
A

Regular Languages are Church-Rosser Congruential

VOLKER DIEKERT, University of Stuttgart
MANFRED KUFLEITNER, University of Stuttgart
KLAUS REINHARDT, University of Tübingen
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1. INTRODUCTION
The notion of Church-Rosser congruential language appeared first in Narendran’s PhD
thesis [Narendran 1984]. The thesis led to a systematic study of Church-Rosser lan-
guages in a joint work by McNaughton, Narendran, and Otto which appeared in [Mc-
Naughton et al. 1988]. A main motivation to consider Church-Rosser languages is that
the word problem can be solved in linear time: This is done by computing normal
forms on input words by using a finite, confluent, and length-reducing string rewriting
system. Once an irreducible normal form is obtained, membership can be decided by
checking whether the irreducible normal form belongs to some finite table. As com-
mon, a string rewriting system over a finite alphabet A is called a semi-Thue system.
We are interested in finite systems, only. This finiteness assumption is part of the fol-
lowing definition. A language L ⊆ A∗ is called Church-Rosser congruential, if there
exists a finite, confluent, and length-reducing semi-Thue system S ⊆ A∗ × A∗ such
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that L is a finite union of congruence classes modulo S. If, in addition, the index of S is
finite (i.e., the monoid A∗/S of all congruence classes is finite) then L is called strongly
Church-Rosser congruential.

It is not hard to see that {anbn | n ≥ 1} is Church-Rosser congruential, but
{ambn | m ≥ n} is not. This led the authors of [McNaughton et al. 1988] to the
more technical notion of Church-Rosser languages which captures all deterministic
context-free languages. In [Niemann and Otto 2005] Church-Rosser languages were
characterized as deterministic growing context-sensitive languages. For more results
about Church-Rosser languages see e.g. [Buntrock and Otto 1998; Narendran 1984;
Woinowski 2001; Woinowski 2003]. Since {ambn | m ≥ n} is deterministic context-free,
the class of Church-Rosser languages is strictly larger than the class of Church-Rosser
congruential languages. It was conjectured that all regular languages are Church-
Rosser congruential. After some significant initial progress towards a solution of this
conjecture [Narendran 1984; Niemann 2002; Niemann and Otto 2005; Niemann and
Waldmann 2002; Reinhardt and Thérien 2003] there was stagnation.

Before 2011 the most advanced result was the one announced in 2003 by Reinhardt
and Thérien [Reinhardt and Thérien 2003]. According to this manuscript the conjec-
ture is true for all regular languages where the syntactic monoid is a group. Unfor-
tunately, the manuscript has never been published as a refereed paper and there are
some flaws in its presentation. The main problem with [Reinhardt and Thérien 2003]
has however been quite different for us. The statement is too weak to be useful in the
induction for the general case. So, instead of being able to use [Reinhardt and Thérien
2003] as a black box, we needed to prove a more general result in the setting of weight-
reducing systems. This part about group languages is a cornerstone in our approach.

The other ingredient to our paper has been established only very recently. Knowing
that the result is true if the syntactic monoid is a group, it was natural to investigate
aperiodic monoids. Finite aperiodic monoids do not have non-trivial groups as sub-
semigroups. They correspond to star-free languages; and the first two authors together
with Weil proved that all star-free languages are Church-Rosser congruential [Diekert
et al. 2012b]. It became possible by loading the induction hypothesis leading to a much
stronger statement: For every star-free language L ⊆ A∗ there exists a finite conflu-
ent semi-Thue system S ⊆ A∗×A∗ with the following properties. The quotient monoid
A∗/S is finite and aperiodic, L is a union of congruence classes modulo S, and moreover
all right-hand sides of rules appear as scattered subwords in the corresponding left-
hand side. The last property is called subword-reducing, and it is obvious that every
subword-reducing system is length-reducing. However, we have little hope that such
a strong result holds outside aperiodic languages, in general. Indeed, here we step
back from subword-reducing to weight-reducing systems. Thus, we combine a stronger
result than stated in [Reinhardt and Thérien 2003] together with a weaker result than
shown in [Diekert et al. 2012b] for aperiodic languages. The proof in [Diekert et al.
2012b] used crucially the construction of local divisors. The same is true here.

Theorem 5.1 states the following result: Let L ⊆ A∗ be a regular language and
‖a‖ ∈ N \ {0} be a positive weight for every letter a ∈ A (e.g., ‖a‖ = |a| = 1). Then we
can construct a finite, confluent and weight-reducing semi-Thue system S ⊆ A∗ × A∗
such that the quotient monoid A∗/S is finite and recognizes L. In particular, L is a
finite union of congruence classes modulo S. As a consequence, a language is regular if
and only if it is strongly Church-Rosser congruential.

This paper therefore solves a problem which was open for about 25 years after the
journal publication [McNaughton et al. 1988]. If we consider Nivat’s paper in 1970 [Ni-
vat 1970] (where this kind of questions has been initiated) or Narendran’s PhD the-
sis [Narendran 1984] as starting point, one can say it was open for an even longer
period. The solution to this problem became possible by proving a general algebraic re-
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sult that homomorphisms from free monoids to finite monoids factorize through finite,
confluent, and weight reducing semi-Thue systems.

The present paper is the journal version of the conference abstract [Diekert et al.
2012a]. The present paper contains full proofs and improvements concerning the pre-
sentation.

2. PRELIMINARIES
Throughout this paper, A is a finite alphabet. An element of A is called a letter. The
set A∗ is the free monoid generated by A. It consists of all finite sequences of letters
from A. The elements of A∗ are called words. The empty word is denoted by 1. The
length of a word u is denoted by |u|. We have |u| = n for u = a1 · · · an where ai ∈ A. The
empty word has length 0, and it is the only word with this property. The set of words
of length at most n is denoted by A≤n, and the set of all nonempty words is A+. We
generalize the length of a word by introducing weights. A weighted alphabet (A, ‖·‖)
consists of an alphabet A equipped with a weight function ‖·‖ : A → N \ {0}. The
weight of a letter a ∈ A is ‖a‖ and the weight ‖u‖ of a word u = a1 · · · an with ai ∈ A is
‖a1‖+ · · ·+ ‖an‖. The weight of the empty word is 0. Length is the special weight with
‖a‖ = 1 for all a ∈ A.

We use the standard notation from combinatorics on words: A word u is a factor of a
word v if there exist p, q ∈ A∗ such that puq = v, and u is a proper factor of v if pq 6= 1.
The word u is a prefix of v if uq = v for some q ∈ A∗, and it is a suffix of v if pu = v for
some p ∈ A∗. We say that u is a factor (resp. prefix) of v+ if u is a factor (resp. prefix) of
v|u|. We denote the set of factors of a word v by Factors(v) and the set of factors which
are factors of some word in v+ by Factors(v+). Two words v, w ∈ A∗ are conjugate, if
there exist p, q ∈ A∗ such that v = pq and w = qp. Note that if u a is factor of v+ and if
v, w are conjugate, then u is a factor of w+, too. An integer m > 0 is a period of a word
u = a1 · · · an with ai ∈ A if ai = ai+m for all 1 ≤ i ≤ n −m. A word u ∈ A+ is primitive
if there exists no v ∈ A+ such that u = vn for some integer n > 1. It is a standard fact
that a word u is not primitive if and only if u2 = puq for some p, q ∈ A+. This follows
immediately from the result from combinatorics on words that xy = yx if and only if x
and y are powers of a common root; see e.g. [Lothaire 1983, Section 1.3].

An equivalence relation∼ ⊆ A∗×A∗ is called a congruence if u ∼ v implies xuy ∼ xvy
for all u, v, x, y ∈ A∗. The set of congruence classes [u] = {v ∈ A∗ | u ∼ v} forms a quo-
tient monoid of A∗ by defining [u] · [v] = [uv]. For a language L ⊆ A∗ the syntactic
congruence is defined by u ∼ v if we have xuy ∈ L ⇔ xvy ∈ L for all x, y ∈ A∗.
The quotient monoid is called the syntactic monoid of L. It is denoted by Synt(L) and
the canonical homomorphism is denoted by πL : A∗ → Synt(L). As usual, a language
L ⊆ A∗ is called regular if Synt(L) is finite. There are various other well-known charac-
terizations of regular languages; e.g., regular expressions, finite automata or monadic
second order logic. Here we use another equivalent definition. A monoid M recognizes
L if there exists a homomorphism ϕ : A∗ → M such that L = ϕ−1ϕ(L). We also say
that ϕ recognizes L in this case. If ϕ : A∗ → M recognizes L, then the syntactic homo-
morphism πL factorizes through ϕ. This classical observation shows that a language
L ⊆ A∗ is regular if and only if it is recognized by some finite monoid.

