
On the index of Simon’s congruence for piecewise testability

P. Karandikara,b,1,2, M. Kufleitnerc,3, Ph. Schnoebelena,2

aLab. Specification & Verification, CNRS UMR 8643 & ENS Cachan, France
bChennai Mathematical Institute, Chennai, India

cInstitut für Formale Methoden der Informatik, University of Stuttgart, Germany

Abstract

Simon’s congruence, denoted ∼n, relates words having the same subwords of length up to n. We show that, over a

k-letter alphabet, the number of words modulo ∼n is in 2Θ(nk−1 log n).

Keywords: Combinatorics of words; Piecewise testable languages; Subwords and subsequences.

1. Introduction

Piecewise testable languages, introduced by Imre Simon
in the 1970s, are a family of star-free regular languages
that are definable by the presence and absence of given
(scattered) subwords [1, 2, 3]. Formally, a language L ⊆
A∗ is n-piecewise testable if x ∈ L and x ∼n y imply y ∈ L,

where x ∼n y
def
⇔ x and y have the same subwords of length

at most n (see next section for all definitions missing in this
introduction). Piecewise testable languages are important
because they are the languages defined by BΣ1 formulae,
a simple fragment of first-order logic that is prominent in
database queries [4]. They also occur in learning theory [5],
computational linguistics [6], etc.
It is easy to see that ∼n is a congruence with finite index

and Sakarovitch and Simon raised the question of how to
better characterize or evaluate this number [2, p. 110]. Let
us write Ck(n) for the number of ∼n classes over k letters,
i.e., when |A| = k. It is clear that Ck(n) ≥ kn since two
words x, y ∈ A≤n (i.e., of length at most n) are related by
∼n only if they are equal. In fact, this reasoning gives

Ck(n) ≥ kn + kn−1 + · · ·+ k + 1 =
kn+1 − 1

k − 1
(1)

(assuming k 6= 1). On the other hand, any congruence
class in∼n is completely characterized by a set of subwords
in A≤n, hence

Ck(n) ≤ 2
k
n+1

−1

k−1 . (2)

Estimating the size of Ck(n) has applications in descriptive
complexity, for example for estimating the number of n-
piecewise testable languages (over a given alphabet), or for
bounding the size of canonical automata for n-piecewise
testable languages [7, 8, 9].

1Partially supported by Tata Consultancy Services.
2Supported by ANR grant 11-BS02-001-01.
3Supported by DFG grant DI 435/5-2.

Unfortunately the above bounds, summarized as kn ≤
Ck(n) ≤ 2k

n+1

, leave a large (“exponential”) gap and it is
not clear towards which side is the actual value leaning.4

Eq. (1) gives a lower bound that is obviously very naive
since it only counts the simplest classes. On the other
hand, Eq. (2) too makes wide simplifications since not ev-
ery subset of A≤n corresponds to a congruence class. For
example, if aa and bb are subwords of some x then neces-
sarily x also has ab or ba among its length 2 subwords.
Since the question of estimating Ck(n) was raised in [2]

(and to the best of our knowledge) no progress has been
made on the question, until Kátai-Urbán et al. proved the
following bounds:

Theorem 1.1 (Kátai-Urbán et al. [10]). For all k >
1,

kn

3n2
log k ≤ log Ck(n) < 3nkn log k if n is even,

kn

3n2
< log Ck(n) < 3nkn if n is odd.

The proof is based on two reductions, one showing
Ck+ℓ(n + 2) ≥ Cℓ+2

k (n) for proving lower bounds, and

one showing Ck(n + 2) ≤ (k + 1)2kC2k−1
k (n) for proving

upper bounds. For fixed n, Theorem 1.1 allows to esti-
mate the asymptotic value of log Ck(n) as a function of k:
it is in Θ(kn) or Θ(kn log k) depending on the parity of n.
However, these bounds do not say how, for fixed k, Ck(n)
grows as a function of n, which is a more natural question
in settings where the alphabet is fixed, and where n comes
from, e.g., the number of variables in a BΣ1 formula. In
particular, the lower bound is useless for n ≥ k since in
this case kn/3n

2

< 1.

4Comparing the bounds from Eqs. (1) and (2) with actual values
does not bring much light here since the magnitude of Ck(n) makes
it hard to compute beyond some very small values of k and n, see
Table B.1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1310.1278v5

Our contribution. In this article, we provide the following
bounds:

Theorem 1.2. For all k, n > 1,

(n

k

)k−1

log2

(n

k

)

< log2 Ck(n)

< k

(
n+ 2k − 3

k − 1

)k−1

log2 n log2 k .

