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Abstract 

 

The mesocopic structure features in the coke fillers and binding carbon regions of a synthetic 

graphite grade have been examined by high resolution transmission electron microscopy 

(TEM) and Raman spectroscopy. Within the fillers, the three-dimensional structure is 

composed of crystal laminae with the basal plane dimensions (La) of hundreds nanometres, 

and thicknesses (Lc) of tens of nanometres. These laminae have a nearly perfect graphite 

structure with almost parallel c-axes, but their a-b planes are orientated randomly to form a 

“crazy paving” structure. A similar structure exists in the binding carbon regions, with a 

smaller La. Significantly bent laminae are widely seen in quinoline insoluble inclusions and 

the graphite regions developed around them. The La values measured by TEM are consistent 

with estimates from the intensity ratios of the D to G Raman peak in these regions. Atomistic 

modelling finds that the lowest energy interfaces in the crazy paving structure comprise 5, 6 

and 7 member carbon rings. The bent laminae tend to maintain the 6 member rings, but are 

strained elastically. We suggest that a 7 member carbon ring leaves a cavity representing an 

arm-chair graphite edge contributing to the Raman spectra D peak. 
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1. Introduction 

Graphite manufactured by isostatic pressure moulding, often called isotropic graphite or iso-

graphite, is the likely new generation nuclear graphite for GEN-III/GEN-IV high temperature 

reactors (HTR) [1], [2]. This type of graphite is also widely used in the manufacturing of 

semiconductor and photovoltaic materials where high purity and excellent mechanical and 

thermal properties are required. Compared to currently applied coarse grained graphites 

manufactured by extrusion or vibration moulding, iso-graphite generally comprises of much 

finer coke particles in the tens of microns range, instead of hundreds or even thousands of 

microns [3]. To produce the micro-scale coke filler of the required size and size distribution, 

substantial milling of the coke is necessary, including intensive mixing with the binding pitch 

to plasticise the filler powder. This enables it to be moulded into the required shapes and 

sizes that confer sufficient strength in the final product [4]. Therefore, one may expect that 

the structure developed in coke filler and pitch binder may be different from that observed in 

traditionally prepared graphites [5], [6]. More importantly, one needs to know how the 

structural features at all length scales influence the physical properties, and engineering 

performance, such as neutron irradiation damage and oxidation resistance. Success in 

establishing such relationships can more scientifically guide the design of formulation and 

selection of processing conditions in graphite manufacture.  

 

Several research groups have examined the structure of traditional and new graphite grades 

engineered for nuclear applications [5], [7]–[9], including iso-graphite, mainly using 

transmission electron microscopy (TEM). In particular, Karthik et al. [9] compared the 

structures of next generation graphites and concluded that all were composed of a turbostratic 

structure in which “close-packed carbon planes are curled and rotated with respect to each 

other”. They proposed that “the atoms are arranged in layers similar to graphite, but stacked 

randomly”. Wen et al. [10] reported further structural features as nano-sized graphite 

structures, chaotic structures and non-graphitising carbon in the binder of Gilsocarbon and 

PGA (Pile Grade A) graphites. Inside the binder, the most notable features are the quinoline 

insoluble (QI) particles, which have been widely observed in all graphites. QI particles are 

supposed to originate from carbon blacks, coke, coal dusts and cenospheres [11] which are 

considered as inert material, and may have a beneficial effect in reducing the effect of 

temperature on the viscosity variation of pitch [12]. The structure inside the QI is composed 

of nano-sized crystallites of graphite. Together with existing microcracks and pores inside 

graphite, these crystalline features are believed to exert a strong influence, not only on the 
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mechanical and physical properties of a graphite grade, but also on its neutron irradiation 

damage behaviour [13]. 

 

It is well known that neutron damage varies between graphite grades [14], and this may be 

due to differing atomic structure. The sensitivity to atomic structure has been illustrated by 

recent molecular dynamic studies [15] that found channelling of knock-on atoms. To 

elucidate the neutron irradiation damage mechanism of an industrial nuclear graphite grade, it 

is therefore necessary to establish first the “turbostratic structure” and the nanostructure 

inside a nuclear graphite before irradiation. In this study, we determine the micro- and meso-

structures in an iso-graphite grade using TEM, high resolution TEM (HRTEM) and Raman 

spectroscopy. The key structural features observed experimentally are then modelled in 

atomistic detail using atomistic modelling. 

 

2. Experimental procedures 

2.1 Material and sample preparation 

The graphite material (grade SNG623) supplied by Sinosteel Advanced Materials Ltd is one 

of the experimental grades developed for a neutron irradiation programme that is being 

conducted at the Oak Ridge National Laboratory, USA [16], [17]. A highlight on the 

manufacture of this grade and its representative properties are available in the Data in Brief, 

(DiB) [18] . 

