystals and grain size effect at elevated temperature, Int. J. Plast. 61 (2014), 
pp. 112–127.


	Abstract
	1. Introduction
	2. 3D DDD simulation methodology
	2.1. Peach–Kohler force calculation
	2.2. DDD short/long range interactions
	2.3. Evaluation of plastic strains and computation of external stress
	2.4. RVE model
	2.5. Contour plot of maximum plastic shear strain

	3. Results
	3.1. RVE size and model parameter identification
	3.2. stress–strain response
	3.3. Evolution of dislocation networks
	3.4. Contour plot of maximum shear strain

	4. Discussions
	4.1. Dislocation-precipitate interaction
	4.2. Shearing of precipitates by superdislocations
	4.3. Evolution of dislocation densities during cyclic loading
	4.4. Limitations of current work

	5. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References