Thus, for fixed k, log Ck(n) is in Θ(nk−1 log n). Compared
with Theorem 1.1, our bounds are much tighter for fixed
k (and much wider for fixed n).
The proof of Theorem 1.2 relies on two new reductions

that allows us to relate Ck(n) with Ck−1 instead of relat-
ing it with Ck(n− 2) as in [10]. The article is organized as
follows. Section 2 recalls the necessary notations and def-
initions; the lower bound is proved in Section 3 while the
upper bound is proved in Section 4. An appendix lists the
exact values of Ck(n) for small n and k that we managed
to compute.

2. Basics

We consider words x, y, w, . . . over a finite k-letter al-
phabet Ak = {a1, . . . , ak} sometimes written more simply
A = {a, b, . . .}. The empty word is denoted ǫ, concatena-
tion is denoted multiplicatively. Given a word x ∈ A∗ and
a letter a ∈ A, we write |x| and |x|

a
for, respectively, the

length of x, and the number of occurrences of a in x.
We write x 4 y to denote that a word x is a subsequence

of y, also called a (scattered) subword. Formally, x 4 y iff
x = x1 · · ·xℓ and there are words y0, y1, . . . , yℓ such that
y = y0x1y1 · · ·xℓyℓ. It is well-known that 4 is a partial
ordering and a monoid precongruence.
For any n ∈ N, we write x ∼n y when x and y

have the same subwords of length ≤ n. For example

x
def
= abacb ∼2 y

def
= baaacbb since both words have

{ǫ, a, b, c, aa, ab, ac, ba, bb, bc,cb} as subwords of length
≤ 2. However x 6∼3 y since x < aba 64 y. Note that
∼0 ⊇∼1⊇∼2⊇ · · · , and that x ∼0 y holds trivially. It is
well-known (and easy to see) that each ∼n is a congruence
since the subwords of some xy are the concatenations of a
subword of x and a subword of y. Simon defined a piece-

wise testable language as any L ⊆ A∗ that is closed by ∼n

for some n [1]. These are exactly the languages definable
by BΣ1(<, a, b, . . .) formulae [4], i.e., by Boolean combina-
tions of existential first-order formulae with monadic pred-
icates of the form a(i), stating that the i-th letter of a word
is a. For example, L = A∗

aA∗
bA∗ = {x ∈ A∗ | ab 4 x} is

definable with the following Σ1 formula:

∃i : ∃j : i < j ∧ a(i) ∧ b(j) .

The index of ∼n. Since there are only finitely many words
of length ≤ n, the congruence ∼n partitions A∗

k in finitely
many classes, and we write Ck(n) for the number of such
classes, i.e., the cardinal of A∗

k /∼n.

The following is easy to see:

C1(n) = n+ 1 , Ck(0) = 1 , Ck(1) = 2k . (3)

Indeed, for words over a single letter a, x ∼n y iff |x| =
|y| < n or |x| ≥ n ≤ |y|, hence the first equality. The
second equality restates that ∼0 is trivial, as noted above.
For the third equality, one notes that x ∼1 y if, and only
if, the same set of letters is occurring in x and y, and that
there are 2k such sets of occurring letters.

3. Lower bound

The first half of Theorem 1.2 is proved by first es-
tablishing a combinatorial inequality on the Ck(n)’s
(Proposition 3.3) and then using it to derive Proposi-
tion 3.4.

Consider two words x, y ∈ A∗ and a letter a ∈ A.

Lemma 3.1. If x ∼n y, then min(|x|a, n) = min(|y|a, n).

Proof (Sketch). If |x|a = p < n then ap 4 x 6< ap+1.
From x ∼n y we deduce ap 4 y 6< ap+1, hence |y|a = p. �

Fix now k ≥ 2, let A = Ak = {a1, . . . , ak} and assume
x ∼n y. If |x|

ak
= p < n, then x is some x0akx1 · · · akxp

with xi ∈ A∗
k−1 for i = 0, . . . , p. By Lemma 3.1, y too is

some y0aky1 · · · akyp with yi ∈ A∗
k−1.

Lemma 3.2. xi ∼n−p yi for all i = 0, . . . , p.

Proof. Suppose w 4 xi and |w| ≤ n − p. Let w′ def
=

a
i
kwa

p−i
k . Clearly w′ 4 x and thus w′ 4 y since x ∼n y

and |w′| ≤ n. Now w′ = a
i
kwa

p−i
k 4 y entails w 4 yi.