 

All samples used in this study were machined from the same billet as the test samples for the 

accompanying neutron irradiation programme. The as-received samples are all in the form of 

circular tablets with a diameter of 10 mm and thickness 0.5 mm. The as-machined surface is 

known to be deformed and is not representative of the bulk [19], so a fracture surface of an 

as-received sample was used. The examined fracture surfaces were prepared in a controlled 

manner by breaking the as-received tablets manually. A graphite tablet was positioned over a 

small breaker bar to define the fracture location and a flat steel ruler was pressed on top of it 

with a bending force applied, until the sample broke. These as-fractured surfaces were 

examined with scanning electron microscopy (SEM) and Raman spectroscopy to select 

regions of interest for analysis. Samples for TEM and HRTEM examination were extracted 

from the fracture surface using the procedures described below. 
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TEM specimens were prepared using a focussed ion beam (FIB) in a FEI Nova 600 Nanolab 

Dual Beam system. This method allowed the preparation of a TEM specimen from a position 

of particular interest on the fracture surface, e.g. from a selected coke filler or binding carbon. 

Details of the TEM sample preparation are available in the DiB [18]. 

 

2.2 Structure characterisation  

(1) Raman Spectroscopy 

Raman spectroscopy was conducted using a Horiba Jobin-Yvon LabRam HR high spectral 

resolution Raman system with an integral confocal microscope, at a laser wavelength of 

514 nm (green). A highlight of the measuring procedure and spectrum analysis is available in 

the DiB [18]. 

 

(2) SEM and TEM examination 

The morphology of the fracture surface is imaged using secondary electrons in a field 

emission gun SEM (FEG-SEM) (JEOL 7800F, Tokyo, Japan) at an acceleration voltage of 

1 kV. TEM/HRTEM was conducted with a FEI Tecnai F20 microscope operated at 80 kV. 

High resolution annular dark-field (ADF) scanning transmission electron microscopy 

(STEM) was carried out using an aberration corrected (Cs) JEOL JEM-ARM200F 

microscope at 80 kV. In ADF STEM a focussed electron beam is scanned over the specimen 

in a raster, while the transmitted scattered intensity is collected on an annular detector, which 

is arranged around the optical axis. ADF STEM allows easier image interpretation due to no 

contrast reversals and delocalisation compared to HRTEM [20, p. 104]. 

 

3. Experimental Results  

3.1 Morphology of as-fractured graphite 

An overview of an as-fractured surface is shown in Figure 1(a). There are characteristic 

regions that can be described as: flat and smooth, labelled “F”; rounded and rough, labelled 

“B”; and voids, labelled “V”. Most areas on the fracture surface show the morphology 

labelled “B” and only small regions are characteristic of those labelled “F”. The flat “F” 

regions are exposed pre-existing cracks within filler particles [21], and are unaffected by the 

fracturing of the specimen. Voids exist everywhere, but it is difficult to differentiate those 

formed during manufacture from those generated by dislodging of fillers during fracture. 

More details of key features on the as-fractured surface are highlighted in the DiB [18]. F-1 

and F-2 regions are defined as filler surface without binding carbon, and a filler subjected to 
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trans-granular fracture, respectively.  B-1 and B-2 regions are defined as exposed filler with 

patched binding carbon attached, and binding carbon only, respectively. 

 

These observations show that the surface of as-fractured graphite exposes the binding matrix 

and course fillers and allows them to be identified. The following analysis will focus on the 

mesoscopic structure inside the filler and binding carbon, obtained by sampling different 

regions on a fracture surface. 

 

Figure 1 Overview of the morphologies of the as-
fractured surface of isostatically moulded graphite by 
snapping a sample. F, B and V represent filler, binding 
carbon and void, respectively. More details of each 
region are available in the DiB [18]. 

 

3.2 Disordered structure measured by Raman spectroscopy 

Representative Raman spectra of SNG623 acquired through randomly probing an as-

fractured surface and of HOPG are shown in the DiB [18], including description of the key 

features.  

 

  
Figure 2 Raman measurement on an as-fractured surface of SNG623: histogram distribution 
of (a) ID/IG ratios and (b) La of graphite crystallites determined using Equation 1. 
 

The intensity ratio of the D and G bands (ID/IG) has been empirically demonstrated to be 

inversely proportional to the in-plane graphite crystallite sizes La (nm), [22]–[24] i.e. 

