
A Survey on the
Local Divisor Technique

Volker Diekert Manfred Kufleitner∗

University of Stuttgart, FMI
{diekert,kufleitner}@fmi.uni-stuttgart.de

Abstract. Local divisors allow a powerful induction scheme on the size of
a monoid. We survey this technique by giving several examples of this proof
method. These applications include linear temporal logic, rational expres-
sions with Kleene stars restricted to prefix codes with bounded synchroniza-
tion delay, Church-Rosser congruential languages, and Simon’s Factorization
Forest Theorem. We also introduce the notion of a localizable language class
as a new abstract concept which unifies some of the proofs for the results
above.

Keywords. local divisors; factorization forests; bounded synchronization
delay; linear temporal logic; Kamp’s Theorem

1 Introduction

The notion of a local divisor refers to a construction for finite monoids. It appeared
in this context first in [4] where it was used by the authors as a tool in the proof that
local future temporal logic is expressively complete for Mazurkiewicz traces with respect
to first-order logic. The definition of a local divisor is very simple: Let M be a finite
monoid and c ∈ M . Then cM ∩ Mc is a semigroup, but it fails to be a submonoid
unless c is invertible. If c is not invertible then 1 /∈ cM ∩Mc and, as a consequence,
|cM ∩Mc| < |M |. The idea is to turn cM ∩ Mc into a monoid by defining a new
multiplication by xc ◦ cy = xcy. This is well-defined and Mc = (cM ∩Mc, ◦, c) becomes
a monoid where c is the unit. Moreover, if c is not invertible then Mc is a smaller monoid
than M ; and this makes the construction attractive for induction. (The same idea works
for {c} ∪ cMc and since {c} ∪ cMc ⊆ cM ∩Mc there is a choice here.) The original
definition for a multiplication of type xc ◦ cy = xcy was given for associative algebras.
It can be traced back to a technical report of Meyberg, [17]. He coined the notion of a

∗The second author was supported by the German Research Foundation (DFG) grant DI 435/5-2.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288362261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

local algebra. Just replace M above by a finite dimensional associative algebra (with a
unit element) over a field k. For example, M is the algebra of n× n matrices over k. If
c ∈ M is not invertible then the vector space cM ∩Mc has at least one dimension less
and (cM ∩Mc,+, ◦, c) is again an associative algebra with the unit element c. See also
[11] for applications of Meyberg’s construction.

Despite (or more accurately thanks to) its simplicity, the local divisor technique is
quite powerful, see e.g. [6]. For example, it was used in a new and simplified proof for
the Krohn-Rhodes Theorem [9]. Very recently, the construction of local divisors has also
been an essential tool in Kuperberg’s work on a linear temporal logic for regular cost
functions [15]. In [7] we extended a classical result of Schützenberger from finite words
to infinite words by showing that ω-rational expressions with bounded synchronization
delay characterize star-free languages. In 2012 we presented a paper which solved a 25
years old conjecture in formal language theory [8]. We showed that regular languages
are Church-Rosser congruential. We come back to this result in more detail below. Our
result was obtained in two steps. First, we had to show it for regular group languages,
which is very difficult and technical. This part served as a base for induction. The
second part uses induction using local divisors. This part is actually easy to explain, it
will be done in Section 6.

The outline of the paper is as follows. In Section 3 we give a general framework for the
local divisor technique in the context of aperiodic languages (i.e., languages recognized
by finite aperiodic monoids). We introduce the notion of localizable language class as a
new abstract concept.

In the remaining sections we give four applications of the local divisor technique. In
Section 4 we apply this technique to linear temporal logic, and in Section 5 it is used for
a characterization of the aperiodic languages in terms of restricted rational expressions.
In Section 6 we show how to apply the local divisor technique in the context of string
rewrite systems. Finally, in Section 7 we give a proof of Simon’s Factorization Forest
Theorem; the proof is the archetype of how to apply the local divisor technique in
arbitrary monoids.

2 Local divisors

We will apply the local divisor techniques mainly to monoids. However, it is instructive
to place ourselves first in the slightly more general setting of semigroups. Let S = (S, ·)
be a finite semigroup. A divisor S ′ of S is a homomorphic image of a subsemigroup.
Let c ∈ S be any element and consider cS ∩ Sc. We can turn the subset cS ∩ Sc into a
semigroup by defining a new operation ◦ as follows:

xc ◦ cy = xcy.

A direct calculation shows that the operation ◦ is well-defined and associative. Hence,
Sc = (cS∩Sc, ◦) is a semigroup. In order to see that Sc is a divisor consider the following
subsemigroup S ′ = {x ∈ S | cx ∈ Sc} of S. Note that c ∈ S ′. Define ϕ : S ′ → Sc by
ϕ(x) = cx. It is surjective since z ∈ cS ∩ Sc implies that we can write z = cx with

2

x ∈ S ′. Moreover, cxy = cx ◦ cy and Sc is the homomorphic image of S ′. Therefore, Sc

is a divisor. We call it the local divisor at c. We want to use Sc for induction. Therefore
we characterize next when |Sc| < |S|. Recall that e ∈ S is called an idempotent if e2 = e.
For every finite semigroup there is a natural number ω ∈ N such that xω is idempotent
for every x ∈ S, for instance ω = |S|!. An element y is called a unit if it has a left-
and right inverse, i.e., if there is a neutral element 1 ∈ S and xy = yx′ = 1 for some
x, x′ ∈ S (and then we have x = xyx′ = x′). Thus, if S contains a unit y, then it is a
monoid with neutral element yω. We have the following result.

Proposition 2.1. Let S be a semigroup and Sc = (cS ∩ Sc, ◦) be defined as above.

(a) If S is a monoid, then Sc = (cS∩Sc, ◦, c) is a monoid and Sc is a divisor in terms
of monoids, i.e. a homomorphic image of a submonoid S ′ of S.

(b) If c is a unit of S, then S = {x ∈ S | cx ∈ Sc} and ϕ : S → Sc, x 7→ cx is an
isomorphism of monoids.