Regular languages L can be classified in terms of structural properties of the
monoids recognizing L. In particular, we consider group languages; these are lan-
guages recognized by finite groups. At the other end in the spectrum of regular lan-
guages are aperiodic languages. These are languages recognized by finite monoids
where all groups which occur as a subsemigroup are trivial.

In this paper, a semi-Thue system over A is a finite subset S ⊆ A∗×A∗. The elements
of S are called rules. We frequently write ` → r for the rule (`, r). A system S is called
length-reducing if we have |`| > |r| for all rules `→ r in S. It is called weight-reducing
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with respect to some weighted alphabet (A, ‖·‖) if ‖`‖ > ‖r‖ for all rules ` → r in
S. Every system S defines a rewriting relation =⇒

S
⊆ A∗ × A∗ by setting u =⇒

S
v

if there exist p, q, `, r ∈ A∗ such that u = p`q, v = prq, and ` → r is in S. By ∗
=⇒
S

we mean the reflexive and transitive closure of =⇒
S

. By ∗⇐⇒
S

we mean the symmetric,

reflexive, and transitive closure of =⇒
S

. We also write u ∗⇐=
S

v whenever v ∗
=⇒
S

u. The

system S is confluent if for all u ∗⇐⇒
S

v there is some w such that u ∗
=⇒
S

w
∗⇐=
S

v. It is

locally confluent if for all v ⇐=
S

u =⇒
S

v′ there exists w such that v ∗
=⇒
S

w
∗⇐=
S

v′. It is
terminating if there are no infinite chains u1 =⇒

S
u2 =⇒

S
u3 =⇒

S
· · · . Weight-reducing

systems are terminating since then u =⇒
S

v implies ‖u‖ > ‖v‖.
In order to check that a system S is locally confluent, it is enough to show the fol-

lowing two statements.

(i) For all (`, r), (`′, r′) ∈ S where x` = `′z and |x| < |`′| there is some w ∈ A∗ with
xr

∗
=⇒
S

w
∗⇐=
S

r′z.

(ii) For all (`, r), (`′, r′) ∈ S where ` = y`′z there is some w ∈ A∗ with r ∗
=⇒
S

w
∗⇐=
S

yr′z.

The corresponding pairs (xr, r′z) and (r, yr′z) are so-called critical pairs. The important
property is that a finite system has only finitely many critical pairs. They arise from
words where left-hand sides ` and `′ overlap as follows:

x `
`′ z

overlap critically

y `′ z
`

factor critically

Fig. 1: Sources of critical pairs

Throughout we use the classical result that terminating and locally confluent sys-
tems are confluent. The proof is easy and can be found in textbooks, see e.g. [Book and
Otto 1993] or [Jantzen 1988].

The relation ∗⇐⇒
S
⊆ A∗ × A∗ is a congruence. The monoid of congruence classes

[u]S = {v ∈ A∗ | u ∗⇐⇒
S

v} is denoted by A∗/S. The size of A∗/S is called the index of
S. A finite semi-Thue system S can be viewed as a finite set of defining relations. By
IRRS(A∗) we denote the set of irreducible words in A∗, i.e., the set of words where no
left-hand side occurs as a factor.

Assume that L ⊆ A∗ is recognized by some homomorphism ϕ : A∗ → M where M
is finite. As every finite monoid is finitely presented there exists a finite semi-Thue
system S such that M = A∗/S. The finite system S can be chosen to be terminating
and confluent. However, it is not true that S can be chosen length- or weight-reducing,
in general. Whenever the weighted alphabet (A, ‖·‖) is fixed, a finite semi-Thue sys-
tem S ⊆ A∗ × A∗ is called a weighted Church-Rosser system if it is finite, weight-
reducing for (A, ‖·‖), and confluent. Hence, a finite semi-Thue system S is a weighted
Church-Rosser system if and only if (1) we have ‖`‖ > ‖r‖ for all rules ` → r in S
and (2) every congruence class has exactly one irreducible element. In particular, for
weighted Church-Rosser systems S there is a one-to-one correspondence between A∗/S
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and IRRS(A∗). A Church-Rosser system is a finite, length-reducing, and confluent semi-
Thue system. In particular, every Church-Rosser system is a weighted Church-Rosser
system for (A, |·|). A language L ⊆ A∗ is called a Church-Rosser congruential language
if there is a finite Church-Rosser system S such that L can be written as a finite union
of congruence classes [u]S .

Example 2.1. Consider the following three languages L1 = {anbn | n ≥ 1}, L2 =
{ambn | m ≥ n}, and L3 = a(ba)∗ over the two-letter alphabet A = {a, b}. The languages
L1 and L2 are non-regular but deterministic context-free whereas L3 is regular. The
first language L1 is Church-Rosser congruential. The corresponding system is S1 ={
a2b2 → ab

}
; and we have L1 = [ab]S1

.
The complement of L1 is not Church-Rosser congruential. Indeed assume that S′ is

a Church-Rosser system such that we can write A∗ \L1 as a finite union of congruence
classes. Then some congruence class must contain words akb and amb with k > m ≥ 1.
But then akbm and ambm share the same class, too. This is impossible since akbm /∈ L1

and ambm ∈ L1. A very similar argument shows that neither L2 nor its complement
A∗ \ L2 are Church-Rosser congruential.

Consider L3 = a(ba)∗. It is Church-Rosser congruential due to the system S =
{aba→ a}. With respect to S all words an are irreducible. In particular, the monoid
A∗/S is infinite. Hence, S has infinite index. An explicit Church-Rosser system T for
L3 of finite index has been constructed in [Diekert et al. 2012b]. It is given by

T = { bbb→ bb, bba→ bb, abb→ bb, bab→ b,

aaa→ bb, aab→ bb, baa→ bb, aba→ a}.

The monoid {a, b}∗/T has seven elements: [1]T , L3 = [a]T , [b]T , [ab]T , [ba]T , [aa]T , and
[bb]T . It is not the smallest monoid recognizing L3, because aa and bb behave as a “zero”
and could be identified. The smallest monoid recognizing L3 is its syntactic monoid and
has 6 elements.

The observation in Example 2.1 leads to the notion of strongly Church-Rosser con-
gruential language [Niemann 2002] and the corresponding class sCRCL. Let CRCL de-
note the class of Church-Rosser congruential languages. The subclass sCRCL is defined
as the family of languages L ⊆ A∗ which can be written as union of congruence classes
w.r.t some Church-Rosser system of finite index. In particular, such a congruence re-
fines the syntactic congruence of L; as a consequence L is regular. Thus, sCRCL ⊆ REG.
Here and in the following REG denotes the class of all regular languages. By Exam-
ple 2.1:

L1 ∈ CRCL \ sCRCL,

L2 /∈ CRCL,

L3 ∈ sCRCL ⊆ REG.

Our goal is to show REG ⊆ sCRCL, thus REG = sCRCL. This is stated in Corollary 5.2.
Actually, we shall prove a statement about finite monoids rather than on regular lan-
guages in which the following definition is central.

Definition 2.2. Let ϕ : A∗ → M be a homomorphism and let S be a semi-Thue
system. We say that ϕ factorizes through S if for all u, v ∈ A∗ we have:

u =⇒
S

v implies ϕ(u) = ϕ(v).

As a special case, we obtain that L ∈ sCRCL if and only if the syntactic homomorphism
of L factorizes through some Church-Rosser system S of finite index. More generally,
let S ⊆ A∗ × A∗ be any semi-Thue system such that ϕ : A∗ → M factorizes through S,
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then ψ(π(u)) = ϕ(u) is well-defined, where π(u) = [u]S is the canonical homomorphism.
Moreover, if ϕ recognizes L, then we obtain the following commutative diagram.

A∗ ϕ(A∗) M

A∗/S

Synt(L)

ϕ

π ψ

πL

Our goal is to show that every homomorphism ϕ : A∗ → M to a finite monoid fac-
torizes through a Church-Rosser system of finite index. This aim is achieved by Theo-
rem 5.1.

3. FINITE GROUPS
Our main result is that every homomorphism ϕ : A∗ →M to a finite monoid M factor-
izes through a Church-Rosser system S. We distinguish whether or not M is a group;
and we first prove this result for groups. Before we turn to the general group case,
we show that proving the claim for some particular groups is easy. The techniques
developed here will also be used when proving the result for arbitrary finite groups.