 𝐿𝐿𝑎𝑎 = (2.4 × 10−10)𝜆𝜆4 �𝐼𝐼𝐷𝐷
𝐼𝐼𝐺𝐺
�
−1

        (1) 



 6 

where λ is the wavelength of the excitation laser (nm). A histogram distribution of the 

measured ID/IG intensity ratios on as-fractured surfaces are summarised in Figure 2(a), and 

the corresponding histogram of La is shown in Figure 2(b). The measurements show that 

among the probed positions the true range of La is 62–440 nm, with an average La of 

147.7±54.4 nm. 

 

To link an ID/IG measurement, or estimated La value, to a specific region on the fracture 

surface, a fracture surface area was scanned using the Raman probe, followed by imaging 

with SEM to match the visible features with the La values. The results are summarised in 

Figure 3. Figure 3(a) shows the overall view of the variation of La across the scanned area. It 

is noted that there are 5 localised regions in this area where the La value has its highest 

extrema: 667.6 nm, 662.4 nm, 537.7 nm, 513.9 nm and 458.1 nm. The diameters of these 

regions lie between 5 and 15 µm. By overlaying the SEM image on the La map, it is shown 

that these regions with high La match very well with the regions having features such as F-2, 

i.e. a fracture surface of a filler (Figure 1(d) in [18]). The rest of the La map is dominated by 

La with an average of 109.9±38.4 nm and morphology features similar to B-2 [18] . 

Intermediate La values, all within the largest 5 % (≥  176.9 nm), are related to some dappled 

regions, which we believe are likely linked to regions with features B-1 [18]). 

 

As per the matching results shown in Figure 3, we can point out that, for the histogram 

distribution shown in Figure 2, the estimated La values on the far left-hand side should 

correspond to graphite crystallites in binding carbon with the values on the far right-hand side 

representing those in coke fillers. Intermediate values possibly belong to a mixture of binding 

carbon and fillers, since the Raman laser probes a small but distinct area on the sample, and 

may overlap filler and binding carbon. The peak of the histogram distribution appears near 

the lower bound, implying graphite crystallites in binding carbon may be the main 

contributor. This is to be expected if the majority of the fracture surface exposes binding 

carbon. 

 

Pimenta et al. [22] experimentally demonstrated that the intensity of the D band shows a 

strong correlation with the edge structure of a graphite crystallite. Between the two types of 

edge structures (armchair and zigzag), they suggested that the former has a much stronger 

influence than the latter on the intensity of the D band. If so, the graphene sheets in the 

graphite crystallites must generally be joined with the armchair structure, as otherwise it 

would be impossible to see the difference in La. Pending further experimental evidence, this 
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hypothesis is tested by atomistic modelling, supported by results of the structural analysis by 

means of TEM, as presented in section 4. 

 

From the Raman mapping results, we can claim that the coke fillers have graphite crystallites 

with La values larger than those in binding carbon, by a factor of a few times up to an order 

of magnitude.  

 

3.3 Structure of graphite analysed by TEM 

(1) Structure underneath an F region 

TEM observations from an F region are presented in Figure 4. Figure 4(a) shows the 

sampling position on a region with F type surface morphology, and Figure 4(b) shows the 

SEM image of a cross-sectional TEM foil lifted out from this position. In Figure 4(c) a TEM 

bright field (BF) image showing an overview of a cross-section of the cleavage plane of a 

coke filler is presented, taken at 0° sample tilt and rotation. There is a clear diffraction 

contrast, evidencing that this region is not a single crystal. In fact, this diffraction contrast 

implies that a highly-textured lamina structure exists inside this filler. Following the bent 

contour of the fracture surface, the laminae are bent in the same manner. 

   

  

Figure 3 (a) Map of La 
estimated from the ID/IG ratio 
on an as-fractured surface. (b) 
Correlation of the SEM image 
of the fracture surface, 
overlaid on the La map, 
showing a typical cleavage 
plane.  (c) & (d) SEM images 
of the matching locations 
indicated in (b), giving La 
values of 662.4 nm and 
537.7 nm. 

  



 8 

   
   

 

Figure 4 TEM examination of a filler with specimen 
foils prepared by FIB. (a) Fracture surface with the TEM 
sampling position labelled; (b) SEM image of the as-
prepared TEM foil; (c) TEM BF images showing a lamina 
structure; (d) TEM BF view of the lamina structure showing 
laminae of typical lengths of 200 to 600 nm and thickness 
around 30 nm in this filler; (e) a crack proceeding parallel 
to the laminae; (f) SAED pattern of the untilted specimen; 
and (g) SAED pattern at ~40° sample tilt. 

 

The contrast between adjacent laminae indicates that they have different orientations. Along a 

lamina, the contrast alters without an obvious periodicity, implying that each lamina is 

composed of multiple segments with different in-plane crystal orientation. To measure the 

dimensions of the resolved laminae, a higher magnification BF image is presented in 

Figure 4(d). The thickness of the diffracting domains (or laminae), as measured by random 

sampling of 30 positions, is 21.1 – 44.6 nm with an average of 30.9 ± 6.6 nm. The lengths 

along the longitudinal direction of these diffracting domains have a broad distribution from a 

few nanometres up to about a thousand nanometres, but are quite hard to measure due to 

overlapping boundaries. Some of the measurements are indicated exemplarily in Figure 4(d). 