With a symmetric reasoning we show that every sub-
word of yi having length ≤ n − p is a subword of xi and
we conclude xi ∼n−p yi. �

Proposition 3.3. For k ≥ 2, Ck(n) ≥
∑n

p=0 C
p+1
k−1(n−p).

Proof. For words x = x0akx1 . . . xp−1akxp with exactly
p < n occurrences of ak, we have Ck−1(n − p) possi-
ble choices of ∼n−p equivalence classes for each xi (i =
0, . . . , p). By Lemma 3.2 all such choices will result in 6∼n

words, hence there are exactly Cp+1
k−1(n−p) classes of words

with p < n occurrences of ak. By Lemma 3.1, these classes
are disjoint for different values of p, hence we can add the
Cp+1

k−1(n−p)’s. There remain words with p ≥ n occurrences

of ak, accounting for at least 1, i.e., Cn+1
k−1 (0), additional

class. �

Proposition 3.4. For all k, n > 0:

log2 Ck(n) >
(n

k

)k−1

log2

(n

k

)

. (4)

2

Proof. Eq. (4) holds trivially when log2(
n
k
) ≤ 0. Hence

there only remains to consider the cases where n > k.
We reason by induction on k. For k = 1, Eq. (3) gives

log2 C1(n) = log2(n+1) > log2 n =
(
n
1

)0
log2

(
n
1

)
. For the

inductive case, Proposition 3.3 yields Ck+1(n) ≥ Cp+1
k (n−

p) for all p ∈ {0, . . . , n}. For p =
⌊

n
k+1

⌋

this yields

log2 Ck+1(n) ≥ (p+ 1) log2 Ck(n− p)

> (p+ 1)

(
n− p

k

)k−1

log2

(
n− p

k

)

by ind. hyp., noting that n− p > 0,

≥
n

k + 1

(
n

k + 1

)k−1

log2

(
n

k + 1

)

since n−p
k

≥ n
k+1 ≥ 1,

=

(
n

k + 1

)k

log2

(
n

k + 1

)

as desired. �

4. Upper bound

The second half of Theorem 1.2 is again by establishing
a combinatorial inequality on the Ck(n)’s (Proposi-
tion 4.3) and then using it to derive Proposition 4.4.

Fix k > 0 and consider words in A∗
k. We say that a

word x is rich if all the k letters of Ak occur in it, and
that it is poor otherwise. For ℓ > 0, we further say that
x is ℓ-rich if it can be written as a concatenation of ℓ rich
factors (by extension “x is 0-rich” means that x is poor).
The richness of x is the largest ℓ ∈ N such that x is ℓ-rich.
Note that ∀a ∈ Ak : |x|a ≥ ℓ does not imply that x is
ℓ-rich. We shall use the following easy result:

Lemma 4.1. If x1 and x2 are respectively ℓ1-rich and ℓ2-
rich, then y ∼n y′ implies x1yx2 ∼ℓ1+n+ℓ2 x1y

′x2.

Proof. A subword u of x1yx2 can be decomposed as u =
u1vu2 where u1 is the largest prefix of u that is a subword
of x and u2 is the largest suffix of the remaining u−1

1 u
that is a subword of x2. Thus v 4 y since u 4 x1yx2.
Now, since x1 is ℓ1-rich, |u1| ≥ ℓ1 (unless u is too short),
and similarly |u2| ≥ ℓ2 (unless . . .). Finally |v| ≤ n when
|u| ≤ ℓ1 + n+ ℓ2, and then v 4 y′ since y ∼n y′, entailing
u 4 x1y

′x2. A symmetrical reasoning shows that subwords
of x1y

′x2 of length ≤ ℓ1 + n + ℓ2 are subwords of x1yx2

and we are done. �

The rich factorization of x ∈ A∗
k is the decomposition

x = x1a1 · · ·xmamy obtained in the following way: if x
is poor, we let m = 0 and y = x; otherwise x is rich, we
let x1a1 (with a1 ∈ Ak) be the shortest prefix of x that is
rich, write x = x1a1x

′ and let x2a2 . . . xmamy be the rich
factorization of the remaining suffix x′. By construction

m is the richness of x. E.g., assuming k = 3, the following
is a rich factorization with m = 2:

x
︷ ︸︸ ︷

bbaaabbccccaabbbaa=

x1
︷ ︸︸ ︷

bbaaabb · c ·

x2
︷ ︸︸ ︷
cccaa · b ·

y
︷ ︸︸ ︷

bbaa

Note that, by definition, x1, . . . , xm and y are poor.