3.1. Groups without proper cyclic quotient groups
The aim of this section is to show that finding a Church-Rosser system is
easy for some cases. This list includes presentations of finite (non-cyclic) simple
groups, but it goes beyond this. Let ϕ : A∗ → G be a homomorphism to a
finite group, where (A, ‖·‖) is a weighted alphabet. This defines a regular lan-
guage LG = {w ∈ A∗ | ϕ(w) = 1}. Let us assume that the greatest common divisor
gcd {‖w‖ | w ∈ LG} satisfies gcd {‖w‖ | w ∈ LG} = gcd {‖a‖ | a ∈ A}. This happens e.g.
if {6, 10, 15} ⊆ {‖w‖ | w ∈ LG}, because then gcd {‖w‖ | w ∈ LG} = gcd {‖a‖ | a ∈ A} =
1. Then there are two words u, v ∈ LG such that ‖u‖ − ‖v‖ = q, where q =
gcd {‖a‖ | a ∈ A}. We can use these words u and v to find a constant d ∈ qN such that
all g ∈ G have a representing word vg with the exact weight ‖vg‖ = d. To see this, start
with some arbitrary set of representing words vg. We multiply words vg with minimal
weight by u and all other words vg by v until all weights are equal. The final step is to
define the following weight-reducing system

SG =
{
w → vϕ(w)

∣∣ w ∈ A∗ and d < ‖w‖ ≤ d+ max {‖a‖ | a ∈ A}
}
.

Confluence of SG is straightforward: Let w ∈ A∗. If ‖w‖ ≤ d, then no rule applies to
w and w is irreducible. Next, we prove by induction that for all w ∈ A∗ with ‖w‖ > d

there exists a derivation w
∗

=⇒
SG

vϕ(w) with
∥∥vϕ(w)

∥∥ = d. Thus we consider w ∈ A∗ with

‖w‖ > d. Then there exists a factorization w = uv with d < ‖u‖ ≤ d+max {‖a‖ | a ∈ A}.
Since u → vϕ(u) is a rule and ϕ(vϕ(u)) = ϕ(u), we deduce w =⇒

SG

vϕ(u)v
∗

=⇒
SG

vϕ(w)

by induction. Moreover, if w ∗
=⇒
SG

ŵ is any derivation such that ŵ is irreducible with

respect to SG, then ‖ŵ ‖ = d, because ‖w‖ > d. Since ϕ(w) = ϕ(ŵ ) and ‖ŵ ‖ = d, we
conclude ŵ = vϕ(w). Thus, SG is indeed a Church-Rosser system of finite index such
that ϕ factorizes through SG.

Now assume gcd {‖w‖ | w ∈ LG} > gcd {‖a‖ | a ∈ A}. Without loss of generality, we
have gcd {‖a‖ | a ∈ A} = 1. Then there is a prime number p such that p divides ‖w‖
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for all w ∈ LG. The image G′ = ϕ(A∗) is a subgroup of G since G is finite. Define
ϕ′ : G′ → Z/pZ by ϕ′(g) = ‖u‖ mod p if ϕ(u) = g. This is well-defined, because for
ϕ(u) = ϕ(v) there exists w ∈ A∗ with ϕ(uw) = ϕ(vw) = 1. Therefore p divides both
‖uw‖ and ‖vw‖. Hence ‖u‖ ≡ ‖v‖ mod p. Since ϕ′ is surjective, we see that Z/pZ be-
comes a quotient group of G′. This can never happen if ϕ(A∗) is a simple and non-cyclic
subgroup of G, because a simple group does not have any proper quotient group. But
there are many other cases where a natural homomorphism A∗ → G for some weighted
alphabet (A, ‖·‖) satisfies the property gcd {‖w‖ | w ∈ LG} = 1 although the subgroup
ϕ(A∗) of G has a non-trivial cyclic quotient group. Just consider the length function
and a presentation by standard generators for dihedral groups D2n or the permutation
groups Sn where n is odd.

In order to have a concrete example, let G = D6 = S3 be the permutation group
of a triangle. The group G is generated by elements τ and ρ with defining relations
τ2 = ρ3 = 1 and τρτ = ρ2. It has Z/2Z as a quotient. Still, gcd(

∣∣τ2
∣∣ , ∣∣ρ3

∣∣) = gcd(2, 3) = 1;
and the following six words of length 3 represent all six group elements:

1 = ρ3, ρ = ρτ2, ρ2 = τρτ, τ = τ3, τρ = ρ2τ, τρ2.

More systematically, one could obtain a normal form of length 5 for each of the group
elements in

{
1, ρ, ρ2, τ, τρ, τρ2

}
by adding factors ρ3 and τ2. For example, this could

lead to the set of normal forms
{
τ2ρ3, τ4ρ, ρ5, τ5, τρ4, τ3ρ2

}
. We will use this pumping

idea in our proof of the general case for finding normal forms of approximately the
same size.

It is much harder to find a Church-Rosser system for the homomorphism ϕ :
{a, b, c}∗ → Z/3Z where ϕ(a) = ϕ(b) = ϕ(c) = 1 mod 3. Restricting ϕ to the sub-
monoid {a, b}∗ makes the situation simpler. Still it is surprisingly complicated. A pos-
sible Church-Rosser system S ⊆ {a, b}∗×{a, b}∗ of finite index such that the restriction
of ϕ factorizes through S is given by:

S =
{
aaa→ 1, baab→ b, (ba)3b→ b, bb u bb→ b|u|+1

∣∣∣ 1 ≤ |u| ≤ 3
}
.

There are 273 irreducible elements and the longest irreducible word has length 16.
Note that the last set of rules has bb as a prefix and as a suffix on both sides of every
rule. The idea of preserving end markers such as ω = bb in the above example is
essential for the solution of the general case, too.

In some sense this phenomenon suggests that finite cyclic groups or more general
commutative groups form an obstacle for constructing Church-Rosser systems.

3.2. The general case for group languages
3.2.1. Outline. The proof that group languages are Church-Rosser congruential uses

induction on the size of the alphabet. We will show that every homomorphism ϕ :
A∗ → G factorizes through a weighted Church-Rosser system S of finite index using
the following road map: For |A| > 1 we remove some letter c from the alphabet A. This
leads to a system R over the remaining letters B. Lemma 3.1 allows us to assume that
all words of any given finite set are irreducible. Then we set K = IRRR(B∗)c which is
a prefix code in A∗. We consider K as a new alphabet. Essentially, it is this situation
where weighted alphabets come into play, because we can choose the weight of K such
that it is compatible with the weight over the alphabet A. We introduce two sets of
rules T∆ and TΩ over K. The T∆-rules reduce long repetitions of short words ∆, and
the TΩ-rules have the form ω uω → ω vg ω. Here, Ω is some finite set of markers, ω ∈ Ω
is such a marker and the word vg is a normal form for the group element g. The TΩ-
rules reduce long words without long repetitions of short words. We show that T∆ and
TΩ are confluent and that their union has finite index over K∗. The confluence of T∆
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is Lemma 4.2. The confluence of TΩ relies on several combinatorial properties of the
normal forms vg and the markers Ω. Using Lemma 3.2, we see that all sufficiently long
words are reducible. Since by construction all rules in T = T∆∪TΩ are weight-reducing,
the system T is a weighted Church-Rosser system over K∗ with finite index such that
ϕ : K∗ → G factorizes through T . Since K ⊆ A∗, we can translate the rules ` → r in T
over K∗ to rules c` → cr over A∗. This leads to the set of T ′-rules over A∗. The letter c
at the beginning of the T ′-rules is required to shield the T ′-rules from R-rules. Finally,
we show that S = R ∪ T ′ is the desired system over A∗.

3.2.2. Group languages are Church-Rosser congruential. In this section, we consider the
general case of groups.

LEMMA 3.1. Let (A, ‖·‖) be a weighted alphabet, e ∈ N be some natural number,
and let S ⊆ A∗ × A∗ be a weighted Church-Rosser system such that IRRS(A∗) is finite.
Then

Se = {u`v → urv | u, v ∈ Ae and `→ r ∈ S}
is a weighted Church-Rosser system satisfying:

(i) The mapping [u]Se
7→ [u]S for u ∈ A∗ is well-defined and yields a surjective homo-

morphism from A∗/Se onto A∗/S.
(ii) All words of length at most 2e are irreducible with respect to Se.

(iii) The set IRRSe(A∗) is finite.