(c) If S is finite and c is not a unit, then |Sc| < |S|.
(d) If cxc = cyc is idempotent in Sc, then cxcy and xcyc are idempotent in S.

Proof. (a): Since S is a monoid we have 1 ∈ S ′ = {x ∈ S | cx ∈ Sc} and Sc is the
homomorphic image of the submonoid S ′.

(b): Trivial.
(c): If cS ∩ Sc = S, then we have cS = S and Sc = S. This implies that c is a unit.

Indeed, we have cωS = S = Scω. For every element cωx ∈ S we have cω · cωx = cωx.
Thus, cω is neutral and cω−1 is the inverse of c, i.e., c is a unit. Therefore, if c is not a
unit, then |Sc| < |S|.

(d) We have cxcy · cxcy =
(
(cxc) ◦ (cyc) ◦ (cxc)

)
· y = cxc · y. The last equality uses

the fact that cxc = cyc is idempotent in Sc. The claim for xcyc is symmetric.

Remark 2.2. Note that ({cc} ∪ cSc, ◦) is a subsemigroup of (cS ∩ Sc, ◦). Moreover, if
S is a monoid, then ({c} ∪ cSc, ◦, c) is a submonoid of (cS ∩ Sc, ◦, c). Hence by slight
abuse of language, we might call ({cc} ∪ cSc, ◦) (resp. ({c} ∪ cSc, ◦, c)) a local divisor
of S, too. In addition, if c ∈ S is idempotent, then (cSc, ◦) = (cSc, ·) is the usual local
monoid at c. The advantage is that {cc} ∪ cSc (resp. {c} ∪ cSc) might be smaller than
cS ∩ Sc. However, in worst case estimations there is no difference.

3 Localizable language classes

A language class V assigns to every finite alphabet A a set of languages V(A∗) ⊆ 2A∗ .
A language class V is left-localizable if for all finite alphabets A and T the following
properties hold:

(a) ∅, A∗ ∈ V(A∗).

(b) If K,L ∈ V(A∗), then K ∪ L ∈ V(A∗).

(c) For every c ∈ A, the alphabet B = A \ {c} satisfies:

3

1. If K ∈ V(B∗), then K ∈ V(A∗).

2. If K ∈ V(A∗) and L ∈ V(B∗), then KcL ∈ V(A∗).

3. If K ∈ V(B∗) and L ∈ V(A∗) with L ⊆ cA∗, then KL ∈ V(A∗).

4. Suppose g : B∗ → T is a mapping with g−1(t) ∈ V(B∗) for all t ∈ T .
Moreover, let σ : (cB∗)∗ → T ∗ be defined by σ(cu1 · · · cuk) = g(u1) · · · g(uk)
for ui ∈ B∗. If K ∈ V(T ∗), then σ−1(K) ∈ V(A∗).

Being right-localizable is defined by the right dual of left-localizability. Properties (a),
(b) and (c1) are unchanged, but the remaining conditions are replaced by

(c) For every c ∈ A, the alphabet B = A \ {c} satisfies:

2’. If K ∈ V(B∗) and L ∈ V(A∗), then KcL ∈ V(A∗).

3’. If K ∈ V(A∗) with K ⊆ A∗c and L ∈ V(B∗), then KL ∈ V(A∗).

4’. Suppose g : B∗ → T is a mapping with g−1(t) ∈ V(B∗) for all t ∈ T .
Moreover, let σ : (B∗c)∗ → T ∗ be defined by σ(u1c · · ·ukc) = g(u1) · · · g(uk)
for ui ∈ B∗. If K ∈ V(T ∗), then σ−1(K) ∈ V(A∗).

A class of languages V is localizable if it is left-localizable or right-localizable.

Theorem 3.1. If L ⊆ A∗ is recognized by a finite aperiodic monoid, then L ∈ V(A∗)
for every localizable language class V. This means that every localizable language class
contains all aperiodic languages.

Proof. We can assume that V be left-localizable; the situation with V being right-
localizable is symmetric. Let h : A∗ → M be a homomorphism to a finite aperiodic
monoid M . It is enough to show h−1(p) ∈ V(A∗) for all p ∈ M . We proceed by induc-
tion on (|M | , |A|) with lexicographic order. If h(A∗) = {1}, then either h−1(p) = ∅ or
h−1(p) = A∗; and we are done. Hence, we can assume that there is a letter c ∈ A with
h(c) 6= 1. Let B = A \ {c} and g : B∗ →M be the restriction of h to B∗. For all p ∈M
we have

h−1(p) = g−1(p) ∪
⋃

p = qrs

g−1(q) ·
(
h−1(r) ∩ cA∗ ∩ A∗c

)
· g−1(s) (1)

by factoring every word at the first and the last occurrence of c. Induction on the size
of the alphabet yields g−1(p) ∈ V(B∗) for all p ∈ M . By the closure properties of V ,
it suffices to show

(
h−1(r) ∩ cA∗ ∩ A∗c

)
· g−1(s) ∈ V(A∗) for every r ∈ h(c)M ∩Mh(c)

and s ∈ h(B∗). Let T = h(B∗). In the remainder of this proof we will use T as a finite
alphabet. The mapping σ : (cB∗)∗ → T ∗ is defined by

σ(cv1 · · · cvk) = g(v1) · · · g(vk)

for vi ∈ B∗, and the homomorphism f : T ∗ → Mc to the local divisor Mc =
(
h(c)M ∩

Mh(c), ◦, h(c)
)

is defined by
f
(
g(v)

)
= h(cvc)

4

for v ∈ B∗. This is well-defined since h(cvc) = h(c)g(v)h(c) only depends on g(v) and
not on the word v itself. Consider a word w = cv1 · · · cvk with k ≥ 0 and vi ∈ B∗. Then

f
(
σ(w)

)
= f

(
g(v1)g(v2) · · · g(vk)

)
= h(cv1c) ◦ h(cv2c) ◦ · · · ◦ h(cvkc)

= h(cv1cv2 · · · cvkc) = h(wc).