This length distribution may partly be a consequence of cross-sectioning at different positions 

of each lamina. The domains within a lamina likely have near polygonal shapes, as well as 

size differences. The in-plane average dimension of these laminae ought to be several 

hundred nanometres with a similar range of La as estimated using the ID/IG ratio determined 

by Raman spectroscopy in the F regions. 

 

Micro-cracks are present inside this region as shown in Figure 4(c). An image with higher 

magnification of a micro-crack is shown in Figure 4(e). This type is believed to be a 

Mrozowski crack, as widely reported [6], [7], [9], [25], [26], [27]–[29]. Such cracks are 

formed during manufacturing when a billet is cooled down after graphitisation or after coking, 
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a step involved in raw material preparation. It is noted that a layer of amorphous carbon 

remains on the crack surface. Whilst there is a possibility that it may be formed by the re-

deposition during TEM sample preparation using FIB, others have observed a similar 

material filling a micro-crack in a TEM sample prepared from traditional Ar ion thinning 

techniques [6], [9]. 

 

Selected area electron diffraction (SAED) patterns acquired from a region in Figure 4(c) are 

given in Figure 4(f, g). The SAED pattern shown in Figure 4(f) was taken without tilting the 

specimen. Elongated spots or arcs arise, lying on different ellipses. This is an indication of a 

textured polycrystalline structure with a texture axis inclined to the electron beam [30, p. 

273]. Such deviation from a shared texture axis is a consequence of TEM sample preparation 

when the FIB cross-sectioning was made along an oblique direction with respect to the 

lamellar crystal structure. As graphite has a plate texture, the texture axis points along the 

[0001] direction. In the SAED, the elongated spots on each single ellipse result from different 

Laue zones and can be indexed using the same hki indices but a different l [30, p. 274]. 

Consequently, the indices of the ellipses were determined to be {101�l}, {112�l} and {202�l}, 

while {101�0}, {112�0} and {202�0} belong to the prism planes. On an imaginary line passing 

through the central spot, much brighter diffraction spots arise in the pattern in Figure 4(f). 

They belong to the graphite basal planes and since they result from different zones as well, 

they have to be indexed as (000l). By tilting the specimen by ~40° the texture axis and thus 

the [0001] crystallite directions have been oriented almost parallel to the electron beam. 

Consequently, only diffraction rings resulting from the prism planes (hki0) arise in this 

SAED pattern, as shown in Figure 4(g). The missing (000l) diffraction rings are the only 

indication of a textured polycrystalline structure. The diffraction rings are nearly continuous 

since the diffracting domains within the laminae are randomly rotated around the texture axis, 

i.e. the [0001] crystal direction. Broadening of the diffraction rings in turn is a combined 

result. In the first place there are slight variations of the normal direction of the diffracting 

domains caused by the bent laminae. Thus, by tilting the specimen in the microscope, the 

texture axis could not be aligned perfectly parallel to the electron beam for all the domains. In 

addition, the small crystallite/domain size may make a minor contribution due to Scherrer 

broadening. 

 

To examine the in-plane shapes of the laminae in a coke, a TEM specimen was prepared from 

a coke grain in the way that the [0001] crystallite directions are aligned close to the electron 

beam direction, as detailed in the DiB [18]. A representative TEM BF image is shown in 
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Figure 5(a). The shadows of some laminae can be differentiated by diffraction contrast as 

well as moiré patterns that appear as a result of superimposed hexagonal structures. The in-

plane shape of the resolved laminae is outlined in Figure 5(b); they all have different 

polygonal shapes. It is noted that some polygons are overlapped; this is likely due to the TEM 

sample being thicker than most of the laminae and thus the projection of more than one 

lamina is recorded in the final image in most of the examined area. Figure 5(c) shows the 

SAED pattern of nearly the whole region shown on Figure 5(a) and (b). Diffraction rings of 

only the prismatic planes confirm that the graphite crystallites within the laminae are textured 

along [0001]. The sharpness of the rings indicates almost no deviation from the texture axis. 

 

 

 

Figure 5 Structure of a coke filler 
imaged along the normal direction of 
laminae. (a) TEM BF image; (b) polygonal 
shape of each lamina outlined. (c) Selected 
area diffraction pattern of the region shown 
in (a). 