PROOF. Since S is weight-reducing, the system Se is weight-reducing, too. For all
w,w′ ∈ A∗ and u, v ∈ Ae, we have w ∗

=⇒
S

w′ if and only if uwv ∗
=⇒
Se

uw′v. Moreover, rules

of Se apply only to words of length more than 2e and an application leaves the prefix
and suffix of length e invariant. Hence, confluence of S transfers to confluence of Se.
Thus, Se is indeed a weighted Church-Rosser system. Since w ∗⇐⇒

Se

w′ implies w ∗⇐⇒
S

w′

for all w,w′ ∈ A∗, we obtain [u]Se ⊆ [u]S and thus assertion (i) holds.
All words of length at most 2e belong to IRRSe(A∗). This yields assertion (ii). More

precisely, we can write IRRSe(A∗) as a disjoint union

IRRSe
(A∗) = A<2e ∪Ae · IRRS(A∗) ·Ae.

Since IRRS(A∗) is finite by hypothesis, the set IRRSe(A∗) is finite, too. This shows
assertion (iii).

LEMMA 3.2. Let d ≥ 1, u ∈ K∗, and F = ∪δ∈∆Factors(δ+) where K is a finite
alphabet and ∆ ⊆ K+ is a set of words of length at most d. Then the following assertion
holds. If u has the property that Factors(u) ∩ K≤2d ⊆ F , then we have u ∈ F . (This
means: If u ∈ K∗ is a word such that every factor of u of length at most 2d appears as a
factor of δ+ for some δ ∈ ∆, then u itself is a factor of δ+ for some δ ∈ ∆.)

PROOF. We may assume that |u| > 2d. Write u = awb for a, b ∈ K. Then, by induction
on |u|, the prefix aw is a factor of δ+ and wb is a factor of η+ for some δ, η ∈ ∆. Let p = |δ|
and q = |η|. Note that p is a period of aw and q is a period of wb. Thus p and q are both
periods of w. Since |w| ≥ 2d− 1 ≥ p+ q − gcd(p, q), we see that gcd(p, q) is also a period
of w by the Periodicity Lemma of Fine and Wilf, see e.g. [Lothaire 1983, Section 1.3].
By symmetry we may assume p ≤ q; and we can write q+ 1 = p+ 1 + kr for some k ∈ N
with r = gcd(p, q). Since the (p + 1)-th letter in aw is a, the (q + 1)-th letter in aw is a,
too. By replacing, if necessary, η by some conjugate we may actually assume that wb is
a prefix of η+. The (q+ 1)-th letter in aw becomes the last letter of η, because q = |η|. It
follows that awb is a factor of η+.
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THEOREM 3.3. Let (A, ‖·‖) be a weighted alphabet and let ϕ : A∗ → G be a homo-
morphism to a finite group G. Then there exists a weighted Church-Rosser system S of
finite index such that ϕ factorizes through S.

We reduce the proof of Theorem 3.3 to the proof of Proposition 3.4 stated below. The
proof of Proposition 3.4 is given in Section 4. We do not pay too much attention to
finding a “small” Church-Rosser system S. Even in its present form, the pure exis-
tence proof (without optimization on the system size) is rather technical. We decided
therefore to prefer conceptual simplicity over system size.

Note that ϕ : A∗ → G factorizes through S if and only if ϕ : A∗ → ϕ(A∗) factorizes
through S. Therefore we may assume that G = ϕ(A∗), G is non-trivial, and |A| ≥ 1. In
particular, it is enough to show Theorem 3.3 under the assumption that ϕ is surjective.
In the following n denotes the exponent of G; this is the least positive integer n such
that gn = 1 for all g ∈ G. The proof is by induction on the size of the alphabet A.
Choose some letter c ∈ A. If A = {c}, then we set S = {cn → 1}. Let now B = A \ {c}
and B = {a0, . . . , as−1} with s ≥ 1. We choose a0 to have minimal weight among the
letters of B. For i ∈ N define words γi by

γi = a
n+bi/sc
i mod s c. (1)

In particular, γ0 = an0 c, γ1 = an+1
0 c for s = 1, γ1 = an1 c for s ≥ 2, γs = an+1

0 c, and for
k ≥ 0 we have γks = an+k

0 c. The weight of every γi is larger than n ‖a0‖. This fact will
be used later, e.g., in the proof of Lemma 4.4. The set {c, a0c, . . . , as−1c} generates G;
and all group elements ϕ(c) and ϕ(ajc) with 0 ≤ j < s occur infinitely often as some
ϕ(γi) (e.g., ϕ(c) ∈ G occurs for i = kns and ϕ(ajc) ∈ G occurs for i = (kn + 1)s + j and
k ≥ 0). Hence, there exists m with 1 ≤ m ≤ |G| · n · |A| such that for every g ∈ G there
exists a word

vg = γ0γ
n0
0 γn1

1 · · · γnm
m γmγ0 (2)

with ni ≥ 0 satisfying ϕ(vg) = g and ‖vg‖ − ‖vh‖ < n ‖a0‖ for all g, h ∈ G. The latter
property relies on ‖γ0‖ + ‖a0‖ = ‖γs‖ and that we may choose m ≥ s. Indeed, assume
‖vg‖ − ‖vh‖ ≥ n ‖a0‖ for some g, h ∈ G. For those vg with maximal weight replace the
exponent n0 of γ0 by n0 + n; for all other words vh replace the exponent ns of γs by
ns +n. After that, the maximal difference ‖vg‖− ‖vh‖ has decreased at least by 1. (The
decrease is at most n ‖a0‖. The decrease does not exceed 1 in general, because there
might have been a word vf with ‖vg‖ = ‖vf‖+ 1.) The image in G did not change since
ϕ(γn0 ) = ϕ(γns ) = 1. We iterate this procedure until the weights of all vg differ by less
than n ‖a0‖. In the following we fix the number m and we let

Γ = {γ0, . . . , γm} .
By induction on the size of the alphabet there exists a weighted Church-Rosser system
R ⊆ B∗ × B∗ of finite index such that the restriction ϕ : B∗ → G factorizes through R.
Note that induction applies to ϕ : B∗ → G whether or not the restriction of ϕ to B∗ is
surjective. By Lemma 3.1, we may choose R such that Γ ⊆ IRRR(B∗) c. Let

K = IRRR(B∗) c.

The set K is a finite prefix code in A∗ with Γ ⊆ K. We consider K as an extended
alphabet and its elements as extended letters. The free monoid K∗ is viewed as the
subset K∗ ⊆ A∗. The weight ‖u‖ of u ∈ K is its weight as a word over A. Each word
γi ∈ Γ is a letter in K. The restriction of the homomorphism ϕ : A∗ → G to K∗ induces
a homomorphism ψ : K∗ → G; it is given by ψ(u) = ϕ(u) for u ∈ K. We define a lexical
order on A by a0 < · · · < as−1 < c which leads to the length-lexicographic order on B∗c.
(Words are compared first by length, and if they have equal length, they are compared
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in lexicographic order.) The length-lexicographic order induces a linear order ≤ on
IRRR(B∗)c and hence also a linear order on the extended alphabet K. Equations (1)
and (2) show that the words vg satisfy as words over the weighted alphabet (K, ‖·‖) the
following five properties:

(i) Each word vg starts with the extended letter γ0.
(ii) The last two extended letters of vg are γmγ0.

(iii) From left to right all extended letters in vg are in non-decreasing order with re-
spect to ≤ with the sole exception of the last letter γ0, which is smaller than its
predecessor γm.

(iv) All extended letters in vg have a weight greater than n ‖a0‖.
(v) All differences ‖vg‖ − ‖vh‖ are smaller than n ‖a0‖.

PROPOSITION 3.4. There exists a weighted Church-Rosser system T ⊆ K∗ ×K∗ of
finite index such that ψ : K∗ → G factorizes through T .

Let us postpone the proof of Proposition 3.4 to Section 4 and finish the proof of The-
orem 3.3 first. Recall that every element in K∗ can be read as a sequence of elements
in A∗. Thus, every element u ∈ K∗ can be interpreted as a word u ∈ A∗ when applying
rules in T to words in A∗ (which are in fact irreducible with respect to R). Since we
must not destroy K-letters, we guard the first K-letter of every T -rule by prepending
the letter c. This leads to the system

T ′ = {c`→ cr ∈ A∗ ×A∗ | `→ r ∈ T} .
Combining the rules R over the alphabet B with the T ′-rules yields

S = R ∪ T ′.
Since left-hand sides of R-rules and of T ′-rules do not overlap, the system S is con-
fluent. By definition, each S-rule is weight-reducing. This means that S is a weighted
Church-Rosser system. The sets IRRS(A∗) andA∗/S are finite. Since `→ r in S satisfies
ϕ(`) = ϕ(r), the homomorphism ϕ factorizes through S. Thus, the system S satisfies
the assertion of Theorem 3.3. This reduces the proof of Theorem 3.3 to the proof of
Proposition 3.4.