Thus, we have wc ∈ h−1(r) if and only if w ∈ σ−1
(
f−1(r)

)
. This shows h−1(r) ∩ cA∗ ∩

A∗c = σ−1
(
f−1(r)

)
· c for every r ∈ h(c)M ∩Mh(c). It follows that(
h−1(r) ∩ cA∗ ∩ A∗c

)
· g−1(s) = σ−1(K) · c · g−1(s)

for K = f−1(r). The monoid Mc is aperiodic and |Mc| < |M |. Induction on the
size of the monoid yields K ∈ V(T ∗), and induction on the alphabet shows g−1(t) ∈
V(B∗) for all t ∈ T . By the closure properties of V we obtain σ−1(K) ∈ V(A∗) and
σ−1(K) · c · g−1(s) ∈ V(A∗). This concludes the proof.

The main application of Theorem 3.1 is to show that some given language class V
contains all aperiodic languages. This can be done by verifying the properties (a), (b),
and (c) for V , i.e., by showing that V is localizable.

4 Linear temporal logic

By Kamp’s famous theorem [13], linear temporal logic LTL over words has the same
expressive power as first-order logic FO[<]. In an algebraic setting, one shows first that
every first-order definable language L ⊆ A∗ is aperiodic. This is relatively easy and no
local divisor technique applies here. In this section we give a simple proof that every
aperiodic language is LTL-definable. We give the proof for finite words, only. However,
the basic proof techniques generalize to infinite words [5] and also to Mazurkiewicz
traces [3].

The syntax of linear temporal logic LTL(A) over an alphabet A is defined as follows:

ϕ ::= > | a | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | (ϕ U ϕ)

for a ∈ A. The modality X is for “neXt” and U is for “Until”. As usual, we omit
the bracketing whenever there is no confusion. For the semantics we interpret a word
u = a1 · · · an with ai ∈ A as a labeled linear order with positions {1, . . . , n}, and position
i is labeled by ai. We write u, i |= ϕ if the word u at position i models ϕ, and we write

5

u, i 6|= ϕ if this is not the case. The semantics of LTL(A) is defined by:

u, i |= > is always true

u, i |= a ⇔ ai = a

u, i |= ¬ϕ ⇔ u, i 6|= ϕ

u, i |= ϕ ∨ ψ ⇔ u, i |= ϕ or u, i |= ψ

u, i |= Xϕ ⇔ i < n and u, i+ 1 |= ϕ

u, i |= ϕ U ψ ⇔ there exists k ∈ {i, . . . , n} such that u, k |= ψ
and for all j ∈ {i, . . . , k − 1} we have u, j |= ϕ

The formula ϕ U ψ holds at position i if there exists a position k ≥ i such that ψ holds
at k and all positions from i to k − 1 satisfy ϕ. A formula ϕ in LTL(A) defines the
language

L(ϕ) =
{
u ∈ A+

∣∣ u, 1 |= ϕ
}
.

This means that when no position is given, then we start at the first position of a
nonempty word. We introduce the following macros:

⊥ := ¬> B :=
∨

b∈B b for B ⊆ A

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ) Fϕ := > U ϕ

The macro Fϕ (for “Future”) holds at position i if ϕ holds at some position k ≥ i. For
L,K ⊆ A∗ we define a variant of the Until-modality on languages by

K U©L = {vw ∈ A∗ | w ∈ L, ∀ v = pq with q 6= ε: qw ∈ K} .

The language class LTL resembles the behavior of LTL by using a more global semantics.
The languages in LTL(A∗) are inductively defined by:

• ∅ ∈ LTL(A∗).

• If K,L ∈ LTL(A∗) and a ∈ A, then A∗ \ L,K ∪ L, aL,K U©L ∈ LTL(A∗).

The formal connection between LTL and LTL is given by the following proposition.

Proposition 4.1. We have L ∈ LTL(A∗) if and only if L \ {ε} is definable in LTL(A).

Proof. We first show L(ϕ) ∈ LTL(A∗) for every formula ϕ ∈ LTL(A). We have A∗ =
A∗ \∅ ∈ LTL(A∗). For ϕ := > we have L(>) = A+ =

⋃
a∈A aA

∗ ∈ LTL(A∗). For ϕ := a
we have L(a) = aA∗ ∈ LTL(A∗). The construction for negations is L(¬ψ) = L(>)\L(ψ),
and disjunctions translate into unions. If ϕ := Xψ, then L(Xψ) =

⋃
a∈A aL(ψ). Finally,

if ϕ := ψ1 U ψ2, then L(ϕ) = L(ψ1) U©L(ψ2). It remains to show that L∪{ε} ∈ LTL(A∗)
whenever L ∈ LTL(A∗). This follows from {ε} = A∗\

(⋃
a∈A aA

∗) and the closure under
union.

For the converse, we show that for every language L ∈ LTL(A∗) there exists a formula
ϕL ∈ LTL(A) such that L(ϕL) = L \ {ε}. If L = ∅, then ϕ∅ = ⊥. Complements
translate into negations, and unions translate into disjunctions. If ε 6∈ K, then the

6

formula for L = aK is ϕaK := a ∧ XϕK . If ε ∈ K, then the formula of L = aK is
ϕaK := a ∧ (¬X> ∨ XϕK). If L = K1 U©K2 for ε 6∈ K2, then ϕL := ϕK1 U ϕK2 . Finally,
if L = K1 U©K2 for ε ∈ K2, then ϕL := (ϕK1 U ϕK2) ∨ ¬F¬ϕK1 ; the formula ¬F¬ϕK1

says that all positions satisfy ϕK1 .

Proposition 4.2. The language class LTL is left-localizable.

Proof. The properties (a) and (b) are obvious. Let c ∈ A and B = A\{c}. The language
B+ is defined by ¬F¬B ∈ LTL(A) and thus B∗ ∈ LTL(A∗).