 

(2) Structure underneath a B region 

Specimens for TEM analysis of binding carbon were prepared from a location showing 

typical morphology of region B, as exemplified by Figure 6(a). A TEM sample lifted out 

from the position shown in Figure 6(a) is presented in Figure 6(b). Another TEM sample 

lifted from a similar position is presented in Figure 6(d). The overview of the microstructure 

of each of the two TEM samples is shown in Figure 6(c) and (e). In the regions of binding 

carbon, the following features are clearly identified, as observed by other researchers [5], [6], 

[9], [28]: graphite crystallites, QI particles, micro-cracks and pores as well as interfaces with 

coke fillers. Details of these features are presented below. 

 

(a) Graphite crystallites 

Judging from the TEM diffraction contrast images and SAED pattern acquired from the 

graphite crystallites presented in different binder regions, there is no clear difference in 
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graphite structure, compared to that in the coke filler, as shown in section (3.3-1). The 

graphite crystallites exist in a laminated fashion with a shared axis along the [0001] direction, 

but the laminae are bent and folded in several directions. Such unique structures can be seen 

from Figure 6(c) where the graphite regions were developed around the QI particles. A 

similar structure was observed by other researchers [7]–[9]. 

 

Figure 6(g) shows another type of graphite crystallite, labelled as 1 and outlined by a dashed 

line. It is surrounded by regions dispersed with QI particles, labelled as 2 and 3. It shows 

similar laminate structure as observed in a coke filler, and measurements of La are around a 

few hundred nanometres. 

   

   

 

Figure 6 TEM examination of a binding carbon region 
with TEM foils prepared by FIB. (a) SEM image of a 
sampling position in a region showing morphology of B; (b) 
TEM foil from the surface shown in (a); (c) overview of 
microstructure of binding carbon showing typical QI particles 
from the TEM foil presented in (b); (d) TEM foil from a 
different region showing morphology of B; (e) overview of 
microstructure of binding carbon in the TEM foil presented 
in (d) showing typical QI particles and interface with coke 
filler; (f) STEM BF overview of a TEM foil from a different 
region of binding carbon; (g) STEM BF view of the 
microstructure showing a well crystallised particle with nano-
cracks (1) besides QI particles with chaotic (2) and rosette (3) 
structures as well as a large crack (4). 
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(b) Boundaries 

It is difficult to characterise the boundary between coke filler and binding carbon due to the 

lack of a clearly defined interface. Figure 6(e) shows a region where a boundary between a 

filler and the binding carbon region is approximately outlined based on the fact that QI 

particles are commonly present in binding carbon, but not in the filler. There are other 

boundaries between graphite particles shown in Figure 6(g) around region 1, where the 

graphite regions with different orientation are coherently bonded together. They are similar to 

grain boundaries or large angle interfaces in polycrystalline metals or ceramics. 

 

(c) QI particles 

Through a statistical analysis of two specimens, the sizes of QI particles vary from 84.7 – 

869.3 nm in diameter with an average value of 259.0 ± 166.7 nm. TEM images show that 

they are not evenly distributed in a binding carbon region. The average density of QI particles 

is about 1.5 particles per µm2, estimated by counting 80 QI particles within an area of 

53.5 µm2 of binding carbon.  

 

  

 

  

 

Figure 7 Structures of QI inclusions in the binding carbon region. (a) STEM ADF 
image of a rosette structure; (b) indexed SAED ring pattern recorded from the rosette 
structure in (a); (c) schematic cross-sectional view of the rosette structure of a QI inclusion; 
(d) TEM BF image of a chaotic structure; (e) indexed SAED ring pattern recorded from the 
marked region of the chaotic structure in (d); (f) schematic cross-sectional view of the chaotic 
structure of a QI inclusion. 
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Figure 7(a) shows the detailed structure of a QI particle. The structure consists of 

concentrically aligned graphite nano-crystallites, and the central area itself is highly porous, 

as indicated by the darker contrast. The normal directions of most basal planes point to the 

centre of the rosette. The SAED pattern, as shown in Figure 7(b) shows diffraction rings 

where the {0002} basal plane reflections contribute most of the diffraction intensity, and the 

higher order reflections, {0004} and {0006}, are visible, but much weaker. It is noted that 

primary prismatic plane reflections are also visible with weak intensity, as indicated in 

Figure 7(b). We believe their presence is caused by the spherical structure of rosettes where 

some thin lamellae incline or are normal to the electron beam. Yamada [31] studied the 

rosette structure of QIs in detail, showing they are graphitised carbon blacks, which form 

some of the QIs found in coal-tar pitch binders [32]. The structure of the QI is schematically 

shown in Figure 7(c).  