4. PROOF OF PROPOSITION 3.4
The difference between Proposition 3.4 and Theorem 3.3 is that the (much larger) al-
phabet K satisfies more hypotheses than A. We show Proposition 3.4 from an abstract
viewpoint. An overview of some notation which will be used in this section is summa-
rized in Table I.

Table I: Overview of some notation in this section
d, m, n, κ positive natural numbers

(K, ‖·‖) finite weighted alphabet with linear order <
ψ : K∗ → G homomorphism, w.l.o.g. surjective

vg ∈ K+ normal form for g ∈ G
Γ = {γ0, . . . , γm} ⊆ K with γ0 < · · · < γm and ‖γi‖ > κ

∆ = K ∪
{
δ ∈ K+

∣∣ ‖δ‖ ≤ κ} in particular, Γ ⊆ K ⊆ ∆ ⊆ K≤d

F set of factors of all δ+ with δ ∈ ∆
J ⊆ K≤2d minimal such that K∗JK∗ = K∗ \ F (i.e., J is a basis of the ideal K∗ \ F )

Ω ⊆ J maximal such that Ω ∩ ΓK∗ = {γγ′ | γ, γ′ ∈ Γ, γ > γ′}
and linear ordered such that γmγ0 ≺ bγ0 ≺ ω for b 6= γm and ω ∈ Ω \K+γ0

t < t0 < . . . < t|Ω| < tΩ “threshold” values
T∆, TΩ ⊆ T ′Ω, T = T∆ ∪ TΩ semi-Thue systems

T∆, TΩ and T are weighted Church-Rosser systems
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In a first step we fix κ = n ‖a0‖, and we view κ as a constant which is attached
to the finite weighted alphabet (K, ‖·‖). The set K contains a linearly ordered subset
Γ = {γ0, . . . , γm} with γ0 < · · · < γm such that ‖γ‖ > κ for all γ ∈ Γ. In addition we
require that there exists a homomorphism ψ : K∗ → G and a subset Ĝ ⊆ Γ∗ with the
following properties.

(i) We have Ĝ ⊆ γ0γ
∗
0γ
∗
1 · · · γ∗mγmγ0.

(ii) For each g ∈ G there is exactly one word vg ∈ Ĝ with ψ(vg) = g.
(iii) For all g, h ∈ G we have ‖vg‖ − ‖vh‖ < κ.

Note that (ii) implies that ψ is surjective which we assume without restriction. Let us
define a subset ∆ ⊆ K+ and a parameter d as follows.

∆ = K ∪
{
δ ∈ K+

∣∣ ‖δ‖ ≤ κ} and d = max {|δ| | δ ∈ ∆} . (3)

The set ∆ is closed under conjugation, i.e., if uv ∈ ∆ for u, v ∈ K∗, then vu ∈ ∆. We let
F ⊆ K∗ be the set of all factors of δ+ where δ ∈ ∆, i.e., we set

F =
{
u ∈ K∗

∣∣ u is factor of δ+ for some δ ∈ ∆
}
.

Let uγv ∈ F ∩ K∗γK∗, i.e. uγv is a factor of δ+ for some δ ∈ ∆. Since ‖γ‖ > κ, we
conclude δ = γ and uγv ∈ γ+. Thus, we obtain

K∗γK∗ ∩ F = γ+ for all γ ∈ Γ. (4)

By definition, F is closed under taking factors. Hence there exists a uniquely defined
minimal set J ⊆ K+ such that K∗ \F = K∗JK∗. By Lemma 3.2, we have J ⊆ K≤2d. In
particular, J is finite. Since J and ∆ are disjoint, all words in J have a weight greater
than κ. Let Ω contain all ω ∈ J such that ω ∈ ΓK∗ implies ω = γγ′ for some γ, γ′ ∈ Γ
with γ > γ′, i.e.,

Ω = J ∩ {ω ∈ K∗ | ω 6∈ ΓK∗ or ω = γγ′ for γ, γ′ ∈ Γ with γ > γ′} . (5)

We have Γ ⊆ ∆ and Ω ⊆ J . In particular Ω is finite and every word in Ω has length at
most 2d.

Remark 4.1. We claim K∗ΓK∗ ∩ J ⊆ KΓ ∪ ΓK. In particular, for ω ∈ K∗Γ ∩ Ω we
obtain ω = bγ with b ∈ K, γ ∈ Γ and b 6= γ. In order to see the claim, we show that
every word in K∗ΓK∗ ∩ J has length 2. Words in J have length at least 2, hence (by
left-right symmetry) it is enough to consider words w = bxγy ∈ J with b ∈ K, x, y ∈ K∗
and γ ∈ Γ. By minimality of J we obtain xγy ∈ F and hence xγy ∈ γ+ by Equation (4).
Thus, we can write w = bzγ with z ∈ γ∗ and bz ∈ F . If z 6= 1, then b ∈ γ+, too. This
implies w ∈ γ+, but this is impossible due to w ∈ J . Therefore w = bγ and b 6= γ.

Let us define a “threshold” value t ∈ N by

t = max {‖ωvgω‖ | g ∈ G, ω ∈ Ω}. (6)

This is not the optimal bound at this point, but it allows to use the parameter t again
later. For the moment we use only the following two properties, which are satisfied by
our choice.

(i) If δt is a prefix of a word uω or a suffix of a word ωu for δ ∈ ∆ and ω ∈ Ω, then we
have ‖u‖ > max {‖vg‖ | g ∈ G}.

(ii) We have t > 2d.

Here t > 2d can be seen by t > 2 max {‖ω‖ | ω ∈ Ω} > 2 max {‖δ‖ | δ ∈ ∆} ≥
2 max {|δ| | δ ∈ ∆} = 2d. The first set of rules over the extended alphabet K deals with
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long repetitions of short words: The ∆-rules of the system T are

T∆ =
{
δt+n → δt

∣∣ δ ∈ ∆ and δ is primitive
}
.

LEMMA 4.2. The system T∆ is a weighted Church-Rosser system.

PROOF. Every rule in T∆ is weight-reducing because primitive words are never
empty and n ≥ 1. Thus, it suffices to show that T∆ is locally confluent. Let δ, η ∈ ∆
with |δ| ≥ |η| and suppose δt+n → δt and ηt+n → ηt are rules which are part of a critical
pair. We have to study the two cases of factor critical and overlap critical pairs.

We cover factor critical pairs first and thus consider the case that ηt+n is a factor of
δt+n. Note that |ηt| ≥ t > 2d ≥

∣∣δ2
∣∣ by property (ii) above. Thus, there is a conjugate

ζ = ηrη1 of δ such that η1 is a proper prefix of η and ζ2 is a prefix of ηt. By canceling
the prefix ηr we see that η1η is a prefix of η2. By primitivity of η this implies that η1 is
empty and by primitivity of δ we obtain ζ = η. This implies |δ| = |η| and since ηt+n is a
factor of δt+n we obtain that η = δ.

The second case are overlap critical pairs. Let δt+n = xy and ηt+n = yz for non-empty
words x, y, z. If |y| > |ηt|, then by |ηt| >

∣∣δ2
∣∣ we get that δ2 is a factor of ηt. Using the

same argument as above, we conclude that δ is a conjugate of η and the critical pair
resolves. Thus, it remains to prove the case for |y| ≤ |ηt| ≤ |δt|. As y is small enough we
proceed by writing x = δnx1 and z = z1η

n. The critical pair can be resolved as follows:

xyz = δt+nz =⇒
T∆

δtz = x1η
t+n =⇒

T∆

x1η
t = x1yz1,

xyz = xηt+n =⇒
T∆

xηt = δt+nz1 =⇒
T∆

δtz1 = x1yz1.

Note that closure under conjugation is not sufficient to guarantee the confluence
of T∆. We exploited the fact that t is large enough. Example 4.3 shows that at least
t > d− 2 is necessary.

Example 4.3. Let ∆ = {a, aab, aba, baa} with d = 3. Consider t = d − 2 = 1 and
the system S =

{
(aab)2 → aab, (aba)2 → aba, (baa)2 → baa, a2 → a

}
. The set ∆ is closed

under conjugation and all words in ∆ are primitive, but S is not confluent. This can be
seen by abab ∗⇐=

S
(aab)2 ∗

=⇒
S

ab.