For (c1) let K,L ∈ LTL(B∗). By induction we can assume K,L ∈ LTL(A∗). This
immediately yields K ∪L, aL,K U©L ∈ LTL(A∗) for all letters a. The set B∗ \L can be
written as (A∗\L)∩B∗ and henceB∗\L is in LTL(A∗). This shows LTL(B∗) ⊆ LTL(A∗).

For (c2) let K ∈ LTL(A∗) and L ∈ LTL(B∗). We have KcL = A∗cL∩KcB∗ because
the last c in a word is unique. Note that A∗cL = A∗ U© cL ∈ LTL(A∗). It remains to
show KcB∗ ∈ LTL(A∗) by structural induction:

(A∗ \ L′)cB∗ = A∗cB∗ \ L′cB∗

(K ′ ∪ L′)cB∗ = K ′cB∗ ∪ L′cB∗

(aL′)cB∗ = a(L′cB∗)

(K ′ U©L′)cB∗ = (K ′cB∗) U©(L′cB∗).

For (c3) let K ∈ LTL(B∗) and L ∈ LTL(A∗) with L ⊆ cA∗. We have KL =
B∗L ∩KcA∗. Note that B∗L = BA∗ U©L ∈ LTL(A∗). As before, one can easily show
KcA∗ ∈ LTL(A∗) by structural induction. For instance, (B∗ \ L′)cA∗ = B∗cA∗ \ L′cA∗
since L′ ⊆ B∗ and the occurrence of the first c is unique.

For (c4) suppose g : B∗ → T is a mapping with g−1(t) ∈ LTL(B∗) for all t ∈ T .
Moreover, let σ : (cB∗)∗ → T ∗ be defined by σ(cu1 · · · cuk) = g(u1) · · · g(uk) for ui ∈ B∗.
We show σ−1(K) ∈ LTL(A∗) for every K ∈ LTL(T ∗) by structural induction on K. For
all K,L ⊆ T ∗ and t ∈ T we have:

σ−1(T ∗) = {ε} ∪ cA∗

σ−1(K \ L) = σ−1(K) \ σ−1(L)

σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L)

σ−1(tL) = c · g−1(t) · σ−1(L)

σ−1(K U©L) =
(
(σ−1(K) ∪BA∗) U©σ−1(L)

)
∩ σ−1(T ∗).

Note that g−1(t) · σ−1(L) ∈ LTL(A∗) by (c3).

Together with Theorem 3.1 this leads to the following result.

Corollary 4.3. If L ⊆ A+ is recognized by a finite aperiodic semigroup, then L is
definable in LTL(A).

Proof. As a subset of A∗, the language L is recognized by a finite aperiodic monoid. By
Theorem 3.1 and Proposition 4.2 we have L ∈ LTL(A∗). Since ε 6∈ L, Proposition 4.1
shows that L is definable in LTL(A).

7

5 Bounded synchronization delay

A fundamental and classical result of Schützenberger from 1965 says that a language is
star-free if and only if its syntactic monoid is finite and aperiodic [23]. A language is
star-free if it can be built from the finite languages by using concatenation and Boolean
operations. One can think of the star-free languages as rational languages where the
Kleene-star is replaced by complementation. There is another beautiful characterization
of the star-free languages due to Schützenberger [24], which seems to be quite overlooked.
It characterizes the star-free languages without using complementation, but the inductive
definition allows the star-operation on languages K (already belonging to the class) if
K is a prefix code with bounded synchronization delay. Since synchronization delay is
the main feature in this approach, the class is denoted by SD. The notion of bounded
synchronization delay was introduced by Golomb and Gordon [12] and it is an important
concept in coding theory.

A language K ⊆ A∗ is called prefix-free if u, uv ∈ K implies u = uv. A prefix-free
language K ⊆ A+ is also called a prefix code since every word u ∈ K∗ admits a unique
factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K. A prefix code K has synchronization
delay d if for all u, v, w ∈ A∗ we have:

if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗.

Note that uv ∈ K∗ and uvw ∈ K∗ implies w ∈ K∗ since K is a prefix code. The
prefix code K has bounded synchronization delay if there is some d ∈ N such that
K has synchronization delay d. Note that every subset B ⊆ A yields a prefix code
with synchronization delay 0. In particular, the sets B are prefix codes of bounded
synchronization delay for all B ⊆ A.

The intuition behind this concept is the following: Assume a sender emits a stream of
code words from K, where K is a prefix code with synchronization delay d. If a receiver
misses the beginning of the message, he can wait until he detects a sequence of d code
words. Then he can synchronize and decipher the remaining text after these d words.

We inductively define Schützenberger’s language class SD:

(a) We have ∅ ∈ SD(A∗) and {a} ∈ SD(A∗) for all letters a ∈ A.

(b) If K,L ∈ SD(A∗), then K ∪ L, K · L ∈ SD(A∗).

(c) If K ∈ SD(A∗) is a prefix code with bounded synchronization delay, then K∗ ∈
SD(A∗).

Note that, unlike the definition of star-free sets, the inductive definition of SD(A∗) does
not use any complementation.

Proposition 5.1. The language class SD is right-localizable.

Proof. The properties (a), (b), (c1), (c2’), and (c3’) are obvious. Let c ∈ A and B =
A \ {c} and consider the property (c4’).

Suppose g : B∗ → T is a mapping with g−1(t) ∈ SD(B∗) for all t ∈ T . Moreover, let
σ : (cB∗)∗ → T ∗ be defined by σ(u1c · · ·ukc) = g(u1) · · · g(uk) for ui ∈ B∗. We show

8

σ−1(K) ∈ SD(A∗) for every K ∈ SD(T ∗) by structural induction on K:

σ−1(t) = g−1(t)c

σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L)

σ−1(K · L) = σ−1(K) · σ−1(L)

σ−1(K∗) = σ−1(K)∗ .