Lemma 4.2. Consider two words x, x′ of richness m and

with rich factorizations x = x1a1 . . . xmamy and x′ =
x′
1a1 . . . x

′
mamy′. Suppose that y ∼n y′ and that xi ∼n+1

x′
i for all i = 1, . . . ,m. Then x ∼n+m x′.

Proof. By repeatedly using Lemma 4.1, one shows

x1a1x2a2 . . . xmamy ∼n+m x′
1a1x2a2 . . . xmamy

∼n+m x′
1a1x

′
2a2 . . . xmamy

...

∼n+m x′
1a1x

′
2a2 . . . x

′
mamy

∼n+m x′
1a1x

′
2a2 . . . x

′
mamy′ ,

using the fact that each factor xiai is rich. �

Proposition 4.3. For all n ≥ 0 and k ≥ 2,

Ck(n) ≤ 1 +

n−1∑

m=0

km+1 Cm
k−1(n−m+ 1)Ck−1(n−m) .

Furthermore, for k = 2,

C2(n) ≤ 2

2n−1∑

m=0

nm = 2
n2n − 1

n− 1
. (5)

Proof. Consider two words x, x′ and their rich factor-
ization x = x1a1 . . . xmamy and x′ = x′

1a
′
1 . . . x

′
ℓa

′
ℓy

′. By
Lemma 4.2 they belong to the same ∼n class if ℓ = m,
y ∼n−m y′, and ai = a′i and xi ∼n−m+1 x′

i for all
i = 1, . . . ,m. Now for every fixed m, there are at most km

choices for the ai’s, C
m
k−1(n−m+1) non-equivalent choices

for the xi’s, kCk−1(n−m) choices for y and a letter that
is missing in it. We only need to consider m varying up
to n− 1 since all words of richness ≥ n are ∼n-equivalent,
accounting for one additional possible ∼n class.
For the second inequality, assume that k = 2 and A2 =

{a, b}. A word x ∈ A∗
2 can be decomposed as a sequence

of m non-empty blocks of the same letter, of the form,
e.g., x = a

ℓ1b
ℓ2a

ℓ3b
ℓ4 · · · aℓm (this example assumes that x

starts and ends with a, hence m is odd). If two words like
x = a

ℓ1b
ℓ2a

ℓ3b
ℓ4 · · ·aℓm and x′ = a

ℓ′1b
ℓ′2a

ℓ′3b
ℓ′4 · · · aℓ

′

m have
the same first letter a, the same alternation depth m, and
have min(ℓi, n) = min(ℓ′i, n) for all i = 1, . . . ,m, then they
are ∼n-equivalent. For a given m > 0, there are 2 possi-
bilities for choosing the first letter and nm non-equivalent
choices for the ℓi’s. Finally, all words with alternation
depths m ≥ 2n are ∼n-equivalent, hence we can restrict
our attention to 1 ≤ m ≤ 2n − 1. The extra summand
2n0 in Eq. (5) accounts for the single class with m ≥ 2n
and the single class with m = 0. �

3

Proposition 4.4. For all k, n > 1:

Ck(n) < 2k(
n+2k−3

k−1)
k−1

log2 n log2 k.

Proof. By induction on k. For k = 2, Eq. (5) yields:

C2(n) ≤ 2
n2n − 1

n− 1
< n

n2n+1

1
since n ≥ 2,

= n2n+2 = 22(n+1) log2 n

= 2k(
n+2k−3

k−1)k−1
log2 n log2 k .

For the inductive case, Proposition 4.3 yields:

Ck+1(n) ≤ 1 +

n−1∑

m=0

(k + 1)m+1Cm
k (n−m+ 1)Ck(n−m)

= 1 + (k + 1)Ck(n)

+
n−1∑

m=1

(k + 1)m+1Cm
k (n−m+ 1)Ck(n−m)

< (k + 1)nCk(n) +
n−1∑

m=1

(k + 1)nCm+1
k (n−m+ 1)

since Ck(q) ≤ Ck(q + 1),

< (k + 1)n2k(
n+2k−3

k−1)k−1
log2 n log2 k

+

n−1∑

m=1

(k + 1)n2k(m+1)(n−m+2k−2

k−1)k−1
log2 n log2 k

by ind. hyp.,

< (k + 1)n
n−1∑

m=0

2k(m+1)(n−m+2k−2

k−1)k−1
log2 n log2 k.