As we will see next, every sufficiently long word without long ∆-repetitions contains
a factor ω ∈ Ω:

LEMMA 4.4. There exists a bound t0 ∈ N such that every word u ∈ K∗ with ‖u‖ ≥ t0
contains either a factor ω ∈ Ω or a factor of the form δt+n for δ ∈ ∆ (or both).

PROOF. Let us first assume that u 6∈ Γ∗. Then there exists a factorization u = xay
with x ∈ Γ∗ and a 6∈ Γ. If ay 6∈ F , there exists a prefix of ay which is in J and con-
sequently also in Ω. Thus, we may assume that ay ∈ F , i.e., ay is a factor of δ+ for
some δ ∈ ∆. If ‖ay‖ ≥ (n + t + 2) max {‖δ‖ | δ ∈ ∆}, then ay contains a factor δt+n.
Thus without loss of generality we may assume that u = u′u′′ with u′ ∈ Γ∗ and
‖u′′‖ ≤ (n + t + 2) max {‖δ‖ | δ ∈ ∆} (This obviously also holds in the case u ∈ Γ∗).
If u′ contains a factor γγ′ with γ > γ′ we are finished. Thus, u′ = γj1 · · · γjk with γji ∈ Γ
and γji−1

≤ γji . Since u′ has no factor γt+nji
we obtain k ≤ |Γ| · (t + n − 1). This gives

some bound on k and therefore on t0 as well.

Remark 4.5. Using |Γ| > s ≥ 1 we can choose the value t0 of Lemma 4.4 to be
t0 = (|Γ|+ 2) · (t+ n) ·max {‖δ‖ | δ ∈ ∆}.
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Words in IRRT∆
(K∗) do not contain any factor of the form δt+n for δ ∈ ∆. Every suffi-

ciently long word v can be written as v = u1 · · ·uk with ‖ui‖ ≥ t0 and k sufficiently large.
Thus, by repeatedly applying Lemma 4.4, every long enough word v ∈ IRRT∆

(K∗) con-
tains two occurrences of the same ω ∈ Ω which are far apart. This suggests rules of
the form ω uω → ω vψ(u) ω; but in order to ensure confluence we have to limit their use.
For this purpose, we equip Ω with a linear order � such that γmγ0 is the least element,
and every element in Ω ∩Kγ0 is less than all elements in Ω \Kγ0.

For a word v ∈ K∗ΩK∗ define the maximal Ω-factor to be the maximal ω ∈ Ω with re-
spect to the linear order � such that v ∈ K∗ωK∗. The following lemma is the principal
reason for excluding all words ω ∈ ΓK∗ in the definition of Ω except for ω = γγ′ ∈ Γ2

with γ > γ′.

LEMMA 4.6.

(i) Let v = xδt+ny ∈ K∗ΩK∗. Then xδty has the same maximal Ω-factor as v.
(ii) Let v = xωuωy with ω ∈ Ω and v′ = xωvψ(u)ωy. Then the maximal Ω-factor of v′ is

not greater than the maximal Ω-factor of v.

PROOF. (i): By definition of t we have t > 2d and by Lemma 3.2 we have |ω| ≤ 2d for
all ω ∈ Ω. Thus ω does not contain δt as a factor and xδt+ny and xδty have the same
Ω-factors. Hence the statement in (i) holds.

(ii): As no Ω-factor can contain ω as a proper factor it suffices to show that ω is the
maximal Ω-factor of ωvψ(u)ω. The normal form vψ(u) has γmγ0 as a suffix. In addition,
the word γmγ0 is the only element in Ω which is a factor of vψ(u). The reason is that all
other letters in vψ(u) are in non-decreasing order whereas all γγ′ ∈ Ω are in decreasing
order. In particular, if γmγ0vψ(u)γmγ0 ∈ K∗ω′K∗ for ω′ ∈ Ω, then ω′ = γmγ0, i.e., γmγ0 is
the only factor of γmγ0vψ(u)γmγ0 which is in Ω.

Let now ω ∈ K+γ0. As we have noticed in Remark 4.1, this implies ω = bγ0 with
b ∈ K \ {γ0} .The set of factors of ωvψ(u)ω which are in Ω is therefore {γmγ0, ω}. Since
γmγ0 � ω we are done in this case, too.

Next, suppose ω ∈ K+b for b ∈ K \ {γ0}. Then the set of factors of ωvψ(u)ω which are
in Ω is {γmγ0, bγ0, ω}. Since every element ending with γ0 is smaller than any other
element in Ω, the claim holds in this case, too.

LEMMA 4.7. There exists a bound tΩ ∈ N such that every word v ∈ IRRT∆(K∗) with
‖v‖ ≥ tΩ contains a factor ωuω for some ω ∈ Ω such that:

— ‖vg‖ < ‖u‖ < tΩ for all g ∈ G,
— ω is the maximal Ω-factor of ωuω.

PROOF. Let Ωv = {ω ∈ Ω | v ∈ K∗ωK∗} be the set of factors of v in Ω. For each k ∈ N
we define a number tk = 2k(t0 + t)− t. Thus, for k ≥ 1 we have

tk−1 = (tk − t)/2. (7)

Here t0 and t = max {‖ωvgω‖ | g ∈ G, ω ∈ Ω} denote the values which are given by
Lemma 4.4 and Equation (6), respectively.

Consider k ∈ N and v ∈ IRRT∆(K∗) with k ≥ |Ωv| and assume that the weight of v is
at least tk. By induction on k we show that v contains a factor ωuω with

— ω ∈ Ω
— ‖vg‖ < ‖u‖ < tk for all g ∈ G, and
— ω is the maximal Ω-factor of ωuω.
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Note that we may replace v by its shortest prefix which has weight at least tk, because
if we find a factor ωuω of the desired form in this prefix, then we are done. Hence we
may assume that every proper factor of v has weight less than tk.

The base k = 0 is trivial since such an irreducible word v with ‖v‖ ≥ t0 and a factor
in Ω cannot exist by Lemma 4.4. Thus, we may assume that k ≥ 1. Let µ ∈ Ω be the
maximal Ω-factor of v and consider a factorization v = pfq with f ∈ µK∗∩K∗µ and p, q
have no factor µ, i.e., f is the shortest factor of v which contains every occurence of µ
in v. If ‖f‖ > t = max {‖ωvgω‖ | g ∈ G, ω ∈ Ω}, then we have found a factor f = µuµ.
Since u is a proper factor of f and hence of v, we obtain ‖u‖ < tk. We also have ‖f‖ =
‖µuµ‖ > t = max {‖ωvgω‖ | g ∈ G, ω ∈ Ω} which implies ‖u‖ > max {‖vg‖ | g ∈ G}.
Combining these results shows max {‖vg‖ | g ∈ G} < ‖u‖ < tk, and thus f is a factor
with the required properties.

Therefore we may assume ‖f‖ ≤ t. By symmetry let ‖p‖ ≥ ‖q‖. In particular, ‖p‖ ≥
(tk − t)/2. Hence, by Equation (7) we obtain ‖p‖ ≥ tk−1. Since p has at least one factor
of Ω less than v, we conclude by induction that p contains a factor ωuω with ω the
maximal Ω-factor and ‖vg‖ < ‖u‖ < tk−1 ≤ tk for all g ∈ G. Thus the assertion holds
for k.

Choose

tΩ = 2|Ω|(t0 + t) = t|Ω| + t (8)

and consider a word v ∈ IRRT∆(K∗) with ‖v‖ ≥ tΩ. By the definition of tΩ there is a
prefix v′ of v with t|Ω| ≤ ‖v′‖ < tΩ. By the induction above we conclude that v′, and
thus also v, contains a factor ωuω with the desired properties.

We are now ready to define the second set of rules over the extended alphabet K.
These rules reduce long words without long repetitions of words in ∆. We denote

T ′Ω =
{
ω uω → ω vψ(u) ω

∣∣∣ ‖vψ(u)‖ < ‖u‖ < tΩ, ω ∈ Ω and
ω is the maximal Ω-factor of ωuω

}
.

Whenever there is a shorter rule in T ′Ω ∪ T∆ then we want to give preference to this
shorter rule. Thus, the Ω-rules are

TΩ =

{
`→ r ∈ T ′Ω

∣∣∣∣ there is no rule `′ → r′ ∈ T ′Ω ∪ T∆

such that `′ is a proper factor of `

}
.