It remains to verify that P = σ−1(K) is a prefix code of bounded synchronization delay
whenever K has this property. Clearly, ε /∈ P . To see prefix-freeness, consider u, uv ∈ P .
This implies u ∈ A∗c and hence, σ(uv) = σ(u)σ(v). It follows that v = ε because K
is prefix-free. Finally, suppose K has synchronization delay d. We show that P has
synchronization delay d + 1: Let uvw ∈ P ∗ with v ∈ P d+1. Write v = u′cv′ with
v′ ∈ P d. Note that v′ ∈ A∗c. It follows that σ(uv) = σ(uu′c)σ(v′) and σ(v′) ∈ Kd.
Thus, σ(uv) ∈ K∗. We obtain uv ∈ P ∗ as desired.

Corollary 5.2. If L ⊆ A∗ is recognized by a finite aperiodic semigroup, then L ∈
SD(A∗).

Proof. This is an immediate consequence of Proposition 5.1 and Theorem 3.1.

6 Church-Rosser congruential languages

The Word Problem WP(L) of a language L ⊆ A∗ is the following computational task.

Input: w ∈ A∗.
Question: Do we have w ∈ L?

The following facts are standard in formal language theory.

• If L is regular, then WP(L) is decidable in real time.

• If L is deterministic context-free, then WP(L) is decidable in linear time.

• If L is context-free, then WP(L) is decidable in cubic time.

• If L is context-sensitive, then WP(L) is decidable in polynomial space, and there
are context-sensitive languages such that WP(L) is PSPACE-complete.

The paper of McNaughton, Narendran, and Otto [16] exploits the following theme: “Go
beyond deterministic context-free and keep linear time solvability for the word problem
by using Church-Rosser semi-Thue systems.”

Before we proceed we need more preliminaries and notation. A weight is a homo-
morphism ‖·‖ : A∗ → N such that ‖a‖ > 0 for all letters a ∈ A. The length function is
a weight. If the weight ‖·‖ is given, we say that (A, ‖·‖) is a weighted alphabet.

A semi-Thue system over A is a subset S ⊆ A∗ × A∗. The elements of S are called
rules, and we frequently write `→ r for (`, r) ∈ S. A system S is called length-reducing

9

(resp. weight-reducing for a weight ‖·‖) if we have |`| > |r| (resp. ‖`‖ > ‖r‖) for all rules
(`, r) ∈ S. Every system S defines the rewriting relation =⇒

S
⊆ A∗ × A∗ by

u =⇒
S

v if u = p`q, v = prq for some rule (`, r) ∈ S.

By
∗

=⇒
S

we mean the reflexive and transitive closure of =⇒
S

. By
∗⇐⇒
S

we mean the

symmetric, reflexive, and transitive closure of =⇒
S

. We also write u
∗⇐=
S

v whenever

v
∗

=⇒
S

u. The system S is confluent if for all u
∗⇐⇒
S

v there is some w such that

u
∗

=⇒
S

w
∗⇐=
S

v. By IRRS(A∗) we denote the set of irreducible words, i.e., the set

of words where no left-hand side of a rule occurs as a factor. The relation
∗⇐⇒
S

is a

congruence, hence the congruence classes [u]S = {v ∈ A∗ | u ∗⇐⇒
S

v} form a monoid

which is denoted by A∗/S. If A∗/S is finite, then we say that S is of finite index.

Definition 6.1. A semi-Thue system S ⊆ A∗ × A∗ is called a Church-Rosser system
if it is length-reducing and confluent. A language L ⊆ A∗ is called a Church-Rosser
congruential language if there is a finite Church-Rosser system S such that L can be
written as a finite union of congruence classes [u]S. If in addition A∗/S is of finite
index, then L ⊆ A∗ is called strongly Church-Rosser congruential.

The motivation to consider these languages in [16] stems from the following.

Remark 6.2. Let S ⊆ A∗ × A∗ be a weight-reducing system. Then on input w ∈ A∗

of length n we can compute in time O(n) some word ŵ ∈ IRR(S) such that w
∗

=⇒
S

ŵ.

In particular, if L is a Church-Rosser congruential language, then its word problem is
solvable in linear time.

Let us consider some examples.

• Let S = {aab→ ba, cb→ c}. It is Church-Rosser, and hence L0 = [ca]S is Church-
Rosser congruential. The language L0 is not context-free since L0 ∩ ca∗b∗ ={
ca2

n
bn
∣∣ n ≥ 0

}
. Therefore the class of Church-Rosser congruential languages

is not included in the class of context-free languages.

• Let L1 = {anbn | n ≥ 0}. It is Church-Rosser congruential due to S = {aabb→ ab}
and L1 = [ab]S ∪ [ε]S. The monoid A∗/S is infinite because L1 is not regular. We
may also note that [an]S = {an} for n ≥ 1, and hence there are infinitely many
classes.

• Let L2 = {ambn | m ≥ n ≥ 0}. It is deterministic context-free, but not Church-
Rosser congruential since am must be irreducible for each m ≥ 1.

• Let L3 = {a, b}∗ a {a, b}∗. It is strongly Church-Rosser congruential due to S =
{aa→ a, b→ ε}, L3 = [a]S, and A∗/S = {[ε]S, [a]S}.

10

• Let L4 = (ab)∗ and S = {aba→ a}. The system S is Church-Rosser and L4 =
[ab]S ∪ [ε]S. However, A∗/S is infinite although L4 is regular. Therefore S does
not show that L4 is strongly Church-Rosser congruential. However, choosing T =
{aaa→ aa, aab→ aa, baa→ aa, bbb→ aa, bba→ aa, abb→ aa, aba→ a, bab→
b}, we obtain L4 = [ab]T ∪ [ε]T and A∗/T has 7 elements, only. Hence, L4 is indeed
strongly Church-Rosser congruential.

The languages L0 and L2 show that the classes of (deterministic) context-free lan-
guages and Church-Rosser congruential languages are incomparable. Therefore in [16] a
weaker notion of Church-Rosser languages has been considered, too. The new class con-
tained all Church-Rosser congruential languages as well as all deterministic context-free
languages; and their word problem remains decidable in linear time. We do not go into
details, but focus on the following conjecture dating back to 1988.