 

Apart from the rosette QI particles, often regions that are known as so-called “chaotic 

structures” [5], [9], [10] could be found. Unlike the rosettes, their structures do not exhibit the 

typical concentric, shell-like arrangement. Instead, nano-crystallites are randomly positioned 

and dispersed over a limited region. They are forked and can be bent in opposite directions. A 

schematic representation is given in Figure 7(f). Their SAED patterns are similar to those 

obtained from rosette structures. The number of chaotic structures in the investigated TEM 

specimen was determined to be approximately a tenth of that of the QI particles with rosette 

structure. 

  

Inside QI particles, we have noted two types of structural features: a “sharp” bend and a 

“kink”-like bend. They are also seen in other regions of the graphite examined. An example 

of such a sharp bend region in the binding carbon is shown within the yellow square in 

Figure 8(a); continuously curved graphene layers are stacked to form the “sharp” bend, as 

shown in Figure 8(b). We examined a number of such “sharp” bends, including those in other 

regions of the graphite, and found that they all have the same structure consisting of 

continuously curved graphene layers. It is also noted that bridging ligaments exist around the 

tip of micro-cracks in graphite and QI particles. “Kinks” are also formed in these regions, as 

shown in Figure 8(c). Similar continuously bent graphene planes creating these “kinks” are 

shown at higher magnification in Figure 8(d).  
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Figure 8 Detailed structure of “sharp” bent graphite 
and ligands linking split graphite crystals. (a) STEM ADF 
image showing “sharp” bent graphites in the periphery of a 
QI with rosette structure; (b) STEM ADF image around a 
“sharp” bent within the yellow square in (a); (c) STEM ADF 
image showing a ligand linking split graphite crystals; (d) 
STEM ADF image around the bend position of a ligand 
within the yellow square in (c). 

 

4. Mesoscopic structure modelling  

Our experimental observation clearly shows that the crystal structures of carbon in both coke 

filler and binder regions are developed into a nearly perfect graphite structure after 

graphitisation. However, the graphite crystallites do arrange in various formats in a 3D space 

after graphitisation: e.g. laminated (Figure 4), concentric (Figure 7a-c), chaotic (Figure 7d-f), 

spiky aligned (Figure 8a-b)) and delaminated via cracking (Figure 8c). Among these formats, 

three distinctive features are identified on the mesoscopic scale: in-plane boundaries between 

[0001] graphite crystallites with mis-aligned basal planes (Figures 4c-d); sharp bends or 

kinks of a graphite crystallite (Figures 8b, d) and randomly oriented boundaries between 

highly textured graphite domains (Figures 6e, g). 

 

The in-plane boundaries exist in all carbon regions. Based on the TEM observation in 

Figure 4, we estimate that the neighbouring crystallites have an average thickness of 30 nm 

along the c-axis and a length up to 1000 nm in the basal plane, giving a minimum density of 

such boundaries around 106 m/m2 (the total length of boundary per unit area). If the length of 

the basal plane dimension (La) is reduced to 100 or 10 nm, the density can increase to a level 

of 107-8 m/m2. On the other hand, sharp bends or kinks are often seen in QI or when micro-

cracks are formed along the basal planes (Figure 7 and 8). QIs constitute only about 10 % of 

the binder and bridges are often formed near the tips of micro-cracks. Thus, the density of 
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bends/kinks is significantly smaller than that of the in-plane boundaries, and this is also true 

of randomly oriented boundaries because they exist at an even larger scale, typically microns. 

 

We believe these in-plane boundaries may have profound impact on the performance of 

graphite when subjected to neutron and ion irradiation damage. An illustration of this 

characteristic structure is shown in Figure 9(a), which shows a so-called “crazy paving” 

structure. The term ’crazy paving’ is used as this describes the arrangement of slabs (typically 

stone) of irregular size and shape that are laid in a haphazard manner. Direct imaging of the 

atomic structure of the boundaries between adjacent slabs is not yet available. The main 

challenge is to prepare TEM samples thinner than the Lc values, ~30 nm, of the laminae, 

where the normal direction of the thin foil is close to the c-axis. Here, we adapt a 

computational method to predict and see the possible atomic structure, as described below. 

 

  
Figure 9 (a) Schematic of the laminated graphite crystallites, referred to as the “crazy 
paving” structure in the text. Each graphite slab has the same [0001] direction, but a random 
rotation is applied around this [0001] direction. Grain boundaries occur at the edges of each 
slab, as well as basal mis-orientation between the layers. The slab shading indicates the 
rotation about [0001]. (b) An example of a low angle grain boundary (6 degrees), and (c) a 
high angle grain boundary (35 degrees) are shown, with the ‘a’ and ‘b’ layers visible. The 7 
member carbon rings are coloured blue and the 5 member carbon rings are coloured red. 
 