Let T = T∆ ∪ TΩ. The set IRRT (K∗) is finite by Lemma 4.7. Our goal is to prove
confluence of T over K∗. As an auxiliary result we prove the following lemma, which
is of independent interest.

LEMMA 4.8. Let ω ∈ Ω and v = ωγuω (resp. v = ωuγω) be a word with γ ∈ Γ and
with ‖γu‖ > max {‖vg‖ | g ∈ G} such that ω is the maximal Ω-factor of v. Then there
exists a derivation v

∗
=⇒
T

ωvψ(γu)ω (resp. v ∗
=⇒
T

ωvψ(uγ)ω).

PROOF. In order to show this, we will first prove three auxiliary claims. It suffices
to consider the case v = ωγuω since v = ωuγω is symmetric.

CLAIM 1. The word v is reducible in T .

If v is reducible in T∆ we are finished. Thus assume that v is irreducible in T∆. Then
either v is the left side of a rule in T ′Ω or ‖v‖ > tΩ. If v is the left side of a rule in T ′Ω,
then either v is the left side of a rule in TΩ or it contains a factor which is the left side
of such a rule. If ‖v‖ > tΩ, then v contains a factor which is a rule in TΩ by Lemma 4.7.
This concludes Claim 1.

CLAIM 2. If ωγuω =⇒
T

v′, then v′ = ωγ′u′ω where γ′ = γ or γ′ = γ0 and u′ ∈ K∗.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



Regular Languages are Church-Rosser Congruential A:15

There are three cases. The first case is that v′ stems from a rule δt+n → δt ∈ T∆ and γ
is contained in δt+n. Note that by |ω| ≤ 2d < t the left side δt+n cannot be contained
in ω. We have δ = γ by Equation (4). By Remark 4.1 the overlap of δt+n and ω is at
most γ. As t > 2d ≥ 2 this overlap and the γ are preserved and the claim is clear.

The second case is that v′ stems from a rule δt+n → δt ∈ T∆ and γ is not contained in
δt+n. Again we have that δt+n cannot be contained in ω. Also δt+n can at most overlap
at the right ω. The overlap with ω is still in δt as t > 2d ≥ |ω| and therefore the claim
holds in this case. Thus, in the first and second case we have γ′ = γ.

In the third case v′ stems from a rule ` = ω′u′ω′ → ω′vψ(u′)ω
′ = r in TΩ. If ` is a prefix

of v, then v′ = ωγ0u
′ω and vψ(u′) is a prefix of γ0u

′. Hence the claim holds in this case.
If the factor γ (in v = ωγuω) is not a factor of `, then the claim is trivial. Hence let γ be
a factor of `. Then γ is a factor of ω′ by minimality of J . As ω is preserved at the use
of the rule ` → r, the claim holds in this case too. Therefore, v′ = ωγ′u′ω for γ′ = γ or
γ′ = γ0. This concludes Claim 2.

Note that if v is the left side of a rule, the statement of the lemma is clear. Thus we
have to study the case that v is not a left side of a rule.

CLAIM 3. v =⇒
T

v′ = ωγ′u′ω 6= ωvψ(γu)ω implies ‖γ′u′‖ > max {‖vg‖ | g ∈ G}.

We therefore may assume that v is reduced to v′ by some rule `→ r ∈ T with ` 6= v. We
again use case-by-case analysis for T∆ and TΩ rules.

The first case is that `→ r ∈ T∆. By definition of T∆ we have |r| ≥ t and thus by ` 6= v
this implies ‖v′‖ ≥ |v′| = |ωγ′u′ω| > t = max {‖ωvgω‖ | g ∈ G, ω ∈ Ω}. By cancelation
of ω this implies ‖γ′u′‖ > max {‖vg‖ | g ∈ G}.

The second case is that ` → r ∈ TΩ. Thus, we have ` = ω′u′′ω′. If the rule does not
apply to a prefix, then u′ must contain some factor vg and we obtain ‖u′‖ ≥ ‖vg‖ for
some g ∈ G. This is large enough since ‖γ′u′‖ ≥ ‖vg‖ + κ > max {‖vg‖ | g ∈ G}. The
remaining case is that the rule ` → r ∈ T applies to a prefix of v. But then we must
have ω = ω′. Thus, v = ωu′′ωx with ωx = x′ω where x′ 6= 1. This implies ‖x′‖ > κ since
otherwise ω would be a factor of x′+. This is large enough since v′ = ωvψ(u′′)x

′ω in this
case. This concludes Claim 3.

Using these claims we proceed using Noetherian induction on the weight of γu. By
Claim 1 the word v is reducible. Thus let v =⇒

T
v′. By Claim 2 we obtain v′ = ωγ′u′ω for

some γ ∈ Γ. If γ′u′ 6= vψ(γu) we obtain ‖γ′u′‖ > max {‖vg‖ | g ∈ G} by Claim 3. As the
weight of γ′u′ is smaller than the weight of γu, we have ψ(γ′u′) = ψ(γu) by construction
of the rules and v′ satisfies the requirements of the lemma by Claim 2 and Claim 3,
we can use induction. This process stops as soon as γ′u′ = vψ(γu) which concludes the
proof.

For showing the following lemma we reuse some arguments from the proof of
Lemma 4.8. We think however that this overlap may improve the clarity of presen-
tation.

LEMMA 4.9. The system T is locally confluent over K∗.

PROOF. The system T∆ is confluent by Lemma 4.2. Suppose we can apply the rules
` → r ∈ TΩ and `′ → r′ ∈ T∆. Then `′ is not a proper factor of ` by definition of TΩ.
Moreover no ω is a factor of any δ+, hence ` is not a factor of `′. Thus, there are no
factor critical pairs in this case. Next we consider overlap critical pairs. Let ` = ωuω
and `′ = δt+n. The maximal overlap between ` and `′ is a prefix or suffix of ω. By the
choice of t we have t ≥ 2d, hence neither the application of ` → r nor the application
of `′ → r′ changes any overlap. Therefore we can apply the rules in any order and we
obtain the same result:
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δn δt
ω uω

It remains to show that TΩ is locally confluent. By minimality of J , no ω ∈ Ω is a proper
factor of another word ω′ ∈ Ω. Let ωuω → r and ω′u′ω′ → r′ be two Ω-rules and first
assume ω 6= ω′. By construction of T ′Ω, the left sides of both rules can overlap at most
min {|ω| , |ω′|} − 1 positions. Thus, the two rules can always be applied independently
of one another.

ω′ u′ ω′
ω uω

Let finally ωuω → ωvgω and ωu′ω → ωvhω be two Ω-rules. By construction of TΩ, the
left-hand side ωu′ω is neither a proper factor of ωuω nor vice versa. Suppose that these
two rules are applied to xωuω = ωu′ωy = ωu′′ω for x, y ∈ K+. If |x| ≥ |ωu′|, then the
two rules can be applied independently of one another.

ω u′ ω y
x ω uω

Thus, we may assume |x| < |ωu′|. We will show

xω vg ω
∗

=⇒
T

ω vψ(u′′) ω
∗⇐=
T

ω vh ω y. (9)

Let xω = ωx′ for some x′ ∈ K+. If ‖x‖ ≤ κ, then x is a prefix of ω since ‖ω‖ > κ
and ω becomes a prefix of x+. Due to ‖x‖ ≤ κ we have x ∈ ∆, hence ω ∈ F . This is a
contradiction since Ω ⊆ J . We obtain ‖x‖ > κ. Analogously, we also have ‖y‖ > κ and
ωy = y′ω for some y′ ∈ K+.

xω

ω x′ uω

ω u′ ω y

y′ ω

Because of |x| < |ωu′|, the definition of TΩ, and the fact that different words in Ω are not
factors of one another, we have that ω is the maximal Ω-factor in xωuω = ωu′ωy. Hence,
ω is still the maximal Ω-factor in xωvgω and in ωvhωy by Lemma 4.6. Moreover, since
‖x′‖ = ‖x‖ > κ, we have ‖x′vg‖ > κ+ ‖vg‖ > max {‖vg‖ | g ∈ G}. The last letter of x′vg
is in Γ since vg ends in γ0. Thus, the requirements of Lemma 4.8 are satisfied and we
obtain xω vg ω = ωx′vgω

∗
=⇒
T

ω vψ(x′vg) ω. Similarly, ω vh ωy = ω vh y
′ω

∗
=⇒
T

ω vψ(vhy′) ω.
Finally, ψ(x′vg) = ψ(vhy

′) = ψ(u′′) which shows Equation (9).