Conjecture 6.3 ([16]). Every regular language is Church-Rosser congruential.

After some significant progress on this conjecture in [18, 19, 20, 21, 22] there was stag-
nation. It was announced in 2003 by Reinhardt and Thérien in [22] that Conjecture 6.3
is true for all regular languages where the syntactic monoid is a group. However, the
manuscript has never been published as a refereed paper and there are some flaws in its
presentation. Let us continue with some examples which show that this statement is far
from being trivial even for finite cyclic groups. It shows that a major difficulty is the
number of generators.

• Let L5 = {w ∈ a∗ | |w| ≡ 0 mod 3}. Then S = {aaa→ ε} shows that L5 is
strongly Church-Rosser congruential.

• Let L6 = {w ∈ {a, b}∗ | |w| ≡ 0 mod 3}. We have L6 = [ε]S with respect to
the system S = {u→ ε | |u| = 3}. But S is not confluent, as we can see from
a ⇐=

S
aabb =⇒

S
b. The smallest system (we are aware of) showing that L6 is

Church-Rosser congruential is rather large. We may choose T = {aaa→ ε, baab→
b, (ba)3b → b} ∪ {bb u bb → b|u|+1 | 1 ≤ |u| ≤ 3}. The language L6 is a union
of elements in A∗/T , and A∗/T contains 272 elements with the longest irreducible
word having length 16.

The solution of Conjecture 6.3 is a typical example for the principle of loading the
induction: Proving a more general statement is sometimes easier because a stronger
inductive assumption can be used. Conjecture 6.3 speaks about Church-Rosser con-
gruential languages. First, we replace the existence of a finite Church-Rosser system
by starting with an arbitrary weighted alphabet (A, ‖·‖) and we consider only finite
confluent systems S ⊆ A∗ × A∗ of finite index which are weight-reducing for the given
weight; such a weight-reducing version of a Church-Rosser system is called a weighted
Church-Rosser system. Second, we switch to a purely algebraic statement. We say that
a homomorphism h : A∗ → M factorizes through a semi-Thue system S if u

∗⇐⇒
S

v

implies h(u) = h(v).

Proposition 6.4 ([8, 10]). Let (A, ‖·‖) be a weighted alphabet and let h : A∗ →M be a
homomorphism to a finite monoid M . Assume for every weighted alphabet (B, ‖·‖) and

11

every group G which divides M , every homomorphism g : B∗ → G factorizes through a
finite weighted Church-Rosser system of finite index. Then h factorizes through a finite
weighted Church-Rosser system S of finite index.

Proof. The proof is by induction on (|M | , |A|) with lexicographic order. If h(A∗) is a
finite group, then the claim follows from the assumption. If h(A∗) is not a group, then
there exists c ∈ A such that h(c) is not a unit. Let B = A \ {c}. By induction on the
size of the alphabet there exists a weighted Church-Rosser system R for the restriction
h : B∗ →M . Let

K = IRRR(B∗)c.

We consider the prefix code K as a weighted alphabet. The weight of a letter uc ∈
K is the weight ‖uc‖ when read as a word over the weighted alphabet (A, ‖·‖). Let
Mc = h(c)M ∩Mh(c) be the local divisor of M at h(c). We let g : K∗ → Mc be the
homomorphism induced by g(uc) = h(cuc) for uc ∈ K. By induction on the size of the
monoid there exists a weighted Church-Rosser system T ⊆ K∗ × K∗ for g. Suppose
g(`) = g(r) for `, r ∈ K∗ and let ` = u1c · · ·ujc and r = v1c · · · vkc with ui, vi ∈
IRRR(B∗). Then

h(c`) = h(cu1c) ◦ · · · ◦ h(cujc)

= g(u1c) ◦ · · · ◦ g(ujc)

= g(`) = g(r) = h(cr).

This means that every T -rule `→ r yields a h-invariant rule c`→ cr. We can transform
the system T ⊆ K∗ ×K∗ for g into a system T ′ ⊆ A∗ × A∗ for h by

T ′ = {c`→ cr ∈ A∗ × A∗ | `→ r ∈ T} .

Since T is confluent and weight-reducing over K∗, the system T ′ is confluent and weight-
reducing over A∗. Combining R and T ′ leads to S = R∪T ′. The left sides of a rule in R
and a rule in T ′ cannot overlap, and hence S is confluent, see e.g. [1, Theorem 1.1.13].
Therefore, S is a weighted Church-Rosser system such that h factorizes through A∗/S.
Suppose that every word in IRRT (K∗) has length at most k. Here, the length is over
the alphabet K. Similarly, let every word in IRRR(B∗) have length at most m. Then

IRRS(A∗) ⊆ {u0cu1 · · · cuk′+1 | ui ∈ IRRR(B∗), k′ ≤ k}

and every word in IRRS(A∗) has length at most (k+2)m+k+1. In particular, IRRS(A∗)
and A∗/S are finite.

Let (B, ‖·‖) be a weighted alphabet. If G = {1} is trivial, then the näıve system
T = {b→ ε | b ∈ B} is a weighted Church-Rosser system of finite index (the size of
B∗/T is one) such that every homomorphism g : B∗ → G factors through T . Since
every group divisor of an aperiodic monoid is trivial, we obtain the following corollary.

Corollary 6.5 ([10]). Every aperiodic language is strongly Church-Rosser congruential.

12

In order to prove Conjecture 6.3 it remains to show that every homomorphism to a
finite group factorizes through a finite weighted Church-Rosser system of finite index,
which is done in [8]. Surprisingly, the result for non-cyclic simple groups is a lot easier
than for cyclic or non-simple groups.

7 Factorization forests

In the following let M be a finite monoid and A be a finite alphabet. A factorization
forest of a homomorphism f : A∗ → M is a function d which maps every word w with
length |w| ≥ 2 to a factorization d(w) = (w1, . . . , wn) with w = w1 · · ·wn such that

• wi 6= 1 for all 1 ≤ i ≤ n, and

• n ≥ 3 implies that f(w1) = · · · = f(wn) is idempotent in M .