Computational methods have recently been used to generate nano-crystalline graphene sheets 

[33]. Using similar methods, randomly orientated graphene grains were generated by 

uniformly distributing a set of random points in a plane. A Voronoi construction of the 2D 
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plane was then generated from these points. A randomly orientated graphene grain is placed 

within each Voronoi cell, and the grain boundaries relaxed with the geometric centroidal 

Voronoi tessellation (CVT) method [34]. Further relaxation was then performed in molecular 

dynamics (MD) [35]. All MD simulations were performed using the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS). 

 

To generate nano-crystalline graphite slabs, i.e. the crazy paving structure shown in 

Figure 9(a), an original computer code [36], [37] was modified to produce alternating ‘ab’ 

layers of nano-crystalline graphene to generate a nano-crystalline graphite structure [38]. 

This was achieved by displacing the centres of the Voronoi cells by one C-C bond length 

along the appropriate axis. The Voronoi construction then resulted in grain boundaries which 

had roughly similar locations. Simulations using the AIREBO [35] potential and a recent 

Reactive Force Field (ReaxFF) potential [39] were considered in this work. The ReaxFF 

LAMMPS simulations made use of the ‘reax/c’ and ‘fix qeq/reax’ commands [40]. 

 

Due to the hexagonal symmetry, the mis-orientation can only vary between 0 and 60 degrees. 

Figure 9 (b) & (c) shows an example of a low and high angle mis-orientation respectively. 

The structures contain only 5, 6 and 7 member carbon rings, and all atoms have 3-fold 

coordination, as shown in the figures. See the original work [34] for a comprehensive 

analysis of the range of grain boundaries and their favourable comparison to experimental 

results. In the Figure 4 in the DiB [18], two examples of a triple junction are shown that are 

composed of only 5, 6 and 7 member rings.   

 

A di-interstitial defect, which consists of a ring of 5 and 7 member carbon rings around a 

central 6 member carbon ring, can occur during relaxation of the grain boundaries. An 

example of this defect can be seen in Figure 9(b). This sub-optimal defect is a local minimum, 

but a lower energy global minimum can be found by removing two atoms, and relaxing the 

system again. 

 

Using the AIREBO [35] potential with LAMMPS, a large slab structure (40x40x3 nm, 

575527 atoms) containing 8 randomly orientated Voronoi grains, was annealed at 1000 K in 

the npt ensemble at zero pressure, as shown in Figure 10(a). During the simulation, all atoms 

remained in their 3-fold coordination states. However, ridges along the grain boundaries were 

observed. Typically, 5 member carbon rings were observed at the peak of the ridges, as 

shown in Figure 10(b). The pentagons are expected to cause this curvature, since they are a 



 17 

positive wedge disclination which causes this positive Gaussian curvature. This curvature is 

also seen in fullerenes, which contain pentagon rings. The 6 member carbon rings in the 

centre of the junction in Figure 10(b) are distorted from their hexagonal shape in the bulk 

(including strong out of plane distortions), indicating a weak point of high strain.  

 

A recent ReaxFF potential has also been fitted to perfect and defective graphite structures 

[39]. After performing the initial relaxation of the geometrically determined structure and 

removal of atoms that were closer than a cut-off separation of 0.08 nm, with the ReaxFF 

potential, similar grain structures as above were found. 

 

  

  

Figure 10 (a) Graphite slabs (40x40x3 nm system with 8 randomly orientated Voronoi 
grains), relaxed with the AIREBO potential. (b) Only the top layer of atoms is shown, with 
the 5 member rings highlighted. (c-d) Graphite slabs (20x20x2 nm system with 3 randomly 
orientated Voronoi grains), relaxed with the ReaxFF potential. Images show a snapshot after 
20 ps of annealing at 1000 K. 
 

A smaller structure (20x20x2 nm, 3 Voronoi grains) was produced and annealed at 1000 K 

for 20 ps, with the Nosé-Hoover thermostat, using the ReaxFF potential. As seen in Figure 10 

(c-d), the surface roughens, but there is significantly less distortion of the surface around the 

grain boundaries using this potential. Interestingly, several surface areas reconstructed by 

ejecting a small number of atoms. This indicates that the boundary may still be over dense, 
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(containing too many di-interstitial defects), for this potential and a greater cut-off may be 

required in the geometric relaxation method that generated the grain boundary structures. 

 

The in-plane boundary structure between graphite slabs is expected to be relaxed by 5, 6 and 

7 member carbon rings. From the images shown in Figure 9-10, it is clear that the 7 member 

carbon rings open up the interface structure, giving arm-chair edge structure on the boundary, 

which is believed to represent the main contributor to the strength of the D peak in the Raman 

spectrum of graphite. Therefore, the estimated La based on an ID/IG ratio, or the measured in-

plane length from a TEM diffraction contrast image, should have a strong link with the 

existence of 7 member carbon rings.  