Since all rules in T are weight-reducing, it follows from Lemma 4.9 that T is conflu-
ent. Moreover, all rules `→ r in T satisfy ψ(`) = ψ(r). We conclude that T is a weighted
Church-Rosser system such that K∗/T is finite and ψ : K∗ → G factorizes through T .
This finishes the proof of Proposition 3.4.

5. ARBITRARY FINITE MONOIDS
This section contains the main result of this paper. We show that every homomorphism
ϕ : A∗ →M to a finite monoid M factorizes through a weighted Church-Rosser system
S of finite index. The proof relies on Theorem 3.3 and on a construction called local
divisors.
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5.1. Local divisors
Local divisors are a powerful tool when using inductive proofs for finite monoids. In
finite semigroup theory it was used first in [Diekert and Gastin 2006]; in associative
algebra the concept goes back to the notion of local algebra introduced by Meyberg
in the technical report [Meyberg 1972]. The definition of a local divisor is as follows:
Let M be a monoid and let c ∈ M . We equip cM ∩ Mc with a monoid structure by
introducing a new multiplication ◦ as follows:

xc ◦ cy = xcy.

It is straightforward to see that ◦ is well-defined and (cM ∩Mc, ◦) is a monoid with
neutral element c. The following observation is crucial. If 1 ∈ cM ∩Mc, then c is a unit.
Thus if the monoid M is finite and c is not a unit, then |cM ∩Mc| < |M |. The set M ′ =
{x | cx ∈Mc} is a submonoid of M , and c· : M ′ → cM ∩Mc with x 7→ cx is a surjective
homomorphism. Since (cM ∩Mc, ◦) is the homomorphic image of a submonoid, it is a
divisor of M . We therefore call (cM ∩Mc, ◦) the local divisor of M at c.

5.2. The main result
We are now ready to prove our main result. Let (A, ‖·‖) be a weighted alphabet. Then
every homomorphism ϕ : A∗ → M to a finite monoid M factorizes through a weighted
Church-Rosser system S of finite index. The proof uses induction on the size of M and
the size of A. If ϕ(A∗) is a group, then we apply Theorem 3.3; and if ϕ(A∗) is not a
group, then we find a letter c ∈ A which is not a unit. Thus in this case we can use
local divisors.

THEOREM 5.1. Let (A, ‖·‖) be a weighted alphabet and let ϕ : A∗ → M be a homo-
morphism to a finite monoid M . Then there exists a weighted Church-Rosser system S
of finite index such that ϕ factorizes through S.

PROOF. The proof is by induction on (|M |, |A|) with lexicographic order. This means
that (|M ′|, |A′|) is less than (|M |, |A|) if either |M ′| < |M | or both |M ′| = |M | and
|A′| < |A|. If ϕ(A∗) is a group, then the claim follows by Theorem 3.3. If ϕ(A∗) is not
a group, then there exists c ∈ A such that ϕ(c) is not a unit. Let B = A \ {c}. By
induction on the size of the alphabet there exists a weighted Church-Rosser system R
for the restriction ϕ : B∗ →M satisfying the statement of the theorem. Let

K = IRRR(B∗)c.

We consider the prefix code K as a weighted alphabet. The weight of a letter uc ∈
K is the weight ‖uc‖ when read as a word over the weighted alphabet (A, ‖·‖). Let
Mc = ϕ(c)M ∩Mϕ(c) be the local divisor of M at ϕ(c). We let ψ : K∗ → Mc be the
homomorphism induced by ψ(uc) = ϕ(cuc) for uc ∈ K. By induction on the size of the
monoid there exists a weighted Church-Rosser system T ⊆ K∗ × K∗ for ψ satisfying
the statement of the theorem. Suppose ψ(`) = ψ(r) for `, r ∈ K∗ and let ` = u1c · · ·ujc
and r = v1c · · · vkc with ui, vi ∈ IRRR(B∗). Then

ϕ(c`) = ϕ(cu1c) ◦ · · · ◦ ϕ(cujc)

= ψ(u1c) ◦ · · · ◦ ψ(ujc)

= ψ(`) = ψ(r) = ϕ(cr).

This means that every T -rule `→ r yields a ϕ-invariant rule c`→ cr. We can transform
the system T ⊆ K∗ ×K∗ for ψ into a system T ′ ⊆ A∗ ×A∗ for ϕ by

T ′ = {c`→ cr ∈ A∗ ×A∗ | `→ r ∈ T} .
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The system T ′ is obviously weight-reducing over A∗. Let us show that T ′ is locally
confluent. Consider any derivation u

∗
=⇒
T ′

û such that û ∈ IRRT ′(A
∗). We have to show

that û is uniquely defined by these conditions. It suffices to check this for critical pairs.
We either have u = `y = x`′ in the case of an overlap critical pair or u = ` = x`′y in
the case of a factor critical pair for x, y ∈ A∗ and `, `′ left sides of rules in T ′. Note that
the rules in T ′ are in K∗. In particular, this implies u = cv ∈ cK∗ and cv ∗

=⇒
T ′

c v̂ such
that û = cv̂ ∈ K∗. Using factorizations as words over the free monoid K∗ we see that
we have v ∗

=⇒
T

v̂ . Moreover, since û = c v̂ ∈ IRRT ′(A
∗) we have v̂ ∈ IRRT (K∗). Since

T is confluent, v̂ is uniquely defined and so is cv̂ . Thus, T ′ is confluent and weight-
reducing over A∗. Combining R and T ′ leads to S = R ∪ T ′. The left sides of a rule in
R and a rule in T ′ cannot overlap. Therefore, S is a weighted Church-Rosser system
such that ϕ factorizes through A∗/S. Suppose that every word in IRRT (K∗) has length
at most k. Here, the length is over the extended alphabet K. Similarly, let every word
in IRRR(B∗) have length at most m. Then

IRRS(A∗) ⊆ {u0cu1 · · · cuk′+1 | ui ∈ IRRR(B∗), k′ ≤ k}
and every word in IRRS(A∗) has length at most (k+ 2)(m+ 1). In particular IRRS(A∗)
and A∗/S are finite.

The following corollary is a straightforward translation of the result in Theorem 5.1.

COROLLARY 5.2. A language L ⊆ A∗ is regular if and only if there exists a Church-
Rosser system S of finite index such that L =

⋃
u∈L[u]S . In particular, all regular lan-

guages are strongly Church-Rosser congruential.

PROOF. If L is regular, then there exists a homomorphism ϕ : A∗ → M recognizing
L. By Theorem 5.1 there exists a Church-Rosser system S of finite index such that
ϕ factorizes through S. The latter property implies ϕ−1(x) =

⋃
u∈ϕ−1(x)[u]S for every

x ∈ M . Thus L =
⋃
x∈ϕ(L) ϕ

−1(x) =
⋃
u∈L[u]S . The converse is clear because L is

recognized by the finite monoid A∗/S.

6. CONCLUSION AND OPEN PROBLEMS
We have shown that all regular languages are Church-Rosser congruential. The proof
was achieved by loading the induction hypothesis. Our result says that for all ϕ :
A∗ →M to a finite monoid M and all weights ‖·‖ : A→ N \ {0} there exists a weighted
Church-Rosser system S of finite index such that ϕ factorizes through S. An interesting
question is whether we can change quantifiers. Is it true that for all such ϕ there exists
a finite confluent system S of finite index such that ϕ factorizes through S and which
is weight-reducing for all weights? Note that whether a system is weight-reducing for
all weights is a natural condition on the number of letters in the Parikh image. Thus,
we can call such a system Parikh-reducing. This result is true for aperiodic monoids
[Diekert et al. 2012b], because every subword-reducing system is Parikh-reducing.

Another problem for future research is which algebraic invariants of M can be main-
tained in A∗/S . For example, if M satisfies the equation xt+p = xt, then our construc-
tion yields that A∗/S satisfies an equation xs+p = xs for some large enough s. We
conjecture that we must choose s > t in general. In particular, we doubt that we can
choose A∗/S to be a group, even if M is a (cyclic) finite group. However proving such a
lower bound result seems to be a hard task.

If a language is a finite union of congruence classes w.r.t. some finite confluent and
weight-reducing system, then it has essentially the same nice properties as a Church-
Rosser congruential language. Considering weights instead of lengths does not in-
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crease the expressive power of the class of Church-Rosser languages, see [Niemann
and Otto 2005]. It is however not clear from that result that the same is true for
Church-Rosser congruential languages.

Finally, in our construction, the size of the monoid A∗/S is huge compared to M and
A. Obvious open problems are lower bounds on the size of the system S and A∗/S, as
well as reasonable upper bounds.
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