By successive factorization, every non-empty word can be visualized as a tree where the
leaves are labeled with letters. Thus, d defines a factorization tree for each word w. The
height h(w) of a word w is defined as

h(w) =

{
0 if |w| ≤ 1,

1 + max {h(w1), . . . , h(wn)} if d(w) = (w1, . . . , wn).

The height of a factorization forest d is the supremum of {h(w) | w ∈ A∗}. The famous
Factorization Forest Theorem of Simon says that every homomorphism f : A∗ → M
has a factorization forest of height O(|M |), see [25]. The original proof of Simon was
rather technical. A simplified proof with a worse bound based on the Krohn-Rhodes
decomposition was found by Simon in [26]. Later, improved bounds were found using
Green’s relations [2, 14]. However, in many cases it is enough to know that there is a
factorization forest of bounded height, but the actual bound is not important. Based on
local divisors, we give a new proof for the existence of such a bound.

Theorem 7.1 (Simon). Let M be a finite monoid. There is a constant h(|M |) such that
every homomorphism f : A∗ →M has a factorization forest of height at most h(|M |).

We give the proof of Theorem 7.1 at the end of this section. The case where M is a
finite group G is rather simple and nicely exposed in [2]. For convenience we repeat the
argument.

Proposition 7.2 ([2]). Let G be a finite group. Every homomorphism f : A∗ → G has
a factorization forest of height at most 3 |G|.

Proof. Let a1 · · · an ∈ A∗. The basic idea is to perform an induction on the size of the
prefix set

P (a1 · · · an) = {f(a1 · · · ai) ∈ G | 1 ≤ i < n} .

By induction on the size of the prefix set, we show that there is a factorization forest d
such that the height of a1 · · · an is at most 3 |P (a1 · · · an)|. If P (a1 · · · an) = ∅, then n ≤ 1

13

and we are done. Thus let P (a1 · · · an) 6= ∅. Choose some maximal nonempty subset
{i1, . . . , it} of {1, . . . , n− 1} such that all prefixes a1 · · · aij give the same group element
p under f . Let i0 = 0 and it+1 = n. Consider the t + 1 factors vj = aij−1+1 · · · aij . The
word a1 · · · an factorizes as v1 · · · vt+1. We have f(v2) = · · · = f(vt) = 1. Thus we can
define

d(v1 · · · vt+1) = (v1 · · · vt, vt+1),

d(v1 · · · vt) = (v1, v2 · · · vt) if t ≥ 2,

d(v2 · · · vt) = (v2, . . . , vt) if t ≥ 3.

For applying induction on the words vi, it remains to show that each prefix set P (vj)
is smaller than P (a1 · · · an). The set P (a1 · · · ai1) is smaller than P (a1 · · · an) since the
prefix p = f(a1 · · · ai1) does not occur anymore. For 2 ≤ j ≤ t+ 1 we have

p · P (aij−1+1 · · · aij) ⊆ P (a1 · · · an) \ {p} .

The result follows because the translation by any group element is injective.

For a letter c ∈ A we write Mc for the local divisor f(c)M ∩Mf(c) of M at f(c). The
proof of the following lemma gives an algorithm for lifting a factorization forest of Mc

to the original monoid M .

Lemma 7.3. Let f : A∗ →M be a homomorphism to a finite monoid M , let c ∈ A, and
let g : A∗ → Mc be the homomorphism to the local divisor Mc of M at f(c) defined by
g(b) = f(cbc) for b ∈ A. If wc = b1 · · · bk with bi ∈ A has a factorization tree of height h
for g, then w = cb1 · · · cbk has a factorization tree of height at most 4 |M |h+ 1 for f .

Proof. Let dc be the factorization forest for g. The proof is by induction on the height
of wc. If dc(wc) = (b1 · · · bi, bi+1 · · · bk), then we let

d(w) = (cb1 · · · cbi, cbi+1 · · · cbk).

Next we treat the case
dc(wc) = (u1, . . . , u`) (2)

with ` ≥ 3. In this situation g(u1) = · · · = g(u`) is idempotent in Mc. Each us is an
element in A∗ of the form bis · · · bis+1−1, and we let vs = biscbis+1 · · · cbis+1−1. Note that
w = cv1 · · · cv` and g(us) = f(cvsc). Let

T (w) = {f(vs) ∈M | f(vs′) = f(vs) for some 1 ≤ s′ < s < `}

be the elements with at least two occurrences. By induction on the size of T (w) we
translate the factorization in (2) into a factorization tree for w. If T (w) = ∅, then
a tree of height |M | is sufficient (in fact, even log |M | + 1 would suffice). Let now
T (w) 6= ∅. We choose some maximal subset {j1, . . . , jt} of {2, . . . , `} such that we have
both f(vj1) = · · · = f(vjt) and jt′ + 1 < jt′+1 for all 1 ≤ t′ < t. If jt 6= `, we can write

w = cw1cvj1 · · · cwtcvjtcwt+1

14

with wi 6= 1 and f(vj1) 6∈ T (wi). Note that

f(cw1c) = · · · = f(cwtc) = f(cvj1c) = · · · = f(cvjtc),

and this element is idempotent in Mc. The case jt = ` is similar, but without the factor
cwt+1 at the end. We have f(cw1cvj1) = · · · = f(cwtcvjt), and by Proposition 2.1(d) this
element is idempotent in M . Therefore, we can set

d(w) = (cw1cvj1 · · · cwtcvjt , cwt+1),

d(cw1cvj1 · · · cwtcvjt) = (cw1cvj1 , . . . , cwtcvjt) if t ≥ 2,

d(cwicvji) = (cwi, cvji) for 1 ≤ i ≤ t.

In total, we need 3 steps for every element in T (w) (which in total adds at most 3 |M |
to the height); and then there are at most |M | steps after T (w) has become empty.
Thus with a tree of height at most 4 |M | we can simulate the factorization in equa-
tion (2). After simulating every factorization of dc, we need one additional factorization
for d(cbi) = (c, bi).