 

Sharp kink boundaries were also studied, and results are shown in Figure 5 in the DiB [18]. It 

was found that the structure appears stable, with only minor rounding of the sharp bend. This 

is in good agreement with the experimental observation of these kink boundaries. This 

idealised structure did not contain any defects, nor did any form during MD. All atoms 

remained 3-fold coordinated within 6 member hexagonal rings. 

 

5. Discussion 

We have demonstrated that isostatically moulded graphite, SNG623, has similar structural 

features in coke fillers and binding carbon as those identified in previous investigations [5]–

[9]. The present study has also shown that graphite crystal laminae are the primary 

constituents across all fillers and binding carbon structures. Such laminae had been 

previously exposed in TEM diffraction contrast images [4], [5], [7]–[9], but no further 

attention had yet been drawn to them. In her early study of crystallite growth in graphitising 

carbon based on X-ray diffraction/scattering, Franklin [41] proposed that the laminate 

structure of graphite is pre-defined by the graphite crystallites developed during carbonisation 

of hydrocarbon compounds. These crystallites retain enough mobility with weak cross-

linking and tend to lie nearly parallel to one another. It is this near-parallelism of 

neighbouring crystallites that contribute to the crystallite growth during graphitisation 

through movement of whole layers. Our measured in-plane dimensions of laminae in 

SNG623 vary from tens to hundreds, even a thousand nanometres, with a thickness around 

tens of nanometres. In general, a coke filler is composed of predominantly larger laminae. In 

binding carbon, the dimensions of the laminae have a broad distribution, but smaller sizes are 

predominant. The in-plane dimensions of these laminae are directly measured from 
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diffraction contrast TEM images, but can also be estimated from ID/IG ratios of Raman 

spectra on a fracture surface, as fully evidenced in this study. 

 

The ratio of D to G Raman band heights is strongly associated to the edge of graphene layers. 

Here we used atomistic modelling to elucidate the atomistic structure of the boundaries 

between aligned graphite crystallites. The boundaries are composed of 5, 6 and 7 member 

carbon rings. It is believed that the 7 member carbon rings form arm-chair type edges of 

graphene layers that contribute most to the D band intensity in a Raman spectrum. We 

believe Raman spectroscopy can be a useful tool to quantify the dimensions of laminae in 

graphite, in particular after irradiation when vacancies and new interstitial layers have formed. 

 

The turbostratic structure in graphite has been widely proposed to be an important 

‘mesoscopic structure’ in previous research. For this structure, the graphene layers may 

randomly translate relative to each other, and rotate about the normal of a graphene layer.  

However, there is no evidence from our study that turbostratic structures exist within the 

investigated samples, away from the grain boundaries. Nevertheless, the interface region 

close to the basal planes between different laminae does not necessarily follow the AB type 

graphite stacking. This was observed in the simulations although direct microscopic imaging 

of this region was not possible. In the model, the centres of the “crazy paving” structures 

were AB stacked, so this deviation from AB stacking could be just grain boundary effect. To 

clarify if a turbostratic structure exists within each lamina or not, further investigation is 

needed. 

 

So far atomistic modelling has only been conducted to establish the atomistic structures of 

commonly observed features. Our aim is to use such modelling results to build the atomistic 

structure of an industrial graphite grade, for further investigations of irradiation damage.  

 

6. Conclusion 

Isostatically moulded graphite, SNG623, shows a structure characteristic of laminae, or 

“crazy paving” in both coke filler and binding carbon. In a laminate, the graphite crystallites 

have nearly parallel [0001] orientation but are rotated randomly. The thickness of a lamina is 

around 30 nm, but the dimension in the basal plane varies from tens and hundreds to over a 

thousand nanometres, as estimated from the TEM diffraction contrast images.  
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Raman spectroscopy results, used to determine disorder structure in graphite or graphene, can 

be interpreted in terms of the mesoscopic boundaries formed between graphite crystal 

laminae in the laminated graphite structure. The differences in the estimated La from ID/IG, 

between coke filler and binding carbon can be explained by different lamina dimensions. In 

the coke filler the laminae have large dimension along the basal plane direction, typically a 

few hundred nanometres, with a relatively narrow distribution. In the binding carbon, the QI 

and the polycrystalline graphite, have a broad range of lamina dimension from tens to 

hundreds nanometres. 

 

Atomistic modelling shows that the prismatic boundary formed between two differently 

oriented graphite laminae is composed of 5, 6 and 7 member carbon rings. The 7 member 

rings, relaxed in an interface structure, establish a local armchair edge structure that is 

believed to be the disordered structure that contributes most to the intensity of the D band in 

the Raman spectrum. 
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