Since (m + 1)
(

n−m+2k−2
k−1

)k−1

≤
(
n+2k−1

k

)k
for all m ∈

{0, . . . , n− 1}—see Appendix A—, we may proceed with:

Ck+1(n) < (k + 1)n
n−1∑

m=0

2k(
n+2k−1

k)
k
log2 n log2 k

= n(k + 1)n2k(
n+2k−1

k)k log2 n log2 k

= 2log2 n+n log2(k+1)+k(n+2k−1

k)
k
log2 n log2 k

< 2

(

log2 n+n+k(n+2k−1

k)
k
log2 n

)

log2(k+1)

< 2(k+1)(n+2k−1

k)
k
log2 n log2(k+1)

since log2 n + n <
(
n+2k−1

k

)k
log2 n (see below). This is

the desired bound.
To see that log2 n+ n <

(
n+2k−1

k

)k
log2 n, we use

(
n+ 2k − 1

k

)k

>
(n

k
+ 1

)k

=
k∑

j=0

(
k

j

)

·
(n

k

)j

= 1 + k ·
(n

k

)

+ · · · ≥ n+ 1 .

This completes the proof. �

By combining the two bounds in Propositions 3.4
and 4.4 we obtain Theorem 1.2, implying that log Ck(n)
is in Θ(nk−1 log n) for fixed alphabet size k.

5. Conclusion

We proved that, over a fixed k-letter alphabet, Ck(n)

is in 2Θ(nk−1 log n). This shows that Ck(n) is not doubly
exponential in n as Eq. (2) and Theorem 1.1 would allow.
It also is not simply exponential, bounded by a term of the
form 2f(k)·n

c

where the exponent c does not depend on k.
We are still far from having a precise understanding of

how Ck(n) behaves and there are obvious directions for
improving Theorem 1.2. For example, its bounds are not
monotonic in k (while the bounds in Theorem 1.1 are not
monotonic in n) and it only partially uses the combinato-
rial inequalities given by Propositions 3.3 and 4.3.

Acknowledgments. We thank J. Berstel, J.-É. Pin and M.
Zeitoun for their comments and suggestions.

References

[1] I. Simon, Piecewise testable events, in: Proc. 2nd GI Conf.
on Automata Theory and Formal Languages, volume 33 of Lec-
ture Notes in Computer Science, Springer, 1975, pp. 214–222.
doi:10.1007/3-540-07407-4_23.

[2] J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (Ed.),
Combinatorics on words, volume 17 of Encyclopedia of Mathe-

matics and Its Applications, Cambridge Univ. Press, 1983, pp.
105–142.

[3] J.-E. Pin, Varieties of Formal Languages, Plenum, New-York,
1986.

[4] V. Diekert, P. Gastin, M. Kufleitner, A survey on small frag-
ments of first-order logic over finite words, Int. J. Foundations
of Computer Science 19 (2008) 513–548.

[5] L. Kontorovich, C. Cortes, M. Mohri, Kernel methods for learn-
ing languages, Theoretical Computer Science 405 (2008) 223–
236.

[6] J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher,
D. Wellcome, S. Wibel, On languages piecewise testable in
the strict sense, in: Proc. 10th and 11th Biennal Conf.
Mathematics of Language (MOL 10), volume 6149 of Lec-

ture Notes in Computer Science, Springer, 2010, pp. 255–265.
doi:10.1007/978-3-642-14322-9_19 .

[7] W. Czerwiński, W. Martens, T. Masopust, Efficient sep-
arability of regular languages by subsequences and suf-
fixes, in: Proc. 40th Int. Coll. Automata, Languages,
and Programming (ICALP 2013), volume 7966 of Lecture

Notes in Computer Science, Springer, 2013, pp. 150–161.
doi:10.1007/978-3-642-39212-2_16 .

[8] O. Kĺıma, L. Polák, Alternative automata characterization of
piecewise testable languages, in: Proc. 17th Int. Conf. Devel-
opments in Language Theory (DLT 2013), volume 7907 of Lec-
ture Notes in Computer Science, Springer, 2013, pp. 289–300.
doi:10.1007/978-3-642-38771-5_26 .

[9] Th. Place, L. van Rooijen, M. Zeitoun, Separating regular lan-
guages by piecewise testable and unambiguous languages, in:
Proc. 38th Int. Symp. Math. Found. Comp. Sci. (MFCS 2013),
volume 8087 of Lecture Notes in Computer Science, Springer,
2013, pp. 729–740. doi:10.1007/978-3-642-40313-2_64 .