Proof of Theorem 7.1. If different letters are mapped to the same element in M , we can
identify these letters without changing the height. Thus, we may assume |A| ≤ |M |.
The proof is by induction on (|M | , |A|) with lexicographic order. Consider a word
w = a1 · · · an with ai ∈ A. If all f(ai) are units, then w is mapped to a subgroup G
of M , and we are done by Proposition 7.2. Therefore we may assume that w has some
letter c such that f(c) is not a unit. The word w admits a factorization

w = w0cw1cw2 · · · cwk,

where c does not occur in any wi for 0 ≤ i ≤ k. By induction on the alphabet size of w,
there exists a factorization tree of small height for each wi. This allows us to treat each
factor wi as a letter. Let bi = f(wi) and A′ = {b1, . . . , bk, f(c)}, let f ′ : A′∗ → M be
the homomorphism induced by the inclusion A′ ⊆M . If wi = 1 is empty, then bi = 1 is
the neutral element of M , and this element is a letter in A′ (not the empty word). Let
g : A′∗ → Mc be the homomorphism to the local divisor Mc = f(c)M ∩Mf(c) of M at
f(c) defined by g(b) = f(c)bf(c) for b ∈ A′. We have |Mc| < |M | and hence by induction
on the size of the monoid, there exists a factorization forest dc for g of bounded height.
By Lemma 7.3 the factorization tree for wc = b1 · · · bk with respect to g can be translated
into a factorization tree for w′ = f(c)b1 · · · f(c)bk with respect to f ′, and the bound on
the height of this tree only depends on |M |. Combining the tree for w′ with the trees
for the wi yields a factorization tree for w such that its height only depends on M , but
not on the length of w.

Acknowledgements

We thank the anonymous reviewers for their numerous suggestions which significantly
improved the presentation.

15

References

[1] R. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

[2] J. Chalopin and H. Leung. On factorization forests of finite height. Theoretical Computer
Science, 310(1-3):489–499, 2004.

[3] V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces. Journal
of Computer and System Sciences, 64:396–418, 2002.

[4] V. Diekert and P. Gastin. Pure future local temporal logics are expressively complete for
Mazurkiewicz traces. Information and Computation, 204:1597–1619, 2006. Conference
version in LATIN 2004, LNCS 2976, 170–182, 2004.

[5] V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and
Th. Wilke, editors, Logic and Automata: History and Perspectives, Texts in Logic and
Games, pages 261–306. Amsterdam University Press, 2008.

[6] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic
over finite words. International Journal of Foundations of Computer Science, 19:513–548,
2008. Special issue DLT 2007.

[7] V. Diekert and M. Kufleitner. Omega-rational expressions with bounded synchronization
delay. Theory Comput. Syst., 2015.

[8] V. Diekert, M. Kufleitner, K. Reinhardt, and T. Walter. Regular languages are Church-
Rosser congruential. In A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors,
International Colloquium Automata, Languages and Programming (ICALP) 2012, Con-
ference Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages
177–188. Springer-Verlag, 2012.

[9] V. Diekert, M. Kufleitner, and B. Steinberg. The Krohn-Rhodes theorem and local divi-
sors. Fundamenta Informaticae, 116(1-4):65–77, 2012.

[10] V. Diekert, M. Kufleitner, and P. Weil. Star-free languages are Church-Rosser congruen-
tial. Theoretical Computer Science, 454:129–135, 2012.

[11] A. Fernández López and M. Tocón Barroso. The local algebras of an associative algebra
and their applications. In J. Misra, editor, Applicable Mathematics in the Golden Age,
pages 254–275. Narosa, 2002.

[12] S. W. Golomb and B. Gordon. Codes with bounded synchronization delay. Information
and Control, 8(4):355–372, 1965.

[13] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, Los Angeles (California), 1968.

[14] M. Kufleitner. The height of factorization forests. In MFCS, volume 5162 of Lecture Notes
in Computer Science, pages 443–454. Springer-Verlag, 2008.

[15] D. Kuperberg. Linear temporal logic for regular cost functions. Logical Methods in Com-
puter Science, 10:1–37, 2014.

16

[16] R. McNaughton, P. Narendran, and F. Otto. Church-Rosser Thue systems and formal
languages. J. ACM, 35(2):324–344, 1988.

[17] K. Meyberg. Lectures on algebras and triple systems. Technical report, University of
Virginia, Charlottesville, 1972.

[18] P. Narendran. Church-Rosser and related Thue systems. PhD thesis, Dept. of Mathemat-
ical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA, 1984.

[19] G. Niemann. Church-Rosser Languages and Related Classes. Kassel University Press,
2002. PhD thesis.

[20] G. Niemann and F. Otto. The Church-Rosser languages are the deterministic variants of
the growing context-sensitive languages. Inf. Comput., 197:1–21, 2005.

[21] G. Niemann and J. Waldmann. Some regular languages that are Church-Rosser congru-
ential. In DLT’01, Proceedings, volume 2295 of LNCS, pages 330–339. Springer, 2002.

[22] K. Reinhardt and D. Thérien. Some more regular languages that are Church Rosser
congruential. In 13. Theorietag, Automaten und Formale Sprachen, Herrsching, Germany,
pages 97–103, 2003.

[23] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control,
8:190–194, 1965.

[24] M. P. Schützenberger. Sur certaines opérations de fermeture dans les langages rationnels.
In Symposia Mathematica, Vol.XV (Convegno di Informatica Teorica, INDAM, Roma,
1973), pages 245–253. Academic Press, London, 1975.

[25] I. Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65–94,
1990.

[26] I. Simon. A short proof of the factorization forest theorem. In M. Nivat and A. Podelski,
editors, Tree Automata and Languages, pages 433–438. Elsevier, 1992.

17

	Introduction
	Local divisors
	Localizable language classes
	Linear temporal logic
	Bounded synchronization delay
	Church-Rosser congruential languages
	Factorization forests