[10] K. Kátai-Urbán, P. P. Pach, G. Pluhár, A. Pongrácz, C. Szabó,
On the word problem for syntactic monoids of piecewise testable
languages, Semigroup Forum 84 (2012) 323–332.

4

http://dx.doi.org/10.1007/3-540-07407-4_23
http://dx.doi.org/10.1007/978-3-642-14322-9_19
http://dx.doi.org/10.1007/978-3-642-39212-2_16
http://dx.doi.org/10.1007/978-3-642-38771-5_26
http://dx.doi.org/10.1007/978-3-642-40313-2_64

Appendix A. Additional proofs

We prove that (m + 1)
(

n−m+2k−2
k−1

)k−1

≤
(
n+2k−1

k

)k

for all m = 0, . . . , n − 1, an inequality that was used to
establish Proposition 4.4.

For k > 0 and x, y ∈ R, let

Fk(x)
def
=

(
x+ 2k − 1

k

)k

,

Gk,x(y)
def
= (y + 1)Fk(x − y + 1) =

(y + 1)(x− y + 2k)k

kk
.

Let us check that Gk,x

(
k+x
k+1

)
= Fk+1(x) for any k > 0 and

x ≥ 0:

Gk,x

(
k + x

k + 1

)

=

(
k + x

k + 1
+ 1

)
1

kk

(

x−
k + x

k + 1
+ 2k

)k

=
x+ 2k + 1

k + 1

1

kk

(
kx+ 2k2 + k

k + 1

)k

=
x+ 2k + 1

k + 1

1

kk

(
k

k + 1

)k

(x+ 2k + 1)
k

=

(
x+ 2k + 1

k + 1

)k+1

= Fk+1(x) . (†)

We now claim that Gk,x(y) ≤ Fk+1(x) for all y ∈ [0, x].
For n, k ≥ 2, the claim entails Gk−1,n(m) ≤ Fk(m), i.e.

(m+1)
(

n−m+2k−2
k−1

)k−1

≤
(
n+2k−1

k

)k
, form = 0, . . . , n−1

as announced.

Proof (of the claim). Let ymax
def
= k+x

k+1 . We prove
that Gk,x(y) ≤ Gk,x(ymax) and conclude using Eq. (†):
Gk,x is well-defined and differentiable over R, its deriva-
tive is

G′
k,x(y) =

(x− y + 2k)k − (y + 1)k(x− y + 2k)k−1

kk

=
(x− y + 2k)k−1

kk
(
(x − y + 2k)− (y + 1)k

)

=
(x− y + 2k)k−1

kk
(
x+ k − y(k + 1)

)
.

Thus G′
k,x(y) is 0 for y = ymax, is strictly positive for

0 ≤ y < ymax, and strictly negative for ymax < y ≤ x.
Hence, over [0, x], Gk,x reaches its maximum at ymax. �

Appendix B. First values for Ck(n)

We computed the first values of Ck(n) by a brute-force
method that listed all minimal representatives of∼n equiv-
alence classes over a k-letter alphabet. Here x is minimal

if x ∼n y implies (|x| < |y| or (|x| = |y| and x ≤lex y)).
Every equivalence class has a unique minimal representa-
tive. Note that if a concatenation xx′ is minimal then
both x and x′ are. Therefore, when listing the minimal

representatives in order of increasing length, it is possible
to stop when, for some length ℓ, one finds no minimal rep-
resentatives. In that case we know that there cannot exist
minimal representatives of length > ℓ.
The cells left blank in the table were not computed for

lack of memory.

5

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k

n = 0 1 1 1 1 1 1 1 1 1

n = 1 2 4 8 16 32 64 128 256 2k

n = 2 3 16 152 2 326 52 132 1 602 420 64 529 264 ≥ 173 · 107

n = 3 4 68 5 312 1 395 588 1 031 153 002 ≥ 23 · 107

n = 4 5 312 334 202 ≥ 73 · 107

n = 5 6 1 560 38 450 477

n = 6 7 8 528 ≥ 39 · 107

n = 7 8 50 864

n = 8 9 329 248

n = 9 10 2 298 592

n = 10 11 17 203 264

n = 11 12 137 289 920

n n+ 1

Table B.1: Computed values for Ck(n)

6

	1 Introduction
	2 Basics
	3 Lower bound
	4 Upper bound
	5 Conclusion
	Appendix A Additional proofs
	Appendix B First values for Ck(n)

